
A SUBSIelAA4wI eF 5DFTECH

UCSD p-SYSTEM and UCSD PASCAL

A PRODUCT FOR MINl- AND MICRO-COMPUTERS

Version IV.O

USERS' MANUAL

Second edition: January 1981

SofTech Microsystems, Inc.
San Diego 1981

9494 Black Mountain Rd., San Diego, CA 92126 (714) 578-6105 ~X: 910-335-1594

This guide was written by David Berger, Randy Clark, Barry Demchak, and Bruce
Sherman, and edited by Randy Clark. George Symons and John T.ennant provided
inv alu able time and information. Mark Allen and Steve Koehler also contributed
useful comments.

UCSD, UCSD Pascal, and UCSD p-System are all trademarks of the Regents of the
University of California. Use thereof in conjunction with any goods or services is
authorized by specifio license only, and any unauthorized use is contrary to the
laws of the State of California.

CP/M is a registered trademark of Digital Research Corporation.

Copyright © 1981 by SofTech Microsystems, Inc.
All rights reserved. No part of this work may be reproduce~Lin any. form or by
any means or used to make a derivative,work (such asa· translation,
transformation, or adaptation) without the permission in writing of SofTech
Microsystems, Inc.

TABLE OF CONTENTS

SECTION

I,
l !.

11"

. :.,

INTRODUCTION
1 Pr,eliminaries . · · · · · · · · · 1 Summary . · · · · · · · · · · · · 2 General Information · · · · · 1 SETUP and GOTOXY

1 SETUP · · · · · . · · · · . · 2 GOTOXY · · · · . · 3 Binding GOTOXY
2 The Adaptable System · · · · · ? Byte Sex Handling · · · · · · 3 Backing Up Disks
1 Ready-to-use Syster:ns · · · · · · · . · 2 Adaptable Systems · · · · · 4 Downloading and Unpacki ng

INTRODUCTION TO BOOTSTRAPPING
1 . The Concept of Booting • • • •• ' •••••
2 Primary, Secondary, and Tertiary Bootstraps
3 ty1~chine-Specific Bootstraps ••••
4 T~e BOOTER Utility

~ ,

· · · · · · . . · · · · · · · . · · · · · ·
· '.

· · · · · · · · · · · · · . . · · · · · · · . · · · · · · · ~ ,'. · · ·
· · · · ·

· .. ;. ,. ..

Ul TER-MINA~ HANDLING
1
2

3

l,ntr9duction • • ••
?ETWP
1 Running SETUP
2 Miscellaneous Notes for SETUP
3, The Data Items in SYSTEM.MISCINFO
GOTOXY
1, Writing your own GQTOXY

.,. .
• ·0 •

1. ,A Discussioll • • • • • • • • • • • • . • • • • • • • • • • • • • .
2 A Recipe .for, GQTOXY

,2. Binding GOTOXY. ••••• •••••
1 Using LIBRARY to Bind GOTOXY · . . .-
2 . Problems • • • • • • • ,.. · .' · .'

SCREENTEST
1 Running SCREENTEST .'~ . .
,2 Resul ts of, SCREENTEST • < ~ • • · '. . . .

1 Problems that can be Fixed by Using SETUP •••

3

2 Problems that can be Fix~d by Changing GOTOXY . • •••
3 Other Problems ••••••••••••••••
Miscellaneous Notes on SCREENTEST Problems

· ·

· · · ·

· · · ·
· ·
· ·

PAGE

· · · ·

· ·
· ·
·

1
3
4
4
4
5
5
6
8
9
9

10
11

17
17
19
21

23
25
26
28
29
36
37
37
39
41
41
45
46
47
48
49
51
52
53

iii

IV

iv

5 Appendices · · · · · 1 SETUP Menu and Defaults · · · · · · · · · · · · · · · · · · 2 Sample SETUPs for Some Terminals · · · · · · · 3 GOTOXY Source Examples · · · · · · · · · · · · · . . · · 4 Sample SETUP Session with Comments · · · · · · · . · · · · 5 Sample SCREENTEST Log · · · · · · · · · · · · · · · ·
THE ADAPT ABLE SYSTEM

1 Introduction.................
1 Creating a useful System Disk

2 Relevant Utilities • • • • • . •••
1 DISKCHANGE ••••••
2 DISKSIZE • • • • • • • • •

3 The CP/M Adaptable System
1 Assessing your System •••••

1 Memory Configurations
2 Floppy Disk Requirement
3 I/O Drivers ••••

2 Bootstrapping •• •••
3 Checking your System
4 Improvements •••••

1 PASBOOT ••••
2 Allowing Empty Disk Drives
3 Changing ~isk Recording Formats •••••
4 Creating an Automatic Bootstrap •••••
5 Changing the P-Machine Interpreter ••••
6 Using the Full Adaptable System ••••

4 The Full Adaptable System •••••••• • •••
1 Assessing the Situation ••••• • •••

1 Memory Configurations • • •
1 Sample Configurations ••••••••••

2 Floppy Disk Requirements •••••••••

.

1 Format of the Adaptable System Disk • • • • • • • • •
2 Preparing the Disk for Bootstrapping •••••

2 SBIOS . . • • • · • • · .
1 Introduction ••••••••••••• • • • •
2 The SBIOS Routines •••••••• •••••••••

1 The Individual SBIOS Routines-
2 Where to Get the SBIOS Routines
3 What to Do with SBIOS Routines •
4 Physical Organization of the SBIOS •• ••
5 How to Call the SBIOS Routines

3 Testing the SBIOS ••••••••••••••••••••••••
1 Loading Parameters on the Stack
2 Running SBIOSTESTER •••••••

54
54
56
60
66
70

71
72
73
73
76
77
79
79
79
80
82
83
85
85
86
87
89
90
90
91
92
92
93
94
94
95
97
97
98
99

106
106
107
108
109
109
114

3 Bootstrapping •••••• . . ,;

v

4

1 Loading a Bootstrap
2 Executing a Bootstrap
3 Checking the System •••••
4 Accessing Other System Programs
5 Writing a Bootstrap

Improvements •••••••••
1 Simple Improvements • • •••••••

2

1 Changing Disk Formats ••••
2 Simplifying the Bootstrap ••••
Improving the SBIOS
1 Communicating with the Interpreter •••••
2 The Extended SBIOS ••••••••••

MACHINE-SPECIFIC NOTES
1 Z80 and 8080 Systems • • • • • • • •••••

1 Vector Lists and Register Assignments
2 Sample Bootstrap Loader

2

3

4

3 Memory Configuration Notes
4 Re'configuring the Interpreter
5 Miscellaneous ••••••
PDP-II and LSI-II Systems
1 Vector Lists and Register Assignments
2 Sample Bootstrap Loader
3 Memory Configuration Notes
4 Reconfiguring the Interpreter
5 Miscellaneous ••••••

6502 Systems
1 Vector Lists and Register Assignments
2 Sample Bootstrap Loader
3 Memory Configuration Notes
4 Reconfiguring the Interpreter
5 Miscellaneous ••••••
9900 Systems
1 Vector Lists and Register Assignments
2 Sample Bootstrap Loader ••••••••
3 Memory Configuration Notes
4 Reconfiguring the Interpreter
5 Miscellaneous ••••••••••••

VI APPENDICES

A Adaptable System Hardware Requirements . . · · · B Disk Catalog for Current Releases · · · C Troubleshooting , . · · · D ASCll ·

· · · ·

.
.

. .

117
117
117
117
118
119
120
120
120
121
124
124
127

137
137
141
143
144
146
147
147
147
147
147
148
149
149
153
155
155
155
157
157
157
157
157
157

159
160
166
170

v

1. INTRODUCTION

1.1 Preliminaries

Installatioll Guide
Introduction

The first and most important thing to do when you receive your UCSD p-System is
to back up the disks. This step is described below in Section 1.3. We suggest
that you read this introduction first, then go through the steps that Section 1.3
details.

The UCSD p-System is intentionally machine-independent, and portable across a
variety of microprocessor systems and peripheral devices. Because there is
currently a lack of standard hardware protocols, differences between machines are
dealt wi th by the System's software: most of this "tailoring" of software to
hardware was done while the System was developed, and is part of the System as
shipped, but in many cases, some further tailoring must be done by the user.

Microprocessors differ in their instruction sets, the way that they address main
memory, and the way that they handle Input/Output devices.

The UCSD System deals with different instruction sets by providing an "interpreter"
for each processor that is supported. In the System, Pascal and other high-level
languages are compiled to a code called "P-code". This P-code is a set of
instructions for a virtual machine; each interpreter takes this code and executes it
upon a particular processor (often called the "host processor"). Some hardware
systems execute P-code directly, and bypass the need for an interpreter.

Di fferences in addressing between processors ("byte sex" differences). are handled
intern all y by the System, and need only concern the user when transferring data
files from one sort of processor to another. See Section 1.2.3.

Differences in I/O devices are dealt with by a portion of the System called the
BIOS (for Basic I/o Subsystem). The BIOS handles all low-level device control. A
portion of- the BIOS called the SBIOS (for Simplified BIOS) is a part of our
Adaptable Systems, and may be modi fied by the user. -ror some hardware
configurations, p-Systems are shipped with a BIOS ready to use, and for other
hardware configurations, the user may have to write the SBIOS from scratch. The
differences between various p-Systems are described below.

Since the p-System is intended for a single user working in an interacti ve mode,
the System's terminal ('CONSOLE:') is a very important peripheral. Tailoring the
System to a particular terminal is easily done: see Section 1.2 and Chapter 111.

Fin all y, eac h i nst allation of a UCSD p-System must have a "bootstrap" program
that starts the System running on a particular hardware configuration. As with
the l/O-handling routines, a bootstrap may be shipped with your System, or you

1

Installation Guide
Introduction

may need to write one yourself.

Chapter V contains information about individual processors. For some processors,
the System shipped is called the "Adaptable System." This Adaptable-System is
fully described in Chapter IV.

If your hardware -uses a PDP,-lI or LSI-II processor, then the bootstrap .and 1/8
rou tines are supplied with your p-System. More information about these processors
(and about conversions to and from RT -11 format) is given in Chapter V.

If you have a Z80 or 8080 processor that runs the CP/M® operating system, the
p-System may be booted with -the aid of CP/M. Initially, the System will use
CP/M's CBIOS for its S8IOS. We call this System the CP/M Adaptable System; it
is described in Section IV.3. A.fter you have booted your p-System, you may write
a si mpler and faster bootstrap of your own, and add capabilities to your System by
writing SBIOS routines yourself.

If you use a Z80 or 8080 without CP/M, or a 6502 processor, then the bootstrap
and SBIOS must be w ri t ten by you. This System is called the Full Adaptable
System, and is described in Section IV.4

Fin all y, your p-System may be a System tailored to some particular processor, so
that you need not do any adaptation (except to tailor screen contro!). If this is
the case, the documentation you receive will include a supplement which describes
your particular hardware; you will need to use this Installation Guide only rarely.

2

Installation Guide
Introduction

1.1.1 Summary

To sum up this introduction, these are the things which you must do when you
recieve your p-System:

1) Back up the disks. This is extremely important. See Section 1.3.

2) If you have an Adaptable System, you must get it bootstrapped, and
unpack the disks. Which order you do this in depends on your
hardware; see Chapter IV. Section 1.4 is an introduction to down
loading, and Chapter 11 an introduction to bootstrapping.

A) For CP/M users, use the software provided to bootstrap
directly.

B) For other Adaptable System users, write your own bootstrap
and SBIOS.

C) Test your System to make sure that it works.

3) Provide the System with information for handling your interactive
terminal. See Chapter Ill, which covers SETUP and GOTOXY.

4) Use your new p-System.

3

-I:msta'llation' Guide
ci;otroducti.on

1.2 General Information

.This' section is an overview of the machine-specific details you must attend to
when getting started with our System. Bootstrapping is described separately in
Chapter H.

1.2.1 SETUP and GOTOXY

This section introduces the two basic mechanisms for controlling the System's
console. With proper use of SETUP and GOTOXY, you may use the Screen
Ori ented Editor, which is much more flexible and easier to use than YALOE (Yet
Ano th er Line Oriented Editor). More sophisticated screen control and data capture
can be achieved by using the Operating System's Screen Control Unit: this is
described in the Internal Architecture Guide.

1.2.1.1 SETUP

When the System is booted, it reads a file called SYSTEM.MISCINFO (see Chapter
I in the Users' Manual). SYSTEM.MISCINFO contains hardware-related information
which the System needs; most of it concerns the System's interactive terminal,
'CONSOLE:'. The console is used extensively by the System, especially the Screen
Oriented Editor. SYSTEM.MISCINFO specifies, among other things, the use of the
console's keyboard, and its special functions such as cursor-control arrows, Editor
accept, and Editor escape. .

SETUP is a utility program which allows you to create a new SYSTEM.MISCINFO
or modify an existing one. You must use SETUP to specify the characteristics of
your interacti ve terminal before you can use the Screen Oriented Editor.

Some MISCINFO files for some popular terminals have been included on the
utilities disk. A MlSCINFO file may be utilized by C(hanging its name to
SYSTEM.MISCINFO in the FOler. More about the use of SETUP and the
MISCINFO files which are provided is given in Section IH.2.

4

1.2.1.2 GOTOXY

Installation Guide
Introduction

The Screen Oriented Editor also requires a System intrinsic to position the
console's cursor at an arbitrary position on the screen; SETUP cannot provide this.
This intrinsic is called GOTOXY, and must be written by the user. Section IlI.3
tells how to write a GOTOXY procedure.

As wi th MISCINFO files, some sample GOTOXYs are shipped on the utilities disk,
and may correspond to the terminal that you use. More about this is gi ven in
Section Ill.3.

1.2.1.3 Binding GOTOXY

To become a System intrinsic, your GOTOXY procedure must be "bound" into the
Operating System. This is accomplished by using LIBRARIAN to replace the
GOTOXY that is shipped with the GOTOXY that you have written yourself. See
Section Ill.3 for full details.

5

Installation Guide
Introduction

1.2.2 The Adaptable System

If your hardware system does not use a PDP-lIar LSl ... 11 processor, and if your p
System was "not pre-packaged for your particular hardware, then. the System you
receive will be an Adaptable System. The Adaptable Systems require that you do
some programming before they can run on your machine •. For 'Systems that ·alrea-dy
use the CP/M operating system, this involves little or no work. Adapting other
systems takes much more time and knowledge.

Figure I illustrates the I/o structure of the Adaptable System •. Under" the heading
'UCSD PASCAL I/O HIERARCHY' is a diagram of various portions of the System,
and their interrelationships. The hexagon labelled 'screen I/o' represents the
portion of the System that must be tailored with SETUP and G"OIOXY .Of the
machine-dependent portions of software, only the SBIOS need be written or
modified by the user: the remaining software is already suppUedwith your System:.

The Adaptable System requires that the user supply a bootstrap (for a CP/M
Adaptable System, this is done automatically), and requires a user-suppliedSBIOS
to be loaded at bootstrap time. The SBlOS routines must be written in the native
code of the host processor. This is usually done in assembly language under some
other operating system: modifying that operating system's 1/0 routines to meet the
p-System's requirements is often a convenient way of creating your own SBlOS.

Once the SBlOS routines have been written, they must be tested. A test program
is provided for this purpose. When the integrity of the SBIOS has been
established, the UCSD System may be bootstrapped.

After the System is bootstrapped, enhancements may be made to speed it up,
produce a turnkey system, and add additional device driv"ers.

The Adaptable System is described in Chapter IV. Troubleshooting information is
presented in Appendix F.

6

.......

.!!

.0 co ...
~

o
Q,

...
c:
Q)

"'C
c:
~
Q)

"'C
cb
c:
:E
y
co
E

UCSD PASCAL 1/0 HIERARCHY

application or system program

host processor with peripherals

A SAMPLE SYSTEM

CONSOLE:

FIGURE 1

-::::J
en
C""t'

= ---::J = C""t'C""t' ..,
o 0
~::::J

gC)
C""t'C
oc.
::::J CD

Installation Guide
lntrodu cti on

1.2.3 Byte Sex Handl~ng"

Different processors address words .in one of two ways: most-significant-byte-first,
or least-significant-byte-first. We use the term "byte sex" to refer to this
di fference in addressing. Data' stored in a file on one machine will be "byte
flipped" when compared to the same data stored on a machine of opposite byte
sex.

In general, this presents no problem. The System automatically detects the sex of
a P-code codefile or a directory,and treats it appropriately. But the user should
be conscious of byte sex when using assembled code (which is appropriate for only
a particular machine}, and when transferr'ing, data files from one machine to a
machine of opposite sex. (Because' o,l'11.y the user, knows the format of data within
the file, the user' must, take care to flip the data correctly; no general-purpose
routine can be provided.)

Aside from those two considerations, UCSD System software is portable regardless
of byte sex.

8

Installation Guide
Introduction

1.3 Backing Up Disks

Booting, unpacking, and downloading are dangerous operations that can destroy
disks, so it is essential that you make backups of the disks that are shipped to you
before doing anything else with (or to) your System.

If the disks you receive have write-protect slots, it is suggested that you
protect the disks before backing them up. This is a further protection
damage.

1.3.1 Ready-to-use Systems

write
against

Fot' PDP-11/LSl-11 Systems and other tailored Systems that come with a bootstrap
and are ready to use, you may use the Filer to back up your disks. Follow these
steps:

1) Bootstrap your System, then type 'F' for F(iler.

2) Once in the Filer, type 'T' for T(ransfer.

3) Place the· disk you are backing up in drive 114
(the drive you booted from), and the blank (or useless)
disk in drive 115 (the alternate disk drive).

4) The Filer will prompt you with:
Transfer what file? 114,115

••• respond with the underlined portion.

5) The Filer then prompts:
Transfer 494 Blocks? Y

••• tell it yes, as indicated. (The actual number of blocks
may vary.)

6) The Filer will either proceed with the transfer,
or prompt you with:

Destroy WHA TSIS?
or whatever the disk in drive 115 is called.

If you want it destroyed, type 'Y', otherwise try
backing up onto a different disk.

A fter much clicking, the transfer will be complete, and you will be ready to back
up the next disk. When you are through backing up the disks, you are ready to
use your System. The next step will probably be configuring your terminal -- see
Chapter Ill.

9

Installation Guide
Introduction

If your hardware includes only one disk drive, in step (4) youml,lst specify 114,114.
Backing up proceeds in the same way, but more slowly: the' Filer will' prompt you
to swap disks back and forth.

For more information on T(ransfer in the Filer, see the Users' Manual Chapter III
(Section llI.6.3.14).

Warning: on some hardware, doing a T(ransfer does not transfer the bootstrap
which is required on the main System disk. To transfer th~ bootstrap, use the
utility BOOTER (described in Section 1l.3). This is not necessary for PDP-lIs and
LSI-lIs. If it is necessary for your particular hardware, you will be told so in the
supplemental brochure that comes wi th your p-System.

1.3.2 Adaptable Systems

Both CP/M and Full Adaptable Systems are shipped as 8" ,diskettes in IB,M .3740
format: single-density, single-sided, 77 tracks, 26 sectors 'per track, 128 bytes per
sector. To back up the disks, all 77 tracks'must be copied to another disk. It may
be possible to do this using an eXIsting copy utility under an existing operating
system, or you may have to copy disks by writing your>,own assembly language
program under some operating ,system. This program must read all 26 sectors of a
track into memory, and then copy them onto the same location on ,another disk.
This should be done On a loop) for all 77 tracks.

Once your disks have been backed up, you may proceed with bringing up your
System: providing a bootstrap and device drivers, and configuring your terminal.

Once the System is up and running, it is possible· to back ,up disks using the
T(ransfer command in the Filer (as described in the pre-vious section), or by using
the utili ty DISKCHANGE (described in Section IV.2).

10

1.4 Downloading and Unpacking

This section is relevant only to users of the Adaptable Systems.

Installation Guide
Introduction

Once the disks have been backed up, the installation of the System can begin. If
your disk drives do not support the 8" soft-sectored disks that the System is
shipped on, you will need to "download", i.e., transfer the information on the disks
that are shipped to your own media. Unpacking is part of the downloading
operation.

Figure 2 shows the general format of a UCSD Pascal Disk. This format is the
same regardless of the disk's size. Adaptable System disks are partitioned into
three small disk images, as shown in Figure 3. Each of these "logical disks" has
the sam.e format as a full-sized disk, but only the first one (the "Default Disk" in
the illustration) is visible to a UCSD System. The user must unpack these logical
disks in order to utilize all of the files on them.

11

..
N

Logical Structure of a Generalized UCSD Pascal Disk

--------------, i i« ,------, · -

Area 1

I
I
I

Area 2 I
(1 024 Bytes)1

• • I
I
I

Directory
(2048 Bytes)

Pascal Files
(Remainder of Logical Disk) I Area 3

I' U I .. _------------- ---,---.. First
Pascal
Track

Area 1 : Usually Track 0; may be more than one track or non-existent. Useful for bootstrapping
and compatibility purposes.

Area 2: May be used for bootstrapping or test purposes.

Area 3: Remainder of Physical Disk; usually non-existent.

FIGURE 2

--~ ~
I""t'tn
.., I""t'
o Q)
0.-
c: -n ~
I""t'
... ·0
o :::l
:l

c;")
c
c.
co

Track: 0

......
~'

Physical Structure of an Adaptable System
Distribution Disk

2425 4950 74 76
,,'

"
,

First Logical Disk Second L"ogical Disk Third Logical Disk

Default Disk

• 8 Inch Single Density Diskette

• Partitioned Into three "logical disks" of 25 tracks each, Intended to fit on mini-floppies

• No sector Interleaving

• No track-Io-track skew

FIGURE 3

'i'.
:'h" .~/
/ /.-

.~

.~>

~ ~
.' "/,,

//,

~ ~

-:::J
en
C""P
m ---:::l m

C""PC""P ..,
o 0
~:::l

~C)
C""PC
00.
:::l CD

Installation Guide
Introduction

When downloading, each image should be recorded on its own diskette. In this way
the disks are unpacked as they are downloaded. One or two of the disks are
bootable disks. They contain all of the information necessary tn bootstrap the
System. One disk is the System disk. It contains the files which are used during
the normal operation of the System. The Utilities disk has miscellaneous
applications and systems utilities which are used only from time to time. The
Orienter/Startup disk has some programs that accompany B,owles' Beginner's Guide
to the UCSD Pascal System. A catalog of these disks (describing their format and
contents) may be found in Appendix B.

Downloading can be done either on a computer that supports both the source and
target disk formats, or through a serial line and two computers.

In the former case, you may have an existing operating system or utility that is
capable of copying tracks 0-24 onto one target disk, 25-49 onto another, and 50-74
onto a third. If no such utility is available, you must write an assembly language
program which reads each track, sector by sector, and then writes it to the target
disk.

If two computers are involved, the one which supports 8" disks must read data
from the source disk and send it out through a serial line; the other machine must
be running p program which reads data from the serial line and writes it to the
destination disk. The data should be read and written in contiguous areas: sector
by sector.

If your hardware system supports 8" disks, and you are capable of booting the p
System off of a default disk (the first of the three disk images), then you may not
need to unpack your disks before booting the System. In this case, the
DISKCHANGE utility can be used to unpack the disks, once the System is running.
This is a good deal easier than other methods. See Chapter IV to determine if
this is possible. Documentation for the DISKCHANGE program is in Section
IV .. 2.1.

In other cases, at least the bootstrap disk must be unpacked and downloaded before
the System is bootstrapped. Bootstrapping in general is discussed in Chapter 11,
and bootstrapping Adaptable Systems is discussed in Chapter IV.

14

Installation Guide
Introduction

Important: These are the basic requirements for downloading disks:

1. Track 0 on the source disk must be transferred to Track 0 on the
destination disk. Only the first 18 sectors contain information (2304 bytes).

2. If Track 0 on the destination disk contains less than 2304 bytes, copy
Track 0 to Track 0 + Track 1 (do not change the order of the sectors). Track
1 of the source disk must now be transferred to Track 2 of the destination
disk.

3. Copy Tracks 1 •• 24 of the source disk to the destination disk. Do not
change the order of the sectors or the bytes.

4. If the sectors of the destination disk are not the same size as sectors on
the source disk, the information should still be transferred in order, ignoring
sector and track boundaries. Exception: Track 0 must still be transferred to
Track o. If Track 0 on the destination disk is longer than 18 sectors, leave
the remainder of that track unused.

5. The information which began at Track 1 of the source disk must begin at
the start of a track on the destination disk (though not necessarily Track 1).
Whichever track on the destination disk contains this information must be
indicated in the 'first Pascal track' parameter on the bootstrap stack.

15

Installation Guide
Introduction

16

II. INTRODUCTION TO BOOTSTRAPPING

1I.1 The Concept of Booting

Installation Guide
Bootstrappi ng

. "Booting"" or 1'bootstrapping" is the problem of starting a software system on
hardware which is running either no software at all, or a totally different system.
The term comes from the phrase i'pulling ,yourself up by the bootstrapsH; a
bootstrap is essentially a program which (starting from scratch) loads another
program and then transfers control t-o that program.

TheUCSD p-Systemrunsona virtual t'P-mach~ne", which on mostmicr.oprocessors
1-S emulated by the System"s Intel'pret-er. The task of the bootstrap is to load the
Interpreter, associated l{)w-level 1/0 routines, and portions of the Oper-ating System,
and then start the Interpreter's execution. The nature of bootstrapping implies
that bootstrap programs are machine-specific -- details about bootstraps for the
various kinds of p-System are given below.

11.2 Primary, Secondary, and Tertiary Bootstraps

F or the Adaptable System,. the bootstrap is divided into three separate parts. This
section summarizes the actions of each. Remember that BIOS stands for Basic I/O
~ubsystem, and SBIOS stands for .§.impli fcied BIOS.

T-he-primary bootstrap ~-... ~

1. Loads the SBIOS by reading it off the System disk into memory.
2. Loads the 'secondary bootstrap.
3. Pushes hardware configuration parameters onto the stack.
4. Transfers control to the secondary bootstrap.

The secondary bootstrap •••

1. Initializes the BIOS (which is part of this bootstrap).
2. Reads the System disk's directory into memory.
3. Searches the directory for the Interpreter.

(Interpreters may be called SYSTEM.INTERP, SYSTEM.POP-II,
SYSTEM.MICRO, etc.)

4. Loads the Interpreter.
5. On the ZBO: restacks the hardware configuration parameters

for the benefit of the tertiary bootstrap and the Interpreter.
6. Transfers control to the tertiary bootstrap

(which is part of the Interpreter).

17

lnstallation Guide
Bootstrappi ng

The tertiary bootstrap '-(whose cod-e is linked into the same codefile as the
Interpreter) •••

1. Saves the BIOS initialization words (which are on the stack).
2. Initializes some hardware devices and peripherals.
3. Rereads the System- disk's directory and'locates SYSTEM.PASCAL· ,

(t~e Operathlg System). " ' ,'. - .'. ." '-
4. Reads bl'ock 0 of the Operating System" in order to initialize -, ;

the Sysiem'senvironmenf!'
5. Reads the kernel and initialization segments of ,the Operating .'

System.
6:" :ihit:'i'~iites the P-machine;
1~"Starts execution 'of the Operat'ing System.

18

11.3 Machine-Specific Bootstraps

Installation Guide
Bootstrapping

For PDP-lIs and LSI-lIs, the primary and secondary bootstraps are recorded on
blocks 0 and 1 of the System disk. The boot ROM (normally located at 173000)
reads the first sector (128 bytes) into memory, and this code reads in the rest of
the bootstraps. The 11 Interpreter is not 'adaptable', so there are no SB10S
routines or hardware configuration parameters for the user to set up; the
Interpreter assu mes standard 11 hardware and conventions. A disk of alternate
interpreters is provi ded: di fferent interpreters correspond to different hardware
configurations {i.e., single ver-sus double density floppy drives, RK05 hard disks,
etc.). The bootstrap nself discovers the size of main memory. More Information
on the 11implement-ation may be found in Chapter V.

The primary bootstrap for the CP/M Adaptable System is-the file PASBOOT on the
CP/M-compatible disk. PASBOOT assumes that the CP/M BIOS ("CBIOS") is
already in memory. Any customized primary bootstraps which the' user may write
must first load the CBIOS into memory. The current CPjM Adaptable System will
~!!.!1 wor-k with disks that have 128-byte sectors. If the sector length is different,
the full Adaptable System must be used.' More specific notes on booting the CP/M
Adaptable System may be found in Section IV.3, and Chapter V.

All other Adaptable System users must write their own primary -bootstrap loader. It
must push the proper parameters onto the stack and load the primary bootstrap
jnto memory at either 8000H or OOOOH. (The primary bootstrap is located on the
System disk: traCK 0, sectors 1 and 2.) Theloade-r must then jump to-SDOOH or
DOOOH -so the pri mary bOlltstrap -will -execute. Care must be taken to use the
prop-er bootstrap (eitoor BODOHor OOOOH) for the user's particular hardware
configuration. Full details about which bootstrap to use are in Section IV.4.1.

The secondary bootstraps for all Adaptable Systems are located on track 0 sectors
3 - 18. The primary bootstrap loads the secondary bootstrap at either 8200H or
D200H (dependin9 on the primary bootstrap's location). .

Figure 4 indicates the location of primary and secondary bootstraps, the directory,
and other files on a System disk of the Adaptable System. This illustration should
be compared to figures 2 and 3. ;System disks for Systems other than the
Adaptable System look much the same though they do not include an SBIOS Tester
program.

19

N
o

Layout of an Adaptable System Logical Disk
As Distributed by SofTech' M icrosystems

OJ
o :::l
O~
~Il) cn_
f""I'
.., Il)
Il)~

"C ••
"CO
•• :::l

~c;J
C •.
C.
(1)

. I
I I I h~I~~% I !

Track: i~4: SBIOS! .. Directory) I 1 ;'~~;:0 Tester I (2048 Bytes I I . /~.%~~~ t) '»>~%'/0:/(/1 024 Byes I 1'/.// //'..% •

I»"~/I I !

Secondary
Bootstrap

(2048 Bytes)

• • • 24

Pascal Files
(Remainder of Tracks

1 through 24)

256 Bytes
Primary Bootstrap
Space

I't~~@. ! ,.' //'///. ---.

Remainder
of Track 0
Not Used

FIGURE 4

11.4 The BOOTER Utility

Installation Guide
Bootstrapping

BOaTER is a utili ty which transfers a bootstrap from one disk to another. In
normal System use, bootstraps are copied only when an entire disk is copied using
the T(ransfer command in the Filer. If you have created a System disk by
T(ransferring individual files to a new disk, BOOTER must be used. On many
hardware configurations, T(ransfer is incapable of copying a bootstrap, and BOaTER
must be used in any case (if you have such hardware, you will be told about this
situation in the supplemental literature).

The code for BOaTER is on the Utilities disk under the name BOOTER.CODE or
ABOOTER.CODE. To copy a bootstrap, eX(ecute the codefile.

On PDP-II, LSI-II, and 9900 systems, ABOOTER prompts for the name of the disk
on which the bootstrap will be written, and the name of a file from which the
bootstrap is to be read (if only a disk name is gi ven, the first two blocks of that
disk will be copied). Only two blocks are transferred: from the input disk or input
file to the first two blocks of Track 0 of the output disk.

On Z80, 8080, and 6502 systems, BOaTER prompts for two disk names, and copies
all of Track 0 from the input disk to the output disk.

21

Installation Guide
Bootstrapping

22

lIl. TERMINAL HANDLING

IlI.l Introduction

Installation Guide
Terminal Handling

You should read this chapter if you are new to the System, want to change or
improve the way the System handles your terminal, or want to convert to a new
variety of terminal.

The first thing you will be concerned with is SETUP, a utility program that
modifies some terminal handling information stored in a file called
SYSTEM.MISCINFO. The next thing to tailor is GOTOXY, an intrinsic Pascal UNIT
wi thin the Operating System that provides random addressing for your terminal's
cursor. The System comes with its own defaults, but for more convenient or more,
efficient use of your console, you will want to specify your own characteristics.
Changing SYSTEM.MISCINFO with SETUP does not require much knowledge or
preparation. Changing the GOTOXY procedure requires a little more familiarity
with your terminal, and a knowledge of UCSD Pascal.

To tailor terminal handling to your own needs, you will first run SETUP. SETUP
creates a file called NEW.MISCINFO which contains information about your own
terminal. You will then go into the Filer, change SYSTEM.MISCINFO t.o a backup
file, and change the name of NEW.MISCINFO to SYSTEM.MISCINFO. After this,
you reboot or I(nitialize: the new SYSTEM.MISCINFO is loaded into main memory,
and your terminal is now controlled according to the information in this file. To
see if you have run SETUP correctly, you might want to run the SCREENTEST
di agnostic immediately, or you might want to wait until you have bound in a new
GOTOXY. To create your own GOTOXY, you will write a Pascal procedure that
does cursor addressing, create a codefile by C(ompiling it, and bind the codefile
into the Operating System by using the Librarian utility. After binding, you should
reboot, and then test the terminal handling by running SCREENTEST.

SCREENTEST checks that characters are being sent and recei ved properly, and that
the Screen Oriented Editor interface will work. If you encounter problems, it is
easy to go back into SETUP and change your specifications, or modify your
GOTOXY procedure and bind it in again.

If you don't feel confident, you might do a little more reading. Check your own
terminal manual, and the following portions of the Users' Manual: the UNITWRITE
intrinsic (Section VI.2.36), the introduction to the Screen Oriented Editor (Sections
IV.O and IV. 1), and glance over the description of YALOE (Yet Another hine
Oriented Editor, described in Chapter V). YALOE can be used on virtually any
termi nal, but the Screen Oriented Editor, which is more convenient and is usually
used as the System editor, requires GOTOXY.

This chapter describes the care and feeding of SETUP, SCREENTEST, and
GOTOXY. Users who wish to do more involved screen handling may use the

23

Installation Guide
Terminal Handling

Operating System's Screen 'Corttrol Unit,which is described in the Internal
Architecture Guide.

24

111.2 SETUP

Installation Guide
Terminal Handling

SETUP is provided as a System utility (on the Utilities disk) called SETUP.CODE.
SETUP changes a file that contains details about your terminal, and a few
miscellaneous details about the System in general. SETUP can be run, and the data
changed, as many times as you desire. After running it, it is important to reboot
(or I(nitialize) so that the System will start using the new information. It is also
important to back up old data, at least until after you have run SCREENTEST, so
that you can climb back out of any hole you dig for yourself!

The file that SETUP uses to store all of this information is called
SYSTEM.MISCINFO. Each System initialization loads it into main memory. New
versions of SYSTEM.MISCINFO are created by SETUP, and are called
NEW.MISCINFO. Backups are created by renaming or copying SYSTEM.MISCINFO
with the Filer.

SYSTEM.MISCINFO contains three types of information:

Miscellaneous data about the System,

General information about the terminal, and

Specific information about the terminal's various
control keys.

Secti on 111.5.4 (Appendix D) contains a sample session with SETUP. You might look
this over before you actually use the program.

25

Installation Guide
Terminal Handling

IlI.2.I Running SETUP

SETUP is a utility program, and is run like any other compiled program: type X
for eX(ecute, and then answer the prompt with 'SETUP'<return). It will display the
word 'INITIALIZING' followed by a string of dots, and then the prompt:

SETUP: C(HANGE T(EACH H(ELP Q(UIT [01]

(The '[01]' is the SETUP version number, and may be different for your particular
System.)

To invoke any command, just type its initial letter.

H(ELP gi ves you a description of the commands that are visible on any promptline
where it appears.

T(EACH gives a detailed description of the use of SETUP. Most of it is
concerned with input formats. They are mainly self-exp!;;matory, but if this is
your first time running SETUP, you shquld look through all of T(EACH.

C(HANGE gives you the option of going through a prompted menu of all the items,
or changing one data item at a time. In either case, the current values are
displayed, and you have the option of changing them. If this is your first time
running SETUP, the values given are the system defaults. You will find that your
particular terminal probably requires more sophisticated specifications.

Q(UIT has the following options:

26

H(ELP),

M(EMORY) UPDATE, which places the new values in main memory,

O(lSK) UPDATE, which creates NEW.MISCINFO on your disk for
future use,

R(ETURN), which lets you go back into SETUP and make more
changes, and

E(XIT), which ends the program and returns you to the
System promptline.

Installation Guide
Terminal Handling

Please note that if you have a NEW.MISCINFO already on your disk,
D(ISK) UPDATE will write over it.

Section 111.2.2 contains a detailed description of the data items in
SYSTEM.MISCINFO. An abbreviated list of all the data items, together with the
System-supplied defaults, is in Section IlI.5, along with a list of sample settings for
a variety of terminals (Appendices A and B for this chapter).

When you use SETUP to change your character set, don't underestimate the
importance of using keys you can easily remember, and making dangerous keys like
BREAK, ESCAPE, and RUBOUT hard to hit.

Once you have run SETUP, you should always backup SYSTEM.MISCINFO under
some other name (OLD.MISCINFO is one suggestion; you might want to name your
backups according to different terminals, e.g., TTY.MISCINFO, IQ120.MISCINFO,
VT52.MISCINFO, etc.), then change the name of NEW.MISCINFO to
SYSTEM.MISCINFO and reboot or I(nitialize. It is indeed possible to update to
memory alone, and go on using the System without rebooting, but the results may
not always be what you wanted, and the backup security is more risky. In
general, M(EMORY) UPDATE is a Q(UIT option that you will use only when
experimenting. If you do get into a bind, remember that the current in-memory
SYSTEM.MISCINFO can be saved by running SETUP and doing a D(ISK) UPDATE
before you change any dala i terns.

When you reboot or I(nitialize, the new SYSTEM.MISCINFO will be read into main
memory and its data used by the System, provided it has been stored under that
name on the System disk (the disk from which you boot).

The only thing SETUP will not arrange for you, as far as terminal handling goes,
is telling the System how to do random addressing for your terminal's cursor. This
is a feature that the Screen Oriented Editor requires. To learn how to support
this capability, see the section on GOTOXY.

27

Installation Guide
Terminal Handling

111.2.2 Miscellaneous Notes for SETUP

The STUDENT bit, one of SYSTEM.MISCINFO's data items, should always be set
to FALSE.

The HAS 8510A bit is always FALSE.

On the PDP-II, LSI-II, 8080, 9900, 6502, 6809, and Z-80 systems
HAS WORD ORIENTED MACHINE is always FALSE.

HAS BYTE FLIPPED MACHINE is FALSE for all IV.O systems except the 9900.

SETUP and the Manual refer to PREFIXED [DELETE CHARACTER].
to the backspace function: read it as PREFIXED [BACKSPACE].
terminals it will be FALSE.

Your terminal should be set to run in full duplex, with no auto-echo.

This refers
On most

Don't use terminal functions that do a "Delete and close up" on lines or characters
-- not all terminals have these functions, and so they are supplied through the
Screen Oriented Editor's software.

In general, if SETUP prompts for a feature that your terminal does not have, set
the item to NUL (zero).

If you have a DEC VT -52 and a backspace won't move the cursor on the console,
this is because you have KEY TO DELETE CHARACTER set to ", the "rubout
character". This is a printing character, so the Operating System does not echo a
cursor move; the contents of memory are updated correctly. One workaround is to
use the V(erify key to display the actual file contents, but to fix this for good
use SETUP to change KEY TO DELETE CHARACTER to control-H or left-arrow -
BACKSPACE should be set to the same character as well.

28

11l.2.3 The Data Items in SYSTEM.MISCINFO

Installation Guide
Terminal Handling

The information in this section is very specific, and you may skip it on first
re"ading. If you have a question about a certain data item, look in this section.
Default values are shown, and sometimes our recommendations. When no suggested
values are given, you should consult your own terminal's documentation. The items
are ordered according to SETUP's menu. (See Section 111.5.1, Appendix A.)

If you are using a hardcopy terminal or a storage screen rather than a CRT, you
can ignore all the data items that are only used by the Screen Oriented Editor and
leave them set to their defaults. In particular, if you are in doubt about a
particular item, it is safest to leave it set to NUL. Always leave items set to
NUL which concern features that your terminal does not have (ERASE LINE, for
instance); the software will take care of these situations.

Please note that SETUP frequently makes a distinction between a character which
is a key on the keyboard, and a character which is sent to the screen from the
UCSD System; on some terminals, the same function may be performed by two
di fferent characters. On other terminals, the key pressed and the character sent
for a given function may be the same, but in any case, when you run SETUP you
must be explicit and answer all questions, even if the information is redundant.

There are a few characters which you cannot change with SETUP. These are
CARRIAGE RETURN «return», LINE FEED «If», ASCll OLE (control-P), and TAB
(contrOl-I).; It is assum:ed that <return>, <If), and TA8are consistent on all
terminals. ASCll OLE (data link escape) is used as a blankcompres-sion character.
When sent to an output textfile, it is always followed by a byte containing the
number of blanks which the output device must insert. If you try to use control-P
for any other function, you will run into trouble. More information on OLE is
gi ven in the sections below on GOTOXY and SCREENTEST.

BACKSPACE

When sent to the screen, this character should move the cursor one 'space to the
left. Default: ASC11 BS.

EDITOR ACCEPT KEY

This key is used by the Screen Oriented Editor. When pressed, it ends the action
of a command, and accepts whatever actions were taken. Default: ASC11 NUL.
Suggested: ASCn ETX (control-C or "Home").

29

Installation Guide
Terminal Handling

EDITOR ESCAPE KEY

This key is used by the Screen Oriented Editor. It is the opposite of the
EDITOR ACCEPT KEY - when pressed, it ends the action of a command, and
ignores whatever actions were taken. Default and Suggested: ASCll ESC (contro]-
D.

EDITOR EXCHANGE-DELETE KEY

This key is also used by the'screen Oriented Editor. It operates only while doing
an eX(change, and deletes a single character.. Default: ASCll US (control-_).

EDITOR EXCHANGE-INSERT KEY

Like the EDITOR EXCHANGE-DELETE KEY, this only operates while doing an
eX(change in the Screen Oriented Editor: it inserts a single space. Default:
ASCll RS (control-").

ERASE LINE

When sent to the -screen, this character erases all the. cnaracters on the line~hat
the cursor is on. Default: ASCll NUL.

ERASE SCREEN

When sent to the screen, this character erases the entire screen. Default: ASCll
NUL.

ERASE TO END OF LINE

When sent to the screen, this character erases all characters from (and including)
the current cursor position to the end of the same line. Default: ASCll NUL.

ERASE TO END OF SCREEN

When sent to the screen, this character erases all characters from (and. including)
the current cursor position to the end of the screen. Default: ASCll NUL.

30

HAS 8510A

ln$tallation Guide
Terminal Handling

May be TRUE or FALSE. Should be TRUE if and only if your hardware system is
a Terak 8510a. Default: FALSE.

HAS BYTE FLIPPED MACHINE

May be TRUE or FALSE. On PDP-II, LSI-II, 8080, Z-80, and 6502 processors this
bit is FALSE. On the 6800, 9900, and the GA440 system, it is TRUE. In general,
it is TRUE only for implementations in which the IPC (Instruction Program
Counter) is segment-relative. Default: FALSE.

HAS CLOCK

May be TRUE or FALSE. If your hardware has a line frequency (60 Hz) clock
module, such as the DEC KWl1, setting this bit TRUE will allow the Pascal
system to copti mize disk directory updates. It also allows you to use the TIME
intririsi'c: see Section VI.2 in the Us~rs' Manual. If your hardware doesn't have a
clock this must be FALSE. (Adaptable System users must write their own clock
handler; until it is installed, this item must be FALSE.) Default: FALSE.

HAS LOWER CASE

May be TRUE or FALSE. It should be TRUE if you do have lower case and want
to use~t. If you seem stuck in upper case even 'if this bit is TRUE, remember
there isa soft alpha-lock: see KEY TO ALPHA LOCK. Default: FALSE.

HAS RANDOM CURSOR ADDRESSING

May be TRUE or FALSE. If your terminal is not a CRT,. this should be FALSE.
Defaul t: FALSE.

HAS SLOW TERMINAL

May be TRUE or FALSE. When this bit is TRUE, the system's promptlines and
messages are abbreviated. It is suggested that you leave this set at FALSE unless
your terminal runs at 600 baud or slower. Default: FALSE.

31

Installation Guide
Terminal Handling

HAS WORD ORIENTED MACHINE

May be TRUE or FALSE. If sequential addresses on your processor reference
sequential 16 bit words, this should be TRUE. For PDP-II, LSI-II, B080, Z-BO,
9900, 6BOO, and 6502 systems, this should be FALSE. For the GA440 system it
should be TRUE. Default: FALSE.

KEY FOR BREAK

When this key is pressed while a program is running, the program will terminate
immediately with a runtime error. Default: ASCII NUL. Suggested: a key that is
difficult to hit accidentally.

KEY FOR FLUSH

This key may be pressed while the System is sending output (writing to the file
OUTPUT). The first time it is pressed, output is no longer displayed, and will be
ignored ("flushed") until FLUSH is pressed again. This can be done any number of
tirres; FLUSH functions as a toggle. Note. that processing continues while the
output is ignored, so using FLUSH causes output to be lost. Default and
suggested: ASCII ACK (control-F).

KEY FOR STOP

This key may be pressed while the System is. writing to OUTP.UI. Like FLUSH, it
is a toggle. Pressing it once causes output and processing to .stop, pressing it
again causes output and processing to resume, and so on. No output is lost;
STOP is useful for slowing down a program so the output can be read while it is
being sent to the terminal. Default and suggested: ASCll OC3 (control-S).

KEY TO ALPHA LOCK

This character, when sent to the screen, locks the keyboard in upper case (alpha
mode). It is usually a key on the keyboard as well. Default: ASCU DC2 (control
R).

32

KEY TO DELETE CHARACTER

Installation Guide
Terminal Handling

Deletes the character where the cursor is, and moves cursor one character to the
left. Default and suggested: ASCII BS (control-H or "Backspace").

KEY TO DELETE LINE

Deletes the line that the cursor is currently on. Default and suggested: ASCII
DEL ("Rubout").

KEY TO END FILE

Sets the intrinsic Boolean function EOF to TRUE when pressed while reading from
the System input files (either KEYBOARD or INPUT, which come from device
CONSOLE:). Default and suggested: ASCII ETX (control-C or "Home").

KEY TO MOVE CURSOR DOWN
KEY 'TO MOVE CURSOR LEFT
KEY TO MOVE CURSOR RIGHT
KEY TO MOVE CURSOR UP

;

These keys are recognized by the Screen Oriented Editor, and are 'used when
editing a document to move the cursor about the screen. If your keyboard has a
vector pad, we suggest using those keys for these functions. If you have 'no
vector pad, ~'you might 'selecffour keys in the same pattern (suqh as, forexampie~,
'.','K',';', and '0', in that order) and use them as your vector keys,pr~flxing:'them
or using the corresponding ASCll control codes. Default (in order): ASCll LF,
ASCll BS, ASCll FS, ASCll US.

LEAn" IN FROM KEYBOARD
- - .. <

On some terminals, pressing certain keys generates a two-character 'sequence. ft1e
first character in these cases must always be a prefix, and must be the same for
all such sequences. This data item specifies that prefix. Note that th,is character
is only accepted as a lead in for characters 'where 'you 'ha'veset
PREFIXED[<i temname>] to TRUE. An example ,of this is in Appendix B below.
Defaul t: ASCll NUL.

33

Installation Guide
Terminal Handling

LEAD IN TO SCREEN

Some terminals require a two-character sequence to activate certain functions. If
the first character, in all these sequences is the same, this data item can specify
this prefix. This item is similar to the one above. The prefix is only generated as
a lead in for characters where you have set PREFIXED[<itemname>] to TRUE. An
example of this is in Appendix B below. Default: ASCII NUL.

MOVE CURSOR HOME

When sent to the terminal, moves the cursor to the upper left hand corner of the
screen (position (0,0)). If your terminal doesn't have a character which does this,
this data item must be set to CARRIAGE RETURN; you will not be able to use
the'Screen Oriented Editor. Default: ASCII CR ("Return").

MOVE CURSOR RIGHT

When sent to the terminal, moves the cursor nondestructively one space to the
right. If your terminal doesn't have this function, you will not be able to use the
Screen Oriented Editor. Default: 'I'.

MOVE CURSOR UP

When sent to the terminal, moves the cursor vertically up one line. If your
terminal doesn't have this function, you won't be able to use, the Screen Oriented
Editor. Default: ASCll NUL.

NON PRINTING CHARACTER

The character that will be displayed on the screen when a non-printing cnaracter is
typed or sent to the terminal while using the Screen Oriented Editor. Default
and suggested: '?'.

PREFIXED [<itemname>]

If any two-character sequence must be generated by a key or sent to the screen,
the System will recognize that if you set PREFIXED[<itemname>] to TRUE. See
the explanations for LEAD IN FROM KEYBOARD and LEAD IN TO SCREEN. An
example of the use of two-character sequences is gi ven in Appendix B.

34

SCREEN HEIGHT

Installation Guide
Terminal Handling

The number of lines in your display screen, starting from 1. If you are using a
hardcopy terminal, this should be set to O. Default: 24 (base ten).

SCREEN WIDTH

The number of characters in one line on your display, starting from 1. Default:
80 (base ten).

STUDENT

May be TR UE or FALSE. On IV.O Systems, should always be' FALSE. Default:
FALSE.

VERTICAL MOVE DELAY

May be a decimal integer from 0 to 11. Many terminals require a delay after
vertical cursor movements. This delay allows the movement to be completed
before another character is sent. This data item specifies the number of nulls
tha t th e System sends to the terminal after every CARRIAGE RETURN,
ERASE TO END OF LINE, ERASE TO END OF SCREEN, CLEAR SCREEN, and
MOVE CURSOR UP. Default: 5 (base ten).

35

Installation Guide
Terminal Handling

IIl.3 GOTOXY

When you have tailored SYSTEM.MISCINFO with SETUP, you should write your own
GOTOXY. GOTOXY is a Pascal UNIT embedded in the Operating System. It
provides random addressing for your terminal's cursor. There is a GOTOXY that is
provided with the System we ship, (the source for this code, along with other
examples, is in Appendix C below), but as it is a general routine for any terminal,
it is not fast. When you create your own GOTOXY, you will .write a Pascal
procedure, compile it, then bind it into the Operating System using the utility
LIBRARY.

If you are not yet ready to write your own GOTOXY, you should skip down to the
next section, which describes SCREENTEST.

If you intend to do all your work on a line-oriented terminal, you never need to
write a GOTOXY.

Before you write your own GOTOXY, you should understand the I/O intrinsic
UNITWRITE, which is described in Section VI.2 of the Users' Manual. In Section
111.5.3 (Appendix C) of this Installation Guide are a few sample versions of
GOTOXY, including the source for the GOTOXY code which comes with the
System, and the SAMPLEGOTO. TEXT that is also on your System disk. Youshould
look this appendix over.

36

111.3.1 Writing Your Own GOTOXY

111.3.1.1 A Discussion

Installation Guide
Terminal Handling

You may write GOTOXY using either YALOE or the Screen Oriented Editor,
whichever you find more convenient.

The purpose and the calling protocol of GOTOXY are quite simple. The
procedure is given two parameters, X and Y. They must be in that order, and
they must be of type INTEGER. The procedure should position the terminal's
cursor at co-ordinates (X,Y), where (0,0) is home (the upper left hand corner of
the screen). That is all it should do.

To get your GOTOXY to run at all, there are a few things that are required.

First, the name of your unit must be GOTOXY. The name of the procedure itself
must be something different.

Second, you must include the pseudo-comment {$U-}. This Compiler option allows
you to use the predeclared name GOTOXY as the name of your unit -- it will
become part of the Operating System. This comment must be the first line of
your source code. If it does not look like one of the following lines:

(*$U-*)
{$U-}

your GOTOXY will not compile. In particular, there must be no spaces within
the comment, and the 'u' must be capitalized.

Finally, the code for GOTOXY should be compiled as a UNIT, as shown in the" next
section.

Your procedure should check that the values of X and Yare within bounds. If
they are off the screen, change them to a value that is on the screen (such as the
nearest location along the border -- this is what all the sample procedures do).

You wHI need to move the cursor by a WRITE to the terminal, a repeated set of
WRITEs within a loop, or a UNITWRITE of a vector. Using UNITWRITE is
recommended: it can speed up your terminal handling by about 100/0. (Although
if you use UNITWRITE, you cannot redirect console output.)

37

Installation Guide
Terminal Handling

To summarize, your GOTOXY should contain, in order:

1. The pseudo-comment '{ $U-}',
2. In the program body, a check to make sure that

X and Yare on the screen,
3. A section that fills an array with all the

characters you must send to the terminal, and
4. The actual write to the terminal, preferably

with UNIT WRITE.

Please note: some terminals take a bias on X and Y. That is, for example,
sending (X+32,Y+32) actually positions the cursor at (X,Y). If your terminal is
capable of this, you should include these offsets in your procedure. This will
eliminate any problems you might run into with the ASCll OLE (control-P)
character, which is always interpreted as a blank-compression character. You
don't want to send this value as a cursor control character. See the section below
on SCREENTEST.

The following section contains a more detailed description of GOTOXY. Section
111.5.3 (Appendix C) contains specific examples for a variety of terminals.

38

111.3.1.2 A Recipe for GOTOXY

Installation Guide
Terminal Handling

This section walks you through a sample GOTOXY, and demonstrates the best way
of writing a GOTOXY. To see some more specific examples, see Appendix C
(Section 111.5.3) •

. The sample program here is commented like a Pascal program.

{$U-} { AL WA YS include this compiler directive. }
UNIT GOTOXY;

INTERFACE

PROCEDURE AGOTOXY(X,Y: INTEGER);

IMPLEMENT A TION

PROCEDURE AGOTOXY;

CONST TELL LENGTH MINUS 1 = 3,
OFFSET = 32;- -

{ You may have -to change these, depending on your terminal. }

VAR TELL: PACKED ARRAY [O •• TELL LENGTH MINUS 1]
OF 0 •• 255; - - -

BEGIN
IF X>79 THEN X:=79

ELSE IF X<O THEN X:=O;
IF Y>23 THEN Y:=23

ELSE IF Y<O THEN Y:=O;
{ This range-checking is necessary. The actual

screenwidth and heig,ht may be different for you. }

{ These first elements of TELL must contain
the characters which tell your terminal to
position the cursor at (X, V):
fill in the blanks... }

TELL[O] := ~
TELL[l] := __ ; ...
{ The actual X and Y values are usually the

last things in the array;
the order may be different on your terminal. }

39

Installation Guide
Terminal Handling

TELL[TELL LENGTH MINUS 1 - 1] := V +OFFSET;
TELL[TELL=LENGTH=MINUS=l] := X+OFFSET;

UNITWRITE(l, TELL, TELL LENGTH MINUS 1 + 1)
END {AGOTOXV}; - - -

END {UNIT GOTOXY}.

40

111.2 Binding GOTOXY

Installation Guide
Terminal Handling

The first thing to do, once you have written your own GOTOXY, is to compile it
to a codefile. Any filename will do, provided its suffix is .CODE. Choose a
name you will remember.

A common error is incorrectly entering the comment '{$U-}'. If this is not the
first line in your source file, if the comment contains spaces that are not shown in
this manual, or any other variances, your GOTOXY will not compile. You will get
the error message 'GOTOXY predeclared" when you try to compile.

You should also make sure that the STUDENT bit in SYSTEM.MISCINFO is set to
FALSE -- otherwise GOlOXY binding will not work, and you will get the message
"No proc in seg table" when you try to reboot the System.

Ill.2.1 Using LIBRARY to Bind GOTOXY

First, back ~ your System disk. If the binding works, all will be well, and you
will have a functioning System with a new (and hopefully functioning) GOTOXY.
If the binding does not work, your System may be destroyed. Make sure you have
a backup. -

The LIBRARY -1s a utility program which is shipped on_: .. the~Utilities disk under the
name LIBRARY.CODE. To run it, eX(ecute LIBRARY •..

The first prompt LIBRARY gives you is:

Output file? NEW.PASCAL

••• th-e underlined portion is a sample response. Choose any unambiguous name
that suits you -- this new output file will become the new Operating System if all
goes well. Be sure you have enough room on your disk for the new System: most
Systems are from 70 to 100 blocks long. If there is not enough room on your
disk, either use the Filer's K(runch command to create more room, or use another
disk with more room.

41

Installation Guide
Terminal Handling

Before using E(very, your screen should look more or less like this:

Lib r a r y: N (ew , 0 - 9 (s lot - t 0 - S lot, E (ve r y, S (e 1 e c t, C (omp - un it, F (ill, ?
[IV.Oz]

Input f i 1 e: SYST8v1.PASCAL
0 u KERNEL/ 1481
1 S PRINTERR 695
2 s INITIALI 1358
3 S GETOVD 2779
4 u HEAPOPS 314
5 u EXTRAHEA 736
6 u EXTRAIO 772
7 u PASCAL 10 304
8 u STRII\lX)P 259

Output
o

f i 1 e: NEWSYS .CXDE

1
2
3
4
5
6
7
8

9 u
10
11
12
13
14
15
16
17

9
10
11
12
13
14
15

s
u
u
u
u
s
u
u

SCREENJP
SEGSCINI
SOFTOPS
OSUTIL
REALOPS
CXl\URRE
USERPROG
FILEOPS
GOTOXY

16 u GOTOXY
17

918
416
559
511
752
140

1549
2146

31

29

18 u DEBLGGER
19 s EXTRALEX
20 u SYSQv1\[)

18
19
20

187
4872

119

••• note that there is a GOTOXY in the SYSTEM.PASCAL that is shipped. This
will be abandoned by the E(very command, since you have already put a GOTOXY
in the output file.

Typing 'Q' for Q(uit causes the changes you have made to be saved in your output
file.

Once you are out of LIBRARY, use the Filer to change the name of
SYSTEM.PASCAL to something like OLD.PASCAL, and NEW.PASCAL (or 'whatever
you have called your new output file) to SYSTEM.PASCAL. Then bootstrap your
System again; the new GOTOXY will be in effect.

I f at any point while using LIBRARY, you think you have made a mistake, A(bort
will exit without recording any changes. When modifying the Operating System, it
is far better to be safe than sorry.

43

Installation Guide
Terminal Handling

Note: While using LIBRARY on the Operating System, never move slot a or slot
15.

44

111.2.2 Problems

Installation Guide
Terminal Handling

If your newly created System will not bootstrap at all, it may be because you
move d the USERPROG segment when you used LIBRARY. USERPROG must be at
slot fifteen in SYSTEM.PASCAL. Boot your System's backup, and try again.

If the 'System starts to boot, but halts with the message 'No unit in seg table', it
may also mean that the STUDENT bit is on in your SYSTEM.MISCINFO file. The
STUDENT bit must be FALSE when you compile your GOTOXY. Boot your
System's backup, change the STUDENT bit to FALSE, recompile your GOTOXY,
and use LIBRARY again.

For more information on LIBRARY, see Section VIll.5 in the Users' Manual.

Once LIBRARY has been successfully run, and the System successfully rebooted,
you should run SCREENTEST to make sure the Screen Oriented Editor interface
will work. SCREENTEST is described immediately below.

45

Installation Guide
Terminal Handling

111.4 SCREENTEST

Now that you have changed your SYSTEM.MISCINFO with SETUP (or your
GOTOXY, or both), you will want to test the results. SCREENTEST is a utility
which accomplishes that. Like SETUP, it is largely self-explanatory. SCREENTEST
checks that the Interpreter and Operating System are sending and receiving
characters correctly, that the control keys are set up correctly, and that the
Screen Oriented Editor will interface to the terminal as it i,s supposed to.

When you run SCREENTEST, it win display patterns on the screen and ask you if
they are correct. You will need to be seated at your terminal while
SCREENTEST is running; it takes roughly five minutes.

SCREENTEST will also output a report of errors to any file you specify. If you do
encounter problems, you will need this report to help track them down, especially
if you require assistance from your supplier's support group.

46

111.4.1 Running SCREENTEST

Installation Guide
Terminal Handling

Type X for eXecute, and enter 'SCREENTEST'<return>. It will respond by
displaying a heading, telling you that all questions must be answered with either
'y' or 'N' (either upper or lower case; all other characters are ignored), and will
then prompt you for the name of an error log file.

If you hit <return> instead of specifying a log file name, no error report will be
generated. You may want to do this if you are running SCREENTEST for the first
time and don't anticipate any problems. If you do have trouble, you can run it
again, this time with a log. Sending the log to 'PRINTER:' may suit your needs if
you have a hardcopy devi ce, otherwise you can save it on a disk file named
'LOG. TEXT' or something similar. (The .TEXT suffix is necessary if you want to
look at it with the Editor.)

If your terminal is set up correctly, you should be able to answer 'V' to all of the
yes/no questions that SCREENTEST asks. If there is any problem with the
questions about individual characters, SCREENTEST will tell you immediately.
The log file will also contain a record of all problems. A sample log is in Section
111.5.5 (Appendix E).

47

Installation Guide
Terminal Handling

111.4.2 Results of SCREENTEST

SCREENTEST consists of twelve individual tests. Their names follow:

test basic
test-clr screen
test gotoxy
test-clr Ii ne
test-erase eol
test-etoeos
test-home
test-single vectors
test-scroll-
test-OLE expansion
test-keyboard
tes(~normal_ keys

Each of these tests may generate error messages. While the text of each error
message is fairly clear, some further explanation follows. The error messages are
grouped by the nature of the problems -- what you must check in order to solve
them. They are further grouped under the name of the test that generates them.
This information is included in the error log. If you find yourself at a loss and
decide to consult Pascal Support, you will need to refer to this log.

48

Installation Guide
Terminal Handling

1l1.5.2.1 Problems that can be Fixed by Changing SETUP

If you get any of these error messages, check your SETUP values. To the right of
each error message listed below is a suggestion as to which key or character value
might be in error. These suggestions won't always pinpoint your problem, but they
will tell you what you should check first. It may be the case that changing
SETUP does not fix your problem. Some special cases are described at the end of
this se ction. If these don't cover your particular problem, you should probably ask
for help.

test clr screen:

screen not cleared -> is ERASE SCREEN OK?
cursor not left at (0,0) afterwards

-> is MOVE CURSOR HOME OK?

test clr line:

didn't clear enough - (x,y)
(where x and yare the cursor co-ordinates)

-> is ERASE LINE OK?
Clearing one line affected another

-> is ERASE LINE OK?

test erase eol:

sc erase to eol didn't work
-> is ERASE TO END OF LINE OK?

test etoeos:

sc eras eos didn't work
-> is ERASE TO END OF SCREEN OK?

test home:

cursor didn't go home
-) is MOVE CURSOR HOME OK?

49

Installation Guide
Terminal Handling

sc right didn't work
sc -left didn't work
sc-up didn't work
sc -down didn't work

test_keyboard:

<key> not correct

Can't type these - <list>

50

-> is MOVE CURSOR RIGHT OK?
-> is BACKSPACE OK?
-> is MOVE CURSOR UP OK?
-> this shouldn't happen;

call Pascal Support!

-> is <key> OK? <key> means one of
the following:
KEY TO MOVE CURSOR DOWN
KEY TO MOVE CURSOR LEFT
KEY TO MOVE CURSOR RIGHT
KEY TO MOVE CURSOR UP
BACKSPACE
EDITOR ACCEPT KEY
EDITOR ESCAPE KEY
KEY TO DELETE LINE
KEY TO END FILE

-> <list> means a list of any standard
printing characters; this usually
means that a standard character is
being interpreted as a special key,
which usually happens when
HASPREFIX is' incorrect -- it should
be FALSE for a key which needs
no prefix, or TRUE for a key which
does need one; check your own
terminal manual;

Installation Guide
Terminal Handling

111.5.2.2 Problems that can be Fixed by Changing GOTOXY

test_gotoxy:

gotoxy(O,O) did not go home
gotoxy(screenwidth-1,screenwidth) not ok
box not correctly drawn
exhausti ve gotoxy check: first pass not ok
exhausti ve =gotoxy =check: top line not ok

-> all these problems relate to your
GOTOXY procedure; if you find any
discrepancies, you will have to
change it; refer to the previous
secti on in this docu ment for a
description of using GOTOXY,
and to the first paragraph in
the miscellaneous notes below;

51

Installation Guide
Terminal Handling

111.5.2.3 Other Problems

test basic:

not all characters written out

test' scroll:

-> there is a problem with the
Pascal system intrinsic
UNITWRITE, or, if you are using the
Adaptable System, with the 58105.
You should call Pas'cal Support;
disregard the rest of SCREENTEST's
resul ts until this particular
problem is cleared up;

sc down at bottom didn't scroll properly

expansion not happening properly

52

-> there is a note below about
scrolling;

-> there is a problem in your
Interpreter's terminal handling;
this may be hardware-related;
it is still possible to run with
improper OLE expansion -- you may
encounter off-by-one errors and
the like in your output and your
editing; this is the case with
Terak systems; OLE is an ASCII
character used as a blank
compression code to save space
in output strings;

111.5.3 Miscellaneous Notes on SCREENTEST Problems

Installation Guide
Terminal Handling

The System interprets an ASCII OLE or chr(16) (base ten) within a textfile as a
blank-compression code (this is its standard use). It can lead to problems if
GOTOXY ever writes out a chr(l6) as an X or Y value. If you run into this
problem, check whether your terminal can handle an offset on X and Y values,
that is, whether sending it X+32 and Y +32 will position the cursor at (X,Y) (the
value 32 is just an example). If so, this will fix your problem. If not, you will
have to modify GOTOXY so it catches this situation; see above.

ERASE LINE will have difficulty if there are bugs in the screen emulator for
memory-mapped screens. This is applicable primarily to Terak systems. In
particular, Teraks have trouble with blank-compression sequences (OLE-expansions)
of 64 or longer.

Some terminals will not scroll at all, or scroll two lines at a time. The IV.O'
System's Screen Oriented Editor unfortunately cannot handle these terminals -- you
must use Y ALOE for SYSTEM.EOITOR.

Use your judgement when interpreting the results of SCREENTEST: if something
is reported as an error, but the Screen Oriented Editor performs to your
satisfaction, do not worry about the SCREENTEST evaluation.

53

Installation Guide
Terminal Handling

IIl.5 Appendix A -- SETUP Menu and Defaults

In the defaults shown below,'T' means true and'F' means false as per the input
conventions in SETUP. The numbers shown are in base ten, literal characters are
quoted, and ASCll abbreviations are used for nonprinting characters. When you use
SETUP, these values are shown in several formats, so the meaning is clear. {Note:
must add the eX(change INSERT CHAR and DELETE CHAR items.}

54

BACKSPACE
EDITOR ACCEPT KEY
EDITOR ESCAPE KEY
EDITOR EXCHANGE-DELETE KEY
EDITOR EXCHANGE-ACCEPT KEY
ERASE LINE
ERASE SCREEN
ERASE TO END OF LINE
ERASE TO END OF SCREEN
HAS 8510A·
HAS BYTE FLIPPED MACHINE
HAS CLOCK
HAS LOWER CASE
HAS RANDOM CURSOR ADDRESSING
HAS SLOW TERMINAL
HAS WORD ORIENTED MACHINE
KEY FOR BREAK
KEY FOR FLUSH
KEY FOR STOP
KEY TO ALPHA LOCK
KEY TO DELETE CHARACTER
KEY TO DELETE LINE
KEY TO END FILE
KEY TO MOVE CURSOR DOWN
KEY TO MOVE CURSOR LEFT
KEY TO MOVE CURSOR RIGHT
KEY TO MOVE CURSOR UP
LEAD IN FROM KEYBOARD
LEAD IN TO SCREEN
MOVE CURSOR HOME
MOVE CURSOR RIGHT
MOVE CURSOR UP
NON PRINTING CHARACTER
PREFIXED [DELETE CHARACTER]
PREFIXED [EDITOR ACCEPT KEY]
PREFIXED [EDITOR ESCAPE KEY]

BS
NUL
ESC
US
RS
NUL
NUL
NUL
NUL
F
F
F
F
F
F
F
NUL
ACK
DC3
DC2
BS
DEL
ETX
LF
BS
FS
US
NUL
NUL
CR
'I'
NUL
'?'
F
F
F

Installation Guide
Terminal Handling

PREFIXED, [ED EXCH-DELETE KEY] F
PREFIXED [ED EXCH-ACCEPT KEY] F
PREFIXED [ERASE LINE] F
PREFIXED [ERASE SCREEN] F
PREFIXED [ERASE TO END OF LINE] F
PREFIXED [ERASE TO END OF SCREEN] F
PREFIXED [KEY TO DELETE CHARACTER] F
PREFIXED [KEY TO DELETE LINE] F
PREFIXED [KEY TO MOVE CURSOR DOWN] F
PREFIXED [KEY TO MOVE CURSOR LEFT] F
PREFIXED [KEY TO MOVE CURSOR RIGHT] F
PREFIXED [KEY TO MOVE CURSOR UP] F
PREFIXED [MOVE CURSOR HOME] F
PREFIXED [MOVE CURSOR RIGHT] F
PREFIXED [MOVE CURSOR UP] F
PREFIXED [NON PRINTING CHARACTER] F
SCREEN HEIGHT 24
SCREEN WIDTH 80
STUDENT F
VERTICAL MOVE DELAY 5

55

Installation Guide
Terminal Handling

111.5.2 Appendix B -- Sample SETUPs for Some Terminals

Here is a list of SYSTEM.MISCINFO data items followed by some sample values
for four popular terminals. Some items in the SETUP menu haven't been included;
these are data items that refer to your processor configuration, not your terminal.

These examples represent what we consider reasonable layouts for a few different
keyboards, but we don't guarantee that they work for your particular hardware, or
match your individual taste. .

Te rmi na Is: LSI Hl\ZELTINE sma: HEATH
,A[)v1- 3A 1500/1510 IQ1,20 H19

Data I terns:
BAO<SPACE left-arrow backspace ctrI-H ct r I -H
EDITOR ACCEPT KEY ctrl-C ctrl-C home ct r I -C
EDITOR ESCAPE KEY esc esc esc . ctrI-[
ERASE LINE l\lJL I\l.JL N..L I
ERASE SCREEN ctrI-Z ctrI-\ '* ' E
ERASE TO END OF LINE I\LJL ctrI-O T K
ERASE TO END OF SCRN NJL ctrI-X Y J
Hl\S LO#ER CASE TRUE TRUE TRUE TRUE
HAS RAr\D ~S AO[R TRUE TRUE TRUE TRUE
HAS SLOvV TERMINAL FALSE FALSE FALSE FALSE
KEY FCR BREAK ctrI-B * break ** break break
KEY FCR FLUSH ctrI-F ctrI-F ctrl-F ctrI-F
KEY FOR STOP ctrl-S ctrl-S ctrl-S ctrI-S
KEY TO ALRHA LOCK ctrl-R NJL ctrI-R ctrl-R
KEY TO .DELETE CHAR ctrI-H backspace I-arrow ctrI-H
KEY TO DELETE LINE ru bou t shift-DEL rubout DEL
KEY TO END FILE ctrl-C ctrl-C ctrI-C ctrI-C
KEY TO Mv QJRS [)(MN ctrl-J ctrI-K d-arrow B
KEY TO MV ~S LEFT ctrI-H backspace I-arrow D
KEY TO MV OJRS RG-iT ctrI-L ctrl-P r-arrow C
KEY TO MV CURS UP ctrl-K ctrl-L u-arrow A
LEAD 1 N FROv1 KEYBD l\lJL NJL N....L esc
LE.AD I N TO SCREEN NJL esc esc
tvOVE a..RSCR rovE ctrI-A ctrl-R ctrl-A H
tvOVE a..RSOR RIG;T ctrl-L ctrl-P r-arrow C
tvOVE a..RSCR UP ctrl-K ctrl-L u-arrow A
f\GJ PR I NT II\G D-iAR '? ' '? ' '?' '? '
PREF [DELETE CHAR] FALSE FALSE FALSE FALSE
PREF [ED ACl:EPT KEY] FALSE FALSE FALSE FALSE
PREF [ED ESCAPE KEY] FALSE FALSE FALSE TRUE

56

PREF [ERASE LINE] FALSE FALSE
PREF [ERASE SCREEN] FALSE TRUE
PREF [ERASE TO EOLN] FALSE TRUE
PREF [ERSE TO EOSO\I] FALSE TRUE
PREF [KEY DEL Q-IAR] FALSE FALSE
PREF [KEY DEL LINE] FALSE FALSE
PREF [KEY MY CRS ON] FALSE FALSE
PREF [KEY MY CRS LT] FALSE FALSE
PREF [KEY MY CRS RT] FALSE FALSE
PREF [KEY MY CRS UP] FALSE FALSE
PREF [rvoVE CRS I-Ov1E] FALSE TRUE
PREF [tvOVE a.RS RT] FALSE FALSE
PREF [rvoVE OJRS UP] FALSE FALSE
PREF [NONPRINT Q-IAR] FALSE FALSE
SCREEN·HEIcrtT 24 24
SCREEN WIDTH 80 80
STUDENT FALSE FALSE
VERTICAL tvOVE DELAY 5 5

* The BREAK key can also be used, but it's
to RETLRN.

** Break is also control-@ on Hazeltines.

FALSE
TRUE
TRUE
TRUE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
24
80
FALSE
10

Installation Guide
Terminal Handling

TRUE
TRUE
TRUE
TRUE
FALSE
FALSE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
FALSE
24
80
FALSE
10

peri lously close

57

Installation Guide
Terminal Handling

Te rmi na Is:

Data Items:
BAO<SPACE
EDITOR ACCEPT KEY
EDITOR ESCAPE KEY
ERASE LINE
ERASE SCREEN
ERASE TO END OF LINE
ERASE TO END OF SCRN
HA.S LONER CASE
HAS RMD D..RS AlJCR
HA.S SLON TERrvlI NAL
KEY FOR BREAK
KEY FOR FLUSH
KEY FOR STOP
KEY TO ALRHA LOCK
KEY TO DELETE CHAR
KEY TO DELETE LINE
KEY TO END FILE
KEY TO MV D..RS DCJM\I
KEY TO MV D..RS LEFT
KEY TO MV CLRS RG-IT
KEY TO MV CLRS UP
LEAD IN FROv1 KEYBD
LEAD IN TO SCREEN
rvoVE OJRSOR HOv1E
rvoVE D..RSOR R IG-IT
rvoVE CLRSOR UP
I'.cN PR 1 NT II\G CHAR
PREF [DELETE CHAR]
PREF [ED ACCEPT KEY]
PREF [ED ESCAPE KEY]
PREF [ERASE LINE]
PREF [ERASE SCREEN]
PREF [ERASE TO EOLN]
PREF [ERSE TO EOSON]
PREF [KEY DEL CHAR]
PREF [KEY DEL LINE]
PREF [KEY MY CRS [)\J]
PREF [KEY MY CRS LT]
PREF [KEY MY CRS RT]
PREF [KEY MY CRS UP]
PREF [IVOVE CRS HOv1E]

58

DEC
VT-52

backspace
ctrl-C
esc
ctrl-@
ctrl-@
K
J
TRUE
TRUE
FALSE
c t r I -@
ctrl-F
ctrl-S
ctrl-R
ctrl-H
del
ctrl-C
B
0
C
A
esc
esc
H
C
A
'? '
FALSE
FALSE
TRUE
FALSE
FALSE
TRUE
TRUE
FALSE
FALSE
TRUE
TRUE
TRUE
TRUE
TRUE

HEVVLETT/ DATA-
PAD<ARD MEDIA

backspace backspace
ctrl-C cntrl-C
esc esc
cntrl-@ ctrl-@
cntrl-@ ctrl-L
K ctrl-]
J ctrl-K
TRUE TRUE
TRUE TRUE
FALSE FALSE
cntrl-@ cntrl-@
ctrl-F ctrl-F
ctrl-S ctrl-S
ctrl-R ctrl-R
backspace backspace
del del
ctrl-C c t r l-C
d-arrow d-arrow
I-arrow I-arrow
r-arrow r-arrow
u-arrow u-arrow
cntrl-A ctrl-@
esc ctrl-@
H ctrl-Y
C ctrl-\
A c t r I -
'? ' '? '
FALSE FALSE
FALSE FALSE
FALSE FALSE
FALSE FALSE
FALSE FALSE
TRUE FALSE
TRUE FALSE
FALSE FALSE
FALSE FALSE
FALSE FALSE
FALSE FALSE
FALSE FALSE
FALSE FALSE
TRUE FALSE

PREF [tvOVE aJRS RT] TRUE
PREF [MOVE CURS UP] TRUE
PREF [(\O\JPR I NT D-iAR] FALSE
SCREEN I-E IG-iT 24
SCREEN WIDTH 80
STLDENT FALSE
VERTICAL tvOVE DELAY 0

TRUE
TRUE
FALSE
24
80
FALSE
0

FALSE
FALSE
FALSE
24
80
FALSE
0

Installation Guide
Terminal Handling

59

Installation Guide
Terminal Handling

111.5.3 Appendix C -- GOTOXY Source Examples

The following example is shipped on your System disk as SAMPLEGOTO.TEXT. It is
about as simple a GOTOXY as can be written. It is not the code which is shipped
in your· Operating System: that is the next example, which on one hand is a much
m ore general program,and on the other hand is also much longer. Since GOTOXY
is a frequently used I/o routine, you want it to be efficient: it should be tailored
to your particular terminal. This brief example works for a DEC VT -52. For an
efficient example, see the Datamedia sample.

(*The following is a sample gotoxy procedure for the VT -52*)
(*$U-*)
UNIT GOTOXY;

INTERFACE
PROCEDURE AGOTOXY(X,Y:INTEGER);

IMPLEMENT A TION
PROCEDURE AGOTOXY;
BEGIN

IF X<O THEN X:=O;
IF X>79 THEN X:=79;
IF Y<O THEN Y:=O;
IF Y>23 THEN Y:=23;
WRITE (CHR(27), 'Y' ,CHR(Y +32),CHR(X+32));

END;
END.

60

Installation Guide
Terminal Handling

This example works for a DEC VT -50. It uses WRITEs embedded in WHILE loops,
and is not fast.

{$U-}
UNIT GOTOXY;

INTERFACE
PROCEDURE AGOTOXY(X,Y: INTEGER);

IMPLEMENTATION
PROCEDURE AGOTOXY;
BEGIN

{Check the input data to see that it is within the screen
dimensions. On some smarter terminals, if a cursor position
command is sent for a position that does not exist, the
results are unpredictable.}

IF X < 0 THEN X := 0
ELSE

IF X > 79 THEN X : = 79;
IF Y < 0 THEN Y : = 0
ELSE

IF Y > 11 THEN Y := 11;
{For a DECscope VT -50, GOTOXY needs to be implemented by:}

{Send the cursor home, O,O}
WRIT E (CHR (2 7),'H ');

{While TAB is meaningful, use it to move the cursor}
WHILE X > 8 DO

BEGIN
WRITE(CHR(9»;
X := x-a;

END;

{Finish off what portion of the x coordinate could not be
absorbed with the TAB characters.}

WHILE X > 0 DO
BEGIN

WRITE(CHR(27),'C·');
X := X-I

END;

{Send line-feeds to access the y coordinate.}
WHILE Y > 0 DO

61

Installation Guide
Terminal Handling

BEGIN
WRITE(CHR(10));
y := Y-1

END
END;

END.

62

Installation Guide
Terminal Handling

This example is for a Datamedia 1520, and demonstrates the quickest form of
GOTOXY: using a UNITWRITE to send one single command stream to the terminal.
As mentioned above, this method can speed up your terminal 1/0 by as much as
100/0; we recommend it.

{$U-}
UNIT GOTOXY;

INTERFACE
PROCEDURE AGOTOXY(X,Y: INTEGER);

IMPLEMENT A TION

PROCEDURE AGOTOXY;
VAR

T: PACKED ARRAY[0 •• 2] OF CHAR;
BEGIN

T[O] := CHR(30); {chr(30) is an ASCII RS, which is Datamedia's
absolute cursor address flag.}

{Set appropriate character for x coordinate.}
IF X < - THEN T[l] := CHR(32) {Note the offset of 32.}
ELSE

IF X > 79 THEN T[l] := CHR(32+ 79)
ELSE

T[l] := CHR(X+32);

{Set appropriate character for y coordinateJ
IF Y < 0 THEN T[2] := CHR(32)
ELSE

IF Y > 23 THEN T[2] := CHR(32+23)
ELSE

T[2] := CHR(Y +32);

{Send the cursor where it belongs.}
UNITWRITE(l, T ,3) {I is the device number of CONSOLE:}

END;

END.

63

Installation Guide
Terminal Handling

Here are two more examples using UNITWRITE. They are for a Soroe and a
Hazeltine terminal, respeeti vely.

(*$U-*)
UNIT GOTOXY;

INTERFACE
PROCEDURE AGOTOXY(X,Y: INTEGER);

IMPLEMENT A TION
PROCEDURE AGOTOXY;

(* FOR A SOROC IQ 120 *)

VAR TELL: PACKED ARRAY [0 •• 3] OF 0 •• 255;

BEGIN
IF X> 79 THEN X:= 79

ELSE IF X<O THEN X:=O;
IF Y>23 THEN Y:=23

ELSE IF Y<O THEN Y:=O;
TELL[O] := 27; (* LEAD-IN FOR SOROeS *)
TELL[l] := ORD(' =');
TELL[2] := 32+Y; (* NOTE THE OFFSET *)
TELL[3] := 32+X;
UNITWRITE(l, TELL,4)

END;

END.

64

{$U-}
Unit gotoxy;

Interface
Procedure agotoxy(x,y: integer);

Implementation
Procedure agotoxy;

{gotoxy for the Hazeltine 1500 and 1510}

var tell: packed array [0 •• 3] of 0 •• 255;

Begin
if x>79 then x:=79

else if x<O then
if y>23 then y:=23

else if y<O then
tell[O] := 126;
tell[l] := 17;
if x<30 then

x:=O;

y:=O;
{the lead-in for a Hazeltine}
{also a DC1}

Installation Guide
Terminal Handling

tell[2] := x+96
else

{different offset for these terminals}

tell[2] := x;
tell[3] := y+96;
unitwrite(1,tell,4)

End;

End.

65

Installation Guide
Terminal Handling

IIl.5.4 Appendix 0 -- Sample SETUP Session with Comments

The following is a sample of part of a session with SETUP. The data is being
changed from the System defaults to the specifications for a Soroc terminal, as in
Appendix B above. All underlined text like this is user input, and all text
enclosed in curly brackets {like this} is commentary. Angle brackets <these> are
used to enclose the names of non-printing characters {like <return>}. All else is
SETUP's output to the terminal.

{To begin, you must eXecute SETUP}

XSETUP<return>
1 NIT I AL 1 Z 1 f\G. • • • • • . . • • • • • • • • • • • • • • • • • • • .
SETUP: C(HAf\GE T(EACH H(ELP Q(UIT [01]

{H(ELP tells you about the other comnands, and T(EACH
describes the use of SETUP. Now is the most profitable
time to use these comnands.
Suppose you have read H(ELP and T(EACH, and decide
to change data items by going through the menu.
You rrust hit C for C(HANGE.}

C {Note: these single-character comnands don't eChO.}
CHANGE: S(If\GLE) P(ROMPTED) R(ADIX)

H(ELP) Q(UfT)

{H(ELP) describes the comnands on this particular line,
R(ADIX) allows you to change the base of the numbers
you enter, and Q(UIT) returns you to the SETUP: prompt.
What you want to do now is go through the prompted menu.}

P

FIELD f\LAME = BAO<SPACE
OCTAL DECIML\L HEXADECIMAL ASCII C(]\JTROL

10 8 8 BS AH
WANT TO CHANGE THIS VALUE? (Y,N,!)
<return>
WANT TO CHANGE THI S VALUE? (Y ,N, !)

66

Installation Guide
Terminal Handling

{<return> or <space> will cause this prompt to be repeated.
! causes an escape to the CHANGE: prompt.
Since control-H (AH) is indeed the Soroe's backspace,
you want to go on.}

N

FIELD ~ = EDITOR ACCEPT KEY
OCTAL DECIMAL HEXADECIMAL ASCII

a a a t\lJL
WANT TO CHANGE THIS VALUE? (Y,N,!)
Y
NEW VALUE: <home>

CX]\JTROL
A@J

{When <home> or any other non-printing key
is pressed, ? is displayed.}

OCTAL DECIMAL HEXADECIMAL ASCII
3 3 3 ETX

WANT TO CHANGE THIS VALUE? (Y,N,!)
N

FIELD ~ = EDITOR ESCAPE KEY
OCTAL DECIMAL HEXADECIMAL ASCII

a a a t\lJL
WANT TO CHANGE THIS VALUE (Y,N,!)
Y
NEW VALUE: <return>

CQ\JTROL
AC

{Any unexpected input here causes the
relevant section of T(EACH to be output,
followed by this:}

C(CNTIt\lJE)
{All characters are ignored except C, and

then the prompt is repeated.}

67

Installation Guide
Terminal Handling

C
N8N VALUE: <rubout> {Again, a ? is echoed.}

OCTAL DECIMl\L HEXADECIMl\L ASCII
177 127 7F DEL

WANT TO CHANGE THIS VALUE? (Y,N,!)

{(Note that there is no corresponding control key.)
DEL i s not the key you me ant, soy au mu s t
change it again.}

Y
N8N VALUE: <esc> {? is echoed.}

OCT AL DEC IMl\L HEXADEC I Ml\L ASC I I CXNTROL
33 27 IB ESC A[

WANT TO G-fANGE THI S VALLE? (Y ,N, !)
t!. { T his i s wh a tit s h 0 u I d be.}

{The rrrenu continues in this way for the rest of
the data items. Suppose you have gone ahead and
answered all of the questions according to the
Soroc specifications. After the last data item,
you again get the menu:}

Q--W.GE: S (II'GLE) P(ROvlPTED) R(ADIX)
H(ELP) Q(UIT)

{You realize that you reft the prefix for
ERASE LINE at FALSE, when it should be
TRUE. You want to change just this one
da t a item.}

S {For S(INGLE)}
~ OF FIELD: PREFIXED [ERASE]
DIDN'T FIND PREFIXED [ERASE] {Oops}
NAME OF FIEUD: PREFIXED [ERASE LINE]

FIELD ~ = PREFIXED [ERASE LINE]
CURRENT VALUE IS FALSE

WANT TO Q--W.GE THIS VALUE? (Y,N,!)
Y
N8N VALUE: TRUE {T would also work.}

CURRENT VALUE IS TRUE

68

WANT TO CHANGE THIS VALUE? (Y,N,!)
N

CHANGE: S (II\GLE) P (ROvPTED) R (AD 1 X)
H(ELP) Q(UIT)

Q
SETUP: C(HANGE T(EACH H(ELP Q(UIT [02]
Q {You're through changing data now.}
GUI T: O(1 SK) rn M(EIVORY) UPDATE,

R(E~) H(ELP) E(XIT)

{you want to do a disk update to create
NEW • MiSe 1 NFO 0 n you r dis k for f u t u r e use.}

D
GUl T: D(I SK) ffi M(EJvORY) UPDATE,

R(E~) H(ELP) E(XIT)
E

{And now you're done. The Pascal system prompt
will appear.}

Installation Guide
Terminal Handling

69

Installation Guide
Terminal Handling

Ill.5.5 Appendix E -- Sample SCREENTEST Log

This is a sample of a SCREENTEST log for a terminal that has some problems.

1 test OLE expansi on: expansion not happening properly
2 test-OLE-expansion: expansion not happening properly
3 test=DLE= expansi on: expansion not happening properly
4 test OLE expansion: expansion not happening properly
5 test =DLE= expansi on: expansion not happening properly
6 test_ OLE_expansion: expansion not happening properly
7 test_ OLE_expansion: expansion not happening properly
8 test_OLE_expansion: expansion not happening properly
9 test keyboard: backspace key not correct

10 tes -keyboard: line feed key not correct

***** End Diagnostic; 10 errors encountered.

70

IV. THE ADAPT ABLE SYSTEM

IV.1 Introduction

Installation Guide
The Adaptable Syst'em

The UCSD p-System can run on any hardware system that in some way emulates
the idealized "P-machine" (which is described in the Internal Architecture Guide).
In most cases, emulating the P-machine means, running a P-code interpreter. Such
interpreters have been written for many current microprocessors. However, the
hardware in which these microprocessors are packaged varies enormously, and
though an interpreter may run on a particular processor, to run on the full
hardware system requires tailoring to its requirements: procedures for bootstrapping
may vary, disk drives may vary, other remote devices may vary.

The p-System has been configured for many hardware packages. But if your
hardware is not one of these packages, you may still be able to use the p-System
by using an Adaptable System.

The Adaptable System comes in two flavors. One is for users of Z80/80BO/B085
systems that run the CP/M operating system. If you have such a system, the
Adaptable System allows you to boot directly from CP/M, and later tailor the p
System to run more efficiently. The other Adaptable System is for users of
Z80/8080/8085 systems that do not run CP/M, and users of 6502 systems. This
version of the Adaptable System requires more initial programming on the part of
the user, and more familiarity with the hardware.

There are two main problems that the Adaptable System handles. One is creating
a bootstrap that will bring up the p-System on a particular hardware package (see
Chapter 11). The other is configuring an SBIOS (Simplified Basic 1/0 Subsystem)
that will handle the peripherals of that hardware package. - -- -

Once these problems have been solved, the Adaptable System can also be used to
extend the I/o capabilities of the p-System by adding more disk drives, more
remote devices, user-defined devices, a system clock, and so forth.

The CP/M Adaptable System is described in Section IV.3, and the Full Adaptable
System is described in Section IV.4. Details of various machines are discussed in
Chapter V.

Section IV.2 describes a utility called DISKCHANGE. DISKCHANGE allows you to
change the sector skew and interleaving of a disk. This is a necessary utility for
the Adaptable System; since disk dri ves vary widely, the Adaptable System is
shipped on disks that are uninterleaved, and it is up to the user to choose the
interleaving that best suits his or her hardware. For most disk drives, there is
one configuration that is vastly more efficient than any other.

71

Installation Guide
The Adaptable System

IV.l.l Creating a useful System Disk

The Bootstrapping disks that are provided with Adaptable Systems contain a
mini mal System. They are intended for booting a System from scratch, not for
day-to-day use. Other pieces of the System that you may wish to use frequently
are shipped on the disks labelled SYSTEM and UTILITIES.

Once you have booted your System, it is an easy matter to T(ransfer files from
one disk to another using the System's Filer. Any disk may be used as a
bootable System disk, provided it contains both a bootstrap and the following
files:

SYSTEM.PASCAL
SYSTEM.INTERP
SYSTEM.MISCINFO

(Interpreter names may vary from processor to processor, e.g., SYSTEM.INTERP,
SYSTEM.PDP _11).

Depending on the work you are doing, you may also want the disk you boot from
to contain SYSTEM.EDITOR, or SYSTEM.COMPILER (accompanied by
SYSTEM.SYNT AX), or both. SYSTEM.FILER is almost always needed, and
SYSTEM.LIBRARY is needed if you use Long Integers or routines you have put in
the library yourself. You may also be frequently using an assembler.

All of these files are described in a bit more detail in Chapter 1 of the Users'
Manual.

An 8" floppy disk often has enough room to contain all the System components
that you frequently use, plus some working space. 5-1/4" floppies are not so
roomy, and you may want to make yourself a "working set" of minifloppies.

Note: If you intend to use the Debugger, you must add it to the System. Use the
utility LIBRARY to add DEBUGGER.CODE to the file SYSTEM.LIBRARY. Do not
alter any segment numbers. Both DEBUGGER and LIBRARY are described in the
Users' Manual, Chapter X. Neither of them should be used until you have
acquired some familiarity with the System and its use.

72

IV.2 Relevant Utilities

Installation Guide
The Adaptable System

This section describes DISKCHANGE and DISKSIZE, which are two utilities
provided with all Adaptable Systems. DISK CHANGE has two basic purposes. One
is to unpack Adaptable System disk images on Systems that have already been
booted (see Chapter I), and the other is to change disk formats. The purpose of
DISKSIZE is to change disks that have been unpacked by DISKCHANGE so that
their full memory capacity may be used.

Changing disk formats is chiefly done in two situations: when a different format
allows your system's disk hardware to function more efficiently, and when you wish
to use p-System disks that have been prepared on someone else's hardware using a
different disk format.

IV.2.1 Using DlSKCHANGE

A floppy disk's 'interleaving' is the ordering of sectors within a track. For
example, an interleaving ratio of one (i.e., 1:1) means that logical sectors 1, 2, 3,
••• are stored in physical sectors 1, 2, 3, ••• , while an interleaving ratio of two
(i.e., 2:1) means that logical sectors 1, 2, 3, ••• are stored in physical sectors 1, 3,
5, .•• , 2, 4, •••

A floppy drive's 'skew' is the offset when moving from one track to the next. For
example, with one-to-one interleaving, a skew of zero means that sector 1 on one
track is adjacent ,to: sector 1 on the next track; skew of 6 means that sector 1 on
one track is adjacent to sector 7 on the next, and so forth.

Interleaving and skew are characteristics of a disk format, not of a dri ve, but for
each particular drive, there is a combination of interleaving and skew that is the
most efficient, and results in faster disk performance. Some drives require a bit
of 'tuning' of the disk formats, to determine what combination of interleaving and
skew yields the fastest disk access. The utility FINDPARAMS that is supplied
with Adaptable Systems is meant to determine optimal values for interleaving and
skew.

The utility DlSKCHANGE allows' a disk's interleaving and skew to be altered.

DISKCHANGE is supplied on the Utilities disk that comes with your System. To
run it, eX(ecute 'DISKCHANGE'.

73

Installation Guide
The Adaptable System

After a single run of DISKCHANGE, the screen will look something ,'like this
(underlined portions are user responses):

FLOPPY INTERLEAVING CHANGER (B31

Type "!" to exit

What is the source unit number? (4,5,9 •• 12) 4
What is the destination unit number? (4,5,9.:12) 5
What is the interleave ratio of the drives used for the transfer?, 2

SOURCE DISK TYPE:
What is the interleaving ratio? 1
What is the sector skew per track? 0
What is the first interleaved track? T

DESTINA TION DISK TYPE:
What is the interleaving ration? 2
What is the sector skew per track? 6
What is the first interleaved track? T

Insert source disk in drive 4, dest disk in drive 5,: and press return

Insert system disk and press return

74

Installation Guide
The Adaptable System

At any point, typing an exclamation point ('!') will abort the program.

The first two prompts ask for which disk will be transferred to which disk. It is
possible to transfer a disk to itself, but do this only if you have first backed it
up, otherwise you are in danger of losing your entire disk.

The next prompt asks for the interleaving of the drives (that is, the optimal
interleaving for the drives you are using). This prompt is repeated if the program
cannot use the answer you give. This value only affects the speed at which
DISKCHANGE operates.

For both source and destination disk, there are t.hree prompts. Interleaving and
skew you will have to determine yourself; the track virtually all p-System disks
start on is track one (refer to the figures, and the following two sections) •

.
The Adaptable System disks come with one-to-one interleaving and zero skew.
You should bootstrap your system without changing these values; once you are able
to run DISKCHANGE, it should be safe to change them to something more
efficient.

When DISKCHANGE displays the final prompt of 'Insert system disk and press
return', typing 'R' instead of return causes a transfer to be done again with the
same parameters. That is, when you type 'R' after the last prompt, DISKCHANGE
again displays:

Insert source disk in drive 4, dest disk in drive 5, and press return

••• or whatever dri ves were named.

You cannot change the parameters, however, without finishing a DISKCHANGE run
and starting over again.

CP/M users beware: the CP/M documentation uses the word 'skew~ to mean what
we call 'interleaving'. The CP/M operating system does not perform what we call
'skew'.

75

Installation Guide
The Adaptable System

IV.2.2 Using DISKSIZE

If DISKCHANGE is used to unpack a disk by transferring one Adaptable System
disk image (1/3 of an 8" floppy) onto another (blank) 8" floppy, the new floppy's
directory will still indicate a small disk size (153 blocks). 8" floppies can
generally hold about 494 blocks (the exact figure depends on your hardware). In
order for your System to access the entire disk, you must use DISKSIZE to
change the recorded size of the new disk.

When you eX(ecute DISKSIZE, it prompts you for the number of a disk drive. It
the n asks for the number of blocks that the disk can hold. It then records this
number on your disk.

You can calculate the number of blocks available on your disks by using the
bootstrap parameters for your system (these parameters are described in the
following sections). Use the following formula:

76

(number of tracks per disk - first Pascal track)
* (number of sectors per track)
DIV (512 DIV number of bytes per sector)

Installation Guide
CP/M Adaptable System

IV.3 The CP/M Adaptable System

The CP/M Adaptable System is intended for Z80 and 8080 microprocessor systems
that are already running the CP/M operating system. CP/M provides the
facilities for easily bootstrapping the p-System. Once the p-System is booted, it
is a self-contained software environment: at no time does p-System software run
"under" CP/M. Once the p-System has been booted, it may be improved in a
number of ways: device-handling may be made more efficient, and a new
bootstrap may be created which eliminates the need for using CP/M to boot the
System.

The software supplied with 'the p-System creates an SBIOS from the CP/M BIOS
(the "CBIOS"). It is possible to do this with CBIOS versions 1.4, 2.0, and 2.2
provided they allow 128-byte sectors. It is also possible to boot with the COOS
operating system from Cromemco, provided it is compatible with COOS version
1.07.

No other versions of CP/M or COOS may be used to boot the p-System.
is the case, you must use the Full Adaptable System (described in Section
CP/M configured for Oynabyte disk dri ves is not compatible with the
Adaptable System: you must use the Full Adaptable System.

If this
IV.4).
CP/M

If you have a compatible version running on an IMS BODO with double density
floppy drives, refer to Appendix C for instructions on how to bootstrap.

To bootstrap your System, your hardware must include 4BK contiguous bytes of
RAM, at least 175K bytes of disk storage, and a CRT or teletype that can send
and receive ASCll characters (these requirements are spelled out in full detail in
Appendix A).

Once your System has been bootstrapped, you may provide a "cold bootstrap", and
otherwise improve the System's performance.

The CP/M Adaptable System is shipped on B" floppy disks. They are IBM 3740
format: soft-sectored, single sided, single density, and each p-System disk contains
the images of three logical disks (see Figures 3 and 4). The data on each disk is
not interleavea:-E"ach logical disk can fit on one 5-1/4" minifloppy: if you use
such -hardware, you must download data from the 8" disk to 5-1/4" disks (see
Section 1.4).

The three p-System disks that you are shipped are called CPMAOAP, SYSTEM, and
UTILITIES. The latter two contain System programs, as the names indicate. The
CPMAOAP disk contains a minimal p-System, intended for booting on 5-1/4" disks.

The fourth disk you are shipped is labelled CPMOISK (BOOTER). This disk,
unlike the others, is in a CP/M-readable format, and contains a program,

77

Installation Guide
CP/M Adaptable System

PASBOOT, that runs under CP/M. PASBOOT bootstraps a p-System.

The use of these disks is described below. A catalog of release disks is in
Appendix B.

You should read through all of the next section before attempting to bring up
your p-System. You should also remember to back up your disks before doing
anything else with them.

78

IV.3.I Assessing your System

Installation Guide
CP/M Adaptable System

The three critical resources involved in bootstrapping the p-System are RAM
memory, floppy disk storage, and I/O drivers.

IV.3.I.I Memory Configurations

1 t is possible to bootstrap the p-System with 48K contiguous bytes of RAM devoted
exclusively to the System. Little can be done with so little memory, however,
and if the system has more memory than this, its performance will be better.

IV.3.I.2 Floppy Disk Requirements

1 t is necessary that any machine that runs the p-System have at least 175K (350
512-byte blocks) of floppy disk storage. Again, more disk space is needed for
most applications of the System.

The p-System is designed to work on any type of floppy disk, including:
minifloppies, soft-sectored floppies, hard-sectored floppies, double-density floppies,
and dou ble-si ded, double-densi ty floppies. The Adaptable System disks are IBM
3740-format: soft-sectored, single-sided, single-density. The information on them
is uninterleaved. If the target configuration does not include floppy drives
capable of reading the disks that are shipped, the information must be downloaded
onto floppies (the "target medium") that your hardware can read (see Section 1.4).

Whichever floppy disk format you use, you must have 128-byte sectors. If your
sectors are of some other size, you must use the Full Adaptable System (see
Section IV.4).

IV.3.I.2.I Format of the CP/M Adaptable System Disks

Each disk shipped (except for CPMDISK (BOaTER» is divided into three logical
disk i mages. If these disks are used without being unpacked, only the first disk
image is visible to the p-System: the second and third disks' must be unpacked
before they can be used.

The first disk image starts at Track 0, the second at Track 25, and the third at
Track 50.

Each logical disk is 25 tracks long: the tracks are logically numbered 0 •• 24. Each
track contains 26 sectors (1..26), and each sector -is 128 bytes long.

Logical track 0 is reserved for bootstrapping 'purposes: Sectors 3 •• 18 contain the

79

Installation Guide
CP/M Adaptable System

secondary bootstrap. Sectors 1 and 2 are empty, but may be used for a primary
bootstrap should you write one of your own (see Section IV.3~4). Sectors 19 •• 26
are unused.

Logical track 1 contains a p-System file directory in sectors 9 •• 26.

Logical tracks 2 •• 24 are available for file storage (each disk that is shipped
already contains several files).

The information on these disks is uninterleaved. Once the System has been
booted, disk formats may be changed to improve performance.

IV.3.1.2.2 Contents of the CP/M Adaptable Sys~emDisks

CPMDISK is a CP/M-readable disk with the programs PASBOOT and SAMBOOT. It
has a third disk image that bootstraps a 'System with two disk drives, using
CP/M. I ..

CPMADAP contains three logical p-System di~ks:

1) A System that boots with one disk drive, using CP/M.
2) A System that boots using SBOOTB

(from the Full Adaptable System).
3) Interpreter codefiles and the program CPMBOOT.

SYSTEM also contains three disk images:

1) System files, SETUP, and STARTUPe-
2) Pascal Compiler and 80BO Assembler.
3) Some utilities, Linker, and zao Assembler.

UTILITIES contains two disk images:

1) COPYDUPDIR, MARKDUPDIR, DECODE, PATCH,
and SCREENTEST.

2) Other tJtilities.

IV.3.1.3 I/O Drivers

To boot a CP/M Adaptable System, you must be running a CP/M 1.4, 2.0, or 2.2,
with a standard CBIOS. COOS systems will work if and only if they are
compatible with COOS version 1.07 (later systems usually work; earlier systems do
not). If you use an Intel MDS OMS) machine, you must recopy your disks with
CRC-checking turned off: see Appendix C for details.

BO

Installation Guide
CP/M Adaptable System

A p-System booted using CP/M will do low-level (SBIOS-Ievel) 1/0 using CBIOS
routines defined in the CBIOS jump table. This is why compatibility is imperative:
if the routines are in a different location, the bootstrap program will not find
them. In addition, the CBIOS must not use any memory between 0100H and the
base of the CBIOS jump table: this is where the bootstrap will load the P-machine
Interpreter.

If all the conditions stated in this section are met, you should be able to proceed
to the next section, and attempt to bootstrap your System~

>,./

:.\

81·

Installation Guide
CP/M Adaptable System

IV.3.2 Bootstrapping

To bootstrap your p-System, perform the following steps:

1) Bring up your CP/M system.

2) Insert the CP/M-compatible disk (CPMDISK (BOOTER»
into Dri ve A. .

3) Type 'PASBOOT'(return> to execute the program PASBOOT.
PASBOOT should display the following message:

UCSD PASCAL (IV.O) BOOTER VERSION [zz]
INSERT PASCAL Dl~K INTO DRIVE A, THEN TYPE <RETURN>

you should insert the Bootstrapping disk from CPMADAP
(the first disk image on CPMADAP) into Drive A, and then
type (return>.

4) PASBOOT does its work, and displays the following messages:

REAf)lNG SECONDARY BOOTSTRAP
BOOTING TO UCSO PASCAL

after this message, you should see the Operating System
promptline, and be able . to use your p-System. See the next
section for details on checking the System.

Problems: If PASBODT encounters any problems, it will halt. The error
message:

Can't find 5YSTEM.INTERP

indicates a problem in the Secondary Bootstrap (See Chapter 11). The error
message:

Can't find SYSTEM.PASCAL

indicates a problem in the Tertiary Bootstrap.

Booting with CP/M should take about two minutes (give or take some time). This
is slow: Section IV.3.4 tells how to supply your own (faster) bootstrap.

82

Installation Guide
CP/M Adaptable System

IV.3.3 Checking your System

Once your System has been bootstrapped, you can generally tell whether it is
working by a few simple observations:

1) The console should display the System promptline, and
below that there should be a welcome message.

2) When you type 'F' for F(iler, the System disk should do
some clicking (it is reading several sectors), and then
the console should display the Filer's promptline.

3) While in the Filer, type '0' for OCate, and enter the
current date, followed by <return>. Then type '0' again.
The second time you use the OCate command, it should display
the date that you entered the first time.

if (1) fails, almost anything could be wrong: reread Section IV.1 to make sure
your hardware and CP/M software conform to requirements. You might want to
check that PASBOOT creates the correct booting parameters, and that the CBIOS
disk read and console wri te routines are correct (more information about the
bootstrap stack and these routines may be found in Section IV.4). If (2) fails,
check your disk read and console read/write routines. If (3) fails, check your
disk routines.

Some more hints about troubleshooting appear in Appendix C. If you are truly
stuck, you should contact the supplier of your software for support.

IV.3.3.l Notes

When your System is bootstrapped, you should be able to use all devices that
CP/M communicates with:

the line printer is PRINTER:, Device 6
the tape reader is REMIN:, Device 7
the tape punch is REMOUT:, Device 8

however, you will only be able to communicate with one disk drive. To
communicate with more than one disk drive, bootstrap with the third disk image
on CPMDISK (BOOTER). When the System is booted using the Interpreter on this
disk, both disk dri ves must contain a disk (otherwise, the System will "hang" while
bootinT

83

Insf~Ufiltian Guide
CP/M Adaptable System

The following are p-System numbers for disk drives:

CBIOS
o
1
2
3

p-System
4
5
9

10

... the p-System is always booted from disk drive 114.

The keys for STOP/START, FLUSH, and BREAK do work on the p-System that is
booted using CP/M. Input from the keyboard is queued if there is some other
1/ 0 goi ng on.

The Bootstrapping Disk from CPMADAP contains only a minimum System, intended
for bootstrapping, nothing more. Many useful files are· on the other disks
supplied: once your System is booted, you may use the Filer to T(ransfer
frequently-used files onto frequently-used disks, and arrange things to your own
convenience.

84

IV.3.4 Improvements

Installation Guide
CP/M Adaptable System

Once the p-System has been bootstrapped using CP/M, it is possible to speed up
di sk accesses and to provide an automatic bootstrap (a cold boot). Disk access
speed may be improved by changing disk formats to better match the disk drives
being used.

IV.3.4.1 PASBOOT

PASBOOT is an assembly language program that runs under CP/M and boots the p
System. It reads the Secondary Bootstrap from the Bootstrapping Disk (the first
disk image on CPMADAP; the Secondary Bootstrap is on Track 0, Sectors 3 •• 18)
into m·ain memory, starting at 82DDH. It then pushes parameters that describe
the target machine onto the processor stack, and initiates the bootstrap by
jumping to 82DDH.

The source for PASBOOT is supplied on the disk CPMDISK (BOOTER). Several
equates in the source may.'be, modified to change the conditions of bootstrapping:

DDT - normally FALSE. If set to TRUE, the System may be traced and
debugged using DDT.

BOOT - is the address of the JMP WBOOT for CP/M's CBIOS. The default
is DDDDH. This is used when DDT = FALSE.

BOOS - is the address of the JMP BOOS for CBIOS. The default is DDD5H.
This is used when DDT = TRUE.

TPA - the address of the start of a user program when assembled under
CP/M. The default is DIDDH.

INTERP$BASE - is the starting address of the Interpreter. Normally equal
to TPA. Must always be on a page boundary (i.e., the low byte must
equal DOH). Default is DIDDH. '

LOW$MEMORY - the lowest available RAM address. It must be the base of
a contiguous block of at least 48K of RAM, must be greater than or equal
to INTERP$BASE, and must be on a page boundary. The default is DIDDH •.

TRACKS - the number of tracks on the Bootstrapping Disk. The default is
77 (as on standard 8" floppies).

SECTORS - the number of sectors per track on the Bootstrapping Disk. The
default is 26.

85

Installation Guide
CP 1M Adaptable System

BYTES - the number of bytes per sector on the Bootstrapping Disk. The
default is 128. To boot using CP/M, this must be 128.

INTERLEAVE - the ratio for interleaving sectors on a track. This
parameter is termed 'skew' in CP/M documentation; in UCSD p-System
parlance, 'skew' refers instead to a track-to-track offset: see below. The
INTERLEAVE parameter is interpreted as INTERLEAVE:1. The default is
1: the p-System disks as shipped have 1:1 interleaving, i.e., none at all.

FIRST$TRACK - the track on which Block 0 of the. p-System starts. p
System code is typically stored after bootstrap code. The default is L'

SKEW - is the track-to-track sector offset. This does not mean what 'skew'
means in CP/M documentation. In the p-System, skew is a track-to-track
offset: if SKEW=6, then Sector 1 on one track is adjacent to Sector 7 on
the next track, which is adjacent to Sector 13 on the next track, and so
forth.

MAX$SECTORS - is the maximum number of sectors per track that an
online disk drive may have. For example, if a system supports one single
density floppy drive (with 26 sectors/track) and one double-density floppy
dri ve (with 52 sectors/track), this value should be 52. MAX$SECTORS is
used to allocate a sector translation-table. The default is the value of
SECTORS.

MAX$BYTES - is the maximum number of bytes per sector that an online
disk drive may have. MAX$BYTES is used to allocate a partial-sector read
buffer. The default is the value of BYTES (= 128).

IV.3.4.2 Allowing Empty Disk Drives

The standard CBIOS method of handling an empty disk drive is to emit error
messages until a disk is placed in the drive. The p-System, on the other hand, is
able to handle empty disk drives. This is a good deal more convenient.

For this to be the case,all the disk drive routines in the CBIOS/SBIOS must be
modified so that they return a status (IORESUL T) in the A register. This status
must be:

o if read or write successful
9 if disk not online
1 if any other error

The CBIOS/SBIOS routines should not under any circumstances display error
messages: that is the responsibility of the p-System.

86

IV.3.4.3 Changing Disk Recording Formats

Installation Guide
CP/M Adaptable System

The CP/M Adaptable System disks as shipped are formatted with a sector
interleaving of 1:1 and a track-to-track sector skew of O. For most disk drives,
these values are inefficient. The FINDPARAMS utility can be used to determine
more efficient parameters for your particular disk drives.

There is a copy of. FINDPARAMS on each Bootstrapping Disk. When you run it, it
presents you with a series of prompts and tests which allow you to judge which
combination of parameters works best with your disk drives. Once you know
what these parameters are, you may use DISKCHANGE to alter the disks you use
(DISKCHANGE is described in Section IV.2.1).

On some slow processors, FINDPARAMS is incapable of determining the proper
interleaving. In such cases, it is suggested that the user take the time to
determine optimum interleaving and skew by hand. The best way to do this is to
do a "binary search:" logging the bootstrap time for different interleavings, and
successively improving the interleave values. The lowest interleaving that is
markedly faster than the next smaller interleave value is the one that should be
used. Optimum skew can be determined in a similar manner. However, skew does
not affect disk access speed as much as interleaving does, so the difference
between skew values will be less apparent.

When you have used DISKCHANGE to alter your Bootstrapping Disk, you must
change the relevant parameters in PASBOOT:

INTERLEAVE
FIRST$TRACK
SKEW

and then reboot your System. If you change the Bootstrapping disk but
neglect to alter these parameters, your System will no longer bootstrap. This is
one reason it is important to keep backups of all your System disks.

Note that at this point in the u'se of your System, all disks must have the ~
recording format; if you optimize your Bootstrapping Disk, you must optimize all
other disks that you use.

Warning: Before you use DISKCHANGE on a disk, you should back it up.
DISKCHANGE may not do exactly what you wanted it to. You may have
forgotten to change the parameters in PASBOOT. Also, DISKCHANGE will lose
all information on a disk that is not part of the disk image it is altering: you
must unpack your CP/M Adaptable System disks before you optimize them with
DISKCHANGE. Section 1.4 describes how to unpack Adaptable System disks.

87

Installation Guide
CP/M Adaptable System

M any soft-sectored 8" floppies in the field are formatted with 2:1 interleaving,
sector skew of 6, and first Pascal track of 1. This format is recommended if
you wish to exchange software with other users. But DISKCHANGE can be used
to convert p-System disks to any desired format.

88

IV.3.4.4 Creating an Automatic Bootstrap

Installation Guide
CP 1M Adaptable System

It is possible to write a bootstrap (a primary bootstrap) and place it on a System
disk so that the disk will boot without the aid of CP/M. The hardware you use
must be able to read a primary bootstrap stored at Track 0, Sector 1 of the
System disk. The bootstrap is loaded into some predetermined location in main
memory. On many hardware systems, an operation of this sort takes place when
a bootstrap button is pressed.

If your hardware is capable of loading a bootstrap in this manner, you must write
a new primary bootstrap. This primary bootstrap must read the CBIOS/SBIOS
into memory, load the secondary bootstrap, and start it.

The CPMBOOT utility is provided to transfer the primary bootstrap and a CBIOS
onto Track 0 of a Bootstrapping Disk (starting at Sector 1).

The pri mary bootstrap that you write may be based on the PASBOOT program, but
it must load the CBIOS/SBIOS: it cannot assume it is already in memory. The
primary bootstrap must do the following things:

1) Read the secondary bootstrap from Track 0, Sectors 3 •• 18, into main
memory starting at 8200H.

2) Read the CBIOS/SBIOS from Track 0, Sectors 19 •• 26, into main memory
(the actual location is optional; it is best to follow the example of
PASBOOT).

3) Load the configuration parameters onto the processor stack (the source
for PASBOOT indicates how to do this).

4) Perform a JP (not a CALL) to the secondary bootstrap (at 8200H).

The primary bootstrap must be on disk wherever the bootstrap button will read it:
the preferred location is Track 0, Sector 1.

For more information on the primary bootstrap, .refer to the SAMBOOT source
program on CPMDISK.

Once you have wri tten anc;f tested a primary bootstrap, you may load it onto a
Bootstrapping disk, along with a copy of CBIOS/SBIOS, by running the utility
CPMBOOT (located on the disk CPMADAP). CPMBOOT prompts you for the
names of a file to load as the primary bootstrap and a file to load as CBIOS; it
then copies these files onto Track 0 of a Bootstrapping disk. Once CPMBOOT
has been run, the Bootstrapping disk it created should be able to boot without
using CP/M.

89

Installation Guide
CP 1M Adaptable System

CPMBOOT can only write to a standard 8" disk. If your disk drives are not IBM
3740 format, you must load the primary bootstrap and CBIOS onto the disk in
some other manner.

IV.3.4.5 Changing the P-Machine Interpreter

The Interpreter that is shipped with the System may not have the characteristics
you desire. A different Interpreter may be created by linking together codefiles
that support the features you wish to support. How to do this is described in
detail in Section V.1.4.

The only exception from Section V.1.4 that you must note if you are using the
CP/M Adaptable System is that the CBIOS-interface files are different. Instead
of INTER.CODE and INTER.X.CODE, you have your choice of INTER.CPMl.CODE,
INTER.CPM2.CODE, and INTER.CPM4.CODE: these codefiles interface with
CBIOSes that support 1, 2, and 4 disks (they must use BIOS.C.CODE).

The Interpreter that is shipped is INTERP.CODE linked with RSP.CODE,
BIOS.C.CODE, INTER.CPMl.CODE, and TERTBOOT .CODE.

IV.3.4.6 Using the Full Adaptable System

The CP/M Adaptable System is merely a simple interface to the Full Adaptable
System. You can take advantage of the features of the Full Adaptable System,
but to do this you must take the time to read the following section, Section IV.4,
and possibly do some SBIOS programming of your own.

The second disk image on CPMADAP contains a secondary bootstrap that is the
standard bootstrap used with the Full Adaptable System. If you decide to use
more Full Adaptable System features, use this disk image.

With the Full Adaptable System, you may add device drivers to: support more
disks, support disks of different formats, drive printer and remote devices, drive
user-defined devices, and read a hardware clock.

90

IV.4 The Full Adaptable System

Installation Guide
Full Adaptable System

The full Adaptable System of Version IV.O is intended for Z80, 8080/85, and 6502
microprocessor systems. With the full Adaptable System, it is possible to boot the
p-System on machines that have at least 48K bytes of RAM of which at least 36K
are contiguous. They must also have a minimum disk storage capacity of 175K
bytes (350 512-byte blocks). The actual floppy drives may be of any type (single
density, double density, mini, hard sectored, etc). The hardware must also include
a teletype or CRT display that can both send and receive ASCII characters.

In addition to a UCSD p-System, the Adaptable System disk contains special
bootstrapping and testing utilities that enable the user to bootstrap the p- System
quickly and reliably. They are set up to bootstrap on particular memory
configurations. If your hardware is not so configured, an alternate bootstrap is
provided that should execute on the target hardware configuration. An I/O module
that communicates with the floppy disks and console must be provided !?l the user
to run on the target configuration.

Once the the p-System has been bootstrapped, additional facilities may be provided
to communicate with a printer, remote device, other user-defined devices, and a
system clock. The I/O configuration may be extended to provide access to
different types of floppy drives on line at the same time.

The Adaptable System is shipped on four 8" diskettes. They are IBM 3740 format:
soft-sectored, single-sided, single-density, and they contain the virtual images of
three logical disks (see Figures 3 and 4). The data on each disk is uninterleaved.
Each logical disk is small enough to fit on one 5-1/4" minifloppy, andean thus be
downloaded (see Section 1.4).

One of the Adaptable System disks is called SYSTEM. Another is called UTIL.
The other two are called ADAP disks; you will probably need to use only one of
them. If your System has a Z80, 8080, or 8085 processor, the ADAP disks are
ADAPZ and ADAP8: use ADAPZ for the Z80 andADAP8 for the 8080/5. If you
have a system with a 6502 processor, the ADAP disks are called HI PAGE and LO
PAGE; which one you "must use depends on your memory configuration: see below,
Section V.3.3.

Further, each ADAP disk contains two Bootstrap disks, and one Interpreter disk.
W h i c h 0 f the Boo t s t rap dis k s y oum u stu seals 0 de pen d son you r me m 0 r y
configuration; see the following section.

You should read through all of the next section before attempting to bring up your
p-System. You should also remember to back up your disks before doing anything
else with them.

,9.1

Installation Guide
Full Adaptable System

IV.4.1 Assessing the Situation

The three critical resources involved in bootstrapping the p-System are RAM
memory, floppy disk storage, and I/o drivers.

IV.4.1.1 Memory Configurations

It is possible to bootstrap the p-System with 48K bytes of exclusiveiy devoted
memory. A minimum of 36K contiguous bytes must be available for user data
space (this is referred to throughout the following discussion as 'the large
contiguous RAM space'). There are three software modules that at certain times
must coexist in RAM. They are the SBIOS, the Interpreter, and the Bootstrap.

The SBIOS is an I/O package customized to the target configuration (see Section
IV.4.3). It can be located wherever it fits best in RAM. From the p-System's
point of view, it is best situated in a small, isolated RAM space of its own. If
such an area is not available, the SBIOS may occupy as much of the high-address
memory space (of the large contiguous RAM) as is necessary.

The primary and secondary bootstraps occupy 1800 hex bytes (including data
storage), and execute in the large contiguous RAM space. If this contiguous RAM
space starts at or before location 3000 hex, the default bootstrap may be used. It
runs at 8000 hex and is called 5BOOT8. If the large contiguous RAM starts after
3000 hex, an alternate copy of the bootstrap must be used. It runs at 0000 hex
and is called SBOOTD. Once it is finished running, the memory space occupied by
the bootstrap is returned to the large contiguous memory pool.

Finally, the Interpreter is approximately 12K bytes long, and runs either at the
start of the large contiguous memory space, or in a separate RAM space. If there
is a separate RAM space large enough to accommodate the Interpreter, it should
be used rather than the large contiguous space. (The exact size of the Interpreter
can be obtained by examining the last word of the 5YSTEM.INTERP file after the
System has been bootstrapped.) --

Details about various processors, including possible memory configurations, are
given 'in Chapter V.

92

IV.4.1.1.1 Sample Configurations

Installation Guide
Full Adaptable System

To illustrate these requirements, we show two cases. The first is the simple case
of a configuration that has 64K of RAM available. In the second case, the
configuration provides a 16K RAM between 1000 hex and 5000 hex, a 36K RAM
between 6000 hex and FOOO hex, and a 300H-byte RAM between FOOO hex and
FFFF hex. In both cases, assume the SBIOS is 300H bytes long, the Bootstrap is
1800H bytes long, and the Interpreter is 2AOOH bytes long.

CASE 1

III
III INTERPRETER
111 1
111================1
#1 I
III I
III I
III I
IIt========~=======1
III SBOOT8 I
111================1
III I
III I
III I
III I
111================1
III SBIOS I

memory· .. ,

< ••• · . .

< ••.• · . .

< ••• · . .
< ••• · . .

< ••• · ..
< ••• · ..

0000 hex : : : >

1000 hex : : : >

2AOO hex
3AOO hex : : : >

8000 hex

9800 hex
. 0000 hex : : : >

E800 hex : : : >

,FOOO hex : : : >

FFFF hex : : : >

CASE 2

�---------------�# ---------------
I 1#
I INTERPRETER 1#
I--------------~I# ---------------
I 1# ---------------
1--------------- 1,#
I III
I 1#
I 1#
1---------------1# ------------~-- ..

I SBOOTO III
I-------------~-I# ---------------

1---------------) ---------------
t

- ~,

SBIOS 1# .

memory.

('II' indicates the pre's'ence oCf mSrl!()ry)

Installation Guide
Full Adaptable System

In the first case, there is no separate RAM space for t_he Interpreter. Therefore,
it must start where the large contiguous RAM space starts. Since there is RAM
at 8000 and the large contiguous RAM starts before 3000 hex, the bootstrap
SBOOT8 is used. Finally, the SBI05 is located so as net to fragment the large
contiguous memory space.

In the second case, there is a separate RAM space that-is large enough to hold
the Interpreter. The Interpreter .is therefore located there •. ' There is also a
separate RAM space large enough to hold the 5BI05. The 5BIOS is therefore
located there. Finally, since the large contiguous space does not start before 3000
hex, the 5BOOTO bootstrap must be used at 0000 hex.

IV.4.1.2 Floppy Disk Requirements

I t is ne~essary that any machine that runs the p-System have at least 175K bytes
(350 512~byte bloqks)of floppy disk storage •. ' It is possible to bootstrap with less
disk space, but virtually impossible to do anything else.

The p-System is designed to work on any type of floppy medium. This includes
mini-floppies, soft-sectored floppies, hard-sectored floppies, double-density floppies,
and double-sided, double-density floppies. The Adaptable System disks are IBM'
3740-format: soft-sectored, single-sided, single-density. The information on them is
uninterleaved. If the target configuration does not include floppy drives capable of
reading the bootstrap disk, a copy of the -Bootstrapping disk must be created on a
disk (called the ~'target medium") that the available floppy drives can read (see
Section ·1.4).

IV.4.1.2.1 Format of the Adaptable System Disk

The Adaptable System disk is logically divided into three disk images of 25 tracks
apiece (see Figure 3). The first disk image (tracks 0 .through 24) contain~ a
Bootstrapping disk that boots with the SBOOT8. bootstrap. . The second disk image
(tracks 25 througfl 49) contains a Bootstrapping disk that boots with the SBOOTO
bootstrap. The third disk image (tracks 50 through 74) contains the Interpreter
disk. The first disk image is the only one of the three logical disks that is
accessible to the p-System when it is first booted. For this reason, the 5800T8
bootstrap is considered the default bootstrap.

A logical disk image has 25 tracks, numbered 0 through 24. Each track contains
26 sectors, numbered 1 through 26, with 128 bytes per sector.

94

Installation Guide
Full Adaptable System

Logical track a is reserved for the bootstrap. Sectors 1 and 2 contain the
Pri mary bootstrap, and sectors 3 through IB contain the Secondary bootstrap, which
is overlayed into memory as bootstrapping progresses. Sectors 19 through 26 are
not used.

Logical track 1, sectors 1 through 8 are reserved for the SBIOS tester (see Section
IV.4.2). Sectors 9 through 24 are occupied by the disk's directory.

The remainder of the logical disk (as shipped) may contain other System files.

IV.4.1.2.2 Preparing the Disk for Bootstrapping

To boot the p-System, an approprIate Bootstrapping disk image must occupy tracks
a through 24 of the target medium.

In this case, "appropriate" means that the bootstrap must be for the proper address
(i.e., either SBOOTB or SBOOTD, as explained elsewhere), and the bootstrap must
be in its proper location (i.e., if downloading was necessary, it must have been
done correctly).

If the target medium is an B" soft sectored floppy, and SBOOTB should be used,
there is no work necessary. The SBOOTB Bootstrapping disk image is already on
tracks a through 24 of the Adaptable System disk.

If instead it is necessary to bootstrap with SBOOTD, the contents of the second
disk image (tracks 25 through 49) must be copied onto tracks a through 24 of some
disk (i t is far safer to copy from the disks provided onto fresh disks; in any case,
your disks should have already been backed up). The copying may be done by any
means available to you (such as possibly a native operating system, a ROM
monitor, an assembly language program, et cetera).

If th e target medium is not an B" soft sectored floppy, you must download your
disks onto the appropriatemedia (see Section 1.4), unpacking them in the process.
When you have done, this, you should be able to boot using either SBOOTB or
SBOOTD, depending on your memory configuration as described above.

When downloading, you must be careful not to change the information you are
transferring: the order of bytes or sectors must not be changed, and address
boundaries must not be disturbed.

Remember that for the purposes of initial bootstrapping, the information on a
logical disk image is recorded in contiguous sectors (i.e., the sectors of the disk
are not interleaved).

95

Installation Guide
Full Adaptable System

Once you have bootstrapped your System, you will probably want to change the
disk so that sectors are interleaved, since this is far more efficient on most floppy
dri ves. The DISKCHANGE utility allows you to do so with little difficulty (see
Section IV.2).

96

IV.4.2 SBIOS

IV.4.2.1 Introduction

Installation Guide
Full Adaptable System

The ~impli fied Basic I/O ~ubsystem is a collection of low-level input/output
routines. Fifteen of them are required for the p-5ystem's operation; an additional
thirteen routines may be added at the user's discretion (see below, Section IV.4.4).

The 5BI05 routines must perform device-level I/O functions. While the P- machine
is running, they are called by the BIOS. Since they are machine- specific, they
cannot be provided with an Adaptable System: the user must write them from
scratch, or adapt them from low-level 1/0 routines already in the user's
possession.

A correct SBIOS and a correct bootstrap enable the p-5ystem to run on the user's
hardware.

This section first describes the SBIOS routines and their requirements, in order.
Then it describes how 5BI05 routines are called, and concludes with a section on
how to test an SBIOS. The following section describes how to bootstrap the
System, with suggestions about writing a bootstrap.

97

Installation Guide
Full Adaptable System

IV.4.2.2 The SBIOS Routines

These are the names of the fifteen essential SBIOS routines, along with a brief
description of each routine. SBIOS routines are called through a jump table (see
Section IV.4.2.2.5); the center column shows each routine's number in the table (the
"jump vector").

Routine Name Vector Number Descrietion
SYS INI T 0 initialize machine
SYSHALT 1 ex it LCSD PASCAL
CXNINIT 2 console initialize
C(]\JSTAT 3 console status
CXNREPD 4 console input
CCl\MR.I T 5 console output
SETDI SK 6 set disk number
SETTRAK 7 set track number
SETSECT 8 set sector number
SETBLER 9 set buffer address
DSKREPD 10 read sector from disk
DSK\t\RIT 11 wr i te sector to disk
DSKINIT 12 reset disk
DSKSTRT 13 activate disk
DSKSTOP 14 de-activate disk

98

IV.4.2.2.1 The Individual SBIOS Routines

Installation Guide
Full Adaptable System

SBIOS routines are called by the primary bootstrap and by the BIOS; rarely, if
ever, by the user's programs. They are sometimes passed parameters on the stack,
and sometimes return results in registers or main memory. The conventions of
parameter passing vary (necessarily) from processor to processor: see Chapter V for
details.

Many of the SBIOS routines return a status word: this status word is used as the
System's IORESUL T. It is important that status words be returned correctly. If
they are incorrect, the System may crash or even fail to bootstrap. An
IORESUL T of 0 signifies a correct operation. An 10RESUL T of 9 should always be
returned when an I/O device is not online. (Remember that floppy disks are
frequently removed and replaced, so the disk-handling routines should be careful to
check that a disk is in the desired dri ve.)

The SBIOS must maintain four variables that describe the state of disk 1/0.
These are called CURDISK, CURTRAK, CURSECT, and CURBUFR. The first
three describe the current disk drive (numbered 0 •• 5 for SBIOS purposes) and the
current track and sector on that disk. CURBUFR is a pointer to a read/write
buffer in main memory.

Following is a description of each of the SBIOS routines, in order:

SVSINIT

SYSINIT is the first routine called when a System is bootstrapped. It should
initialize the hardware in any ways necessary. This may include setting up
interrupt vectors, enabling RAM memories, and turning off any 1/0 devices that
won't be used.

A pointer to the Interpreter's jump table is passed to SYSINIT. This pointer is
not used by the bootstrap; it is provided for use with some routines in the
Extended SBIOS: see Section IV.4.4.2.

SVSHALT

SYSHAL T is called when the p-System terminates (through a H(alt). It should shut
down all devices in an orderly manner. If the user so desires, SYSHAL T may also
start another operating system on the host machine.

99

Installation Guide
Full Adaptable System

CONINIT

CONINIT initializes the console port. It returns the status of the console
connection.

Initializing the console means preparing the console hardware to send and receive
characters. If the terminal's baud rate and parity bits can be set by software,
CONINIT should configure it to operate as quickly as possible, ignoring parity
bi ts. Any interrupt vectors associated with the console should be set in SYSINIT,
not CONINIT.

If CONINIT encounters no problems in initializing the console, it should return a
o (zero). If it detects that the terminal is offline, it should return a 9.

CONSTAT

CONST AT returns two parameters that describe the status of the console.

The first parameter is the state of the console connection. This is identical to
the parameter returned by CONINIT: if the console is online, the parameter should
return 0; if the console is offline (disconnected), the parameter should return 9.

The second parameter describes the state of the console input channel. If a
character has been typed on the keyboard, the parameter should return FF hex;
otherwise it should return O. (Note: CONST AT does not read the pending
character, but merely reports its presence.) --

100

Installation Guide
Full Adaptable System

CONREAD

CONREAD reads a single character from the keyboard. It returns that character,
and the status of the console connection.

If the console i-s online and a character is pending, -CONREAD reads that
cnaracter. If the console is online but no -character is pending, CONREAD waits,
by polling the console, until a character appears, and then reads that characte-r.--

If the read was successful, the status parameter should return a O. If the
console was offline, the parameter should return a 9. If a character was read
but there appears to be a transmission problem, CONREAD should return the
character, and the status parameter should be set to 1.

The character read should be returned exactly as read from the keyboard port,
with no modifications.

CONWRIT

CONWRIT writes a single character to the console. It reports the status of the
console connection.

If the console is online, the character is sent, and CONWRIT returns O.
console is offline, CONWRIT returns 9 •. If there is a transmission
CONWRIT returns 1: the System will assume that the character was lost.

If the
problem,

CONWRIT should not alter the output character in any way, unless it must do so
in order for the console to display the character properly. (For example, don't
strip pa-rity -bits, unless the terminal wHI not function properly when they are set).

101

Installation Guide .
Full Adaptable System

SETDISK

SETDlSK sets CURDlSK.

CURDlSK (as well asCURTRAK, CURSECT, and CURBUFR, which· are mentioned
below), is 8. global value in the BIOS. The SBlOS must keep a copy of these
values, for use by th~. SBIOS disk-handling routines (DSKREAD, DSKWRIT, DSKINIT,
DSKSTR T, and DSKSTOP).

Disk nUnlbers may be in the range 0 •• 5.
. ,

r .,

SETDISK merely changes a value; it does not alter the hardware state, nor does
it return a status.

SETTRAK

SETTRAK sets CURTRAK.

CURTRAK is used by DSKREAD and DSKWRIT.

Track numbers range from 0 to one less than the highest numbered track on the
disk.

Like SETDISK, SETTRAK merely changes a value; it does not alter the hardware
state, nor does it return a status.

SETSECT

SETSECT sets CURSECT.

CURSECT is used by DSKREAD and DSKWRIT.

Sector numbers range from 1 to the highest numbered sector on a track.

SETSECT does not alter the hardware state or return a status.

102

SET-BUFR

SETBLJFR sets CURBUFR.

Installation Guide
Full Adaptable System

CURBUFR is used by DSKREAD and DSKWRIT. It is the hardware address of a
buffer area large enough -to contain one sector.

5ETBUFR does not alter the hardware state or return a status.

DSKREAD

DSKREAD reads a sector from a floppy disk and returns a status.

DSKR-EAD must ensure that the sector it reads is identified by the values
CURDISK, CURTRAK, and CURSECT. It should read the sector into the buffer
whose address is CURBUFR.

DSKREAD may assume that CURDISK, CURTRAK, CURSECT, and CURBUFR have
all been correctly set by previous calls to SETDISK, SETTRAK, SETSECT, and
SETBUFR. It should not change these values.

I f the read was successful, the status should return O. If the disk was offline or
otherwise unavailable, the status should return 9. If there was an error in reading,
the status should return 1. If there are any problems, DSKREAD should always
return an error status; -it should not retry the read or hang on an error.

DSKREAD may also assume that DSK-INIT has already been called at least once for
the CURDISK, and that DSKSTRT has been called for the CURDISK more recently
than DSKSTOP.

103

Installation Guide
Full ,Adaptable System

DSKWRIT

DSKWRIT writes a sector to a floppy disk and returns a status.

DSKWRIT must ensure that the sector it writes is identified by the values
CURDISK, CURTRAK, and CURSECT. It should write the sector from the buffer
whose address is CURBUFR.

DSKWRIT may assume that CURDISK, CURTRAK, CURSECT, and CURBUFR have
all been c;o.\rectly set by previous calls to SETDISK, SETTRAK, SETSECT, and
SETBUFR. It\ should not change these values.-

1 f the wri te was successful, the status should return O. If the disk was offline or
otherwise unavailable, the status should return 9. If there was an error in writing,
the status should return (decimal) 16. If there are any problems, DSKWRIT should
always return an error status; it should not retry the write or hang on an error.

DSK WRI T may also assume that DSKINIT has already been called at least once for
the CURDISK, and that DSKSTRT has been called for the CURDISK more recently
than DSKSTOP.

To keep disk writes reasonably fast, DSKWRIT should not do read-after-write
checking.

DSKINIT

DSKINIT resets the disk CURDISK, and returns a status.

DSKINIT may assume that SETDISK and DSKSTRT have already been called to
select CURDISK and set it in motion.

DSKINIT must move the recording head to track O. If possible, the drive should
be reset to its power-up state, and prepared for reading and writing.

If CURDISK is online (i.e., the drive is connected, turned on, and contains a floppy
disk) and the DSKINIT is successful, the status should return 0; otherwise, the
status returns 9.

If there are any problems, DSKINIT should always return an error status rather
than hang on an error.

DSKINIT should not alter the values of CURDISK, CURTRAK, CURSECT, and
CURBUFR.

104

Installation Guide
Full Adaptable System

DSKINIT is .2!l!1.. called when the System is booted or re-initialized (i.e., after
SYSINIT is called). It is not called every time a disk read/write sequence is
begun: that is the purpose of DSKSTRT.

DSKSTRT

DSKSTRT prepares the disk CURDlSK for a series of read, write, or init operations
(that is, for a sequence of calls to DSKREAD, DSKWRIT, and DSKINIT).

DSKSTRT may assume that SETDISK has already been called to set the value of
CURDISK.

DSKSTRT should perform any motor starting and head loading operations that are
not done automatically (by the hardware) as consequences of read, write, and init
operations.

-DSKSTRT does not return a status.

This routine is intended for use with ce-rtain mini-floppy drives (5-1/4"). Most 8"
floppies will not require that DSKSTRTperform any action.

DSKSTOP

DSKSTOP stops the disk CUROlSK; it is meant to be called at the end of a series
of disk read, write, or in-it operations.

DSKSTOP may assume that SETDISK has already been called to set the value of
CURDISK.

OSKSTOP should perform any motor stopp-ing and head unloading operations that
are not done automatically (by the ha-rdware) after read, write, and init operations.

DSKSTOP does not return a status.

This r-'3utine is intended for use with mini-floppy drives (5-1/4"). Most 8" floppy
hardware will not require that DSKSTOP perform any action.

105

Installation Guide
Full Adaptable System

1 V.4.2.2.2 Where to Get the ·SBIOS Routines

The SBIOS routines are deliberately simple. Similar low-level 1/0 handling routines
may be found in most operating systems or ROM monitors. While you may if you
choose write all of the SBIOS from scratch, it may be possible to find these or
similar routines in your hardware's ROM, and if not in ROM, they may beirlcluded
in soft ware that you already have for your system, or may be available from the
manufacturer of your hardware.

IV.4.2.2.3 What to Do with SBIOS Routines

The SBIOS must be edited and assembled on whatever operating system or other
computer is available. It may also be assembled by hand.

The SBIOS routines should adhere to the specifications given in this section. Be
careful that the routines which return status values do return the correct value:
the System relies on this information.

106

Installation Guide
Full Adaptable System

IV.4.2.2.4 Physical Organization of the 58105

The SBIOS should be organized with the jump vector (see below) at the beginning,
followed by data space and code. A sample SBIOS might look like:

SBIOS
JUvP
JUv1P
JLJv1P
JUv1P

JUv1P
JLMP

CLRD 1 SK . V\ORO
a..RTRAK .w:FD

SYS INI T

RET

SYS~LT

HALT

SYSINIT
SYSHALT
CXNSTAT
CD\REflD

DSKSTRT
DSKSTOP

Beginning of the SBIOS
Jump to SYSINIT routine
Jump to SYSHALT routine
Jump to CONSTAT routine
Jump to CONREAD routine

Jump to DSKSTRT routine
Jump to DSKSTOP routine

Temporary area

Make sure to return to caller

Dying on this machine is simple

107

Installation Guide
f~U;Adaptable System

IV.4.2.2.5 How to Call the SBIOS Routines

E<;ich SBI0S routine is called through a jump vector. The jump vector is an array
of ju mp instructions. A program calling an SBIOS routine must access the jump
vector rather than the routine's physical location; in this way, the System need
not know the size of 5BI0S routines, or how they are ordered in memory.

F or the si mple SBI05, there are 15 jumps: each one to the start of a different
5BIOS routine. The jumps are arranged in vector number order (see the list of
SBIOS routines in Section IV.4.2.2).

The following steps show how to call an SBIOS routine:

STEP 1:
Calculate the offset to the jump instruction. This is:

(the SBI05 routine's vector number) *
(the number of bytes in a jump instruction);

STEP 2:
Add the offset from STEP 1 to the address of the SBIOS
(that is, the start of the jump vector);

STEP 3:
Execute the jump instruction (and the subsequent routine).

If the contents of the jump vector are correct, a call to the SBIOS routine will
jump into the jump vector and then to the desired routine. The call to the
SBIOS should be a subroutine call (whatever that means on your hardware). Each
individual SBIOS routine is responsible for returning to its caller.

Par-amter-passing conventions for SBIOS routines vary from processor to processor.
See Chapter V for details on your particular machine.

108

IV.4.2.3 Testing the SBIOS

Installation Guide
Full Adaptable System

The conditions for testing an SBIOS are the same as the conditions for
bootstrapping the System. Namely, you must have a complete SBI05, you must
have selected the appropriate disk to bootstrap from, and you must have set up
some parameters on the -processor's stack.

Building an SBIOS is described in the previous section. Selecting the appropriate
disk to bootstrap from is described in Section IV.4.1. Setting up parameters on
the stack is described below in Section IV.4.2.3.1; the section on bootstrapping
(Section IV.4.3) refers back to this section.

It is unwise to try to bootstrap without first testing the SBIOS. Should there be
problems with the SBIOS which cause your System to fail, there will be no way to
tell what went wrong. Running SBIOSTESTER is therefore an important step: if
your SBIOS passes these tests, it is likely to work when you bootstrap your System
and run it.

SBIOSTESTER -is a utility program that resides on the Bootstrapping disk. It is
located in track 1, and therefore does not appear in the directory. SBIOSTESTER
includes tests for each SBIOS routine, including very thorough tests of each disk
drive.

Before SBIOSTESTER can be run, it must be gi ven a set of parameters that
describe the configuration of the host hardware. These parameters are placed on
top of the processor's stack (which di.ffers from machine to machine: see Chapter
V).

Once the SBIOS has passed its tests, you will be ready to bootstrap your System.
The parameters required by the bootstrap are the same as the parameters
required by SBIOSTESTER. Thus, Section IV.4.3 on bootstrapping refers back to
the following section, Section IV.4.2.3.1.

IV.4.2.3.1 Loading Parameters on the Stack

-A number of parameters must be passed on the processor stack to SBIOSTESTER
{and later, when you are ready, to the secondary bootstrap). These parameters
describe the configuration of the target machine: the characteristics of the
Bootstrapping disk, the current memory configuration, and other miscellaneous
item'S.

Each parameter is a 16-bi t word. Hardware stacks differ from processor to
processor: you must refer to Chapter V for full details about your own machine.

109

Installation Guide
Full Adaptable System

The parameters must appear on the stack in the following order:

top of stack --> highest numbered floppy drive to test
address of the Interpreter
address of the SBIOS
address of the lowest word of contiguous memory
address of the highest word of contiguous memory
number of tracks per disk
number of sectors per track
number of bytes per sector
interlea ving factor
first Pascal track
track-to-track skew
maximum number of sectors per track for all disks
maximum number of bytes per sector on any disk

IV.4.2.3.1.1 Individual Parameters

Here is a description, of each parameter, in order:

Highest Numbered Floppy Drive to Test

SBIOSTESTER tests all disk drives. Disk drives are numbered from 0 (which is
the dri ve from which the System must be, bootstrapped). For example, if this
parameter is 1, SBIOSTESTER tests dri ves 1 and O. For practical testing
purposes, this parameter should always be 5. This is to ensure that proper error
messages are generated when the System attempts to access 'a disk that is not
there.

When the System is actually booted, this parameter should be 0 (on 6502 Systems
and zao/aoao Systems with the supplied bootstrap) or not present (on zao/aoao
Systems with a user-written bootstrap).

Address of the Interpreter

The appropriate address for the Interpreter depends on your memory configuration.
See Section IV.4.1.

Address of the SBIOS

The appropriate address for the SBIOS also depends on your memory configuration.
See Section IV.4.1.

110

Bounds of the Large Contiguous RAM

Installation Guide
Full Adaptable System

The next two parameters are the addresses of the first and last words in the large
contiguous RAM space. (l.e., these addresses must be even.)

As described in Section IV.4.1, the p-System requires a mInImum of 36K
contiguous bytes of RAM (Random Access Memory). When running SBIOSTESTER
or booting the System, this space must be absolutely free for the System's use.
It can of course be larger than 36K.

The SBIOS must not reside within this space. The Interpreter need not reside
wi thin this space, but if it does, it must start at the beginning of this space, and
be wholly contained within it.

These issues are discussed in Section IV.4.1, and details about individual processors
are given in Chapter V.

Tracks per Disk

The number of tracks on a single floppy disk. At this stage of bringing up y-our
System, all disk drives must be identical. Section IV.4 describes how to maintain
several different floppy disks formats on one System at one time.

Sectors per Tra-ck

The number of sectors on each track of a floppy disk.

Bytes per Sector

The number of bytes in a single floppy disk sector. This must be either 128,
256, or 512. The SBIOS routines DSKREAD and DSKWRIT transfer information to
and from memory a sector at a time.

III

Installation Guide
Full Adaptable System

Miscellaneous Parameters

The remaining four parameters are for use after your System has already been
bootstrapped at least once. They allow for more efficient use of the floppy disk
drives.

When you run SBIOSTESTER, these parameters must have the following values:

112

interleaving factor = 1
first Pascal track = 1
track-to-track skew = 0
maximum number of sectors per track
maximum number of bytes per sector

=
=

sectors per track
bytes per sector

Installation Guide
Full Adaptable System

IV.4.2.3.1.2 Sample Configurations

The memory-configuration parameters in this example are taken from the example
in Section IV.4.1.1.1.

In Case 1 there are two 8" floppy drives online, with 77 tracks/disk, 26
sectors/track, and 128 bytes/sector. In Case 2, there are six mini-floppy drives
online, with 35 tracks/disk, 10 sectors/track, and 256 bytes/sector.

These . are the two parameter stacks (values are shown in hex):

CASE 1 CASE 2

t-op of stack --->
0005 = highest numbered floppy drive to test = 0005
0000 = address of Interpreter = 1000
FOOD = address of SBIOS = FOOO
0000 = address of low word of contiguous RftM = 6000
FCFE = address of high word of contiguous RftM = FOOD
0040 = number of tracks per disk = 0023
001A = number of sectors per track = OOOA
0080 = number of bytes per sector = 0100
0001 = interleaving factor = 0001
0001 = first Pascal track = 0001
0000 = track-to-track skew = 0000
001A - max i mum numbe r of sectors per track = OOOA
0080 = max irn.Jm numbe r of bytes per sector = 0100

note that the interleaving, first Pascal track, and track-to-track skew are the
same in· both cases.

11J

Installation Guide
Full Adaptable System

IV.4.3.2 Running SBIOSTESTER

IV.4.3.2.1 Loading SBIOSTESTER into Memory

The program SBIOSTESTER is present on the first 1024 bytes of track 1 of all
Adaptable System Bootstrapping disks (on 8" disks, it occupies sectors 1 •• 8). It
must be loaded into the same location in memory as you would load your

. bootstrap: ei ther 8000 hex or 0000 hex.

SBIOSTESTER may be loaded in any way you choose. Perhaps a small assembly
language program could be written to do this (you have already provided disk read
rou ti nes when you constructed your SBIOS), or perhaps you have another operating
system that enables you to load code into memory.

If you are not sure at which locati on you should load SBIOSTESTER, refer to
Section IV.4.1.

I V.4.3.2 •. 2 Executing SBIOSTESTER

Once SBIOSTESTER has been loaded into main memory, and the proper parameters
have been pushed on the processor stack, execute it by performing a JUMP to
SBIOSTESTER (either to 8000H or DOOOH). Do not call SBIOSTESTER with a
subroutine call.

While SBIOSTESTER is running, there should be a blank disk in every disk drive.

SBIOSTESTER simply reports most problems and goes on. Some problems are
serious enough to cause it to abort. Since SBIOSTESTER displays its progress on
the console, you must watch the console while SBIOSTESTER is running to know
whether your SBIOS is passing all tests (SBIOSTESTER displays more information
than will fi t onto a single screen).

SBIOS"FESTER performs the following actions:

Step 1: SYSINIT is called to initialize the SBIOS, and CONINIT is called to
initialize the console.

Step 2: If step 1 is successful, the following prompt appears on the console:

Insert blank disks into all drives then hit the <return> key.

Warning: The contents of all disks in the tested drives will be destroyed by the
SBIOS read/write tests!

114

Installation Guide
Full Adaptable System

Step 3: CONREAD should read the <return> key when you hit it. If this is the
case, the highest numbered drive is declared the current disk (CURDISK) by a call
to SETDISK.

Step 4: DSKSTRT and then, DSKINIT are called to initialize the floppy drive.
If DISKINIT returns a status of 0,

Testing disk x

is displayed on the console (where x is the current disk).

If 'DISKINIT returns a status of 9,

Disk x is not on line

is displayed on the console, and the test jumps ahead to step 9.,

If nei ther of these messages appear on the console, there is a problem with
either CONWRIT, DSKSTRT, or DSKINIT.

Step 5: A data pattern is written on each sector of each track of the current
disk, using SETTRAK, SETSECT, and DSKWRIT. Before each call to DSKWRIT,

Writing track xx, sector yy

appears on the console, where xx is CURTRAK and yy is CURSECT (both
numbers appear in hex).

If DSKWRIT returns a status of 16,

Bad data transfer on track xx, sector yy

appears on the console. The values are the same as above.

Step 6: Each sector of each track on the current disk is read, using SETSECT,
SETTRAK, and DSKREAD. Before each call to DSKREAD,

Reading track x x, sector yy

appears on the console (values as in Step 5).

115

Installation Guide
Full Adaptable System

If DSKREAD returns a status of 9, or the pattern read is not the same as the
pattern written in Step 5, an error message appears (the same as in Step 5).

Step 7: This is a more elaborate disk write test.

SBIOSTESTER writes a unique data pattern on one sector of each track using
SETTRAK, SETSECT, and DSKWRIT. The tracks are accessed starting from the
disk's middle track and alternating from one side of the middle track to the other
until the outer tracks are reached. As each sector is recorded, its location is
displayed on the console (as in Step 5). If DSKWRIT returns an error status, the
error message of Step 5 appears on the console.

Step 8: This is a more elaborate disk read test, using the information generated
by Step 7.

SETTRAK, SETSECT, and DSKREAD are used to read the sectors written in Step
7. As each sector is read, its location appears on the console (as in Step 6). If
DSKREAD returns an error, or the sector's contents do not correspond to what
was written, the error message of Step 5 appears on the console.

Step 9: DSKSTOP is called to de-acti vate the current disk. CURDISK is
decremented. If CURDISK is 0 or greater, SBIOSTESTER branches back to Step 4,
and a new floppy dri ve is tested.

Step 10: The following message appears on the console:

Test complete

and SYSHAL T is then called.

IV.4.2.3.2.3 After Running SBIOSTESTER

If SBIOSTESTER runs through to completion, and if it displays no error messages,
you may attempt to bootstrap your System with some degree of confidence.
Otherwise, debug your SBIOS and try again. Do not attempt to boot your System
if you know there are bugs in your SBIOS.

116

IV.4.3 Bootstrapping

IV.4.3.1 Loading a Bootstrap

Installation Guide
Full Adaptable System

If the SBIOS is not already in memory, it must be loaded (see the preceding
section). The bootstrap must then be loaded into memory at either aooo hex or
0000 hex, depending on the machine's memory configuration (see Section IV.4.1).
The bootstrap is recorded on the first 256 bytes of Track 0 of each Bootstrapping
disk. Any available method may be used to load this code into the appropriate
memory space. Possible methods include using a manufacturer-supplied operating
system or a small assembly language program that calls the already-resident SBIOS
to read the code. An example of such a program for each type of CPU is
provided in Chapter V.

IV.4.3.2 Executing a Bootstrap

Each bootstrap requires that the parameters described in Section IV.4.2.3.1 be on
the top of the processor stack (the number of disk dri ves to test must be zero).
Once the configuration parameters are on the stack, and the SBIOS and bootstrap
are in memory, the bootstrap is ready to execute. This is done by executing a
jump instruction to the beginning of the bootstrap code (i.e., either aooo hex or
0000 hex).

The bootstrapping process may take as long as two or three minutes. This is only
for the time being; Section IV.4.4 explains how to write a faster bootstrap.

Note: On zao/aoao Systems, the 'number of dri ves to test' parameter must equal
o only if the supplied bootstrap is used: with a user-written bootstrap, it must
not be pushed. On 6502 Systems, it should equal O.

IV.4.3.3 Checking the System

Once the System appears to have bootstrapped, there are a few simple tests that
help verify the interaction between the SBIOS and the p-System.

If the System has booted correctly, the console should display a welcome message,
followed by the System version number, and the date on which the Bootstrap disk
was created. After that, the outer System promptline should appear (see the
Users' Manua!).

I f these messages do not appear, the bootstrap has not worked. First check the
values that are on the stack before the bootstrap is run. If these appear to be
correct, the bootstrap code may not have functioned. If the bootstrap appears to
be correct, then the SBIOS routines that handle either disk reads or console output

117

Installation Guide
Full Adaptable System

may be at fault.

Once the System appears to have booted, the next test is to type 'F'. This should
call the Filer. Several sectors will be read off the System disk, and another
promptline will appear. If these actions do not occur, the SBIOS disk read
routines or console I/o routines may not work.

The final quick test is to type '0' while in the Filer. When prompted, type the
Gurrent date (e.g., l2-JAN-79) followed by <return>. Finally, type '0' again. If
the correct' date (that is, the one you just typed) is not displayed, the disk write
routines may be wrong.

I V.4.3.4 Accessing Other System Programs

The sale purpose of the Bootstrapping disk is to aid in the development of
bootstraps. There is no need for most System programs in this process. Hence,
they are provided on the System disk rather than on the Bootstrapping disk.

The System disk as shipped contains three disk images, and may be unpacked as
described in Section 1.4. The first disk image, SYSTEMl, contains a p-System that
may be booted once a working bootstrap and Interpreter are transferred to it.
The other two disk images contain other System programs (Appendix C contains a
full catalog).

Bootstraps may be transferred using the utility BOOTER (see Section 1l.3).
Interpreters may be transferred as any normal file, by using the Filer's T(ransfer
command. Once it has a bootstrap, Interpreter, and Operating System, SYSTEMI
may be booted like the Bootstrap disk.

For any disk to be booted, it must contain a bootstrap, SYSTEM.INTERP,
SYSTEM.PASCAL, SYSTEM.SYNT AX (if you· intend to' compile programs);
SYSTEM.MISCINFO (if you intend to use the Screen Oriented Editor), and
SYSTEM.LIBRARY Cif you intend to use Long Integers or code that you yourself
have placed in the Library).

In order to use anpssembler, its name must be SYSTEM.ASSMBLER (no 'E').
Assemblers qre shipped with the name of the processor they generate code for, so
it is necessary to enter the Filer and use the C(hange command to name the
desired assembler SYSTEM.ASSMBLER. Any assembler information files (e.g.,
Z80.0PCOOES) must reside on the same disk as SYSTEM.ASSMBLER.

118

IV.4.3.5 Writing a Bootstrap

Installation Guide
Full Adaptable System

Chapter II discusses bootstraps in some detail. This section is only meant to
provide some reminders about the same topics.

The Adaptable System comes with primary, secondary, and tertiary bootstraps.
They are located on each Bootstrapping disk as diagrammed in Figure 4 (Section
II.3). The primary bootstrap that is supplied must be loaded by a bootstrap
loader which you yourself supply; at some point in your use of the System you
will almost certainly want to replace it with a simpler bootstrap (a "cold boot").
Section IV.4.1.2 describes how to do this.

Until you write your own primary bootstrap, you must load the supplied primary
bootstrap wi th a bootstrap loader: this can be either a small program that you
write yourself, or some other operating system that you are already using.

The supplied primary bootstrap must be loaded into either 8000H or OOOOH,
depending on your memory configuration, as described in Section IV.4.1. The
processor's stack must also be loaded with parameters, as described in Section
IV.3.2.3.1; the number of drives to test must be O.

Once the primary bootstrap is loaded and the parameters are on the stack, execute
the bootstrap by doing a JUMP to its location (either 8000H or OOOOH). Do not
call the bootstrap as you would a subroutine.

The supplied primary bootstrap will load the SBIOS and the secondary bootstrap,
push some parameters on the stack, and initiate the secondary bootstrap. If you
have prepared things correctly, within a short time you should have a running p
System.

119

Installation Guide
Full . Adaptable System

IV.4.4 Improvements

When the p-System is first booted with a minimal SBIOS and the primary
bootstrap supplied on the Bootstrapping disk, it does not have the speed or the
extended I/O capabilities of a fully-implemented System. This section describes
the improvements that can be made to your System, once you have jumped the
initial hurdle of bootstrapping it for the first time.

Among the capabilities that you may add to your System are: a fast turnkey
bootstrap (a "cold boot"), more efficient disk recording formats, the ability to
com municate with a printer, serial line, and system clock, and the ability to use
disk drives that are formatted di fferently from the System disk.

IV.4.4.1 Simple Improvements

This section discusses changing disk recording formats and writing a simpler
bootstrap. Both of these improvements are relatively simple, and can
substantially improve the speed of your System.

IV.4.4.1.1 Changing Disk Recording Formats

The Adaptable System disks as shipped are formatted with a sector interleaving of
1: 1 and a sector track-to-track skew of 0 (interleaving and skew are described in
Secti on I V. 2.1). F or most disk drives, these values are inefficient. The utili ty
c aIled FINDPARAMS can be used to determine more efficient parameters for your
particular hardware.

There is a copy of FINDPARAMS on each Utilities disk. When you run it, it
presents you with a series of prompts and tests which allow you to judge which
combination of parameters works best with your disk drives. Once you know
what these parameters are, you may use DISKCHANGE to alter the disks you use
(DISKCHANGE is described in Section IV.2.1).

When you have used DISKCHANGE to al ter your Bootstrapping disk, you must
change the relevant parameters on the bootstrap stack:

interleaving factor
first Pascal track
track-to-track skew

and then reboot your System. If you change the Bootstrapping disk and fail to
al ter these parameters, your System will no longer bootstrap. This is one reason
it is important to keep backups of all your System disks.

120

Installation Guide
Full Adaptable System

Remember that you must use BOOTER to copy the bootstrap on Track O.

Note that you cannot do this optimization until you have booted your System with
a .. 'vVorking SBI0S, as SBI0STESTER requires that disks be formatted with 1-1
interleaving and askew.

Note also that (at this point in your use of the System) all disks must have the
same format; if you optimize your Bootstrapping disk, you must optimize all other
disks that you use.

Wiarn:i'·o.g: ',Before you use., D1SKCHANGE on 'a disk, you should back it up.
DISKCHANGE may. not do exactly what you wanted to. You may have forgotten
to change, the bootstrap parameters. Also, D1SKCHANGE will lose all information
on a disk that is not part of the logical disk it is altering: you must unpack your
Adaptable System disks before you optimize them with D1SKCHANGE. Section 1.4
describes how to unpack Adaptable System disks.

Many soft-sectored Stl floppies in the field are formatted. with 2-to-l interleaving,
sector skew of, 6, and first ,Pascal track ~of 1. This format is recommended if you
wish 'to exchange software with other user.s •. , But DISKCHANGE can be used to
convert p-System disks to any desired format. .'

IV.4.4.1.2 Simplifying the Bootstrap

In order to produce a turnkey p-System, (that is, one which boots as. soon as you
power your machine up, or perhaps power it up and then push a bootstrap button),
your ,ha,rdware must have some mechanism to read th~. contents of a pre-defined
area ofa disk into a pre-defined area in memory.' On many machines f . this
mechanism takes the form of a boot-button that transfers control to a boot-ROM.
1 t is th e program in ROM that reads the contents of a disk sector into memory
and causes that code to execute.

If your hardware has such a bootstrap feature, a primary bootstrap may be written.
This primflry bootstrap must push the appropriate configuration parameters onto the
processor's .. stack, load the SBIOS into memory from a pre~defined location on the
Bootstrapping disk, and then load the secondary bootstrap and start its execution •

.. -
The primary bootstrap which you write must reside on the Bootstrapping disk, along
with the SBIOS.c Neither' of these may overwrite the System itself (which should
not be surprising). The available areas on the·, Bootstrapping .disk are:, ,

,I) Track 0: sectors I'and 2

2) Track 0: sectors 19 through the end of track a

121

Illstallation, Guide.
Full Adaptable System

3) Tr.ack 1: sectors 1 thnough 8

t his sc he rn e ass Urn e s 1 : 1. in t e r lea v i n g. 1 f you h a v e air e ad y c han g edt h e
interleaving of your disks, then the sectors available .. 0£'1 'Track 1 are the logical
sectors 1 •• 8, in other words, the areas on disk into which the first eight sectors
of Track 1 are mapped (by the BIOS).

The primary bootstrap which you write must:

1) Read the SBIOS' from the Bootstrapping disk into the memory space in
"which it is intended to execute. (Both the location on disk and the lac.ation

in memory are determined by the user. See Section IV.4.1.1,--, and the
precedi'ng portion of this section.)

2) Load the secondary bootstrap fro-m the Bootstrapping disk into the
memory space in which it is intend~d to execute. The secondary bootstrap
is 2,048 bytes 100ng, and is located on. Track 0 starting at Sector 3 (see
Figure 4). It, must be lqaded into memory following. the primary bootstrap
(i.e., it. is loaded at either' 8200" hex ,or 0200 hex, depending on the primary
bootstrap's location).

3) Load the configuration parameters onto the ~tack (see Section IV.4.2.3.1).

4) Do a JUMP (not a procedure call) to the beginning of the secondary
bootstrap (which is ,at either 8200HorD200H).

not,e, thatSEJDlSKm\;;lst be calle'd before thesecond'ary bootstrap begins
execution. SETOISK is usuaUy called in Step ,(1) or Step (2\ out if it is not, it
must'be called befere Step (4).

IV.4.4.1.2.1 Alternate Floppy Locations for the SBlOS

If there is not, . room for yourSBlOSon the Bootstrapping disk, the p-System can
be reconfigured t,o start on Track 2 instead of Track 1. This leaves Track 1 un
inter~eaved (i.e., l-to-I) and available for storage of the 5BI0S. Tbe
reconfiguration procedure is:

122

'1) Use DlSKCHANGE to- change the' first Pascal track to 2. Do not alter
the disk's interleaving or skew.

2) Cnange the 'first Pascal track' parameter on the booting stack to 2.

Installation Guide
Full Adaptable System

IV.4.4.1.2.2 Alternate Locations for the Secondary Bootstrap

If your hardware has a boot-ROM that must read a primary bootstrap from
somewhere on Track 0, sectors 3 through 18, you must move the Secondary
Bootstrap to a different location on the floppy. It may be moved to a different
area of Track 0, or onto tracks 1 or 2. If it is moved to Track 1 or 2, the
Bootstrapping disk must be reformatted as described in the preceding section.
The primary bootstrap must be altered, so it will read ,the secondary bootstrap
from its new location.

123

Installation Guide
Full Adaptable System

IV.4.4.2 Improving the SBIOS

In addition to a console and floppy disk drives, as handled by the simple 5BI05,
the p-5ystem may also interface to a remote port (serial line), a printer, a real
time clock, floppy disks of dissimilar formates, and even devices whose interface
is defined by the user. To obtain these facilities, you must create an Extended
SBIOS with the appropriate drivers, and reconfigure your System's Interpreter.

IV.4.4.2.1 Communicating with the Interpreter

When the System calls the SBIOS routine SYSIN1T, it passes a pointer to the
Interpreter's jump vector (this is mentioned in Section rV.4.2.2.1). This allows the
Extended SBIOS to do certain 1/0 operations that require handshaking with the
Interpreter.

Exactly how this parameter is passed depends on your processor: see the
appropriate secti'On of Chapter V.

SBIOS routines call Interpreter routines in the same way 5BIOS routines are
called. This mechanism is described in- Section IV.4.2.2.5.

The Interpreter routines that the Extended 5BIOS may need to use are:

RoutIne Name
POLLLNITS
DSK(}-f\G

Vector Number
a
1

Description
polls character-oriented devices
chan-ges disk format values

Note: If you have an Extended SBIOS that uses these routines, and it is called by
a machine-level program of your own (i.e., before the Interpreter has been
bootstrap-ped!, then these routines are, naturally, unavailable. In this case, you
must pass the address of a "dummy" jump vector to 5YSINIT: this dummy jump
vector must point to "stubs" for the routines POLLUNIT and D5KCHNG. In other
words, the program of yours which calls SYSINIT passes an address of a jump
vector (which you have created), and this jump vector points to instructions which
do nothing but return to their caller.

124

POLLUNITS

Installation Guide
Full Adaptable System

POLLUNITS may be called by DSKINIT, DSKREAD, and DSKWRIT.

POLLUNITS checks the console, remote, and printer input drivers for available
data. Any available data is read from the appropriate device and saved in that
device's input queue.

POLLUNITS does not alter any registers.

DSKCHNG

The Interpreter assumes that the disks it is communicating with are formatted
according to the "current format": CURFORM. CUR-FORM is initialized by the
secondary bootstrap according to the values it is passed on the processor stack.
This must be the format of the disk that bootstraps the System.

DSKCHNG changes CURFORM. It may be called by SETDISK, thus allowing the
System to support multiple disk formats.

"

DSKCHNG is passed a pointer to a disk information record. This record contains
six 16-bit words:

Word
o
1
2
3
4
5

Definition
number of tracks per disk
number of sectors per track
number of bytes per sector
interleaving factor
first Pascal track
track-to-track skew

These parameters should be familiar: they correspond to some of the parameters
on the bootstrap stack. For details of passing the pointer to this record, see
Chapter V.

DSKCHNG destroys !!l processor registers except the stack pointer.

When SETDISK is called and the new CURDISK has a different format from the
previous CURDISK, SETDISK must make the appropriate call to DSKCHNG. It is
the SETDlSK routine that must know (usually by keeping a table) which disk
number corresponds to which disk format.

125

Installation Guide
Full Adaptable System

IV.4.4.2.1.1 Enhancing the Floppy Disk Drivers

This section explains two improvements to the System based on the use of
DSKCHNG and POLLUNITS.

IV.4.4.2.1.1.1 Allowing Multiple Floppy Disk Formats

You may enable your System to support more than one disk format by rewriting
SETDISK so that it calls DSKCHNG whenever CURDISK refers to a disk with a
di fferent format than the previous CUR DISK (as explained above). SETDISK must
know which disk drive has which format: this can be accomplished by a table
lookup.

I f any floppy dri ve has more sectors per track than the System disk (the
bootstrapping disk), you must be careful to change the 'maximum sectors per
track' parameter on the bootstrap stack to reflect the new situation.

IV.4.4.2.1.1.2 Polling During Disk Accesses

DSKINIT, DSKREAD, and DSKWRIT may take advantage of any wait loops (such as
w ai ting for a SEEK to terminate) to use POLLUNITS to poll any character-oriented
input devices.

The advantage of calling POLLUNITS frequently is that is ensures that each
device's type-ahead queue is up to date. In particular, the user will be able to
type ahead more commands more rapidly.

126

IV.4.4.2.2 The Extended SBlOS

Installation Guide
Full Adaptable System

Section IV.4.2 describes a simple SBIOS which includes only those routines that
are absolutely necessary for booting the System. This section describes an
addi tional thirteen SBIOS routines that communicate with a printer, a remote
serial line, a hardware clock, and user-defined devices.

Rou tine Name Vect 0 r Number Description
PRNINIT 15 printer initialize
PRNSTAT 16 printer status
PRNREAD .17 p r i n t err e a.d
PRf\MRIT 18 printer write
REMINIT 19 remote initialize
REJv1STAT 20 remote status
REJvREAD 21 remote read
REMARIT 22 remote wr i te
USRINIT 23 user devices initialize
USRSTAT 24 user devices s ta tu s
USRREAD 25 user devices read
USRV\RIT 26 user devices wri t e
CLKREAD 27 system clock read

Note that in the jump table, these routines appear in this order, after the' fifteen
basic SBIOS rou tines.

The routines for a printer and remote port parallel those for the console:
character-oriented devices are all handled in the same general manner, though
internal details will differ for each device.

The user-defined device handlers (des~ribed beloW) are Intended for peripheral
hardware that the System does not customarily support (such as, for instance,
grain elevators (yes, it has beehdone!)). A Pascal program may acc~ss these
devices through the intrinsics Uf\ilTREAD, UNITWRITE,UNITCLEAR, and
UNITST ATUS. ' See the Users' Manual for further information on these intrinsics.
The device numbers 128 •• 255 are available as numbers of user-defined 'devices.

127,

Installation Guide
Full Adaptable System

IV.4.4.2.2.1 Additional 58105 Routines

Each of the Extended SBIOS routines is described below. For infonnation aboot
parameter passing on a particular processor, see Chapter V.

PRNlNlT

PRNINIT initializes the printer port. It reports the status of the printer
comection.

Initializing the printer means preparing the printer hardware to receive (and
possibly to send) characters. If baud rate and parity bits can be set by software,
PRNINIT should configure the printer to operate as quickly as possible, with no
parity translation. Any interrupt vectors associated with printer operation should
be set in SYSINIT, not PRNlNIT.

If PRNINIT encounters no problems, it should return a o. If the printer is
offline, it should return a 9.

PRNINlT should not send the printer a form feed.

PRNSTAT

PRNST AT returns two parameters that describe the status of the printer.

The first parameter is the state of the printer connection. This is identical to
the status returned by PRNINIT: if the printer is online, the status must be 0, if
the printer is offline, the status must be 9. .

The second status is the state of the printer input Channel (if there is one). If a
character is pending on the printer input channel, PRNSTAT returns FF hex,
otherwise it returns O. (Note: PRNSTAT does not read the pending character,
but merely reports its presence.J

128

PRNREAD

Installation Guide
Full Adaptable System

PRNREAD reads a single character from the printer input channel. It returns
the character, and the status of the printer connection.

If the printer is online and a character is pending on the input channel,
PRNREAD reads that character. If the printer is online but no character is
pending, PRNREAD waits, by polling the printer input channel, until a character
appears, and then reads it~

If the read was successful, the status is O. If the printer is offline, the status is
9. If a character was read but there were problems in transmission, PRNREAD
should return the character and set the status to 1.

The character should be returned exactly as read from the input channel, with no
modi ficatlons.

If the system's printer has no input channel, PRNREAD should do nothing and
return a status of O.

PRNWRlT

PRNWRIT writes a single character to the printer output channel. It returns' the
status of the printer connection.

If the printer is online, the character is transmitted as soon as the printer is
ready to receive it. The status returned is O.

If there are transmission problems, the status returned is 1.

If the printer is offline., the status returned is 9.

PRNWRIT should, not alter the output character except when this is necessa"ry to
-display the character on the ~printer correctly (for example, don't strip parity bits,
unless the printer will net function properly when they are set).

129

Installation Guide
Full Adaptable System

REMINIT

REMINIT ini tializes the remote port (which is intended for an extra serial line
such as a phone link). It returns the status of the remote. connection.

Initializing the remote port means preparing the remote hardware to send and
receive characters. If baud rate and parity bits can be set by software,
REMINIT should configure the port to operate as quickly as possible, with no
parity translation. Any interrupt vectors associated with remote 1/0 should be
set in SYSINIT, not in REMINIT.

I f all is well, REMINIT returns a status of o. If the remote port is offline, or if
there is no driver for the remote hardware, REMINIT returns 9.

REMSTAT

REMST AT returns two parameters that describe the status of the remote port.

The first parameter is identical to the status returned by REMINIT: if all is well,
the status is 0; if the port is offline or there is no driver, the status is 9.

The second parameter returns FF hex if a character has been received on the
remote channel, and 0 if no character has been received. (Note that REMST AT
does not read the pending character; it merely reports its presence.)

REMREAD

REMREAD reads a single character from the remote input channel. It returns
the character, and the status of the remote connection.

If the remote port is online and a character is pending, REMREAD reads that
character. If the port is online but no character is pending, REMREAD w,aits, by
polling the remote port, until a character ·appears, and then reads it~

I f the read was successful, the status is O. If the remote port is offline' or has
no driver, the status is 9. If the character was read but there was a
transmission problem, REMREAD should return the character, and the status is 1.

The character read should be passed exactly as it is read from the remote input
port, with no modifications.

130

REMWRIT

Installation Guide
Full- Adaptable System

REM WRIT writes a single character to the remote output channel. It returns the
status of the rem ote connection.

I f the remote port is online, the character is sent and the status is o. If the
remote port is offline or has no driver, the status is 9. If there is a
transmission problem, the character is sent and the status is 1.

REMWRIT should not alter the output character in any way, unless it must do so
to ensure proper transmission. (For example, don't strip parity bits, unless the
remote line or device will not function when they are present.)

CLKREAD

CLKREAD returns a ti me based on the current state of the system's hardware
clock, and a status.

The time is returned as a 32-bit integer. Time is measured in 1/60ths of a
second. If the system clock runs continually, time should be measured from
midnight. Otherwise, time should be measured from the most recent call to
SYSINIT.

Thus, SYSINIT must restart the system clock, unless the clock runs continually.

I f the clock is online and enabled, CLKREAD returns the time, and a status of o.
I f the clock is offline, CLKREAD returns a status of 9, and sets the time equal
to o.

If the hardware clock does not count in 1/60ths of a second, CLKREAD should
perform some reasonable approximation.

1.31

Installation Guide
Full Adaptable System

IV.4.4.2.2.1.1 User-defined Devices

The rou ti nes that handle user-defined devices (i.e., specialized hardware of one
kind or another) have several features in common.

The System may support a nu mber of user-defined devices. Yet the Extended
SBIOS has only one set of USRxxxx routines: USRINIT, USRSTAT, USRREAD, and
USRWRIT.

When one of these routines is called, the user must specify which particular
device is intended by passing the routine the device number. Numbers of user
defined devices may be in the range 128 •• 255. Pascal programs may access user
defined devices by using the appropriate device numbers when calling the"
UNITREAD, UNITWRITE, ••• family of intrinsics (see the Users' Manual, Chapter
VI).

Note that these numbers are truly user-definable: it is the SBIOS routines that
are responsi ble for knowing which device is which, and what its number is. No
other System routines have knowledge of user-defined devices.

The standard status parameters returned by most SBIOS routines include 0 for
online (and all correct), and 9 for offline. It may be that one or more user
defined devices in your system must return more detailed information about -their
state. If this is the case, the numbers 100 •• 255 are available as user- definable
status codes. The responsibility for handling these non-standard status codes
belongs entirely to the user's software. If the System receives an IORESUL T in
the range 100 •• 255, it will halt with an I/O error (and then reboot) unless I/o
checking has been turned off (with the {$I-} compile-time option).

USRINIT

USRINIT initializes a single user-defined device. It returns a status.

USRINIT is passed a device number.

If the speci fied device is online, USRINIT resets it to its power-up condition.
Any interrupt vectors associated with the device should be initialized in SYSINIT,
not USRINIT.

If the device is online, USRINIT returns a status of O.
(or just plain nonexistent), USRINIT returns a status of 9.
be defined by the user.

132

If the device is offline
Other status codes may

USRSTAT

Installation Guide
Full Adaptable System

USRST AT returns status information about a user-defined device.

USRSTAT is passed a device number, a pointer to a status record, and an
input/output toggle.

A si mple status is returned, as with most SBIOS routines. This is 0 for online, 9
for off1ine. Other status codes may be defined by the user.

The pointer points to a 3D-word status record in memory. USRSTAT may write
status information in this area. The format and meaning of the status record are
entirely up to the user.

The "input/output toggle" is a single word.
should report on the device's output channel.
should report on the device's input channel.

If its low-order bit is 0, USRST AT
If its low-order bit is 1, USRST AT

The -three high-order bits of the input/output toggle may also be used to further
specify the sort of status -information required. This is entirely at the user's
option.

USRS TAT is the SSlOS rou ti ne that corresponds to the Pascal intrinsic
UNITST A TUS. You may wish to refer to the description 6f this intrinsic in the
Users' -Manual.

USRRE-AO

USRREAD reads information from a user-defined device into a buffer in -main
memory_ It returns a status.

USRREAD ispa-ssed a device number, a p-ointer to a buffet', and three e-xtra
-par ameters.

Information i-s read from the specified device into the buff-er in memory.

The three extra parameters may be defined according to the requirements of the
specified device. This is entirely up to the user.

USRREAD returns a for online, 9 for offline, or a user-defined status number.

133

Installation Guide
Full Adaptable System

USRWRIT

USR WRIT wri tes informati on from a buffer- in main memory to a user-defined
device. It returns a status.

USRWRIT is passed a device number, a pointer to a buffer, and three extra
parameters.

Information is written to the specified device from the memory buffer.

The three extra parameters may be defined according to the requirements of the
specified device. This is entirely up to the user.

USR WRIT returns 0 for online, 9 for offline, or a user-defined status number.

134

IV.4.4.2.2.2 Testing the Extended SBIOS

Installation Guide
Full Adaptable System

Since the Extended SBI0S is intended to handle a wide variety of hardware, no
automatic testing routines are provided. The uer is responsible for testing
Extended SBI05 routines and seeing that they work. It should be possible to test
these routines either outside the p-System (using a different operating system) or
within the p-System (the Users' Manual describes how to write load, and run
assembly language routines).

IV.4.4.2.2.3 Bootstrapping with the Extended SBIOS

Before the System may be bootstrapped with an Extended SBI0S, the Interpreter
must be "reconfigured." This operation is described in Chapter V. Once the
Interpreter has been reconfigured, your normal bootstrapping procedure may be
followed, substituting the new Extended 5BI05 for the original simple 5BI05, and
making any necessary changes to the parameters on the bootstrap stack.

135

Installation Guide
Full Adaptable System

136

Installation Guide
Processor Notes

V. MACHINE-SPECIFIC NOTES

V.l Z80 and 8080 Systems

V.l.l Vector Lists and Register Assignments

SBIOS routines must return their status (IORESUL T) in the A register.

Parameters are passed to SBIOS routines in the Band C registers. The read
routines write into a buffer in main memory. The stack pointer should not be
modified (except as necessary to return from each routine in a standard manner).

The following table shows the parameters for each routine in the basic SBIOS,
along with each routine's vector offset (i.e., the position in the jump table of the
instruction that jumps to that routine):

(The vector offs~ts are shown in hex.)

Routine Vector Offset Parameters
SYSINIT 00 passed: BC = pointer to

Interpreter's
jump table

SYS~LT 03 <none>
CO\IINIT 06 r e tu r ns: A = ICRESULT
CO\ISTAT 09 returns: A = IORESUL T

C = 0 1 f no char pending
= FF i f char pending

aJ\READ OC returns: A = ICRESUL T
C = input char

CXl\MR1 T OF passed: C = output char
returns: A = ICRESULT

SETDI SK 12 passed: C = disk no. (a.RDi SK)
SETTRAK 15 passed: C = track no. (D..RTRAK)
SETSECT 18 passed: C = sector no. (a..RSECT)
SETBUFR IB passed: BC = buffer addr. (D..RBUFR)
DSKREAD IE returns: A = IORESULT
DSK\l\RIT 21 returns! A = ICRESULT
DSKINIT 24 returns: A = IORESUL T
DSKSTRT 27 <none>
DSKSTOP 2A <none>

137

Installation Guide
Processor Notes

Some Extended SBIOS routines are passed parameters on top of the stack. The
routine must remove these parameters from the stack, and not alter the stack in
any other way. All stack parameters are 16-bit words. In the table below,
parameters on the stack are shown in the order they appear on the stack, with the
stack pointer (SP) at the top. The 'extra parameters' 1, 2, and 3 for the
USRREAD and USRWRIT routines correspond to (respectively) the byte count, block
number, and control word parameters in the Pascal intrinsics UNITREAD and
UNITWRITE.

138

The following table continues
the Extended 5BI05:

PRNINIT 20
PRN5TAT 30

PRNREAD 33

PRf\MR1 T 36

REMINIT 39
REM5TAT 3C

REJvREAD 3F

REMARIT 42

U5RINIT 45

U5R5TAT 48

U5RREAD 4B

U5R\l\RIT 4E

CLKREAD 51

Installation Guide
Processor Notes

the above table, showing parameters for rou tines in

returns: A = ICRE5ULT
returns: A = IORE5ULT

C = 0 i f no char pending
= FF i f char 'pend i ng

returns: A = IORE5ULT
C = input char

passed: C = output char
returns: A = ICRE5ULT
returns: A = ICRE5ULT
returns: A = ICRE5ULT

C = 0 i f no char pending
= FF i f char pending

returns: A = ICRE5ULT
C = input char

passed: C = output char
returns: A = ICRE5ULT
passed: C = device number
returns: A = ICRE5ULT
passed: 5P = return address

input/output toggle
pointer to status rec
device number

returns: A = IORE5UL T
passed: 5P = return address

extra parameter 2
extra parameter 1
pointer to buffer
device number
extra parameter 3

returns: A = IORE5UL T
passed: SP = return address

extra parameter 2
extra parameter 1
pointer to buffer
device number
extra parameter 3

returns: A = IORE5UL T
returns: A = ICRE5ULT

DE = least significant word
HL = most significant word

139

Installation Guide
Processor Notes

The following table shows offsets and parameters for the two Interpreter routines
which SBIOS routines may access:

POLLLNITS
DSKQ--I\G

140

a
3

<none>
passed: Be = pointer to disk

format values

Installation Guide
Processor Notes

V.1.2 Sample Bootstrap Loader

This routine loads the primary bootstrap from SBOOT8.
The primary bootstrap is located at Track 0, sectors 1 and 2.
The SBIOS must be resident before this program may be executed:
SBIOS Iroutines are used to read the bootstrap from the disk.
If there is any problem, SYSHALT is called.
Note the use of the SBIOS jump table: the formula used corresponds to the
instructions in Section IV.4.2.2.5; a jump instruction is 3 bytes long •

• PROC

BIOSJP .EGlJ
BOOTNJ .EGlJ
SECSIZE • EGlJ

SYS INl T .EGlJ
SYSHALT .EGlJ
SETDI SK .EQJ
SETTRAK .-ECU
SETSE-CT • EGlJ
SETBLFR .EQJ
DSKRE,AO .EQJ
DSKINIT .EGU
DSKSTRT • EW
DSKSTOP .EQJ

.tvW:RO
CALL
.ErOr1

LOADR
SBJOS
LD
SBIOS
SBIOS
SalaS
MD
JP
LD
S810S

LD
SBIOS
LD
SBIOS

LaM)

OFDOOH
8000H
SOH

OOH
03H
I2H
l-SH
ISH
IB~
lEH
Z4H
27H
2AH

sa lOS
BIOSJP +%1

SYSINI T
C,O
SETDI SK
OSKSTRT
DSKINIT
A
NZ., CALLHL T
C,O
SETTRAK

BC,BCXJTAD
SETBLFR
C,I
SET SECT

we assume the SBIOS is at this location
we are using SBCXJT8 (not SBOOTD)
number of bytes in a sector

these are SBIOS jump table offsets

ce1ls an SBIOS routine

the code to load the ~ootst~ap
initialize the SBIOS
the bootstrap disk ls drive 0

now ready to use disk (if no error)
check for I/O error
••• halt syst~m if problem
bootstrap is in Track 0

memory buffer is bootstrap locati-on

first read Sector 1

141

Installation Guide
Processor Notes

SBIOS o 5 KRE AD
AI\[) A
JP NZ,CALLHLT

LO BC,BOOTAD+SECSIZE
SBIOS SETBLFR
LO C,2
SBIOS SET SECT
58105 OISKREAD
AI\[) A
JP NZ,CALLHLT

SBIOS OSKSTOP
RET

check for I/O error
· .. halt system if problem

; prepare to read rest of bootstrap

· .. which is in Sect or 2

check for I/O error
· .. h a I t i f problem

we're through wi th the disk
return to caller

now the program that cal Is LOADR must set up the parameter stack
and then jump-to the bootstrap, which is at 8000H

CALLHLT

142

SBIOS
JP

• EN)

SYS~LT
CALLHLT

the error routine
stops the system
if SYSHALT fails,
don't go elsewhere!

V.l.3 Memory Configuration Notes

Installation Guide
Processor Note s

All parameters which are memory addresses must be word quantities, and the low
byte of the address must be even (for example, the highest word in memory is
FFFE hex; the highest byte is FFFF).

The Interpreter must start on a page boundary. This means that the low byte of
its starting address must be 00. If you wish the Interpreter to be located at the
s tart of the large contiguous RAM space, then the large RAM space must start
on a page boundary~

The SBIOS may use any interrupt or restart vectors it _needs, without fear of
conflicting with the p-System.

To push bootstrap parameters onto the processor stack, set the stack pointer to
the highest even address in the large contiguous RAM space, and then push the
parameters (the stack grows downward).

143

Installation Guide
Processor Notes

V.1.4 Reconfiguring the Interpreter

The Interpreter disk in each Adaptable System contains codefiles .which may be
linked together to form an Interpreter configured differently than the
SYSTEM.INTERP that is shipped already linked. When you create an Extended
SBIOS, you must reconfigure the Interpreter by choosing the appropriate codefiles
and linking them together yourself.

These are the relevant files:'

Name
INTERP.CODE
INTERP.FP.CODE

RSP.CODE
BIOS • CODE

BIOS.C.CODE
BIOS.CR.CODE
BIOS .CRP • CODE
INTER.moE
INTER.X.CCDE
TERTBOOT.CODE

Description
Interpreter with no real numbers
Interpreter with real number operations
(FP stands for Floating Point)
interface between Interpreter and BIOS
a simple BIOS with no input queuing for
console, printer, 'or input
(this is the smallest BIOS)
BIOS with queuing for console
••• queuing for console and remote
••• queuing for console, remote, and printer
SBIOS interface
Extended SBIOS interface
tertiary bootstrap

The SYSTEM.INTERP that is shipped is INTERP.CODE linked with RSP.CODE,
BIOS.CODE, INTER.CODE, and TERTBOOT .CODE.

To create a new Interpreter, you must link the desired codefiles together.
Follow these steps (throughout these examples, user input is underlined):

1) Link the codefile.

144

Yoo must make the folle-wi-ng choices:-

Whether to use- INTER? or INTERP.FP. INTERP.FP al10ws your
programs to use real numbers and transcendental functions, but it is
much larger than INTERP.

Note: If your system has a hardware clock, and you are using it (i.e.,
the HAS CLOCK data item in SYSTEM.MISCINFO must be set to
TRUE using SETUP), then you must use INTERP.FP. The reason is
that if there is a hardware clock-;-the Compiler uses it to calculate
compile times, and uses real arithmetic to do so.

Whether to use BIOS, BIOS.C, BIOS.CR, or BIOS.CRP. These are

Installation Guide
Processor Notes

progressi vel y larger BIOS 'es. Queuing _ allows more efficient I/O.
Use the BIOS that most closely matches your hardware configuration.
BIOS.CR and BIOS.CRP can only be used with an Extended SBIOS.

Whether to use INTER or INTER.X. This depends on which SBIOS you
are using.

Once you know what the pieces of your new Interpreter will be, you can
link them together with the System's Linker. The Interpreter codefile you
choose will always be the 'Host file?', and the remaining codefiles will be
entered as 'Lib file?'s, always in the following order:

RSP
the BIOS you have chosen
the SBIOS interface you have chosen
TERTBOOT

and let the output file be the workfile. (For more information on the
Linker, see the Users' Manual, Section Vlll.4.)

Example:

A t the System command level, type 'L' for L(ink. The following prompts
appear «return> means the carriage return key, and comments are in U):

Host file? INTERP<return> {or INTERP.FP}
Lib file? RSP<return>
Opening RSP.CODE
Lib file? BIOS.CRP<return> {or other BIOS}
Opening BIOS.CRP.CODE
Lib file? INTER.X<return> {or simply INTER}
Opening INTER.X.CODE
Lib file? TERTBOOT<return>
Opening TERTBOOT .CODE
Lib file? <return>

••• {more Linker output}

Output file? <return> {makes *SYSTEM. WRK.CODE}

2) Compress the codefile.

At the System command level, type 'X' for eX(ecute, then
'COMPRESSOR<return>'. the utility COMPRESSOR shows a series of

145

.Installation Guide
Processor Notes

prompts; answer them as follows:

Assembly Code File Compressor

Type '!' to escape

Do you wish to produce a relocatable object file (YIN)!:..

File to compress : SYSTEM. WRK

Output file «ret> for same) : NEW .INTERP

and COMPRESSOR will either complete its work, or issue an error
message, in which case you must try again.

(COMPRESSOR is described in the Users' Manual, Section X.I.)

3) Change filenames

A t the System command level, type 'F' for F(iler. C(hange SYSTEM.INTERP
to OLD.INTERP. Then C(hange NEW.INTERP to SYSTEM.INTERP.

You should now be ready to try booting your System again, with the new
Interpreter and new 58105.

V.l.5 Miscellaneous Notes

When booting the System, the 'number of drives to test' parameter must be 0
~ if you use the primary bootstrap that is shipped with the System. If you
wri te your own primary bootstrap, this parameter must not be pushed onto the
processor stack. -

146

V.2 PDP-lI and LSI-ll Systems

V.2.I Vector Lists and Register Assignments

Installation Guide
Processor Notes

PDP-II and LSI-II p-Systems are ready to run as shipped. There is no BIOS or
SBIOS Eer se: I/O routi nes are embedded in the Interpreter. This is feasible
because of the consistency of I/O handling in '11' systems.

Addresses and interrupt vectors are assigned to the standard p-System devices as
follows:

Device Address InterruEt Vector
CONSOLE: 177560 060
KEYBOARD: " "
PRINTER: 177510 200 (parallel)

" 204 (serial)
REJvO.JT: 177520 120
REMIN: " "
the numbers are octal (base eight).

For more information about low-level device handling on II's, it is best to refer to
the hardware documentation.

V.2.2 Sample Bootstrap Loader

All current PDP-II and LSI-II Systems are shipped as ready-to-run software
packages. There is no need to rewrite the bootstrap that is shipped, nor to write
any special-purpose program to load the bootstrap.

On II's, the utility BOOTER copies the first two blocks of the disk.

V.2.3 Memory Configuration Notes

Not applicable.

V.2.4 Reconfiguring the Interpreter

Not applicable.

Note that PDP-ll/LSI-ll Systems come with several different interpreters. Each
interpreter is intended for a particular set of disk devices. Interpreters that use
the hardware extended instruction set (EIS) have '.EIS' in their filename.

147

Installation Guide
Processor Notes

Thus, each interpreter is named either PDP ••• or LSI ••• , where ••• are the
mnemonics for features supported by that particular interpreter.

Supported disk drives are indicated in the names of '11' interpreters by the
following mnemonics:

RX floppy disks (RX-Ol's)
OY double density floppy disks (RX-02's)
RK RK-05 hard disks
RL RL-Ol hard disks

For examples of interpreter names, refer to Appendix B.

V.2.5 Miscellaneous Notes

The utilities RTll TOEOIT and EOITTORTl1 are provided for converting RT-ll
files intO' p-System textfiles or visa versa.

RTll TOEOIT first prompts the user for a device number. This should be the
number of a disk drive that contains an RT -II-format disk, with a directory in
blocks 6 •• 7. If the disk is present, its directory is displayed on the screen,
showing each file with its name, type, size in blocks, and position on the disk (a
block number in base ten). Unused portions of the disk are also shown. The
user is then prompted for the name of an RT -11 file and the name of a p-System
file to which it will be written. The user may specify a bitwise transfer (i.e.,
the file is unchanged), or a textfile transfer (the new file is supplied with a
standard textfile header block).

EOITTORTl1 is similar to RTl1TOEOIT. The user must specify the number of a
disk drive with an RT-ll-format disk in it, then name a p-System file to' be
transferred, and an RT -11 file to be 'created.

With both of these utilities, all prompts must be answered with upper case
characters O'nly.

148

V.3 6502 Systems

Installation Guide
Processor Notes

V.3.1 Vector Lists and Register Assignments

The System assumes that the SBI0S destroys all registers except the stack
pointer.

SBI0S routines must return their status (IORESUL T) in the X register.

Parameters are passed to SBI0S routines in the X and A registers. Where these
registers appear together (XA), they represent a 16-bit quantity: X is the high
order byte and A is the low-order byte.

The read routines write into a buffer in main memory. The stack pointer should
not be modified (except as necessary to return from each routine in a standard
manner).

The following table shows the parameters for each routine in the basic SBI0S,
along with each routine's vector offset (i.e., the position in the jump table of the
instruction that jumps to that routine) (The vector offsets are shown in hex.):

Routine
SYSINIT

SYSI-iA.LT
C(]\JINIT
CONSTAT

CO\IREAD

COI\MRI T

SETD1SK
SETTRAK
SETSECT
SETBUFR
DSKREAD
DSKVvRIT
DSKINIT
DSKSTRT
DSKSTOP

Vector Offset
00

03
06
09

OC

OF

12
15
18
IB
IE
21
24
27
2A

Parameters
passed: XA = pointer to

Interpreter's
jump table

<none>
returns: X =
returns: X =

IffiESULT
IORESUL T

returns:

passed:
returns:
passed:
passed:
passed:
passed:
returns:
returns:
returns:
<none>
<none>

A = o if no char pending
= FF if char pending

X
A
A
X
A
A
A

XA
X
X
X

= IORESUL T
= input char
= output char
= IffiESULT
= dis k no. (Cl...RD 1 SK)
= t r a c k no. (ClR TRAK)
= sec tor no. (CURSECT)
= bu f fer add r. (a..RBUFR)
= IORESULT
= IffiESULT
= IORESULT

149

Installation Guide
Processor Notes

Some Extended SBIOS routines are passed parameters on top of the stack. The
rou tine must remove these parameters from the stack, and not alter the stack in
any other way. All stack parameters are 16-bit< words. In the table below,
parameters on the stack are shown in the order they appear on the stack, with the
stack pointer (SP) at the top (the least significant byte of a word is popped first).
The 'extra parameters' 1, 2, and 3 for the USRREAD and USRWRIT routines
correspond to (respectively) the byte count, block number, and control word
parameters in the Pascal intrinsics UNITREAD and UNITWRITE.

150

Installation Guide
Processor Notes

The following table continues the above table, showing parameters for routines in
the Extended SBIOS:

PRNINIT
PRNSTAT

PRI\READ

PRI\At\RIT

REJvllNI T
REJv1STAT

REJvREAD

RElv'MRIT

USRINIT

USRSTAT

USRREAD

USR'ARIT

CLKREAD

20
30

33

36

39
3C

3F

42

45

48

4B

4E

51

returns: X =
returns: X =

A =

ICRESULT
IORESULT
o if no char pending

= FF if char pending
returns:

passed:
returns:
returns:
returns:

X = IORESUL T
input char
output char
ICRESULT
10RESULT
ICRESULT

A =
A =
X =
X =
X =
A = o if no char pending

= FF if char pending
returns: X = 10RESULT

= input char
= output char
= ICRESULT

A
passed: A
returns: X
passed: A =
returns: X =
passed: SP =

device number
ICRESULT
return address
input/output toggle
pointer to status reo
device number

= IORESULT returns: X
passed: SP = return address

extra parameter 2
extra parameter 1
pointer to buffer
device number
e)x t rap a r ame t e r 3

returns: X = IORESULT
passed: SP = return address

extra parameter 2
extra parameter 1
pointer to buffer
device number
extra parameter 3

returns: X = IORESULT
returns: X = IORESULT

SP = least significant word
most significant word

The following table shows offsets and parameters for the two Interpreter routines
which SBIOS routines may access:

'151

Installation Guide
Processor Notes

POLLLNITS
DSKQ-I\G

152

o
3

<none>
passed: XA = pointer to disk

format values

V.3.2 Sample Bootstrap Loader

Installation Guide
Processor Notes

This routine loads the primary bootstrap from SBooT8.
The primary bootstrap is located at Track 0, sectors I and 2.
The SBIOS must be resident before this program may be executed:
SBIOS routines are used to read the bootstrap from the disk.
1ft he rei san y pro b I em, SYSHAL Tis c a I led.
Note the use of the SBIOS jump table: the formula used corresponds to the
instructions in Section IV.4.2.2.5; a jump instruction is 3 bytes long .

.• ffiOC

BIOSJP .EGlJ
BooT,ADR . EGlJ

SECSIZE .EGU

SYS INI T .EQJ
SYSHALT .EGU
SEIDl SK .EQJ
SETTRAK .Eill
SET SECT .EGU
SETBLFR .EQJ
DSKREAD .EGU
DSKINIT .EQJ
DSKSTRT .EGU
DSKSTOP • EGlJ

.tvW:RD
JSR
.EN:lv1

LOADR
SBIOS
LDA
SBIOS
SBIOS
SBIOS
TXA
Bt£
LOA
SBIOS

LDA
SBIOS
LDA

LOAD

OFOOOH
80H

80H

DOH
03H
12H
I5H
IBH
IBH
IEH
24H
27H
2AH

SBIOS
BiOSJP ... %1

SYStNIT
110
SETDlSK

-DSKSTRT
DSKINIT

CALLH..T
110
SETTRAK

IIBOOTACR
SETBLFR
III

we assume the SBIOS is at this location
we are using SBooT8 (not SBooTO)
(this is the high byte of the address)
number of bytes in a sector

these are SBIOS jump table offsets

calis an SBl~ xoutlne

the code to load the ~ootstrap
initialize the SBIOS
the bootstrap disk is driv~ 0

now ready to use disk O-f no error)
check for I/O er~or
••• halt system if problem
bootstrap is in Track 0

memory buffer is bootstrap location

first read Sector I

153

Installation Guide
Processor Notes

SBIOS
SBIOS
TXA
BNE

SETSECT
OSKREAD

CALLHLT
check for I/O error
••• halt system if problem

prepare to read rest of boots~rap
LOA OSECSIZE % lOOH ; this is the low byte
LOX OBOOTADR + <SECSIZE / lOOH> ; and the high byte

SBIOS
LOA
SBI0S
SBI0S
TXA
BNE

SBIOS
RET

SETBLFR
02
SET SECT
01SKREAD

CALLHLT

OSKSTOP

••• of the bootstrap address

rest of bootstrap is in Sector 2

check for I/O error
• •• h a I t i f pro b 1 em

we're through with the disk
ret~rn to caller

; now t ~ e pro gram that c a I I s LOADR mu s t set up the par arne t e r s t a c k
; and then jump tfr the bootstrap, which is at 8000H

CAL LHL T

154 '

SBIOS
JMP

.£1\1)

SYSI-it\LT
CALLHl T

the error routine
stops the system
i f SYSHAl T f ail s ,
dDn't go elsewhere!

V.3.3 Memory Configuration Notes

Installation Guide
Processor Notes

All memory addresses are word addresses: the low byte must be even (for
example, the highest word in men;ory is FFFE hex; the highest byte is FFFF).

Pages 0 and 1 of main memory (addresses OOOOH through OIFFH) are used for data
storage by the Interpreter. The SBIOS, Interpreter, and p-System software may
not occupy these pages.

There are two bootstrap disks for the 6502: La PAGE and HI PAGE. The System
on La PAGE assumes that it has exclusive use of Page 0 addresses OOOOH through
007FH. The System on HI PAGE assumes exclusive use of OOaOH through OOFFH.
Which of these systems you choose depends on whether you have other (hardware
or software) requirements for one of these hal ves of Page 0; if you do not,
choose either bootstrap.

The Interpreter must start on a page boundary (the low byte of the address must
be 00). If the Interpreter is to be located at the start of the large contiguous
RAM space, the large RAM space must start on a page boundary.

The SBIOS may use any interrupt vectors it needs without fear of conflicting with
the p-System. However, the System disables interrupts when it would be unsafe to
get an interrupt on an attached semaphore.

The stack pointer must be initi-alized to OOFFH before bootstrap parameters are
pushed onto the stack.

V.-l.4 Reconfiguring the Interpreter

Reconfiguring the 6502 Interpreter is equivalent to reconfiguring the zao/aoao
Interpreter. Ref-er to Section V.l.4.

V.3.5 Miscellaneous Notes

When the System is bootstrapped, the 'number of drives to test' parameter on the
processor stack must be O.

6502 Systems use an expression stack that is limited to 12a words of data. When
this stack overflows, the System is halted and re-initialized (though it may simply
hang). Correct UCSD Pascal programs that run on other Systems may not run on
6502 Systems. This problem can be avoided by following two rules:

1) Sets must contain no more than 512 elements.

155

Installation Guide
Pro~essor Notes

2) Nested set expressions must be written so that there are never more than 3
unevaluated operands as the expression is evaluated from left to right. For
example:

requires that all four variables be on the stack before evaluation begins.
A safer and equivalent expression would be:

156

V.4 9900 Systems

V.4.1 Vector Lists and Register Assignments

Installation Guide
Processor Notes

All current 9900 Systems are shipped as ready-to-run software. There is
therefore no need for the user to alter the SBIOS or write a bootstrap.

V.4.-2 Sample Bootstrap Loader

Not applicable.

V.4..3 Memory Configuration Notes

Not applicable ..

V.4..4 Reconfiguring the Interpreter

Not applicable.

V.4.5 Miscellaneoos Notes

None.

157

Installation Guide
Processor Notes

158

) .

Memory:

Users' Manual
Appendices

VI.A APPENDIX A -- A. S. Hardware Requirements

At least 48K of RAM memory, of which at least 36K must be in one
contiguous block. There must be room for the bootstraps (6144 = 1800H
bytes) at either 8000 hex or 0000 hex. The Interpreter must start at a page
boundary (one page is FF hex bytes).

For CP/M Adaptable Systems, the entire 48K must be contiguous.

For 6502 sy-stems, at least one-half of Page 0 must be unoccupie-d and
-contiguous (either 00-7F hex orSg-FF Rex).

OJ.sk Dri-ve:

At least one floppy disk dri\1e with at least 17S-K bytes of avaHable space.
Either 8" or 5-114" floppy drives may be use-d, and they ·may be of any format
(soft- sectored or hard-sectored, etc.).

Cons-oie:

A console that sends and receives ASCll cnaracters. Either a teletype or a
CRT may be used~ If a CRT is used, it must be able to scroU one line at a
time.

Downloading:

1f your system floppies are other than 8" IBM 3740-format soft-sectored singl~.
density s.ingle-sideddisks, you must have access to some faciUty that 'can
download the disks that are shipped to disks of your own format.

159

Users' Manual
Appendices

VI.BAPPENDIX B -- Disk Catalog for Current Releases

Note: This shows the catalog for zao/aoao Systems only. More information will
appear in future printings of this Guide.

ADAPZ

Z8SYS:
SYSTEM. INTERP 26 7-Jan-81 6 512 ' Datafile
SYSTEM.MISCINFO 1 7-Jan-81 32 194 Datafile
SYSTEM. FILER 32 26-Jan-81 33 512 Codef i1e .
< UNUSED) 2 65
SYSTEM. PASCAL 85 4-Feb-81 67 512 Dataf ile
< UNUSED) 1 152
4/4 files<listed/in-dir), 150 blocks used, 3 unused, 2 in largest

ZDSYS:
SYSTEM. INTERP 26 7-Jan-81 6 512 Datafi1e
SYSTEM.MISCINFO 1 7-Jan-81 32 194 Datafi1e
SYSTEM. FILER 32 26-Jan-81 33 512 Codef i1e
< UNUSED) 2 65
SYSTEM. PASCAL 85 4-Feb-81 67 512 Dataf i1e
< UNUSED) 1 152
4/4 fi1es<listed/in-dir), 150 blocks used, 3 unused, 2 in largest

INTZSo-:
SYSTEM. LIBRARY 9 7-J-an-81 6. 512 Dataf i1e
INTERP.Z.CODE 22 7-Jan-Sl 15 512 Codefi1e
INTERP.ZF.CODE 25 7-Jan-81 37 512 Codefi1e
TERTBOOT.CODE 7 7-Jan-81 62 512 Codefile
RSP.CODE 6 7-Jan-81 69 S12 Codef i1e
BIOS.CODE 8 7-Jan-81 75 512 Codefi1e
BIOS.C.CODE 8 7-Jan-81 83 512 Codefi1e
BIO,S.CR.CODE 8 7-Jan-81 91 512 Codefi1e
BIOS.CRP.CODE 9 7-Jan-81 99 512 Codef i1e
INTER. CODE 4 7-Jan-81 108 512 Codef i1e
INTER.X.CODE 4 7-Jan-81 112 512 Codef i1e
< UNUSED) 37 116
11/11 fi1es<listed/in-dir), 116 blocks used, 37 unused, 37 in largest

160

ADAPB

88SYS:
SYSTEM.INTERP 27 7-Jan-81 6 512 Datafile
SYSTEM.MISCINFO 1 7-Jan-81 33 194 Dataf ile
SYSTEM.FILER 32 26-Jan-81 34 512 Codef i1e
< UNUSED) 2 66
SYSTEM. PASCAL 85 4-Feb-81 68 512 Dataf i1e
4/4 fi1es<listed/in-dir), 151 blocks used, 2 unused, 2

8DSYS:
SYSTEM.INTERP 27 7-Jan-81 6 512 Dataf i1e
SYSTEM .MISCINFO 1 7-Jan-81 33 194 Datafile
SYSTEM. FILER 32 26-Jan-81 34 512 Codef ile
< UNUSED) 2 66
SYSTEM. PASCAL 85 4-Feb-81 68 512 Datafile
4/4 files<listed/in-dir), 151 blocks used, 2 unused, 2

INT8080:
SYSTEM. LIBRAR Y 9 7-Jan-81 6 512 Dataf ile
INTERP.8.CODE 22 7-Jan-81 15 512 Codef ile
INTERP.8F.CODE 25 7-Jan-81 37 512 Codefile
TERTBOOT.CODE 7 7-Jan-81 62 512 Codef ile
RSP.CODE 6 7-Jan-81 69 512 Codefile
BIOS.CODE 8 7-Jan-81 75 512 Codefi1e
BIOS.C.CODE 8 7-Jan-81 83 512 Codef ile
BIOS.CR.CODE 8 7-Jan-81 91 512 Codef i1e
BIOS.CRP.CODE 9 7-Jan-81 99 512 Codef i1e
INTER. CODE 4 7-Jan-81 108 512 Codef i1e
INTER.X.CODE 4 7-Jan-81 112 512 Codef i1e
< UNUSED) 37 116
11/11 fl1es<listed/in-dir), 116 blocks used, 37 unused,

~

Users' Manual
Appendices

in largest

in largest

37 in largest

161

Users' Manual
Appendices

CPMADAP

SYSCPMl :
SYSTEM.INTERP
SYSTEM.MISCINFO
SYSTEM. FILER
< UNUSED >
SYSTEM. PASCAL

27 7-Jan-81 6
1 7-Jan-81 33

32 26-Jan-81 34
2 66

85 4-Feb-81 68
4/4 files<listed/in-dir>, 151 blocks

88SYS:
SYSTEM. INTERP 27 7-Jan-81 6
SYSTEM. MISCINFO 1 7-Jan-81 33
SYSTEM.FILER 32 26-Jan-81 34
< UNUSED > 2 66
SYSTEM. PAS CAL 85 4-Feb-81 68
4/4 files<listed/in-dir>, 151 blocks

INTCPM:
SYSTEM. LIBRARY 9 7-Jan-81 6
INTERP.8.CODE 22 7-Jan-81 15
INTERP.8F.CODE 25 7-Jan-81 37
TERTBOOT.CODE 7 7-Jan-81 62
RSP.CODE 6 7-Jan-81 69
BIOS.CODE 8 7-Jan-81 75
BIOS.C.CODE 8 7-Jan-81 83
BIOS.CR.CODE 8 7-Jan~81 91
BIOS.CRP.CODE 9 7-Jan-81 99
INTER. CODE 4 7-Jan-81 108
INTER.X.CODE 4 7-Jan-81 112
INTER.CPM4.CODE 4 7-Jan-81 116
INTER.CPM1.CODE 4 7-Jan-81 120
INTER.CPM2.CODE 4 7-Jan-81 124
< UNUSED- > 25 128

512 Datafile
194 Datafile
512 Codef ile

512 Dataf ile
used, 2 unused, 2

512 Dataf-ile
194 Dataf ile
512 . Codef ile

512 Dataf ile
used, 2 unused, 2

512 Dataf ile
512 Codef ile
512 Codef ile
512 Codef ile
512 Codef ile
512 Codefile
512 Codef ile
512 Codef ile
512 Codefile
512 Codefile
512 Codef ile
512 Codef ile
512 Codef ile
512 Codef ile

14/14 fi1es<listed/in-dir>, 128 blocks used, 25 unused,

162

in largest

in largest

25 in largest

UTILITIES

UTILI:
BOOTER.CODE 3 4-Dec-80 6 512 Codef ile
DI SKCHANGE. CODE 8 5-Dec-80 9 512 Codef ile
DISKSIZE.CODE 3 3-Dec-80 17 512 Codef ile
FINDPARAMS.CODE 9 3-Dec-80 20 512 Codef ile
YALOE.CODE 12 2-Dec-80 29 512 Codef ile
LIBRARY. CODE 13 23-Jan-81 41 512 Codef ile
SAMPLEGOTO.TEXT 4 17-Nov-78 54 512 Textfile
PATCH.CODE 33 3-Dec-80 58 512 Codef ile
DECODE. CODE 29 3-Dec-80 91 512 Codef ile
COPYDUPDIR.CODE 3 2-Dec-80 120 512 Codef ile
MARKDUPDIR.CODE 4 2-Dec-80 123 512 Codef ile
< UNUSED) 26 127
11/11 files<listed/in-dir), 127 blocks used, 26 unused,

UTIL2:
COMPRESS.CODE 10 3-Dec-80 6 512 Codef ile
XREF.CODE 29 3-Dec-80 16 512 Codefile
RECOVER.G.CODE 8 5-Dec-80 45 512 Codef ile
CPMBOOT.CODE 22 7-Jan-81 53 512 Codef ile
KERNEL. CODE 63 2-Feb-81 75 512 Codef ile
COMMANDIO.CODE 9 5-Jan-81 138 512 Codefile
< UNUSED) 6 147
6/6 files<listed/in-dir), 147 blocks used, 6 unused, 6

Users' Manual
Appendices

26 in largest

in largest

163

Users' Manual
Appendices

SYSTEM

SYSl:
SYSTEM. SYNTAX
SETUP. CODE
SYSTEM. COMPILER
< UNUSED)

14 4-Dec-80 6
27 I-Dec-80 20
94 7-Feb-81 47
12 141

3/3 files<listed/in-dir), 141 blocks

SYS2:
zao .ASSMBLER 51 2-Dec-80 6
Z80.0PCODES 3 20-Dec-78 57
Z80.ERRORS 8 23-Sep-80 60
SYSTEM. LINKER 26 27-Jan-81 68
DEBUGGER. CODE 21 4-Feb-81 94
< UNUSED) 38 115
SIS files<listed/in-dir), 115 blocks

SYS3:
8080.ASSMBLER 47 2-Dec-80 6
8080.0PCODES 3 25-Mar-80 53
80BO.ERRORS 8 23-Sep-80 56
SYSTEM. EDITOR 49 30-Jan-81 64
< UNUSED) 40 113
4/4 files<listed/in-dir), 113 blocks

164

512 Dataf ile
512 Codefile
512 Codefile

used, 12 unused, 12 in largest

512 Codef ile
68 Dataf i1e
70 Datafi1e

512 Codef i1e
512 Codef ile

used, 38 unused, 38 in largest

512 Codef ile
44 Datafile
70 Dataf ile

512 Codefile

used, 40 unused, 40 in largest

CPMDlSK (BOOTER)

CP/M Directory

PASBOOT.BAK
PASBOOT. PRN
PASBOOT.ASM
PASBOOT.HEX
PASBOOT.COM
SAMBOOT.ASM

SYSCPM2:
SYSTEM. INTERP
SYSTEM.MISCINFO
SYSTEM.FILER
< UNUSED)
SYSTEM. PAS CAL

27 7-Jan-81 6
1 7-Jan-81 33

32 26-Jan-81 34
2 66

85 4-Feb-81 68
4/4 files<listed/in-dir), 151 blocks

512 Dataf i1 e
194 Datafi1e
512 Codef i1e

512 Dataf i1e
used, 2 unused, 2

Users' Manual
Appendices

in largest

165

Users' Manual
Appendices

VI.C APPENDIX C -- Troubleshooting

Refer to this Appendix if you have problems with your p-System. It attempts to
point out a number of errors that are commonly encountered. Look up the section
that applies to your problem: if you cannot answer a question affirmatively, you
may have found the source of your troubles: go back to the body of this Guide,
and review the subject in question. If the information you find there does not
enable you to solve the problem, contact the supplier of your p-System for support.

System will not Bootstrap

166

Adaptable Systems

Does track 0 contain a bootstrap?

Are you using SBOOT8 in conjunction with the large
contiguous RAM starting before 3000H?

Are you using SBOOTD in conjunction with the large
contiguous RAM starting on or after 3000H?

Is the jump table for your SBIOS correct?

Are the bootstrap parameters loaded exactly as
described in the text before you jump to the
bootstrap?

Did your SBIOS pass all SBIOSTESTER tests?

Was the 'number of drives to test' parameter equal to 5?

PDP/LSI - 11

Is memory management OFF on your LSI-ll/23?

Is your VT -100 in VT52 mode with X-on X-off checking
disabled?

Is any ROM located above 64K disabled?

CP/M Adaptable System

Is your sector size 128?

Are you using a standard CP/M 1.4, 2.0, or 2.2 CBI0S?

Users' Manual
Appendices

H-89

Is your COOS version compatible with version 1.07?

Do you have a double density IMS 8000?
If so, you must

O. Back up your disks.
1. Boot a double density CP/M 2.2 disk.
2. Insert the CP/M Boater release disk in drive B and use the

IMSGEN utility to copy the CP/M bootstrap to this disk.
3. Insert the CP/M Boater disk in drive A and

type control-C to warm-boot CP/M.
4. Run PASBOOT as described in Section IV.3.

Do you have CP/M configured for Oynabyte disk drives?
This version has been known to be incompatible with
the CP/M Adaptable System. You must use the full
Adaptable System.

If you have only one disk drive you must connect pin 12 to
pin 26 on your cable to the disk drives.

A fter Bootstrapping, the System Crashes

Do you have a minimum of 48K bytes of memory?

Have you run memory diagnostics recently?

The Printer Doesn't Work

On a PDP/LSI-II

Is your device set to address 177514 or 177510, trap vector 200
when trying to use PRINTER: (device 116)?

Is your device set to address 177520, trap vector 120 when
trying to use REMIN: or REMOUT: (devices 117 and 8)?

Do you have a OLV-11J?
The console channel is on channel 0 and should be at the
standard address 177560. The base address on channel 3
should be 177500. This will cause channel 1 to be PRINTER:,
and channel 2 to be REMIN: and REMOUT:. The actual wiring

167

Users' Manual
Appendices

required is: A9 jumpered x to 1.

On any System

Is there a printer dri ver linked in your Interpreter?

Does your printer expect any special protocols?
You may need to write an external procedure to handle
the protocol.

Does your printer hang/crash when processing NULS?
The System sends NULs as pads in' blocks of text.
You may need to write a pre-processor which sends the printer
text without the NULs.

You Get an Unimplemented Instruction Error

Are you attempting to use floating point without having
linked or renamed a floating point interpreter to be
your System Interpreter?

You can't read the disks

Do you have an INTEL MDS?
If you do, you must turn off CRC checking, then make
image copies of your disks. You can now enable eRC
checking and use the image copies of the release disks.

Screentest Reports Errors

The EDITOR ESCAPE KEY and the KEY TO DELETE CHARACTER
are occasionally reported as non-functional, even though
they are working properly. If the keys function when you
use the Screen Oriented Editor, you may ignore these
error messages.

You are C(ompiling or A(s8embling

Syntax Error 'Unexpected end of Input' is encountered •••

Did you use the C(ompile or A(ssemble command?
You cannot eX (ecute SYSTEM.COMPILER or

168

SYSTEM.ASSMBLER.

Users' Manual
Appendices

169

Users' Manual
Appendices

0 000 00 ~
1 001 01 SO;
2 002 02 STX
3 003 03 ETX
4 004 04 EaT
5 005 05 Ef\G
6 006 06 AD<
7 007 07 BEL
8 010 08 BS
9 011 09 HT

10 012 OA LF
11 013 OB VT
12 014 OC FF
13 015 OD CR
14 016 OE so
15 017 OF 51
16 020 10 OLE
17 021 11 OCI
18 022 12 OC2
19 023 13 OC3
20 024 14 OC4
21 025 15 NAK
22 026 16 SYN
23 027 17 ETB
24 030 18 CAN
25 031 19 EM
26 032 lA SUB
27 033 18 ESC
28 034 Ie FS
29 035 1D GS
30 036 IE RS
31 03-7 IF US

170

VI.D

32 040 20
33 041 21
34 042 22
35 043 23
36 044 24
37 045 25
38 046 26
39 047 27
40 050 28
41 051 29
42 052 2A
43 053 2B
44 054 2C
45 055 2D
46 056 2E
47 057 2F
48 060 30
49 061 31
50 062 32
51 063 33
52 064 34
53 065 35
54 066 36
55 067 37
56 070 38
57 071 39
58 072 3A
59 073 3B
60 074 3C
61 075 3D
62 076 3E
63 077 3F

APPENDIX 0 -- ASCIl

SP 64 100 40 @ 96 140 60
! 65 101 41 A 97 141 61 a
" 66 102 42 B 98 142 62 b
II 67 103 43 C 99 143 63 c
$ 68 104 44 D 100 144 64 d
% 69 105 45 E 101 145 65 e
& 70 106 46 F 102 146 66 f

71 107 47 G 103 147 67 9
72 110 48 H 104 150 68 h
73 III 49 1 105 151 69

* 74 112 4A J 106 152 6A j
+ 75 113 4B K 107 153 6B k

76 114 4C L 108 154 6C 1
77 115 4D M 109 155 6D m . 78 116 4E N 110 156 6E n

/ 79 117 4F a III 157 6F 0

0 80 120 50 P 112 160 70 p
1 81 121 51 Q 113 161 71 q
2 82 122 52 R 114 162 72 r
3 83 123 53 5 115 163 73 s
4 84 124 54 T 116 164 74 t
5 85 125 55 U 117 165 75 u
6 86 126 56 V 118 166 76 v
7 87 127 57 W 119 167 77 w
8 88 130 58 X 120 170 78 x
9 89 131 59 y 121 171 79 y

90 132 SA Z 122 172 7A z
; 91 133 5B [123 173 7B t
< 92 134 5C \ 124 174 7C I
= 93 135 5D] 125 175 70 }
> 94 136 5E 126 176 7E
? 95 137 SF 127 177 7F DEL

