
®

seo OpenServerTM
Performance Guide

seo OpenServerTM

seQ QpenServer™
Performance Guide

© 1983-1995 The Santa Cruz Operation, Inc. All rights reserved.

© 1992-1994 AT&T Global Information Solutions Company; © 1987-1989 Legent Corporation; ©
1980-1989 Microsoft Corporation; © 1993-1994 Programmed Logic Corporation; © 1988 UNIX Systems
Laboratories, Inc. All rights reserved.

No part of this publication may be reproduced, transmitted, stored in a retrieval system, nor translated into
any human or computer language, in any form or by any means, electronic, mechanical, magnetic, optical,
chemical, manual, or otherwise, without the prior written permission of the copyright owner, The Santa
Cruz Operation, Inc., 400 Encinal Street, Santa Cruz, California, 95060, USA. Copyright infringement is a
serious matter under the United States and foreign Copyright Laws.

Information in this document is subject to change without notice and does not represent a commitment on
the part of The Santa Cruz Operation, Inc.

SCQ, the seQ logo, The Santa Cruz Operation, Open Desktop, QDT, Panner, sea Global Access, seQ QK, seQ

OpenServer, seQ MultiView, seQ Visual Tel, Skunkware, and VP fix are trademarks or registered
trademarks of The Santa Cruz Operation, Inc. in the USA and other countries. UNIX is a registered
trademark in the USA and other countries, licensed exclusively through X/Open Company Limited. All
other brand and product names are or may be trademarks of, and are used to identify products or services
of, their respective owners.

Document Version: 5.0
1 May 1995

The sea software that accompanies this publication is commercial computer software and, together with
any related documentation, is subject to the restrictions on US Government use as set forth below. If this
procurement is for a DOD agency, the following DFAR Restricted Rights Legend applies:

RESTRICTED RIGHTS LEGEND: Use, duplication, or disclosure by the Government is subject to restrictions
as set forth in subparagraph (c)(1)(ii) of Rights in Technical Data and Computer Software Clause at DFARS

252.227-7013. Contractor/Manufacturer is The Santa Cruz Operation, Inc., 400 Encinal Street, Santa Cruz,
CA 95060.

If this procurement is for a civilian government agency, this FAR Restricted Rights Legend applies:

RESTRICTED RIGHTS LEGEND: This computer software is submitted with restricted rights under
Government Contract No. (and Subcontract No. , if appropriate). It may not be used,
reproduced, or disclosed by the Government except as provided in paragraph (g)(3)(i) of FAR Clause
52.227-14 alt III or as otherwise expressly stated in the contract. Contractor/Manufacturer is The Santa
Cruz Operation, Inc., 400 Encinal Street, Santa Cruz, CA 95060.

The copyrighted software that accompanies this publication is licensed to the End User only for use in strict
accordance with the End User License Agreement, which should be read carefully before commencing use
of the software. This sea software includes software that is protected by these copyrights:

© 1983-1995 The Santa Cruz Operation, Inc.; © 1989-1994 Acer Incorporated; © 1989-1994 Acer America
Corporation; © 1990-1994 Adaptec, Inc.; © 1993 Advanced Micro Devices, Inc.; © 1990 Altos Computer
Systems; © 1992-1994 American Power Conversion, Inc.; © 1988 Archive Corporation; © 1990 AT!
Technologies, Inc.; © 1976-1992 AT&T; © 1992-1994 AT&T Global Information Solutions Company; © 1993
Berkeley Network Software Consortium; © 1985-1986 Bigelow & Holmes; © 1988-1991 Carnegie Mellon
University; © 1989-1990 Cipher Data Products, Inc.; © 1985-1992 Compaq Computer Corporation; ©
1986-1987 Convergent Technologies, Inc.; © 1990-1993 Cornell University; © 1985-1994 Corollary, Inc.; ©
1988-1993 Digital Equipment Corporation; © 1990-1994 Distributed Processing Technology; © 1991 D.L.S.
Associates; © 1990 Free Software Foundation, Inc.; © 1989-1991 Future Domain Corporation; © 1994
Gradient TechnolOgies, Inc.; © 1991 Hewlett-Packard Company; © 1994 IBM Corporation; © 1990-1993
Intel Corporation; © 1989 Irwin Magnetic Systems, Inc.; © 1988-1994 IX! Limited; © 1988-1991 JSB
Computer Systems Ltd.; © 1989-1994 Dirk Koeppen EDV-Beratungs-GmbH; © 1987-1994 Legent
Corporation; © 1988-1994 Locus Computing Corporation; © 1989-1991 Massachusetts Institute of
Technology; © 1985-1992 Metagraphics Software Corporation; © 1980-1994 Microsoft Corporation; ©
1984-1989 Mouse Systems Corporation; © 1989 Multi-Tech Systems, Inc.; © 1991 National Semiconductor
Corporation; © 1990 NEC Technologies, Inc.; © 1989-1992 Novell, Inc.; © 1989 Ing. C. Olivetti & C. SpA; ©
1989-1992 Open Software Foundation, Inc.; © 1993-1994 Programmed Logic Corporation; © 1989 Racal
InterLan, Inc.; © 1990-1992 RSA Data Security, Inc.; © 1987-1994 Secureware, Inc.; © 1990 Siemens Nixdorf
Informationssysteme AG; © 1991-1992 Silicon Graphics, Inc.; © 1987-1991 SMNP Research, Inc.; ©
1987-1994 Standard Microsystems Corporation; © 1984-1994 Sun Microsystems, Inc.; © 1987 Tandy
Corporation; © 1992-1994 3COM Corporation; © 1987 United States Army; © 1979-1993 Regents of the
University of California; © 1993 Board of Trustees of the University of Illinois; © 1989-1991 University of
Maryland; © 1986 University of Toronto; © 1976-1990 UNIX System Laboratories, Inc.; © 1988 Wyse
Technology; © 1992-1993 Xware; © 1983-1992 Eric P. Allman; © 1987-1989 Jeffery D. Case and Kenneth W.
Key; © 1985 Andrew Cherenson; © 1989 Mark H. Colburn; © 1993 Michael A. Cooper; © 1982 Pavel Curtis;
© 1987 Owen DeLong; © 1989-1993 Frank Kardel; © 1993 Carlos Leandro and Rui Salgueiro; © 1986-1988
Larry McVoy; © 1992 David L. Mills; © 1992 Ranier Pruy; © 1986-1988 Larry Wall; © 1992 Q. Frank Xia. All
rights reserved. SCO NFS was developed by Legent Corporation based on Lachman System V NFS. sca
TCP /IP was developed by Legent Corporation and is derived from Lachman System V STREAMS TCP, a
joint development of Lachman Associates, Inc. (predecessor of Legent Corporation) and Convergent
Technologies, Inc.

About this book 1

How this book is organized .. 1
Related documentation ... 2
Typographical conventions ... 5
How can we improve this book? ... 6

Chapter 1

What determines performance 7

Hardware factors that influence performance .. 8
Software factors that influence performance ... 9

Chapter 2

Managing performance 13

Tuning methodology ... 14
Defining performance goals 16
Collecting data .. 16
Formulating a hypothesis 17
Getting more specifics .. 17
Making adjustments to the system .. 18

Performance tuning case studies ... 19
Managing the workload ... 19

Chapter 3

Tuning CPU resources 21

Operating system states ... 22
Viewing CPU activity ... 23
Process states " 24
Clock ticks and time slices .. 26
Context switching .. 26
Interrupts .. 28
Calculation of process priorities ... 28
Examining the run queue .. 30

Multiprocessor systems .. 31
Support for multiple processors 33

Table of contents v

Using the mpstat load displayer .. 34
Examining interrupt activity on multiprocessor systems 34

Process scheduling ... 34
Adjusting the scheduling of processes 34
Controlling priority calculations - dopricalc 35
Controlling the effective priority of processes - primove 36
Controlling cache affinity - cache_affinity....................................... 37
Controlling process preemption - preemptive 37
Load balancing - loadbalance ... 37

Identifying CPU-bound systems .. 38
Tuning CPU-bound systems .. 40

Chapter 4

Tuning memory resources 41

Physical memory 42
Virtual memory .. ,. 42

Paging .. 44
Swapping .. 47
Viewing physical memory usage ... 48
Viewing swap space usage ... 48
Viewing swapping and paging activity ... 49

Identifying memory-bound systems ... 51
Tuning memory-bound systems ... 52

Reducing disk activity caused by swapping and paging 53
Increasing memory by reducing the buffer cache size 54
Investigating memory usage by system tables 55

Using graphical clients on low memory systems 56
Tuning X server performance .. 57
Kernel parameters that affect the X Window System 58
Case study: memory-bound workstation ... 59

System configuration .. 59
Defining a performance goal... 59
Collecting data 60
Formulating a hypothesis .. 61
Getting more specifics 61
Making adjustments to the system .. 65

Case study: memory-bound software development system 65
System configuration .. 65
Defining a performance goal... 66

vi

Collecting data .. 66
Formulating a hypothesis .. 67
Getting more specifics .. 67
Making adjustments to the system .. 69

Chapter 5

Tuning 1/0 resources 71

Subsystems that affect disk and other 110 .. 71
How the buffer cache works .. 73

Viewing buffer cache activity ... 75
Increasing disk 110 throughput by increasing the buffer cache

size .. 75
Positioning the buffer cache in memory ... 79
Tuning the number of buffer cache hash queues 80

How the namei cache works ... 81
Viewing namei cache activity .. 82
Reducing disk 1/0 by increasing the size of the namei cache 83

How multiphysical buffers are used ... 84
Tuning the number of multiphysical buffers 86

The mechanics of a disk transfer ... 87
Viewing disk and other block 110 activity .. 89
Identifying disk lID-bound systems .. 90
Tuning disk I/O-bound systems .. 92
SCSI disk driver request queue ... 93
Tuning the number of SCSI disk request blocks 93
Filesystem factors affecting disk performance 94

Overcoming performance limitations of hard disks 96
Tuning virtual disk performance ... 100

Performance considerations for RAID 4 and 5 102
Choosing a cluster size ... 103
Balancing disk load in virtual disk arrays 105
Tuning virtual disk kernel parameters .. 106

Serial device resources 108
Tuning serial device resources .. 110

Case study: IIO-bound multiuser system ... 113
System configuration .. 113
Defining a performance goal ... 113
Collecting data .. 113
Formulating a hypothesis 115
Getting more specifics 115

Table of contents vii

Making adjustments to the system 117
Case study: unbalanced disk activity on a database server 118

System configuration .. 118
Defining a performance goal ... 119
Collecting data .. 119
Formulating a hypothesis .. 120
Getting more specifics .. 120
Making adjustments to the system .. 122

Chapter 6

Tuning networking resources 123

STREAMS resources .. 123
Monitoring STREAMS performance .. 129
Tuning STREAMS usage .. 130

TCP/IP resources .. 131
Tuning TCP/IP performance 131
Monitoring TCPIIP performance ... 133

NFS resources .. 142
Monitoring NFS performance 144
Tuning NFS performance 146

LAN Manager Client Filesystem resources ... 154
Tuning LAN Manager Client Filesystem performance 155

Other networking resources ... 157
Case study: network overhead caused by X clients 158

System configuration .. 158
Defining a performance goal ... 158
Collecting data .. 158
Formulating a hypothesis .. 159
Getting more specifics .. 159
Making adjustments to the system .. 160

Chapter 7

Tuning system call activity 161

Viewing system call activity ... 161
Identifying excessive read and write system call activity 162
Viewing process fork and exec activity .. 162
Viewing AIO activity ... 162

viii

Viewing IPC activity ... '" '" 162
Reducing system call activity ... 166
Case study: semaphore activity on a database server 167

System configuration .. 167
Defining a performance goal ... 167
Collecting data .. 168
Formulating a hypothesis 168
Getting more specifics .. 168
Making adjustments to the system .. 169

Appendix A

Tools reference 171

df - report disk space usage ... 172
ps - check process activity ... 173
sar - system activity reporter ... 176

How sar works .. 177
Running sar , 178

swap - check and add swap space 179
timex - examine system activity per command 180
vmstat - virtual memory statistics 181

AppendixB

Configuring kernel parameters 185

When to change system parameters .. 186
Configuration tools ... 188

Using configure to change kernel resources 189
Using idtune to reallocate kernel resources 190
Kernel parameters that you can change using configure 191
Examining and changing configuration-dependent values 223

AppendixC

Configuring TCP/IP tunable parameters 225

Using ifconfig to change parameters for a network card 225
Using inconfig to change global TCP/IP parameters 226
TCP/IP parameters .. 227

Table of contents ix

Appendix 0

Quick system tuning reference 235

Bibliography 241

Glossary of performance terminology ... 243

x

About this book

This book is for administrators of sca OpenServerTM systems who are
interested in investigating and improving system performance. It describes
performance tuning for uniprocessor, multiprocessor, and networked sys
tems, including those with TCP lIP, NFS®, and X clients. It discusses how the
various subsystems function, possible performance constraints due to hard
ware limitations, and optimizing system configuration for various uses. Con
cepts and strategies are illustrated with case studies.

You will find the information you need more quickly if you are familiar with:

• "How this book is organized" (this page)

• "Related documentation" (page 2)

• "Typographical conventions" (page 5)

Although we try to present information in the most useful way, you are the
ultimate judge of how well we succeed. Please let us know how we can
improve this book (page 6).

How this book is organized

This book tells you:

• what is meant by system performance (page 7)

• how to tune a system (page 13)

• how the configuration of various system components influences the perfor
mance of the operating system:

Central Processing Units (CPUs) (page 21) for single and multiprocessor
systems

1

About this book

- memory (page 41) including physical (main) memory in Random Access
Memory (RAM) and swap areas on disk

- Input/Output (I/O) (page 71) including hard disks and serial devices

- networking (page 123) including STREAMS I/O, TCP /IP and NFS

• how you can examine system call activity (page 161) if you are an applica
tion programmer

A set of case studies (page 19) illustrates the methodology of system tuning,
and the tools that you can use to examine performance.

Appendixes provide additional information about:

• the tools (page 171) that you can use to examine performance

• the kernel parameters (page 185) that you can use to tune performance

• a quick guide to system tuning (page 235)

There is also a glossary (page 243) which explains technical terms and acro
nyms used throughout the book.

Related documentation

2

SCO OpenServer systems include comprehensive documentation. Depending
on which SCO OpenServer system you have, the following books are available
in online and/or printed form. Access online books by double-clicking on the
Desktop Help icon. Additional printed versions of the books are also avail
able. The Desktop and most sea OpenServer programs and utilities are
linked to extensive context-sensitive help, which in tum is linked to relevant
sections in the online versions of the following books. See "Getting help" in
the sea OpenServer Handbook.

NOTE When you upgrade or supplement your SCO OpenServer software,
you might also install online documentation that is more current than the
printed books that came with the original system. For the most up-to-date
information, check the online documentation.

Release Notes
contain important late-breakit,lg information about installation, hardware
requirements, and known limitations. The Release Notes also highlight the
new features added for this release.

sea OpenServer Handbook
provides the information needed to get your sea OpenServer system up
and running, including installation and configuration instructions, and
introductions to the Desktop, online documentation, system administra
tion, and troubleshooting.

Performance Guide

Related documentation

Graphical Environment Guide
describes how to customize and administer the Graphical Environment,
including the X Window System ™ server, the SCQ® Panner™ window
manager, the Desktop, and other X clients.

Graphical Environment help
provides online context-sensitive help for Calendar, Edit, the Desktop,
Help, Mail, Paint, the SCQ Panner window manager, and the UNIX®
command-line window.

Graphical Environment Reference
contains the manual pages for the X server (section X), the Desktop, and X
clients from SCQ and MIT (section XC).

Guide to Gateways for LAN Servers
describes how to set up SCQ® Gateway for NetWare® and LAN Manager
Client software on an SCQ OpenServer system to access printers, file
systems, and other services provided by servers running Novell ®
NetWare® and by servers running LAN Manager over DQS, QS/2®, or UNIX
systems. This book contains the manual pages for LAN Manager Client
commands (section LMC).

Mail and Messaging Guide
describes how to configure and administer your mail system. Topics
include sendmail, MMDF, seQ Shell Mail, mailx, and the Post Office
Protocol (POP) server.

Networking Guide
provides information on configuring and administering TCP /IP, NFS®, and
IPX/SPXTM software to provide networked and distributed functionality,
including system and network management, applications support, and
file, name, and time services.

Networking Reference
contains the command, file, protocol, and utility manual pages for the
IPX/SPX (section PADM), NFS (sections NADM, NC, and NF), and TCP/IP
(sections ADMN, ADMP, SFF, and TC) networking software.

Operating System Administrator's Reference
contains the manual pages for system administration commands and utili
ties (section ADM), system file formats (section F), hardware-specific infor
mation (section HW), miscellaneous commands (section M), and SCQ
Visual Tcl™ commands (section TCL).

Operating System Tutorial
provides a basic introduction to the SCQ OpenServer operating system.
This book can also be used as a refresher course or a quick-reference guide.
Each chapter is a self-contained lesson designed to give hands-on experi
ence using the seQ OpenServer operating system.

3

About this book

4

Operating System User's Guide
provides an introduction to SCO OpenServer command-line utilities, the
SCO Shell utilities, working with files and directories, editing files with the
vi editor, transferring files to disks and tape, using DOS disks and files in
the SCO OpenServer environment, managing processes, shell program
ming, regular expressions, awk, and sed.

Operating System User's Reference
contains the manual pages for user-accessible operating system com
mands and utilities (section C).

PC-Interface Guide
describes how to set up PC-Interface™ software on an seo OpenServer
system to provide print, file, and terminal emulation services to computers
running PC-Interface client software under DOS or Microsoft® Windows™.

sea Merge User's Guide
describes how to use and configure an SCo® Merge™ system. Topics
include installing Windows, installing DOS and Windows applications,
using DOS with the SCO OpenServer operating system, configuring hard
ware and software resources, and using SCO Merge in an international
environment.

sea Wabi User's Guide
describes how to use SCO® WabFM software to run Windows 3.1 applica
tions on the SCO OpenServer operating system. Topics include installing
the SCO Wabi software, setting up drives, configuring ports, managing
printing operations, and installing and running applications.

System Administration Guide
describes configuration and maintenance of the base operating system,
including account, file system, printer, backup, security, UUCP, and virtual
disk management.

The SCO OpenServer Development System includes extensive documentation
of application development issues and tools.

Many other useful publications about SCO systems by independent authors
are available from technical bookstores.

Performance Guide

Typographical conventions

Typographical conventions

This publication presents commands, filenames, keystrokes, and other special
elements in these typefaces:

Example: Used for:

lp or Ip(C) commands, device drivers, programs, and utilities (names,
icons, or windows); the letter in parentheses indicates the
reference manual section in which the command, driver, pro
gram, or utility is documented

lnewlclient.1ist

root

filename

(Esc)

Exit program?

yes or yes

"Description"

open or open(S)

$HOME

SIGHUP

buf

files, directories, and desktops (names, icons, or windows)

system, network, or user names

placeholders (replace with appropriate name or value)

keyboard keys

system output such as prompts and messages

user input

field names or column headings (on screen or in database)

library routines, system calls, kernel functions, C keywords;
the letter in parentheses indicates the reference manual section
in which the file is documented

environment or shell variables

named constants or signals

C program structures

C program structure members and variables

5

About this book

How can we improve this book?

6

What did you find particularly helpful in this book? Are there mistakes in this
book? Could it be organized more usefully? Did we leave out information you
need or include unnecessary material? If so, please tell us.

To help us implement your suggestions, include relevant details, such as book
title, section name, page number, and system component. We would appreci
ate information on how to contact you in case we need additional explana
tion.

To contact us, use the card at the back of the sea OpenServer Handbook or
write to us at:

Technical Publications
Attn: eFT
The Santa Cruz Operation, Inc.
PO Box 1900
Santa Cruz, California 95061-9969
USA

or e-mail us at:

techpubs@sco.com or ... uunet!scoltechpubs

Thank you.

Performance Guide

Chapter 1

What determines perfo111Ulnce

A computer system consists of a finite set of hardware and software com
ponents. These components constitute the resources of the system. One of the
tasks of the operating system is to share these resources between the pro
grams that are running on the system. Performance is a measure of how well
the operating system does this task; the aim of performance tuning is to make
it do this task better.

A system's hardware resources have inherent physical limits in the quantity of
data they can handle and the speed with which they can do this. The physical
subsystems that compose hardware include:

• One or more central processing units (CPUs), and the ancillary processors
that support them.

• Memory - both in Random Access Memory (RAM) and as swap space on
disk.

• I/O devices including hard and floppy disk drives, tape drives, serial ports,
and network cards.

• Networks - both Local Area Networks (LANs) and Wide Area Networks
(WANs).

Operating system resources are limited by the hardware resources such as the
amount of memory available and how it is accessed. The internal resources of
the operating system are usually configurable and control such things as the
size of data structures, security policy, standards conformance, and hardware
modes.

7

What determines performance

Examples of operating system resources are:

• The tables that the operating system uses to keep track of users and the
programs they are running.

• The buffer cache and other memory buffers that reduce dependence on
accessing slow peripheral devices.

If your system is connected to one or more networks, it may depend on
remote machines to serve files, perform database transactions, perform cal
culations, run X clients, and provide swap space, or it may itself provide some
of these services. Your system may be a router or gateway if it is connected to
more than one network. In such cases, the performance of the network and
the remote machines will have a direct influence on the performance of your
system.

Hardware factors that influence performance

8

Your system's hardware has the greatest influence on its performance. It is the
ultimate limiting factor on how fast a process will run before it has to start
sharing what is available with the operating system and other user processes.

Performance tuning can require you to add hardware or upgrade existing
hardware if a system's physical subsystems are unbalanced in power, or
insufficiently powerful to satisfy the demands being put on them. There may
come a time when, despite your best efforts, you cannot please enough people
enough of the time with the hardware resources at your disposal. If so, you
will have to go and buy some more hardware. This is one reason why moni
toring and recording your system's performance is important if you are not
the person spending the money. With the information that you have gath
ered, you can make a strong case for upgrading your system.

It is important to balance the power of your computer's subsystems with each
other; the power of the CPU(s) is not enough in itself. If the other subsystems
are slow relative to the available processing power, they will act to constrain
it. If they are more powerful, you have possibly overspent, although you
should be able to upgrade processing power without much extra expenditure.

There are many hardware factors that can limit the overall system perfor
mance:

• The speed and width of the system's address and data buses.

• The model, clock speed, and the size of the internal level-one (Ll) memory
cache of the system's CPU or CPUs.

• The size of the level-two (L2) cache memory which is external to the CPU.
This should be capable of working with all of physical memory.

Performance Guide

Software factors that in fluence performance

• The amount of memory, the width of its data path, and its access time. The
time that the CPU has to wait for memory to be accessed limits its perfor
mance.

• The speed and width of a SCSI bus controlled by a host adapter.

• The width of the data path on peripheral controller cards (32, 16, or 8-bit).

• Whether controllers have built-in cache. This is particularly important for
disk and network controllers.

• Access time for hard disks.

• Whether intelligent or dumb serial cards are used; intelligent cards offload
much of the work that would otherwise be performed by the cPU.

On multiprocessor machines, the following considerations also become
important:

• Write-back L2 cache (for instructions and data) with cache coherency on
each cPU to reduce the number of accesses to main memory. This has the
benefit of improving cPU performance as well as improving general sys
tem performance by reducing contention for the system bus.

• Support for fully distributed interrupts to allow any CPU to service inter
rupts from I/O devices such as network and disk controllers.

• The memory and I/O subsystems must be as fast as possible to keep up
with the demands of the enhanced cPU performance. Use of intelligent
peripheral controllers is particularly desirable.

Software factors that influence performance

The way in which applications are written usually has a large impact on per
formance. If they make inefficient use of processing power, memory, disk, or
other subsystems, it is unlikely that you will improve the situation signifi
cantly by tuning the operating system.

The efficiency of the algorithms used by an application, or the way that it uses
system services, are usually beyond your control unless you have access to
source code. Some applications such as large relational database systems pro
vide extensive facilities for performance monitoring and tuning which you
should study separately.

9

Software factors that in fluence performance

• Is it using large numbers of system calls? System calls are expensive in pro
cessing overhead and may cause a context switch on the return from the
call. You can use trace(CP) to discover the system call usage of a program.

• Is it using inefficient read(S) and write(S) system calls to move small num
bers of characters at a time between user space and kernel space? If possi
ble use buffered I/O to avoid this.

• Are formatted reads and writes to disk being used? Unformatted reads and
writes are much more efficient for maintaining precision, speed of access,
and generally need less disk space.

• Is the application using memory efficiently? Many older applications use
disk extensively since they were written in the days of limited core storage
and expensive memory.

• What version of malloc(S) does the application use (if it uses it at all)? The
version in the libmalloc.a library allows more control over the allocation of
memory than the version in libc.a. Memory leakage can occur if you do not
call free(S) to place blocks of memory back in the malloc pool when you
have finished with them.

• Does the application group together routines that are used together? This
technique (known as localization of reference) tends to reduce the number
of text pages that need to be accessed when the program runs. (The system
does not load pages of program text into memory when a program runs
unless they are needed for the program's execution.)

• Does the application use shared libraries or dynamic linked libraries
(DLLs)? The object code of shared libraries can be used by several applica
tions at the same time; the object code of DLLs is also shared and is only
loaded when an application needs to access it. Using either type of library
is preferable to using statically linked libraries which cannot be shared.

• Does the application use library routines and system calls that are intended
to enhance performance? Examples of the APls provided are:

Memory-mapping loads files directly into memory for processing (see
mmap(S)).

Fixed-priority scheduling allows selected time-critical processes to con
trol how they are scheduled and ensure that they execute when they
have work to perform. Applications can use the predictable scheduling
behavior to improve throughput and reduce contention (see
sched_setparam(S) and sched~etparam(S)).

Support for high performance asynchronous I/O, semaphores and
latches, and high-resolution timers and spin locks for use by threaded
applications (see aio(FP), semaphore(FP), and time(FP)).

11

~hatderermmesperlormance

12 Perlormance Guide

Chapter 2

Managing perfonnance

To manage the performance of a system, you normally try to share the
available resources equally between its users. However, different users per
ceive performance according on their own needs and the demands of the
applications that they are running. If they use interactive programs, response
time is likely to be their main index of performance. Someone interested in
performing numeric analysis may only be worried about the turnaround time
for off-line batch mode processing. Another person may wish to perform
sophisticated image processing in real time and requires quick access to
graphics data files. You, as the administrator, are interested in maximizing
the throughput of all jobs submitted to the system - in fact, keeping every
one happy. Unfortunately, such differing requirements may be difficult to
reconcile.

For example, if you administer a single standalone system, you may decide
that your main priority is to improve the interactive response time. You may
be able to do this by decreasing the overall workload at peak usage times.
'This would involve scheduling some work to run as batch jobs at quieter
times, or perhaps restricting simultaneous access to your system to a smaller
number of users. However, in speeding up your system's response you now
have the additional problem of decreased throughput, which results in the
completion of fewer jobs, potentially at critical times. In pursuing any particu
lar performance improvement policy there are always likely to be trade-offs,
especially in a situation where resources are at a premium.

The next section covers the setting of realistic performance goals as the first
step in improving the performance of your computer system. You are then
given a method for observing and tuning a system.

13

Managing performance

Tuning methodology

14

You can optimize performance by system tuning. This is the process of mak
ing adjustments to the way in which various system resources are used so
that they correspond more closely to the overall usage patterns of the system.
You can improve the overall response time of the system by locating and
removing system bottlenecks. You can also customize the various resources
to correspond to the needs of an application that is run frequently on the sys
tem. Any system tuning that you perform is limited because the performance
of an operating system depends closely on the hardware on which it is
installed.

To tune a system efficiently, you need a good understanding both of the vari
ous system resources, and of how the system is going to be used. This might
also involve understanding how different applications use system resources.
System tuning is an ongoing process. A well-tuned system may not remain so
if the mix of applications and users changes. Once a system has been success
fully tuned, you should monitor performance regularly as part of routine sys
tem administration. This allows you to make modifications when changes in
performance first occur, and not when the performance degrades to the point
where the system becomes unusable.

You may be able to extend a system's resources by adding or reconfiguring
hardware, but remember that these resources always remain finite. Also you
should always bear in mind that there is no exact formula for tuning a system
- performance is based on the mixture of applications running on the sys
tem, the individuals using them, and your perception of the system's perfor
mance.

The flowchart shown in Figure 2-1 (page 15) illustrates the tuning method
ology we recommend you follow. Its most important feature is its feedback
loop - you may not always get the result you expect when you make
changes to your system. You must be prepared to undo your changes so that
you can restore your system to its earlier state.

The steps outlined in the methodology are described in the following sections.
They are further illustrated by the set of case studies discussed in "Perfor
mance tuning case studies" (page 19).

Performance Guide

Tuning methodology

Figure 2-1 Flowchart illustrating the methodology for system performance tuning

15

Managing performance

Defining performance goals

The first step in tuning a system is to define a set of performance goals. This
can range from discovering and removing system bottlenecks in order to
improve overall performance, to tuning the system specifically to run a single
application, set of applications, or benchmark as efficiently as possible.

The performance goals should be listed in order of priority. Often goals can
conflict; for example, a system running a database that uses a large cache
might also require a large portion of memory to compile programs during
software development. Assigning priority to these goals might involve decid
ing whether the database performance or the speed of the compilations is
more important.

You should attempt to understand all goals as well as possible. If possible,
you should note which resources will be affected by each goal. If you specify
several goals, it is important that you understand where they might conflict.

Although this guide assumes that you are a system administrator, the goals
identified for the tuning of the various subsystems also reflect the per
spectives and needs of users, and application developers.

Collecting data

16

Once you have identified your performance goals, your next step is to deter
mine how the system is performing at present. The aspects of a system's per
formance that you measure depend on the sort of tasks you expect it to carry
out. These are some typical criteria that you might use to judge a system:

• The time taken for an interactive application to perform a task.

• The time taken to process a database transaction.

• The time taken for an application to perform a set number of calculations.

If the system is meant to perform a single function, or run a particular applica
tion or benchmark, then you might only look at specific resources. However,
it can still be helpful to acquire a sense of the performance of the entire sys
tem. If the goals set for the system involve the tuning of applications, then the
tuning information provided with the application should be applied before
looking at more general system performance.

I NOTE It is often possible to improve performance by the careful design and
implementation of an application, or by tuning an existing application,
rather than by tuning the operating system.

Performance Guide

Tuning methodology

To gain an overview of the system's current performance, you should read
and use Appendix A, "Tools reference" (page 171) which discusses the various
system resources, and how you can monitor these.

You should collect data over a duration that is long enough for you to be able
to establish normal patterns of usage. You should not make decisions that
may be based on observations of performance anomalies though your goal
may be to smooth these out.

If your goal involves improving the performance of a particular application,
you must understand the application's use of systems resources if you suspect
that it is not performing as well as it should. Tuning information may be
available in the documentation provided with the application. If this is not
available, then an indication of how the application uses resources can be
gained by gathering information for a period before installing the application,
and comparing that information with information gathered while the applica
tion is in use.

Formulating a hypothesis

The next step is to determine what is causing the difference between the
current performance and your performance goal. You need to understand the
subsystems that have an influence on being able to achieve this goal. Begin
with a hypothesis, that is, your best informed guess, of the factors that are
critical for moving the system toward the goal. You can then use this
hypothesis to make adjustments to the system on a trial basis.

If this approach is used then you should maintain a record of adjustments that
you have made. You should also keep all the data files produced with the
various monitoring commands such as timex(ADM), and sar(ADM). This is
useful when you want to confirm that a side effect noticed after a recent
change was caused by that change and did not occur previously.

Getting more specifics

Once you have formulated your hypothesis, look for more specific inform
ation. If this information supports the hypothesis, then you can make adjust
ments to kernel parameters or the hardware configuration to try to improve
the performance. If the new information indicates that your hypothesis is
wrong then you need to form another.

See Appendix D, "Quick system tuning reference" (page 235) for a description
of how to diagnose common performance problems.

17

Managing performance

Making adjustments to the system

18

Once it appears that the hypothesis is correct, you can make adjustments to
the system. It is vital that you record the parameters that the system had ini
tially, and the changes that you make at each stage. Make all adjustments in
small steps to ensure that they have the desired effect. After each adjustment,
reassess the system's performance using the same commands that you used to
measure its initial performance.

You should normally adjust kernel parameters one at a time so that you can
uniquely identify the effect that an adjustment has. If you adjust several
things at once, the interaction between them may mask the effect of the
change. Some parameters, however, are intended to be adjusted in groups
rather than singly. In such a case, always adjust the minimum number of
parameters, and always adjust the same set of parameters. Examples of such
groups of parameters are NBUF and NHBUF, and HTCACHEENTS,
HTHASHQS and HTOFBIAS.

If your adjustment degrades system performance, retrace your steps to a point
where it was at its peak before trying to adjust any other parameters on the
system. If your performance goals are not met, you must further evaluate and
tune the system. This may mean making changes similar to the ones that you
have already made, or you may need consider improving the performance of
other subsystems.

If you have attained your performance goals then you can check the system
against the lists of desired attributes of well-tuned multiuser or database
server systems given in Appendix D, "Quick system tuning reference" (page
235). You should continue to monitor system performance as part of routine
system administration to ensure that you recognize and treat any possible
future degradation in performance at an early stage.

If you adopt the habit of monitoring performance on a regular basis, you
should be able to spot correlations between the numbers recorded and chang
ing demands on the system. Bursts of high system activity during the day, on
a particular day of the week, month, or quarter almost certainly reflect the
pattern of activity by users, either logged on or running batch jobs. It is up to
you to decide how to manage this. You can choose to tune or upgrade the sys
tem to cope with peak demand, to reschedule jobs to make use of periods of
normally low activity, or both.

Performance Guide

Managing the workload

Performance tuning case studies

We have provided several case studies that you can use as starting points for
your own investigations. Each study is discussed in terms of the five steps
described in "Tuning methodology" (page 14):

1. Define a performance goal for the system.

2. Collect data to get a general picture of how the system is behaving.

3. Formulate a hypothesis based on your observations.

4. Get more specifics to enable you to test the validity of your hypothesis.

5. Make adjustments to the system, and test the outcome of these. If neces
sary, repeat steps 2 to 5 until your goal is achieved.

The case studies have been chosen to represent a variety of application mixes
on different systems:

• memory-bound workstation (page 59)

• memory-bound software development system (page 65)

• I/O-bound multiuser system (page 113)

• unbalanced disk activity on a database server (page 118)

• semaphore activity on a database server (page 167)

• network overhead caused by X clients (page 158)

Managing the workload

If a system is sufficiently well tuned for its applications and uses to which it is
normally put, you still have a number of options open to you if you are
looking for further performance gains. This involves managing the system's
workload with the cooperation of the system's users. If they can be persuaded
to take some responsibility with you (as the system administrator) for the
system's performance then significant improvements can usually be made.
Below are some steps that users and administrators can take to alleviate
excessive demands on a system without reconfiguring the kernel.

• Move jobs that do not have to run at a particular time of day to off-peak
hours. Encourage users to submit jobs using at(C), batch(C), or crontab(C)
depending on whether they are one-off (at or batch) or periodic jobs
(crontab).

• Collect data on the average system workload and publish it to users so that
they are aware of the daily peaks and troughs. If they have the flexibility to
choose when to run a program, they will know when they can achieve
more work.

19

Managing performance

20

• Adjust the default nice value of user processes using the Hardware/Kernel
Manager. This will set a lower CPU priority for all user processes, and will
allow critical jobs with higher priority to use the CPU more frequently.

• Encourage users to reduce the priority of their own processes using nice(C)
and renice(C); this is especially important for those jobs that do not
perform much I/O activity - these CPU-intensive jobs are likely to mono
polize the available processing time.

• The default action of the Korn shell (ksh(C» is to run background jobs at a
reduced priority. Make sure users have not altered this setting in their
.profile or .kshrc files.

• Encourage users to kill unnecessary processes, and to log out when they
have finished rather than locking their screen.

• Reduce the maximum number of processes that a user can run
concurrently by lowering the value of the kernel parameter MAXUP. For
example, MAXUP set to 20 means that a user can run 19 other processes in
addition to their login shell.

H you do not have access to additional hardware and your system is well
tuned, you may have to implement some of the above recommendations.

Performance Guide

Chapter 3

Tuning CPU resources

Your system hardware contains one or more central processing units (CPUs)
plus a host of ancillary processors that relieve the CPU from having to per
form certain tasks:

• Math coprocessors perform floating point calculations much more
efficiently than software can. The 80486DXTM, 80486DX2TM, 80486DX4TM, and
Pentium™ include floating-point capability on the chip itself. Without a
floating point coprocessor, the CPU must emulate it using software - this
is considerably slower. On systems with an SCO® SMP@ License, you can
use the -F option to mpsar(ADM) to monitor how many processes are using
floating point arithmetic. This command displays information about the
usage of both floating point hardware and software emulation.

• Direct memory access (DMA) controllers handle memory transfer between
devices and memory, or memory and memory. Many hardware peripheral
controllers on EISA and MCA bus machines have a built-in Bus Master DMA
chip that can perform DMA rather than relying on the DMA controller on
the motherboard. On MCA bus machines, a chip called a Central Arbitra
tion Control Point (CACP) decides which Bus Master DMA controller gets
control of the bus.

An important limitation of all DMA controllers on ISA and early-series MCA
bus machines, and some peripheral controllers on all bus architectures, is
that they cannot address more than the first 16MB of memory (24-bit
addressing). When the operating system encounters hardware with such
limitations, it must instruct the CPU to transfer data between the first 16MB
and higher memory.

21

Tuning CPU resources

Some peripheral controllers (including IDE disk controllers) and older SCSI
host adapters either cannot perform DMA or the device driver may not sup
port its use. In this case, the operating system instructs the CPU to transfer
data between the peripheral and memory on behalf of the hardware. This
is known as programmed I/O (PIO).

• Graphics adapters that can take advantage of a local bus architecture (such
as VL Bus or PCI) operating at the same speed as the CPU produce a sub
stantial improvement in the performance of the graphics subsystem.

• Universal asynchronous receiver/transmitters (UARTs) control input and
output (lIO) ,on serial lines. Buffering on UARTs enables more efficient use
of the CPU in processing characters input or output over serial lines.

Intelligent serial cards are able to offload much of the character processing
that the CPU might otherwise have to perform.

• Programmable interrupt controllers (PICs) handle interrupts from hard
ware peripheral devices when they are trying to get the attention of the
CPU.

The operating system handles these resources for you - reprogramming the
various peripheral processor chips to perform tasks on behalf of the CPU.

Operating system states

22

The operating system can be in one of four states:

executing in user mode
The CPU is executing the text (machine code) of a process that accesses its
own data space in memory.

executing in system mode
If a process makes a system call in order to perform a privileged task
requiring the services of the kernel (such as accessing a disk), then the op
erating system places the CPU in system mode (also known as kernel
mode).

idle waiting for I/O
Processes are sleeping while waiting for the completion of I/O to disk or
other block devices.

idle No processes are read y-to-run on the CPU or are sleeping waiting for
block I/O. Processes waiting for keyboard input or network I/O are
counted as idle.

The combination of time spent waiting for I/O and time spent idle makes up
the total time that the operating system spends idle.

Performance Guide

Operating system states

Viewing CPU activity

You can view CPU activity using sar -u on single processor systems:

23:59:44 %usr %sys %wio %idle
23:59:49 4 24 6 66
23:59:54 7 84 0 9
23:59:59 6 70 1 23

Average 5 59 2 32

On systems with an SCQ SMP License, use mpsar -u to see activity averaged
over all the CPUs and cpusar -u to report activity for an individual CPU.

%usr indicates the percentage of time that the operating system is executing
processes in user mode.

%sys indicates the percentage of time that the operating system is executing in
system mode.

%wio indicates the percentage of time that the operating system is idle with
processes that could run if they were not waiting for I/O to complete.

%idle indicates the percentage of time that the operating system is idle with
no runnable processes. On systems with an seQ SMP License, a CPU runs a
process called idle if there are no other runnable processes.

On systems using SMP, root can make a CPU inactive using the
cpuonoff(ADM) command. The -c option displays the number of active and
inactive CPUs:

$ cpuonoff -c
cpu 1: active
cpu 2: inactive
cpu 3: active

The base processor, which cannot be made inactivate, is always indicated by
cpu 1. An inactive CPU shows 100% idle time with the cpusar -u command.

The following sections outline the different process states and how processes
can share the same CPU.

23

Tuning CPU resources

Process states

24

As soon as a process has been created, the system assigns it a state. A process
can be in one of several states. You can view the state of the processes on a
system using the ps(C) command with the -el options. The "5" field displays
the current state as a single letter.

The important states for performance tuning are:

a On processor - the processor is executing on the CPU in either user or sys
temmode.

R Runnable - the process is on a run queue and is ready-to-run. A runnable
process has every resource that it needs to execute except the CPU itself.

S Sleeping - the process is waiting for some I/O event to complete such as
keyboard input or a disk transfer. Sleeping processes are not runnable
until the I/O resource becomes available.

Figure 3-1 (page 25) represents these process states and the possible transi
tions between them.

On single CPU systems only one process can run on the CPU at a time. All
other runnable processes have to wait on the run queue.

A portion of the kernel known as the scheduler chooses which process to run
on the CPU(s). When the scheduler wants to run a different process on the
CPU, it scans the run queue from the highest priority to the lowest looking for
the first runnable process it can find.

When a process becomes runnable, the kernel calculates its priority and places
it on the run queue at that priority. While it remains runnable, the process'
priority is recalculated once every second, and its position in the run queue is
adjusted. When there are no higher-priority runnable processes on the run
queue, the process is placed on the CPU to run for a fixed amount of time
known as a time slice.

The operation of the scheduler is more sophisticated for SMP. See "Process
scheduling" (page 34) for more information.

For certain mixes of applications, it may be beneficial to performance to adjust
the way that the scheduler operates. This is discussed in "Adjusting the
scheduling of processes" (page 34).

Performance Guide

Operating system states

a) Main process states
processes on the swapped-out

run queue runnable processes

on CPU on swap

process
running
on CPU

processes sleeping
on 1/0

swapped-out processes
sleeping on 1/0

b) Transitions between process states

---I> main flow
----------1> swapping

Figure 3-1 Main process states in a system and the transitions between them

25

Tuning CPU resources

Clock ticks and time slices

The system motherboard has a programmable interval timer which is used as
the system clock; this generates 100 clock interrupts or clock ticks per second
(this value is defined as the constant HZ in the header file
jusr /include/sys/param.h).

The tunable kernel parameter MAXSLICE sets the maximum time slice for a
process. Its default value is 100 clock ticks (one second). The range of permis
sible values is between 25 and 100 (between one quarter of a second and one
second).

The effect of reducing MAXSLICE is to allow each process to run more often
but for a shorter period of time. This can make interactive applications run
ning on the system seem more responsive. However, you should note that
adjusting the value of MAXSLICE may have little effect in practice. This is
because most processes will need to sleep before their time slice expires in
order to wait for an I/O resource. Even a calculation-intensive process, which
performs little I/O, will tend to be replaced on the CPU by processes woken
when an I/O resource becomes available.

Context switching

26

A process runs on the CPU until it is context switched. This happens when
one of the following occurs:

• The process exits.

• The process uses up its time slice.

• The process requires another resource that is not currently available or
needs to wait for I/O to complete.

• A resource has become available for a sleeping process. If there is a higher
priority process ready to run, the kernel will run this instead (the current
process is preempted).

• The process relinquishes the CPU using a semaphore or similar system call.

The scheduler can only take a process off the CPU when returning to user
mode from system mode, or if the process voluntarily relinquishes the CPU
from system mode.

If the process has used up its time slice or is preempted, it is returned to the
run queue. If it cannot proceed without access to a resource such as disk I/O,
it sleeps until the resource is available. Once access to that resource is avail
able, the process is placed on the run queue before being put on the processor.
Figure 3-2 (page 27) illustrates this for a process 01 which goes to sleep wait
ing for I/O.

Performance Guide

on in
CPU memory

a) Runnable process R1
put on CPU as 0 1

Operating system states

b) Process 0 1 goes to sleep
waiting for 1/0 as 81

c) Context switch - runnable process
R2 put on CPU as O2

d) Process 81 is woken when
resource becomes available;
put on run queue as R1

e) Process O2 is preempted and put back
on run queue as R2. R1 is put on CPU
next, as shown in figure a, because it
has higher priority than R2

Figure 3·2 Preemption of a process that goes to sleep waiting for YO

27

Tuning CPU resources

A context switch occurs when the kernel transfers control of the CPU from an
executing process to another that is ready to run. The kernel first saves the
context of the process. The context is the set of CPU register values and other
data that describes the process' state. The kernel then loads the context of the
new process which then starts to execute.

When the process that was taken off the CPU next runs, it resumes from the
point at which it was taken off the CPU. This is possible because the saved
context includes the instruction pointer. This indicates the point in the execut
able code that the CPU had reached when the context switch occurred.

Interrupts

An interrupt is a notification from a device that tells the kernel that:

• An action such as a disk transfer has been completed.

• Data such as keyboard input or a mouse event has been received.

The kernel services an interrupt within the context of the current process that
is running on the CPU. The execution of the current process is suspended
while the kernel deals with the interrupt in system mode. The process may
then lose its place on the CPU as a result of a context switch. If the interrupt
signaled the completion of an I/O transfer, the scheduler wakes the process
that was sleeping on that event, and puts it on a run queue at a newly
calculated numeric priority. It mayor may not be the next process to run
depending on this priority.

Calculation of process priorities

28

A process' priority can range between 0 (lowest priority) and 127 (highest
priority). User mode processes run at lower priorities (lower values) than sys
tem mode processes. A user mode process can have a priority of a to 65,
whereas a system mode process has a priority of 66 to 95. Some of the system
mode priorities indicate what a process is waiting for. For example, a priority
of 81 indicates that a process is waiting for I/O to complete whereas a value of
75 means that it is waiting for keyboard input. The ps command with the -1
option lists process priorities under the PRI column.

Processes with priorities in the range 96 to 127 have fixed priority and control
their own scheduling.

I NOTE You can find a list of priority values in Table A-2, "Priority values"
(page 175).

Performance Guide

Operating system states

Figure 3-3 (this page) shows the division of process priorities into user mode,
system mode, and fixed-priority processes.

Priorities

127 highest

I fixed-priority
processes

96
95

1 66
65

system
mode

user
mode

o lowest

Figure 3-3 System process priorities

The operating system varies the priorities of executing processes according to
a simple scheduling algorithm which ensures that each process on the system
gets fair access to the CPU. Every process receives a base level priority (of
default value 51) when it is created. However, this soon loses any influence on
whether a process is selected to run. Note that the priorities of kernel dae
mons such as sched, vhand, and bdflush are not adjusted. Fixed-priority pro
cesses are also exempt - such processes have the ability to adjust their own
priority.

The kernel recalculates the priority of a running process every clock tick. The
new priority is based on the process' nice value, and how much CPU time the
process has used (if any). When the process is taken off the CPU, its lowered
priority pushes it down the run queue to decrease the probability that it will
be chosen to run in the near future.

A process that manages to run for an entire time slice will have had its prior
ity reduced by the maximum amount.

29

Tuning CPU resources

The kernel recalculates the priorities of all runnable processes (those with a
user mode priority less than 65) once every second by successively reducing
the negative weighting given to their recent CPU usage. This increases the
probability that these processes will be selected to run again in the near
future.

The default nice value of a user's process is 20. An ordinary user can increase
this value to 39 and in so doing reduce a process' chance of running on the
CPU. Processes with low nice values will on average get more CPU time
because of the effect the values have on the scheduling algorithm.

There are three ways to control the nice value of a process:

• nice(C) reduces the nice value of a new process; root can also increase the
nice value using this command.

• renice(C) reduces the nice value of a process that is already running; root
can also increase the nice value using this command.

• If the option bgnice is set in the Korn shell, it runs background jobs at a
nice value of 24. If this option is not set, background jobs run at an equal
priority to foreground jobs.

Examining the run queue

30

Run queue statistics can be seen with sar -q on single processor systems or
mpsar -q on multiprocessor systems:

23:59:44 rung-sz %runocc swpg-sz %swpocc
23:59:49 1.7 98 1.5 36
23:59:54 1.0 63 1.0 31
23:59:59 1.0 58 1.0 49

Average 1.3 74 1.2 39

runq-sz indicates the number of processes that are ready to run (on the run
queue) and %runocc indicates the percentage of time that the run queue was
occupied by at least one process.

See "Identifying CPu-bound systems" (page 38) for a discussion of how to
identify if your system is CPU bound.

Performance Guide

Multiprocessor systems

Multiprocessor systems

The sca OpenServer system is a multitasking, multiuser operating system,
designed to share resources on a computer with a single CPU. It can run on a
more powerful multiprocessor system but it cannot use more than one of the
available CPUs.

sca SMP License software adds multiprocessing-specific components to the
standard operating system kernel, enabling it to recognize and use additional
processors automatically. As SMP is implemented as an extension to, and is
completely c'ompatible with the version of the kernel that supports a single
CPU. With sca SMP License software installed, the operating system retains
its multitasking, multiuser functionality. There is no impact on existing utili
ties, system administration, or filesystems. SMP can executes standard aMF
(x. out), CaFF, and ELF binaries without modification.

SMP is modular. As your system requires more processing power, you can
add additional processors. For example, two processors give you twice the
processing power of a single processor of identical specification in terms of
the number of instructions per second that they can execute.

If the operating system can gain extra performance in direct proportion to the
number of processors, it is said to exhibit perfect scaling as shown in Figure
3-4 (page 32). In practice, the processors have to compete for other resources
such as memory and disk, they have to co-operate in how they handle inter
rupts from peripherals and from other CPUs, and they may have to wait to
gain access to data structures and devices.

31

Tuning CPU resources

32

tAl Throughpu
(1 CPU = 100%)

-

5000/0 -

-

3000/0 -

2000/0 -

100%

1 2 3 4 5

Number of CPUs

Figure 3·4 Perfect multiprocessor scaling

6

perf ect
ng scali

~

To ensure good scaling, you should ensure that the memory and I/O subsys
tems (particularly hard disks) are powerful enough to satisfy the demands
that multiple processors put on them. If you do not match the power of your
subsystems to that of the processors, your system is likely to be memory or
I/O bound, and it will not utilize the potential performance of the processors.

A system will scale well when there are many ready-to-run processes.
Multithreaded applications are also well suited to take advantage of a multi
processing environment.

Performance Guide

Multiprocessor systems

Support for multiple processors

In SMP, all CPUs can access the same memory, and they all run the same copy
of the kernel. As in the single processor version of the operating system, the
operating system state on each CPU may be executing in kernel mode, execut
ing in user mode, idle, or idle waiting for I/O.

All processors can run the kernel Simultaneously because it is multithreaded;
that is, it is designed to run simultaneously on several processors while pro
tecting shared memory structures. Any processor can execute primary kernel
functions such as file system access, memory and buffer management, distrib
uted interrupt and trap handling, process scheduling, and system calls.

Most standard device drivers provided with the system are also
multithreaded. Any unmodified driver or kernel module that does not register
itself as multithreaded runs on the base processor.

Figure 3-5 (this page) shows how we can modify the process state diagram
introduced in "Process states" (page 24) and apply it to a multiprocessor sys
tem. Note that this diagram implies that the kernel not only has to consider
when to run a process but also on which CPU to run it.

on CPUs in memory on swap

Figure 3-5 Process states on a multiprocessor computer

33

Tuning CPU resources

Using the mpstat load displayer

On systems with an SCO SMP License, the mpstat utility visually displays pro
cessor activity for each of the processors installed on your system. It allows
you to verify at a glance that the system load is balanced across all available
processors. See the mpstat(ADM) manual page for more information.

Examining interrupt activity on multiprocessor systems

On multiprocessor systems, interrupts sent between the CPUs coordinate and
synchronize timing, I/O, and other cooperative activity.

You can use cpusar -j to see how active interrupt handling routines are on a
particular CPU in a multiprocessor system. If device drivers are not written to
be multithreaded they will only run on the base processor. You can examine
which device drivers are multithreaded using the mthread(ADM) command.
You can also use the displayintr(ADM) command to see how interrupt
handlers are distributed across the system's CPUs and whether they are mov
able from one CPU to another.

The number of inter-CPU interrupts can be examined using mpsar -I to view
systemwide activity or cpusar -I to examine an individual CPU. The output of
these commands depends on your system hardware.

Process scheduling

In a single processor UNIX operating system, the scheduler only concerns
itself with when to run a process on the CPU. In a multiprocessor UNIX oper
ating system, the scheduler not only has to consider when to run a process,
but also where to run it. Because the kernel runs on all the processors, the
process scheduler may be active on any or all of the CPUs. You can adjust
how the process scheduler works in order to improve performance as
described in "Adjusting the scheduling of processes" (this page).

Adjusting the scheduling of processes

34

You can configure the process scheduling policy to suit a particular applica
tion mix by adjusting the values of a few kernel variables as described in the
following sections.

The variables dopricalc, primove, and cache_affinity control the behavior of
priority calculations and the scheduler on both single processor and multipro
cessor machines; they are to be found in the file /etc/conj/pack.d/kernel/space.c.

Performance Guide

Process scheduling

The variables preemptive and loadbalance only apply to SMP and can be
found in /etc/con//pack.d/crllry/space.c. To change the values of these variables,
edit the files, then relink and reboot the kernel.

It is not possible to predict the effect of the settings on a particular system. It
is likely that you will have to try alternative values to determine whether
there is a gain.

For database servers on systems with an SCO SMP License, you may find that
setting preemptive, loadbalance and dopricalc to zero gives a performance
improvement.

The following sections describe the effect of adjusting these variables:

• #Controlling priority calculations - dopricalc" (this page)

• #Controlling the effective priority of processes - primove" (page 36)

• #Controlling cache affinity - cache_affinity" (page 37)

• #Controlling process preemption - preemptive" (page 37)

• #Load balancing -loadbalance" (page 37)

Controlling priority calculations - dopricalc

The dopricalc variable controls whether the kernel adjusts the priorities of all
runnable processes at one-second intervals. Its value has no effect on the
recalculation every clock tick of the priority of a process that is currently run
ning.

For some application mixes, such as database servers which have no logged
in users and which make frequent I/O requests, disabling the recalculation of
the priorities of ready-to-run processes may improve performance. This is
because a process running on a CPU is more likely to continue to run until it
reaches the end of its time slice or until it sleeps on starting an I/ 0 request.

The default value of dopricalc is 1 which enables the one-second priority cal
culations. To tum off the calculations, set the value of dopricalc to 0, relink
the kernel, and reboot the system. This modification will reduce the number
of context switches, and may increase the efficiency of the L2 cache. However,
it may impair the performance of system if there is a mixture of interactive
and CPU-intensive processes. CPU-intensive processes spend all or nearly all
of their time in user space; they do not go to sleep waiting for I/O, and so they
are unlikely to be context switched except at the end of their time slice. As a
consequence, interactive processes may receive less access to the CPU.

35

Tuning CPU resources

Controlling the effective priority of processes - primove

36

Until now, the discussion of process priorities has assumed that the scheduler
uses a process' calculated priority to decide whether the process should be
put on the CPU to run. In the default configuration of the kernel, this is
effectively true. In fact, the kernel implements the run queue as separate lists
of runnable processes for each priority value. The scheduler examines the
priority value assigned to each list rather than the priorities of the processes
that they contain when looking for a process to run. Provided the kernel
assigns processes to the list corresponding to their priority, the lists are invisi
ble. Under some circumstances, it may be beneficial to performance to allow
processes to remain in a list after their priority has been changed.

When the priority of a user process is adjusted, the variable primove controls
whether the kernel moves the process to a higher or lower value priority list.
The process will only be moved to a new list if its priority differs from the
present list priority by at least the value of primove. The effect of increasing
primove is to make a process remain at a low or high priority for longer. It
also means that the operating system has less work to do moving processes
between different lists. The default value of primove is 0 for compliance with
POSIX.1b. This means that any change in a process' priority will cause it to be
moved to a different list.

For an example of the use of primove, assume that it is given a value of 10. If
the priority of a process begins at 51 and rises by at least a value of 10, it is
moved to the list corresponding to priority 61. The process does not move
between lists until its priority rises by at least the value of primove. So if the
process' priority rose to 60, it would remain on the priority 50 list. The kernel,
however, would still see the process as having a lower priority than another
in the priority 55 list. Conversely, a process in the priority 71 list will stay
there until its priority falls to 61.

Increasing the value of primove makes the kernel less sensitive to process
priorities.

Reducing the value of primove produces fairer scheduling for all processes
but increases the amount of kernel overhead that is needed to manipulate the
run queue.

Performance Guide

Process scheduling

Controlling cache affinity - cache_affinity

By default, the scheduler does not gives preference to a process that last exe
cuted on a CPU. The advantage of giving preference to these processes is to
improve the hit rate on the level-one (Ll) cache and L2 caches. As a conse
quence, the hardware is less likely to have to reload the caches from memory,
an action that could slow down the processor. It also means that the process
selected to run does not necessarily have the highest priority.

Cache affinity behavior is controlled by the value of the variable
cache_affinity. If the value of cache_affinity is changed to 1, the kernel gives
preference to processes which previously ran on a CPU Valid data and text is
more likely to be found in the caches for small processes. If your system tends
to run large processes leave cache_affinity set to O.

Controlling process preemption - preemptive

On multiprocessor systems, the scheduler looks for a CPU on which to run a
process when that process becomes runnable, or when its time slice. has
expired. The scheduler first looks for an idle CPU. If it cannot find an idle
CPU, it next considers preempting the process on the current CPU if it has a
lower priority; it is quicker to preempt the current process as this does not
require an interprocessor interrupt. With some application mixes, however,
this can increase the number of context switches. For example, when a data
base server wakes a client, it may be more efficient, in terms of system
resources, for the server to continue to run for a period of time after that
wakeup.

To prevent the scheduler from preempting the current processor, change the
value of preemptive to O.

Load balancing - loadbalance

On multiprocessor systems, the default behavior of the scheduler is to run the
highest priority jobs on each of the processors. For example, when a process
is woken after a disk transfer completes, the scheduler checks if any CPU is
running a process with a lower priority. If so, the processor is instructed to
reschedule and run the newly woken process. This load balancing feature is
also used when a process is taken off a CPU; it is possible that the process has
a higher priority than one on another CPU.

37

Tuning CPU resources

If you change the value of loadbalance to 0, the scheduler no longer looks for
lower priority processes on other CPUs. This reduces the probability that a
process will be preempted. On a system that is performing a reasonable
amount of I/O requests, this should reduce the number of context switches
and interprocessor interrupts. This provides more processor cycles for exe
cuting user applications and should increase overall performance. Processors
which are idle can still be selected so idle time is minimized. This adjustment
is likely to improve performance where context switching frequency is high,
or on database servers where user processes should not be disturbed once
they are running. If the system is already spending a significant amount of
time idle, it is unlikely that this adjustment will improve performance.

Identifying CPU-bound systems

38

A system is CPU bound (has a CPU bottleneck) if the processor cannot execute
fast enough to keep the number of processes on the run queue consistently
low. To determine if a system is CPU bound, run sar -u (or cpusar -u for each
processor on a system with an SCO SMP License) and examine the %idle
value.

If %idle is consistently less than 5% (for all CPUs) on a heavily loaded data
base server system, then the system may be lacking in processing power. On
a heavily loaded system with many logged-in users, a %idle value that is per
sistently less than 20% suggests that the system not be able to cope with a
much larger load. Examination of the number of processes on the run queue
shows whether there is an unacceptable buildup of runnable processes. If
processes are not building up on the run queue, a low idle time need not indi
cate an immediate problem provided that the other subsystems (memory and
I/O) can cope with the demands placed upon them.

Run queue activity can be considered heavy if sar -q (mpsar -q for SMP)
reports that runq-sz is consistently greater than 2 (and %runocc is greater than
90% for SMP). If low %idle values are combined with heavy run queue
activity then the system is CPU bound.

If low %idle values are combined with low or non-existent run queue activity,
it is possible that the system is running CPU-intensive processes. This in itself
is not a problem unless an increase in the number of executing processes
causes a buildup of numbers of processes on the run queue.

Performance Guide

Identifying CPU-bound systems

If %wio values are consistently high (greater than 15%
), this is more likely to

indicate a potential I/O bottleneck than a problem with CPU resources. See
Chapter 5, "Tuning I/O resources" (page 71) for more information on identify
ing I/O bottlenecks.

High values of %wio may also be seen if the system is swapping and paging.
Memory shortages can also lead to a disk I/O bottleneck because the system
spends so much time moving processes and pages between memory and
swap areas on disk. If the value of %sys is high relative to %usr, and %idle is
close to zero, this could indicate that the kernel is consuming a large amount
of CPU time running the swapping and page stealing daemons(sched and
vhand). These daemons are part of the kernel and cannot be context
switched; this may lead to several processes being stuck on the run queue
waiting to run. For details of how to identify and tune memory-bound sys
tems, see Chapter 4, "Tuning memory resources" (page 41) and "Tuning
memory-bound systems" (page 52).

The following table summarizes the commands that you can use to determine
if a system is CPU bound:

Table 3-1 Identifying a CPU-bound system

Command Field Description

sar-u %idle percentage of time that the CPU was idle
mpsar-u %idle average percentage of time all CPUs are idle

(SMP only)
cpusar-u %idle percentage of time the specified CPU was idle

(SMP only)
[mp]sar-q %runocc percentage of time the run queue is occupied

runq-sz number of processes on the run queue

See l'Tuning CPU-bound systems" (page 40) for a discussion of how to tune
CPU-bound systems.

39

Tuning CPU resources

Tuning CPU-bound systems

40

If it has been determined that the system is CPU bound, there are a number of
things that can be done:

• If possible, consider rescheduling the existing job load on your system. If
many large jobs are being run at once, rescheduling them to run at different
times may improve performance. You should also check the system's -
crontab(C) files to see if any jobs running at peak times can be scheduled to
run at other times.

• If possible, tune the applications so ~at they use require less CPU power.
Consider replacing non-critical applications with ones that require a less
powerful system.

• If you have evidence that the system is I/O bound serving interrupts from
non-intelligent serial cards, replacing these with intelligent serial cards will
offload some of the I/O burden from the CPUs. See #Serial device
resources" (page 108) for more details.

• Check if the hard disk controllers in the system are capable of using DMA
to transfer data to and from memory. If the CPU has to perform pro
grammed I/O on behalf of the controller, this can limit its performance.

• It is possible that because of a lack of free memory the system is swapping,
which could result in a considerable portion of the CPU resources being
used to transfer processes back and forth between the disk and memory.
To determine if this is the case see the section Chapter 4, "Tuning memory
resources" (page 41).

• Upgrade to a faster CPU or CPUs.

• Upgrade to a multiprocessor system from a single processor system. This
will help if there are runnable jobs on the run queue or the applications
being run are multithreaded.

• Add one or more CPUs to a multiprocessor system.

• Purchase an additional system and divide your processing requirements
between it and your current system.

Performance Guide

Chapter 4

Tuning menwry resources

The sea OpenServer system is a virtual memory operating system. Virtual
memory is implemented using various physical resources:

• Physical memory as RAM chips; sometimes referred to as primary, main, or
core memory.

• Program text (machine code instructions) as files within filesystems on disk
or ramdisks.

• Swap space consisting of one or more disk divisions or swap files within
file systems dedicated to this purpose. The individual pieces of swap space
are known as swap areas. Swap space is also referred to as secondary
memory.

Depending on the system hardware, there may also be physical cache
memory on the CPU chip itself (level-one (Ll) cache), or on the computer's
motherboard (level-two (L2) cache), and on peripheral hardware controller
cards. If recently accessed data (or, for some Ll and L2 caches, machine
instructions) exists in this memory, it can be accessed immediately rather than
having to retrieve it from more distant memory.

Write-through caches store data read from memory or a peripheral device;
they ensure that data is written synchronously to memory or a physical
device before allowing the CPU to continue. Write-back caches retain both
read and written data and do not require the CPU to synchronize with data
being written.

41

Tuning memory resources

NOTE Most L2 caches work with a limited amount of main memory. Add
ing more RAM than the cache can handle may actually make the machine
slower. For some machines with a 64KB L2 cache, this only covers the first
16MB of physical memory. See the documentation provided with your com
puter or motherboard hardware for more details.

Physical memory

Physical memory on the system is divided between the area occupied by the
kernel and the area available to user processes. Whenever the system is
rebooted the size of these areas, as well as the total amount of physical mem
ory, is logged in the file /usr/adm/messages under the heading mem:, for exam
ple:

mem: total = 32384k, kernel = 4484k, user = 27900k

This shows a system with 32MB of physical memory; the kernel is using just
over 4MB of this memory with the remainder being available for user pro
cesses.

Physical memory is divided into equal-sized (4KB) pieces known as pages.
When a process starts to run, the first 4KB of the program's text (executable
machine instructions) is copied into a page of memory. Each subsequent por
tion of memory that a process requires is assigned an additional page.

When a process terminates, its pages are returned to the free list of unused
pages.

Physical memory is continually used in this way unless the number of run
ning processes require more pages of memory than currently exist on the sys
tem. In this case the system must redistribute the available memory by either
paging out or swapping.

Virtual memory

42

The operating system uses virtual memory to manage the memory require
ments of its processes by combining physical memory with secondary mem
ory (swap space) on disk. The swap area is usually located on a local disk
drive. Diskless systems use a page server to maintain their swap areas on its
local disk.

The amount of swap space is usually configured to be larger than physical
memory; the sum of physical memory and swap space defines the total vir
tual memory that is available to the system.

Performance Guide

Virtual memory

Having swap space on disk means that the CPU's access to it is very much
slower than to physical memory. Conventionally, the swap area uses an
entire division on a hard disk. It is also possible to configure a regular file
from within a file system for use as swap. Although this is intended for use by
diskless workstations, a server can also increase its swap area in this way.

The swap area is used as an additional memory resource for processes which
are too large for the available physical user memory. In this way, it is possible
to run a process whose entire executable image will not fit into physical mem
ory. However, a process does not have to be completely loaded into physical
memory to run, and in most cases is unlikely to be completely loaded any
way.

The virtual address space of a process is divided into separate areas known as
regions that it uses to hold its text, data, and stack pages. When a program is
loaded, its data region consists of data pages that were initialized when the
program was compiled. If the program creates uninitialized data (often
known as bss for historical reasons) the kernel adds more pages of memory to
the process' data region.

If the operating system is running low on physical memory, it can start to
write pages of physical memory belonging to processes out to the swap area.
See "Paging" (page 44) and "Swapping" (page 47) for more details.

Figure 4-1 (page 44) illustrates how a process' virtual memory might corre
spond to what exists in physical memory, on swap, and in the file system. The
u-area of a process consists of two 4KB pages (displayed here as U and U) of
virtual memory that contain information about the process needed by the ~ys
tem when the process is running. In this example, these pages are shown
existing in physical memory. The data pages, D and D , are shown as being
paged out to the swap area on disk. The text p1ge, T

4
,bas also been paged

out but it is not written to the swap area as it exists in the filesystem. Those
pages which have not yet been accessed by the process (D , T 2' and T) do not

h ·l ·th 5 5 occupy any resources in p YSlca memory or m e swap area.

43

Tuning memory resources

Process
virtual

memory

u-area ~

stack I 81 1 82 1 83 1

data I D1 I D21~1~1)(J
tex1 I T1 k><J T31~lXJ

Dpage

~ page not yet accessed

o paged out

page in use by kernel
or another process

Physical
memory Disk

pages on swap

program text and
data in filesystem

Figure 4-1 How the virtual memory of a process relates to physical memory and disk

Paging

44

Paging is the process by which the contents of physical memory are moved
both to and from swap areas and filesystems. Paging out releases infre
quentlyaccessed memory for use by other processes. Paging in brings data or
text into memory that a process needs to continue running.

At every clock tick, the kernel checks to see if the number of pages on the free
list is below the number specified by the GPGSLO kernel parameter. If so,
vhand, the page stealing daemon, becomes active and begins copying
modified data and stack pages to the swap area, starting with least recently
used pages. Each page placed on the free list then becomes available for use
by other processes. Pages written out to swap must be read back into physi
cal memory when the process needs them again.

Program text and unmodified data pages are added to the free list. Copying
them to swap serves no purpose because they can be read directly from a file
system.

Performance Guide

Virtual memory

vhand remains active until the number of pages on the free list rises above the
number specified by the GPGSHI kernel parameter. Both GPGSLO and
GPGSHI are tunable; guidelines on setting values other than the system
defaults are given in "Tuning memory-bound systems" (page 52). Figure 4-2
(this page) illustrates vhand being run to make GPGSHI pages of memory
available.

Free
memory

GPGSHI - - ---

sched runs

GPGSLO - - - - - - - - - - - - - - - - --

free memory
drops to zero

vhand runs

free memory
less than GPGSLO

at clock tick

Time

Figure 4-2 When the swapper (sched) and the page stealing (vhand) daemons run to
release memory

When a process terminates, its pages are added to the head of the free list.
However, the kernel adds pages from a runnable process to the tail of the free
list in case they are required subsequently. Processes that are expanding in
memory are allocated pages from the head of the free list. In this way, the free
list serves both as a source of available pages and a cache of reclaimable
pages.

45

Tuning memory resources

46

Page faults
A page fault is a hardware event that occurs when a user process tries to
access a virtual address that has no physical memory currently assigned to it.
The page fault handler attempts to provide a physical page and to load it with
the appropriate data. If successful, the process that received the page fault
resumes at the instruction that faulted as though the page of memory was
always there. Page faults are the opposite of page outs as they involve load
ing pages into memory rather than copying pages out of memory.

When required, the correct page can be acquired by the page fault handler in
several ways:

• The page may be a copy-on-write (COW) page created from a writable data
(initialized or uninitialized) or stack page by the forking of a process. Mem
ory is only allocated to such pages when a process first writes to them.

• The page may be on the free list: that is, still in memory even though its
contents were paged out. If so, it still contains the required data. The page
fault handler unlinks the associated page from the free list, marks it as
valid, and resumes the process. Reclaiming a page in this way does not
require a disk transfer.

• If the page is paged out and the original page has been reallocated then the
page fault handler allocates a page from the head of the free list. If
necessary, the process is put to sleep and a disk request is scheduled to
retrieve the page's data or text from disk; this inevitably causes a context
switch away from the faulting process. Later, after the page has been read,
the kernel updates the process' page table, marks the page as being valid,
and puts the process on the run queue.

• If a previously unreferenced page is required for use by the process stack or
uninitialized data, a fresh page is allocated and filled with zeroes.

Pages belonging to the kernel are usually not paged in or out. Kernel text and
most of its associated data structures reside permanently in physical memory
while the operating system is running. The only kernel memory that can be
swapped or paged are the structures which store internal information about
the state of individual processes. These include a process' u-area, Task State
Segment (TSS), and page tables.

Performance Guide

Virtual memory

Swapping

As well as paging, the operating system uses the swapper daemon, sched, to
free assigned memory pages by copying modified process pages to the swap
area.

The normal state of sched is to be asleep; when woken it will swap processes
out or in or both, depending on the needs of the system. sched becomes active
and swaps processes out when the amount of free memory in the system
drops to zero. Figure 4-2 (page 45) illustrates sched being run to make more
pages of memory available.

sched checks for processes that are either waiting for an event to complete or
that have been stopped by a Signal. If a process has been in either of the two
states for more than 2 seconds, sched moves it from memory to the swap area,
and adds the reclaimed pages to the free list. If enough memory is still not
available, and sched fails to find another process that is sleeping or stopped, it
attempts to swap out processes that have been on the run queue or waiting
for memory longer than two seconds. Figure 4-3 (this page) shows how sched
can swap out processes in a system.

on CPU in memory on swap

Figure 4-3 The swapper daemon swaps out processes

sched becomes active if vhand cannot make enough pages available to satisfy
the demands on physical memory. It is generally preferable for a system to
page rather than swap because paging creates less disk I/O, and CPU over
head. By increasing the values of GPGSLO and GPGSHI, a system will start to
page memory earlier and is less likely to start swapping suddenly. However,
the demands on memory may be such that swapping is inevitable at some
stage. See "Tuning memory-bound systems" (page 52) for more details of how
to tune this behavior.

47

Tuning memory resources

sched does not only swap out processes. As is the case for paging activity,
swapping between physical memory and the swap area occurs in both direc
tions. sched will swap a process in if it has a high enough priority to run.

The operating system only allocates swap space to a process when it swaps
out the process. When it swaps a process back in to continue running, it
retains the swap space allocation for possible future use. It only frees this
when the process completes.

Viewing physical memory usage

The number of pages of physical memory on the free list is shown under
freemem when using sar -r (or mpsar -r for SMP):

23:59:44 freemem freeswp
23:59:49 390 88712
23:59:54 335 88720
23:59:59 321 88416

Average 349 88732

Viewing swap space usage

48

Information about the usage of the swap areas on your system can be seen
using the swap -1 command:

path
/dev/swap

dev swaplo blocks free
1,41 0 128000 88712

blocks shows the total size of a swap area in 512-byte disk blocks. free
shows the number of blocks on the free list.

The number of unused 512-byte disk blocks in the swap area can be also be
seen under the freeswp heading using sar -r (or mpsar -r for SMP):

23:59:44 freemem freeswp
23:59:49 390 88712
23:59:54
23:59:59

Average

335 88720
321 88416

349 88732

You may find that your system runs out of swap space before freeswp drops
to zero. This is because the operating system requires that enough swap space
be available for the grown data and stack regions of all processes, not just
those process' pages that have actually been swapped or paged out.

Performance Guide

Virtual memory

To discover the number of 4KB pages of swappable virtual memory that the
operating system calculates is available, use the following command within
an interactive crash(ADM) session:

od -d availsmem

For more information about how you can use crash to investigate memory
usage, see "Monitoring memory allocation" in the System Administration Guide.

Viewing swapping and paging activity

The impact of swapping and paging out activity on disk activity can be seen
with sar -w (or mpsar -w for SMP):

23:59:44 swpin/s bswin/s swpot/s bswot/s pswch/s
23:59:49 0.00 0.0 0.00 0.0 280
23:59:54 0.00 0.0 0.00 0.0 244
23:59:59 0.00 0.0 0.02 0.3 203

Average 0.00 0.0 0.01 0.1 242

The column of interest is bswot/s, the average number of pages swapped out
per second during the sampling interval. The ratios of pages to transfer
requests per second (bswin/s to swpin/s, and bswot/s to swpot/s) show how
many pages could be moved between memory and disk per average disk
transfer.

Swapping activity is also indicated by the size of the swap queue. The swap
queue is a queue of runnable processes held in the swap area. Swapped-out
processes are queued in an order determined by how long they have been
swapped out. The process that has been swapped out for the longest period
of time will be the first to be swapped in, as long as it is ready to run.

The values of swpq-sz and %swpocc displayed by sar -q (or mpsar -q for SMP)
indicate the number of runnable processes on swap, and the percentage of
time that the swap areas were occupied by runnable processes:

23:59:44 runq-sz %runocc swpq-sz %swpocc
23:59:49 1.7 98 1.5 36
23:59:54 1.0 63 1.0 31
23:59:59 1.0 58 1.0 49

Average 1.3 74 1.2 39

49

Tuning memory resources

50

You can see paging activity using sar -p (or mpsar -p for SMP):

23:59:44 vflt/ s pflt/s pgfil/s rclm/s
23:59:49 9.72 2.03 0.00 0.00
23:59:54 0.37 0.18 0.00 0.00
23:59:59 0.00 0.00 0.00 0.00

Average 3.88 0.84 0.00 0.00

vf 1 t / s is the number of valid pages referenced per second that were not
found in physical memory. A referenced page that was previously paged out
to swap, or exists as a text or data page in the filesystem is loaded from disk.

p f 1 t / s is the number of pages per second required by new processes for their
data (both initialized and uninitialized) and stack. New processes created by
the fork(S) system call do not acquire their own data and stack pages until
they or their parent process attempts to write to them. This number also
includes the number of illegal attempts to access memory per second.

pgf i 1 / s is the number of page references satisfied by reading text and data
pages from filesystems.

rc 1m/ s is the number of pages per second that the page stealer and swapper
daemons (vhand and sched) have reclaimed and added to the free list. This is
an upper limit to the number of pages that are written to the swap area per
second in the sampling interval (text and unchanged data are not written to
swap as they can be read from the filesystem).

The important column is rc1m/s which shows if your system is swapping or
paging. To confirm this, look at the amount of free memory, freemem reported
by sar -r (or mpsar -r for SMP). It is likely that vhand has been running if
f reemem has been keeping close to the value of GPGSHI.

Another indicator of swapping or paging activity is the cumulative CPU usage
shown in the TIME column by the ps -1 -p 0,2 command. (sched and vhand
have PIDs 0 and 2 respectively.)

Performance Guide

Identifying memory-bound systems

Identifying memory-bound systems

A system is memory bound or has a memory bottleneck if memory on the sys
tem is insufficient to keep the pages of all runnable or sleeping processes in
physical memory. To determine if your system is memory bound run sar-p
(or mpsar -p for SMP) and look at the value of rclm/s. If this column is con
sistently zero, the system does not have memory problems.

If the number of free pages shown by freemem (using sar -r) is consistently
near or below the value defined for the GPGSHI kernel parameter, then the
page daemon is probably active. Confirm this by examining the TIME usage
reported by the ps -el -p 2 command for the page handling daemon, vhand; if
this value is increasing, vhand is running. If the value of f reemem is con
sistently low, this indicates that most of memory is regularly in use. If this
activity is accompanied by swapping then the system has memory problems.

A more severe indication of insufficient memory is swapping activity. To
check swapping activity use the sar -w command. If bswotl s shows values
that are consistently non-zero, this indicates that the system has a memory
problem and is swapping.

Similarly, if the swap queue shows activity, then there are processes being
swapped out to make memory available. If the entries for swpq-sz and
%swpocc when running sar -q remain blank then no processes are being
swapped and memory is sufficient. If swpq-sz is greater than zero, then the
system has experienced swapping, and there are runnable processes on swap.

In some cases, it may do no harm for a few infrequently-used processes to be
swapped out, such as the getty processes that are used for the console
multiscreens. It does indicate, however, that your system is near to being
chronically short of memory if it has to swap whole processes out to free up
memory. See "Paging" (page 44) and "Swapping" (page 47) for a description
of how the system frees pages of physical memory for use.

Finally, if either vhand or sched are showing a lot of processing time, indi
cated by the value of TIME when running ps -1, then this would suggest a lot of
paging and swapping activity.

51

Tuning memory resources

The following table is a summary of the commands that can be used to deter
mine if a system is memory bound:

Table 4-1 Identifying a memory-bound system

Command Field Description

[mp]sar-p rclm/s pages added to the free list per second
[mp]sar -q %swpocc percentage of time the swap queue is occupied

swpq-sz number of processes on the swap queue
[mp]sar -r freemem available user memory (4KB pages)

freeswp available swpp space (512-byte blocks)
[mp]sar -w bswot/s average number of pages written to swap per

second
swap -1 blocks total size of the swap area (512-byte blocks)

free available swap space (512-byte blocks)
ps -l-p 0 TIME CPU time used by the swapper, sched
ps -l-p 2 TIME CPU time used by the page stealer, vhand

Tuning memory-bound systems

52

If the system is found to be memory bound there are a number of things that
can be done. The most obvious and that which will probably bring the most
benefit is to add more physical memory to your system. If this is not possible
then a number of alternatives exist:

• Determine if a number of memory intensive processes are being run
simultaneously. This can be done by running ps -el. The sz value gives the
virtual memory (swappable) size of the process's stack and data (both ini
tialized and uninitialized) regions in lKB units. If many memory intensive
processes are being run simultaneously then rescheduling these jobs to run
at alternative times will redistribute the use of memory. To see if any mem
ory-intensive jobs running at peak times can be rescheduled, you should
also check the system's crontab(C) files.

It is also possible that some applications programs may have a memory
leak and are continuously increasing their size in virtual memory. If you
suspect that an application has a memory leak, you should restart the pro
gram before its usage of virtual memory starts to make the system swap or
page out. You may notice this problem with server processes which run
continuously for several weeks .

• If you are writing your own applications, use static shared or dynamic
linked libraries to make more efficient use of memory.

Performance Guide

Tuning memory-bound systems

You should also ensure that the applications do not have a memory leak.

• Reduce the size of the kernel to free more user memory. This can be done
by reducing the size of the buffer cache as discussed in "Increasing memory
by reducing the buffer cache size" (page 54).

I
NOTE If you increase the amount of physical memory in your system to
32MB or more, run the iddeftune(ADM) command to increase the values of
certain kernel parameters.

If the system appears to be constantly paging, this may be the result of the
values of GPGSLO and GPGSHI being too high. This causes vhand to page
out pages while a large number of free pages still exist. Lowering these values
could delay the onset of paging but might cause the system to begin swap
ping out whole processes instead if memory drops to zero. If no compromise
can be met then the system needs more memory.

If the number of pages on the free list falls below GPGSLO, vhand begins
moving pages out of memory. vhand continues to do this until the number of
pages on the free list reaches GPGSHI.

If the difference between GPGSLO and GPGSHI is too great, this may cause an
I/O bottleneck while the kernel attempts to write the contents of many dirty
pages to disk.

If the values of GPGSLO and GPGSHI are close together, vhand will be active
for a shorter period of time but more often. If vhand is constantly active, its
usage of the CPU may degrade performance.

Reducing disk activity caused by swapping and paging

To estimate the impact that paging in from filesystems has on disk activity,
multiply the value of pgf i 1 / s reported by sar -p (or mpsar -p for SMP) by 8 to
convert from 4KB pages to the number of 512-byte disk blocks read or written
per second:

Disk activity due to paging in = 8 * pgfil/s

The amount of disk activity caused by swapping and paging out to the swap
areas can be estimated from the values of bswin/ s and bswot/ s reported by
sar -w (or mpsar -w for SMP):

Disk activity due to swapping = 8 * (bswin/s + bswot/s)

53

Tuning memory resources

These values can be compared with the total number number of blocks per
second being transferred to and from the disks containing the file systems and
swap areas. Use sar -d (or mpsar -p for SMP) to report the number of blocks
transferred per second (blks/s). See "Viewing disk and other block I/O
activity" (page 89) for more information about monitoring hard disk activity.

If a high proportion of disk activity is caused by paging in, and this is causing
a disk bottleneck, see "Tuning disk I/O-bound systems" (page 92) for sug
gested ways to cure this.

If swapping and paging out is causing a disk bottleneck, you could create
swap areas on several disks to relieve the load on a single disk. If possible,
you should try to reduce the memory shortage.

Increasing memory by reducing the buffer cache size

54

I WARNING Reducing the size of the buffer cache to increase the amount of
available memory may degrade the system's disk I/O performance.

If sar -b (or mpsar -b for SMP) shows that the %rcache and %wcache hit rates
are consistently high, memory may be regained for use by user processes by
reducing the size of the buffer cache. (See "How the buffer cache works" (page
73) for a description of its operation.)

It is not possible to recommend minimum values for the read and write hit
rates. It depends on the amount of extra disk I/O that will be generated and
the performance characteristics of the system's disks. Reducing the buffer
cache hit rates also means that more processes have to wait for I/O to com
plete. This increases the total time that processes take to execute and it will
also increase the amount of context switching on the system.

You may, for example, decide that you can tolerate reducing current hit rate
values of %rcache from 95% to 90% and %wcache from 65% to 60% provided
that your system's disks can cope with the increased demand and also that
any deterioration in the performance of applications is not noticeable.

The current number of buffers in use is controlled by the value of the kernel
parameter NBUF. If this is set to 0, the system determines the number auto
matically at system startup. The number of buffers is displayed in the startup
messages and recorded in the file /usr/adm/messages.

Adjusting the value of NBUF should be done as an iterative process in con
junction with running sar -b to look at the buffer cache hit rates. If the number
of writes (bwrit) is low compared with the number of reads (bread), less
significance should be attached to the %wcache hit rate. You can monitor any
resulting increase in disk activity using the -d option to sar (or mpsar) as
described in "Viewing disk and other block I/O activity" (page 89).

Performance Guide

Tuning memory-bound systems

NOTE If you change the value of NBUF, you should also modify the value
of the NHBUF parameter to an appropriate value. See "Increasing disk I/O
throughput by increasing the buffer cache size" (page 75) for more informa
tion.

The following table summarizes the commands that you can use to view
buffer cache activity:

Table 4-2 Viewing buffer cache activity

Command Field

[mp]sar-b bread

lread

%rcache

bwrit

lwrit

%wcache

Description

number of lKB blocks read per second from
block devices
number of lKB blocks read per second from sys
tem buffers
percent of disk blocks found in the buffer cache
when reading
number of lKB blocks written per second to
block devices from the buffer cache
number of lKB blocks written per second to sys
tem buffers
percent of disk blocks found in the buffer cache
when writing

Investigating memory usage by system tables

NOTE In previous releases, you could specify the size of various static data
structures in the kernel such as the process, in-core inode, open file, and lock
tables. In this release, the operating system dynamically allocates memory
to system tables. In this way, they grow over time to accommodate max
imum demand. You can specify the maximum size to which a table can
grow (for example, the kernel parameter MAX_PROC specifies the max
imum size of the process table). However, this does not give you a perfor
mance gain and may limit your system's functionality if you specify too
small a value.

System table usage can be seen with sar -v (or mpsar -v for SMP):

16:10:31 proc-sz ov inod-sz ov file-sz ov lock-sz
16:10:37 61/127 0 160/250 0 177/291 0 2110
16:10:43 61/127 0 156/250 o 167/291 0 2/10
16:10:48 61/127 0 154/250 o 159/291 0 2110

55

Tuning memory resources

In each of the size columns, the first number signifies the number of entries
currently used in the table and the second signifies the size to which the table
has grown since the system was last booted. The table sizes should be moni
tored over a period of time to determine the upper limits for their grown
sizes.

You can also determine the current grown size and the maximum possible
sizes of these tables using the getconf(C) command.

The following table is a summary of the fields displayed by the sar -v and
mpsar -v commands:

Table 4-3 Viewing the size of system tables

Command

[mp]sar -v

Field

proc-sz
inod-sz
file-sz
lock-sz

Description

used and grown size of the process table
used and grown size of the inode table
used and grown size of the file table
used and grown size of the lock table

For more details on the dynamic kernel tables, see "Table limits" (page 207).

Using graphical clients on low memory systems

56

If your sea OpenServer Desktop System is short of memory, you can release
memory for use by simplifying the Desktop environment.

If your system is very memory bound, consider making the following
changes. These are given in order, from the most to the least effective in
releasing memory for use:

• Do not use the Desktop client, xdt3(XC), if you do not need to click and
drag icons to perform tasks. You can configure the pmwm Root menu to
list clients that you often use, or you can start clients from the xterm or
scoterm command line. See the Graphical Environment Guide for more infor
mation about adding clients to or deleting clients from the Root menu.

• Disable scologin(XC) from running on the console if a machine is the host
for several X terminals, and you want scologin to manage only their dis
plays. Disabling the X server from running saves several processes and
their associated memory. See the Graphical Environment Guide for more in
formation about enabling and disabling scologin.

• Run fewer graphical X clients. This reduces overall memory requirements.

• For non-critical tasks where you need only basic functionality, use non
graphical applications or X clients that require less memory.

Performance Guide

Tuning X server performance

Tuning X server performance

The X server program controls what is displayed on the Desktop screen, and
handles input from the keyboard and mouse. X clients are application pro
grams which either run on the same machine as the server, or on a remote ma
chine over a network connection. The server displays images on the screen on
behalf of the clients and it transmits mouse and keyboard input events to the
clients on behalf of the user.

The X server program has several options which affect performance. These
options can' be added to the invocation of X(X) or Xsco(X) in the file
/usr /lib/Xll/scologin/Xservers:

-bs If specified, disables support for backing store.

Backing store is a buffer used to store the entire contents of a window. It
allows the X server to redraw the entire window rather than requiring
the application (X client) to do this. Disabling backing store can save a
significant amount of memory but redrawing windows will cause
clients to expend more CPU time. This will impact the CPU usage of the
machine on which the client is running. If the client is running remotely,
it may also generate significantly more network traffic while it redraws
the window. This can also cause a noticeable delay while it does this.

-nice value
Specifies the X server's nice value in the range 0 to 39. The default nice
value is 0 which gives the most responsive performance by the mouse or
other pointing device. See "Calculation of process priorities" (page 28)
for a discussion of nice.

-nompxlock
If specified, allows the X server to run on any CPU on multiprocessor
systems where the video drivers are multithreaded. This can enhance
performance on systems with an sca SMP License by reducing the load
on the base processor.

-su If specified, disables support for save-unders.

Save-unders are temporary buffers that store the contents of windows
that other windows, menus, pop-ups, and so on may obscure. Disabling
save-unders requires the clients to expend more CPU time redrawing
portions of windows, and adds to network load for remote clients.

57

Tuning memory resources

Kernel parameters that affect the X Window System

58

Although the following kernel parameters do not directly affect performance,
they are important for the correct operation of the X Window System TM, the
Desktop, and X terminals. You may be unable to start an X client if you do not
enough of these resources configured. See Appendix B, "Configuring kernel
parameters" (page 185) for details of how to change the value of kernel
parameters.

MAX_PROC
Set the value of this parameter to 0 to allow the process table to grow
dynamically.

MAXUP
Limits the number of processes that the system will run on behalf of a
user. Each window requires at least one process. Note that local applica
tions running in a window may start several additional processes.

NOFILES
Specifies the maximum number of files that a process (including the X
server) can have open simultaneously. This limits the number of X clients
that can be started because the X server opens a file descriptor to each
client. In addition, the X server requires about 10 file descriptors in order
to read fonts, color maps, and so on.

NSPTIYS
Allow at least as many pseudo terminals as the number of windows that
will be opened for use on the console, by X terminals, and X clients. If
necessary, you can change the number of pseudo terminals configured for
use using the mkdev ptty command.

NSTREAM
Allow at least four stream heads for the X server plus four for each client
connection. NSTREAM should be approximately four times the value of
NSPTTYS.

NSTRPAGES
This parameter controls the maximum number of 4KB pages of memory
that can be dynamically allocated for use by STREAMS messages. Allow at
least 125 pages plus 125 pages for each X terminal that is supported.

NUMSP
Two stream pipes are needed for the X server plus two for each local X
client. NUMSP should be approximately twice the value of NSPTTYS.

For more information about tuning STREAMS resources, see #STREAMS
resources" (page 123).

Performance Guide

Case study: memory-bound workstation

Case study: memory-bound workstation

In this example, a user is given a workstation running the sea OpenServer
Desktop System to use. The machine has had one previous user who may
have made undocumented changes to the system's configuration. The work
station's new owner is given the root password and is made responsible for its
day-to-day administration. The performance of the machine seems generally
adequate although it does become noticeably slower when several different
applications are started at the same time.

System configuration

The configuration of the system is:

• Uniprocessor 80486DX running at 33MHz.

• !SA bus.

• 24MB of RAM.

• 48MB of swap space.

• One 434MB IDE disk drive

• One 16-bit Ethernet card with a 16KB buffer.

• VESA bus graphics adapter with 1MB of Dynamic Random Access Memory
(DRAM).

• SVGA monitor configured to run at a display resolution of 1024x768 with
256 colors.

The user's home area and applications are accessed via NF5-mounted file
systems on a file server maintained by the company's Information Services
department. The local area network is lightly loaded. There are occasional
bursts of NFS traffic when users access remote files. There are no funds avail
able for upgrading the workstation.

Defining a performance goal

The user wishes to become familiar with how their workstation has been set
up and to improve its performance if possible. They have only a few hours
available to perform this task.

59

Tuning memory resources

Collecting data

60

The user collects the following settings for kernel parameters by running the
Hardware/Kernel Manager:

GPGSLO 200 - the number of memory pages available when the page
stealing daemon, vhand, becomes active to release pages for
use.

GPGSHI

MAXUP

NBUF

NHBUF

300 - the target number of pages for vhand to release for use.

25 processes per user are allowed.

3000 1KB buffers are requested at system startup.

256 buffer hash queues are reserved.

NSTREAM 256 stream heads are configured.

NSTRP AGES maximum 500 4KB pages of memory can be dynamically allo
cated for use by STREAMS message buffers.

The user examines the file /usr/adm/messages and notes the following informa
tion:

• The kernel requires 7MB of memory.

• The buffer cache occupies 3MB of kernel memory.

• There are 17MB of memory available for user processes.

In addition the user notes the following facts from various configuration files
on the system:

• The TCP lIP interface definition for the Ethernet card is defined to use
back-to-back packets and full frames in the file /ete/tcp.

• Four NFS biod daemons are configured to run in the file /ete/nfs.

Next, the user starts up all the usual applications that they run on the desktop
- seomail, xclock, editing files in two windows, browsing WWW using
Mosaic, viewing seohelp, running two sessions on remote machines, and run
ning a word processor and spreadsheet. They are unable to start any more
processes than this and a message is displayed to this effect. They then switch
to another multiscreen, log in as root, and start to record sar data at 30-second
intervals to a temporary file:

sar -0 /tmp/sar_op 30 120

They then continue to use the system for an hour before examining the
results.

Performance Guide

Case study: memory-bound workstation

Formulating a hypothesis

There are several things that immediately strike the user as less than optimal
about this system configuration:

• Only 25 processes are available for each user even though this system only
has one user. This is probably the reason why only a limited number of
windows could be started.

• The number of hash queues configured (NHBUF) is much lower than the
number of system buffers (NBUF). There is approximately 1 hash queue for
every 12 buffers; this means than each queue will contain 12 buffers on
average. On a single processor system, the system will automatically allo
cate at least one hash queue for every two buffers if NHBUF is set to O.

• The user suspects that too much memory is allocated to buffers that could
more usefully be allocated to user processes. Most disk access is remote
and will cause most loading on the NFS file server. NFS remote writes to
files are write through (synchronous) and not cached on either the client or
the server machines. Remote reads are cached locally and have unknown
requirements. As most of the applications that the user runs are idle while
not being used, it is unlikely that the STREAMS subsystem is severely
loaded.

Getting more specifics

The sar -u report is extracted from the file /tmp/sar -op:
sar -u -f Itmp/sar_op

This report shows the system's usage of the CPU:

09:00:00

09:15:30
09:15:00
09:16:30

%usr

6
5
6

%sys

5
4
3

%wio %idle

1 88
1 90
o 91

It is apparent that the system spends most of its time idle with plenty of spare
processing capacity. The low waiting on I/O (%wio) figures do not indicate any
bottleneck in the I/O subsystems.

61

Tuning memory resources

62

Memory investigation
The user next runs sar -r to examine the system's usage of memory:

09:05:00 freemern freeswp

09:15:30
09:16:00
09:16:30

314 73166
302 72902
308 72888

This shows that there is plenty of swap space (freeswp) but that the system is
running low on physical memory (freemem is close to GPGSHI) so the page
handling (vhand) and the swapper (sched) daemons may be active. (See
Chapter 4, "Tuning memory resources" (page 41) for more information about
the circumstances under which these daemons become active.)

The sar -q report shows that no runnable processes are swapped out (no value
is displayed for swpq- s z):

09:05:00 rung-sz %runocc swpg-sz %swpocc

09:15:30
09:16:00
09:16:30

1.3
1.0
1.1

2
3
2

Running sar -w, the swpot/ s field is greater than zero; this is evidence that the
system is swapping out to the swap area:

09:05:00 swpin/s bswin/s swpot/s bswot/s pswch/s

09:15:30
09:16:00
09:16:30

0.05
0.07
0.03

0.2
0.5
0.2

0.01
0.02
0.01

0.2
0.4
0.3

72
55
43

The system does not appear to be very short of resources apart from memory
for user processes. There is plenty of spare CPU capacity and no immediately
apparent problem with I/O.

Performance Guide

Case study: memory-bound workstation

It is possible that a user process is grabbing too much memory for itself. In
this instance, running the command ps -el shows that no process has a swap
pable virtual memory size (sz field) greater than the X server, and most are
much smaller. When tuning a system, it is always worth checking to see
which processes are using most swappable memory (sz field) and most time
(TIME field).

The next step is to see if the amount of memory used by the buffer cache can
be reduced.

110 investigation
The user runs sar -b to investigate buffer cache hit rates:

09:05:00 bread/s lread/s %rcache bwrit/s lwrit/s %wcache pread/s pwrit/s

09:15:30
09:16:00
09:16:30

1
1
1

17
25
18

97
95
96

6
1
3

18
3
9

68
67
67

o
o
o

o
o
o

The hit rates are quite high at approximately 96% for reads and 67% for
writes. The numbers of blocks being transferred is quite small. As most of the
files being accessed are remote, local disk activity should be low apart from
paging in of program text and data, and any paging out activity. This is inves
tigated using sar -d:

09:05:00 device %busy avque r+w/s blks/s avwait avserv

09:15:30 wd-O 1.42 2.39 2.13 6.82 7.50 10.42

09:16:00 wd-O 2.03 2.97 1.37 3.64 7.00 13.78

09:16:30 wd-O 1.16 2.29 1.70 5.95 9.48 12.23

The disk appears not to be busy so it should be able to cope with a decreased
cache hit rate. If memory is released by decreasing the size of the buffer cache,
this may also lessen any paging out activity and so decrease disk activity.

63

Tuning memory resources

64

STREAMS usage investigation
Finally, the user runs netstat -m to investigate how STREAMS is using
memory:

streams allocation:
config alloc free total max fail

streams 256 113 143 6270 124 0
queues 566 394 172 16891 404 0
mblks 271 102 169 179326 283 0
buffer headers 442 391 51 155964 475 0
class 1, 64 bytes 1288 276 8 50289 1288 0
class 2, 128 bytes 796 171 25 18668 796 0
class 3, 256 bytes 364 50' 14 9174 364 0
class 4, 512 bytes 132 12 20 3334 132 0
class 5, 1024 bytes 54 5 9 1904 54 0
class 6, 2048 bytes 84 62 22 1622 84 0
class 7, 4096 bytes 8 8 0 293 8 0
class 8, 8192 bytes 1 0 1 113 1 0
class 9, 16384 bytes 1 0 1 21 1 0
class 10, 32768 bytes 0 0 0 0 0 0
class 11, 65536 bytes 0 0 0 0 0 0
class 12, 131072 bytes 0 0 0 0 0 0
class 13, 262144 bytes 0 0 0 0 0 0
class 14, 524288 bytes 0 0 0 0 0 0
total configured streams memory:2000.00KB
streams memory in use: 205.29KB
maximum streams memory used: 686.34KB

This report shows that the kernel's peak usage of memory for STREAMS was
about 700KB. Its current usage of physical memory is about 200KB which is
well below the maximum 2MB of memory that can be dynamically allocated.

The usage of stream heads reported in the streams column shows that the 256
configured for use are sufficient. The number configured could be reduced
using the NSTREAM parameter but this releases only 80 bytes of memory per
stream head.

Performance Guide

Case study: memory-bound software development system

Making adjustments to the system

Firstly, the user increases MAXUP to 128 as this is only a configuration limita
tion. They will now be able to run many more processes than before.

To release more memory for use by user processes, they reduce the memory
allocated to the buffer cache to 1MB by setting NBUF to 1024. The number of
hash queues, determined by the value of NHBUF, is increased to 512 - that is,
half the value of NBUF.

After making these changes, the kernel is relinked, and the system rebooted.
The new size of the kernel has decreased by approximately 2MB to 5MB. This
releases 2MB of memory for user processes.

The user continues to monitor the system in everyday use, particularly noting
the impact of the changes on memory, buffer cache, and disk usage.

Case study: memory-bound software development system

This case study examines a system in which a large number of software devel
opers are looping through the process of edit-compile-run a program. It is
therefore a system on which a relatively small number of CPU-intensive jobs
are constantly run. These are likely to be jobs that require a considerable
amount of I/O, memory, and CPU-time. This is because compilers are usually
large programs that access many files, create large data structures, and can be
a source of memory contention problems.

System configuration

The system's configuration is as follows:

• Uniprocessor 80486DX2 running at 50MHz.

• EISA bus.

• 24MB of RAM.

• Two 1GB SCSI-2 hard disks.

• 48MB swap space on the root disk only.

• One intelligent 16-port serial card.

• 16 ASCII terminals.

• One Ethernet network card with 16KB buffer and 16-bit wide data path.

The system is isolated from other machines on the company's LAN with the
connection primarily being used for e-mail traffic. No remote filesystems are
mounted or exported.

65

Tuning memory resources

Defining a performance goal

At installation, the system administrator knew the type of work that the
machine would need to process, and so set the goal of maximizing I/O
throughput. This was achieved by tuning the system so that the amount of
time the machine spent performing disk I/O would be as low as possible. The
system administrator also set up an entry in root's crontab file to record sys
tem data at one-minute intervals during the working day:

* 8-18 * * 1-5 lusr/lib/sa/sa1

Recently, through observation and complaints from others, it has become
apparent that the system is slowing down: in particular, the system's users
have experienced slow response time. The goal is to restore the system to its
initial performance.

Collecting data

66

The system administrator runs sar to examine the statistics that have been col
lected for the system. The following output is an example showing the CPU
utilization at peak load when the system was first tuned:

08:00:00 %usr %sys %wio %idle

14:06:00
14:07:00
14:08:00

53
55
52

25
23
20

2
1
3

20
21
25

Examining the situation now shows a much different pattern of usage:

08:00:00 %usr %sys %wio %idle

10:51:00
10:52:00
10:53:00

35
29
32

37
44
38

28
26
30

o
1
o

The %wio figure is high (consistently greater than 15%) which indicates a pos
sible I/O bottleneck. The cause of this could be related to the demands of the
applications being run, or it could also be caused by swapping activity if the
system is short of memory.

Performance Guide

Case study: memory-bound software development system

Formulating a hypothesis

The sar -u report shows that the system is spending a greater proportion of its
time waiting for I/O and in system mode.

If the system is memory bound, this may also be causing a disk I/O
bottleneck. Alternatively, if the problem was predominantly I/O based, the
slowness could be caused by uneven activity across the system's disks or by
slow controllers and disk drives being unable to keep up with demand.
Another possibility is that the buffer cache may not be large enough to cope
with the number of different files being compiled and the number of libraries
being loaded.

If the problem is lack of memory, it could be that the system is constantly
paging and swapping. Paging out to the swap areas need not be a major cause
of performance degradation, but swapping out is usually an indication that
there is a severe memory shortage. As a consequence, disk I/O performance
can degrade rapidly if the disks are busy handling paging and swapping
requests. In this way, high memory usage can lead very quickly to disk I/O
overload. It also requires the kernel to expend more CPU time handling the
increased activity. Preventing memory shortages helps to improve disk I/O
performance and increases the proportion of CPU time available to user pro
cesses.

Getting more specifics

To confirm the hypothesis that the system is memory bound, the system
administrator next examines the performance of the memory and I/O
subsystems.

Memory investigation
The system administrator uses sar -r to report on the number of memory
pages and swap file disk blocks that are currently unused:

08:00:00 freemem freeswp

10:51:00
10:52:00
10:53:00

44
42
41

2056
1720
1688

Since the number of free pages in the freemem column is consistently near the
value defined for the GPGSHI kernel parameter (40), the page stealing dae
mon is probably active. Sharp drops in the amount of free swap space,
freeswp, also indicate that the stack and modified data pages of processes are
being moved to disk.

67

Tuning memory resources

68

The average value of freemem indicates that there is only about 200KB of free
memory available on the system. This is very low considering that the total
physical memory size is 24MB. The system is also dangerously close to run
ning out of swap as the average value of freeswp indicates that there is only
about 910KB of space left on the swap device. The shortage of swap space is
even more apparent when the swap -1 command is run:

path dev swaplo blocks free
/dev/swap 1,41 0 96000 1688

Only 1688 disk blocks remain unused out of 64000 configured on the swap
device.

More evidence of swapping is found by running sar -q:

08:00:00 rung-sz %runocc swpg-sz %swpocc

10:51:00 2.7 98 1.0 36
10:52:00 2.0 63 3.0 31
10:53:00 2.0 58 1.0 49

The non-zero values in the swpq-sz and %swpocc indicate that processes are
ready-to-run which have been swapped out.

To see evidence of swapping activity, the administrator uses sar -w:

08:00:00 swpin/s bswin/s swpot/s bswot/s pswch/s

10:51:00
10:52:00
10:53:00

0.52
1.21
0.71

12.1
22.5
15.2

1. 01
3.02
0.97

19.2
37.4

7.3

72
55
83

The values of swpot/s and bswot/s are both well above zero. This shows that
the system was frequently swapping during the sampling period.

The evidence confirms the comments of the users, and the suspicions of the
administrator, that the system has a memory shortage.

110 investigation
To investigate further, the system administrator uses sar -b to display
statistics about the buffer cache:

08:00:00 bread/s lread/s %rcache bwrit/s lwrit/s %wcache pread/s pwrit/s

10:51:00
10:52:00
10:53:00

239
448
374

723
1280
1100

67
65
66

7
10
11

16
22
25

58
56
57

o
o
o

o
o
o

Performance Guide

Case study: memory-bound software development system

Llrcache" at 66% and Llwcache" at 57% indicate low hit rates in the buffer cache.
Although these figures are low, the priority must be to reduce the memory
shortage in the system. Tuning the buffer cache hit rate must be left to a later
stage as increasing the buffer cache size will further reduce the amount of
available memory.

Finally, the system administrator checks disk I/O performance using sar -d:

08:00:00 device %busy avgue r+w/s blks/s avwait avserv

10:51:00 Sdsk-O 85.42 1.89 39.39 166.28 80.26 25.24

10:52:00 Sdsk-O 86.00 1. 79 38.73 163.64 82.35 25.87
Sdsk-1 10.01 1.16 12.37 23.11 3.24 20.19

10:53:00 Sdsk-O 87.00 1.92 38.07 171.95 78.32 26.32

The value of Llavque" for the root disk (Sdsk-O) is consistently greater than 1.0
and is continually more than 80% busy. This indicates that the device is
spending too much time servicing transfer requests, and that the average
number of outstanding requests is too high. This activity is the combined
result of the paging and swapping activity, and disk access by user processes.
The second SCSI disk (Sdsk-l) does not contain a swap area and is much less
active.

Making adjustments to the system

Since the system is both memory and I/O bound, it is likely that disk I/O per
formance is being made worse by the constant paging and swapping, so the
sensible approach is to attack the memory problems first. As the system is
almost completely out of memory and swap space, increasing these resources
is apriority.

There are several ways to increase the amount of memory available to user
processes on this system:

• Purchase more memory - though there may be inherent resistance to this,
it can be a cost-effective solution in terms of time saved.

• See if any large processes such as servers are running that could run on
less-loaded machines. If this were a system that supported workstations,
some users might be running their X clients on the server instead of on their
workstation.

• Some users may be running programs that require an unreasonably large
amount of memory. It may be possible to tune the programs to reduce their
demands on memory. Alternatively, such programs could be run when the
system is more lightly loaded.

69

Tuning memory resources

70

Solutions that will not help include:

• Reducing the size of the buffer cache would probably not help in this exam
ple because the system already has a disk I/O problem. On a system where
the buffer cache hit rates were high, some memory could be regained by
reducing the buffer cache size.

• Creating another swap area on the second system disk (Sdsk-l) might help
to spread the I/O load caused by swapping and paging but it will not help
to reduce the system overhead on the cpu.

• Minimizing the number of processes running on the machine at anyone
time by appropriate scheduling. This is not a reasonable solution in a pro
duction environment such as this where users expect a rapid response.

Performance Guide

Chapter 5

Tuning I/O resources

Input/output (I/O) is the process of transferring data from memory to a
device, from a device to memory, or from one device to another. Most I/O
usually occurs between memory and the system's hard disk drives, though on
some multiuser systems, it might be between the system and terminals con
nected via the network or serial lines. If the speed at which peripheral devices
can access and communicate data to the system is relatively slow, the operat
ing system may spend most of its time idle waiting for I/O with many
processes asleep until the I/O completes.

The following sections contain information about the monitoring and tuning
of various I/O subsystems:

• "Subsystems that affect disk and other I/O" (this page)

• lIThe mechanics of a disk transfer" (page 87)

• "Tuning virtual disk performance" (page 100)

• "Serial device resources" (page 108)

• Chapter 6, "Tuning networking resources" (page 123)

Subsystems that affect disk and other 1/0

There are two methods of transferring data between memory and disk:

• Normal I/O uses read(S) and write(S) system calls. These can go through
the buffer cache using the block device interface or direct to disk using the
raw device interface. The read and write calls block the process until they
complete - that is, they are synchronous.

71

Tuning 110 resources

72

• Asynchronous I/O (AID) allows non-blocking access to raw disk devices.
This allows processes to carry out other tasks while the kernel performs the
I/O requests. If possible, you should enable AID for database systems if
they support it; this maximizes transaction throughput and minimizes
delays.

The two forms of AID supported are the aio(HW) driver and the POSIX.lb
aio functions.

See ''Viewing AID activity" (page 162) for information about how to moni
tor AID activity.

Synchronous'I/O operations to the raw disk device force the process
requesting the operation to wait for it to complete. Database applications
typically use synchronous I/O to ensure the integrity of the data being
written to disk. For example, the journal logs that a database uses to
recover in the event of system failure are written to disk using synchronous
I/O.

To make the transfer of data between memory and disk more efficient, the sys
tem maintains a buffer cache of most recently accessed disk data. This
reduces the amount of disk I/O that the system needs to perform. See "How
the buffer cache works" (page 73) for a description of its operation.

In a similar way, the system maintains a namei cache (for translating names to
inodes) of most recently used filenames in order to speed up the location of
files in filesystems. In fact, it uses a separate namei cache for AFS, EAFS, and
HTFSTM filesystems (all based on the ht driver) from the namei cache it uses for
DTFSTM file systems (which is based on the dt driver). See "How the namei
cache works" (page 81) for a description of their operation.

Finally, the multiphysical buffers use a small pool of memory (generally 160KB
to 256KB in size). They are used for various purposes as described in "How
multiphysical buffers are used" (page 84).

For a description of how to monitor the activity of block devices including
disks, see "Viewing disk and other block I/O activity" (page 89).

Disk I/O and networked filesystem (such as SCO® NFS®) performance are
affected by file system fragmentation and other filesystem-related factors as
described in "Filesystem factors affecting disk performance" (page 94).

Performance Guide

How the buffer cache works

How the buffer cache works

On a typical system approximately 85% of disk I/O can be avoided by using
the buffer cache, though this depends on the mix of jobs running. The buffer
cache is created in an area of kernel memory and is never swapped out.
Although the buffer cache can be regarded as a memory resource, it is pri
marily an I/O resource due to its use in mediating data transfer. When a user
process issues a read request, the operating system searches the buffer cache
for the requested data. If the data is in the buffer cache, the request is satisfied
without accessing the physical device. It is quite likely that data to be read is
already in the buffer cache because the kernel copies an entire block contain
ing the data from disk into memory. This allows any subsequent data falling
within that block to be read more quickly from the cache in memory, rather
than having to re-access the disk. The kernel also performs read-ahead of
blocks on the assumption that most files are accessed from beginning to end.

The data area of each buffer for file systems other than DTFS is lKB which is the
same size as a filesystem logical block and twice the typical physical disk
block size of 512 bytes. DTFS file systems use buffers with data areas in multi
ples of 512 bytes from 512 bytes to 4KB.

If data is written to the disk, the kernel first checks the buffer cache to see if
the block, containing the data address to be written, is already in memory. If it
is, then the block found in the buffer cache is updated; if not, the block must
first be read into the buffer cache to allow the existing data to be overwritten.

When the kernel writes data to a buffer, it marks it as dirty. This means that
the buffer must be written to disk before the buffer can be re-used. Writing
data to the buffer cache allows multiple updates to occur in memory rather
than having to access the disk each time. Once a buffer has aged in memory
for a set interval it is flushed to disk by the buffer flushing daemon, bdflush.

The kernel parameter NAUTOUP specifies how long a buffer can be dirty
before it is written to disk from the buffer cache. The default value for
NAUTOUP is 10 seconds, and ranges between 0 and 60. It does not cause a
buffer to be written precisely at NAUTOUP seconds, but at the next buffer
flushing following this time interval.

Although the system buffer cache significantly improves overall system
throughput, in the event of a system power failure or a kernel panic, data
remaining in the buffer cache but which has not been written to disk may be
lost. This is because data scheduled to be written to a physical device will
have been erased from physical memory (which is volatile) as a consequence
of the crash.

73

Tuning 110 resources

74

The default flushing interval of the buffer flushing daemon, bdflush, is 30
seconds. The kernel parameter BDFLUSHR controls the flushing interval. You
can configure BDFLUSHR to take a value in the range 1 to 300 seconds.

If your system crashes, you will lose NAUTOUP + (BDFLUSHR/2) seconds of
data on average. With the default values of these parameters, this corresponds
to 25 seconds of data. Decreasing BDFLUSHR will increase data integrity but
increase system overhead. The converse is true if you increase the interval.

Apart from adjusting the aging and flushing intervals, you can also control
the size of the buffer cache. The kernel parameter NBUF determines the
amount of memory in kilobytes that is available for buffers. If you are using
the DTFS file system, the value of NBUF does not correspond to the actual
number of buffers in use. The default value of NBUF is 0; this causes the ker
nel to allocate approximately 10% of available physical memory to buffers.

The size of the buffer cache in kilobytes is displayed when the system starts
up and in the file /usr/adm/messages. Look for a line of the form:

kernel: Hz = 100, i/o bufs= nuntberk

If there are any buffers in memory above the first 16MB, the line may take the
form:

kernel: Hz = 100, i/o bufs = nuntberk (high bufs = nuntberkl

The amount of memory reserved automatically for buffers may be not be
optimal depending on the mix of applications that a system will run. For
example, you may need to increase the buffer cache size on a networked file
server to make disk I/O more efficient and increase throughput. You might
also find that reducing the buffer cache size on the clients of the file server
may be possible since the applications that they are running tend to access a
small number of files. It is usually beneficial to do this because it increases the
amount of physical memory available for user processes.

How you can investigate the effectiveness of the buffer cache is the subject of
"Viewing buffer cache activity" (page 75).

For more information on tuning the size of the buffer cache see:

• "Increasing disk I/O throughput by increasing the buffer cache size" (page
75)

• "Increasing memory by reducing the buffer cache size" (page 54)

Appendix B, "Configuring kernel parameters" (page 185) tells you how you
can use the configure{ADM) utility to change the values of kernel parameters
such as NAUTOUP, BDFLUSHR, and NBUF.

Performance Guide

How the buffer cache works

Viewing buffer cache activity

Buffer cache activity can be seen using sar -b (or mpsar -b for SMP):

23:59:44 bread/s lread/s %rcache bwrit/s lwrit/s %wcache pread/s pwrit/s
23: 59: 49 38 723 95 4 16 75 0 0
23:59:54 38 1280 97 4 22 81 0 0
23:59:59 37 1100 97 2 25 91 0 0

Average 37 1006 96 3 20 83 o o
The buffer cache read hit rate, %rcache, indicates the percentage by volume of
data read from disk (or any block device) where the data was already in the
buffer cache. .

The buffer cache write hit rate, %wcache, indicates the percentage by volume of
data written to disk (or any block device) where the block in which the data
was to be written was already in the buffer cache.

I

NOTE For all filesystems other than DTFS, %rcache and %wcache are also
equal to the percentage of read and write requests satisfied using the buffer
cache.

bread/ s indicates the average number of kilobytes per second read from the
block devices (including disk drives) into the the buffer cache.

bwri t/ s indicates the average number of kilobytes per second written from
the buffer cache to block devices by the buffer flushing daemon, bdflush.

Increasing disk 110 throughput by increasing the buffer cache size

If the read and write buffer cache hit rates (%rcache and %wcache) reported by
sar -b (or mpsar -b for SMP) show consistently low values, you can improve
disk I/O performance by increasing the size of the buffer cache. This is partic
ularly worth doing if the number of kilobytes of data transferred per second
between the buffer cache and disk (bread/s + bwrit/s) is high. You can also
examine the benefit to disk I/O performance using sar -d as described in
''Viewing disk and other block I/O activity" (page 89). This should show
improved %busy, avque, and avwai t figures for disks containing regularly
accessed file systems as the buffer cache size is increased. Even if the impact on
disk I/O is not significant, requesting processes benefit by not having to per
form as many waits because of cache misses.

You should also note that increasing the size of the buffer cache directly
reduces the amount of memory available for user processes. If free memory is
reduced, the system may be more susceptible to paging out and swapping. If
you increase the buffer cache size, you should monitor paging and swapping
as well as buffer cache activity.

75

Tuning liD resources

76

See Chapter 4, "Tuning memory resources" (page 41) for information on moni
toring paging and swapping.

If a compromise cannot be reached between these resources and the applica
tions being run cannot be tuned to reduce disk access, then the only alterna
tive is to add either more memory or improve the throughput of the disk
drives.

The following table is a summary of the commands that can be used to view
buffer cache activity:

Table 5·1 Viewing buffer cache activity

Command Field

[mp]sar -b %rcache

%wcache

Description

percentage by volume of data read from block
devices satisfied using the buffer cache
percentage by volume of data written to block
devices satisfied using the buffer cache

To increase the size of the buffer cache first determine the number of I/O
buffers as outlined in the subsection "Viewing buffer cache activity" (page 75).
The number of buffers can then be changed by modifying the NBUF kernel
parameter.

It is not possible to recommend values of %rcache and %wcache for which you
should aim. The values depend to a great extent on the mix of applications
that your system is running, the speed of its disk subsystems, and on the
amount of memory available. Lower limits can be quoted such as 90% for
%rcache and 65% for %wcache, but you should not assume that these are ideal
for your system. Ideal values would be 100% for both hit rates but you are
unlikely to see these on a real system.

The maximum possible value of %rcache depends on how often new files are
accessed whose data has not already been cached. Applications which read
files sporadically or randomly will tend to have lower values for %rcache. If
files are read which are not then subsequently re-read, this has the additional
disadvantage of removing possibly useful buffers from the cache for reading
and writing.

The effectiveness of caching blocks for write operations depends on how often
applications need to modify data within the same blocks and how long buffers
can remain dirty before the data is flushed to disk. The average time that data
remains in memory before being flushed is NAUTOUP + (BDFLUSHR / 2).
This is 25 seconds given the default values of these parameters.

Performance Guide

How the buffer cache works

If applications tend to write to the same blocks on a time scale that is greater
than this, the same buffers will be flushed to disk more often. If applications
append to files but do not modify existing buffers, the write hit rate will be
low and the newly written blocks will tend to remove possibly useful buffers
from the cache. If you are running such applications on your system, increas
ing the buffer cache size may adversely affect system performance whenever
the buffer flushing daemon runs. When this happens, applications may
appear to stop working temporarily (hang) although most keyboard input will
continue to be echoed to the screen. Applications such as vi(C) and telnet(TC)
which process keyboard input in user mode may appear to stop accepting key
strokes. The kernel suspends the activity of all user processes until the flush
ing daemon has written the dirty buffers to disk. On a large buffer cache, this
could take several seconds. To improve this situation, spread out the disk
activity over time in the following ways:

• Decrease the value of BDFLUSHR so that the flushing daemon runs more
often. This will reduce the peak demand on disk I/O at the possible
expense of a slight increase in context switching activity.

• Decrease the value of NAUTOUP so that fewer dirty buffers accumulate in
the cache. Potentially useful data remains in the buffers that have been
marked clean until they are reused. Do not reduce NAUTOUP too much or
caching may become ineffective.

• Use caching disk controllers (with battery backup if you are concerned
about the integrity of your data).

• Some applications such as database management systems provide their
own buffer caching strategy. This usually operates through the raw disk de
vice and so does not use the operating system buffer cache.

Figure 5-1 (page 78) shows how the buffer cache read and write hit rates might
increase as the number of buffers is increased. There are several points to
notice here:

• You cannot independently tune the read and write hit rates (%rcache and
%wcache). If the number of kilobytes of data read per second into the buffer
cache from disk (bread/ s) is much higher than the number written to disk
(bwrit/s), you should attach more significance to the value of %rcache. On
most systems, you will find that there is more data read from than written
to disk.

77

Tuning 110 resources

78

• Increasing the value of NBUF has most effect for low cache hit rates - for
high cache hit rates, the curves start to level off (saturate) and you need a
large increase in NBUF to produce a small increase in the hit rate. For
example, to increase the read hit rate (%bread) from 90% to 95%, a relative
increase of 5.6%, you might need to double the value of NBUF. Although
the read hit rate increases by only 5.6%, the amount of data that needs to be
read from disk has been reduced by 50%. If disk I/O is a problem and your
system is also not short of memory, you may consider it worthwhile to
increase the size of the buffer cache.

Buffer cache
hit rate

NBUF

Number of buffers

Figure 5-1 How cache hit rates depend on the number of bufErs

Note that when you modify the value of NBUF, you may also need to set the
value of NHBUF (the number of hash queues) as described in "Tuning the
number of buffer cache hash queues" (page 80).

If your system has a large amount of memory and shows no swapping or sig
nificant paging out activity at peak load, you may wish to try increasing the
size of the buffer cache. Provided that you do not allocate too much memory
to buffers (so causing the system to page out and swap), this should reduce
I/O activity and improve the interactive performance of applications. You
should do this as an iterative process while monitoring the buffer cache hit
rate and the amount of physical memory available to user processes.

Performance Guide

How the buffer cache works

If the alnount of free memory drops drastically and the system begins to page
out and swap, you should reduce the size of the buffer cache. See Chapter 4,
~'Tuning memory resources" (page 41) for more information.

Overriding the size of the buffer cache at boot time
You can use the nbuf bootstring to set a different size for the buffer cache
when the system is booted. The value supplied as the argument to nbuf over
rides the value of NBUF configured into the kernel. For example, the follow
ing command to boot(HW) sets the buffer cache size to 150KB in addition to
using the default bootstring:

defbootstr nbuf=150

If NHBUF is set to 0, the number of hash queues will automatically be
adjusted for the new buffer cache size.

See "Using bootstrings" in the sea Open Server Handbook for more information.

Positioning the buffer cache in memory

Peripheral controllers that support 32-bit addressing are capable of DMA
transfers into memory above 16MB. In this case, the size of the buffer cache is
its only important feature. You can tell whether SCSI host adapters support
32-bit addressing, among other performance-enhancing features, by examin
ing the initialization message that their device driver outputs on the system
console when the system starts and the kernel is loaded. For example, the fol
lowing message:

%adapter Ox8000-0x8CDC 11 type=eiad ha=O id=7 fts=std

shows that an Adaptec AHA-174x SCSI host adapter is installed which sup
ports 32-bit DMA addresses (fts= .. d). See "Boot time messages from host
adapter drivers" in the sea Open Server Handbook for more information.

The distribution of the buffers also becomes important for controllers that
only support 24-bit addressing - these can only access the first 16MB of mem
ory. The PLOWBUFS tunable parameter specifies the percentage of the cache
buffers that the system will try to place below the 16MB boundary at boot
time. During system startup, the distribution of buffers between memory
above and below 16MB is displayed:

kernel: Hz = 100, i/o bufs = 32768k (high bufs = 25232k)

To enable transfers of data between peripherals and memory above 16MB, the
system makes use of multiphysical buffers situated in the lowest 16MB of
memory. The amount of memory allocated for these buffers is controlled by
the value of the kernel parameter NMPBUF. On systems with 24-bit control
lers, you should ensure that as much of the buffer cache as possible lies in the
first 16MB of memory. For more information see "How multiphysical buffers
are used" (page 84).

79

Tuning 110 resources

Tuning the number of buffer cache hash queues

80

To speed look-up access, buffers are linked onto hash queues. The number of
these is controlled by the NHBUF parameter. The average number of buffers
per queue is the total number of buffers, NBUF, divided by the number of hash
queues. The greater the number of hash queues, the fewer the number of
buffers that will exist on any given hash queue on average.

a) NHBUF:NBUF high

hash
queues

b) NHBUF:NBUF low

hash
queues

Figure 5-2 Keeping the ratio of hash queues to buffers low reduces contention for SMP

If you set NHBUF to 0, the system configures the number of buffer cache hash
queues automatically at startup. On a uniprocessor system, the system sets
the number of hash queues to the nearest power of 2 that is greater than or
equal to half the value of NBUF. This should be treated as a recommended
lower bound for NHBUF; you may find that setting NHBUF to a higher value
gives better performance.

Performance Guide

How the namei cache works

I NOTE The value that you assign to NHBUF must be a power of 2; 512, 1024,
and 2048 are examples.

On a multiprocessor system, the system sets the number of hash queues to the
nearest power of 2 that is greater than or equal to twice the value of NBUF.
The reason for this can be seen from Figure 5-2 (page 80). On a system with
an sca SMP License, the kernel running on one CPU locks the entire hash
queue when it accesses a buffer. The kernel running on another CPU that
wants to access the same hash queue must wait until it is released. Such con
tention can be avoided by keeping the ratio of hash queues to buffers low. For
example, if the value of NBUF is 32000 on a system with an sea SMP License,
you should set NHBUF to at least 65536.

How the namei cache works

In order to find a file referenced by a given pathname, each of the components
of the pathname must be read to find the subsequent component. For exam
ple, take the file jetc/passwd when used in a command such as:

cat letdpasswd

In order to find the file passwd, the root directory (/) must first be found on the
disk. Then the entry for the pathname component etc is used to locate that
directory. The etc directory is read from the disk and used to locate the file
passwd. The file passwd can then be read from the disk.

All of the above steps use Index Nodes or inodes. A file in a file system is
represented by an inode which records its type, size, permissions, location,
ownership, and access and modification dates. To locate the file's data, the
inode also stores the block number (or numbers) of the disk blocks containing
the data. Note that the inode does not contain the name of the file. Another
file, a directory, stores the filename together with the corresponding inode
number. In this way, several directory entries (or filenames) may refer to the
same inode; these are known as hard links.

When a command accesses a pathname, such as jetc/passwd, the process of
translating name to inode to data block has to be carried out for every com
ponent of the pathname before the file's data can be located. If a pathname
component is a directory, such as jetc, the data blocks pointed to by its inode
contain a map of filenames to inodes. This map is searched for the next path
name component, and this process continues until the final name component
is reached. All inodes can be looked up in the inode table stored in memory,
or if not present there, at the head of the filesystem on disk where a linear list
of inodes is kept. The in-core inode table stores additional information so that
the kernel accesses the correct device if more than one filesystem exists.

81

Tuning liD resources

Converting pathnames to inode numbers is a time-consuming process. It may
require several disk accesses to read the inodes corresponding to the com
ponents of a directory pathname. The namei cache is used to reduce the num
ber of times the disk must be accessed to find a file. Provided that a name
component is less than 14 characters long, its name, inode number, and its
parent inode number are placed in the namei cache located in memory. Path
name components longer than 14 characters are never cached. When a com
mand wishes to open a file, the kernel first looks in the namei cache for each
pathname component in turn. If it cannot find a component there, it retrieves
the directory information from disk into the buffer cache and adds the entry to
the namei cache if possible.

Viewing namei cache activity

82

The effectiveness of the system's namei caches can be seen using sar -n:

23:59:44 H_hits Hmisses (%Hhit) D_hits Dmisses (%Dhit)
23:59:49 869 0 (100%) 5 0 (100%)
23:59:54 1091 6 (99%) 3 1 (75%)
23:59:59 832 0 (100%) 0 1 (0%)

Average 931 2 (100%) 8 2 80%)

I
NOTE sar -n shows two sets of statistics; one for the namei cache used by
AFS, EAFS, S51K, and HTFS file systems (ht driver-based), the other for the
namei cache used by DTFS filesystems (dt driver-based).

H_hi ts indicates the number of pathname components that were found in the
namei cache for ht driver-based filesystems.

Hmisses indicates the number of pathname components that were not found
in the namei cache for ht driver-based filesystems and subsequently required
that the information be read from one of the disk drives.

%Hhi t gives the percentage of the total number of pathname components
referenced that were found in the namei cache for ht driver-based filesystems.

D_hi ts, Dmisses, and %Dhi t provide corresponding information for DTFS file
systems.

Separate statistics are provided for ht and dt driver-based filesystems because
separate sets of kernel parameters are provided to tune them. See LLReducing
disk I/O by increasing the size of the namei cache" (page 83) for more infor
mation.

Performance Guide

How the namei cache works

Reducing disk 110 by increasing the size of the namei cache

There are three kernel parameters that control the performance of the namei
cache for AFS, EAFS, and HTFS filesystems:

HTCACHEENTS
Sets the number of entries in the namei cache. Increasing the size of the
namei cache reduces the number of disk accesses required to find inodes
associated with pathname components.

HTHASHQS
Sets the number of hash queues used to access the namei cache. Having
more hash queues speeds finding a pathname component in the cache.

HTOFBIAS
Controls how long the system spends searching for a free entry in the
namei cache before deleting and recycling an existing entry.

The kernel parameters DTCACHEENTS, DTHASHQS, and DTOFBIAS fulfill
the same purpose for DTFS filesystems.

Follow these steps to tune the namei cache for HTFS, AFS, and EAFS file
systems:

1. If the %Hhi t value shown by sar -n is consistently low (for example, less
than 65%), increase HTCACHEENTS until %Hhi t increases to a satisfac
torily high value (for example, more than 90%). As a rough guide,
HTCACHEENTS should be approximately three times the grown size of
the in-core inode table reported by the inod-sz field of sar -v.

2. Make HTHASHQS a prime number that is at least half the value of
HTCACHEENTS. (A prime number has no factors other than itself and 1.
You can test whether a number is prime using £actor(C).)

3. Do not change HTOFBIAS unless application programs on your system
tend to access the same files. For example, the C compiler generates
temporary files that are written by one pass of the compiler and read by
another. An environment where compilation is a major activity may
benefit from increasing HTOFBIAS.

As a general rule, do not set HTOFBIAS greater than one tenth of the value
of HTCACHEENTS. If you set the value of HTOFBIAS low, the names of
open files have less special caching priority, and are more likely to be
dropped from the cache. If you set HTOFBIAS high, open files keep their
names in the cache for longer but the operating system has to spend more
time looking for a free entry in the cache.

Repeat these steps over a number of days and use sar -n to monitor the namei
cache's performance. Each time you change the parameter values, relink the
kernel and reboot your system for the new values to take effect.

83

Tuning 110 resources

I
NOTE Poor name-lookup performance can result if the value of
HTCACHEENTS is less than twice the grown size of the in-core inode table,
and HTOFBIAS is greater than one tenth the value of HTCACHEENTS.

To tune the performance of the DTFS filesystem namei cache, follow the same
procedure but examine the hit rate shown by the %Dhi t field of sar -n and
adjust the values of the kernel parameters DTCACHEENTS, DTHASHQS, and
DTOFBIAS instead.

See Appendix B, "Configuring kernel parameters" (page 185) for details of
how to change the values of kernel parameters.

How multi physical buffers are used

84

The multiphysical buffer pool is an area of memory that can be allocated to
various tasks associated with moving data between memory and physical
devices:

• 16KB scatter-gather buffers are used to transfer contiguous blocks of data
on disk to and from the buffer cache. This mechanism is normally only used
if the disk controller does not support scatter-gather in hardware.

If no buffers are available, a process will normally sleep.

• 1KB copy request buffers (or copy buffers) are used to move data to and
from buffers in the buffer cache that lie in memory above 16MB. Copy
buffers are necessary for DMA and peripheral controllers that cannot
address memory above 16MB as shown in Figure 5-3 (page 85). If a copy
buffer is not available, a process sleeps until one becomes available.

• 4KB transfer buffers are used for moving data between memory and peri
pheral devices on behalf of applications whose data may lie in memory
above the first 16MB. These buffers are only necessary for DMA and peri
pheral controllers that cannot address memory above 16MB. If no transfer
buffers are available, the process is put to sleep.

The value of the NMPBUF kernel parameter controls the number of 4KB mem
ory pages used for scatter-gather, copy request, and transfer buffers. The
number of pages of memory reserved for these buffers is tuned automatically
if NMPBUF is set to O. You can check if sufficient memory has been assigned
as described in #Tuning the number of multiphysical buffers" (page 86).

Performance Guide

How multi physical buffers are used

The system dynamically allocates memory to the following data structures
which are used in performing certain I/O operations:

• Scatter-gather buffer headers are used to control scatter-gather requests if
the disk hardware supports scatter-gather. If no headers are available, the
requests are sent to the disk controller one at a time .

• Control blocks are used to send raw disk I/O (AlO) requests including
access to swap space. If no control blocks are available, the process is put
to sleep.

CPU

;::::.z:z: Multiphysical
buffer

~',',I

!:::::I

'" Device
controller

card

Peripheral

Memory
below 16MB

t ~ I

Memory
above 16MB

I I

Bus

Figure 5·3 How the system uses multiphysical buffers to overcome 24·bit addressing
limitations

85

Tuning liD resources

Tuning the number of multiphysical buffers

86

There is a possible performance impact from having too little memory avail
able for multiphysical buffers. When the system requires a scatter-gather,
transfer, or copy buffer when none is available, it will put the process
requiring the resource to sleep until one is available. The number of 4KB
pages of memory available for these buffers is determined by the value of the
kernel parameter NMPBUF.

Appendix B, "Configuring kernel parameters" (page 185) tells you how you
can use the configure{ADM) utility to change the value of NMPBUF.

Use sar -B and sar -h (or their mpsar equivalents for SMP) to see if enough
multiphysical buffers are configured. The output from sar -B reports on the
system's use of copy buffers:

23:59:44 cpybufs/s slpcpybufs/s
23:59:49 0.00 0.00
23:59:54
23:59:59

Average

0.00
0.00

0.00

0.00
0.00

0.00

The slpcpybufs/s column shows how many times per second a process has to
sleep waiting for a copy buffer.

sar -h reports on the usage of the other multiphysical buffers:

23:59:44 mpbuf/s ompb/ s mphbuf / s ornphbuf / s pbuf/s spbuf/s dmabuf/s sdmabuf/s
23:59:49 0.10 0.00 0.21 0.00 0.06 0.00 0.04 0.00
23:59:54 0.09 0.00 6.22 0.00 0.18 0.00 0.07 0.00
23:59:59 0.20 0.00 0.54 0.00 0.05 0.00 0.03 0.00

Average 0.13 0.00 2.32 0.00 0.10 0.00 0.05 0.00

The columns ompb/s and sdmabuf/s show how many times the system ran
short of scatter-gather and DMA transfer buffers per second.

If sar -B and sar -h report non-zero values for slpcpybufs/s, sdmabuf/s, or
ompb / s, increase the value of the kernel parameter NMPBUF by at least the
maximum value reported for the sum of the following quantities:

NMPBUF * {slpcpybufs/s / (4 * cpybufs/s))
NMPBUF * (4 * ompb/s / mpbuf/s)
NMPBUF * (sdmabuf / s / dmabuf / s)

Performance Guide

The mechanics of a disk transfer

For example, suppose sar -B and sar -h reported the following shortfall in the
availability of multiphysical buffers at a particular point in time:

12:00:00 cpybufs/s slpcpybufs/s
12:05:00 4.01 1.17

12:00:00 mpbuf/s ornpb/s mphbuf/s omphbuf/s pbuf/s spbuf/s dmabuf/s sdmabuf/s
12:05:00 3.05 0.30 5.11 1.21 2.89 0.54 7.62 1.54

In this case, if the current value of NMPBUF is 40, you should increase it by:

40*((1.17/ (4*4.01))+(4*0.30/3.05)+(1.54/7.62))

This evaluates to 27 when rounded up to the nearest whole number. If you
wish to err on the safe side, double. the value of NMPBUF to 80. This will
require an extra 160KB of memory (40 4KB pages).

The following table summarizes the commands that you can use to view
multiphysical buffer activity:

Table 5-2 Viewing multi physical buffer activity

Command

[mp]sar -B

[mp]sar-h

Field

cpybufs/s
slpcpybufs / s
%mpbuf/s
ompb/s

dmabuf/s
sdmabuf/s

Description

copy buffer usage per second
sleeps waiting for copy buffer per second
scatter-gather buffer usage per second
number of times scatter-gather buffers were not
available per second
DMA transfer buffers usage per second
sleeps waiting for DMA transfer buffers per
second

The mechanics of a disk transfer

A typical write sequence between a process on the CPU and a hard disk
involves many stages. When the buffer flushing daemon, bdflush, flushes the
buffer cache to move data to disk, it queues the write request on the appropri
ate disk controller. Note that a write to the raw disk device queues the
request on the disk controller without passing through the buffer cache.

Until now everything that has taken place has been comparatively rapid in its
execution (ignoring the scheduled delays in the system). As soon as the disk is
physically written to (or read from) we encounter several orders of magnitude
reduction in speed. The appropriate disk head needs to seek across the disk
to position itself over the correct track. The disk platter rotates so that the
head writes to the correct sector.

87

Tuning lID resources

88

If the amount of data is larger than a disk block and the blocks for the file to
be written to are sufficiently fragmented, the seek/rotate cycle needs to be
repeated until the write sequence is complete.

A hard disk's performance is characterized by its access time; this is the sum
of the seek time taken by the head to move to the correct track, the rotational
latency while the disk rotates until the head is over the desired block, and the
transmission time needed to transfer data to or from the block as shown in
Figure 5-4 (this page).

Rotational latency

Seek time Transmission time

Figure 5·4 The performance characteristics of a hard disk

These activities take a finite time to complete and are usually quoted as
average figures. The peak transfer rate, which is also commonly quoted as a
measure of disk performance, depends directly upon these activities. How
ever, peak transfer rates are unusual, especially on disks which are used close
to their maximum capacity. These suffer from greater fragmentation of data
than emptier disks. If you have already purchased your disks, then the only
use of the above values is in deciding which disks you should use to store
your files.

Another factor that you can take into consideration if you know the geometry
of your disks is the layout of filesystems across the disk surface. Modem disks
often have more blocks per track in the outer cylinders than in the inner
tracks. When reading contiguous blocks, data from the outer tracks is
transferred faster than from inner tracks. The innermost tracks, however, have
lower latency times when reading relatively few blocks.

Performance Guide

The mechanics of a disk transfer

If the applications on your system access large sequential files, such as data
base joumallogs, graphics images, fonts and PostScript@, you may see a gain
in disk performance in putting these files in file systems on the outer tracks of
your disks.

If you intend to use divvy (ADM) to re-arrange the divisions on a disk parti
tion, consult the documentation for your drive to see whether block 0 is at the
center or the outside of the disk. Most disk manufacturers place it at the
center but this is not necessarily the case for all types of hard disk. You will
also need to make backups of any existing filesystems on the disk and restore
these after making the changes to the disk layout.

Viewing disk and other block 110 activity

The activity of block devices installed on the system, including floptical,
floppy and hard disk drives, CD-ROM and SCSI tape drives, can be examined
using sar -d (or mpsar -d for SMP). This example shows the activity for a sin
gle SCSI disk:

23:59:44 device %busy avque r+w/s blks/s avwait avserv
23:59:49 Sdsk-O 99.42 4.18 39.39 166.28 80.26 25.24
23:59:54 Sdsk-O 100.00 4.18 38.73 163.64 82.35 25.87
23:59:59 Sdsk-O 100.00 3.98 38.07 171.95 78.32 26.32

Average Sdsk-O 99.89 4.12 38.78 167.21 80.32 25.76

device shows the name of the device whose activity is being reported. In this
example, the device is the first SCSI disk in the system.

%busy indicates the percentage of time that the system was transferring data
to and from the device.

avque indicates the average number of requests pending on the device includ
ing any on the device itself. This number is usually greater than the number of
processes waiting to access the device if scatter-gather read ahead is being
performed on behalf of a filesystem.

avwai t represents the average time in milliseconds that the request waits in
the driver before being sent to the device.

avserv represents the average time in milliseconds that it takes a request to
complete. The length of time is calculated from the time that the request was
sent to the device to the moment that the device signals that it has completed
the request. Note that avserv values vary considerably according to the type
of disk and any caching on the disk controller.

89

Tuning 110 resources

r+w / s is the number of read and write transfers from and to the disk, and
blks / s is the number of 512-byte blocks transferred per second. These two
values can be used to calculate the average size of data transfers using the for
mula:

Average size of data transfer = blks / s / r+w / s

Identifying disk Va-bound systems

90

A system is I/O bound, or has an I/O bottleneck, if the peripheral devices
(hard disk, tape, and so on) cannot transfer data as fast as the system requests
it. This causes processes to be put to sle~p, "waiting for I/O", and leaves the
CPU(s) idle for much of the time. To determine if the system is disk I/O
bound run sar -u (or cpusar -u for SMP) and look at the %wio value. This dis
plays the percentage of time that each CPU spends waiting for I/O to com
plete while there are no runnable processes. If this value is high then it is pos
sible that I/O is not keeping up with the rest of the system. (You should not
always assume that there is a problem with disks; for example, %wio might be
high because a tape drive is being accessed.) Other indications of a disk I/O
bottleneck can be seen using sar -d (or mpsar -d for SMP). Note that sar -d can
be also be used to view the activity of block I/O devices including hard disk
drives, SCSI tape drives, and floppy disks.

If the values for %busy and avque are both consistently high then the devices
cannot keep up with the requests to transfer data. Devices such as floppy
disks and some older types of tape drive are inherently slow. As these de
vices are generally infrequently used - for system backup, software installa
tion, and so on - there is little that performance tuning can usefully accom
plish.

The value of blks / s displayed by sar -d can be combined with %busy to give
an indication of the maximum I/O throughput of a disk, and may suggest
where a I/O bottleneck can occur:

Maximum disk throughput (KB/s) = blks / s * 50 / %busy

High values of the ratio of avwai t to avserv also suggest that the device is
saturated with requests.

If the number of transfers, r+w / s, is high but the amount of data being
transferred, blks/s, is low, it may be possible to modify the application to
transfer larger amounts of data less frequently. This should reduce the num
ber of requests for the disk and reduce contention for it.

Performance Guide

The mechanics of a disk transfer

The read and write hit rates (%rcache and %wcache) shown by sar -b should
show high values. If these values fall, the system is having to access blocks on
disk (or other block devices) rather than in the buffer cache. If this happens,
increasing the size of the buffer cache may help to alleviate a disk I/O
bottleneck.

A low hit rate for the namei cache could lead to the disk being accessed more
often in order to convert pathname components to inode numbers. If sar -n
displays results showing that %Hhi t or %Dhi t is consistently low then the
namei cache for the corresponding file system type is too small. It is not possi
ble to give a general definition of what is a low value since this depends on
the application mix that you run on your system. Because the performance of
the namei cache does not depend linearly on its size, you will find that
improving cache hit rates that are already high requires a significantly greater
cache size. For example, you might have to increase the size of the namei
cache by 30% in order to increase the namei cache hit rate from 90% to 95%
giving a relative gain of 5.6%.

Note that namei caching is only performed for pathname components that are
14 characters or less in length. To take advantage of the namei cache, you
should use directory names and filenames that are less than 15 characters
long.

The following table is a summary of the commands that can be used to deter
mine if a system is I/O bound:

Table 5-3 Identifying an I/O-bound system

Command Field Description

[cpu]sar-u %wio percent of time that the CPU spends waiting for
I/O with no processes to run

[mp]sar-b bread/s average number of blocks read into the buffer
cache per second

bwrit/s average number of blocks written from the
buffer cache per second

%rcache percent of read disk block requests satisfied by
reading the buffer cache

%wcache percent of write disk block requests satisfied by
writing to the buffer cache

[mp]sar -d avque average number of requests on queue waiting
for device per second

(Continued on next page)

91

Tuning liD resources

Table 5-3 Identifying an I/O-bound system
(Continued)

Command Field

avserv

blks/s

%busy

r+w/s

[mp]sar-n %Hhit

%Dhit

Description

average time transfer takes to complete in
milliseconds
number of 512 byte blocks transferred to and
from the device per second
percent of time device was servicing transfer
request
number of read/write transfers to device per
second
AFS, EAFS and HTFS filesystem (ht driver) namei
cache hit rate as a percentage
DTFS file system (dt driver) namei cache hit rate
as a percentage

Tuning disk Va-bound systems

92

If the system is I/O bound because of disk activity, there are a number of
things that can be done:

• Replace the existing disks with faster versions.

• Filesystems that are used to hold temporary files can be implemented as
ramdisks in memory. (See ramdisk{HW) for more information.) This has
the disadvantage of taking memory away from applications but it can be
extremely effective in improving I/O throughput.

• Upgrade the disk controller to a type that supports block or track caching,
and scatter-gather read/writes.

• For SCSI disks, upgrade the host adaptor to one that supports caching,
scatter-gather, and tagged command queuing. Where possible, use fast
SCSI subsystems with wide data paths.

• If the system is running a disk-intensive application such as a database,
having multiple host adapters (for SCSI), disk controllers and disks will
help speed up access to data by reducing contention.

• Spread filesystems and swap areas across different disks and/or buses to
help spread the load. Alternatively, you can use hardware RAID or virtual
disk software to balance the load across several disks. For a comparison of
the various configurations that are available using virtual disks see 1/ About
virtual disks" in the System Administration Guide.

Performance Guide

The mechanics of a disk transfer

You may find that the performance of the system can be improved slightly by
increasing the values of the BDFLUSHR and NAUTOUP kernel parameters.
This will reduce the number of times the disk will be accessed because blocks
can be updated more often in memory before they are written to the disk. The
inherent risk is that more data will be lost if the system crashes because it will
be longer since it was last written to the disk. It is considered good practice to
protect mission-critical systems against power failure using a UPS or similar
device.

Various disk organization strategies are discussed in "Overcoming perfor
mance limit~tions of hard disks" (page 96) which includes suggestions for
optimizing your current hardware configuration.

Disk manufacturers implement various hardware and firmware (software in
the disk controller) strategies to improve disk performance. These include
track caching and varying the number of disk blocks per track across the disk
surface. Usually, you have no control over such features.

SCSI disk driver request queue

The SCSI disk driver maintains a queue of disk requests to be sent to the disk
controller. The length of this queue for each disk is controlled by the
SDSKOUT parameter. If a process sends too many requests to the driver, it
will put the process to sleep until a free slot in the queue is available. See
"Tuning the number of SCSI disk request blocks" (this page) for details of how
to monitor and tune the performance of SCSI disk request queuing.

Tuning the number of SCSI disk request blocks

The sar -5 command (or its equivalent mpsar -5 for SMP) reports the usage of
SCSI request blocks:

23:59:44 reqblk/s oreqblk/s
23:59:49 12.56 0.00
23:59:54 3.04 0.00
23:59:59 25.45 0.00

Average 13.68 0.00

93

Tuning liD resources

reqblk/ s is the average number of request blocks used per second. oreqblk/ s
is the number of times per second that processes were put to sleep because
not enough request blocks were available. If oreqblk/ s is greater than zero,
increase the value of SDSKOUT by at least the maximum value reported for
the following quantity:

SDSKOUT * oreqblk/ s I reqblk/ s

The following table summarizes the commands that you can use to view SCSI
request block activity:

Table 5-4 Viewing SCSI request block activity

Command Field

[mp]sar -5 reqblk/s

oreqblk/s

Description

number of SCSI request blocks allocated per
second
number of times per second that the system ran
out of SCSI request blocks

Filesystem factors affecting disk performance

94

Traditional UNIX file systems use inodes to reference file data held in disk
blocks. As files are added and deleted from the file system over time, it
becomes increasingly unlikely that a file can be allocated a contiguous num
ber of blocks on the disk. This is especially true if a file grows slowly over
time as blocks following its present last block will probably become allocated
to other files. To read such a file may require many head seek movements and
consequently take a much longer time time than if its blocks were written one
after another on the disk.

AFS, EAFS, and HTFS filesystems try to allocate disk blocks to files in clusters
to overcome fragmentation of the filesystem. Fragmentation becomes more
serious as the number of unallocated (free) disk blocks decreases. Filesystems
that are more than 90% full are almost certainly fragmented. To defragment a
file system archive its contents to tape or a spare disk, delete the file system
and then restore it.

Performance Guide

The mechanics of a disk transfer

On inode-based filesystems, large files are represented using single, double,
and even triple indirection. In single indirection, a filesystem block referenced
by an inode holds references to other blocks that contain data. In double and
triple indirection, there are respectively one and two intermediate levels of
indirect blocks containing references to further blocks. A file that is larger than
10 file system blocks (IOKB) requires several disk operations to update its
inode structure, indirect blocks, and data blocks.

Directories are searched as lists so that the average time to find a directory
entry initially increases in direct proportion to the total number of entries.
The blocks that a directory uses to store its entries are referenced from its
inode. Searching for a directory entry therefore becomes slower when indirect
blocks have to be accessed. The first 10 direct data blocks can hold 640 14-
character filename entries. The namei cache can overcome some of the over
head that would result from searching large directories. It does this by pro
viding efficient translation of name to inode number for commonly-accessed
pathname components.

You can increase the performance of HTFS file systems by disabling check
pointing and transaction intent logging. To do this for an HTFS root file
system, use the Hardware/Kernel Manager or configure(ADM) to set the
values of the kernel parameters ROOTCHKPT and ROOTLOG to o. Then
relink the kernel and reboot the system. For other HTFS filesystems, use the
Filesystem Manager to specify no logging and no checkpointing or use the
-onolog,nochkpt option modifiers with mount(ADM). The disadvantage of
disabling checkpointing and logging is that it makes the filesystem metadata
more susceptible to being corrupted and potentially unrecoverable in the case
of a system crash. Full file system checking using fsck(ADM) will also take
considerably longer.

For more information on these subjects see "Maintaining filesystem efficiency"
in the System Administration Guide and "How the namei cache works" (page
81).

95

Tuning lID resources

Overcoming performance limitations of hard disks

96

One area where you are likely to experience performance limitations is with
I/O from and to hard disks. These are heavily used on most systems, and
accessing data on them is much slower than is the case with main memory.
The time taken to access main memory is typically many thousands of times
less than that taken to access data on disk. The solution is to try to arrange for
the data that you want to be in a memory cache when you need it, not on disk.
The cache may be one maintained by the operating system, though many
applications such as databases manage their own caching strategies in user
space. The situation is helped further by modem disks and disk controllers
which implement cache memory in hardware.

#Increasing disk I/O throughput by increasing the buffer cache size" (page 75)
describes how you can tune the buffer caching provided for access through
the interface to block devices such as hard disks.

#Viewing namei cache activity" (page 82) describes how to tune the namei
cache. This is the cache that the system maintains to avoid disk access when
mapping filenames to inode numbers.

Not all activity on disk involves access to filesystems. Examples are swapping
and paging to swap space, and the use of raw disk partitions by many data
base management systems. It is worth examining disk transfer request
activity to discover how busy a system's disks are at the lowest level. 'ryiew
ing disk and other block I/O activity" (page 89) describes how you can moni
tor the activity of block I/O in a system not only for block-structured media
such as hard disk, CD-ROM, floppy and floptical disks, but also for SCSI tape
drives.

Performance Guide

Overcoming performance limitations of hard disks

root

user filesystem

bandWidth--Qo
- peak demand

root

root

user filesystem

write-back
cache

user filesystem

a) 110 bottleneck
due to limited
bandwidth

b) Remove 110
bottleneck by
adding extra disk

c) Remove 110
bottleneck by
using a caching
disk controller

Figure 5-5 Curing a disk I/O bottleneck caused by limited bandwidth

97

Tuning liD resources

98

Comparison of I/O activity allows you to see if activity between different
disks is unbalanced. In itself, this is not a problem unless the bandwidth of a
particular disk is limiting throughput. Figure 5-5 (page 97) shows a system
where a disk I/O bottleneck is cured by the addition of an extra disk or a cach
ing disk controller. Adding an extra disk is likely to be successful unless the
bandwidth limitation occurs elsewhere, for example, in the disk controller.
Adding a caching controller is likely to succeed where a disk is having
difficulty coping with peak demand. A write-back cache should be backed up
by a UPS to guard against mains power failure and the consequent data loss
that would occur.

Balancing activity between disks may sometimes be achieved by simply mov
ing a filesystem between two disks. A disk I/O bottleneck may occur if appli
cations software and a user filesystem coexist on the same disk. This may lead
to large access times as the disk heads are consistently sweeping across the
entire disk. One solution is to move the applications software to other disk(s).
The documentation for the applications may provide guidelines for this.

It is often unwise to move software or user file systems onto the hard disk con
taining the root filesystem. Depending on how you use the system, this can be
one of the most heavily-used disks.

A common source of disk bottlenecks on relational database servers occurs
when the journal logs (used if the system has to recover from a crash) share
the same disk as database tables and indexes. The journal logs are constantly
updated and the disks containing them are usually the busiest on the system.
The journal logs are also written sequentially so keeping them on separate
disks reduces seek time. Figure 5-6 (page 99) shows how a disk dedicated for
use by the journal logs might be added to a system in order to remove a
bottleneck.

Another method for rebalancing disk activity is to create a virtual disk from
several existing disks. See Chapter 8, "Administering virtual disks" in the Sys
tem Administration Guide for more information. If a striped virtual disk is con
figured, this can increase disk throughput by spreading I/O activity evenly
across the physical disks. Although the performance of disks containing a
database journal log would benefit from striping, it is not advisable to stripe
other filesystems across the same disks. Similarly, if there are several journal
logs, these should be kept on physically separate disks.

If you have configured one or more virtual disks on your system, see "Tuning
virtual disk performance" (page 100) for more information about how to tune
them.

Performance Guide

Overcoming performance limitations of hard disks

root

applications

journal logs

tables

indexes

o I\. 0 -- bandwidth --00
U "--- peak ,demand --

a) 110 bottleneck due to unbalanced disk activity
on a database server

root

applications journal logs

b) Rebalance 1/0 activity by moving logs
to a separate disk

indexes

Figure 5-6 Curing a disk VO bottleneck caused by unbalanced disk 110 activity

99

Tuning lID resources

Tuning virtual disk performance

100

When configuring a virtual disk array, you need to balance the I/O perfor
mance (maximum throughput) you expect from it against its inherent resili
ence to hardware failure. The various configurations can be arranged from
best to worst under these criteria as shown in the following table:

Table 5·5 Comparison of simple and virtual disk configurations

Rating
Best

Worst

110 performance
RAIDIO
stripe

RAIDS, 53
RAID 4
mirror
concatenated
simple

Resilience
mirror
RAIDIO
RAID 53
RAID 4, 5 (hot spare)
RAID 4,5 (no hot spare)

simple
concatenated, stripe

The performance rankings are based on equal virtual disk storage capacity for
each configuration. You should also note that increasing the amount of
redundancy in a virtual disk array increases its resilience but it also increases
the number of disks and therefore the cost. If you use several host adapters to
provide resilience against one of these failing, this will also add to the cost of
setting up a virtual disk array. The best all round performer for I/O
throughput and resilience is a RAID 10 array.

Mirrored disks (RAID 1) offer the best resilience to hardware failure (especially
if the disks are on separate buses or controllers). They usually have a lower
maximum I/O throughput than striped (RAID 0) or RAID 4 and 5 arrays.
However, you should note that a RAID 1 array can outperform RAID 4 and 5 if
the predominant pattern of operation is to write data to disk.

To get the best performance from a virtual disk array, your system's CPU
power and memory (RAM) capacity should be capable of handling the extra
overhead incurred by the virtual disk driver (vdisk) in processing disk
requests. We recommend that your system has at least a 486™ processor run
ning at SOMHz. The amount of memory that the vdisk driver uses depends on:

• the number of virtual disk arrays configured

• which RAID levels are used; RAID 4, 5 and 53 are the most memory hungry

• the number of disk requests Gobs) to be processed simultaneously

• the value of the kernel tunables which control the size of the internal data
structures used by vdisk

Performance Guide

Tuning virtual disk performance

On a lightly loaded system with two or three virtual disks, vdisk requires up
to 500KB of memory for its internal data structures. On a busy file server with
several virtual disks which have been tuned to optimize I/O throughput,
vdisk requires at least 1MB of memory. Since the kernel allocates physical
memory to vdisk dynamically, this memory does not show up in the size of
the kernel when it initializes. If your system is short of real memory, it may
start to swap or page out memory belonging to processes when vdisk is
heavily loaded.

You should also note that using host adapters or disk controllers that are not
capable of performing DMA above the first 16MB of memory (that is, not 32-bit
controllers) will increase CPU overhead for all disk I/O (not just to virtual
disks) for systems with more than 16MB of RAM.

If you mix hard disks which have different access times, this can cause an I/O
bottleneck on the slow disks. To avoid this, ensure that all the disks in a vir
tual disk array have similar performance characteristics. The way that you
assign disk pieces between disks can also cause a bottleneck. Physical disks
that contain more disk pieces than others are likely to be more heavily loaded.
This may occur if you allow the layout of your virtual disk arrays to overlap
partially.

See the following for more information on tuning virtual disk performance:

• "Performance considerations for RAID 4 and 5" (page 102)

• "Choosing a cluster size" (page 103)

• "Balancing disk load in virtual disk arrays" (page 105)

• "Tuning virtual disk kernel parameters" (page 106)

For more information about virtual disk configuration and administration, see
Chapter 8, "Administering virtual disks" in the System Administration Guide.

101

Tuning 110 resources

Performance considerations for RAID 4 and 5

102

An extra performance consideration for RAID 4 and 5 configurations is that
their I/O throughput becomes progressively worse as the ratio of the number
of writes to reads increases. If the ratio of writes to reads is very high, the per
formance of RAID 4 and 5 can drop below that of a RAID 1 (mirrored) array.

RAID 4 and 5 arrays perform poorly on writes because of the extra disk opera
tions required to update the parity information. The operating system per
forms the following sequence of events when writing a cluster to a RAID 4 and
5 array:

1. Read the original cluster data.

2. Read the original parity.

3. Subtract the original data from the parity.

4. Add the new data to the parity.

5. Write the new parity.

6. Write the new data.

As a result, a write requires a total of four disk accesses and two calculations
on the parity.

Three-piece RAID 4 or 5 arrays use two pieces for data and the remaining
piece for parity. This allows an optimization to be made which avoids read
ing the parity piece. The sequence of events performed by the operating sys
tem when writing becomes:

1. Read the data piece other than the one to be updated.

2. Generate parity from other data piece and new data.

3. Write the new parity.

4. Write the new data.

In this case, the write involves three disk operations and one parity calcula
tion. To take advantage of this optimization, we recommend that you use
three-piece RAID 5 arrays when constructing a RAID 53 array.

Performance Guide

Tuning virtual disk performance

Choosing a cluster size

The cluster size that is chosen for striped configurations (RAID 0, 4, and 5) has
a large affect on the performance of a virtual disk array. In a multiuser
environment, you should adjust the cluster size to be equal to the predom
inant request size of the applications that are accessing the array. In this con
text, applications can include the operating system buffer cache, or relational
database buffering mechanisms. It does not necessarily mean user programs
which access a file system.

In a multiuser environment, the aim is for each request to affect only a single
data piece. In this way, disk activity will be minimized and spread evenly
between the disks. If a request begins halfway through a cluster, it will need
to access two disks in the array. The effect of this will be to increase the overall
disk I/O and reduce job throughput. Such a request is known as a split job. If
this type of request occurs frequently, it may be worthwhile increasing the
cluster size so that more requests fit in a single cluster. However, if you make
the cluster size too large, contention between processes for access to individu
al clusters will also increase disk I/O and decrease job throughput.

Sometimes it is beneficial to make the dominant I/O size equal to the stripe
size of a virtual disk array. Examples are a single application performing syn
chronous I/O, or a single-user system. This improves throughput because I/O
requests are performed in parallel across all the disks in an array. The highest
throughput is obtained when write requests are the same size as the stripe
and are aligned on its boundaries. On RAID 4 and 5 arrays, such full stripe
writes enhance performance because no old data needs to be read in order to
generate parity.

A relational database server would appear to be an ideal application for full
stripe I/O. However, such applications often provide their own facilities for
disk load-balancing and protection against disk failure. For the best possible
performance, use these features in preference to virtual disk arrays. However,
you should note that tuning such applications can be time consuming. Using
virtual disk arrays provides a quicker and more easily configurable method of
obtaining a performance improvement over single simple disks.

103

Tuning 110 resources

104

The vdisk driver keeps counts of the type of requests which have been made
to an array. You can examine these counts using the -ps options to
dkconfig(ADM).

In this example, dkconfig is used to examine the request statistics for the vir
tual disk array /dev/dsk/vdisk3:

/dev/dsk/vdisk3: 16384 iosz 397195 reads 153969 writes 551164 io
piece 1 /dev/dsk/2s1 404172 reads 140260 writes 544432 io
piece 2 /dev/dsk/3s1 350326 reads 137769 writes 488095 io
piece 3 /dev/dsk/4s1 382089 reads 135147 writes 517236 io
piece 4 /dev/dsk/5s1 365069 reads 135808 writes 500877 io
Job Types:

Full Stripe o reads o writes
Group 174463 reads 94708 writes
Cluster 332476 reads 119464 writes
Split Jobs 260919

IO Sizes:
16384 bytes 205180 io
1024 bytes 94662 io
2048 bytes 73729 io
3072 bytes 48287 io
8192 bytes 14454 io
4096 bytes 23 io

12288 bytes 4 io
13312 bytes 3 io
5120 bytes 2 io

10240 bytes 1 io
7819 resets to IO size statistics

The counts include:

• The dominant request size (iosz).

• The number of requests (reads, writes and total) made to each piece of an
array.

• The number of each type of job:

Full Stripe

Group

read and write requests which span an entire stripe

read and write requests which occupy more than a whole cluster but
less than a stripe

Cluster
read and write requests which fit into a single cluster

Split Jobs
number of requests which start or end in the middle of a cluster and
extend over a cluster boundary

Performance Guide

Tuning virtual disk performance

• Statistics about the number of requests (io) of different sizes. Use these to
help you determine the optimum cluster size for your application.

The vdisk driver maintains a count of the ten most frequent request sizes.
The counts are approximate because the driver cannot record the size of every
request. When a request is made of a size which has not previously been
counted, the driver throws away the counts for the five least frequently used
sizes. It then uses one of the freed slots to record the new size. The driver
also keeps a count of the number of times it has to reset the counters in this
way. If the number of resets is a large proportion of the total number of
requests, then the applications probably use a wide range of I/O sizes. In such
cases, it is difficult to choose a cluster size.

If you are using the block device to access a disk array, such as when using an
array for a file system, you may often achieve the best performance by setting
the cluster size to 32 (16KB) or greater. This is because the buffer cache reads
ahead 16KB.

In the example shown above, the system was running a benchmark to per
form a stress test of a filesystem implemented on a RAID 5 array with a cluster
size of 32. The dominant request size was 16KB as expected for access via the
buffer cache but there were a comparable number of split jobs. In this case,
better performance might be achieved by increasing the cluster size to 40 or
48.

Balancing disk load in virtual disk arrays

In general, virtual disk arrays tend to load disks evenly. However, it is worth
using dkconfig(ADM) to check that the read and write counts to each of an
array's pieces are even. If they are not, try changing the cluster size or the
number of pieces in the array.

If a physical disk is a member of more then one array, use sar -d to check that
the disks are being used evenly as described in "Viewing disk and other block
I/O activity" (page 89). If the load is unbalanced, try rearranging the disks
between the arrays.

105

Tuning 110 resources

Tuning virtual disk kemel parameters

106

The virtual disk driver has a number of tunable kernel parameters which
affect the behavior of arrays. These parameters are listed in "Virtual disks"
(page 200).

The vdisk driver collects a number of statistics to help you tune the values of
these parameters. Use the -Tp options to dkconfig(ADM) to view these statis
tics.

In this example, dkconfig is used to examine these statistics for the virtual
disk array /dev/dsk/vdisk3:

Global Virtual Disk Buffer Pool
Maximum number of buffer headers 306
Number of free buffer headers 216

Global Virtual Disk Job Pool
Maximum number of jobs 200
Number of free jobs 177

Limits for each redundant virtual disk
Maximum number of jobs 100
Maximum number of piece pool entries 100
Maximum number of async writes 20
Total number of hash table entries 256

Idev/dsk/vdisk3:
Number of free jobs
Number of free piece pool entries
Number of async writes
Number of async sleeps
Number of hash table tests
Number of hash table sleeps

The statistics show:

57
57

5
1

2005571
124824

• The usage of buffer headers in the virtual disk buffer pool.

The vdisk driver maintains its own pool of buffer headers independently of
the buffer cache. When it requires a buffer header and one is not available
in the buffer pool, the kernel dynamically allocates another 16KB of memory
for buffer headers. It does not deallocate this memory since the buffer
headers can be reused. Each buffer header requires 214 bytes of memory. In
the example above, the vdisk driver is using 64KB of memory for buffer
headers.

There are no kernel parameters that control the size of the buffer pool. In
practice, its size depends on the number of virtual disks and VDUNITJOBS
(the maximum number of job structures that can be allocated to each vir
tual disk).

Performance Guide

Tuning virtual disk performance

• The usage of job structures in the virtual disk job pooL

When the vdisk driver is initialized, it allocates memory to the job struc
tures in the job pool that is shared by all the system's virtual disks. The
maximum number of available job structures is controlled by the VDJOBS
kernel parameter. If the system runs out of free job structures, the vdisk
driver will report "vdisk - job pool is empty" on the console. A process
requiring a job structure will sleep until one becomes available.

• The limit imposed on the number of job structures that can be allocated to
each redundant virtual disk array (RAID 1,4, and 5).

The vdisk driver restricts the number of job structures that a virtual disk
can use. This is to ensure that the virtual disks have an equal share of the
job pooL If no more jobs are available, the driver reports "vdisk - job queue
is full". A process requiring a job will sleep until one becomes available.

The maximum number of job structures per virtual disk is controlled by the
kernel parameter VDUNITJOBS. The output from dkconfig -Tp shows the
current number of free job structures for each virtual disk. If this value is
near 0, increase the value of VDUNITJOBS.

• The limit imposed on the number of piece pool entries in the virtual disk
piece pool for each redundant virtual disk array (RAID 1,4, and 5).

When a virtual disk is configured, the vdisk driver allocates memory to be
used for the virtual disk's piece pool. A piece pool entry contains a piece
structure for each virtual disk. Since a piece pool entry may be needed for
each for each job structure, the kernel parameter VDUNITJOBS also defines
the number of entries in each virtual disk's piece pooL If a virtual disk's
piece pool becomes exhausted, the driver reports Ilvdisk - piece pool is
empty". A process requiring an entry from the piece pool will then sleep
until one becomes available.

The output from dkconfig -Tp shows the current number of free piece pool
entries for each disk piece. If this number is consistently near 0, increase
the value of VDUNITJOBS.

• The maximum number of outstanding asynchronous writes to the other
half of a RAID 1 mirror, or to the parity device of a RAID 4 or 5 array.

The vdisk driver maintains a count of the outstanding asynchronous writes
for each virtual disk. If this count exceeds the value of the kernel parameter
VDASYNCMAX, processes attempting to write to the virtual disk will sleep
until the count has been reduced. For each virtual disk, the output from
dkconfig -Tp shows the current number of outstanding asynchronous
writes and the number of times that processes had to sleep waiting for the
count to be reduced. If sufficient memory is available, increase the value of
VDASYNCMAX to prevent processes having to sleep.

107

Tuning liD resources

If enough system buffers are available, increasing the value of VDASYNC
MAX to 32 can increase write performance on RAID 1 configurations.

• The total number of entries in the hash table that controls access to the vir
tual disk stripes in each RAID 4 and 5 array.

A hash table is used to prevent more than one process accessing a given
virtual disk stripe at a time. However, since each hash entry protects more
than one stripe, processes may contend for a hash table entry even when
they want to access different stripes and there is no danger of data corrup
tion.

If a process tests a hash table entry and finds that another process may
already be accessing a stripe, it sleeps until the entry is available. The out
put from dkconfig -Tp shows the number of sleeps and tests for each disk
piece. If the number of sleeps is relatively high and your system is not short
of memory, increase the value of the VDHASHMAX kernel parameter to
reduce contention for hash table entries. If there is no appreciable decrease
in the ratio of sleeps to tests, it is likely that the applications using the vir
tual disks are contending for the same stripes.

I NOTE You can use the -z option to dkconfig to zero out the hash table
test and sleep counters.

The size of each hash table entry is 24 bytes so that the default hash table
size of 1024 entries requires 24KB of memory.

Serial device resources

108

The operation of the terminal and serial device drivers for non-intelligent
serial I/O cards is shown in Figure 5-7 (page 109). Characters entered at a
keyboard are received over a serial line and detected by the universal asyn
chronous receiver/transmitter (UART) on the serial card. On non-intelligent
serial cards that use either a 8250 or a 16450 UART, a hardware interrupt is
generated for every character that is received. The 16550 UART can buffer up
to 16 characters and so does not generate as many interrupts per character.

The serial I/O (sio) driver's interrupt handling routine transfers the
character(s) from the UART to the input buffer of the serial driver for every
interrupt it receives. If the input stream of characters is not continuous, the
16550 will time out and generate an interrupt anyway. This prevents the
interactive response experienced by a user being affected by the presence of
the buffer.

Performance Guide

Maximum number
of characters on
raw queue set by
TTHOG

application

device driver

Serial device resources

Maximum number
of character blocks
set by NCLIST

----I~~ serial
UART 1111 device

Figure 5-7 Processing of input and output characters by the character list-based
terminal driver

The input characters are next moved to a character block buffer in the terminal
driver (tty) before being moved to the raw input queue. If echoing is enabled,
input characters are copied to the output queue as shown in Figure 5-7 (this
page). This enables characters typed by a user to be displayed on their screen.
If the line is set to canonical mode, the tty driver processes the characters
looking for newline, keyboard signals such as ERASE (erase character), INTR
(interrupt), and EOF (end-of-file), and international keyboard mapping. The
processed characters are put on the canonical queue from where they can be
copied to the user's process. If the terminal is set to raw mode, no characters
are processed - every character typed is passed to the application.

Output characters from the application program are copied to the output
queue before being moved through various output buffers, onto the UART and
back to the terminal screen for display.

109

Tuning liD resources

The main resource that you can tune is the number of character blocks used to
implement the character lists used by the terminal driver. Each character
block (cblock) consists of a 64-byte buffer and an 8-byte header. A character
list (clist) is formed from a linked list of character blocks. It grows by adding
another block to its end. The total number of character blocks that are avail
able for use is controlled by the kernel parameter NCLIST. If necessary, you
can increase the number of available character blocks using setconf(ADM) but
this change only remains in force until you next reboot the kernel. Use config
ure(ADM) to make permanent changes to the number of character blocks con
figured.

Tuning serial device resources

110

You can use the sar -y and sar -g commands (or their mpsar equivalents for
SMP) to examine the performance of the terminal (tty) and serial I/O drivers.

sar -y reports character processing and hardware interrupt activity in the tty
and serial drivers:

23:59:44 rawch/s canch/s outch/s rcvin/s xmtin/s rndmin/s
23:59:49 10 10 25 11 11 0
23:59:54 12 10 34 14 14 0
23:59:59 8 8 12 8 8 0

Average 10 9 24 11 11 0

For dumb serial cards using 8250 UARTs, the ratio of the number of interrupts
received from the serial card per second, rcvin/ s, to the number of raw char
acters received per second, rawch/s, should be close to 1. Non-intelligent
(dumb) serial cards that use the 16550 UART can buffer up to 14 characters
before generating an interrupt. In this case, the ratio could be as low as 0.07
but will usually be nearer 1 if continuous input is not arriving. Intelligent
serial cards move many more characters per interrupt and so cause much less
loading of the cpu.

If the users of your system are logged in over serial lines, you should monitor
rawch/ s and rcvin/ s over time to gain an impression of typical values for the
rates of raw character input and interrupt activity for the serial card(s) on
your system. If you are using intelligent multiport cards, these are usually
supplied with software that you can use to diagnose their performance.

You should also examine the values of rawch/s and rcvin/s if you suspect
that a bad line or chattering terminal is generating spurious interrupts. If a
serial device is being used with modem control, you should also examine the
number of modem interrupts per second shown by mdmin/ s.

Performance Guide

Serial device resources

The CPU has to handle all interrupts that it receives from serial cards. If the
number it has to handle is very high, it will be interrupt bound and may be
unable to allocate sufficient time to running user applications. In extreme
cases, characters may be lost if interrupts arrive while other interrupts are still
waiting to be processed. This is known as interrupt overrun.

When using fast modems, too many characters may arrive in the UART's
buffer while the interrupt handler is trying to process them. This is referred to
as high interrupt latency. In such a case, the buffer may lose the last character
to arrive. To prevent this, you need to decrease the number of characters in
the buffer that will cause the UART to generate an interrupt (the receive inter
rupt trigger level). You should also ir.tcrease the values of the kernel parame
ters NCLIST and TTHOG to match the increased demand on the terminal and
serial drivers. TIHOG controls how many characters are allowed to be on the
raw queue of the terminal driver (see Figure 5-7 (page 109» before the driver
will automatically dispose of them. You must also increase the number of
character list blocks, defined by NCLIST, to allow the raw queue to grow to
such a size. See LlConfiguring high-speed modems" in the seQ Open Server
Handbook for more details.

sar -g reports interrupt overruns and lost characters in the serial I/O (sio)
driver, and any shortage of character list buffers in the tty driver:

23:59:44 ovsiohw/s ovsiodma/s ovclist/s
23:59:49 0.00 0.00 0.00
23:59:54 0.00 0.00 0.00
23:59:59 0.00 0.00 0.00

Average 0.00 0.00 0.00

ovsiohw/s shows the number of interrupt overruns per second. If this value is
greater than zero and your system supports many users logged in over serial
lines, you should consider upgrading to intelligent multiport cards or network
terminal concentrators.

111

Tuning 110 resources

112

ovsiodma/ s shows the number of times per second that the serial driver lost
input characters because there was insufficient space in the receiver cache. If
this value is greater than zero, you may need to decrease the interrupt trigger
level and increase the values of NCLIST and TIHOG.

ovclist/ s shows the number of times per second that the serial driver ran out
of character list buffers. If this value is greater than zero, examine the number
of these buffers using the command:

getconf KERNEL_CLISTS

Increase the current number of character list buffers using:

setconf KERNEL_CLISTS number

until ovclist/s drops back to zero. Use configure(ADM) to change NCLIST to
this new value.

The following table is a summary of the commands that can be used to view
terminal and serial driver activity:

Table 5-6 Viewing serial and terminal driver activity

Command

[mp]sar -y

[mp]sar-g

Field Description

rawch/ s number of characters per second handled on the
raw input queue

rcvin/ s number of interrupts per second notifying that
hardware has received input

mdmin/s number of modem interrupts per second
ovsiohw /s number of serial driver interrupt overruns per

second
ovsiodma/ s number of times per second that the serial driver

lost input characters
ovclist/ s number of times per second that the system ran

out of character list buffers

Performance Guide

Case study: IIO-bound multiuser system

Case study: I/O-bound multiuser system

A multiuser system in a company serves approximately 30 employees
running a variety of packages including a simple database application (non
relational), an accounting package, and word processing software. At peak
usage, there are complaints from users that response is slow and that char
acters are echoed with a noticeable time delay.

System configuration

The system configuration is:

• Uniprocessor 80486DX2 running at 66MHz.

• EISA bus.

• 32MB of RAM.

• 64MB of swap space.

• NBUF set to 3000.

• Two 1GB SCSI-2 hard disks.

• One 16-port and one 8-port non-intelligent serial card using 16450 DARTs.

• 22 ASCII terminals and PCs running terminal emulation software.

• One V.42 fax modem.

Defining a performance goal

The system administrator is tasked with improving the interactive
performance of the system. Funds are available for upgrading the machine's
subsystems if sufficient need is demonstrated. Any change to the system must
be undertaken with minimal disruption to the users.

Collecting data

The administrator ensures that system accounting is enabled using
sar_enable(ADM), and produces reports of system activity at five-minute
intervals during the working week by placing the following line in root's -
crontab(C) file:

o 8-18 * * 1-5 /usr/lib/sa/sa2 -s 8:00 -e 18:00 -i 300 -A

113

Tuning lID resources

114

The administrator notes the times at which users report that the system
response is slow and examines the corresponding operating system activity in
the report (effectively using sar -u):

08:00:00 %usr %sys %wio %idle

11:10:00 42 46 4 8
11:15:00 40 49 6 5
11:20:00 38 50 7 5
11:25:00 41 47 5 7

The system is spending a large amount of time in system mode and little time
idle or waiting for I/O.

The length of the run queue shows that an unacceptably large number of user
processes are lined up for running (sar -q statistics):

08:00:00 rung-sz %runocc swpg-sz %swpocc

11:10:00
11: 15: 00
11:20:00
11:25:00

4.3
7.8
5.0
3.5

85
98
88
72

An acceptable number of processes on the run queue would be two or fewer.

At times when the system response seems acceptable, the system activity has
the following pattern:

08:00:00 %usr %sys %wio %idle

16:40:00 55 20 0 25
16:45:00 52 25 2 21
16:50:00 59 20 1 20
16:55:00 54 21 2 23

This shows that the system spends little time waiting for I/O and a large pro
portion of time in user mode. The %idle figure shows more than 20% spare
CPU capacity on the system. The run queue statistics also show that user pro
cesses are getting fair access to run on the CPU:

08:00:00 rung-sz %runocc swpg-sz %swpocc

16:40:00 1.0 22
16:45:00 2.1 18
16:50:00 1.6 9
16:55:00 1.1 12

Performance Guide

Case study: IIO-bound multiuser system

Formulating a hypothesis

From the CPU utilization statistics, it looks as though the system is occasion
ally spending too much time in system mode. This could be caused by mem
ory shortages or too much overhead placed on the CPU by peripheral devices.
The low waiting on I/O figures imply that memory shortage is not a problem.
If the system were swapping or paging, this would usually generate much
more disk activity.

The administrator next examines the performance of the memory, disk and
seriall/ 0 subsystems to check on their performance.

Getting more specifics

The memory usage figures for the period when the proportion of time spent
in system mode (%sys) was high show the following pattern (sar -r statistics):

08:00:00 freemem freeswp

11:10:00
11:15:00
11:20:00
11:25:00

1570 131072
1612 131072
1598 131072
1598 131072

The value of GPGSHI for this system is 300 and none of the swap space is
allocated to processes - there is no apparent evidence of swapping or paging
to disk. This is confirmed by examining the reports for sar -w:

08:00:00 swpin/s bswin/s swpot/s bswot/s pswch/s

11:10:00 0.04 0.2 0.00 0.0 51
11:15:00 0.02 0.1 0.00 0.0 63
11:20:00 0.00 0.0 0.00 0.0 56
11:25:00 0.01 0.1 0.00 0.0 66

The zero values for swpot/s and bswot/s indicate that there was no swapping
out activity.

Examining the sar -q, sar -r and sar -w reports at other times shows occasional
short periods of paging activity but these are correlated with batch payroll
runs. It should be possible to reduce the impact of these on the system by
rescheduling the jobs to run overnight.

115

Tuning lID resources

116

The administrator next examines the buffer cache usage statistics for the same
period (sar -b statistics):

08:00:00 bread/s lread/s %rcache bwrit/s lwrit/s %wcache pread/s pwrit/s

11:10:00
11:15:00
11:20:00
11:25:00

27
35
22
22

361
320
275
282

93
89
92
96

5
7
5

9

16
22
15
27

68
66
65
67

o
o
o
o

o
o
o
o

These figures show hit rates on the buffer cache of about 90% for reads and
65% for writes. Approximately 30KB of data (bread/s + bwrit/s) is being read
from or written to disk per second.

Disk performance is examined next using the statistics provided by sar -d:

08:00:00 device %busy avque r+w/s blks/s avwait avserv
11:10:00 Sdsk-O 0.91 3.70 2.37 13.15 12.42 4.60

Sdsk-1 25.01 1. 62 11.39 55.21 3.26 5.30

11:15:00 Sdsk-O 0.57 2.58 1.37 6.98 13.05 8.26
Sdsk-1 24.10 1.43 10.93 50.42 3.11 7.23

11:20:00 Sdsk-O 0.81 2.42 1.98 11.01 9.55 6.72
Sdsk-1 21.77 1.85 6.05 39.11 4.54 5.37

11:25:00 Sdsk-O 0.76 3.90 2.00 9.52 14.18 4.89
Sdsk-1 20.24 2.07 5.83 34.87 10.60 9.91

These results show that the busiest disk (Sdsk-l) has acceptable performance
with a reasonably short request queue, acceptable busy values, and low wait
and service times. The pattern of activity on the root disk (Sdsk-O) is such that
the request queue is longer since requests are tending to arrive in bursts.
There is no evidence that the system is disk I/O bound though it may be pos
sible to improve the interactive performance of some applications by increas
ing the buffer cache hit rates.

Performance Guide

Case study: lI~-bound multiuser system

Making adjustments to the system

Based on the evidence given above, the system would benefit from increasing
the number of buffers in the buffer cache. Although the system does not show
much sign of being disk I/O bound (sar -u shows %wio less than 15% at peak
load), applications are placing a reasonably heavy demand on the second SCSI

disk (Sdsk-l). This will affect the interactive response of programs which
have to sleep if the data being requested cannot be found in the buffer cache.
As the system does not appear to be short of memory at peak load, the system
administrator may wish to experiment with doubling the size of the buffer
cache by setting NBUF to 6000. Based on the evidence from sar -r that approxi
mately 6MB (1500 4KB pages) of memory are free at peak load, doubling the
size of the buffer cache will reduce this value to about 3MB. If the size of the
buffer cache is increased, the system should be monitored to see:

• if the proportion of time spent waiting for I/O decreases (%wio reported by
sar -u)

• if the buffer cache hit rates improve (%rcache and %wcache reported by sar
-b)

• if disk activity on the second SCSI disk decreases appreciably as a result of
increasing the number of buffers (%busy reported by sar -d)

• if the system is becoming short of memory (sar -r reports that freemem is
dropping near to or below the value of GPGSHI)

If increasing the size of the buffer cache starts to make the system swap or
page out intensively, the administrator should either reduce its size again or
make more memory available in other ways.

If the interactive performance of applications is still less than desired, another
possibility is to use intelligent serial I/O cards to relieve the processing over
head on the cpu. The serial multiport cards use 16450 UARTs and were previ
ously used in two less powerful systems. It is possible that the cpu is spend
ing too much time moving characters out to the serial lines on behalf of the
serial cards. The cpu will do this whenever the applications need to refresh
terminal screens to update database forms, word processor displays and so
on.

117

Tuning 110 resources

Case study: unbalanced disk activity on a database server

This case study examines a database management system that uses raw I/O;
many databases provide the ability to perform I/O through the raw device
rather than using block I/O through the buffer cache.

The system in this study is not used to run any other applications or for devel
oping applications. The study uses a benchmark written in-house to tune the
system's performance. It is understood that a benchmark is only an approxi
mation to the demands that will be placed upon the database in real life.

System configuration

The system configuration is:

• Multiprocessor - four 80486DX2 processors running at 66MHz.

• EISA bus.

• 64MB of RAM.

• 64MB of swap space - note that this system has been configured with a
swap space that is smaller than the minimum of twice the amount of RAM
(128MB) that is normally recommended.

• Six 1GB seSI-2 hard disk drives.

• One Bus Mastering DMA Ethernet network card with a 16KB buffer and 32-
bit wide data path.

• Two terminal concentrators supporting a total of 128 users on a variety of
Asen terminals and personal computers running terminal emulation soft
ware.

Additional software that has been installed on the system includes seo SMP
License, a relational database management system, and transaction compres
sion software.

The configuration of the disk drives is:

Sdsk-O boot, swap, root, and applications divisions

Sdsk-1 through Sdsk-5
database tables, indexes, and journal logs configured as RAID 5
(striped with parity) to balance disk load

118 Performance Guide

Case study: unbalanced disk activity on a database server

Defining a performance goal

The database supports the main activities of an organization, and transaction
response time is critical. Desirable performance goals for such a system are:

• Do not allow the system to start swapping or paging out.

• Minimize time spent waiting for I/O.

• Maximize the time that the database management processes spend on the
CPUs.

• Minimize,system overhead.

• Minimize contention for resources between the CPUs.

• Ensure that sufficient kernel resources are available to the database
management software (such as IPC facilities, STREAMS, and so on).

• Maximize the amount of physical memory that is available for the
database's internal work areas.

Collecting data

The database administrator runs mpsar to collect system statistics every 5
minutes while running the benchmark:

mpsar -0 Itmp/sar_op 300 25

After the benchmark run finishes, cpusar -u is run to examine the activity of
the operating system on each CPU. For example, on the base processor, the
command is:

cpusar -p l-u -£ Itmp/sar_op

The output below illustrates the status of the first processor; reports for the
other processors recorded similar results:

02:30:00 %usr %sys %wio %idle

02:55:00
03:00:00
03:05:00
03:10:00

34
32
27
31

14
11

8
11

25
32
41
32

27
25
24
25

119

Tuning lID resources

Formulating a hypothesis

The information provided by cpusar indicates that the processors are spend
ing a significant amount of time waiting for I/O. Since it is observed that the
disk drive busy lights are on virtually all of the time, this indicates that the
disks may not be keeping up with the rest of the system. It is known that the
benchmark does not test the networking I/O subsystems since it generates
activity only on the server. For this reason, network I/O can be eliminated as a
possible cause.

From the available evidence, it looks as if the problem is in the disk sub
system. Sometimes an I/O problem is a symptom of an underlying memory
shortage. A more likely cause of the poor I/O performance is the distribution
of activity among the system's disks. However, it is a good policy to eliminate
memory shortage as the origin of the performance degradation.

Getting more specifics

120

In this example, there is a high amount of RAM, so it is unlikely that memory
is the root of the problem. To make certain, the administrator runs mpsar -r to
check on the amount free memory and swap while the benchmark was being
run:

02:30:00 freernem freeswp

02:55:00 2012 131072
03:00:00 2004 131072
03:05:00 2098 131072
03:10:00 2009 131072

There was approximately 8MB of free memory and no swap space used dur
ing the period when the benchmark was run.

The administrator now concentrates on examining disk usage. It is unlikely
that buffer cache usage is causing a problem as this has already been tuned for
the root and applications filesystems. The database itself does not use the
buffer cache as it uses asynchronous I/O access to disk.

Performance Guide

Case study: unbalanced disk activity on a database server

The mpsar -d command is run to show disk usage during the benchmark:

02:30:00 device %busy avque r+w/s blks/s avwait avserv

02:55:00 Sdsk-O 0.91 2.11 12.37 23.11 3.24 2.91
Sdsk-1 85.24 4.13 39.93 155.12 79.62 25.44
Sdsk-2 78.02 4.14 41.10 160.82 63.50 20.21
Sdsk-3 85.11 4.36 34.54 167.54 80.85 24.05
Sdsk-4 89.34 4.42 37.00 156.91 85.26 24.92
Sdsk-5 83.59 4.48 40.41 159.34 60.11 17.26

03:00:00 Sdsk-O 0.76 2.42 8.37 13.64 8.35 5.88
Sdsk-1 90.10 4.42 42.37 156.67 65.71 19.19
Sdsk-2 85.42 5.38 39.09 160.81 79.96 18.24
Sdsk-3 88.29 4.62 37.65 163.57 83.27 23.00
Sdsk-4 85.99 5.29 41.11 166.28 79.21 18.45
Sdsk-5 99.54 4.21 43.09 170.21 56.76 17.67

03:05:00 Sdsk-O 0.70 4.28 8.07 11. 95 7.32 2.23
Sdsk-1 88.01 4.03 40.01 167.76 63.27 20.91
Sdsk-2 89.18 3.82 38.97 156.08 65.44 23.20
Sdsk-3 93.02 4.53 39.55 163.20 80.56 22.81
Sdsk-4 85.33 4.07 37.03 154.31 78.70 25.66
Sdsk-5 91.14 4.87 41. 34 164.40 59.02 15.24

03:10:00 Sdsk-O 0.79 2.94 9.60 16.23 6.30 3.67
Sdsk-1 87.75 4.20 40.77 159.85 69.53 21.85
Sdsk-2 83.82 4.52 39.72 159.24 69.63 20.55
Sdsk-3 88.81 4.50 37.25 164.77 81. 56 23.29
Sdsk-4 86.89 4.59 38.38 159.17 81. 06 23.01
Sdsk-5 91. 42 4.52 41. 61 164.65 58.63 15.98

These results indicate that the system is I/O bound in the disk subsystem.
The average service time (avserv) on the root disk (Sdsk-O) is much lower
than that on the other disks - even though they are physically identical.
There is no significant variation between activity on disks Sdsk-l through
Sdsk-S - this is as expected given their RAID configuration which is designed
to balance activity across several disks.

121

Tuning liD resources

Making adjustments to the system

122

The large service times to the disks containing the database tables, indexes,
and journal logs seem to indicate that large disk seek times are having an
impact here.

Database journal logs are written to sequentially so it may impair disk per
formance if they are striped across the same disks as the tables and indexes.
The effect will be to mix requests to write to the logs with those to access the
tables and indexes. The requests will then be spread across all the disks in the
array, losing all coherency between requests to write to the logs. Instead, each
log should be placed on a dedicated disk so that the next block to be written
to will usually be immediately available without having to move the drive
head. This also makes sense for reducing load on the other disks when you
consider that most writes on a database server tend to be to the logs.

The recommendation for reconfiguring this system would be to move the
journal logs to dedicated disks. Since requests to access tables and indexes are
generally random, the maximum performance from the disks that they
occupy will probably be obtained by leaving these in a RAID 5 configuration.
Journal logs on a database server are usually assigned to a dedicated mirrored
disk configuration, such as RAID 1, to ensure data integrity.

Once the disk layout has been reconfigured, the benchmark should be run
again to test the hypothesis. If the performance of the dedicated journal log
disks is still poor, the disks should be upgraded to ones with lower access
times. These disks will also benefit from write-back caching provided that the
integrity of the data is protected by a backup power supply.

Database performance tuning
There is little to be gained from tuning the operating system's buffer cache for
a database management system that uses raw I/O. However, the database
management system may maintain its own buffer caches which you can tune
independently. Refer to the performance tuning documentation that was
supplied with the database management system for more information. Some
databases also maintain profiling files that indicate how many jobs are going
to each device. You may also find this useful in balancing the load on the sys
tem.

Use of shared data segments
If your database caches its internal information in IPC shared memory seg
ments, you may need to increase the shared memory kernel parameters
SHMMAX and SHMMNI. See "Shared memory" (page 218), "Shared memory
parameters" (page 218) and your database documentation for more informa
tion.

Performance Guide

Chapter 6

Tuning networking resources

Networking protocol stacks and the programs which run over them place
additional burdens on your system's resources, including CPU and memory.
This chapter describes the areas of concern for the network administrator, the
tools used to diagnose performance problems, and procedures used to
enhance network performance for STREAMS, SCO TCP /IP, SCO NFS, and
LAN Manager Client Filesystem. See the following sections for a discussion of
tuning these and other subsystems:

• "STREAMS resources" (this page)

• "TCP /IP resources" (page 131)

• "NFS resources" (page 142)

• "LAN Manager Client Filesystem resources" (page 154)

• "Other networking resources" (page 157)

See also:

• "Introduction to networking" in the Networking Guide

STREAMS resources

The X Window System, networking services such as TCP /IP and NFS, applica
tions that use streams pipes, and certain device drivers use STREAMS to per
form I/O.

The STREAMS I/O system was designed to provide a simultaneous two-way
(full duplex) connection between a process running in user space and a device
driver (or pseudo-device driver) linked into the kernel. The topmost level
within the kernel with which the user process communicates is known as the
stream head.

123

Tuning networking resources

124

Using STREAMS has the advantage that it allows the processing of I/O
between an application and a device driver to be divided into a number of
functionally distinct layers such as those required by network architectures
that implement TCP /IP or the Open Systems Interconnection (OSI) 7-layer
model.

The STREAMS I/O mechanism is based on the flow of messages from the
stream head to a device driver, and in the opposite direction, from the device
driver to the stream head. Messages that are passed away from the stream
head toward the driver are said to be traveling downstream; messages going
in the opposite direction are traveling upstream. Between the stream head
and the driver, there may be a number of stream modules which process mes
sages in addition to passing them to the next module. Each type of module is
implemented as a separate driver linked into the kernel. For example, the udp
driver implements the network module that applies the UDP protocol to mes
sages. Each module has two separate queues for processing upstream and
downstream-bound messages before handing them to the next module.

Daemon
process

User
process

Daemon
process

Figure 6-1 Implementation of networking protocols using STREAMS

Performance Guide

STREAMS resources

A network protocol stack is built by pushing successive protocol modules
below the stream head. A protocol stack that implements the TCP lIP net
working protocols can be built by pushing an Internet Protocol (IP) module,
and a Transmission Control Protocol (TCP) module below the stream head.
Modules can also be multiplexed so that a module can talk to several stream
heads, drivers or other modules. Figure 6-1 (page 124) shows:

• Two stream heads talking to the same TCP module.

• The TCP and User Datagram Protocol (UDP) transport layer modules both
connected to the underlying IP module.

• Two different network adapter drivers interfaced to the IP module; this is
necessary on systems that act as routers between two networks that use the
Internet Protocol.

Note that the diagram simplifies the Link Layer Interface (LLI) for clarity.
This layer consists of the Data Link Provider Interface (DLPI) and the sca
MAC Driver Interface.

For a more complete picture of the available protocol stacks and drivers, see
"Network hardware drivers" in the Networking Guide.

Figure 6-2 (page 126) shows how the TCP lIP protocol stack encapsulates data
from an application to be sent over a network that uses Ethernet as the physi
cal layer. The Transport layer module adds a header to the data to convert it
into a TCP segment or a UDP packet. The Internet layer module turns this into
an IP datagram, and then passes it to the network driver which adds a header
and CRC trailer. The resulting Ethernet frame is then ready for transmission
over the physical medium.

125

Tuning networking resources

126

Application

Stream
head

TCP/UDP
module

IP
module

Ethernet card
driver

(

(headerC

c"'---_da_ta _____)

c"'---_da_ta _____)

C6%r1C data)
TCP segment I UDP packet

IP C6%r1C data)
IP datagram

IP c6%r1C data)CRC)

Ethernet frame

Figure 6·2 Creating an Ethernet frame by successive encapsulation

To retrieve data from an Ethernet frame, the inverse process is applied; the
received information is passed as a message upstream where it is processed
by successive modules until its data is passed to the application. If the
information is received by a router between two networks, the message will
only travel upward as far as the Internet layer module from one network
adapter before being passed back down to a different network adapter.

Figure 6-3 (page 127) shows protocol stacks on two machines linked via a
physical connection technology such as Ethernet, Token Ring or Fiber Distrib
uted Data Interface (FDDI). Applications appear to have a direct or virtual
connection; they do not need to know how connection is established at the
lower levels.

Performance Guide

Virtual connection
Application .. - - - - - - - - - - -~

Stream
head

Transport

Internet

Network

Application

Stream
head

Transport

Internet

Network

r-------.;'------. Physical connection r-------.;"----.
... ~

Figure 6-3 Virtual and physical connections over a network

STREAMS resources

The primary usage of memory by the STREAMS subsystem is for building
messages. Figure 6-4 (page 128) illustrates how a message is created from
pieces dynamically allocated from the memory reserved for use by STREAMS.
Each message consists of a fixed-size message header and one or more buffer
headers attached to buffers. The buffers come in several different sizes and
contain the substance of the message such as data, ioctl control commands
(see ioctl(S), and streamio(M)), acknowledgements, and errors.

Message buffers are available in 15 sizes or classes:

• 16-byte class 0 buffers are stored within the buffer header.

• Class 1 to class 14 buffers, ranging in size of powers of 2 from 64-byte to
512KB, use a separately allocated buffer structure pointed to by the buffer
header.

127

Tuning networking resources

128

Daemon
process

Dynamically allocatable
STREAMS memory

Figure 6·4 Memory structures used by STREAMS messages

Three kernel parameters are important for the configuration of STREAMS:
NSTRP AGES, STRSPLITFRAC, and NSTREAM.

NSTRP AGES controls the total amount of physical memory that can be made
available for messages. The kernel can dynamically allocate up to
NSTRP AGES pages of memory for message headers, buffer headers, and
buffers. If a message needs a buffer which is not currently available on the
free list of buffers, a new buffer is dynamically allocated for use from memory.
If more than STRSPLITFRAC percent of NSTRP AGES is in use and a suitable
buffer is not available on the free list, the kernel will try to split a larger buffer
for use and only allocates more memory if this fails.

Performance Guide

STREAMS resources

The default value of STRSPLITFRAC is 80%; if you set this value lower,
STREAMS will use less memory which will tend to become fragmented more
quickly. When this happens, unallocated STREAMS memory exists as many
small non-contiguous pieces which are unusable for large buffers. The
STREAMS daemon, strd, manages memory on behalf of the STREAMS subsys
tem. If strd runs, it expends CPU time in system mode in order to release
pages of STREAMS memory for use (this is known as garbage collection).

NSTREAM controls the number of stream heads that can be used. One stream
head is needed for each application running on your machine that uses
STREAMS to establish connections. Applications that use stream pipes require
two stream heads per pipe.

Examples of applications that use stream heads are:

• Remote login and file transfer programs such as ftp(TC), rcmd(TC), rcp(TC),
rlogin(TC), and telnet(TC).

• Remote X clients.

• The power management daemon, pwrd(ADM), and each APM or UPS driver
that talks to it.

NOTE NSTREAM should be set to at least 256 on systems running sca
OpenServer software which mount several remote filesystems or invoke
remote X clients. A program will not run if it cannot obtain a stream head
and will output a message such as:

NOTICE: prografln: out of streams

If you see such a message, increase the value of NSTREAM, relink the kernel,
and reboot.
Each configured stream head requires 80 bytes of memory. Apart from this
overhead, the value of NSTREAM has no effect on performance.

See also:

• "Networking protocol stacks" in the Networking Guide

Monitoring STREAMS performance

Your sca OpenServer system uses the STREAMS mechanism to support
TCP lIP and other network protocols such as IPX/SPX. You should ensure that
you provide an appropriate number of STREAMS resources for TCP lIP and
IPX/SPX; without them, performance may suffer or the system may hang.

129

Tuning networking resources

Run the netstat -m command to display STREAMS memory usage:

streams allocation:
config alloc free total max fail

streams 160 84 76 215 87 a
queues 452 394 58 496 414 a
mblks 271 102 169 49326 183 a
buffer headers 442 391 51 5964 395 a
class 1, 64 bytes 64 a 64 20289 44 a
class 2, 128 bytes 96 a 96 8668 72 a
class 3, 256 bytes 64 7 57 7174 63 a
class 4, 512 bytes 32 8 24 1334 25 a
class 5, 1024 bytes 4 a 4 904 3 a
class 6, 2048 bytes 104 62 42 622 103 a
class 7, 4096 bytes 8 8 a 93 8 a
class 8, 8192 bytes 1 a 1 13 1 a
class 9, 16384 bytes 1 a 1 1 1 a
class 10, 32768 bytes a a a a a a
class 11, 65536 bytes a a a a a a
class 12, 131072 bytes a a a a a a
class 13, 262144 bytes a a a a a a
class 14, 524288 bytes a a a a a a
total configured streams memory: 2000.00KB
streams memory in use: 185.98KB
maximum streams memory used: 334.43KB

Tuning STREAMS usage

130

For each data structure used, the important column is the fail column shown
by netstat -m. If this is non-zero for the number of stream heads configured
(shown as the value in the row labeled streams under the config column),
increase the value of NSTREAM using configure(ADM) as described in "Using
configure to change kernel resources" (page 189) and "STREAMS" (page 209).

The amount of memory currently in use by STREAMS, and the maximum
amount used since the system was started are shown at the bottom of the out
put from netstat -m.

The figure for the total memory configured for use by STREAMS represents an
upper limit to the amount of memory that can be dynamically allocated for
use.

If there are several non-zero entries in the fail column and the amount of
memory in use by STREAMS is almost the same as the total amount of
memory configured for STREAMS, increase the value of NSTRP AGES. This
parameter controls the number of 4KB pages of physical memory that can be
dynamically allocated for use by STREAMS.

Performance Guide

TCPI/P resources

I
NOTE In this release, memory used for STREAMS message headers, buffer
headers, and buffers is dynamically allocated from memory. There is no
need to tune the numbers of these resources individually.

The following table summarizes the commands that you can use to examine
STREAMS usage:

Table 6-1 Examining STREAMS performance

Command Field Description

netstat -m fail number of times a STREAMS resource was unavailable

Tcpnp resources

The TCP lIP protocol suite consists of the Transmission Control Protocol (TCP),
the Internet Protocol (IP), and other protocols described in "TCP lIP" in the
Networking Guide. The TCP lIP protocol suite is implemented using STREAMS.
You should ensure that sufficient STREAMS resources are available for net
working to function correctly as described in "STREAMS resources" (page 123).

See also:

• "Networking protocol stacks" in the Networking Guide

Tuning Tcpnp performance

The IP protocol stack is configured to maximize performance on all supported
network adapters. If desired, you can further adjust performance parameters
for each network interface using the ifconfig(ADMN) command as described
in "Using ifconfig to change parameters for a network card" (page 225). This
command allows you to adjust:

• The send and receive TCP window for an interface. These windows are
used by two communicating systems to negotiate the amount of data that
can be sent before an acknowledgement is required. The default values of
these windows are set to optimize performance on a local area network
(LAN). If you are using a high bandwidth, and high latency connection
such as a satellite link, increase the values of these parameters to increase
throughput on the link. The maximum value that you can set is 64KB.

• The maximum segment size (MSS) rounding parameter. This is a boolean
value; if set to 1, TCP negotiates the largest segment size that can be
transmitted in the maximum transmission unit of the physical network.
This is also referred to as using full frames. If set to 0, the MSS is rounded
down to the nearest power of 2. For Ethernet, this corresponds to lKB.

131

Tuning networking resources

132

With modem Ethernet hardware, you should use full frames to maximize
the amount of data per Ethernet frame. On older Ethernet cards with small
buffers and narrow data paths, rounding down should be selected to enable
the data in the Ethernet frame to be moved into the card's buffer more
efficiently.

Token Ring networks have a much larger MTU than Ethernet; full frames
should always be used.

• One-packet mode. This should be set for older network adapters whose
small buffers cannot handle back-to-back streams of packets.

• Time-to-live. If it is known that a substantial number of network hops will
be necessary for a packet to reach its destination, increase this parameter.

You can adjust systemwide TCP lIP parameters using inconfig(ADMN) as
described in "Using inconfig to change global TCP lIP parameters" (page 226).

Problems with TCP lIP may be experienced if:

• There are insufficient STREAMS resources. These may be investigated as
described in "STREAMS resources" (page 123).

• There is too much activity on the network. Break the network into smaller
subnetworks, or move network-intensive client-server applications onto
dedicated machines. These issues are considered further in "Configuring
network topology for performance" (page 137).

• There is intermittent loss of connection due to the network being
incorrectly configured physically. See "Testing network connectivity" (page
136) for ways of testing this.

Other performance considerations for TCP lIP include:

• Using the Internet routing discovery daemon (irdd) instead of routed or
gated as described in "Configuring routing for performance" (page 140).

• Altering the functionality of the domain name server to decrease system
load, or to balance the load between the network and the local machine as
described in "Configuring DNS name service for performance" (page 141).

• Ensuring that serial line communications (SUP and PPP) operate at peak
performance as described in "Tuning SLIP performance" (page 135) and
"Tuning PPP performance" (page 136).

The main tool for investigating the performance of TCP lIP is netstat(TC) as
described in "Monitoring TCP lIP performance" (page 133).

See also:

• "Troubleshooting TCP lIP" in the Networking Guide

Performance Guide

TCPI/P resources

Monitoring TCPJlP performance

The most useful command for examining TCP lIP performance (and that of
other protocol stacks) is netstat(TC). This command displays the contents of
various networking-related data structures held in the kernel. We have
already encountered the -m option to netstat in "Monitoring STREAMS perfor
mance" (page 129) where it allowed us to see how STREAMS resources were
allocated inside the kernel.

The command netstat -i displays the status of the system's network interfaces.
(To view only a single interface, specify this using the -I option.) The output
from this command has the following form:

Name Mtu Network Address Ipkts Ierrs Opkts Oerrs Collis
smeO 1500 reseau paris 996515 0 422045 42 0
100 2048 loopback loopback 25436 0 25436 0 0

The important fields are Ierrs, Oerrs, and Collis.

Ierrs is the number of received packets that the system recognized as being
corrupted. This usually indicates faulty network hardware such as a bad con
nector, incorrect termination (on Ethernet), but it may also be caused by pack
ets being received for an unrecognized protocol. For network adapters with
small buffers, it may mean that they have been saturated by end-to-end
streams of packets. In this case, you should switch the network interface to
one-packet mode using the ifconfig(ADMN) command as described in "Using
ifconfig to change parameters for a network card" (page 225).

/I

Oerrs is the number of errors that occurred while the system was trying to
transmit a packet. This generally indicates a connection problem. On Ether
net, it may also indicate a prolonged period of time during which the network
is unusable due to packet collisions.

Collis is the number of times that the system (connected to a network using
Ethernet as its physical medium) detected another starting to transmit while it
was already transmitting. Such an event is called a packet collision. The ratio
of the number of collisions to the number of output packets transmitted gives
a indication of the loading of the network. If the number of Collis is greater
than 10% of pkts for the most heavily used systems on the network, you
should investigate partitioning the network as described in "Configuring net
work topology for performance" (page 137).

Networks implemented using Token Ring and FDDI technology use a different
protocol to communicate at the phYSical layer and do not experience packet
collisions. The value in the Collis field should be zero for such networks.

133

Tuning networking resources

See #Troubleshooting TCP lIP" in the Networking Guide for a full discussion of
these issues.

I NOTE You can also use the ndstat(ADM) command to obtain similar infor
mation to that displayed by netstat-i.

The following table summarizes the commands that you can use to examine
the performance of TCP lIP:

Table 6-2 Examining TCPIIP performance

Command

netstat -i

Field

Ipkts
Ierrs
Opkts
Oerrs
Collis

Description

number of network packets received
number of corrupted network packets received
number of network packets transmitted
number of errors while transmitting packets
number of packet collisions detected

Configuring TCPIIP daemons for performance
If TCP lIP is configured, your system runs the /etc/rc2.d/S85tcp script each time
it goes to multiuser mode. (Note that this file is a link to /etc/tcp.) This script
starts several TCP lIP daemons. If configured to run, the following daemons
may affect performance:

gated handles routing and supports a variety of routing protocols.

irdd provides Internet routing discovery.

routed handles routing by default. routed may be commented out of /etc/tcp
if your system uses irdd(ADMN) to maintain routing information.
Note that all systems to which you are networked must be able to
handle icmp(ADMP) routing. See Chapter 11, #Configuring Internet
Protocol (IP) routing" in the Networking Guide for a full discussion of
the gated, irdd, and routed daemons.

named provides Domain N arne Service (DNS). named has many perfor
mance implications. See #Configuring DNS name service for perfor
mance" (page 141) for information on configuring DNS to use named.

134 Performance Guide

TCPI/P resources

rwhod provides the remote who facility, see rwho(TC). rwhod is com
mented out of /ete/tep for performance reasons. Uncommenting this
daemon generates additional network traffic as the daemon queries
the system for user and uptime information and broadcasts this data
to the network.

snmpd implements the simple network management protocol (SNMP).
snmpd runs by default. It generates additional packets during
startup and other unusual system events. It monitors and responds
to SNMP traffic from other machines. If you do not want SNMP run
ning on your system, use the SNMP Agent Manager to turn off the
SNMP agent as described in "Configuring SNMP with the SNMP
Agent Manager" in the Networking Guide.

Tuning SLIP performance
To maximize performance of a connection over a SLIP link, do the following:

• Select Van Jacobson (VJ) TCP lIP header compression using the +c option to
slattach(ADMN) if the incoming connection expects this to be set or it can
automatically detect compressed packets.

• Select automatic detection of TCP lIP header compression using the +e
option to slattach if the incoming connection uses compressed packets.

I

NOTE If both ends of a connection use automatic detection, header
compression will not be used. At least one end must explicitly choose to
use compression using the +c option.

• Use the -m mtu option to slattach to set the maximum transmission unit
for the link. The default value is 296 bytes - 40 bytes for the header plus
256 bytes of data. Increase this value if you are not using the link as an
interactive connection. For example, if you are transferring data, you might
set this to 1064. The minimum possible value is 42 bytes. The maximum
suggested value is 1536 bytes.

For a complete discussion of using SLIP, see Chapter 5, "Configuring the Serial
Line Internet Protocol (SLIP)" in the Networking Guide.

135

Tuning networking resources

136

Tuning PPP performance
To maximize performance of a connection over a PPP link, do the following:

• Enable hardware flow control on the modem being used. It must be con
nected to a modem control port such as /dev/ttylA or /dev/tty2A.

• Use the Network Configuration Manager (see Chapter 25, "Configuring
network connections" in the sea OpenServer Handbook) to tum on Van
Jacobson (VI) TCP lIP header compression, enable the maximum number
(16) of VJ compression slots, and enable compression of these slots. See
Chapter 4, "Configuring the Point-to-Point Protocol (PPP)" in the Network
ing Guide for more information about other compression features that you
can enable.

• Set the maximum receive unit (MRU) to 296 for interactive inbound or out
bound connections. Set this higher, to 1064 for example, if the link is only
being used to transfer data. The maximum suggested value is 1536 bytes.

You can also edit the file /etc/ppphosts to configure these parameters; see
ppphosts(SFF) for more information.

For a complete discussion of using PPP, see Chapter 4, "Configuring the
Point-to-Point Protocol (PPP)" in the Networking Guide.

Testing network connectivity
The ping(ADMN) command is useful for seeing if a destination machine is
reachable across a local area network (LAN) or a wide area network (WAN). If
you are root, you can use the flood option, -f, on a LAN. This sends a hundred
or more packets per second and provides a stress test of the network con
nection. For every packet sent and received, ping prints a period (.) and a
backspace respectively. If you see several periods being printed, the network
is dropping packets.

If you want to find out how packets are reaching a destination and how long
this takes, use the traceroute(ADMN) command. This provides information
about the number of hops needed, the address of each intermediate gateway,
and the maximum, minimum and average round trip times in milliseconds.
On many hop connections, you may need to increase the maximum time-to
live (TTL) and wait times for the probe packets that traceroute sends out. To
do this, use the -m and -w options.

See also:

• Chapter 10, "Testing connectivity with other sites" in the Networking Guide

Performance Guide

TCPI/P resources

Configuring network topology for performance
The types and capabilities of Ethernet network technology (as defined by the
IEEE 802.3 standard) are shown in the following table:

Table 6·3 Ethernet network technologies

Type Topology and
and alternative names medium

10Base5, Thick
Net

10Base2, ThinNet,
CheaperNet

10Base-T, twisted
pair

linear, 50 ohm
10mm coaxial
cable terminated,
at both ends
linear, 50 ohm
5mmcoaxial
cable terminated
at both ends
star, unshielded
twisted pair

Maximum segment
length

500m

185m

100m

Maximum number
of nodes per segment

100

30

2

For Ethernet technologies that use a linear network topology, the cable must
not have any branches or loops and it must be correctly terminated at both
ends.

To attach nodes to the network, 10Base5 connects drop cables to vampire taps
directly attached to the coaxial cable or to transceiver boxes placed in line
with the cable.

10Base2 T -piece connectors must be connected directly to the coaxial terminal
of the network card - that is, you cannot use a coaxial cable as a drop cable.

If you want to extend the length of an Ethernet cable segment, there are three
ways of doing this:

• Repeaters retransmit network packets (including any electrical noise) and
connect network segments at the physical layer. They do not separate net
work traffic but they can be used for connecting different network media,
for example, to connect 10Base2 and 10Base5.

• Bridges also connect network segments at the physical layer but they can
be used to filter selected traffic between network segments.

• Routers connect networks that use the same networking protocols. For
TCP lIP, the connection is made at the level of the IP layer. Routers can con
trol whether packets are forwarded between network segments.

137

Tuning networking resources

138

Monitor the network regularly for packet collisions as described in LlMonitor
ing TCP lIP performance" (page 133) or use a network activity tester (com
monly called a sniffer) if you have access to one. If the proportion of collisions
to packets sent is greater than 10%, your network is probably overloaded.
Some networks may be able to struggle along on at collision rates as high as
30% but this is rarely acceptable.

If there are a large number of input or output errors, suspect the network
hardware of causing problems. Reflected signals can be caused by cable
defects, incorrect termination, or bad connections. A network cable analyzer
can be used to isolate cable faults and detect any electrical interference.

a) congested network layout

b) network layout designed to use subnets

o
Network
server

Network
client

Figure 6·5 Dividing a network into subnetworks to reduce network traffic

Performance Guide

TCPI/P resources

To reduce network loading, consider dividing it into separate networks (sub
nets) as shown in Figure 6-5 (page 138). This diagram shows how a network
could be divided into three separate subnets. Routers connect each subnet to a
backbone network. This solution only makes sense if you can group clients
with individual servers by the function they perform. For example, you could
arrange that each subnet corresponds to an existing department or project
team within an organization. The clients dependent on each server should
live on the same subnet for there to be a gain in network performance. If
many machines are clients of more than one server, this layout may actually
make the situation worse as it will impose an additional load on the servers
acting as routers.

An alternative would be to use bridges to connect the network segments
though this may be a more expensive solution. A potential problem with this
is that if a bridge fails, the connection between the two segments is severed.

By connecting subnets using more than one router, you can provide an alter
native route in case of failure of one of the routers. Another problem with
using bridges is that they are intended to partially isolate network segments
- they are not a solution if you want to provide open access to all available
services.

Design the layout of subnets to reflect network usage. Typically, each subnet
will contain at least one server of one or more of the following types:

• File server providing access to networked filesystems.

• Database server providing access to a database.

• Compute server providing intensive numeric calculations.

• Page server providing swap space for diskless clients.

• Bootstrap server enabling X terminals and diskless clients to boot over the
network.

• Host server for X terminals.

• Master or slave Network Information Services (NIS) servers for clients or
copy-only servers.

Some machines may also be expected to run X client processes for X servers
running on X terminals and workstations. Applications such as desktop pub
lishing and PostScript previewers transfer large amounts of data across the
network. If possible, you may find it preferable to confine running such appli
cations to dedicated workstations on the network.

139

Tuning networking resources

140

If you run client-server applications across repeaters, bridges, or routers, you
should be aware that this will impose additional delay in the connection. This
delay is usually least for repeaters, and greatest for routers.

See also:

• Chapter 3, /I Administering TCP lIP" in the Networking Guide

• "Creating subnets" in the Networking Guide

• "Troubleshooting TCP lIP" in the Networking Guide

Configuring routing for performance
There are few performance issues concerned with routing. Choice of routes
outside your system is not generally in your control so this discussion only
considers routing within an autonomous network.

Most networks use the Routing Information Protocol (RIP) for internal rout
ing. RIP uses a metric for choosing a route based on distance as a number of
hops. This metric is not optimal in certain circumstances. For example, it
would choose a path to the desired destination over a slow serial link in
preference to crossing an Ethernet and a Token Ring. You can increase the hop
count on the slow interface advertised in the /etc/gateways file to overcome this
limitation. The RIP protocol is available with both the routed(ADMN) and
gated(ADMN) routing daemons.

Most networks tend to use routed as it requires no configuration. However,
we recommend that you only use RIP for simple network topologies. The
Open Shortest Path First (OSPF) protocol is better suited than RIP for complex
networks with many routers because it has a more sophisticated routing
metric. It can also group networks into areas. The routing information
passed between areas uses an abstracted form of internal routing information
to reduce routing traffic. OSPF is only available using the gated routing
daemon.

You can use the Internet Router Discovery (IRD) protocol for routing within
networks in autonomous systems. This is not a true routing protocol but it
allows hosts connected to a multicast or broadcast network to discover the IP
addresses of routers using ICMP messages. Routers can also use the protocol
to make themselves known. The irdd(ADMN) daemon uses the IRD protocol
and is normally configured to run by default in addition to routed.

Performance Guide

TCPI/P resources

You can minimize the routing traffic on your network by configuring:

• Non-routing hosts to use only the IRD protocol.

• Interior routers to use IRD, and either RIP or OSPF.

• Exterior routers of an autonomous system to use an exterior routing pro
tocol such as BGP or EGP.

For a full discussion of the various protocols, the daemons that use them, and
how to configure these daemons, see Chapter 11, IIConfiguring Internet Proto
col (IP) routing" in the Networking Guide.

Configuring DNS name service for performance
The Domain Name Service server included with TCP lIP can operate in a num
ber of modes, each of which has its own performance implications.

A primary or secondary DNS name server maintains and accesses potentially
large databases, answers requests from other servers and clients, and per
forms zone transfers. Both network traffic and memory are impacted.

There are several ways in which you can influence the performance of
primary and secondary DNS nameservers:

• Choose appropriate machines to serve as primary and secondary
nameservers. Such machines should be stable, have a large amount of
memory, and a low system load.

• Choose the appropriate number of secondary (redundant) nameservers to
ensure against failure. Be careful, however, that you do not overload the
network by having too many secondary servers, or anyone machine by
having too few.

• Configure time-ta-live (ttl) values in the standard resource records (RRs) of
the zone file so that cached data does not expire too quickly necessitating
further data transfer.

• Schedule zone file transfers for network slack times if your zone contains
many secondary servers. You can do this by changing the version number
(serial) of the zone file on the master server. Kill named with SIGHUP (for
example, using the command kill -s HUP $(cat letclnamed.pid) if you use
the Kom shell) to make it re-read the named. boot file. Then kill named with
SIGHUP on each secondary server to make it request a full zone transfer.
Note that you would normally use the refresh fields of the Start of Author
ity (SOA) record to control the frequency of zone refreshes.

141

Tuning networking resources

A caching-only DNS name server maintains and accesses a potentially large
cache. Because a caching-only server may answer many of its own requests,
memory is impacted more highly than network traffic. If the machine has lim
ited memory, you should strongly consider turning the machine into a DNS
client using the resolver configuration file,letclresolv.conf

A DNS client pushes all resolution requests onto one or more DNS servers on
the network; none are handled locally. This puts the burden of resolution on
the network and on the nameservers listed in resolv.conf It also means that
named does not run and, therefore, does not add to the system load. In the
case where the local machine has limited memory and response time over the
network ranges from adequate to excellent, this configuration is desirable
from a performance standpoint. If network response time is slow and mem
ory is not limited, consider re-configuring the system as a caching-only server.

See also:

• Chapter 6, "Configuring the Domain Name Service" in the Networking Guide

NFS resources

142

The Network File System (NFS) software allows one computer (an NFS client)
attached to a network to access the filesystems present on the hard disk of
another computer (an NFS server) on the network. An NFS client can mount
the whole or part of a remote file system. It can then access the files in this file
system almost as if they were present on a local hard disk.

The speed of access to data is designed to approach that achievable using the
server's hard disk directly. The performance of NFS is limited by:

• The maximum throughput of the underlying network technology. For
example, Ethernet is capable of transferring up to approximately 1.25MB Is.

• The performance of the server's hardware subsystems including network
adapters, and hard disks. Network adapters on an NFS server should have
high specifications. They should at least have a 16KB I/O buffer and 32-bit
data path, and, if possible, they should be capable of performing Bus Mas
terDMA.

• The configuration of the buffer cache, STREAMS, and TCP /IP on the server.

• The number of daemons running on the server to service requests from net
work clients.

Performance Guide

NFS resources

• The loading of the network which determines the effective throughput to
and from the client.

• Demands for network file access to the server from other clients on the net
work.

• The performance of the client's subsystems including its buffer cache,
STREAMS resources, TCP lIP configuration, and the network adapter.

• Other processes running on the client and server that compete for
resources with NFS.

In practice, NFS servers feel the greatest stress. NFS client performance is
directly dependent on the performance of the server and the network so you
should examine these subsystems first if you experience poor client response.

NFS client NFS server

Application biod nfsd

Figure 6-6 Schematic diagram of how NFS works

143

Tuning networking resources

The mechanism by which NFS is implemented is illustrated in Figure 6-6
(page 143). This figure shows a simplified version of how NFS operates and
also illustrates the main features that affect performance. The NFS client is
shown at the left-hand side; the NFS server with its local disk to the right. All
the subsystems in the path traced between the application program running
on the client and the disk on the server directly affect performance.

As for TCP lIP, NFS has been configured in this release to maximize perfor
mance. However, you may be able to further increase performance based on
your system's needs.

Because NFS depends directly on STREAMS and TCP lIP resources, its perfor
mance is directly influenced by these subsystems. See "STREAMS resources"
(page 123) and "TCP/IP resources" (page 131) for more information about
examining the performance of these subsystems.

See also:

• Chapter 15, "Configuring the Network File System (NFS)" in the Networking Guide

Monitoring NFS performance

144

The nfsstat(NADM) command reports statistics on NFS performance. Use the
-c option to display client statistics:

Client rpc:
calls badcalls retrans
336033 50 413
peekeers badresps
o 0

Client nfs:
calls
335617

badcalls nclget
o 336033

badxid
418

nclsleep
o

timeout wait
299 0

newcred
o

The important fields for client performance are contained in the remote pro
cedure call (RPC) statistics:

badcalls
The number of times that an RPC call failed due to an error such as a
timeout or an interrupted connection.

Note that on soft-mounted filesystems, a request is retransmitted a limited
number of times before it is reported as a failed RPC call. The value of bad
calls is only incremented for the final failed attempt; previous failures
increase the value of retrans. All requests that fail due to a timeout are
recorded in timeout.

Performance Guide

NFS resources

retrans
The number of requests for service that the client had to retransmit to
servers. If the value of badxid is small, the network is probably dropping
packets rather than the servers being slow.

The value of retrans should not be more than 5% of the value shown for
calls in the NFS statistics.

badxid
The number of responses from servers for which the client has already
received a response. If a client does not receive a response to a request
within a time period, it retransmits the request. It is possible that the
server may service the original request. In such a case, the client receives
more than one response to a request. The value of badxid is incremented
for every unexpected response.

If the value of badxid is approximately equal to retrans, one or more
servers probably cannot service client requests fast enough. A server may
not be running enough nfsd daemons or it may be insufficiently powerful
to satisfy the clients' requests. See "Configuring NFS daemons" (page 147)
for more information.

If the value of badxid is also approximately equal to timeout, you can
increase the timeout value specified by the timeo mount(ADM) keyword
in the file letcldefaultlfilesys or in the appropriate map file if you are using
automount(NADM). This will allow the servers more time to respond to
requests.

timeout
The number of calls that timed out waiting for response from a server.

wait
The number of requests that had to wait for an available client handle. If
this is non-zero, there are insufficient biod daemons running on the client.
See "Configuring NFS daemons" (page 147) for more information

Use the -s option to display server statistics:

Server rpc:
calls badcalls nullrecv
57972 0 0

badlen
o

xdrcall
o

If the values of badlen and xdrcall are non-zero, the network is corrupting
packets.

See also:

• "Troubleshooting NFS" in the Networking Guide

145

Tuning networking resources

The following table summarizes the commands that you can use to examine
the performance of NFS:

Table 6-4 Examining NFS performance

Command

nfsstat -c

nfsstat -s

nfsstat -z

Field

badcalls
badxid

retrans

timeout
wait

badlen

xdrcall

Description

number of RPC call failures by client
number of unnecessary repeated responses
received by client from servers
number of repeated requests by client to
servers
number of calls that timed out on client
number of calls that had to wait for a client
handle
number of corrupted RPC requests received by
server
number of corrupted data headers received by
server
zero out statistics

Tuning NFS performance

146

If NFS is configured, your system runs the /etc/rc2.d/S89nfs script each time it
goes to multiuser mode. (Note that this file is a link to /etc/nfs.) This script
starts several NFS daemons. If configured to run, the following daemons may
affect performance:

biod Runs on clients to handle access to remote filesystems.

nfsd Runs on servers to handle access by remote clients to local file
systems.

pcnfsd Runs on servers to handle access by remote clients that use the DOS,
OS/2, or Macintosh operating systems and run PCNFS.

If the output from the sar -u command (see "Identifying disk I/O-bound sys
tems" (page 90)) shows that an NFS client is spending a significant proportion
of time waiting for I/O to complete (%wio is consistently greater than 15%),
and this cannot be attributed to local disk activity (a disk is busy if sar -d con
sistently shows avque greater than 1 and %busy greater than 80%), then the
performance of NFS may be causing an I/O bottleneck. See "Tuning NFS client
performance" (page 147) for more information.

Performance Guide

NFS resources

Tuning NFS client performance
Read performance by an NFS client is influenced by several factors:

• The biod daemon processes running on the client provide read-ahead of
disk blocks into the client machine's buffer cache as described in "Tuning
the number of biod daemons on a client" (page 149). This only improves
performance if the applications tend to perform sequential reads through
files. The client's buffer cache should be tuned to enhance the read hit rate
as described in "Increasing disk I/O throughput by increasing the buffer
cache size" (page 75). If the data can be found in the client's buffer cache,
this avoids the overhead of going out to the remote filesystem for the data.
Note that there is no guarantee that the data is the most current available
unless file locking is used

• The number of nfsd daemon processes running on the server to service
requests from clients as described in "Tuning the number of nfsd daemons
on a server" (page 148).

Write performance by an NFS client is affected if you choose to use non
standard asynchronous writes as described in "Configuring asynchronous or
synchronous writes" (page 151). You should tune the server's buffer cache
size to increase the write hit rate as described in "Increasing disk II 0
throughput by increasing the buffer cache size" (page 75).

There is no benefit to NFS client write performance in tuning the write hit rate
on the server if you opt to use default synchronous writes through its buffer
cache.

NFS server performance can be further improved by using a disk controller
with a write-back (rather than a write-through) cache. This runs the risk of
losing data unless its integrity is protected using a ups.

Configuring NFS daemons
If your system does not serve clients running PCNFS, comment out the follow
ing lines in /etc/rpcinit that start pcnfsd:

[-x /etc/pcnfsd] && {
echo • pcnfsd\c·
pcnfsd &

When NFS is next started, pcnfsd will not run. This will not affect perfor
mance to any great extent apart from removing an unwanted process from the
system.

The daemons mountd, portmap, statd, and lockd are needed for the operation
ofNFS.

147

Tuning networking resources

148

The following sections discuss how to tune the number of biod and nsfd dae
mons running on clients and servers:

• "Tuning the number of nfsd daemons on a server" (this page)

• "Tuning the number of biod daemons on a client" (page 149)

Tuning the number of nfsd daemons on a server
Like biods, nfsd daemons provide processes for the scheduler to control -
the bulk of the work dealing with requests from clients is performed inside
the kernel. Each nfsd is available to service an incoming request unless it is
already occupied. The more nfsds that are running, the faster the incoming
requests can be satisfied. There is little context switching overhead with run
ning several nfsds as only one sleeping daemon is woken when a request
needs to be served.

If you run more nfsds than necessary, the main overhead is the pages of mem
ory that each process needs for its u-area, data, and stack (program text is
shared). Unused nfsd processes will sleep; they will be candidates for being
paged or swapped out should the system need to obtain memory.

If too few nfsds are running on the server, or its other subsystems, such as the
hard disk, cannot respond fast enough, it will not be able to keep up with the
demand from clients. You may see this on clients if several requests time out
but the server can still service other requests. If you run the command nfsstat
-c on the clients, its output provides some information about the server's per
formance as perceived by the client:

Client rpc:
calls badcalls retrans
336033 50 413

badxid
418

timeout wait newcred
299 0 o

If badxid is non-zero and roughly equal to retrans, as is the case in this exam
ple, the server is not keeping up with the clients' requests.

If you run too few nfsds on a server, the number of messages on the request
queue builds up inside the upstream networking protocol stack in the UDP
module. In extreme cases, you could consume all memory on the server
reserved for use by STREAMS; this would cause applications using STREAMS
to fail. Use netstat -m to examine STREAMS usage on the server as described
in "Monitoring STREAMS performance" (page 129).

Performance Guide

NFS resources

You can also use the command netstat -s -p udp to examine how many sys
tem failures due to shortage of STREAMS memory have occurred in the UDP
module:

udp:
o incomplete headers
o bad data length fields
o bad checksums
62 bad ports
438014 input packets delivered
o systems errors during input
417038 packets sent

To change the number of nfsds that are configured to run, edit the following
lines in the file /etc/nfs on the server:

[-x /etc/nfsd] && {
umask 000
echo • nfsd(xnutnber)\c·
nf sd nutnber &

umask $oldmask

When NFS is next started on the client, number nfsds will run.

Tuning the number of biod daemons on a client
On an NFS client system, you do not need to run any biod processes for
applications to access remote filesystems. The biods handle read-ahead and
write-behind on remote filesystems in order to improve performance. When
reading, they send requests to read disk blocks ahead of that currently
requested. When writing, they take over responsibility for handling writing
the block to the remote disk from the application. The biod processes visible
using ps(C) are merely convenient handles used by the process scheduler to
control NFS client operation - the majority of the work dealing with the read
and write requests is dealt with inside the kernel.

If no biods are running, the application's performance will suffer as a result.
When it writes to the remote file system, the write system call will block until
the data has been written to the disk on the server. When it reads from the
remote filesystem, it is unlikely to find the blocks in the buffer cache.

149

Tuning networking resources

150

From this, you might deduce that running an extra copy of biod will always
enhance NFS performance on the client. For example, if four biods are run
ning, each of these can perform asynchronous writes without applications
programs having to wait for these to complete. If an application requires
access to the remote filesystem while the biods are busy, it performs this
itself. The limit to performance enhancement comes from the fact that each
biod's disk requests impose a load on the server. nfsd daemons, the buffer
cache, and disk I/O on the server will all come under more pressure if more
biod daemons are run on the clients.Network traffic will also increase as will
the activity of the networking protocol stacks on both the server and its
clients. The default number of biod processes run on a client is four. To see if
the number running on your system is adequate, use the ps -ef command and
examine the elapsed CPU time used by the biods under the TIME column.
Note that the results are only meaningful if your system has been operating
under normal conditions for several hours.

If nfsstat -c on the client shows a wai t for client handle value of zero and if
the TIME value for at least one of the biods is substantially less than the others,
then there are probably enough daemons running. If several biods show low
TIME values, it should be safe to reduce their number to one more than the
number showing high TIME values.

If all the TIME values are high, increase the number of biods by two, and con
tinue to monitor the situation.

If you are root, you can reduce the number of biods running by killing them
with kill(C). You can also start extra biods running using the command
letclbiod.

To change the number of biods that are configured to run, edit the following
lines in the file letc/nfs on each client:

[-x /etc/biod 1 && {
echo • biod(xnut.nber)\c·
biod nut.nber &

When NFS is next started on the client, number biods will run.

Performance Guide

NFS resources

Configuring asynchronous or synchronous writes
One way of improving NFS performance is to prevent applications and biod
daemons from performing synchronous write calls to the remote disk. The
mechanism used is controlled by the value of the kernel variable
nfs_server_async_wri tes set in the file /etc!conf/pack.d/nfs/space.c on the
server. This variable can take three values:

o Enables slow synchronous writes; write the data blocks through the buffer
cache to the disk one at a time.

1 Enables fast synchronous writes (the default); the data blocks are first writ
ten to the server's buffer cache. A file sync operation then flushes the data
to disk.

2 Enables asynchronous writes; write the data to the server's buffer cache
and rely on the server's buffer flushing daemon to write the data to disk.
This minimizes the time that processes on the client have to wait for the
write operation to complete.

To change the way that blocks are written to disk on the server, edit the space.c
file and change the value of nfs_server_async_writes to select the desired
behavior. Relink the kernel and reboot the system as described in "Relinking
the kernel" in the sea OpenServer Handbook.

I WARNING Asynchronous writes do not conform to the NFS V2 standard.
There is a possibility that data may be lost irretrievably.

If you choose to use asynchronous writes, this will improve performance but
it increases the risk that data can be lost without reporting an error to the
client. The client can receive notification of a successful write while the data is
still in the server's buffer cache. If the server's disk goes down because of a
power failure or other fault, there is a risk that the data may not have been
written to disk. You can protect against this to some extent using:

• An uninterruptible power supply (UPS) to maintain power to the server's
buffer cache, disk cache, and disk in case of power failure.

• Virtual disk management or hardware RAID array to ensure data integrity
and to protect against disk failure.

See also:

• "NFS server and client daemons" in the Networking Guide

151

Tuning networking resources

152

Configuring NFS to use TCP

For NFS filesystems mounted over a high latency, high bandwidth connection
such as a wide area network (WAN), there are benefits in using TCP as the
transport protocol rather than UDP. With TCP, you can define large send and
receive windows to be set on an interface as described in #Tuning TCP lIP per
formance" (page 131). This allows a large amount of data to be sent before
requiring an acknowledgement. On a noisy connection, it is preferable to use
TCP because it performs packet error detection and correction; UDP relies on
the application to correct errors.

To define NFS to support TCP as a transport protocol on a server, edit /etc/nfs.
Use the -d and -t options to nfsd(NADM) to allocate the number of nfsd dae
mons that support each protocol. For example, to define six nfsds to use UDP
and two to use TCP, change the lines that starts the nfsd daemons to read:

[-x /etc/nfsd 1 && {
umask 000
echo • nfsd(UDPx6,TCPx2)\c"
nfsd -u 6 -t 2 &
umask $oldmask

Specify the mount(ADM) option modifier tcp on each client for the remote NFS
filesystem that you want to mount using TCP. This must be added to the
options defined for the mntopts keyword in the file /etc/defaultlftlesys (see
filesys(F) for more information). The following is an example of such an entry:

bdev=nfs_svr:/remote \
mountdir=/remote_mnt fstyp=NFS \
fsck=no fsckflags= \
init=yes initcmd="sleep 2" \
mntopts="bg,soft,tcp" \
rcmount=yes rcfsck=no mountflags=

If you use automount, you can specify the option modifiers in the auto.master
configuration map as described in automount(NADM).

These changes will not take effect until NFS is next started on the server and
clients.

Configuring IP to maximize NFS performance
By default, NFS transfers data in 8KB blocks. If the network is Ethernet-based
and full frames are being used, six Ethernet frames are required to transmit
these blocks. If the data in the frames is rounded down to lKB, eight frames
are required to transmit the data. If your network adapter can handle full
frames and back-to-back packets, it should already be configured as such as
described in ~'Using ifconfig to change parameters for a network card" (page
225).

Performance Guide

NFS resources

Configuring mount options to maximize NFS performance
If the network adapter on an NFS client cannot handle full frames and back
to-back packets, reduce the NFS read and write transfer sizes below the
default of BKB. To do this, specify the mount(ADM) option modifiers rsize
and wsize for each mounted filesystem. These must be added to the options
defined for the mntopts keyword in the file letcldefaultlfilesys (see filesys(F) for
more information). The following is an example of such an entry reducing the
read and write transfer sizes to lKB (1024 bytes):

bdev=nfs_svr:/remote \
mountdir=/remote_mnt fstyp=NFS \
fsck=no fsckflags= \
init=yes initcmd="sleep 2" \
mntopts="bg,soft,rsize=1024,wsize=1024 n

rcmount=yes rcfsck=no mountflags=

If you use automount, you can specify these option modifiers in the
auto.master configuration map as described in automount(NADM).

Performance considerations when using automount
If you use automount(NADM) to mount remote file systems automatically on
demand, you should consider the following performance implications:

• automount is single threaded. Mount requests can be delayed by another
request that has been made to a slow or inactive NFS server. For more infor
mation see "Troubleshooting NFS" in the Networking Guide.

• Making multiple requests to an automounted filesystem can cause high
system overhead. The kernel forces a context switch to automount to look
up the pathname for each request. This can happen, for example, in a shell
script that repeatedly copies files between a local and a remote filesystem,
or between two remote file systems (see also "Unnecessary automounts" in
the Networking Guide).

• Direct automount maps require two mount table entries for each auto
mounted file system; if you use indirect maps, one mount table entry is
used by automount plus one for each automounted filesystem. By default,
the number of mount table entries is determined dynamically, so there is
no need to change the MAX_MOUNT kernel parameter to a value other
than 0 (see also "Direct and indirect mounting" in the Networking Guide).

153

Tuning networking resources

• Login time can increase significantly for csh(C) users who include many
automounted filesystems in their path. The C shell adds command path
names to its internal hash table when the path variable is set. As a conse
quence, automount mounts each automounted remote filesystem that is
listed.

See also:

• Chapter 16, "Configuring the NFS automounter" in the Networking Guide

• "When to use automount" in the Networking Guide

• "Troubleshooting automount" in the Networking Guide

Performance considerations when using NIS
The Network Information Service (NIS) supplements NFS and provides a
distributed database of commonly accessed administration files. A master
NIS server holds information files needed by all machines on the network
centrally; examples of these files are /etelpasswd, jete/group, and /ete/serviees.
Whenever this information is updated, it is pushed out to slave servers and
copy-only servers to ensure that it is updated globally.

NIS clients, which may be diskless, request information from servers when
ever needed. This may be quite a common occurrence. For example, a com
mand such as Is -1 requires access to information held in the files /etelpasswd
and jete/group so that it can display the user and group ownership of files. H
you are running NIS clients on your network, you should be aware that a
proportion of network traffic will be caused by NIS clients requesting such in
formation.

LAN Manager Client Filesystem resources

154

LAN Manager Client software allows your system to mount and access DOS,
NT, and OS/2 file systems on LAN Manager servers. See Chapter 4, II Adminis
tering and using LAN Manager Client" in the Guide to Gateways for LAN Servers
for more information.

As for NFS, the performance of LMCFS is enhanced if the client system can
take advantage of read-aheads and asynchronous writes. The size of the
read-ahead buffer (in bytes) is controlled by the value of the rawsize option
modifier supplied to mount(ADM). Data that is read-ahead is discarded if it is
not used within the time set by the value (in tenths of a second) of the udttl
option modifier. Asynchronous writes may be enabled using the async option
modifier. This carries an inherent risk of possible data loss should the server
crash before the data has been written to disk.

Performance Guide

LAN Manager Client Filesystem resources

Tuning LAN Manager Client Filesystem performance

If the output from the sar -u command (see "Identifying disk I/O-bound sys
tems" (page 90» shows that a LAN Manager client is spending a significant
proportion of time waiting for I/O to complete (%wio is consistently greater
than 15%), and this cannot be attributed to local disk activity (a disk is busy if
sar -d consistently shows avque greater than 1 and %busy greater than 80%),
then the performance of the LAN Manager Client Filesystem (LMCFS) may be
causing an I/O bottleneck.

The kernel parameters that control the behavior of LMCFS are described in
"LAN Manager Client Filesystem parameters" (page 223). These parameters
can only be adjusted using idtune(ADM) as described in ''Using idtune to real
locate kernel resources" (page 190).

There are three areas where you can examine the performance of
LAN Manager clients:

• "Examining possible network or server problems" (this page)

• "Examining the usage of server message blocks and lminodes" (page 156)

• "Examining the performance of each mounted filesystem" (page 156)

Examining possible network or server problems
The -v option to the vcview(LMC) command indicates possible network prob
lems that may be affecting LMCFS performance:

Maxxmt MaxRcv MaxMux TxCnt TxErr RxCnt RxErr Conns Retrans Reconns
4096 4096 50 32131 5 34023 21 1 15 4

If the transmission error rate (100*TxErr/TxCnt) or reception error rate
(100*RxErr /RxCnt) is high (greater than 10%) or either of these these rates is
increasing, the network or the server may be overloaded.

Similarly, if the number of retransmissions (Retrans) or reconnections
(Reconns) is increasing, this may also indicate that the network or the server is
overloaded.

155

Tuning networking resources

156

Examining the usage of server message blocks and Iminodes
The command lmc stats (see Imc(LMC» displays the usage of server message
block (5MB) data buffers, request slots, and LAN Manager inodes (lminodes):

alloc maxalloc avail fail hiprifail
5MB buffers: 49 102 1024 0 0
5MB reg slots: 49 60 256 0

5MB sync reads 840 (8.31% of total reads)

lminode alloc failures 0

If insufficient 5MB data buffers or request slots are configured, processes will
wait until more become available.

Increase the value of the kernel parameter LMCFS_NUM_BUF if the fai 1
column displays a non-zero value for 5MB data buffers.

Increase the value of the kernel parameter LMCFS_NUM_REQ if the fail
column displays a non-zero value for 5MB request slots.

Increase the value of the kernel parameter LMCFS_LMINUM if lminode alloc
failures shows a non-zero value.

If the proportion of synchronous reads shown by 8MB sync reads is high, this
can have a significant negative impact on performance. You can increase the
size of the read-ahead buffer using the rawsize option modifier to mount.
This data is discarded if it is not used within the time set by the udttl option
modifier to mount.

Examining the performance of each mounted filesystem
The command lmc mntstats (see Imc(LMC» shows statistics for each
mounted LAN Manager filesystem:

NT/TMP mounted on front, user-based, asynch
rbsize rawsize wbsize awwsize timeout retrans udttl old r/a Broken oplocks
8192 16384 8192 16384 300 5 50 0 0

old r / a shows the number of read-ahead blocks that have been discarded
because the client did not make use of the data quickly enough. If the value of
old r / a is increasing, either increase the value of udttl or decrease the size of
rawsize. Which action you should take depends on how long you are willing
to see the data age.

Broken oplocks shows the number of opportunistic locks that were relin
quished. This shows contention due to several clients accessing the same files
on the server.

Performance Guide

Other networking resources

Other networking resources

sca OpenServer networking services also support the following networking
protocols and software:

• The Internetwork Packet Exchange (IPX) protocol provides a connectionless
datagram service similar to UDP except that the data packet size is limited
to 500 bytes. IPX also plays a similar role to the IP protocol in TCP lIP by
providing a message service for modules above it in the protocol stack,
including SPX.

The Sequenced Packet Exchange (SPX) protocol is a connection-oriented
service similar to TCP except that it does not support a configurable send
and receive window size; an acknowledgement is required for every packet
that is sent.

For testing IPX/SPX network connectivity, the command nping(PADM) is
available. This provides similar information to that provided by the
TCP /IP command ping(ADMN).

For more information about IPX/SPX, . see "IPX/SPX" in the Networking
Guide.

• sca Gateway for NetWare software re-exports file systems mounted on
Novell® NetWare® servers. Its operation depends fundamentally on the
configuration of IPX/SPX. For more information, see" Accessing NetWare
servers with sca Gateway for NetWare" in the Networking Guide.

• NetBEUI is another type of protocol stack similar to TCP lIP and IPX/SPX. It
is included with Microsoft® LAN Manager for sca® Systems.

• The NetBIaS interface allows applications such as LAN Manager to send
messages over TCP lIP.

• sca aSI is a protocol stack that implements the Open Systems Interconnec
tion 7-layer model.

Like the TCP lIP protocol, all these networking resources depend on the avai
lability of sufficient STREAMS and CPU resources, and the performance of the
network and network adapter cards. See "STREAMS resources" (page 123) for
more information. You can use the netstat or ndstat commands to examine
the number of errors and packet collisions associated with each network inter
face. See IIMonitoring TCP lIP performance" (page 133) for more information.

157

Tuning networking resources

Case study: network overhead caused by X clients

In this study, users report that the response time to key presses and mouse
movement is occasionally very slow during the working day. They also report
that resizing and moving windows is also very slow at certain times. This
performance is unacceptable for the interactive applications being run -
word processing, spreadsheets, e-mail, desktop publishing, and graphics
processing.

System configuration

The system's configuration is as follows:

• Ethernet-based (10Base2) LAN.

• 10 X terminals - used for running applications that place little processing
and memory load on the main file server.

• 12 PC-based workstations running the seQ OpenServer Desktop System -
these run applications locally rather than on the file server.

• File server - a two Pentium SOMHz multiprocessor machine with a high
specification network interface card.

• Two host servers for the X terminals - both servers are based on the
80486DX2 running at 66MHz.

From regular performance monitoring, it is known that there is no perfor
mance problem caused by X clients running on the two host servers. Users are
encouraged to run applications locally if they have workstations.

Defining a performance goal

The system administrator is asked to investigate the source of the problem,
and suggest means to improve the response time.

Collecting data

158

The system administrator runs the netstat -i command on several worksta
tions to record networking statistics throughout the working day. A sampling
interval of one minute is specified and the output is written to a file in the Itmp
directory:

netstat -i 60 > Itmp/netstat_op

The administrator runs the command on several workstations to try to elim
inate the possibility that faulty network interface cards are the cause of the
problem.

Performance Guide

Case study: network overhead caused by X clients

The recorded output shows occasional short periods when the network is
overloaded (for clarity, only the statistics for the network interface xxxO are
shown in this example):

input (xxxO) output
packets errs packets errs colls

110 0 101 0 0
78 0 66 0 0
85 1 75 2 23
180 2 123 1 42
120 1 55 1 18
87 0 67 0 2
67 0 54 0 0

At these times, the numbers of input and output errors are non-zero, and the
number of collisions approaches 30% of output packets. The same behavior is
observed on all the workstations on which statistics were gathered.

If the periods of heavy loading are excluded, the frequency of packet colli
sions approaches 0%.

Formulating a hypothesis

From the results of running netstat, the system administrator suspects that
some applications must be moving large amounts of data across the network.
Careful examination of the figures shows that the network is overloaded
approximately 5% of the time. Periods of high loading generally last only a
few minutes and seem to occur in bursts. Such behavior is typical if large files
are transferred using NFS. It is unlikely to be the result of network traffic
caused by remote X clients as these are run locally where possible. Possible
culprits are programs used to preview PostScript and graphics image files,
DTP packages, and screen-capture utilities.

Getting more specifics

With the cooperation of several users, the administrator monitors network
performance using netstat over a period of 30 minutes. During this period the
users run the suspect applications to load and manipulate large files across
the network The outcome of this investigation is that graphics image pre
viewers and screen-capture utilities seem to cause the most network over
head. The files being viewed or created are often several megabytes in size.

159

Tuning networking resources

Making adjustments to the system

160

There are several things that can be done to reduce the peak load on the net
work:

• Encourage users to save and load graphics images to and from the local
disk on the workstation they are using. These files may then be copied to
the file server when the network is less busy.

• Run screen capture and graphics preview utilities on dedicated worksta
tions rather than on X terminals.

• Splitting the network into several subnets might help if the nodes on the
network can easily be divided into logically distinct groups. However, this
may cause more CPU overhead on the file server if it is is used as the router
between the subnets. This solution is more expensive and may make the
problem worse if the wrong network topology is chosen.

Performance Guide

Chapter 7

Tuning system call activity

This chapter is of interest to application programmers who need to invest
igate the level of activity of system calls on a system.

System calls are used by programs and utilities to request services from the
kernel. These can involve passing data to the kernel to be written to disk,
finding process information and creating new processes. By allowing the ker
nel to perform these services on behalf of an application program, they can be
provided transparently. For example, a program can write data without
needing to be concerned whether this is to a file, memory, or a physical device
such as disk or tape. It also prevents programs from directly manipulating
and accidentally damaging system structures.

System calls can adversely affect performance because of the overhead
required to go into system mode and the extra context switching that may
result.

Viewing system call activity

System call activity can be seen with sar -c (or mpsar -c for SMP):

23:59:44 scall/s sread/s swrit/s fork/s exec/s rchar/s wchar/s
23:59:49 473 9 0 0.09 0.12 292077 421
23:59:54 516 13 3 0.03 0.03 367668 574
23:59:59 483 13 3 0.01 0.02 366992 566

Average 489 12 2 0.04 0.06 338280 512

scall/s indicates the average number of system calls per second averaged
over the sampling interval. Also of interest are sread/ s and swri t/ s which
indicate the number of read(S) and write(S) calls, and rchar / s and wchar / s
which show the number of characters transferred by them.

161

Tuning system call activity

If you are an applications programmer and the SCO OpenServer Development
System is installed on your system, you can use prof(CP) to examine the
results of execution profiling provided by the monitor(S) function. This
should show where a program spends most of its time when it is executing.
You can also use the trace(CP) utility to investigate system call usage by a pro
gram.

Identifying excessive read and write system call activity

Normally, read and write system calls should not account for more than half
of the total number of system calls. If the number of characters transferred by
each read (rchar/s I sread/s) or write (wchar/s I swrit/s) call is small, it is
likely that some applications are reading and writing small amounts of data
for each system call. It is wasteful for the system to spend much of its time
switching between system and user mode because of the overhead this incurs.

It may be possible to reduce the number of read and write calls by tuning the
application that uses them. For example, a database management system
may provide its own tunable parameters to enable you to tune the caching it
provides for disk I/O.

Viewing process fork and exec activity

fork/ s and exec/ s show the number of fork(S) and exec(S) calls per second. If
the system shows high fork and exec activity, this may be due to it running a
large number of shell scripts. To avoid this, one possibility is to rewrite the
shell scripts in a high-level compiled language such as C.

Viewing AIO activity

If applications are using asynchronous I/O (AIO) to disk, you can use the -0
option to sar(ADM) (or mpsar(ADM) for SMP) to examine the performance of
AIO requests. The values reported include the number of AIO read and write
requests per second, and the total number of lKB blocks (both read and write)
being handled per second. The %direct column of the report shows the per
centage of AIO requests that are passed directly to the disk driver by the
POSIX.lb aio functions defined in the Software Update for Database Systems
(SUDS) library. Other AIO requests are handled by the aio(HW) driver.

Viewing IPC activity

162

You can use the sar -m command (or mpsar -m for SMP) to see how many Sys
tem V interprocess communication (IPC) message queue and semaphore
primitives are issued per second. Note that you can also use the ipcs(ADM)
command to report the status of active message queues, shared memory seg
ments, and semaphores.

Performance Guide

-- ~----~~- ._- --- -----~~--

Viewing system call activity

Semaphore resources
Semaphores are used to prevent processes from accessing the same resource,
usually shared memory, at the same time.

The number of System V semaphores configured for use is controlled by the
kernel parameter SEMMNS.

If the sema/s column in the output from sar -m shows that the number of
semaphore primitives called per second is high (for example, greater than
100), the application may not be using !PC efficiently. It is not possible to
recommend a value here. What constitutes a high number of semaphore calls
depends on the use to which the application puts them and the processing
power of the system running the application.

System V semaphores are known to be inefficient and adversely affect the per
formance of multiprocessor systems. This is because:

• They increase contention between processors - this reduces scaling and
prevents the available CPU power being used effectively.

• They increase activity on the run queues as several processes sleeping on a
semaphore may be woken when its state changes - this increases system
overhead.

• They increase the likelihood of context switching - this also increases sys
tem overhead.

If you are an applications programmer, consider using the SUDS library
routines instead; these implement more efficient POSIX.lh semaphores. The
number of POSIX.lb semaphores configured for use is controlled by the kernel
parameter SEM_NSEMS_MAX.

Some database management systems may use a sleeper driver to synchronize
processes. (This may also be referred to as a post-wait driver.) If this is not
enabled, they may revert to using less efficient System V semaphores. See the
documentation provided with the database management system for more in
formation.

For more information on the kernel parameters that you can use to configure
semaphores, see #Semaphores" (page 216) and #Semaphore parameters" (page
217).

Messages and message queue resources
Messages are intended for interprocess communication which involves small
quantities of data, usually less than lKB. Between being sent and being
received, the messages are stored on message queues. These queues are
implemented as linked lists within the kernel.

163

Tuning system call activity

164

Under some circumstances, you may need to increase resources allocated for
messages and message queues above the default values defined in the
mtune(F) file. Note that the kernel parameters defined in mtune set system
wide limits, not per-process limits.

Follow the guidelines below when changing the kernel parameters that con
trol the configuration of message queues:

• Each process that calls msgget(S) with either of the flags IPC_CREAT or
IPC_PRIV ATE set obtains an ID for a new message queue.

• The total number of available message headers (MSGTQL) must be less
than or equal to 16383. This limits the total number of messages system
wide because each unread message must have a header.

• The total number of segments configured for use (MSGSEG) must be less
than or equal to 32768. This limits the total number of messages system
wide because each message consists of at least one segment.

• The size of each message segment (MSGSSZ) is specified in bytes and must
be a multiple of 4 in the range 4 to 4096. Each message is allocated enough
segments to hold it; any remaining space in the last segment allocated to a
message is unused. A small value of MSGSSZ is suitable for systems which
will send and receive many small messages. A large value is suitable if
messages are fewer and larger. Small segments require more processing
overhead by the kernel as it keeps track of them; large segments can be
wasteful of memory.

• The total amount of memory reserved for use by message data is controlled
by the product of the number of segments and the segment size:

MSGSEG * MSGSSZ

This value must be less than or equal to 128KB (131072 bytes).

• Increase the size of the map used for managing messages (MSGMAP) if a
large number of small messages are processed. Typically, you should set
the map size to half the number of memory segments configured
(MSGSEG). Do not increase MSGMAP to a value greater than that of
MSGSEG.

• The amount of message data allowed in an individual queue (MSGMNB)
must be less than or equal to 64KB - 4 bytes (that is, less than or equal to
65532 bytes).

• The maximum length of an individual message is limited by the value of
MSGMAX. Although the recommended maximum is 8192 bytes (8KB), the
kernel can support messages up to 32767 bytes in length. Note, however,
that the message size may also be limited by the value of MSGMNB.

Performance Guide

Viewing system call activity

The following table shows how to calculate the maximum values for these
parameters based on the value of MSGSSZ. Note that MSGSSZ must be a
multiple of 4 in the range 4 to 4096:

Table 7-1 Calculation of maximum value of message parameters

Parameter

MSGMAP
MSGMAX
MSGMNB
MSGMNI
MSGSEG
MSGTQL

Maximum value

131072 / MSGSSZ
32767
65532
1024
131072 / MSGSSZ
MSGMNB / MSGSSZ

For more information on the kernel parameters that you can use to configure
message queues, see "Message queues" (page 213) and "Message queue
parameters" (page 215).

Shared memory resources

Shared memory is an extremely fast method of interprocess communication.
As its name suggests, it operates by allowing processes to share memory seg
ments within their address spaces. Data written by one process is available
immediately for reading by another process. To prevent processes trying to
access the same memory addresses at the same time, known as a race condi
tion, the processes must be synchronized using a mechanism such as a sema
phore.

The maximum number of shared-memory segments available for use is con
trolled by the value of the kernel parameter SHMMNI. The maximum size in
bytes of a segment is determined by the value of the kernel parameter
SHMMAX.

For more information on the kernel parameters that you can use to configure
shared memory, see "Shared memory" (page 218) and "Shared memory
parameters" (page 218).

SUDS library spin locks and latches
If your application uses spin locks and latches from the SUDS library to syn
chronize processes, you can use the -L option to sar(ADM) (or mpsar(ADM)
for systems with an sea SMP License) to view their activity.

165

Tuning system call activity

These latches allow processes to spin or sleep while waiting to acquire a latch.
Alternatively, a process can be made to sleep if it has been spinning for a
given time period without being able to acquire a latch. This prevents it
spending an unnecessarily long time spinning. It is efficient for a process to
spin for a short time to avoid the system overhead that a context switch
would cause. Process that wait a long time for a latch should sleep to avoid
wasting CPU time.

See the sar(ADM) manual page for more information about the latch activity
reported by the -L option.

The following table summarizes the commands that can be used to determine
if a system is suffering under heavy system call activity:

Table 7·2 Viewing system call activity

Command Field Description

[mp]sar-c scall/s total number of all system calls per second
sread/s read system calls per second
swrit/s write system calls per second
fork/s fork system calls per second
exec/s exec system calls per second
rchar/s characters transferred by read system calls per

second
wchar/s characters transferred by write system calls per

second
ipcs -a status of System V !PC facilities
[mp]sar-m msg/s message queue primitives per second

sema/s semaphore primitives per second
[mp]sar-O %direct percentage of AlO requests using the POSIX.lb

aio functions

Reducing system call activity

166

Reducing most system call activity is only possible if the source code for the
programs making the system calls is available. H a program is making a large
number of read and write system calls that each transfer a small number of
bytes, then the program needs to be rewritten to make fewer system calls that
each transfer larger numbers of bytes.

Performance Guide

Case study: semaphore activity on a database server

Other possible sources of system call activity are applications that use
interprocess communication (semaphores, shared memory, and message
queues), and record locking. You should ensure that the system has sufficient
of these resources to meet the demands of the application. Most large applica
tions such as database management systems include advice on tuning the
application for the host operating system. They may also include their own
tuning facilities, so you should always check the documentation that was sup
plied with the application.

Case study: semaphore activity on a database server

In this study, a site has installed a relational database on a multiprocessor sys
tem. The database gives the choice of using System V semaphores or the
sleeper driver (sometimes called the post-wait driver) to synchronize pro
cesses. The object is to investigate which of these options will maximize the
number of transactions that can be processed per second and the response
time for the user.

System configuration

The system's configuration is as follows:

• Multiprocessor - 2 Pentium 60MHz processors.

• EISA bus.

• 96MB of RAM.

• 96MB of swap space.

• 14GB of hard disk (two arrays of seven 1GB SCSI-2 disks).

• One Bus Mastering DMA Ethernet network card with a 16KB buffer and 32-
bit wide data path.

The database server does not act as host machine to any users directly; instead
there are five host machines connected to the LAN which serve an average of
100 users each.

Defining a performance goal

The performance goal in this study is to compare the performance of the data
base when using System V semaphores and when using the sleeper driver.

I
NOTE To configure the sleeper driver into the kernel, change the second
field of the line in the file letc/conflsdevice.dlsleeper to read 1/ Y ". Then relink
and reboot the kernel.

167

Tuning system call activity

Collecting data

To monitor the performance, an in-house benchmark is used for an hour with
the system configured to use System V semaphores, and then with it using the
sleeper driver. The benchmark measures the minimum, maximum, and aver
age transaction times and the total throughput in transactions per second.

The result of running the benchmark is that the best performance is achieved
using the sleeper driver.

Formulating a hypothesis

When the database is using System V semaphores, the system may be spend
ing too much time in kernel mode executing semaphore calls. The benchmark
run using the sleeper driver gives better results because it is an enhancement
specifically aimed at improving the performance of relational databases. It
allows an RDBMS to synchronize built-in processes without the high overhead
of switching between user mode and system mode associated with System V
semaphores.

Getting more specifics

168

To test the hypothesis, mpsar -u is used to display the time that the system
spent in system mode while each benchmark was being run. For the bench
mark using the sleeper driver, typical results were:

13:55:00 %usr %sys %wio %idle

14:20:00 75
14:25:00 72
14:30:00 69
14:35:00 77

20
23
24
19

2
1
5

4

3
4
2
o

The averaged performance of all the CPUs was excellent with low percentages
spent in system mode, idle waiting for I/O, or idle.

Performance Guide

Case study: semaphore activity on a database server

For the run using semaphores, the results were:

16:08:00 %usr %sys %wio %idle

16:48:00 55 38 6 0
16:43:00 59 32 7 2
16:58:00 61 34 4 1
16:53:00 58 38 2 2

The system spends more time in system mode and waiting for I/O when Sys
tem V semaphores are used. The benchmark results indicate that transaction
throughput and response time are approximately 10% better when the sleeper
driver is used.

Making adjustments to the system

The database is configured to use the sleeper driver as this provides the best
performance for the benchmark. The system should be monitored in every
day use to evaluate its performance under real loading.

Vendors of the database management systems are continually improving their
products to use more sophisticated database technologies. If you upgrade the
database management system to a version that supports POSIX.1b sema
phores, you may need to evaluate if these should be used instead of the
sleeper driver.

169

Tuning system call activity

170 Performance Guide

Appendix A

Tools reference

A variety of tools are available to monitor system performance or report on
the usage of system resources such as disk space, interprocess communication
(IPC) facilities, and pipes:

d£ Reports the amount of free disk blocks on local disk divisions. See
"df - report disk space usage" (page 172) and d£(C) for more infor
mation. Also see the descriptions of the related commands:
dfspace(C) and du(C).

ipcs Reports the status of System V interprocess communication (IPC)
facilities - message queues, semaphores, and shared memory. See
ipcs(ADM) for more information.

netstat Reports on STREAMS usage and various network performance stat
istics. It is particularly useful for diagnosing if a network is over
loaded or a network card is faulty. See netstat(TC) for more informa
tion. See also ndstat(ADM) which reports similar information.

nfsstat Reports NFS statistics on NFS servers and clients. It is particularly
useful for detecting problems with NFS configuration. See
nfsstat(NADM) for more information.

ping Can be used to test connectivity over a network. See ping(ADMN)
for more information.

pipestat Reports on the usage of ordinary and high performance pipes. See
pipe(ADM) for more information.

ps Reports on processes currently occupying the process table. See lipS
- check process activity" (page 173) and ps(C) for more information.

sar Samples the state of the system and provides reports on various
system-wide activities. See "sar - system activity reporter" (page
176) and sar(ADM) for more information.

171

Tools reference

swap Reports on the amount of available swap space or configures addi
tional swap devices. See "swap - check and add swap space" (page
179) and swap(ADM) for more information.

timex Reports on system resource usage during the execution of a
command or program. See "timex - examine system activity per
command" (page 180) and timex(ADM) for more information. See
also the description of the related command, time(C).

traceroute
Traces the route that network packets take to reach a given destina
tion. ~ee traceroute(ADMN) for more information.

vmstat Reports on process states, paging and swapping activity, system
calls, context switches and CPU usage. See "vmstat - virtual
memory statistics" (page 181) and vmstat(C) for more information.

elf - report disk space usage

When attempting to achieve optimal performance for the I/O subsystem, it is
important to make sure that the disks have enough free space to do their job
efficiently. The d£(C) command, and its close relative d£space(C), enable you
to see how much free space there is. The following example shows the output
from d£ and d£space on the same system:

$ df
I
lu
Ipublic
I london
$ dfspace
I
lu
I public
I london

(ldev/root
(ldev/u
(I dev Ipublic
(wansvr:/london

) :

) :

) :

) :

37872 blocks
270814 blocks
191388 blocks
149750 blocks

46812 i-nodes
36874 i-nodes
55006 i-nodes

o i-nodes

Disk space: 18.49 ME of 292.96 ME available (6.31%).
Disk space: 132.23 MB of 629.98 ME available (20.99%).
Disk space: 93.45 ME of 305.77 MB available (30.56%).
Disk space: 73.12 MB of 202.56 ME available (36.10%).

Total Disk Space: 317.29 ME of 1431.29 MB available (22.17%).
$ df -v
Mount Dir Filesystem blocks used free %used

Idev/root 600000 562128 37872 93%
lu Idev/u 1290218 1019404 270814 79%
Ipublic Idev/public 626218 434830 191388 69%
I london wansvr:/london 414858 265108 149750 63%

The -i option to d£ also provides additional information about the number of
free and used inodes.

d£space is a shell script interface to d£. Without options, it presents the file
system data in a more readable format than d£. When used with its options,
d£ provides more comprehensive information than d£space.

172 Performance Guide

ps - check process activity

In the above example, there are three local filesystems:

• /dev/root

• /dev/u

• /dev/public

and one remote filesystem:

• wansvr:/london

All of these local filesystems have adequate numbers of blocks and inodes
remaining for use. You should aim to keep at least 15% of free space on each
filesystem. This helps to prevent fragmentation which slows down disk I/O.
In the above example there are no problems with the filesystems /dev/u and
jdev/public which are less than 85% used. The root file system (/dev/root), how
ever, is 93% full. This file system is relatively static apart from the temporary
file storage directories /tmp and /usr/tmp. In the configuration shown, there is
very little free space in these directories. Possible solutions are to create divi
sions to hold these directories on other disks, or increase the size of the root
filesystem.

du(C) is another command that can be used to investigate disk usage. It differs
from df and dfspace because it reports the number of 512-byte blocks that
files and directories contain rather than the contents of an entire filesystem. If
no path is specified, du reports recursively on files and directories in and
below the current directory. Its use is usually confined to sizing file and direc
tory contents.

ps - check process activity

The ps(C) command obtains information about active processes. It gives a
"snapshot" picture of what processes are executing, which is useful when you
are trying to identify what processes are loading the system. Without options,
ps gives information about the login session from which it was invoked. If
you use ps as user root, you can obtain information about all the system's pro
cesses. The most useful options are as follows:

Table A-1 ps options

Option

-e
-f
-1
-u

Reports on:

print information on all processes
generate a full listing
generate a long listing (includes more fields)
print information on a specified user (or users)

173

Tools reference

174

With various combinations of the above options you can, amongst other
things, find out about the resource usage, priority and state of a process or
groups of processes on the system. For example, below is an extract of output
after typing ps -el:

F S UID PID PPID C PRI NI ADDR SZ WCHAN TrY TIME CMD
31 S 0 0 0 a 95 20 1f21 0 f0299018 0:00 sched
20 S 0 1 0 0 66 20 252 40 eOOOOOOO 30:37 init
31 S 0 2 0 0 95 20 254 0 fOOc687c 0:01 vhand
31 S 0 3 0 0 81 20 256 0 fOObe318 5:19 bdflush

20 S 0 204 1 a 76 20 416 96 f023451a 1:56 cron
20 S 0 441 1 0 75 20 972 44 f01076b8 03 0:00 getty
20 S 20213 8783 1 0 73 20 1855 48 f011bae4 006 0:04 ksh
20 S 13079 25014 24908 0 75 20 155c 48 f010ee28 p4 0:01 ksh
20 R 13079 25016 24910 22 36 20 506 144 f010ed58 p2 0:03 vi
20 S 12752 27895 26142 0 73 20 7bO 40 f011f75c 010 0:00 sh
20 Z 13297 25733 25153 0 51 20 0:00 <defunct>
20 R 13297 26089 25148 45 28 20 8a8 48 f012123c p12 0:01 ksh
20 S 12752 26142 1 0 73 20 1ce2 48 f01214ec 010 0:04 csh
20 R 12752 28220 27898 55 25 20 1e16 188 f010f6bO p25 0:01 email
20 S 12353 27047 25727 0 73 20 161c 44 f012179c p13 0:00 ksh
20 0 13585 28248 28205 36 37 20 cc9 92 p23 0:00 ps
20 S 20213 28240 8783 0 75 20 711 140 f01156f8 006 0:00 vi

The field headed F gives information about the status of a process as a combi
nation of one or more octal flags. For example, the sched process at the top
has a setting of 31 which is the sum of the flags 1,10 and 20. This means that
the sched process is part of the kernel (1), sleeping at a priority of 77 or more
(10), and is loaded in primary memory (20). The priority is confirmed by con
sulting the PRI field further along the line which displays a priority of 95. In
fact both sched (the swapper) and vhand (the paging daemon) are inactive
but have the highest possible priority. Should either of them need to run in the
future they will do so at the context switch following their waking up as no
other process will have a higher priority. For more information on the octal
flags displayed and their interpretation see ps(C).

The s column shows the state of each process. The states shown in the exam
ple: S, R, a and Z mean sleeping (waiting for an event), ready-to-run, on the
processor (running) and zombie (defunct) respectively. There is only one pro
cess running, which is the ps command itself (see the penultimate line). Every
other process is either waiting to run or waiting for a resource to become
available. The exception is the zombie process which is currently terminating;
this entry will only disappear from the process table if the parent issues a
wait(S) system call.

Performance Guide

ps - check process activity

The current priority of a process is also a useful indicator of what a process is
doing. Check the value in the PRI field which can be interpreted as shown in
the following table:

Table A-2 Priority values

Priority

95

88

81

80

76

75

74
73

66

65

51
o

Meaning

swapping/paging

waiting for an inode

waiting for I/O

waiting for buffer

waiting for pipe

waiting for tty input

waiting for tty output

waiting for exit

sleeping - lowest system mode priority

highest user mode priority

default user mode priority

lowest user mode priority

Looking back at the above ps output you can see, for example, that the getty
process has a priority of 75, as it is (not surprisingly) waiting for some
keyboard input. Whereas priority values between 66 and 95 are fixed for a
specific action to be taken, anything lower than 66 indicates a user mode pro
cess. The running process in the above example (ps) is at priority 37 and is
therefore in user mode.

The C field indicates the recent usage of CPU time by a process. This is useful
for determining those processes which are making a machine slow currently.

The NI field shows the nice value of a process. This directly affects the calcula
tion of its priority when it is being scheduled. All processes in the above
example are running with the default nice value of 20.

The TIME field shows the minutes and seconds of CPU time used by processes.
This is useful for seeing if any processes are CPU hogs, or runaway, gobbling
up large amounts of CPU time.

175

Tools reference

The sz field shows the swappable size of the process's data and stack in lKB
units. This information is of limited use in determining how much memory is
currently occupied by a process as it does not take into account how much of
the reported memory usage is shared. Totaling up this field for all memory
resident processes will not produce a meaningful figure for current memory
usage. It is useful on a per process basis as you can use it to compare the
memory usage of different versions of an application.

I
NOTE If you booted your system from a file other than /unix (such as
/unix. old), you must specify the name of that file with the -n option to ps.
For example, ps -ef -n unix.old.

sar - system activity reporter

176

sar(ADM) provides information that can help you understand how system
resources are being used on your system. This information can help you solve
and avoid serious performance problems on your system.

The individual sar options are described on the sar(ADM) manual page.

For systems with an SCO SMP License, mpsar(ADM) reports systemwide
statistics, and cpusar(ADM) reports per-CPU statistics.

The following table summarizes the functionality of each sar, mpsar, and cpu
sar option that reports an aspect of system activity:

Table A-3 sar, cpusar, and mpsar options

Option

-a
-A
-b
-B
-c
-d
-F
-g
-h
-I
-j
-L

Activity reported

file access operations
summarize all reports
buffer cache
copy buffers
system calls
block devices including disks and all SCSI peripherals
floating point activity (mpsar only)
serial I/O including overflows and character block usage
scatter-gather and physical transfer buffers
inter-CPU interrupts (cpusar and mpsar only)
interrupts serviced per CPU (cpusar only)
latches

(Continued on next page)

Performance Guide

sar - system activity reporter

Table A-3 sar, cpusar, and mpsar options
(Continued)

Option

-m
-n
-0
-p
-q
-Q
-r
-R
-S
-u
-v
-w
-y

How sar works

Activity reported

System V message queue and semaphores
nameicache
asynchronous I/O (AIO)
paging
run and swap queues
processes locked to CPUs (cpusar and mpsar only)
unused memory and swap
process scheduling
SCSI request blocks
CPU utilization (default option for all sar commands)
kernel tables
paging and context switching
terminal driver including hardware interrupts

System activity recording is disabled by default on your system. If you wish
to enable it, log in as root, enter the command lusr/lib/sarlsar_enable -y, then
shut down and reboot the system. See sar_enable(ADM) for more informa
tion.

Once system activity recording has been started on your system, it measures
internal activity using a number of counters contained in the kernel. Each
time an operation is performed, this increments an associated counter.
sar(ADM) can generate reports based on the raw data gathered from these
counters. sar reports provide useful information to administrators who wish
to find out if the system is performing adequately. sar can either gather sys
tem activity data at the present time, or extract historic information collected
in data files created by sadc(ADM) (System Activity Data Collector) or
sal(ADM).

177

Tools reference

If system activity recording has been started, the following crontab entries
exist for user sys in the file /usr /spool/cron/crontabs/sys:

o * * * 0-6 /usr/lib/sa/sa1
20,40 8-17 * * 1-5 /usr/lib/sa/sa1

The first sal entry produces records every hour of every day of the week. The
second entry does the same but at 20 and 40 minutes past the hour between 8
am and 5 pm from Monday to Friday. So, there is always a record made every
hour, and at anticipated peak times of activity recordings are made every 20
minutes. If necessary, root can modify these entries using the crontab(C) com
mand.

The output files are in binary format (for compactness) and are stored in
lusr/adm/sa. The filenames have the format sadd, where dd is the day of the
month.

Running sar

178

To record system activity every t seconds for n intervals and save this data to
sar _data, enter sar -0 datafile t n on a single processor system, or mpsar -0

datafile t n on a multiprocessor system.

For example, to collect data every 60 seconds for 10 minutes into the file
/tmp/sar _data on a single CPU machine, you would enter:

sar -0 Itmp/sar_data 60 10

To examine the data from datafile, the sar(ADM) command is:

sar [option ...] [-f datafile]

and the mpsar(ADM) and cpusar(ADM) commands are:

mpsar [option . ..] [-f datafile]

cpusar [option . ..] [-f datafile]

Each option specifies the aspect of system activity that you want to examine.
datafile is the name of the file that contains the statistics you want to view.
For example, to view the sar -v report for the tenth day of the most recent
month, enter:

sar -v -f lusr/admlsalsal0

You can also run sar to view system activity in "real time" rather than examin
ing previously collected data. To do this, specify the sampling interval in
seconds followed by the number of repetitions required. For example, to take
20 samples at an interval of 15 seconds, enter:

sar -v 15 20

Performance Guide

swap - check and add swap space

As shipped, the system allows any user to run sar in real time. However, the
files in the JusT/adm/sa directory are readable only by Toot. You must change
the permissions on the files in that directory if you want other users to be able
to access sar data.

With certain options, if there is no information to display in any of the
relevant fields after a specified time interval then a time stamp will be the
only output to the screen. In all other cases zeros are displayed under each
relevant column.

When tuning your system, we recommend that you use a benchmark and
have the system under normal load for your application.

swap - check and add swap space

Swap space is secondary disk storage that is used when the system considers
that there is insufficient main memory. On a well-configured system, it is pri
marily used for processing dirty pages when free memory drops below the
value of the kernel parameter GPGSLO. If memory is very short, the kernel
may swap whole processes out to swap. Candidates for swapping out are
processes that have been waiting for an event to complete or have been
stopped by a signal for more than two seconds. If a process is chosen to be
swapped out then its stack and data pages are written to the swap device.
(Initialized data and program text can always be reread from the original exe
cutable file on disk).

The system comes configured with one swap device. Adding additional swap
devices with the swap(ADM) command makes more memory available to
user processes. Swapping and excessive paging degrade system performance
but augmenting the swap space is a way to make more memory available to
executing processes without optimizing the size of the kernel and its internal
data structures and without adding physical memory.

The following command adds a second swap device, /dev/swapl, to the sys
tem. The swap area starts 0 blocks into the swap device and the swap device
is 16000 512-byte blocks in size.

swap -a /dev/swap1 0 16000

Use the swap -1 command to see statistics about all the swap devices
currently configured on the system. You can also see how much swap is con
figured on your system at startup by checking nswap. This is listed in the con
figuration and diagnostic file jusT/adm/messages as a number of 512-byte blocks.

179

Tools reference

Running the swap -a command adds a second swap device only until the sys
tem is rebooted. To ensure that the second swap device is available every
time the system is rebooted, use a startup script in the /etc/rc2.d directory. For
example, you could call it S09AddSwap.

In this release, a swap area can also be created within a file system to allow
swapping to a file. To do this, you must marry a block special device to a reg
ular file. For more information, see swap{ADM) and marry{ADM).

timex - examine system activity per command

180

timex{ADM) times a command and reports the system activities that occurred
on behalf of the command as it executed. Run without options it reports the
amount of real (clock) time that expired while the command was executing
and the amount of CPU time (user and system) that was devoted to the pro
cess. For example:

timex command command_options
real 6:54.30
user 53.98
sys 14.86

Running timex -s is roughly equivalent to running sar -A, but it displays sys
tem statistics only from when you issued the command until the command
finished executing. If no other programs are running, this information can
help identify which resources a specific command uses during its execution.
System consumption can be collected for each application program and used
for tuning the heavily loaded resources. Other information is available if the
process accounting software is installed; see timex{ADM) for more informa
tion.

I
NOTE To enable process accounting, log in as root, enter the command
lusrllib/acctlacct_enable -y, then shutdown and reboot the system. See
acct_enable{ADM) for more information.

timex belongs to a family of commands that report command resource usage.
It can be regarded as an extension to time{ C) which has no options and pro
duces output identical to timex without options. If you wish to use time then
you must invoke it by its full pathname as each of the Bourne, Kom and C
shells have their own built-in version. The output from each of the shell built
ins varies slightly but is just as limited. The C shell, however, does add in
average CPU usage of the specified command.

Performance Guide

vmstat - virtual memory statistics

vmstat - virtual memory statistics

vmstat(C) is a useful tool for monitoring system performance but is not as
comprehensive as sar. vmstat gives an immediate picture of how a system is
functioning. It enables you to see if system resources are being used within
their capacity.

vmstat's default output concentrates on four types of system activity - pro-
cess, paging/swapping, system and CPU activity. If a timing interval is
specified then vmstat produces indefinite output until you press (Del). Con-
sider the following example for the command vmstat 5:

PROCS PAGING SYSTEM CPU
r b w frs dmd sw cch fil pft frp pas pif pis rsa rsi sy cs us su id

1 126 o 64000 0 0 0 0 0 0 0 0 0 0 0 59 34 0 3 97
o 127 o 64000 8 0 0 0 0 0 0 0 0 0 0 47 22 0 2 98
1 126 o 64000 0 0 0 0 0 0 0 0 0 0 0 45 16 0 2 98
o 127 o 64000 0 0 0 0 0 0 0 0 0 0 0 86 23 1 5 94
o 127 o 64000 0 0 0 0 0 0 0 0 0 0 0 24 12 0 1 99
1 129 o 64000 10 0 15 0 55 0 0 0 0 0 o 1369 43 19 42 39
o 130 o 64000 0 0 0 0 0 0 0 0 0 0 0 277 36 2 6 92
o 130 o 64000 0 0 0 0 0 0 0 0 0 0 0 78 26 0 1 99
o 130 o 64000 0 0 0 0 0 0 0 0 0 0 0 117 36 0 1 99
o 130 o 64000 0 0 0 0 0 0 0 0 0 0 0 138 46 0 2 98
o 130 o 64000 0 0 0 0 0 0 0 0 0 0 0 144 51 1 2 97

In this case vmstat displays data at regular intervals. Each display represent
ing an average of the activity over the preceding five second interval.

The PROCS heading encompasses the first three fields of output:

r number of processes on the run queue

b number of processes blocked waiting for a resource

w number of processes swapped out

During the sample period there were no swapped out processes, hardly any
processes on the run queue, and between 126 and 130 blocked processes. Any
process which was ready to run would not spend much time on the run
queue. This conclusion is reinforced by the value of id under the CPU heading
which shows that the system is almost 100% idle most of the time.

The PAGING heading encompasses both paging and swapping activity on the
system. The operating system does not preallocate swap space to running
processes. It only allocates swap space to processes that have been swapped
at least once; this space is only relinquished when such a process terminates.
It does, however, decrease its internal count of available swapp able memory.

181

Tools reference

182

In the above example, the amount of free swap space (frs) remains a constant
64000 (roughly 32MB in 512-byte units). Because this is the amount of swap
originally configured for this system, no swapping or paging out to disk
occurred during the sampling period. This is confirmed by the zero value of
the w field. The fields from pas to rsi also show that no processes or regions
were swapped in or out during the time that vmstat was running.

There is a brief amount of paging activity on the sixth line of output. One or
more processes attempted to access pages that were not currently valid. To
satisfy the demand for these pages, the kernel obtained them from the page
cache (cch) in memory or from file systems on disk but not from swap (sw).

H a process invokes the fork(S) system call, this creates an additional copy, or
child process, of the original process. The new process shares the data or stack
regions of its parent. The pages in these regions are marked copy-on-write (
COW). This is to avoid wasting CPU and memory resources because the usual
purpose of a fork is for either the parent or child process to execute a new
command in place of itself. H, instead, the parent or child process tries to
write to a page marked COW, this generates a protection fault (pft) causing
the page fault handler in the kernel to make a copy of the page.

The dmd field accounts for a combination of demand zero pages (those created
and initialized with zeros for data storage) and demand fill pages (those creat
ed and filled with text).

System call (sy) and context switching activity (cs) can also be seen under the
SYSTEM heading.

The -s option to vmstat reports statistics about paging activity since the sys
tem was started or in a specified time interval:

64000 free swap space
12222 demand zero and demand fill pages
25932 pages on swap
44589 pages in cache
28719 pages on file
33791 protection fault
84644 pages are freed

23 success in swapping out a process
o fail in swapping in a process

22 success in swapping in a process
98 swapping out a region
64 swapping in a region

457461 cpu context switches
1870524 system calls

Performance Guide

vmstat - virtual memory statistics

Lines showing large values for pages on swap, success in swapping out a
process, success in swapping in a process, swapping out a region, and
swapping in a region may indicate that excessive swapping or paging is
degrading performance.

The -f option to vmstat provides information about the number of forks (that
is, new processes created) since the system was started or in a specified time
interval. For example, to monitor how many fork system calls are being
invoked every second, use the command vmstat -f 1:

o forks
o forks
2 forks
1 forks
o forks

183

Tools reference

184 Performance Guide

Appendix B

Configuring kernel parameters

Kernel parameters control the allocation of various kernel resources. These
resources are constantly being used, released and recycled, and include:

buffers Recently used data is cached in memory; buffers increase per
formance by reducing the need to read data from disk. Buffers
also allow efficient transfer of data by moving it in large units.

table entries Space in system tables that the kernel uses to keep track of

policies

current tasks, resources, and events.

Governing such things as security, and conformance to various
standards.

Other parameters are used to indicate control the behavior of device drivers
or the available quantity of special resources such as the number of
multiscreens or semaphores.

Each resource limit is represented by a separate kernel parameter. The limit
imposed by a parameter can be decreased or extended, sometimes at the
expense of other resources. Deciding how to optimize the use of these
resources is one aspect of kernel performance tuning.

For a description of the tools available for examining and changing para
meters, see "Configuration tools" (page 188).

For a description of the various kernel parameters that you can change using
the configure(ADM) utility or via the Hardware/Kernel Manager, see "Kernel
parameters that you can change using configure" (page 191).

For a description of the various kernel parameters that you can only change
from the command line using the idtune(ADM) utility, see ''Using idtune to
reallocate kernel resources", (page 190).

185

Configuring kernel parameters

See "Using configure to change kernel resources" (page 189) for a description
of how to run the configure{ADM) utility.

If you have TCP lIP installed on your system, see Appendix C, "Configuring
TCP lIP tunable parameters" (page 225).

If you are using the LAN Manager Client Filesystem (LMCFS), see
"LAN Manager Client Filesystem parameters" (page 223).

When to change system parameters

186

Among the cases in which you may need to reallocate system resources are:

• You install additional physical memory and thus have greater memory
resources to allocate.

• Persistent error messages are being displayed on the system console
indicating that certain resources are used up, such as inodes or table
entries.

• The system response time is consistently slow, indicating that other
resources are too constrained for the system to operate efficiently (as when
too little physical memory is installed).

• Resource usage needs to be tailored to meet the needs of a particular
application.

If one of your performance goals is to reduce the size of the kernel (usually
because the system is paging excessively or swapping), first concentrate on
tunable parameters that control large structures. The following table lists a
small subset of kernel tunable parameters and indicates the cost (or benefit) in
bytes of incrementing (or decrementing) each parameter by a single unit. For
example, if NCLIST set to 200, this requires 200 times 72 bytes, or approx
imately 14KB of memory.

Performance Guide

Parameter

DTCACHEENTS
DTHASHQS
HTCACHEENTS
HTHASHQS
NBUF

NCLIST
NHBUF

NHINODE
NMPBUF

MSGMAP
NSPTTYS
NSTREAM

MAX_INODE
MAX_PROC
MAX_FILE
MAX_REGION

When to change system parameters

Number of bytes per unit parameter

44

8
44

8

1024
72 (64 for the buffer + 8 for the header)
8

8
4096
8
246
80 (52 for the STREAMS header + 28 for the extended
header)
76 per entry added to the dynamic in-core inode table
344 per entry added to the dynamic process table
12 per entry added to the dynamic open file table
76 per entry added to the dynamic region table

Dynamic table parameters such as MAX_PROC usually have their values set
to O. Each table grows in size as more entries are needed. The memory over
head of the grown kernel table can be found by multiplying the values shown
above by the number of table entries reported by getconf(C). For example,
from the Korn shell, you can find the current size of the process table by
entering:

let nproc=344*$(getconf KERNEL_PRO C)
echo "Size of process table in bytes is $nproc"

Specialized applications often require the reallocation of key system resources
for optimum performance. For example, users with large databases may find
that they need more System V semaphores than are currently allocated.

Most of the tunable parameters discussed in this chapter are defined in
letc!conf/cfdlmtune. This file lists the default, maximum and minimum values
respectively of each of the parameters specified. To change the values of
specific tunable parameters manually, use the appropriate tool as described in
#Configuration tools" (page 188).

187

Configuring kernel parameters

Configuration tools

188

The following tools are available for examining and/or changing tunable
parameters:

configure A menu-driven program that allows you to examine and modify
the value of tunable kernel parameters. This program is also
accessible via the Hardware/Kernel Manager. See "Using
configure to change kernel resources" (page 189) and config
ure(ADM) for more information.

getconf This utility reports configuration-dependent values for various
standards and for dynamic kernel tables; use setconf to modify
temporarily those values that relate to dynamic kernel tables. See
"Examining and changing configuration-dependent values" (page
223) and getconf(C) for more information.

idtune Modify the values of some tunable parameters (defined in
/etc/conf/cf.dlmtune) that cannot be modified with configure. See
"Using idtune to reallocate kernel resources" (page 190) and
idtune(ADM) for more information.

iddeftune Run this command to modify the values of certain tunable pa
rameters if you increase the amount of physical memory (RAM)
to more than 32MB. See iddeftune(ADM) for more information.

ifconfig Reconfigure the TCP lIP protocol stack belonging to a single net
work interface. See "Using ifconfig to change parameters for a
network card" (page 225) and ifconfig(ADMN) for more informa
tion.

inconfig Reconfigure default TCP lIP settings for all network interfaces. See
"Using inconfig to change global TCP/IP parameters" (page 226)
and inconfig(ADMN) for more information.

Network Configuration Manager

setconf

Examine, configure, or modify network protocol stacks (chains).
The Network Configuration Manager is the graphical version of
netconfig(ADM). See Chapter 25, "Configuring network connec
tions" in the sea OpenServer Handbook for more information.

Increase dynamic kernel table sizes, or decrease maximum size of
dynamic kernel tables. The new value only remains in force until
the system is next rebooted. See "Examining and changing
configuration-dependent values" (page 223) and setconf(ADM)
for more information.

Performance Guide

Configuration tools

Using configure to change kernel resources

The configure(ADM) utility is a menu-driven program that presents each tun
able kernel parameter and prompts for modification.

To change a kernel parameter using configure, do the following:

1. Enter the following commands as root to run configure:

cd /etdconflC£.d
lconfigure

2. The configure menu displays groups of parameter categories; their indi
vidual meanings are discussed in "Kernel parameters that you can change
using configure" (page 191).

Choose a category by entering the number preceding it. The resources in
that category are displayed, one by one, each with its current value. Enter
a new value for the resource, or to retain the current value, press (Enter).
After all the resources in the category are displayed, configure returns to
the category menu prompt. Return to the Main Menu to choose another
category or exit configure by entering" q".

I NOTE The software drivers associated with a parameter must be
present in the kernel for the setting of the parameter to have any effect.

3. After you finish changing parameters, link them into a new kernel and
reboot your system as described in "Relinking the kernel" in the sea Open
Server Handbook.

NOTE If you wish to set the values of parameters defined in
letc/conf/cfdlmtune from a shell script, you should use the idtune(ADM)
command as described in ~'Using idtune to reallocate kernel resources"
(page 190).

189

Configuring kernel parameters

Using idtune to reallocate kernel resources

190

You cannot use configure to change some kernel parameters because they are
not generally considered to need adjusting. If you do need to alter such a
parameter, log in as root and use the idtune(ADM) command:

cd letdconflcf.d
letdconflbinlidtune resource value

resource is the name of the tunable parameter in uppercase as it appears in
/etc/conf/cfd/mtune (see mtune(F». value is the parameter's new value. Mter
changing the parameter values, relink the kernel, shut down and reboot the
system as described in "Relinking the kernel" in the sea OpenServer Handbook.

You can use the -£ option to idtune to force it to accept a value outside the
range specified by the minimum and maximum values defined in mtune. If
necessary, you can also use the -min and -max options to write new minimum
and maximum values to the mtune file.

I
WARNING The configure and idtune commands write new values defined
for kernel parameters to !etc/conf/cfd/stune (see stune(F». Do not edit mtune
itself as it can be a valuable reference.

The following sections describe the parameters that can only be tuned using
idtune:

• "Boot load extension parameters" (page 222)

• "Buffer cache free list" (page 195)

• "Hardware and device driver parameters" (page 222)

• "Memory management parameters" (page 197)

• "Message queue parameters" (page 215)

• "Semaphore parameters" (page 217)

• "Shared memory parameters" (page 218)

• "STREAMS parameters" (page 213)

• "System parameters" (page 219)

• "LAN Manager Client Filesystem parameters" (page 223)

Performance Guide

Configuration tools

Kernel parameters that you can change using configure

The tunable parameters that you can change using configure (ADM) are
grouped into two sets of categories depending on whether they affect system
performance or configuration:

Performance tun abies

• #Buffer management" (page 192)

• #Processes and paging" (page 195)

• #TTYs" (page 197)

• "Name cache" (page 198)

• #Asynchronous I/O" (page 199)

• "Virtual disks" (page 200)

Configuration tunables

• "User and group configuration" (page 201)

• "Security" (page 203)

• "TTY and console configuration" (page 204)

• "Filesystem configuration" (page 205)

• "Table limits" (page 207)

• "STREAMS" (page 209)

• "Message queues" (page 213)

• "Event queues" (page 216)

• "Semaphores" (page 216)

• "Shared memory" (page 218)

• "Miscellaneous system parameters" (page 219)

• 'Miscellaneous device drivers and hardware parameters" (page 220)

191

Configuring kernel parameters

192

Buffer management
The following tunables may be used to tune the performance of your system's
buffers.

NBUF
The amount of memory in IKB units allocated for use by the system buffer
cache at boot time. The system buffer cache is memory used as a tem
porary storage area between the disk and user address space when read
ing to or writing from mounted filesystems.

If NBUF is set to the default of 0, the system calculates the size of the buffer
cache automatically.

The size of the buffer cache is displayed as "kernel i/o bufs" at boot time,
and is recorded along with other configuration information in
lusrladmlmessages. The hit rate on the buffer cache increases as the number
of buffers is increased. Cache hits reduce the number of disk accesses and
thus may improve overall disk I/O performance. Study the sar -b report
for statistics about the cache hit rate on your system. See "Increasing disk
I/O throughput by increasing the buffer cache size" (page 75) for more in
formation.

The system buffer cache typically contains between 300 and 600 buffers,
but may contain 8000 or more buffers on a large server system. The max
imum possible number of buffers is 450000. On HTFS, EAFS, AFS, and S5IK
filesystems, each buffer uses IKB of memory plus a 72-byte header. Hav
ing an unnecessarily large buffer cache can degrade system performance
because too little space is available for executing processes.

If you are using the DTFS filesystem, buffers are multiples of 512 bytes in
size ranging from 512 bytes to 4KB. The number of buffers in the buffer
cache is not constant in this case and varies with demand.

For optimal performance, you should adjust the number of hash queues
(NHBUF) when you adjust the value of NBUF.

NHBUF
Specifies how many hash queues to allocate for buffer in the buffer cache.
These are used to search for a buffer (given a device number and block
number) rather than have to search through the entire list of buffers. This
value of NHBUF must be a power of 2 ranging between 32 and 524288.
Each hash queue costs 8 bytes of memory. The default value of NHBUF is
o which sets the number of hash queues automatically:

• On single processor machines, NHBUF is set to the power of 2 that is
less than or equal to half the value of NBUF.

• On multiprocessor machines, NHBUF is set to the power of 2 that is
greater than or equal to twice the value of NHBUF. This reduces the
likelihood of contention between processors wanting to access the same
hash queue.

Performance Guide

Configuration tools

NMPBUF
Number of 4KB pages of memory used for the following types of multi
physical buffers:

• 16KB scatter-gather buffers (also known as cluster buffers). These are
used to perform transfers of contiguous blocks of data on disk to and
from the buffer cache.

• 4KB transfer buffers. These are used as intermediate storage when mov
ing data between memory and peripheral devices with controllers that
cannot access memory above 16MB.

• 1KB copy request buffers. These are used as intermediate storage when
moving data between the buffer cache and peripheral devices with con
trollers that cannot access memory above 16MB.

NMPBUF should be set larger than 40 for machines with more than 16MB
of memory and many users. The maximum possible size is 512.

If the value of NMPBUF is set to zero (default), the kernel determines a
suitable value automatically at startup. In this case, it sets the value of
NMPBUF in the range 40 to 64 depending on the amount of available
memory.

PLOWBUFS
Amount of buffer cache that is contained in the first 16MB of RAM. It is
expressed as a percentage, and should be as high as possible if the control
lers for the peripheral devices (such as the disks) in your system cannot
perform DMA to memory above the first 16MB (24-bit addressing control
lers). If possible, set PLOWBUFS to 100 to eliminate the need to copy
between buffers above 16MB and the copy buffers (see NMPBUF).

To ascertain if a SCSI host adapter can access memory above the first 16MB
(32-bit addressing), consult the initialization message for its driver in the
file /usr/adm/messages. If the string fts= is followed by one or more charac
ters including a d, the controller is 32-bit, otherwise it is 24-bit.

The default value of PLOWBUFS is 30, and can range between 1 and 100%.
You need only change this parameter if your system has more than 16MB
of RAM.

PUTBUFSZ
Specifies the size of the circular buffer, putbuf, that contains a copy of the
last PUTBUFSZ characters written to the console by the operating system.
The contents of putbuf can be viewed by using crash(ADM). The default
and minimum value is 2000; the maximum is 10000.

NlllNODE
Specifies the size of the inode hash table which must be a power of 2. It
ranges from 64 to 8192 with a default value of 128.

193

Configuring kernel parameters

BDFLUSHR
Specifies the rate for the bdflush daemon process to run, checking the need
to write the filesystem buffers to the disk. The range is 1 to 300 seconds.
The value of this parameter must be chosen in conjunction with the value
of NAUTOUP. For example, it is nonsensical to set NAUTOUP to 10 and
BDFLUSHR to 100; some buffers would be marked dirty 10 seconds after
they were written, but would not be written to disk for another 90 seconds.
Choose the values for these two parameters considering how long a dirty
buffer may have to wait to be written to disk and how much disk-writing
activity will occur each time bdflush becomes active. For example, if both
NAUTOUP and BDFLUSHR are set to 40, buffers are 40 to 80 seconds old
when written to disk and the system will sustain a large amount of disk
writing activity every 40 seconds. If NAUTOUP is set to 10 and BDFLUSHR
is set to 40, buffers are 10 to 50 seconds old when written to disk and the
system sustains a large amount of disk-writing activity every 40 seconds.
Setting NAUTOUP to 40 and BDFLUSHR to 10 means that buffers are 40 to
50 seconds old when written, but the system sustains a smaller amount of
disk writing activity every 10 seconds. With this setting, however, the sys
tem may devote more overhead time to searching the block lists.

WARNING If the system crashes with BDFLUSHR set to 300 (its max
imum possible value) then 150 seconds worth of data, on average, will
be lost from the buffer cache. A high value of BDFLUSHR may radically
improve disk 110 performance but will do so at the risk of significant
data loss.

NAUTOUP
Specifies the buffer age in seconds for automatic filesystem updates. A
system buffer is written to disk when the bdflush daemon process runs
and the buffer has been scheduled for a write for NAUTOUP seconds or
more. This means that not all write buffers will be flushed each time
bdflush runs. This enables a process to perform multiple writes to a buffer
but fewer actual writes to a disk. This is because bdflush will sometimes
run less than NAUTOUP seconds after certain buffers were written to.
These will remain scheduled to be written until the next appropriate flush.

The ratio of writes between physical memory to kernel buffer and buffer to
disk will tend to increase (that is, fewer actual disk writes) if the ratio
between the flush rate BDFLUSHR and NAUTOUP decreases. Specifying a
smaller limit increases system reliability by writing the buffers to disk
more frequently and decreases system performance. Specifying a larger
limit increases system performance at the expense of reliability. The
default value is 10, and ranges between 0 (flush all buffers regardless of
how short a time they were scheduled to be written) and 60 seconds.

194 Performance Guide

Configuration tools

Buffer cache free list

I
NOTE This parameter is not tunable using configure(ADM); you must use
the idtune(ADM) command instead as described in ''Using idtune to reallo
cate kernel resources" (page 190).

BFREEMIN
Sets a lower limit on the number of buffers that must remain in the free list.
This allows some (possibly useful) blocks to remain on the free list even
when a large file is accessed. If only BFREEMIN buffers remain on the
freelist, a process requiring one or more buffers may sleep until more
become available. The value of BFREEMIN is usually set to the default and
minimum value of 0; the maximum value is 100. You may see an improve
ment in the buffer cache read and write hit rates reported by sar -b if you
set the value of BFREEMIN to the smaller of NBUF /10 or 100. An improve
ment in performance is most likely on machines that are used primarily for
media copying, uucp transfers, and running other applications that are
both quasi-single-user and access many files.

Processes and paging
The tunable parameters GPGSLO and GPGSHI determine how often the pag
ing daemon vhand runs. vhand can only run at clock ticks and it is responsi
ble for freeing up memory when needed by processes. It uses a "least recently
used" algorithm as an approximation of process working sets, and it writes
out pages to disk that are not modified during a defined time period.

GPGSLO
Specifies the low value of free memory pages at which vhand will start
stealing pages from processes. Normally, GPGSLO is tuned to a value that
is about 1/16 of pagable memory. Increase the value to make the vhand
daemon more likely to become active; decrease the value to make it less
likely to become active.

The value of GPGSLO must be a positive whole number greater than or
equal to 0 and less than or equal to 200. Its value must also be less than
that of GPGSHI.

If GPGSLO is too large a fraction of the pages that are available, vhand
becomes active before memory starts to become really short and useful
pages may be paged out. If GPGSLO is too small, the system may run out
of memory altogether between clock ticks. If this happens, the swapper
daemon sched runs to swap whole processes out to disk.

GPGSHI
Specifies the high value of free memory pages at which vhand will stop
stealing pages from processes. Normally GPGSHI is set to a value that is
about 1/10 of pagable memory.

195

Configuring kernel parameters

196

The value of GPGSHI must be a positive whole number greater than or
equal to 1 and less than or equal to 300. Its value must also be greater than
that of GPGSLO.

If the interval between GPGSLO and GPGSHI is too small, there will be a
tendency for vhand to be constantly active once the number of free pages
first drops below GPGSLO. If the interval is too large, a large amount of
disk activity is required to write pages to disk.

MINARMEM
Threshold value that specifies the minimum amount (in pages) of physical
memory tha~ is available for the text and data segments of user processes.
(Available physical memory for user processes is shown by the command
od -d availrmem in crash(ADM).) The default and minimum is 25; the
maximum is 40 pages.

If there is ever insufficient physical memory available to allocate to
STREAMS or kernel memory allocated resources, an application may fail or
hang, and the system will display the following message on the console:

CONFIG: routine - n resident pages wanted

If you see this message, it is likely that your system has insufficient RAM.

MINASMEM
Threshold value that specifies the minimum size (in pages) that available
virtual memory is allowed to reach. (Available virtual memory is shown
by the command od -d availsmem in crash(ADM).) More swap space or
physical memory must be added to the system if it runs out of virtual
memory. In the case of adding swap space, this can be done dynamically
using swap-ta-file. If system performance is still poor because it is swap
ping or paging out excessively, add more RAM to the system. The default
and minimum is 25; the maximum is 40 pages. If this limit is exceeded, the
following message is displayed on the console:

CONFIG: swapdel - Total swap area too small (MlNASMEM = nu~ber exceeded)

If there is ever insufficient physical memory available to allocate to
STREAMS or kernel memory allocated resources, an application may fail or
hang, and the system will display the following message on the console:

CONFIG: routine - n swappable pages wanted

If you see this message, increasing the value of MINASMEM may help but
it is more likely that your system has insufficient memory or swap space.

MAX SLICE
Specifies in clock ticks the maximum time slice for user processes. After a
process executes for its allocated time slice, that process is suspended. The
operating system then dispatches the highest priority process from the run
queue, and allocates to it MAXSLICE clock ticks. MAXSLICE must be a
value from 25 to 100; the default is 100.

Performance Guide

Configuration tools

SPTMAP
Determines the size of the map entry array used for managing kernel vir
tual address space. The default value is 200; the minimum and maximum
values are 100 and 500.

Memory management parameters

I
NOTE This group of parameters is not tunable using configure(ADM); you
must use the idtune(ADM) command instead as described in "Using idtune
to reallocate kernel resources" (page 190).

MAXSC
Specifies the maximum number of pages that are swapped out in a single
operation. The default and maximum value is 8.

MAXFC
Maximum number of pages that are added to the free list in a single opera
tion. The default and maximum value is 8.

TTYs
The following parameters control various data structure sizes and other limits
in character device drivers provided with the operating system.

NCLIST
Specifies the number of character list buffers to allocate. Each buffer con
tains up to 64 bytes of data. The buffers are dynamically linked to form
input and output queues for the terminal lines and other slow-speed de
vices. The average number of buffers needed for each terminal is in the
range of 5 to 10. Each entry (buffer space plus header) costs 72 bytes.
When full, input and output characters dealing with terminals are lost,
although echoing continues, and the following message is displayed on
the console:

CONFIG: OUt of clists (NCLIST = nu~ber exceeded)

The default and minimum value of NCLIST is 120, and the maximum is
16640.

For users logged in over serial lines with speeds up to 9600 bps, the recom
mended setting of NCLIST is 10 times the maximum number of users that
you expect will log in simultaneously. You should also increase the
TTHOG parameter; this controls the effective maximum size of the raw
input queue for fast serial lines.

197

Configuring kernel parameters

198

Since each buffer is 64 bytes in size, you should increase NCLIST by
TTHOG divided by 64 and multiplied by the number of fast serial lines, as
shown in the following table:

lTHOG value Increase NCLIST by

2048 32 * number of fast serial lines
4096 64 * number of fast serial lines
8192 128 * number of fast serial lines

TTHOG
Sets the effective size of the raw queue of the tty driver. The default and
minimum value is 256 bytes; the maximum is 8192 bytes. Increasing the
value of this parameter allows more unprocessed characters to be retained
in the tty buffer, which may prevent input characters from being lost if the
system is extremely busy.

If you are using sustained data transfer rates greater than 9600 bps, you
should increase TTHOG to 2048 or 4096 bytes depending on the demands
of the application. You must also increase the value of NCLIST to match
the increased value of TTHOG.

Name cache
The following parameters control the performance of the namei caches that
are used to speed the translation of filenames to inode numbers.

Parameters beginning with HT control the namei cache used with HTFS, EAFS,
and AFS file systems (all based on the ht filesystem driver).

HTCACHEENTS
Number of name components in the ht namei cache. It must have a value
of between 1 and 4096; the default is 256. The recommended value for
diverse workgroups is to make HTCACHEENTS large, roughly three times
the maximum grown size of the in-core inode table reported by sar -v.

HTHASHQS
Number of hash queues for the ht namei cache. HTHASHQS must be a
prime number between 1 and 8191; the default is 61. The recommended
value of HTHASHQS for diverse workgroups is to make it at least half the
size of HTCACHEENTS.

HTOFBIAS
Determines the bias towards keeping the names of open files in the ht
namei cache. It must have a value of between 1 and 256; the default is 8.
The higher that you make the value of HTOFBIAS, the longer the names
will remain in the cache. A value of 0 means that the names have no spe
cial caching priority.

Performance Guide

Configuration tools

Parameters beginning with DT control the namei cache used with DTFS file
systems (based on the dt filesystem driver).

DTCACHEENTS
Number of name components in the dt namei cache. It must have a value
of between 1 and 4096; the default is 256. The recommended value for
diverse workgroups is to make DTCACHEENTS large, roughly three times
the maximum grown size of the in-core inode table reported by sar -v.

DTHASHQS
Number of hash queues for the dt namei cache. DTHASHQS must be a
prime number between 1 and 8191; the default is 61. The recommended
value of DTHASHQS for diverse workgroups is to make it at least half the
size of DTCACHEENTS.

DTOFBIAS
Determines the bias towards keeping the names of open files in the dt
namei cache. It must have a value of between 1 and 256; the default is 8.
The higher that you make the value of DTOFBIAS, the longer the names
will remain in the cache. A value of 0 means that the names have no spe
cial caching priority.

Asynchronous 110
The asynchronous I/O feature supports asynchronous I/O operations on raw
disk partitions. It must be added to the kernel using the mkdev aio command
for these parameters to have any effect (see aio(HW) for more information).

NAIOPROC
Size of the AID process table that determines the number of processes that
may be simultaneously performing asynchronous I/O. The range of values
is between 1 and 16; the default is 5. When the AID process table
overflows, the following message is displayed on the console:

CONFIG: aio_rnemlock - AIO process table overflow (NAIOPROC = nur.nber exceeded)

NAIOREQ
Size of the AID request table that determines the maximum number of
pending asynchronous I/O requests. The range of values is between 5 and
200; the default is 120. When the AID request table overflows, the follow
ing message is displayed on the console:

CONFIG: aio_breakup - AIO request table overflow (NAIOREQ = nur.nber exceeded)

NAIOBUF
Size of the AID buffer table that determines number of asynchronous I/O
buffers. This should always be set to the same value as NAIOREQ. When
the AID buffer table overflows, the following message is displayed on the
console:

CONFIG: aio_breakup - AIO buffer table overflow (NAIOBUF = nu~ber exceeded)

199

Configuring kernel parameters

200

NAIOHBUF
Number of internal asynchronous hash queues. The range of values is
between 1 and 50; the default is 25.

NAIOREQPP
Maximum number of asynchronous I/O requests that a single process can
have pending. The default value is 120, meaning that a single process can
potentially exhaust all asynchronous I/O resources. The range of values is
between 30 and 200.

NAIOLOCKTBL
Number of entries in the internal kernel table for asynchronous I/O lock
permissions. The range of values is between 5 and 20; the default is 10. If
there are many entries in the /usr/lib/aiomemlock file, this value may need to
be increased. When the AIO lock table overflows, the following message is
displayed on the console:

CONFIG: aio_setlockauth - AIO lock table overflow (NAIOLOCKTBL = nur.nber exceeded)

Virtual disks
The following parameters control the performance of virtual disk arrays if
these are configured on your system.

VDUNITMAX
The maximum number of virtual disks that can be configured. This
parameter defines the size of several structures used by the vd driver. On
systems where the number of virtual disks is likely to be constant, set
VDUNITMAX equal to the number of virtual disks. The default value is
100; the minimum and maximum values are 5 and 256.

VDJOBS
The maximum number of virtual disk jobs that can exist in the global job
pool. The default value is 200; the minimum and maximum values are 100
and 400.

VDUNITJOBS
The maximum number of job structures and piece pool entries for each
virtual disk in the system. A piece pool entry contains a piece structure for
each disk piece in a virtual disk array. For example, a piece pool entry for
a three-piece RAID 5 array contains three piece structures. Each job struc
ture is 88 bytes in size. Each piece structure is 84 bytes in size. The default
value of VDUNITJOBS is 100; the minimum and maximum values are 50
and 200.

VDHASHMAX
The size of the hash table used for protecting the integrity of data during
read, modify, and write operations. Each hash table entry requires 24
bytes of memory. The value of VDHASHMAX must be a power of 2; the
minimum and maximum values are 512 and 8192. The default value is
1024.

Performance Guide

Configuration tools

VDASYNCPARITY
Controls whether writes to the parity device on RAID 4 and 5 devices are
performed asynchronously. The default is 1 (write asynchronously). If set
to 0, the system waits for all I/O to complete.

VDASYNCWRITES
Controls whether writes to the other half of a RAID 1 device (mirror) are
performed asynchronously. The default is 1 (write asynchronously). If set
to 0, the system waits for I/O on both halves of a mirror to complete.

VDASYNCMAX
Sets the maximum number of outstanding asynchronous writes for RAID
1, 4 and 5 configurations in asynchronous mode (that is,
VDASYNCWRITES or VDASYNCPARITY are set to 1). The default value is
20; the minimum and maximum values are 20 and 64.

VDWRITEBACK
Enables write-back caching. This increases the throughput of a virtual
disk by writing data asynchronously during the last phase of a read
modify-write job. The default value is 0 (do not use write-back caching). If
set to 1, write-back caching is enabled.

I
WARNING Enabling write-back caching may compromise the integrity of
the data if the system crashes. Use this feature only at your own discre
tion.

VDRPT
The interval in seconds between error conditions being reported. The
default value is 3600; the minimum and maximum values are 0 and 86400
seconds. If set to 0, errors are only reported when detected.

User and group configuration
The following parameters control resources that are specific to individual
users or groups.

NOFILES
Specifies the maximum number of open files for each process. Unless an
application package recommends that NOFILES be changed, the default
setting should be left unaltered.

The Bourne, C and Kom shells all use three file table entries: standard
input, standard output, and standard error (file descriptors 0, 1, and 2
respectively). This leaves the value of NOFILES minus 3 as the number of
other open files available for each process. If a process requires up to three
more than this number, then the standard files must be closed. This prac
tice is not recommended and must be used with caution, if at all. If the
configured value of NOFILES is greater than the maximum (11000) or less
than the minimum (60), the configured value is set to the default (110), and
a message is sent to the console.

201

Configuring kernel parameters

202

Unless an application package recommends that NOFILES be changed, the
default setting should be left as is.

ULIMIT
Specifies in 512-byte blocks the size of the largest file that an ordinary user
can write. The default value is 2097151; that is, the largest file an ordinary
user can write is approximately 1GB (one gigabyte). A lower limit can be
enforced on users by changing the value of ULIMIT in the file
/etc/dejault/login; see login(M).

The ULIMIT parameter does not apply to reads; any user can read a file of
any size.

MAXUP
Specifies how many concurrent user processes an ordinary user is allowed
to run. The entry is in the range of 15 to 16000, with a default value of 100
processes. This value should be at least 10% smaller than the value of
MAX_PROC (or the maximum grown size of the process table reported by
sar -v if MAX_PROC is set to 0). This value is determined by the user
identification number, not by the terminal. For example, the more people
that are logged in on the same user identification, the quicker the default
limit would be reached.

MAXUMEM
Maximum size of a process' virtual address space in 4096-byte pages. The
allowed range of values is between 2560 and 131072; the default is 131072
pages (512MB). If you decrease this value and a process will not start due
to lack of memory, its parent shell reports one of the messages: "Too big"
or "Not enough space".

NGROUPS
Maximum number of simultaneous supplemental process groups per pro
cess. The value of NGROUPS can be set to any integral value from 0 to 12B;
the default value is B.

NGROUPS maps to the POSIX.1 runtime value NGROUPS_MAX for which
the minimum value allowed by FIPS is B. To retain FIPS and XPG4 compli
ance, you must restrict the value of NGROUPS to be greater than or equal
toB.

CMASK
The default mask used by umask(S) for file creation. By default this is zero,
meaning that the umask is not set in the kernel. The range of values is
between 0 and 0777. See chmod(C)and umask(C) for an explanation of set
ting absolute mode file permissions.

Performance Guide

Configuration tools

CHOWN_RES
Controls system-wide chown kernel privilege (formally known as the
chown kernel authorization) on all filesystems that set the POSIX.l con
stant _POSIX_CHOWN_RESTRICTED (also defined in X/Open CAE Specifi
cation, System Interfaces and Headers, Issue 4, 1992). See getconf(C) for more
information.

If set, CHOWN_RES prevents all users except root from changing
ownership of files on all filesystems that support
_POSIX_CHOWN_RESTRICTED. The default value of CHOWN_RES is 0
(not set) which causes the restriction not to be enforced.

You can also use the chown kernel privilege to control users' privilege to
change file ownership. If chown kernel privilege is removed, some XPG4-
conformant applications may fail if they use interprocess communication
(semaphores, shared memory, and message passing). You should only set
chown kernel privilege in this way if you require C2-level security.

IOV_MAX
Maximum size of the I/O vector (struct iovec) array (number of non
contiguous buffers) that can be used by the readv(S) (scatter read) and
writev(S) (gather write) system calls. The default value is 512; the mini
mum and maximum values are 16 and 1024.

Security
The security profile (High, Improved, Traditional, or Low) can be selected as
discussed in "Changing the system security profile" in the System Administra
tion Guide. The security parameters can be set to modify the behavior of the
security features and to ensure compatibility with utilities that expect tradi
tional UNIX system behavior. Each of these parameters can be set to 0 (off) or
1 (on).

SECLUID
Controls the enforcement of login user ID (LUID). Under SCO's implemen
tation of C2 requirements, every process must have an LUID. This means
that processes that set UIDs or GIDs, such as the printer scheduler
(lpsched), must have an LUID set when started at system startup in
/etc/rc2.d/S80lp. This can cause problems with setuid programs. When the
security default is set to a profile other than "High", enforcement of LUID
is relaxed and setuid programs do not require an LUID to run.

203

Configuring kernel parameters

204

SECSTOPIO
Controls whether the kernel implements the stopio(S) system call. When
SECSTOPIO is set to 1, the kernel acts on stopio(S) calls; when it is set to 0,
the kernel ignores stopio calls. The stopio system call is used under C2 to
ensure that a device is not held open by another process after it is
reallocated. This means that other processes attempting to access the
same device may be killed.

stopio(S) is used by initcond(ADM), which is called by getty(M) immedi
ately before starting user interaction and by init(M) immediately after an
interactive session has terminated.

SECCLEARID
Controls the clearing of SUID/SGID bits when a file is written. Under C2
requirements, the set user ID (SUID or setuid) and set group ID (SGID or
setgid) bits on files must be cleared (removed) when a file is written. This
prevents someone from replacing the contents of a setuid binary. This can
cause problems with programs that do not expect this behavior. In the
#Low" security profile, SUID and SGID bits are not cleared when files are
written.

The following table summarizes the initial settings of the security parameters
for each security profile.

Parameter Low Traditional Improved High

SECLUID off off off on
SECSTOPIO off on on on
SECCLEARID off on on on

TTY and console configuration
The multiscreen parameters determine the number of console multiscreens
that can run simultaneously on the system. Each multiscreen requires about 4
to 8KB of memory depending on the number of lines (25 or 43). H you need to
save memory and are not using multiscreens heavily, set NSCRN to 4 and
SCRNMEM to 16 or 32. When you do this, you must also disable(C) mul
tiscreens 5-12 (tty5 to tty12) or getty will generate warning messages when the
system goes to multiuser mode. NSCRN and SCRNMEM can be set to smaller
values than this if you are sure that you need fewer multiscreens.

TBLNK
Controls the console screen saver feature on VGA consoles (only). It is the
number of seconds before the screen blanks to save wear on the monitor.
TBLNK can have a value of 0 to 32767, with 0 (default) disabling screen
blanking.

Performance Guide

Configuration tools

NSCRN
The number of console multiscreens. A value of 0 configures this value at
boot time. The maximum value is 12.

SCRNMEM
Number of 1024-byte blocks used for console screen memory. A value of 0
(the default) configures this value at boot time based on the amount of
memory installed. The range of values is between 9 and 128. Each mul
tiscreen uses from 4 to 8KB of memory, so when using a non-zero value for
this parameter, make SCRNMEM equal to 4 or 8 times the value of NSCRN.

NSPTIYS
Number of pseudo-ttys on the system. The default value is 16; the mini
mum and maximum values are 1 and 256. Each NSPTTYS requires 246
bytes of memory. This parameter should only be altered using the mkdev
ptty command which also creates the additional device nodes. Pseudo
ttys are not related to console multiscreens; they are used for features such
as serial multiscreens mscreen(M), for shell windows, and for remote log
ins.

NUMXT
Number of layers a sub device can configure to support bitmapped display
devices such as the BLIT or the AT&T 5620 and 730 terminals. The range of
values is between 1 and 32; the default is 3. When this number is exceeded,
the following message is displayed on the console:

CONFIG: xtinit - Cannot allocate xt link buffers (NUMXT = nUfinber exceeded)

Note that the xt driver must have been linked into the kernel using the
mkdev layers command or the HardwarelKernel Manager in order to use
these display devices.

NUMSXT
Number of shell layers (shl(C» a subdevice can configure. The range of
values is between 1 and 32; the default is 6.

Note that the sxt driver must have been linked into the kernel using the
mkdev shl command or the Hardware/Kernel Manager in order to use
shell layers.

Filesystem configuration
The following parameters control the configuration of different file system
types.

MAXVDEPfH
Maximum number of undeletable (versioned) files allowed in the DTFS
and HTFS filesystems. A value of 0 disables versioning; the maximum
value is 65535. This parameter can be overridden when the file system is
mounted.

205

Configuring kernel parameters

206

MINVTIME
Minimum time before a file is made undeletable (versioned) in the DTFS
and HTFS filesystems. If set to 0, a file is always versioned (as long as
MAXVDEPrH is greater than 0); if set to a value greater than 0, the file is
versioned after it has existed for that number of seconds. The maximum
value is 32767.

This parameter can be overridden when the filesystem is mounted.

ROOTCHKPr
If set to 0, disable checkpointing in a root HTFS filesystem; if set to 1
(default), enable checkpointing.

ROOTLOG
If set to 0, disable transaction intent logging in a root HTFS filesystem; if set
to 1 (default), enable logging.

ROOTSYNC
If set to 0 (default), disable file synchronization on close on a root DTFS file
system; if set to 1, enable synchronization on close.

ROOTNOCOMP
If set to 1, disable compression in a root DTFS filesystem; if set to 0
(default), enable compression.

ROOTMAXVDEPrH
Maximum number of undeletable (versioned) files on a root DTFS or HTFS
file system. A value of 0 disables versioning.

ROOTMINVTIME
Minimum time before a file is made undeletable (versioned) on a root DTFS
or HTFS filesystem. If set to 0, a file is always versioned (as long as -
ROOTMAXVDEPrH is greater than 0); if set to a value greater than 0, the
file is versioned after it has existed for that number of seconds.

DOSNMOUNT
Maximum number of mounted DOS filesystems. The range of values is
between 0 and 25; the default is 4.

DOSNINODE
Maximum number of open inodes for DOS filesystems. The range of
values is between ° and 300; the default is 40.

Performance Guide

Configuration tools

Table limits

The following parameters control the allocation of memory to dynamic kernel
tables.

TBLPAGES
The maximum number of pages of memory for dynamic tables. The range
of values is between 10 and 10000; the default is 0 which means that the
kernel configures the value based on the amount of memory available at
system startup.

TBLDMAPAGES
The maximum number of pages of II dmaable" memory for dynamic tables.
The range of values is between 10 and 1000 pages; the default is 100.

TBLLIMIT
The percentage of TBLPAGES or TBLDMAPAGES to which a single table
may grow. The range of values is between 10 and 100%; the default is 70.

TBLSYSLIMIT
The percentage of memory allowed for dynamic tables if TBLPAGES is set
to O. The range of values is between 10 and 90%; the default is 25.

TBLMAP
The size of the dynamic table virtual space allocation map. The range of
values is between 50 (default) and 500.

The following parameters control the maximum grown sizes of dynamic ker
nel tables. If set to 0, the maximum possible size defaults to the value shown
by getconf(C) provided that sufficient TBLPAGES of memory have been allo
cated. For example, the command getconf KERNEL_MOUNT_MAX dis
plays the maximum possible size of the mount table.

MAX_DISK
The maximum number of disk drives attached to the system. When the
Diskinfo table overflows, the following message is displayed on the con
sole:

CONFIG: dk_name - Diskinfo table overflow (MAX_DISK = nUfJnber exceeded)

The minimum and maximum configurable values of MAX_DISK are 1 and
1024; the default value of 0 means that the kernel determines the number
of disk drives dynamically.

MAX_IN ODE
Specifies the maximum number of inode table entries that can be allocated.
Each table entry represents an in-core inode that is an active file such as a
current directory, an open file, or a mount point. Pipes, clone drivers,
sockets, semaphores and shared data also use inodes, although they are
not associated with a disk file. The number of entries used depends on the
number of opened files.

207

Configuring kernel parameters

208

The minimum and maximum configurable values of MAX_INODE are 100
and 64000; the default value of 0 means that the in-core inode table grows
dynamically.

Each open file requires an inode entry in the in-core inode table. If the
inode table is too small, a message similar to the following is displayed on
the console:

eONFIG: routine - Inode table overflow (MAX_INODE = nur,nber exceeded)

When the inode table overflows, the specific request is refused. Although
not fatal to the system, inode table overflow may damage the operation of
various spoolers, daemons, the mailer, and other important utilities.
Abnormal results and missing data files are a common result.

If the system consistently displays this error message, use sar -v to evalu
ate whether your system needs tuning. The inod-sz value shows the num
ber of inode table entries being used and the number of entries that have
been allocated for use by the table.

MAX_PROC
Specifies the maximum number of process table entries that can be allo
cated. Each table entry represents an active process. The number of
entries depends on the number of terminal lines available and the number
of processes spawned by each user. If the process table is full, the follow
ing message appears on the console and in the file /usr/adm/messages:
eONFIG: newproc - Process table overflow (MAX_PROe = nur,nber exceeded)

The minimum and maximum values of MAX_PROC that can be set are 50
and 16000; the default value is 0 which means that the process table grows
dynamically. The proc-sz values shown by sar -v show how many pro
cess table entries are being used compared to those that have been dynam
ically allocated.

MAX_FILE
Specifies the maximum number of open file table entries that can be allo
cated. Each entry represents an open file.

The minimum and maximum values of MAX_FILE that can be set are 100
and 64000; the default value is 0 which means that the file table grows
dynamically.

When the file table overflows, the following warning message is displayed
on the system console:

eONFIG: falloc - File table overflow (MAX_FILE = nur,nber exceeded)

This parameter does not control the number of open files per process; see
the description of NOFILES parameter.

Performance Guide

Configuration tools

MAX_REGION
Specifies the maximum number of region table entries that can be allo
cated. Most processes have three regions: text, data, and stack. Additional
regions are needed for each shared memory segment and shared library
(text and data) attached. However, the region table entry for the text of a
"shared text" program is shared by all processes executing that program.
Each shared-memory segment attached to one or more processes uses
another region table entry.

The minim1lffi and maximum values of MAX_REGION that can be set are
500 and 160000; the default value is 0 which means that the region table
grows dynamically.

If you do configure MAX_REGION, as a general rule you should set its
value to slightly more than three times greater than MAX_PROC. When
the region table overflows, the following message is displayed on the con
sole:

CONFIG: allocreg - Region table overflow (MAX_REGION = nUfJnber exceeded)

MAX_MOUNT
Specifies the maximum number of mount table entries that can be allo
cated. Each entry represents a mounted filesystem. The root filesystem (/) is
always the first entry. When full, the mount(S) system call returns the
EBUSY error code.

The minimum and maximum values of MAX_MOUNT that can be config
ured are 4 and 4096; the default value of 0 means that the kernel grows the
size of the mount table dynamically.

MAX_FLCKREC
Specifies the maximum number of lock table entries that can be allocated.
This determines the number of file regions that can be locked by the sys
tem. The "lock-sz" value reported by sar -v shows the number of entries
that are being used in comparison to the number that have been allocated.

The minimum and maximum values of MAX_FLCKREC that can be config
ured are 50 and 16000; the default value is 0 which means that the kernel
grows the size of the record lock table dynamically according to the needs
of the applications running on your system.

STREAMS

STREAMS is a facility for UNIX system communication services. It supports
the implementation of services ranging from complete networking protocol
suites (such as TCP lIP and IPX/SPX) to individual device drivers. STREAMS
defines standard interfaces for character I/O. The associated mechanism is
simple and open-ended, consisting of a set of system calls, kernel resources
and kernel routines.

209

Configuring kernel parameters

210

STREAMS use system resources that are limited by values defined in kernel
configuration modules. Depending on the demand that you and other system
users place on these resources, your system could run out of STREAMS
resources if you do not first reset the allocations in the kernel configuration
modules.

Running out of some STREAMS resources (such as those controlled by the
NSTREAM parameter) generates kernel configuration error messages.
STREAMS message buffers are dynamically allocated from memory up to a
limit set by the value of the kernel parameter NSTRP AGES. This parameter
sets the maximum number of pages of physical memory that can be dynami
cally allocated for use by STREAMS.

Before changing the STREAMS parameters NSTREAM or NSTRP AGES, you
should check the current usage of STREAMS resources using the strstat com
mand of the crash(ADM) utility or netstat(TC) with the -m option.

The following tunable parameters are associated with STREAMS processing:

NSTREAM
Number of stream head (stdata and estdata) data structures configured.
One of each structure is needed for each stream opened, including both
streams currently open from user processes and streams linked under
multiplexers. The allowed range of values is between 1 and 512; the
default is 32. The recommended configuration value is highly
application-dependent, but a value of 256 usually suffices on a computer
for running a single transport provider with moderate traffic. On Open
Desktop, each X client also uses a pair of stdata and a pair of estdata
structures. You should set NSTREAM to at least 256 on systems that are
running X clients. When the number of stream head structures is
exceeded, the following message is displayed on the console:

CONFIG: stropen - Out of streams (NSTREAM = n exceeded)

NSTRPAGES
The maximum number of pages of virtual memory that can be allocated
dynamically for use by STREAMS message buffers. The allowed range of
values is between 0 and 8000 pages; the default is 500.

If NSTRP AGES pages of virtual memory are not available when STREAMS
are initialized at startup, the system displays the following message on the
console for each STREAMS table that is affected:

CONFIG: strinit - Cannot alloc STREAMS nar.ne table \
(NSTRPAGES = n too big)

Performance Guide

Configuration tools

If more buffers are requested than there are available pages of physical
memory to create them, the system displays the following message on the
console:

CONFIG: allocb - Out of streams memory (NSTRPAGES = n exceeded)

Extra memory is allocated temporarily for high priority buffers only. The
system will then try to reduce STREAMS memory usage until it is less than
NSTRPAGES.

NOTE Memory used by STREAMS for buffers is fully dynamic; memory
can be freed as well as allocated.

The value of NSTRP AGES does not affect the size of the kernel at system
startup although the size of the kernel will grow and shrink over time as
pages of memory are allocated for use by STREAMS and subsequently
released.

STRSPLITFRAC
Sets the percentage of NSTRPAGES above which the system tries to create
buffers by splitting larger buffers that are on the free list. Below this limit,
the system tries to allocate new pages of memory to create the buffers.
STRSPLITFRAC can range between between 50 and 100 (percent); the
default is 80. If you set STRSPLITFRAC lower than this, the system will use
less memory for STREAMS but the memory that is used will tend to
become fragmented and the kernel will require more CPU time to manage
it.

NSTREVENT
Initial number of stream event structures configured. Stream event cells
are used for recording process-specific information in the poll system call.
They are also used in the implementation of the STREAMS I_SETSIG ioctl
and in the kernel bufcall mechanism. A rough minimum value to config
ure would be the expected number of processes to be simultaneously
using poll times the expected number of STREAMS being polled for each
process, plus the expected number of processes expected to be using
STREAMS concurrently. The default and minimum value is 256; the max
imum is 512. Note that this number is not necessarily a hard upper limit
on the number of event cells that are available on the system (see MAX
SEPGCNT).

211

Configuring kernel parameters

212

MAXSEPGCNT
The maximum (4KB) page count for stream events. If this value is 0 (mini
mum), only the amount defined by NSTREVENT is available for use. If the
value is not 0 and if the kernel runs out of event cells, it will under some
circumstances attempt to allocate an extra page of memory from which
new event cells can be created. MAXSEPGCNT places a limit on the num
ber of pages that can be allocated for this purpose. Once a page is allo
cated for event cells, however, it cannot be recovered later for use else
where. The default value is 1 and the maximum 32.

STRMSGSZ
Maximum allowable size of the data portion of any STREAMS message.
This should usually be set just large enough to accommodate the max
imum packet size restrictions of the configured STREAMS modules. If it is
larger than necessary, a single write or putmsg can consume an inordinate
number of message headers. The range of values is between 4096 and
524288; the default value of 16384 is sufficient for existing applications.

NUMSP
Determines the number of STREAMS pipe devices (/dev/spx, see spx(HW»
supported by the system. The default value is 64; the maximum and mini
mum values are 1 and 256. Administrators do not normally need to
modify this parameter unless certain applications state that they require it.

NUMTIM
Maximum number of timod(M) STREAMS modules that can be pushed by
the Transport Layer Interface (TLI) onto a stream head. This parameter
limits the number of streams that can be opened. The default value is 16
but various protocol stacks (for example, TCP, LMU, or NETBIOS) may
require its value to be set to 32, 64, or 128. Administrators do not normally
need to modify this parameter.

NUMTRW
Maximum number of timod(M) STREAMS modules that can be pushed by
the Transport Layer Interface (TLI) onto a stream head in order that the
stream will accept read(S) and write(S) system calls. This parameter
effectively limits the number of streams onto which the module can be
pushed. The default value is 16 but various protocol stacks (for example,
TCP, LMU, or NETBIOS) may require its value to be set to 32,64, or 128.
Administrators do not normally need to modify this parameter.

See #STREAMS parameters" (page 213) for a description of the STREAMS pa
rameters that can only be tuned using idtune(ADM).

Performance Guide

Configuration tools

STREAMS parameters

NOTE This group of parameters is not tunable using configure(ADM); you
must use the idtune(ADM) command instead as described in ~'Using idtune
to reallocate kernel resources" (page 190).

NMUXLINK
Number of stream multiplexer links configured. One link structure is
required for each active multiplexer link (STREAMS CLINK ioctl) in net
working protocol stacks such as those used to implement TCP lIP and NFS.
Each PPP link also requires such a structure. The number needed is
application-dependent; the default value is 192. The minimum and max
imum configurable values are 1 and 4096.

NSTRPUSH
Maximum number of modules that may be pushed onto a stream. This
prevents an errant user process from consuming all of the available queues
on a single stream. The default possible value is 9. In practice, applica
tions usually push at most four modules onto a stream.

NLOG
Number of minor devices to be configured for the log driver; the active
minor devices are 0 through (NLOG-1). The only value of 3 services an
error logger (strerr) and a trace command (strace), with one left over for
miscellaneous usage.

STRCTLSZ
Maximum allowable size of the control portion of any STREAMS message.
The control portion of a putmsg message is not subject to the constraints
of the minimum/maximum packet size, so the value entered here is the
only way of providing a limit for the control part of a message. The only
possible value of 1024 is more than sufficient for existing applications.

Message queues

The following tunable parameters are associated with interprocess communi
cation message queues:

MSGMAP
Specifies the number of entries in the memory map for messages. An
entry in the message map table says that MSGSEG / MSGMAP memory
segments are free at a particular address.

213

Configuring kernel parameters

214

MSGMAP measures how fragmented you expect your map to get. Its
value can be small if you always send a few large messages, or it can be
large if you send a lot of small messages. The suggested value for
MSGMAP is approximately half the value of MSGSEG; this allocates two
message segments per map entry. If the value of MSGMAP is set equal to
MSGSEG, long messages may become totally fragmented with their com
ponent segments being randomly scattered across the map.

Do not set MSGMAP to a value greater than that of MSGSEG. The range of
configurable values is from 4 to 32768; the default value is 512. Each entry
costs 8 bytes.

MSGMAX
Maximum size of a message in bytes. The minimum value is 128, the
default value is 8192 bytes, and the maximum possible size the kernel can
process is 32767 bytes.

MSGMNB
Maximum number of bytes of memory that all the messages in anyone
message queue can occupy. The default value is 8192; the maximum and
minimum values are 128 bytes and 65532 bytes.

MSGSEG
Number of MSGSSZ segments of memory allocated at kernel startup for
holding messages. Therefore a total of MSGSEG*MSGSSZ bytes of mem
ory are allocated for messages.

I NOTE The amount of memory allocated for messages must not exceed
128KB.

If MSGSEG is set at 0, then the kernel will auto-configure the values of
MSGSEG, MSGMAX, and MSGMNB. For most memory configurations,
MSGSEG is set to 1024, and MSGMAX and MSGMNB are both set to
MSGSEG*MSGSSZ.

The IPC_NOWAIT flag can be passed into many of the msg system calls. If
this flag is passed, then the system calls will fail immediately if there is no
space for a message. If this flag is not passed, then the system calls will
sleep until there is room for the message.

Performance Guide

Configuration tools

To determine adequate values for each of the parameters, compute the
maximum size and number of messages desired, and allocate that amount
of space. For example, if the system will have at most 40 messages of lKB
each pending, then MSGTQL should be set to 40, and MSGSEG is com
puted as:

• 40 messages of lK each = 40KB total message space.

• Divide total message space by MSGSSZ to get MSGSEG. If MSGSSZ=8
bytes, then MSGSEG = 40*1024/8 = 5120.

The default value of MSGSEG is 1024; the minimum and maximum values
are 32 and 32768.

See "Message queue parameters" (this page) for a description of the message
queue parameters that can only be tuned using idtune(ADM).

Message queue parameters
The following parameters are associated with System V IPe message queues.

I NOTE This group of parameters is not tunable using configure(ADM); you
must use the idtune(ADM) command instead as described in ''Using idtune
to reallocate kernel resources" (page 190).

MSGMNI
Maximum number of different message queues allowed system-wide. The
default value of MSGTQL is 50; the minimum and maximum values are 1
and 1024. You should not normally need to adjust the value of this param
eter.

MSGTQL
Number of system message headers that can be stored by the kernel; that
is, the maximum number of unread messages at any given time. Each
header costs 12 bytes. The default value of MSGTQL is 1024; the minimum
and maximum values are 32 and 16383. You should not normally need to
adjust the value of this parameter unless an application needs a large
number of messages.

MSGSSZ
Size in bytes of the memory segment used for storing a message in a mes
sage queue.

A message that is shorter than a whole number multiple of memory seg
ments will waste some bytes. For example, an 18-byte message requires
three message segments if MSGSSZ is set to 8 bytes. In this case, 6 bytes of
memory are unused, and unusable by other messages.

The product of the values of MSGSSZ and MSGSEG determines the total
amount of data that can be present in all message queues on a system. This
product should not be greater than 128KB.

215

Configuring kernel parameters

216

The default value of MSGSSZ is 8 bytes; the minimum and maximum
values are 4 bytes and 4096 bytes. The configured value of MSGSSZ must
be divisible by 4. You should not normally need to adjust the value of this
parameter.

Event queues
The following parameters control the configuration of the event queues.

EVQUEUES
Maximum number of open event queues systemwide. Each EVQUEUES
costs 88 + (2 * EVDEVSPERQ) bytes of memory. The range of values is
between 1 and 256; the default is 8.

EVDEVS
Maximum number of devices attached to event queues systemwide. Each
EVDEVS costs 48 bytes of memory. The range of values is between 1 and
256; the default is 16. When the event table overflows, the following mes
sage is displayed on the console:

CONFIG: event - Event table full (EVDEVS = number exceeded)

EVDEVSPERQ
Maximum number of devices for each event queue. The range of values is
between 1 and 16; the default is 3. When the event channel overflows, the
following message is displayed on the console:

CONFIG: event - Event channel full (EVDEVSPERQ = number exceeded)

Semaphores
The following tunable parameters are associated with interprocess communi
cation semaphores:

SEMMAP
Size of the control map used to manage semaphore sets. The default and
minimum value is 10; the maximum is 100. Each entry costs 8 bytes.

SEMMNI
Number of semaphore identifiers in the kernel. This is the number of
unique semaphore sets that can be active at any given time. The default
and minimum value is 10; the maximum is 300. Each entry costs 32 bytes.

SEMMNU
Number of semaphore undo structures in the system. The size is equal to
8*{SEMUME + 2) bytes. See #Semaphore parameters" (page 217) for a
definition of SEMUME. The range of values is between 10 and 100; the
default is 30.

Performance Guide

Configuration tools

XSEMMAX
Size of the XENIX® semaphore table that determines the maximum number
of XENIX semaphores allowed systemwide. The minimum value for
XSEMMAX is 20, the maximum value is 90, and the default value is 60.
When the XENIX semaphore table overflows, the following message is dis
played on the console:

CONFIG: xsem_alloc - XENIX semaphore table overflow (XSEMMAX = nu~ber exceeded)

See "Semaphore parameters" (this page) for a description of the semaphore
parameters that can only be tuned using idtune(ADM).

Semaphore parameters

I NOTE This group of parameters is not tunable using configure(ADM); you
must use the idtune(ADM) command instead as described in ''Using idtune
to reallocate kernel resources" (page 190).

SEM_NSEMS_MAX
Maximum number of POSIX.lb semaphores available for use on the system
(provided by the SUDS library). The default value is 100; the minimum
and maximum configurable values are 1 and 255 respectively.

The following parameters are associated with System V IPC semaphores only:

SEMMSL
Maximum number of semaphores for each semaphore identifier. The
default and minimum value is 25; the maximum value is 60.

SEMOPM
Maximum number of semaphore operations that can be executed for each
semop(S) call. The default value is 10; each entry costs 8 bytes.

SEMUME
Number of undo entries for each process. The default value is 10.

SEMVMX
Maximum value a semaphore can have. The default value is 32767.

SEMAEM
Maximum value for adjustment on exit, alias semadj. This value is used
when a semaphore value becomes greater than or equal to the absolute
value of semop, unless the program has set its own value. The default
value is 16384.

SEMMNS
Number of semaphores in the system. The default and minimum value is
60; the maximum value is 300. Each entry costs 8 bytes.

217

Configuring kernel parameters

218

Shared memory
The following tunable parameters are associated with interprocess communi
cation shared memory:

SHMMAX
Maximum shared-memory segment size. The range of values is between
131072 and 80530637 bytes; the default value is 524288 bytes.

SHMMIN
Minimum shared-memory segment size. The default value is 1 byte.

XSDSEGS
Maximum number of XENIX special shared-data segments allowed system
wide. The range of values is between 1 and 150; the default is 25. When
the XENIX shared data table overflows, the following message is displayed
on the console:

CONFIG: xsd_alloc - XENIX shared data table overflow (XSDSEGS = nur.nber exceeded)

XSDSLOTS
Number of slots for each XENIX shared data segment. The maximum
n:umber of XENIX special shared data segment attachments system wide is
XSDSEGS*XSDSLOTS. The range of values is between 1 and 10; the
default is 3.

See "Shared memory parameters" (this page) for a description of the shared
memory parameters that can only be tuned using idtune(ADM).

Shared memory parameters

I
NOTE The following parameter is not tunable using configure(ADM); you
must use the idtune(ADM) command instead as described in "Using idtune
to reallocate kernel resources" (page 190).

SHMMNI
Maximum number of shared-memory identifiers systemwide. The mini
mum and default value is 100; the maximum is 2000. Each entry costs 52
bytes.

Performance . Guide

Configuration tools

Miscellaneous system parameters
The following parameters control the size of the configuration string buffer,
and the size of the kernel profiler symbol table.

MAX_CFGSIZE
Maximum size of configuration information saved by the tab(HW) driver.
This is the maximum size of information available using Idevlstring/cfg as
described on the string(M) manual page. If this limit is exceeded, the fol
lowing message is displayed on the console:

CONFIG: string: Configuration buffer full (MAX_CFGSIZE = nur.nber exceeded)

MAX_CFGSIZE ranges from 256 to 32768 bytes; the default is 1024 bytes.

PRFMAX
Sets the maximum number of text symbols that the kernel profiler, Idevlprf,
can properly process. The range of values is between 2048 and 8192; the
default is 4500. See profiler(ADM) for information about the kernel profiler.

System parameters

I
NOTE This group of parameters is not tunable using configure(ADM); you
must use the idtune(ADM) command instead as described in ''Using idtune
to reallocate kernel resources" (page 190).

NODE
System name. The value of NODE must not be greater than eight charac
ters. The default value is "scosysv".

TIMEZONE
Specifies the timezone in units of minutes different from Greenwich Mean
Time (GMT). Note that the value specifies the system default timezone and
not the value of the TZ environment variable. TIMEZONE can have a
value from -1440 (east of GMT) to 1440 (west of GMT); the default is 480.

DSTFLAG
Specifies the dstflag described for the ctime(S) system call. A value of 1
indicates Daylight Savings Time applies locally, zero is used otherwise.

KDBSYMSIZE
Size of the kernel debugger symbol table in bytes. (This parameter is only
useful if a debugger is linked into the kernel.) It must have a value of
between 50000 and 500000; the default is 300000.

NCPYRIGHT
Defines the maximum. number of strings used to store some vendor driver
copyright messages that may be displayed on the console when the system
is booted. Modifying this parameter is unlikely to affect the display of
most copyright messages.

219

Configuring kernel parameters

Miscellaneous device drivers and hardware parameters
The following parameters control the configuration of various device drivers
and hardware behavior.

CTBUFSIZE
Size of the tape buffer in kilobytes. This static buffer is allocated by the
QIC-02 cartridge tape device driver (ct) when it is initialized at system
startup. This parameter should have a value of between 32 and 256. Set
this parameter to 0 if the ct driver is linked into the kernel but you either
do not have or do not use a cartridge tape drive. The following are values
that this parameter can take in various circumstances:

32KB
bare minimum: this is insufficient to stream

64KB
minimum to allow streaming (good for systems with little memory) or
little tape use (if tape I/O performance is not critical)

96KB
reduce to this at first if the default uses too much memory

128KB
default: this offers good tradeoff performance between I/O and mem
ory

192KB
increase to this at first if the default provides poor I/O performance

256KB
maximum size

NOTE The SCSI tape device driver (Stp) allocates a statically configured
128KB buffer for each device which is not controlled by this parameter.
All SCSI tape drives including SCSI cartridge tape drives use the Stp
driver.

SDSKOUT
Maximum number of simultaneous requests that can be queued for each
SCSI disk. The SCSI disk driver (Sdsk) will sleep if no request blocks are
available. The default value of this parameter is 4; the minimum and max
imum values are 1 and 256. You should set SDSKOUT higher if the -S
option to sar(ADM) (or mpsar(ADM) for SMP) reports that the system is
running out of request blocks.

220 Performance Guide

Configuration tools

DMAEXCL
Specifies whether simultaneous DMA requests are allowed. Some comput
ers have DMA chips that malfunction when more than one allocated chan
nel is used simultaneously. DMAEXCL is set to 0 by default to allow
simultaneous DMA on multiple channels. Set its value to 1 if this causes a
problem.

KBTYPE
Determines the logical character protocol used between the keyboard and
the keyboard driver. This tunable is set by default to 0 for XT scancodes
and is recommended; a value of 1 specifies AT scancodes which are recog
nized by the console driver but not by the X server or by DOS emulators.
All AT-compatible keyboards support both modes.

VGA_PLASMA
Set to 1 if an IBM® PS/2® model P70 or P75 VGA plasma display is present;
set to 0 (default) if not.

NSHINTR
Maximum number of devices sharing the same interrupt vector. This has
a default value of 8; the minimum and maximum values are 2 and 20. You
should not normally need to modify this parameter.

D0387CR3
Controls the setting of high-order bits of Control Register 3 (CR3) when an
80387™ math coprocessor is installed. Because of design defects in early
versions of the Intel® 80387™ chip (Bl stepping), this math coprocessor
may not operate correctly in some computers. The problem causes a CPU
to hang when DMA, paging, or coprocessor accesses occur. You can work
around this problem by changing the D0387CR3 parameter from the
default value of 0 (switched off) to 1.

I WARNING Do not set this parameter to 1 on 80486™ or Pentium ™ ma
chines.

DOWPCRO
If set, the kernel uses the write protection bit in Control Register 0 (CRO) to
enable write protection in kernel mode. The default value is 1 which sets
this parameter. This parameter is effectively disabled on machines which
contain one or more 80386™ CPUs which do not support this feature.

MODE_SELECT
No effect. Mode-select checking on parallel (printer) ports can be adjusted
on a per-printer basis using the pa_tune [] array defined in <syslpaconfh>
and documented in the file letc!conflpack.dlpalspace.c.

221

Configuring kernel parameters

222

Hardware and device driver parameters

I

NOTE This group of parameters is not tunable using configure(ADM); you
must use the idtune(ADM) command instead as described in #Using idtune
to reallocate kernel resources" (page 190).

NAHACCB
Number of mailboxes available for the Adaptec 154Xjl64X host adapter
driver to talk to other Adaptec hardware. The higher the number, the less
likely it is that the driver has to sleep. It is not normally necessary to
modify this parameter.

NEMAP
Specifies the maximum number of mapchan(M) I/O translation mappings
that can be in effect at the same time. The default value of this parameter
is 10.

NKDVTTY
Number of virtual terminals (8) supported by the console keyboard driver.
Administrators should not modify this parameter.

Boot load extension parameters

I

NOTE This group of parameters is not tunable using configure(ADM); you
must use the idtune(ADM) command instead as described in ''Using idtune
to reallocate kernel resources" (page 190).

EXTRA_NDEV
Number of extra device slots in fmodsw [], io_ini t [], and io ••• []. It
defines the number of slots reserved in the device driver tables for Boot
Time Loadable Drivers (BTLDs).

EXTRA_NEVENT
Number of extra event slots. It defines the number of slots reserved in the
event driver tables for BTLDs.

EXTRA_NFILSYS
Number of extra types of filesystem. It defines the number of extra types
of filesystem that can be loaded using BTLDs.

MAX_BDEV
Maximum number of block devices (bdevcnt is at least this value). It
defines the minimum number of entries in bdevsw [], the block device
switch table.

MAX_CDEV
Maximum number of character devices (cdevcnt is at least this value). It
defines the minimum number of entries in cdevsw [] , the character device
switch table.

Performance Guide

Configuration tools

LAN Manager Client Filesystem parameters

NOTE The LAN Manager Client Filesystem (LMCF5) adds several kernel pa
rameters to the mtune file that are not tunable using configure(ADM); you
must use the idtune(ADM) command instead as described in "Using idtune
to reallocate kernel resources" (page 190).

LMCFS_BUF_SZ
Determines the maximum amount of data that LMCF5 can transmit or
receive in a single network packet. The default value is 4096 bytes.

LMCFS_LMINUM
Controls the number of allocatable inodes. The default value is 150; the
maximum value is 600. Set this value higher if users have many LMCF5
files open simultaneously.

LMCFS_NUM_BUF
Sets the number of server message block (5MB) data buffers used by
LMCF5. The default value is 256; the maximum value is 8192. The size of
each buffer is determined by LMCFS_BUF _SZ.

LMCFS_NUM_REQ
Constrains the number of simultaneous 5MB requests that can be made on
the network. The default value is 64; the maximum value is 1024. This
parameter should be set to at least one quarter of the value of
LMCFS_NUM_BUF.

Examining and changing configuration-dependent values

getconf allows you to inspect the values of configuration-dependent variables
for various standards, and the values of dynamic kernel table parameters.
Below is an example of the use of getconf:

$ getconf NZERO

20
$ getconf CLK_TCK
100

This indicates that the default process priority on the system is 20 and the sys
tem clock runs at 100 ticks per second.

223

Configuring kernel parameters

224

Path variables, such as NAME_MAX which defines the maximum filename
length, depend on the filesystem type and therefore the pathname. These
examples show the values of NAME_MAX for an HTFS and a XENIX file
system:

getconf NAME_MAX I htfs_filesystem
255
getconf NAME_MAX I xenix_filesystem
14

For a complete list of the variable names to use with the command see
getconf(C).

If you are logged in as root, you can use the setconf(ADM) command to
change a subset of the configuration dependent parameters. Using setconf,
you can increase the current size of the dynamic kernel tables or decrease
their maximum possible size. You can also dynamically increase the number
of character buffers available for use by the serial driver, for example:

setconf KERNEL_CLISTS 1024

The maximum possible number of such buffers that you can allocate is con
trolled by the KERNEL_CLISTS_MAX parameter.

I
NOTE Any change that you make using setconf remains in force only until
the system is next rebooted. Use the Hardware/Kernel Manager or config
ure to make the change permanent.

Performance Guide

Appendix C

Configuring TCP/IP tunable parameters

You can adjust the configuration parameters for TCP lIP using the
ifconfig(ADMN) and inconfig(ADMN) utilities as described in the following
sections:

• "Using ifconfig to change parameters for a network card" (this page)

• "Using inconfig to change global TCP lIP parameters" (page 226)

If you need to change STREAMS resources, you must use the configure(ADM)
command as described in ''Using configure to change kernel resources" (page
189).

Using ifconfig to change parameters for a network card

You can use the ifconfig(ADMN) command to reconfigure performance pa
rameters for a single network interface. If you wish to make this change per
manent you must edit the entry for the interface in the /etc/tcp script.

The metric, onepacket, and perf parameters affect performance.

metric can be used to artificially raise the routing metric of the interface used
by the routing daemon, routed(ADMN). This has the effect of making a route
using this interface less favorable. For example, to set the metric for the smeO
interface to 10, enter:

letdifconfig smeO inet metric 10

onepacket enables one-packet at a time operation for interfaces with small
buffers that are unable to handle continuous streams of back-ta-back packets.
This parameter takes two arguments that allow you to define a small packet
size, and the number of these that you will permit in the receive window.

225

Configuring TCPI/P tunable parameters

This deals with TCP lIP implementations that can send more than one packet
within the window size for the connection. Set the small packet size and
count to zero if you are not interested in detecting small packets. For example,
to set one-packet mode with a small packet threshold of one small packet of
512 bytes on the e3AO interface, enter:

letC/ifconfig e3AO inet onepacket 512 1

To turn off one-packet mode for this interface, enter:

letC/ifconfig e3AO inet -onepacket

perf allows you to tune performance parameters on a per-interface basis. The
arguments to perf specify the receive and send window sizes in bytes, and
whether TCP should restrict the data iri a segment to a multiple of lKB (a
value of 0 restricts; 1 uses the full segment size).

The following example sets the receive and send window size to 4KB, and
uses the maximum 1464-byte data size available in an Ethernet frame:

letC/ifconfig smeO inet perf 4096 4096 1

I NOTE Segment truncation does not change the size of the Ethernet frame;
this is fixed at 1530 bytes.

Using inconfig to change global TCPIIP parameters

226

As root, you can use the inconfig{ADMN) command to change the global
default TCP lIP configuration values.

I NOTE Any global performance parameters that you set using inconfig are
overridden by per-interface values specified using ifconfig.

For example, to enable forwarding of IP packets, you would enter:

inconfig ipforwarding 1

inconfig updates the values of the parameters defined in letcldefaultlinet and
those in use by the currently executing kernel. You do not need to reboot your
system for these changes to take effect; inconfig dynamically updates the ker
nel with the changes you specify. Before doing so, it verifies that the values
you input are valid. If they are not, the current values of the parameters are
retained.

See "TCP lIP parameters" (page 227) for a description of the TCP lIP parame
ters that you can tune using inconfig.

Performance Guide

TCPJlP parameters

The parameters that control the operation of TCP lIP are defined in the file
/etc/default/inet.

The parameters are grouped according to function:

• "Address Resolution Protocol (ARP) parameters" (this page)

• "Asynchronous half-duplex (ASYH) line connection parameters" (page 228)

• "Internet Control Message Protocol (ICMP) parameters" (page 228)

• "Internet Group Management Protocol (IGMP) parameters" (page 229)

• "Configuring the in-kernel network terminal (IKNT) driver" (page 229)

• "Internet Protocol (IP) parameters" (page 229)

• IIMessage block control logging (MBCL) parameters" (page 232)

• IINetBIOS parameters" (page 232)

• IITransmission Control Protocol (TCP) parameters" (page 232)

• ''User Datagram Protocol (UDP) parameters" (page 234)

You should read the description for a parameter before you change it using
inconfig(ADMN) as described in IIUsing inconfig to change global TCP/IP
parameters" (page 226). The default values of the parameters are configured
to work efficiently in most situations.

I NOTE Never edit the settings for these parameters in the file /etc/default/inet;
always use inconfig to change them.

Address Resolution Protocol (ARP) parameters
The following parameters control the behavior of the Address Resolution Pro
tocol (ARP).

arpprintfs
Controls logging of warnings from the kernel ARP driver. These are dis
played on the console. If set to 0 (the default), debugging information is
not displayed.

arp _maxretries
Sets the maximum number of retries for the address resolution protocol
(ARP) before it gives up. The default value is 5; the minimum and max
imum configurable values are 1 and 128.

227

Configuring TCPI/P tunable parameters

228

arpt_down
Sets the time to hold onto an incomplete ARP cache entry if ARP lookup
fails. The default value is 20 seconds; the minimum and maximum
configurable values are 1 and 600 seconds.

arpt_keep
Sets the time to keep a valid entry in the ARP cache. The default value is
1200 seconds; the minimum and maximum configurable values are 1 and
2400 seconds.

arpt_prune
Sets the interval between scanning the ARP table for stale entries. The
default value is 300 seconds; the minimum and maximum configurable
values are 1 and 1800 seconds.

The number of ARP units is controlled by the value of the defined constant
ARP_UNITS.

Asynchronous half-duplex (ASYH) line connection parameters
The following parameter controls the behavior of asynchronous half-duplex
(ASYH) line connections used by PPP.

ahdlcmtu
Sets the maximum transmission unit (MTU) for an asynchronous PPP link.
This is normally set on a per-system basis in the /etc/ppphosts file - if not
defined there, this value is used.

The default value of ahdlcmtu is 296 bytes; the minimum and maximum
configurable values are 128 and 2048 bytes.

Internet Control Message Protocol (ICMP) parameters
The following parameters control the behavior of the Internet Control Mes
sage Protocol (ICMP).

icmp_answermask
H set to 1, the system will respond to ICMP subnet mask request messages.
This variable must be set to 1 to support diskless workstations. The
default value is 0, do not respond, as specified in RFC 1122.

icmpprintfs
Controls logging of warnings from the kernelICMP driver. These are dis
played on the console. H set to 0 (the default), debugging information is
not displayed.

Performance Guide

Internet Group Management Protocol (IGMP) parameters
The following parameter controls the behavior of the Internet Group Manage
ment Protocol (IGMP).

igmpprintfs
Controls logging of warnings from the kernel IGMP driver. These are dis
played on the console. If set to 0 (the default), debugging information is
not displayed.

Configuring the in-kernel network terminal (IKNT) driver
The number of IKNT driver units is determined by the number of pseudo-ttys
configured on the system. Use mkdev ptty to tune the number of pseudo
ttys.

Internet Protocol (IP) parameters
The following parameters control the behavior of the Internet Protocol (IP).
The number of interfaces supported by IP is dynamic and does not need tun
ing.

NOTE The value of the parameters in_fullsize, in_recvspace, and
in_sendspace affect the systemwide interface defaults. Their values may be
overridden on a per-interface basis by ifconfig(ADMN). This allows you to
mix fast and slow network hardware on the same system with optimal per
formance parameters defined for each interface.

in_fullsize
Controls the systemwide default TCP behavior for attempting to negotiate
the use of full-sized segments. If set to 1 (the default), TCP attempts to use
a segment size equal to the interface MTU minus the size of the TCP lIP
headers. If set to 0, TCP rounds the segment size down to the nearest
power of 2.

in_Ioglimit
Controls how many bytes of the error packet to display when debugging.
Note that the appropriate xxxprintfs parameter (such as tcpprintfs) must
be set to a non-zero value to enable logging. The default value is 64. The
minimum and maximum configurable values are 1 and 255.

229

Configuring TCPI/P tunable parameters

230

in_recvspace
Sets the systemwide default size of the TCP lIP receive window in bytes.
The default value is 4096 bytes. The minimum and maximum
configurable values are 2048 and 65535 bytes.

in_sendspace
Sets the systemwide default size of the TCP lIP send window in bytes. This
should be at least as large as the loopback MTU. The default value is 8192
bytes. The minimum and maximum configurable values are 2048 and
65535 bytes.

ip_checkbroadaddr
Controls whether IP validates broadcast addresses. If set to 1 (the default
as specified in RFC 1122), IP discards non-broadcast packets sent to a link
level broadcast address. In the unlikely event that a data-link driver does
not support this, packets may be discarded erroneously. If the netstat -sp
ip command shows that many packets cannot be forwarded, set this
parameter to 0 to tum off checking.

ip _dirbroadcast
If set to 1 (the default), allows receipt of broadcast packets only if they
match one of the broadcast addresses configured for the interface upon
which the packet was received. If set to 0, allows receipt of broadcast
packets that match any configured broadcast address.

ip _perform_pmtu
IP performs Path MTU (PMTV) discovery as specified in RFC 1191 if set to 1
(the default). This causes IP to send packets with the "do not fragment" bit
set so that routers will generate "Fragmentation Required" messages. If
this causes interoperability problems, a value of 0 disables PMTU.

If you disable PMTU, you should also set tcp_of£er_bi8-mss (described in
"Transmission Control Protocol (TCP) parameters" (page 232» to O.

ip _pmtu_decrease_age
Controls how many seconds IP will wait (while performing PMTU) after
decreasing an MTU estimate before it starts raising it. The default value is
600 seconds. The maximum configurable value is 32667. If set to
Oxffffffff, the estimate is never raised; this is useful if there is only one
path out of your local network and its MTU is known to be constant.

ip _pmtu_increase_age
Sets the number of seconds between increasing the MTU estimate for a
destination once it starts to increase. The default value is 120 seconds. The
minimum and maximum configurable values are 0 and 600 seconds.

ip_settos
If set to 1 (the default), IP sets type-of service TOS information (as specified
in RFS 1122) in packets that it sends down to the data-link layer. Set this to
o if your network card link-level driver cannot handle this.

Performance Guide

ip _subnetsarelocal
The default value of 1 specifies that other subnets of the network are to be
considered as local- that is, TCP assumes them to be connected via high
MSS paths and adjusts its idea of the MSS to be negotiated. Otherwise, TCP
uses the default MSS specified by tcp_mssdflt (described in #Transmission
Control Protocol (TCP) parameters" (page 232)) - this is typically 512
bytes in accordance with RFC 793 and 1122. By default, the parameter
tcp_of£er_bi~mss is non-zero so that Path MTU discovery will provide
the maximum benefit. If the value of tcp _of£er_bi~mss is zero, the value
of ip_subnetsarelocal is not checked. This allows for good local perfor
mance even when PMTU discovery is not used.

The message #ICMP Host Unreachable" is generated for local subnet rout
ing failures. When this value is set to 0, the packet si,ze is set to 576 bytes,
as specified in RFC 1122.

The default value of 1 enables this feature; if set to 0, it is disabled.

ip_ttl
Sets the time to live (TTL) of an IP packet as a number of hops. This value
is used by all kernel drivers that need it (including TCP). The default value
is 64 as recommended by RFC 1340. The minimum and maximum
configurable values are 1 and 255.

ipforwarding

ipsendredirects
If you want to use your machine as a gateway, set both these parameters
to l.

ipforwarding controls whether the system will 'forward packets sent to it
which are destined for another system (that is, act as a router). The default
value is 0 (off) as defined by RFC 1122. A system acting as a host will still
forward source-routed datagrams unless ipnonlocalsrcroute is set to O.

ipsendredirects controls whether IP will redirect hosts when forwarding a
packet out of the same interface on which it was received. This should be
set to 1 if ipforwarding is set to l.

The Network Configuration Manager configures these values when addi
tional drivers are added. This feature usually makes it unnecessary to
change ipforwarding and ipsendredirects with inconfig.

231

Configuring TCPI/P tunable parameters

232

ipnonlocalsrcroute
Controls whether source-routed datagrams will be forwarded if they are
not destined for the local system. On hosts, the default value is 0 (off). H
your machine is acting as a router (ipforwarding is set to 1), the Network
Configuration Manager sets its value to 1. Set its value back to 0 if you are
concerned that this may open a security hole.

ipprintfs
Controls logging of warnings from the kernel IP driver. These are dis
played on the console. If set to 0 (the default), debugging information is
not displayed.

Message block control logging (MBCL) parameters
The following parameter controls the behavior of message block control log
ging (MBCL).

mbclprintfs
Controls logging of warnings from the kernel MBCL driver which converts
STREAMS messages (mblock) to character lists (clist). The warnings are
displayed on the console. If set to 0 (the default), debugging information
is not displayed.

NetBIOS parameters
The following parameters control the behavior of NetBIOS.

nb _sendkeepalives
Turns NetBIOS level keepalives on or off. When turned on, NetBIOS
keepalives are sent periodically on dormant NetBIOS connections. NetBIOS
keepalives are independent of TCP lIP keepalives, and are useful for sys
tems that do not use TCP lIP keepalives. This parameter is set to 0 (turned
off) by default. Set it to 1 to enable NetBIOS keepalives.

nbprintfs
Controls logging of warnings from the kernel NetBIOS driver as specified
in RFC 1001/2. The warnings are displayed on the console. H set to 0 (the
default), debugging information is not displayed.

Transmission Control Protocol (rCP) parameters
The following parameters control the behavior of the Transmission Control
Protocol (TCP). You can increase the number of TCP units beyond the default
number (256) using the Network Configuration Manager for the appropriate
sco_tcp chain.

tcp _initial_timeout
Sets the TCP lIP retransmit time for an initial SYN segment. The default
value is 180 seconds as defined by RFC 1122. The minimum and maximum
configurable values are 1 and 7200 seconds.

Performance Guide

tcp _keep idle
Sets the idle time before TCP lIP keepalives are sent (if enabled). The
default value is 7200 seconds. The minimum and maximum configurable
values are 300 and 86400 seconds.

tcp _keepintvl
Sets the TCP /IP keep alive interval between keep alive packets once they
start being sent. The default value is 75 seconds. The minimum and max
imum configurable values are 1 and 43200 seconds.

tcp _mss_sw _threshold
Defines the small window threshold for interface MTUs. If the MTU of an
interface is small enough to force TCP to use an MSS smaller than this
threshold, then TCP will use the receive window size specified by
tcp _small_recvspace. This is an optimization to avoid buffering too much
data on low-speed links such as SLIP and PPP. The default value is 1024
bytes. The minimum and maximum configurable values are 512 and 4096
bytes.

tcp _mssdflt
Sets the default TCP segment size to use on interfaces for which no MSS
and Path MTU information is available. The default and minimum value is
512 bytes. The maximum configurable values is 32768. You should keep
the value of this parameter small if possible.

tcp_nkeep
Sets the number of TCP lIP keepalives that will be sent before giving up.
The default value is 8. The minimum and maximum configurable values
are 1 and 256.

tcp _offer_bi~mss
In order to get the maximum benefit out of Path MTU (PMTU) discovery,
TCP normally offers an MSS that is derived from the local interface MTU
(after subtracting the packet header sizes). This allows the remote system
to send the biggest segments that the network can handle. Set this parame
ter to 0 for systems that cannot handle this, or that do not implement
PMTU discovery. This causes TCP to offer a smaller MTU for non-local con
nections (see ip_subnetsarelocal in "Internet Protocol (IP) parameters"
(page 229)). The default value of 1 (offer it) allows maximum benefit to be
gained from PMTU discovery; a value of 0 disables this.

233

Configuring TCPI/P tunable parameters

tcp _small_recvspace
Sets the receive window size to use on interfaces that require small win
dows (see also tcp_mss_sw_threshold). MTU is less than
tcp _mss_sw _threshold. The default value is 4096 bytes. The minimum
and maximum configurable values are 1024 and 16384 bytes.

tcp _urgbehavior
Controls how TCP interprets the urgent pointer. If set to 0, it interprets it
in RFC 1122 mode; if set to 1 (the default), it interprets it in BSD mode.

tcpalldebug
If non-zero~ captures trace information for all connections. The default
value is 0 which causes TCP to trace only those connections that set the
SO_DEBUG option. This information can be retrieved using the
trpt(ADMN) command, or displayed on the console if tcpconsdebug is set.

tcpconsdebug
Directs TCP lIP connection trace output to the console if set to 1 (see also
tcpalldebug). The default value is O.

tcpprintfs
Controls logging of warnings from the kernel TCP driver. These are dis
played on the console. If set to 0 (the default), debugging information is
not displayed.

User Datagram Protocol (UDP) parameters

The following parameter controls the behavior of the User Datagram Protocol
(UDP).

udpprintfs
Controls logging of warnings from the kernel UDP driver. These are dis
played on the console. If set to 0 (the default), debugging information is
not displayed.

234 Performance Guide

Appendix D

Quick system tuning reference

Table D-l, "Diagnosing performance problems" (this page) summarizes the
symptoms and possible solutions for some important performance problems.
Note that the measured values represent averages over time. Suggested criti
cal values may not be suitable for all systems. For example, you may be able
to tolerate a system that is paging out if this is not impacting the performance
of the rest of the system seriously.

Table 0·1 Diagnosing performance problems

Insufficient CPU power at high load

[mp]sar -q shows runq-sz > 2

[mp]sar-u shows %idle < 20% on
multiuser system

[mp]sar-u shows %idle < 5% on
dedicated database server

Additionally for SMP:

mpsar -q shows %runocc > 90%

cpusar -u shows %idle < 20% on any
CPU of multiuser system

cpusar -u shows %idle < 5% on any
CPU of dedicated database server

Possible solutions

Measures that can be taken include:

• check that the system is not swapping or
paging out excessively

• reschedule jobs to run at other times

• tune applications to use less CPU power

• replace applications with ones needing less
CPU power

• replace non-intelligent serial cards with
intelligent ones

• upgrade the system to use faster CPU(s)

• upgrade to a multiprocessor system

• add more CPUs to a multiprocessor system

• purchase an additional system to share the
load

235

Quick system tuning reference

Excessive paging out or swapping

[mp]sar -p shows rclm/s» 0

[mp]sar-q shows %swpocc > 20%

[mp]sar -w shows swpot/s > 1

swap -1 shows free < 50% of blocks

Poor disk performance

[mp]sar -u shows %wio > 15%

[mp]sar -d shows avque» 1 and
%busy > 80%

Poor buffer cache performance

Possible solutions

Increase free memory until swapping does not
occur by:

• reducing number of buffers (watch out for
reduced cache hit rates)

• running fewer large applications locally

• moving users to another machine

• addingRAM

Possible solutions

Increase disk performance by:

• using HTFS filesystem(s)

• using striping across several disks to balance
load

• keeping filesystems < 90% full

• reorganizing directories

• keeping directories small

• distributing different types of activity to
different disks

• adding more disks

• using faster disks, controllers, and host
adapters

• improving buffer cache performance

• improving namei cache performance

• reducing filesystem fragmentation

Possible solutions

[mp]sar -b shows %rcache < 90% and Improve buffer cache performance by:
%wcache < 65%

236

• increasing number of buffers

• increasing number of buffer hash queues per
buffer

Performance Guide

Poor namei cache performance

[mp]sar -n shows %Hhit < 65% or
%Dhit < 65%

Fragmented filesystem

elf -v shows blocks %used > 90%

Kernel tables too small

Possible solutions

Increase namei cache hit rate by:

• tuning namei cache parameters for each
filesystem type

• make each pathname component less than
or equal to 14 characters

Possible solutions

Reduce the number of disk blocks used by:

• using DTFS filesystem(s)

• removing unwanted files regularly

• archiving and removing, or compressing
infrequently used files

• mounting commonly used resources across
the network using NFS

• adding disk(s)

Reduce fragmentation by:

• archiving and removing the files, and
rebuilding the filesystem

Possible solutions

error messages displayed on console Allow table sizes to grow dynamically; for
[mp]sar -v shows ov > 0 (overflows) example, set MAX_PROC to 0 for the process

table

The desirable attributes of systems with many logged-in users and database
server systems differ in some respects. Use the following tables to check that
you have not overlooked anything:

• Table D-2, /I Attributes of a well-tuned multiuser system" (page 238)

• Table D-3, "Attributes of a well-tuned dedicated database server system"
(page 239)

Note that the performance values suggested in these tables may not be suit
able for all systems. The appropriate values depend greatly on the mix of ap
plications that is running and the likely demands placed on the system.

237

Quick system tuning reference

238

To record system activity to a file for later analysis, use the -0 option of
sar(ADM) on a single processor system, and of mpsar(ADM) on a multiproces
sor system. Take the measurements over a period of at least an hour with a
sampling interval sufficiently small to capture the level of detail which you
are interested in. Record the system's activity at varying levels of loading so
that you can identify when bottlenecks are appearing.

Table 0-2 Attributes of a well-tuned multiuser system

CPU performance

[cpu]sar -u shows %idle > 20%

[mp]sar -q shows runq-sz < 2

mpsar -q shows %runocc < 90%
(SMP only)

Explanation

Some idle time on each CPU at high load

Few processes waiting to run

Run queue is not continually occupied

See Chapter 3, "Tuning CPU resources" (page 21).

Memory performance

[mp]sar -p shows rdm/s::::: 0

[mp]sar -w shows swpot/ s ::::: 0

[mp]sar -q shows swpq-sz ::::: 0 and
%swpocc:::::O%

Explanation

Little or no swapping or paging out activity

Little or no activity on the swap device(s)

No swapped-out runnable processes

[mp]sar -r shows freemem» GPGSHI Ample free memory and swap space
and freeswp ::::: constant

See Chapter 4, "Tuning memory resources" (page 41).

Disk I/O performance

[cpu]sar -u shows %wio < 15%

[mp]sar-b shows %rcache > 90%
and %wcache > 65%

[mp]sar -d shows avque ::::: 1

[mp]sar -n shows %Hhit > 65% or
%Dhit> 65%

Explanation

Little time spent waiting for I/O to complete

Good hit rate for reading and writing to the
buffer cache

Low average number of disk requests queued

Good hit rate for namei cache

See Chapter 5, "Tuning I/O resources" (page 71).

Performance Guide

Table 0-3 Attributes of a well-tuned dedicated database server system

CPU performance

[cpu]sar -u shows %idle > 5%

[mp]sar -q shows runq-sz < 2

mpsar -q shows %runocc < 90%
(SMP only)

Explanation

Some idle time on each CPU at high load

Few processes waiting to run

Run queue is not continually occupied

See your database documentation and Chapter 3, "Tuning CPU resources"
(page 21).

Memory performance

[mp]sar -p shows rclm/s::::: a
[mp]sar -w shows swpot/ s ::::: 0

[mp]sar -q shows swpq-sz ::::: 0 and
%swpocc :::::0%

[mp]sar -r shows freemem::::: GPGSHI
and freeswp ::::: constant

Explanation

Little or no swapping or paging out activity

Little or no activity on the swap device(s)

No swapped-out runnable processes

Little excess free memory; allow the database to
use any excess memory by increasing its
internal work area.

See your database documentation and Chapter 4, "Tuning memory resources"
(page 41).

Disk 110 performance

[cpu]sar -u shows %wio < 15%

[mp]sar -d shows avque ::::: 1

Explanation

Little time spent waiting for I/O to complete

Low average number of disk requests queued

See your database documentation and Chapter 5, "Tuning I/O resources"
(page 71).

239

Quick system tuning reference

240 Performance Guide

Bibliography

The following books provide more information about topics outlined in this
guide. This list is provided for reference only; it is not comprehensive and The
Santa Cruz Operation, Inc. does not guarantee the accuracy of these publica
tions. The implementation of the UNIX system, networking and performance
analysis software described in these books may differ in some details from
that of the current sea OpenServer software.

Several references are also included on the subject of algorithmics which has
direct relevance to programmers who wish to improve the performance of
applications programs.

Ammeraal, Leendert. Programs and Data Structures in C, Second Edition. New
York, NY: Wiley, 1992. A practical introduction to the implementation and
manipulation of data structures using the ANSI e programming language.

Bach, Maurice J. The Design of the UNIX Operating System. Englewood Cliffs,
NJ: Prentice Hall, 1986. A technical discussion of the internals of the UNIX
System V Operating System, written shortly before the release of UNIX System
V Release 3.

Deitel, Harvey M. An Introduction to Operating Systems, Second Edition. Read
ing, MS: Addison-Wesley, 1990. Discusses general performance issues for op
erating systems.

Harel, David. Algorithmics: The Spirit of Computing, Second Edition. Reading,
MS: Addison-Wesley, 1992. A very readable introduction to the subject of
algorithmics.

Hunt, Craig. TCP/IP Network Administration. Sebastopol, CA: O'Reilly and
Associates, 1993. Contains information about the configuration of IP packet
routing and name service.

Knuth, Donald E. The Art of Computer Programming, Volume I: Fundamental
Algorithms. Reading, MS: Addison-Wesley, 1968. The first volume of the clas
sic three-volume series on the subject of computer programming.

Knuth, Donald E. The Art of Computer Programming, Volume II: Seminumerical
Algorithms. Reading, MS: Addison-Wesley, 1969.

Knuth, Donald E. The Art of Computer Programming, Volume III: Sorting and
Searching. Reading, MS: Addison-Wesley, 1973.

241

Bibliography

242

Loukides, Mike. System Performance Tuning. Sebastopol, CA: O'Reilly and
Associates, 1991. Includes many excellent tips for getting the best perfor
mance out of UNIX systems.

Mansfield, Niall. The Joy of x. Reading, MS: Addison-Wesley, 1993. Contains
useful information about performance issues for the X Window System.

Messmer, Hans-Peter. The Indispensable PC Hardware Book. Reading, MS:
Addison-Wesley, 1994. Provides comprehensive information about system
hardware issues.

Miscovitch, Gina and David Simons. The sca Performance Tuning Handbook.
Englewood Cliffs, NJ: Prentice Hall, 1994. Written by two senior kernel
engineers at sea, this book describes performance tuning for sca® UNIX®
Release 3.2 Version 4.2, sca MPXTM 3.0, sea Open Desktop 3.0, and sca Open
ServerTM 3.0 systems.

Press, William H., Brian P. Flannery, Saul A. Teukolsky, and William T. Vetter
ling. Numerical Recipes in c: The Art of Scientific Computing, Second Edition.
Cambridge University Press, 1994. Includes many numerical algorithms for
scientific and engineering applications.

Stem, Hal. Managing NFS and NIS. Sebastopol, CA: O'Reilly and Associates,
1991. Contains a detailed chapter on performance analysis and tuning as well
as useful references on IP packet routing and NFS benchmarks.

Performance Guide

Glossary of peifonnance terminology

This section contains definitions of the key terms used throughout this book
in discussing the performance of computer systems.

AlO

See asynchronous I/O.

asymmetric multiprocessing
A multiprocessor system is asymmetric when processors are not equally able
to perform all tasks. For example, only the base processor is able to control
I/O. Most machines acknowledged to be symmetric may still have some
asymmetric features present such as only being able to boot using the base
processor.

asynchronous VO
Provides non-blocking I/O access through a raw device interface.

bandwidth
The maximum I/O throughput of a system.

base processor
The first CPU in a multiprocessor system. The system normally boots using
this CPU. Also called the default processor, it cannot be deactivated.

bdflush
The system name for the buffer flushing daemon.

benchmark
Software run on a computer system to measure its performance under specific
operating conditions.

block device interface
Provides access to block-structured peripheral devices (such as hard disks)
which allow data to be read and written in fixed-sized blocks.

blockingVO
Forces a process to wait for the I/O operation to complete. Also known as
synchronous I/O.

boUleneck
Occurs when demand for a particular resource is beyond the capacity of that
resource and this adversely affects other resources. For example, a system has
a disk bottleneck if it is unable to use all of its CPU power because processes
are blocked waiting for disk access.

bss
Another name for data which was not initialized when a program was com
piled. The name is an acronym for block started by symbol.

243

Glossary of performance terminology

244

buffer
A temporary data storage area used to allow for the different capabilities
(speed, addressing limits, or transfer size) of two communicating computer
subsystems.

buffer cache
Stores the most-recently accessed blocks on block devices. This avoids having
to re-read the blocks from the physical device.

buffer flushing daemon
Writes the contents of dirty buffers from the buffer cache to disk.

cache memory
High-speed, low-access time memory placed between a CPU and main mem
ory in order to enhance performance. See also level-one (Ll) cache and level
two (L2) cache.

checkpointing
One of the functions of the htepi_daemon; marking a filesystem state as clean
after it flushes changed metadata to disk.

child process
A new process created when a parent process calls the fork(S) system call.

clean
The state of a system buffer or memory page that has not had its contents
altered.

client-server model
A method of implementing application programs and operating system
services which divides them into one of more client programs whose requests
for service are satisfied by one or more server programs. The client-server
model is suitable for implementing applications in a networked computer
environment.

Examples of application of the client-server model are:

• page serving to diskless clients

• file serving using NFS and NUCFS

• Domain Name Service (DNS)

• the X Window System

• many relational database management systems (RDBMSs)

clock interrupt
See clock tick.

clock tick
An interrupt received at regular intervals from the programmable interrupt
timer. This interrupt is used to invoke kernel activities that must be per
formed on a regular basis.

Performance Guide

contention
Occurs when several CPUs or processes need to access the same resource at
the same time.

context
The set of CPU register values and other data, including the u-area, that
describe the state of a process.

context switch
Occurs when the scheduler replaces one process executing on a CPU with
another.

copy-on-write page
A memory page that is shared by several processes until one tries to write to
it. When this happens, the process is given its own private copy of the page.

Cow page
See copy-on-write page.

CPU

Abbreviation of central processing unit. One or more CPUs give a computer
the ability to execute software such as operating systems and application pro
grams. Modem systems may use several auxiliary processors to reduce the
load on the CPU(s).

CPU bound
A system in which there is insufficient CPU power to keep the number of
runnable processes on the run queue low. This results in poor interactive
response by applications.

daemon
A process that performs a service on behalf of the kernel. Since daemons
spend most of their time sleeping, they usually do not consume much CPU
power.

device driver
Performs I/O with a peripheral device on behalf of the operating system ker
nel. Most device drivers must be linked into the kernel before they can be
used.

dirty
The state of a system buffer or memory page that has had its contents altered.

distributed interrupts
Interrupts from devices that can be serviced by any CPU in a multiprocessor
system.

event
In the X Window System, an event is the notification that the X server sends
an X client to tell it about changes such as keystrokes, mouse movement, or
the moving or resizing of windows.

245

Glossary of performance terminology

246

executing
Describes machine instructions belonging to a program or the kernel being
interpreted by a cpu.

fragmentation
The propensity of the component disk blocks of a file or memory segments of
a kernel data structure to become separated from each other. The greater the
fragmentation, the more work has to be performed to retrieve the data.

free list
A chain of unallocated data structures which are available for use.

garbage collection
The process of compacting data structures to retrieve unused memory.

htepCdaemon
A kernel daemon that handles filesystem metadata. It can also perform
optional transaction intent logging and checkpointing on behalf of the HTFS
filesystem.

idle
The operating system is idle if no processes are ready-to-run or are sleeping
while waiting for block I/O to complete.

idle waiting for 110

The operating system is idle waiting for I/O if processes that would otherwise
be runnable are sleeping while waiting for I/O to a block device to complete.

in-core
Describes something that is internal to the operating system kernel.

in-core inode
An entry in the kernel table describing the status of a file system inode that is
being accessed by processes.

inode
Abbreviation of Index Node. An inode is a data structure that represents a file
within a traditional UNIX filesystem. It consists of a file's metadata and the
numbers of the blocks that can be used to access the file's data.

interrupt
A notification from a hardware device about an event that is external to the
cPU. Interrupts may be generated for events such as the completion of a
transfer of data to or from disk, or a key being pressed.

interrupt bound
A system which is unable to handle all the interrupts that are arriving.

interrupt latency
The time that the kernel takes to handle an interrupt.

Performance Guide

interrupt overrun
Occurs when too many interrupts arrive while the kernel is trying to handle a
previous interrupt.

110

Abbreviation of input/output. The transfer of data to and from peripheral
devices such as hard disks, tape drives, the keyboard, and the screen.

110 bound
A system in which the peripheral devices cannot transfer data as fast as
requested.

job
One or more processes grouped together but issued as a single command. For
example, a job can be a shell script containing several commands or a series of
commands issued on the command line connected by a pipeline.

kernel
The name for the operating system's central set of intrinsic services. These
services provide the interface between user processes and the system's hard
ware allowing access to virtual memory, I/O from and to peripheral devices,
and sharing resources between the user processes running on the system.

kernel mode
See system mode.

kernel parameter
A constant defined in the file /etc!conf/cfdlmtune (see mtune(F» that controls
the configuration of the kernel.

level-one (Ll) cache
Cache memory that is implemented on the CPU itself.

level-two (L2) cache
Cache memory that is implemented externally to the CPU.

load average
The utilization of the CPU measured as the average number of processes on
the run queue over a certain period of time.

logging
See transaction intent logging.

marry driver
A pseudo-device driver that allows a regular file within a filesystem to be
accessed as a block device, and, hence, as a swap area.

memory bound
A system which is short of physical memory, and in which pages of physical
memory, but not their contents, must be shared by different processes. This is
achieved by paging out, and swapping in cases of extreme shortage of physi
cal memory.

247

Glossary of performance terminology

248

memory leak
An application program has a memory leak if its size is constantly growing in
virtual memory. This may happen if the program is continually requesting
more memory without re-using memory allocated to data structures that are
no longer in use. A program with a memory leak can eventually make the
whole system memory bound, at which time it may start paging out or swap
ping.

metadata
The data that an inode stores concerning file attributes and directory entries.

multiprocessor system
A computer system with more than one cpu.

multithreaded program
A program is multithreaded if it can be accessed simultaneously by different
CPUs. Multithreaded device drivers can run on any cpu in a multiprocessor
system. The kernel is multithreaded to allow equal access by all CPUs to its
tables and the scheduler. Only one copy of the kernel resides in memory.

namei cache
A kernel data structure that stores the most-commonly accessed translations
of file system pathname components to inode number. The namei cache
improves I/O performance by reducing the need to retrieve such information
from disk.

nice value
A weighting factor in the range 0 to 39 that influences how great a share of
cpu time a process will receive. A high value means that a process will run
on the cpu less often.

non-blocking liD

Allows a process to continue executing without waiting for an I/O operation
to complete. Also known as asynchronous I/O.

operating system
The software that manages access to a computer system's hardware resources.

overhead
The load that an operating system incurs while sharing resources between
user processes and performing its internal accounting.

page
A fixed-size (4KB) block of memory.

page fault
A hardware event that occurs when a process tries to access an address in vir
tual memory that does not have a location in physical memory associated
with it. In response, the system tries to load the appropriate data into a newly
assigned physical page.

Performance Guide

page stealing daemon
The daemon responsible for releasing pages of memory for use by other pro
cesses. Also known as vhand.

paging in
Reading pages of program text and pre-initialized data from the filesystems,
or stack and data pages from swap.

paging out
Releasing pages of physical memory for use by making temporary copies of
the contents of dirty pages to swap space. Clean pages of program text and
pre-initialized data are not copied to swap space because they can be paged in
from the filesystems.

parent process
A process that executes a fork(S) system call to create a new child process.
The child process usually executes an exec(S) system call to invoke a new pro
gram in its place.

physical memory
Storage implemented using RAM chips.

preemption
A process that was running on a CPU is replaced by a higher priority process.

priority
A value that the scheduler calculates to determine which process(es) should
next run on the CPUs. A process' priority is calculated from its nice value and
its recent CPU usage.

process
A single instance of a program in execution. This can be a login shell or an
operating system command, but not a built-in shell command. H a command
is built into the shell a separate process is not created on its invocation; the
built-in command is issued within the context of the shell process.

process tab Ie
A data structure inside the kernel that stores information about all the pro
cesses that are present on a system.

protocol
A set of rules and procedures used to establish and maintain communication
between hardware or software subsystems.

protocol stack
Allows two high-level systems to communicate by passing messages through
a low-level physical interface.

pseudo-device driver
A device driver that allows software to behave as though it is a physical de
vice. Examples are ram disks and pseudo-ttys.

249

Glossary of performance terminology

250

pseudo-tty
A pseudo-terminal is a device driver that allows one process to communicate
with another as though it were a physical terminal. Pseudo-ttys are used to
interface to programs that expect to receive non-blocking input and to send
terminal control characters.

queue
An ordered list of entities.

race condition
The condition which occurs when several processes or CPUs are trying to
write to the same memory or disk locations at the same time. The data that is
eventually stored depends on the order that the writes occur. A synchron
ization mechanism must be used to enforce the desired order in which the
writes are to take place.

RAID array
Abbreviation of redundant array of inexpensive disks. Used to implement
high performance and/or high integrity disk storage.

ramdisk
A portion of physical memory configured to look like a physical disk but
capable of fast access times. Data written to a ramdisk is lost when the oper
ating system is shut down. Ramdisks are, therefore, only suitable for imple
menting temporary filesystems.

raw device interface
Provides access to block-structured peripheral devices which bypasses the
block device interface and allows variable-sized transfers of data. The raw
interface also allows control of a peripheral using the ioctl(S) system call. This
allows, for example, for low-level operations such as formatting a disk or
rewinding a tape.

region
A region groups a process' pages by their function. A process has at least
three regions for its data, stack, and text.

resource
Can be divided into software and hardware resources. Software resources
may be specific to applications, or they may be kernel data structures such as
the process table, open file, and in-core inode tables, buffer and namei caches,
multiphysical buffers, and character lists. Hardware resources are a
computer's physical subsystems. The three main subsystems are CPU, mem
ory and I/O. The memory subsystem can be divided into two resources -
physical memory (or main memory) and swap space (or secondary memory).
The I/O subsystem comprises one or more resources of similar or different
types - hard and floppy disk drives, tape drives, CD-ROMs, graphics displays
and network devices.

ready-to-run process
A process that has all the system resources that it needs in order to be able to
runonaCPU.

Performance Guide

response time
The time taken between issuing a command and receiving some feedback
from the system. This is not to be confused with turnaround time which is a
measure of how long a particular task takes from invocation to completion.

run queue
The list of ready-to-run processes maintained by the kernel.

runnable process
See ready-to-run process.

scaling
A computer system's ability to increase its processing capacity as CPUs are
added. If the processing capacity increases in direct proportion to the number
of CPUs, a system is said to exhibit 100% scaling. In practice, a system's ability
to scale is limited by contention between the CPUs for resources and depends
on the mix of applications being run.

sched
The system name for the swapper daemon.

scheduler
The part of the kernel that chooses which process(es) to run on the CPUs.

single threaded program
A program is single threaded if it can only run on one CPU at a time. Single
threaded devices drivers can only run on the base processor in a multiproces
sor system.

sleeping on 110

See waiting for I/O.

spin lock
A method of synchronizing processes on a multiprocessor system. A process
waiting for a resource which is currently in use (locked) by a process running
on a different CPU repeatedly executes a short section of kernel code (spins)
until the lock is released.

stack
A list of temporary data used by a program to handle function calls.

strd
The system name for the STREAMS daemon.

stream head
The level of the STREAMS I/O interface with which a user process communi
cates.

STREAMS 110

A mechanism for implementing a layered interface between applications
running in user space and a device driver. Most often used to implement net
work protocol stacks.

251

Glossary of performance terminology

252

STREAMS daemon
The daemon used by the STREAMS I/O subsystem to manage STREAMS mem
ory.

swap area
A piece of swap space implemented as a disk division or as a block device
married to a regular file in a filesystem.

swap space
A collection of swap areas used to store the contents of stack and data mem
ory pages temporarily while they are used by other processes.

swapper daemon
Part of the kernel that reclaims physical pages of memory for use by copying
whole regions of processes to swap space.

swapping
The action take by the swapper daemon when the system is extremely short
of physical memory needed for use by processes. Swapping can place a
heavy load on the CPU and disk I/O subsystems.

symmetric multiprocessing
A multiprocessor system is symmetric when any processor can perform any
function. This ensures an even load distribution because no processor
depends on another. Each process is executed by a single processor.

system mode
The state of a CPU when the kernel needs to ensure that it has privileged
access to its data and physical devices. Also known as kernel mode.

text
Executable machine instructions (code) that a CPU can interpret and act on.

throughput
The amount of work (measured in number of jobs completed, disk requests
handled, and so on) that a system processes in a specified time.

time slice
The maximum amount of time for which a process can run without being
preempted.

transaction intent logging
One of the functions of the htepi_daemon; writing the intention to change
filesystem metadata to a log file on disk.

u-area
Abbreviation of user area and also known as a u-block. A data structure pos
sessed by every process. The u-area contains private data about the process
that only the kernel may access.

user mode
The state of a CPU when it is executing the code of a user program that
accesses its own data space in memory.

Performance Guide

vhand
The system name for the page stealing daemon.

virtual disk
A disk composed of pieces of several physical disks.

virtual memory
A method of expanding the amount of available memory by combining physi
cal memory (RAM) with cheaper and slower storage such as a swap area on a
hard disk.

waiting for I/O

A process goes to sleep if it has to wait for an I/O operation to complete.

X client
An applications program that communicates with an X server to request that
it display information on a screen or to receive input events from the key
board or a pointing device such as a mouse. The client may be running on the
same computer as the server (local), or it may be connected via a network
(remote).

X server
The software that controls the screen, keyboard and pointing device under the
X Window System.

X terminal
A display device that is able to run X server software. All of an X terminal's
clients must run on remote machines.

X Window System
A windowing system based on the client-server model.

zombie process
An entry in the process table corresponding to a process that no longer exists.
The entry will only be removed if its parent process invokes a wait(S) system
call. A zombie process does not consume any system resources apart from its
slot in the process table. However, you should beware of runaway processes
that generate many zombies. These will cause the system to become short of
memory as the process table grows to accommodate them.

253

Glossary of performance terminology

254 Performance Guide

Index

Symbols, numbers
16450, UART, 108
16550, UART,l08
80387, math coprocessor,221
8250, UART, 108
10Base2, 137
10Base5, 137
10Base-T, 137

A
Address Resolution Protocol, parameters,
227

address space, limiting, 202
ahdlcmtu, 228
AlO. See asynchronous I/O
aio_breakup - AlO buffer table overflow,
199

aio_breakup - AIO request table overflow,
199

aio_memlock - AlO process table overflow,
199

aio_setlockauth - AIO lock table overflow,
200

allocb - Out of streams memory, 211
allocreg - Region table overflow,209
applications

performance tuning, 9
using STREAMS, 129

AJ{P,parameters,227
arp_maxretries,227
arpprintfs, 227
arpt_down,228
arpCkeep, 228
arpCprune, 228
ASYH, parameters, 228
asynchronous I/O

control blocks, 85
high performance, 11
introduced,72
kernel parameters, 199
POSIX.lb,162
viewing activity of, 162

asynchronous writes, configuring on NFS
server, 151

automount(NADM), performance
considerations, 153

avque field, sar -d, 69, 89, 90
avservfield,sar-d,89,90
avwait field, sar -d, 89, 90

B
back-to-back packets, 225
bad line, 110
badcalls field, nfsstat -c, 144
badlen field, nfsstat -s, 145
badxid field, nfsstat -c, 145
balancing hard disk activity, 98
base processor,23
bdflush, 73, 194
BDFLUSHR, 93, 194
benchmarks, 118
BFREEMIN, 195
biod daemons, performance tuning, 149
blks/s field, sar -d, 90
block device, switch table size, 222
block I/O, viewing, 89
blocks field, swap -1,48
boot, load extension, kernel parameters,
222

Boot Time Loadable Driver, kernel parame-
ters,222

bread/s field, sar -b, 75
bridges, 137
bswot/s field, sar -w, 49, 68
BTLD, kernel parameters, 222
buffer cache

changing size at boot time, 79
disk blocks read to, 75
disk blocks written from, 75
effect of large, 77
finding size of, 74
free list, 195
hash queues, setting number of, 80
hit rates, 54
increasing available memory, 54
increasing size of, 75

255

buffer

buffer cache (continued)
number of reads from, 54, 75
number of writes to, 54, 75
position in memory of, 79
reducing contention, 81
reducing size of, 53, 54, 70
too small, 67
used by a database, 122
used by system, 72
viewing activity of, 75

buffer flushing daemon, 73
buffer header, STREAMS, 127
buffers

allocating character list, 197
configuration string, 219
increasing cache hit rate, 192
kernel parameters, 192
specifying age for filesystem updates,
194

splitting threshold, 211
writing to disk, 194

%busy field, sar -d, 69, 89, 90
buying hardware, 8
bwrit/s field, sar -b, 75

c
C2, disabling features, 203
cache hits, reducing disk accesses, 192
cache_affinity variable, 36
cblock,110
character block, 110
character buffers

allocating number of, 197
kernel parameters, 197

character device, switch table size, 222
character lists

introduced, 110
tuning, 112

chattering terminal, 110
CheaperNet, 137
checkpointing, 206
chown kernel privilege, controlling, 203
CHOWN_RES, 203
client-server

applications, 139
running applications over network, 140

clist,110
CLK_TCK,223
clock interrupt, 26

256

clock tick, 26
cluster, filesystem, 94
cluster buffers, number set using NMPBUF,
193

cluster size, 103
CMASK,202
Collis field, netstat -i, 133
configuration, tunable kernel parameters,
191

configuration string, size of buffer, 219
configuration-dependent values, changing,
223

configure(ADM), 189
console

kernel parameters, 204
plasma display, 221

console screen saver, 204
contention, locking, 10
context switch, 28
control, map size, specifying, 216
Control Register 0 (CRO), 221
Control Register 3 (CR3), 221
copy buffers

number set using NMPBUF, 193
tuning number of, 86
used by system, 79, 84

CPU
adding, 31
base processor, 23
disabling, 23
enabling, 23
idle, 22
number currently active, 23
turning on/off, 23
viewing activity of, 23

CPU-bound system
identifying, 38
tuning, 40

cpuonoff(ADM), 23
cpusar(ADM)

-1,34
-j,34
-u, 23,119

crash(ADM)
available swappable memory, 49
reading putbuf buffer, 193

crontab(C), 40,52
CTBUFSlZE,220

D
data, region, 209
database server, adjusting scheduler
behavior for, 35

database systems, 118
databases

arranging disks on server, 122
buffer cache used by, 122
disk layout of journal logs, 122
profiling files in, 122
shared memory, 122

desktop, reducing memory usage, 56
desktop client, performance, 56
device driver

kernel parameters, 222
multithreaded, 33
third party, 33

device field, sar -d, 89
/ dev / spx, 212
df(C),172
dfspace(C),172
%Dhit field, sar -n, 82, 91
D _hits field, sar -n, 82
%direct field, sar -0, 162
directories, efficiency of searching, 95
disk controllers

block caching, 92
effect of slow, 67
multiple, 92
track caching, 92

disk I/O-bound system, identifying, 90
diskless clients, NIS, 154
disks

average number of requests waiting for,
89

average size of data transfers, 90
average time for request to, 89
configuration for database server, 122
estimating throughput of, 90
even distribution of activity, 120
examining amount of space, 172
kernel parameters, 192
percentage of time busy, 89
redistributing data, 122
time request waits in driver, 89

dkconfig(ADM)
-ps,104
-Tp,106

dk_name - Diskinfo table overflow, 207

DMA (Direct Memory Access)
buffers, 84
simultaneous requests on channel, 221
transfers, 79
use by hard disk controllers, 40

DMAEXCL,221
Dmisses field, sar -n, 82
DNS (Domain Name Service), performance
considerations, 141-142

D0387CR3, 221
dopricalc variable, 35
DOS filesystem kernel parameters, 206
DOSNINODE,206
DOSNMOUNT,206
DOWPCRO, 221
DSTFLAG,219
DTCACHEENTS, 199
DTHASHQS, 199
DTOFBIAS,199
dynamic kernel table parameters, 56, 207
dynamic linked libraries, 11
dynamic tables, kernel parameters, 207

E
environment variables, TZ (timezone), 219
/etc/conf/cf.d/mtune,190
/etc/conf/cf.d/stune,190
/ etc/ default/ inet, 227

TCP lIP configuration, 226
/etc/default/login,202
/etc/tcp script, TCP lIP configuration, 225
Ethernet, 137
EVDEVS,216
EVDEVSPERQ,216
event-Event channel full, 216
event - Event table full, 216
event queue, kernel parameters, 216
EVQUEUES,216
exec/ s field, sar -c, 162
execution profiler, 10, 162
EXTRA_NDEV,222
EXTRA_NEVENT,222
EXTRA_NFILSYS, 222

257

factor(c)

F
factor(C), testing for prime, 83
fail field, netstat -m, 130
falloc - File table overflow, 208
file table, viewing, 55
files

compression, 206
controlling depth of versioning, 205
controlling undelete time, 206
default mask used on creation of, 202
maximum number of open, 201
size limit, 202
synchronization, 206

filesystem configuration, kernel parame
ters,205

filesystems
cluster, 94
defragmenting, 94
examining amount of space, 172
factors that affect performance of, 94
fragmentation, 94
nameicache, 198
writing buffers to disk, 194

file-sz field, sar -v, 55
fixed-priority process, 28
floating point coprocessors, 21
fork/s field, sar -c, 162
fragmentation, filesystem, 94
Fragmentation Required, 230
free list

used by buffer cache, 195
used by paged memory, 42

free memory pages, 48
freemem field, sar -r, 48, 51, 68
freeswp field, sar -r, 48
full frames, 131
full stripe, 103

G
Gateway for NetWare, performance tuning,
157

getconf(C),207,223
GPGSHI, 45, 53,67, 195
GPGSLO, 44,51,53, 195
group configuration, kernel parameters,
201

groups, limiting supplemental, 202

258

H
hard disks

balancing activity of, 98
performance limitations, 96

hardware
kernel parameters, 222
performance, 8
performance considerations, 8
upgrading, 8

hardware-dependent kernel parameters,
220

Hardware/Kernel Manager, 188
hash queues

increasing with system buffers, 192
setting number of, 80

%Hhit field, sar -n, 82, 83, 91
H_hits field, sar -n, 82
Hmisses field, sar -n, 82
hop count, increasing on interface, 140
host adapter

scatter-gather, 92
tagged command queuing, 92

HTCACHEENTS,198
HTFS filesystems, increasing performance
of, 95

HTHASHQS, 198
HTOFBIAS, 198
HZ, clock interrupt rate, 26

I
ICMP Host Unreachable, 231
ICMP (Internet Control Message Protocol)
parameters, 228

icmp_answermask, 228
icmpprintfs,228
iddeftune(ADM),53
idle

no runnable processes, 23
operating system state, 22
waiting for 1/0,22

%idle field, sar -u, 23
idle waiting for 1/0,23
idtune(ADM), 190

changing kernel parameters using, 190
Ierrs field, netstat -i, 133
ifconfig(ADMN), 131,225
IGMP (Internet Group Management
Protocol) parameters, 229

igmpprintfs, 229

IKNT (in-kernel network terminal) driver,
configuring, 229

inconfig(ADMN), 132,226
in-core inode table, viewing, 55
indirect blocks, 95
inet file, TCP /IP configuration, 226
in_fullsize, 229
in-kernel network terminal driver, config
uring, 229

in_Ioglimit, 229
inode table

allocating entries, 207
viewing, 55

Inode table overflow, 208
inodes

indirect blocks, 95
number in DOS filesystem, 206

inod-sz field, sar -v, 55, 83
in_recvspace, 230
in_sendspace, 230
intelligent serial cards, 40
inter-CPU interrupts, examining, 34
interface cards, performance tuning, 225
Internet Control Message Protocol parame-
ters,228

Internet Group Management Protocol pa
rameters, 229

Internetwork Packet Exchange, IPX, 157
interrupt

bound,l11
examining activity, 34
examining inter-CPU activity, 34
inter-CPU, 34
introduced, 28
latency, 111
overrun,lll
sharing, 221
trigger level, 111

I/O
asynchronous, 72
buffers, 74
programmed,22
synchronous, 72
tuning, 71

I/O bottlenecks
due to LMCFS performance, 155
due to NFS performance, 146

I/O vector size, setting, 203
I/O-bound system, identifying, 91
10V _MAX,203

kernel

IP (Internet Protocol)
configuring for NFS, 152
introduced, 131
parameters, 229

IPC activity, viewing, 162
ip_checkbroadaddr, 230
IPC_NOWAIT, 214
ip_dirbroadcast, 230
ipforwarding, 231
ipnonlocalsrcroute, 232
ip _perform_pmtu, 230
ip _pmtu_decrease_age, 230
ip_pmtu_increase_age, 230
ipprintfs, 232
ipsendredirects, 231
ip _settos, 230
ip_subnetsarelocal,231
ip_ttl,231
IPX (Internetwork Packet Exchange), 157
IPX/SPX, performance tuning, 157

J
job structure, 107
joumallogs

bottleneck, 98
disk layout, 122

K
KB1YPE,221
KDBSYMSIZE, 219
kernel

managing virtual address space, 197
relinking with link_unix, 189
resources, 189, 190

kernel debugger, size of symbol table, 219
kernel mode, operating system state, 22
kernel parameters

AIO,199
boot load extension, 222
BTLD,222
buffers, 192
changing,189
changing using configureADM), 191
changing using idtune(ADM), 190
console, 204
disks,192
event queues, 216
filesystem, 205

259

kernel

kernel parameters (continued)
hardware-dependent, 220
math coprocessor, 221
memory management, 195,197
message queues, 213, 215
multiphysical buffers, 192
multiscreens,204
nameicache,198
paging, 195
processes, 195
semaphores, 216
shared memory, 218
S11(E~S,209-213

swapping, 195
system name, 219
tunable for configuration, 191
tunable for performance, 191
user and group configuration, 201
virtual disk, 200

kernel profiler, text symbols, 219
kernel tables

dynamic, 56
kernel parameters, 207

KERNEL_ CLISTS, 224
adjusting number of, 112

KERNEL_CLISTS_MAX,224
KERNEL_MOUNT_MAX,207
keyboard, logical character protocol, 221

L
L1 cache, 37, 41
L2 cache, 35, 37, 41
LAN Manager Client Filesystem, LMCFS

kernel parameters, 223
performance tuning, 154

latches, 165
latency, interrupt, 111
layers, setting number of, 205
libraries, 11
link_unix(ADM), 189
LMCFS (LAN Manager Client Filesystem)

kernel parameters, 223
performance tuning, 154,155

LMCFS_BUF _SZ, 223
LMCFS_L~,156,223

LMCFS_NUM_BUF, 156,223
LMCFS_NUM_RECb156,223

260

Imc(LMC)
mntstats, 156
stats,156

load displayer,34
loadbalance variable, 37
localization of reference, 11
lock table, viewing, 55
locks, contention, 10
lock-sz field, sar -v, 55
log driver, number of minor devices, 213
logging, 206
login user ID, LUID,203
logs, disk layout, 122
LUID (login user ID), 203

M
math coprocessor, kernel parameter, 221
MAX_BDEV,222
MAX_CDEV,222
MAX_CFGSIZE,219
MAX_DISK, 207
MAXFC,197
MAX_FILE, 208
MAX_FLCKREC,209
maximum segment size, adjusting, 131
MAX_INODE,207
MAX_MOUNT, 153,209
MAX_PROC, 202,208
MAX_REGION, 209
MAXSC,197
MAXSEPGCNT,212
MAXSLICE,26,196
MAXUMEM,202
MAXUP,202
MAXVDEPTH,205
MBCL (message block control logging), pa-
rameters,232

mbclprintfs, 232
mdmin/s field, sar -y, 110
memory

adding more, 53
cause of leak, 52
finding amount of, 42
greater than 32MB, 53
management 195
maximum used by STREAMS, 210
pages, 42
setting maximum used by process, 202
shared segment size, 218

memory (continued)
swappable, 49
used by virtual disk driver, 101

memory management, kernel parameters
197 '

memory-bound system
identifying, 51
tuning, 52

message block control logging, MBCL, pa-
rameters, 232

message buffers, 127
message header, STREAMS, 127
message map, size of, 164
message queue, kernel parameters, 213, 215
messages

data per queue, 164
file, 42, 74
length of, 164
memory reserved for, 164
message queues, 163
number of segments, 164
size of message map, 164
size of segment, 164
using, 163
viewing activity of, 162

MINARMEM, 196
MINASMEM,196
MINVTIME,206
mkdev(ADM)

configuring layers, 205
configuring pseudo-ttys, 205
configuring shell layers, 205

modems, tuning serial port parameters, 111
MODE_SELECT, 221
mpsar(ADM). See sar(ADM)
mpstat(ADM),34
MSGMAP, 164, 213
MSG~,l64,214

MS~B,l64,214

MS~I,215

msg/ s field, sar -m, 163
MSGSEG, 164,214
MSGSSZ, 164, 215
MSGTQL,215
mtune file, 190
mtune(F), kernel parameters file, 187
multiphysical buffers

configuring number of, 193
kernel parameters, 192
tuning number of, 86
used by system, 72, 79, 84

networking

multiplexer links, 213
multiscreen, kernel parameters, 204

N
NAHACCB, 222
NAIOBUF, 199
NAIOHBUF, 200
NAIOLOCKTBL, 200
NAIOPROC,199
NAIOREQ,199
NAIOREQPP, 200

. name service, performance considerations
141-142 '

name to inode (namei) translation cache 72
namei cache '

DTFS kernel parameters, 199
HTFS kernel parameters, 198
kernel parameters, 198
low hit rate for, 91
number of components found in, 82
number of misses in, 82
operation of, 81
percentage of hits in, 82
tuning performance of, 83
used by system, 72

NAME_MAX,224
NAUTOUP, 93, 194
nbprintfs, 232
nb_sendkeepalives, 232
NBUF,54,74,78,192
nbuf bootstring, 79
NCLIST, 110, 111, 112, 197
NCPYRIGHT, 219
NEMAP,222
NetBEUI

performance tuning, 157
protocol stack, 157

NetBIOS
interface, 157
parameters, 232
performance tuning, 157

netstat(TC)
-i, 133,158
-m,130

networking, performance tuning, 123-157
networking parameters, TCP lIP, 227-234

261

networks

networks
configuring topology of, 137-140
interface cards, performance tuning, 225
monitoring activity of, 138
packet collisions, 133, 138
packet corruption, 133
packet transmit errors, 133
route tracing, 136
server types, 139
sniffer, 138
subnets, 139
testing connectivity, 136

newproc - Process table overflow, 208
NFS (Network File System)

asynchronous writes, configuring, 151
configuring IP for, 152
configuring to use TCP, 152
daemons, tuning, 147
examining client performance, 144
mount(ADM) options, configuring, 153
performance implications of daemons,
146

performance tuning, 142-154
server, examining performance, 145
synchronous writes, configuring, 151
tuning client performance, 147

nfsd daemons, performance tuning, 148
nfsstat(NADM)

-c,l44
-s,145

NGROUPS,202
NGROUPS_MAX runtime value, 202
~BUF,78,80,192

NHINODE, 193
nice value

changing, 30
use in calculating priority,29

NIS (Network Information Service)
clients, 154
performance considerations, 154

NKDVTIY,222
NLOG,213
NMPBUF, 79, 84, 193
NMUXLINK,213
NODE,219
NOFILES,201
non-intelligent serial cards, 40, 108
Not enough space, 202
nping(PADM), 157
NSCRN,205
NSHINTR, 221

262

NSPTIYS, 58, 205
~STREAM,58,129,130,210

~STREVENT, 211
~STRP AGES, 58, 128, 130
~STRPUSH, 213
~UMSP, 58, 212
~SXT,205

~UMTIM,212

~MTRW,212

~,205

~ZERO,223

o
Oerrs field, netstat -i, 133
ompb Is field, sar -h, 86
one-packet mode

disabling, 226
enabling, 225
setting, 132

open file table, viewing, 55
operating system states, 22
oreqblkl s field, sar -5, 94
OS! protocol stack, 157
Out of clists ... , 197
out of streams, 129
ov clist I s field, sar -g, 112
overrun, interrupt, 111
ovsiodmal s field, sar -g, 112
ovsiohw I s field, sar -g, 111

p
packets

collisions, 133, 138
corrupted,133
output errors, 133

page stealing daemon, vhand, 44
pages, 42
paging

affecting I/O throughput, 69
heavy activity, 51
indicating memory shortage, 67
memory, 195
pages added to the free list, 50
pages not found in memory, 50
used by system, 44

Path MTU discovery, 230,233
perfect scaling, 31

performance
buying hardware, 8
collecting data, 16
defining goals, 16
formulating a hypothesis, 17
getting more specifics, 17
hard disk, 96
hardware considerations, 8
introduced, 7
making adjustments, 18
managing, 13
managing the workload, 19
tunable kernel parameters, 191
tuning applications, 9
tuning methodology, 14
upgrading hardware, 8

performance tuning, quick guide, 235-239
piece structure, 107
ping(ADMN),136
PIO (programmed I/O), 22
PLOWBUFS, 79,193
PMTU discovery, 230, 233
_POSIX_CHOWN_RESTRICTED, 203
PPP

ASYH parameters, 228
performance tuning, 136

preemption variable, 37
PRFMAX,219
prime number, testing for, 83
primove variable, 36
priority

table of values, 175
types of, 29

process
context, 28
examining activity of, 173
finding virtual size of, 52
fixed-priority, 28
kernel parameters, 195
limiting number of, 202
memory management, paging and
swapping, 195

nice value, 29
priority of, 29
regions, 209
scheduling, 24
specifying maximum time slice, 196

process table
allocating entries in, 208
viewing, 55

processes, reducing number of, 70

ROOTMINVTIME

proc-sz field, sar -v, 55
profiling, 10, 162
profiling files, in databases, 122
programmed I/O, PIO, 22
protocol stack, implementation of, 125
ps(C)

-el,52
using, 173

pseudo-ttys, configuring, 205
putbuf buffer, 193
PUTBUFSZ, 193

Q
QIC-02 tape drive, size of buffer, 220

R
RAID (redundant array of inexpensive
disks), performance, 102

raw I/O, 118
rawch/s field, sar -y, 110
%rcache field, sar -b, 54, 69, 75,91
rchar/s field, sar -c, 161
rclm/s field, sar -p, 50, 51
rcvin/s field, sar -y, 110
read-ahead, 73
readv(S), I/O vector size, 203
receive window size

adjusting, 131
setting for each interface, 226

records, locked by system, 209
region table, 209
repeaters, 137
reqblk/ s field, sar -5, 94
request counts, 104
rescheduling jobs, 40
resident pages wanted, 196
retrans field, nfsstat -c, 145
root filesystem

checkpointing,206
compression, 206
file synchronization, 206
logging, 206
undelete depth, 206
undelete time, 206

ROOTCHKPT,206
ROOTLOG,206
ROOTMAXVDEPTH,206
ROOTMINVTIME,206

263

ROOTNOCOMP

ROOTNOCOMP,206
ROOTSYNC,206
routers, 125, 137
routing, performance considerations, 140-
141
routing metric, adjusting, 225
run queue

heavy activity on, 38
runnable processes on, 24
viewing activity of, 30
viewing occupancy of, 30
viewing size of, 30

%runocc field, sar -q, 30
runq-sz field, sar -q, 30
r+w /s field, sar -d, 90

s
sadc (System Activity Data Collector), 177
sar(ADM), 176

-B,86
-b, 54, 69, 75, 91
-c,161
-d, 69,89,90
enabling for use, 177
-g,111
-h,86
-L,165
-m,162
-n, 82, 83, 91
-0,162
-p,50,51
-q, 30,49,68
-r, 48, 51, 68
-5,93,220
system activity reporter, 176
-u, 23, 146, 155 ,
-v, 55, 83,202,208
-w,49,68
-y,110

scaling, perfect, 31
scall/s field, sar -c, 161
scatter-gather buffer headers, used by
system, 85

scatter-gather buffers
number set using NMPBUF, 193
tuning number of, 86
used by system, 84

264

sched
daemon, 47
heavy activity by, 51

scheduler, purpose of, 24
scheduling

cache affinity, 36
cache_affinity variable, 36
dopricalc variable, 35
fixed-priority, 11
load balancing, 37
loadbalance variable, 37
of processes, 34
preemption variable, 37
primove variable, 36
priority calculations, 35

screen saver, 204
SCRNMEM,205
SCSI disk request blocks, tuning, 93
SCSI disks

request queue, 93
tuning number of request blocks, 93

sdevice file, entry for sleeper driver, 167
sdmabuf/s field, sar -h, 86
SDSKOUT, 93, 220
SECCLEARID,204
SECLUID,203
SECSTOPIO, 204
security

disabling C2 features, 203
kernel parameters, 203

SEMAEM,217
semaphores

kernel parameters, 216-217
POSIX.lb,163
System V, 162
used by database, 168
using, 163
viewing activity of, 162

sema/ s field, sar -m, 163
SEMMAP,216
SEMMNI,216
SEMMNS,163,217
SEMMNU,216
SEMMSL,217
SEM_NSEMS_MAX, 163, 217
SEMOPM,217
SEMUME,217
SEMVMX,217

send window size
adjusting, 131
setting for each interface, 226

Sequenced Packet Exchange, SPX, 157
serial I/O

device driver, 108
tuning, 110

server types, 139
setconf(ADM), 224
SGID bits, 204
shared memory

by CPUs,33
kernel parameters, 218
used by databases, 122
using, 165

shell layers, setting number of, 205
SHMMAX, 165, 218
SHMMIN,218
S~,165,218

sio, serial driver, 108
sleeper driver, 163, 167, 168
SLIP, performance tuning, 135
slpcpybufs/ s field, sar -B, 86
spin locks, 165
split job, 103
SP1MAP, 197
spurious interrupts, 110
SPX (Sequenced Packet Exchange), 157
sread/s field, sar -c, 161
stack, region, 209
static shared libraries, 11
stopio(S), 204
STRCTLSZ, 213
strd, daemon, 129
stream event, structures, 211
stream head, 123
stream heads

configuring number of, 129, 210
structures, 210

STREAMS
applications using, 129
buffer splitting, 211
configuring number of pipes, 212
kernel parameters, 209-213
message buffers, 127
message header, 127
message~124,127

monitoring use, 129
multiplexer links, 213
performance tuning, 123-131
too few stream heads, 129

swritls

STREAMS message, control portion, 213
STREAMS modules

kernel parameters,212
number on stream, 213

STREAMS pipes, configuring number of, 212
string: Configuration buffer full, 219
strinit - Cannot alloc STREAMS table, 210
striped disks, 98
STRMSGSZ, 212
stropen - Out of streams,210
STRSPLfTFRJ\C,128,211
stune file, 190
subnets, 139
SUDS library

AIO, 162
semaphores, 163
spin locks and latches, 165

SurD bits, 204
supplemental groups, limiting, 202
swap area

adding, 179
deleting, 179
examining usage of, 179
size of, 48
unused disk blocks in,48
used by system, 47

swap queue
activity on, 51
used by system, 49
viewing occupancy of, 49
viewing size of, 49

swap (ADM)
-1,48,68
using,179

swapdel - Total swap area too small, 196
swappable pages wanted, 196
swapper daemon, sched, 47
swapping

activity,51
affecting I/O throughput, 69
consuming CPU resources, 40
heavy activity, 51
indicating memory shortage, 67
kernel parameters, 195
memory,195
used by system, 47
viewing activity of, 49

%swpocc field, sar -q, 49, 68
swpot/ s field, sar -w, 68
swpq-sz field, sar -q, 49, 68
swrit/s field, sar -c, 161

265

synchronous

synchronous 1/0,72
synchronous writes, configuring on NFS
server, 151

%sys field, sar -u, 23
system, increasing reliability of, 194
system activity, per command, 180
System Activity Data Collector, sa dc, 177
system activity recording, enabling, 177
system calls

excessive number of, 162, 168
investigating activity of, 161
number of characters read, 161
number of characters written, 161
number of execs, 162
number of forks, 162
number of reads, 161
number of writes, 161
reducing, 166
total number of, 161

system mode, operating system state, 22
system name, 219
system resources, kernel, 189, 190
system tables, viewing, 55
SZ field, ps -el, 52

T
tape drive buffer, size of, 220
TBLDMAPAGES,207
TBLLIMIT, 207
TBLMAP,207
TBLNK,204
TBLPAGES, 207
TBLSYSLIMIT,207
TCP (Transmission Control Protocol)

introduced, 131
parameters. 232

tcpalldebug, .;.34
tcpconsdebug, 234
tcp_initiaLtimeout, 232
TCP/IP

daemons, performance implications, 134
global parameters, changing, 226
maximum segment size, adjusting, 131
one-packet mode, setting, 132
parameters, 227-234
performance considerations, 132
performance tuning, 131-142
problem solving, 132
receive window size, adjusting, 131

266

TCP /IP (continued)
send window size, adjusting, 131
setting receive window size, 226
setting send window size, 226
setting truncate segment, 226
time-to-live, setting, 132
using with NFS, 152

tcp _keepidle, 233
tcp_keepintvl, 233
tcp_mssdflt,233
tcp _mss_sw _threshold, 233
tcp _nkeep, 233
tcp_offer_bi~mss, 233
tcpprintfs, 234
tcp_smaILrecvspace,234
tcp_urgbehavior,234
terminal driver,109
text

of program, 42
region, 209
shared,209

ThickNet, 137
ThinNet, 137
throughput, disk, 90
time slice, 26
timeout field, nfsstat -c, 145
time-to-live, setting, 132
timex (ADM), 180
TIMEZONE, 219
timezone variable, TZ, 219
timod(M), STREAMS modules, 212
TLI (Transport Library Interface), kernel pa-
rameters, 212

Too big, 202
traceroute(ADMN),136
transfer buffers

number set using NMPBUF, 193
tuning number of, 86
used by system, 84

Transport Library Interface, TLI, kernel pa
rameters, 212

trigger level, UART, 111
truncate segment, setting for each interface,
226

TTHOG,111
tty

configuration parameters, 197
kernel parameters, 204
terminal driver, 109

tuning
CPU resources, 21-40
CPU-bound systems, 40
disk I/O-bound systems, 92
increasing disk I/O throughput, 75
increasing speed of access to buffers, 80
I/O resources, 71-122
LMCFS performance, 155
memory resources, 41-70
memory-bound systems, 52
methodology, 14
networking resources, 123-160
NFS client performance, 147
NFS performance, 146
number of biod daemons, 149
number of nfsd daemons, 148
PPP performance, 136
reducing contention for buffers, 80
reducing contention for multiphysical
buffers, 86

reducing contention for SCSI disk request
blocks, 93

reducing disk I/O using the namei cache,
83

serial 1/ 0, 110
SLIP performance, 135
STREAMS resources, 130
system call activity, 161-169
TCP /IP performance, 131
virtual disk performance, 100
X server performance, 57

twisted pair, 137
TZ (timezone) variable, 219

u
UART (universal asynchronous
receiver /transmitter), 108

UDP, parameters, 234
udpprintfs, 234
ULIMIT,202
umask(S), default mask, 202
undelete, controlling time, 206
undelete depth, 206
undelete time, 206
undo structures, number in system, 216
universal asynchronous
receiver/transmitter, UART, 108

upgrading hardware, 8
user configuration, kernel parameters, 201

virtual

User Datagram Protocol, parameters, 234
user mode, operating system state, 22
%usr field, sar -u, 23
/usr/adm/messages,42,74

v
vcview(LMC), -v, 155
VDASYNCMAX, 107,201
VDASYNCPARITY,201
VDASYNCWRITES, 201
VDHASHMAX, 108,200
vdisk - job pool is empty, 107
vdisk - job queue is full, 107
vdisk - piece pool is empty, 107
vdisk driver, 100, 105
VDJOBS, 107,200
VDRPT,201
VDUNlTJOBS, 107, 200
VDUNITMAX,200
VDWRITEBACK, 201
versioning, controlling depth of, 205
vflt/s field, sar -p, 50
VGA_PLASMA,221
vhand

daemon, 44, 195
heavy activity by, 51

viewing, block 1/0,89
virtual, terminals, 222
virtual connection, 126
virtual disks

asynchronous writes, 107
balancing disk load, 105
buffer headers, 106
choosing a cluster size, 103
comparison of configurations, 100
CPU requirements, 100
examining request counts, 104
full stripe, 103
hash table, 108
job pool, 107
kernel parameters, 200
memory requirements, 101
number of job structures, 107
number of jobs, 107
number of piece pool entries, 107
piece pool, 107
RAID 4 and 5 performance, 102
split job, 103
striping, 98

267

virtual

virtual disks (continued)
tuning, 100-108
tuning kernel parameters, 106
used by databases, 103
using, 98
vdisk driver, 100
write-back caching, 201

virtual memory statistics, examining, 181
vrnstat(C), virtual memory statistics, 181

w
wait field, nfsstat -c, 145
waiting for I/O, operating system state, 22
%wcache field, sar -b, 54,69,75,91
wchar/s field, sar -c, 161
window sizes, setting for each interface,
226

%wio field
cpusar -u, 119
sar -u, 23, 39, 90

workload, managing, 19
writev(S), I/O vector size, 203

x
X client

performance, 56
unable to start, 58

X server, tuning, 57
X Window System, configuration, 58
xdrcall field, nfsstat -s, 145
XENIX, shared data segments, 218
XENIX semaphores, 217
xsd_alloc - XENIX shared data table
overflow, 218

XSDSEGS, 218
XSDSLOTS, 218
xsem_alloc - XENIX semaphore table
overflow, 217

XSEMMAX,217
xtinit - Cannot allocate xt link buffers, 205

268

1 May 1995

AU20004POOl

