
RIDGE
9008 B #A

Ridge Processor
Reference Manual

•

Ridge Processor
Reference Manual

Ridge Computers
Santa Clara, California

Third Edition: 9BB8-B (JUN 84)

Ridge Processor

Copyright 1983, 1984, Ridge Computers.
All rights reserved.
Printed in the U.S.A.

PUBLICATION HISTORY

Manual Title: Ridge Processor Reference Manual

First Edition: 9008 (MAR 83)
Second Edition: 9008-A (FEB 84)
Third Edition: 9008-B (JUN 84)

NOTICE

No part of this document may be translated, reproduced, or copied
in any form or by any means without the written permission of Ridge
Computers.

The information contained in this document is subject to change
without notice. Ridge Computers shall not be liable for errors
contained herein, or for incidental or consequential damages in
connection with the use of this material.

-ii- 9008-B

Ridge Processor

TABLE OF CONTENTS

Title

CHAPTER 1: OVERVIEW

Key Features

Related Documents

Processor Overview
Instruction Formats
Processor Architecture

Internal Structure
Instruction Fetch unit
Execution unit
Memory Controller

Data Types
Integers
Real Numbers (Single Precision)
Real Numbers (Double Precision)

Syntax Conventions

CHAPTER 2: MEMORY REFERENCE INSTRUCTIONS

Instruction Formats

Instruction Descriptions
Load Instructions
Store Instructions
Load Address Instructions

CHAPTER 3: REGISTER FORMAT INSTRUCTIONS

Instruction Format

Instruction Descriptions
Integer Arithmetic Instructions
Logical Operator Instructions
Integer and Logical Immediate Instructions
Extended Precision Integer Instructions
Real Instructions
Double Real Instructions

9008-B

Page

1

1

1

2
3
4

6
9
10
12

13
14
14
15

16

17

17

18
19
19
20

21

21

21
22
23
24
25
27.
28

-iii-

Ridge Processor

Bit-Oriented Instructions
Test Instruction
Compare Instructions
Shift Instructions
Sign Extend Instructions

CHAPTER 4: PROGRAM CONTROL INSTRUCTIONS

Branch Instructions
Instruction Format
Instruction Descriptions

Branch Instructions
Loop Control Instruction

Subroutine Call and Return Instructions
Call Subroutine Instruction
Call Subroutine Register and Return
Instructions

APPENDIX A: RIDGE OPCODE MAP

ILLUSTRATIONS

Figure

1 Instruction Formats

2 Model of Processor Architecture

3 Processor Instruction Pipeline

4 Ridge 32 Internal Structure

5 Data Formats for Operand Types

-iv- 9~08-B

29
30
31
32
33

35

35
35
36
36
36

37
37

38

39

Page

3

4

7

8

13

Ridge Processor

CHAPTER 1: OVERVIEW

The Ridge 32 is an engineering workstation with a 32-bit, high
performance processor implemented in MSI and LSI bipolar logic.
This proprietary processor has a simple, general purpose,
microcoded architecture that incorporates paged virtual memory.
The Ridge 32 provides processing power equal to medium performance
mainframes and high performance minicomputer systems. This manual
describes the overall operation of the processor including its
features, a block level description, and the instruction set.

KEY FEATURES

- reduced instruction set computer (RISe) architecture
- 125-nanosecond cycle time
- one-clock cycle minimum instruction time
- 4096-byte paged virtual memory
- four-gigabytes linear address space
- separated code and data
- branch prediction logic
- single and double real floating point instructions
- 16 general registers
- 375-nanosecond memory cycle time

RELATED DOCUMENTS

Ridge Assembler
Reference Manual
#9005

Ridge Hardware
Reference Manual
#9007

Ridge Architectural
Specification
(not yet available)

- Gives instruction syntax and
pseudo operations for the assembler
program. Instructions are listed
alphabetically. Descriptions
include instruction exceptions.

- Describes card cage, individual
boards, cables, and operating
specifications for I/O boards.

- Details of privileged instructions,
traps, exceptions, interrupts, clock,
timer, internal tables, internal
registers, and virtual translation
algorithm.

9008-B -1-

Ridge Processor

PROCESSOR OVERVIEW

The Ridge 32 processor is a register-oriented, 16 general register
computer. The processor provides virtual addressing using 4~96-
byte pages within a four-gigabyte address space. The Ridge 32
utilizes a l25-nanosecond machine cycle and can complete simple
instructions in one cycle. The maximum instruction rate is eight
million instructions per second (8 MIPS).

The processor's style of architecture has become known as a reduced
instruction set computer (RISC). The goals of a RISC architecture
are to simplify the functions of the machine which reduces the
amount of hardware necessary to implement the processor. The
reduction in logic allows a faster cycle time and permits
instructions to complete in one machine cycle. As a result, the
Ridge 32 is a very fast and low cost computer.

The characteristics of a RISC architecture are:

-2-

Simple addressing modes. The Ridge 32 uses only three modes
which reduces the amount of logic needed to perform memory
references.

Simple instruction
instruction formats
logic.

formats. The
that can be

Ridge 32 uses three
decoded with a minimum of

Separated code and data. The Ridge 32 uses separated code and
data eliminating the need for logic that detects and resolves
self-modifying code.

Designed to support high level languages. The instructions
provided are designed to match the code generation
capabilities of such languages as FORTRAN, C, and Pascal.
These languages tend to generate short sequences of
instructions, using only a few instruction types to perform
the required functions. Complex instructions and instructions
not used by a compiler are eliminated. Thus, the Ridge 32
instruction set offers the "primitives" which will be
assembled by a compiler.

Regularity. Data types and addressing modes are examples of
regularity. For memory reference instructions there are four
operand sizes and three addressing modes. Each of the
addressing modes is available for all operands. To do
otherwise complicates the compiler and may slow the overall
operation of the machine.

9~B8-B

Ridge Processor

Linear address space. Code and data space are each linear
with a byte-addressable area that is four-gigabytes long.
Segmentation schemes appear to save logic to support the full
32-bit address widths, but instead they complicate the
hardware and compilers, and slow the processor's performance.

General registers. All registers are available for use as
data, indexing, and addressing. If registers are specialized
they complicate compilers, reduce the available fast storage
area, and increase code size when data must be moved to the
appropriate register type.

Instruction Formats

The processor contains 16 32-bit registers. The instruction set is
of the two-operand form, and uses three instruction formats. The
instruction formats are register-to-register (16-bits long), short
displacement memory address (32-bits long), and long displacement
memory address (48-bits long). The instruction formats are shown
in Figure 1.

Instruction Format:
III

07812 5
+--------+----+----+

Register-to-register I opcode I Rx I Ry I

Short displacement
memory address

+--------+----+----+

o 7
1
6

3
1

+--------+----+----+----------------+
I opcode I Rx I Ry I displacement I
+--------+----+----+----------------+

o 7
1
6

4
7

Long displacement
memory address

+--------+----+----+----------------------+
I opcode I Rx I Ry I displacement I
+--------+----+----+----------------------+

Figure 1. Instruction Formats

All instructions use an eight-bit opcode followed by two
operands. The first operand always names a register or a
pair. The second operand names a register or is a
constant. Instructions exist to operate on registers,
memory, store to memory, and transfer program control.

9008-B

four-bit
register
four-bit

load from

-3-

Ridge Processor

The register-to-register format is used for instructions that
operate on the contents of one or two registers and do not address
memory. The short and long displacement memory address format
instructions are used for memory-addressing instructions, such as
storing and loading. The short displacement memory address format
is used for referencing addresses that can be specified in 16 bits.
The long displacement memory address format is used for referencing
addresses that must be specified in 32 bits.

Any arithmetic or address operation can be performed on any
register. Registers are not specialized for counting or indexing.

Processor Architecture

The model of the processor architecture is shown in Figure 2. The
user-visible features of the processor are instructions, general
registers and the program counter. Instructions operate on the
general registers (register-to-register) or on a register and a
memory location (load from memory or store to memory). The program
counter is visible when using program control instructions such as
subroutine call and branch.

-4-

Opcode

"
". 32
l'

Code or
Data

Instruction

Rx Ry

0
1
2

~

15

Displacement

General
Registers

•
•
•

{32
Memory

Data

,..,4

"
", 32

Virtual
Memory
Address

N

Instruction Types:
LOAD/STORE

Register to Register

o use visible status or
condition codes

I Program Counter I
32

Figure 2 Model of Processor Architecture

9008-B

Ridge Processor

Memory addresses can be one of the following forms: displacement
field from the instruction; index register plus displacement; or
program counter (PC) may be added to either of the other forms for
program-relative locations. These memory address forms are shown
in Figure 2.

All addresses generated by the processor are virtual addresses and
are 32-bits wide. Memory reference instructions indicate code or
data space by utilizing a bit in the instruction opcode. An
individual program may access a maximum of four gigabytes of code
space and a maximum of four gigabytes of data space.

A status 'register containing condition codes is purposely missing
from this architecture. Status registers complicate and tend to
slow down high speed processors. On high speed machines several
instructions are in various stages of execution at any given
moment. Condition codes tend to be generated at various times
during these stages and must be properly propagated from stage to
stage. In virtual machines, an additional problem occurs in
preserving the condition codes throughout the stages when an
instruction aborts due to a page fault.

The processor architecture includes the conditional branch
instruction, that obviates the need for condition codes. This
instruction combines the compare function and the conditional
branch instruction. The compare function generates the condition
code and the conditional branch instruction changes program flow of
control based upon condition code values.

9008-B -5-

Ridge Processor

INTERNAL STRUCTURE

The Ridge 32 processor consists of two printed circuit boards. The
first is the instruction fetch unit and the second is the execution
unit. The processor has a private bus to the memory controller
with separate 32-bit address and data lines. The instruction fetch
unit and execution unit may each independently access main memory.
Memory cycle time is 375 nanoseconds, which includes virtual-to
real memory translation and error correction.

A block diagram of the processor, memory, and I/O system are shown
in Figure 4. In the following text, the items in bold type are
illustrated in Figure 4.

Pipelined Organization:

The Ridge processor uses a pipe lined organization.
composed of four stages: instruction fetch,
execution and store result. Figure 3 illustrates
instruction pipeline. Each pipeline stage performs
one processor cycle.

The pipeline is
operand fetch,
the processor

its function in

The purpose of the pipeline is to increase machine speed by using
parallelism. Each stage of the pipe operates on a separate
instruction. Instructions flow through each of the four stages of
the pipe, one cycle at a time. Although complete execution of an
instruction takes four machine cycles, one instruction completes
each cycle, thus creating an effective processor speed that is four
times the speed of a non-pipelined operation. The instruction
pipeline includes all of the logic on the execution unit and part
of the logic on the instruction fetch unit.

-6- 9008-B

Ridge Processor

Processor Cycles

+------------+ +------------+ +------------+ +------------+
IInstruction 1-->1 Operand 1-->1 Execution 1-->1 store I
IFetch I I Fetch I I I I Result I
+------------+ +------------+ +------------+ +------------+

The operations performed during each processor cycle are as
follows.

Time
•
•

Instruction fetch. The instruction is fetched from the
prefetch buffer. The opcode is used as an index into the
control store, which controls instruction execution. The Rx
and Ry operands in the instruction are used to enable the
register select logic.

Operand fetch. Rx and Ry are fetched from the register files.

Execution. The ALU operates on Rx and Ry, the result passes
through the barrel shifter and is stored into the result
register.

Stor~ result. The data is moved from the result register· into
the Rx and Ry register files.

Instruction Flow Through Pipeline Stages

IInstruction 11
__________ a_ •• __ a__ , I

IInstruction 21 IInstruction 11

__________ a_. __ .. __ ~ .~

IInstruction 31 IInstruction 21 IInstruction 11

IInstruction 41 IInstruction 31 IInstruction 21 IInstruction 11
--~-----~-----~ ------~-------- --------------- ---------------

Figure 3. Processor Instruction Pipeline

9008-B -7-

I
ex>
I CPU Memory Bus 10.7 Mb/sec.

~ ~ ~ Address
..... 32 32 Instruction Fetch Unit r-------- ---------,

Instruction
Cache

Prefetch Buffer
and Branch Prediction

Opcode Rx Ry Displacement I
r

Control
Store

1 I
I L ______ --- --------_ ...

____ ..t. ______ , Execution Unit r--------- _________ ,D~~

Barrel Shifter

t
ALU

.. ~ .. ~

Rx Ry
Register Register

File File

t 1
• Result I Register I

Rx Register
Select Logic

.. ...

Ry Register
Select Logic

I
I
I
I
I
I
I
I
I

L __________________ J

Translation
Mapping

Table

Error
Correction r--

I
I
I
I
I
I

I
I
I
I
I
I

- .------____ J
Memory Controller

'-- DMAl

/32
/
"'II ,.

I/O Bus
8 Mb/sec.

I/O Device

I/O Device

Figure 4. Ridge 32 Internal structure

•
.. 1 to 8

Mbof
,.. Main Memory _

Ridge Processor

Instruction Fetch Unit

The instruction fetch unit performs instruction prefetch and
decoding. It contains a 256-byte instruction cache and a maximum
of 4096 words of 48-bit wide control store. The instruction fetch
unit fetches instructions from the instruction cache or main memory
ahead of the execution unit and stores them in its eight-byte
prefetch buffer.

Branch Prediction:

The implementation of branch instructions is critical to the
performance of pipelined machines. without special handling, a
conditional branch instruction empties the pipeline. This prevents
the processor from prefetching the next instruction until the
outcome of the branch has been determined.

For this reason, branches can be among the slowest instructions on
high performance machines. The processor uses a technique to load
the instruction into the pipe which is the most likely result of
the branch, thus reducing the chance that the pipeline is loaded
with instructions on the wrong path.

Conditional Branch Instructions:

Conditional branch instructions contain a static prediction bit in
the instruction displacement field that can be set by a compiler.
The branch prediction logic in the instruction fetch unit then
fetches along the predicted path. This keeps the pipeline full and
makes conditional branch instructions fast.

Branch Prediction Example:

For example, consider Pascal REPEAT ••• UNTIL loops. The loop is
constructed by the compiler as a linear section of code ended with
a conditional branch. This branch is part of the UNTIL expression.
Usually these loops are executed more than once, so the compiler
marks the conditional branch at the bottom of the loop to be
"predicted fl

•

When the program is executed, the processor fetches and executes
all the instructions 1n the linear portion of the loop. As the
instruction fetch unit prefetches the conditional branch at the end
of the loop, the prediction bit is detected. Instead of fetching
the next sequential instruction as it normally would, the
instruction fetch unit fetches the instruction at the top of the
loop, which is the branch target. This prefetching the location of
the branch target allows loops to execute at the same speed as
linear sections of code.

9008-B -9-

Ridge Processor

As the loop is executed for its last time, the instruction fetch
unit incorrectly fetches the instruction at the top of the loop.
This time, however, the UNTIL condition has been reached, and the
loop has ended. Now the instruction fetch unit must flush this
instruction and fetch the next sequential instruction, which will
then be executed.

This flushing of the instruction pipeline causes a four-cycle delay
for the incorrectly predicted conditional branch instruction.
Measurements have shown this to be infrequent, and consequently
program speed is increased by the use of the branch prediction
logic.

Unconditional Branch Instructions:

Unconditional branch instructions also make use of the branch
prediction and prefetch logic in the instruction fetch unit. In
unconditional branches, the instruction is decoded, the target
location is fetched and placed in the instruction stream, and the
unconditional branch is flushed from the prefetch buffer. This
effectively removes the unconditional branches from the program
entirely, and if the instruction fetch unit is ahead of the
execution unit, unconditional branches can be performed with zero
instruction time.

Execution unit

The execution unit contains the general registers and is
responsible for instruction execution. The arithmetic logic unit
(ALU) and barrel shifter are also found on this board. The barrel
shifter can shift from zero to 31 positions, left, right, or
circularly, in one clock cycle.

The general registers are found in the Rx register file. A
duplicate copy of the registers is contained in the Ry register
file. Duplicating the registers allows both Rx and Ry to be
accessed in a single clock cycle.

The general data flow through the execution unit is as follows.
Data ~s fetched from the Rx and Ry register files, operated on by
the ALU, temporarily stored in the result register and then stored
into the register files. Should data not yet stored into the
register files be needed in a computation, the register select
logic may bypass the register file and use the data on the bus as
input into the ALU.

-10- 9~~8-B

Ridge Processor

Register Bypass Example:

The following is an example of a two-instruction sequence that
utilizes the register bypass data path in the execution unit. The
example also illustrates the use of the instruction pipeline as
shown in Figure 3.

MD

Clock
Cycle ADD

R6, R7 operation: R6 is added to R7 and
the sum is put in R6.

RS, R6 operation: RS logically ANDs with R6
and the result is put in RS.

Instruction Pipeline Stage Operation

AND

1 The ADD instruction
is fetched.

2

3

4

S

R6 and R7 are fetched
from the register files.

The ALU adds R6 and R7,
and puts the new R6
value on the bus.

The new R6 value is
stored in the register
file.

The AND instruction
is fetched.

RS and R6 are to be fetched,
but the new R6 value is on the
bus, not in the register file.
RS is fetched from the register
file, while the Ry register
select logic bypasses the
register file and uses
the R6 value from the bus.

The ALU ANDs R5 and R6 and puts
the new R5 value on the bus.

The new RS value is stored in
the register file.

During clock cycle 3, the AND instruction must fetch its operand
R6. However, the value of R6 in the register file is outdated due
to the ADD instruction computing a new R6 value. Consequently the
register bypass is used. This moves instructions through each
pipeline stage in one clock cycle, and allows the pipeline to
complete one instruction each clock cycle.

9008-B -11-

Ridge Processor

Memory Controller

The memory controller provides virtual-to-real address translation
and error correction, and also handles all memory data for the
processor and I/O devices. All memory accesses from the processor
are virtual and go through the translation mapping table where they
are converted to real addresses and presented to main memory. I/O
devices on the I/O bus use real addresses and bypass the
translation mapping table.

Main memory cycle time is 375 nanoseconds, and the memory
controller processes four bytes per cycle. The CPU memory bus runs
at full memory speed giving this bus a bandwidth of 10.7 megabytes
per second. The I/O bus uses multiplexed address and data lines to
minimize the use of connector pins on I/O boards. The I/O bus
cycles in 509 nanoseconds and provides eight megabytes per second
of direct memory access (DMA) bandwidth for I/O devices. Each
board on the I/O bus contains its own DMA logic.

The memory controller can access from one to eight megabytes of
main memory. All memory accesses are single-bit error corrected
and double-bit error detected.

-12- 999S-B

Ridge Processor

DATA TYPES

The processor has instructions to load and store four different
sizes of operands. The basic addressable unit is the eight-bit
byte. The other operand sizes are the halfword (l6-bits), the word
(32-bits) and the double word (64-bits). Data types are addressed
from least significant bit (LSB) to most significant bit (MSB).
Bytes are numbered from most significant byte to least significant
byte. Figure 5 gives the notation and memory layout for each type
of operand.

Byte
MSB LSB

9 7
+--------+
101
+--------+
Half-word
MSB

9 7 8

LSB
1
5

+--------+--------+
I 9 1 I
+--------+--------+
Word
MSB

7 8
1 1
5 6

LSB
3
1

+--------+--------+--------+--------+
I 9 1 2 3 I
+--------+--------+--------+--------+
Double Word
MSB

7 8
1 1
5 6

3
1

4
7

LSB
6
3

+--------+--------+--------+--------+--------+--------+--------+--------+
I 9 1 2 3 4 5 6 7 I
+--------+--------+--------+--------+--------+--------+--------+--------+

MSB = most significant bit
LSB = least significant bit

Figure 5. Data Formats for Operand Types

9908-B -13-

Ridge Processor

All data is manipulated in the processor's 16 32-bit general
registers. There are instructions that manipulate these registers
as 32-bit and 64-bit data types. There are three 32-bit data
types: two's complement signed integers, unsigned integers, and
real numbers. There is a single 64-bit data type which is double
precision real numbers. Integer data types longer than 32 bits may
be manipulated using extended precision integer arithmetic
instructions.

Double words occupy register pairs. A register pair, RPx, consists
of Rx and R(x + 1) mod 16. Rx holds the most significant bits
(MBB) and R(x + 1) mod 16 holds the least significant bits (LSB).

Integers

The range of integers which can be represented in two's complement
form 1S -2,147,483,648 through 2,147,483,647. The range of
unsigned integers is e through 4,294,967,295. The MBB of any data
type is referred to as the sign bit (s), as shown below.

MSB
" 1

3 LSB
1

+-+-------------------------------+ Integer lsi I
+-+-------------------------------+

s = sign bit

Real Numbers (Single Precision)

Real numbers (represented in floating-point form) consist of three
parts: a sign, a power-of-two exponent, and a mantissa. The value
of a real number is:

-14-

(-I)**s x 2** (exponent-127) x I.mantissa

" 1 8 9
3
1

+-+--------+---------------------+ Is I exponent I mantissa I
+-+--------+---------------------+

9""'8-B

Ridge Processor

For positive numbers, the sign bit is 0. For negative numbers, the
sign bit is 1. The exponent of a real number is 8 bits long, and
is biased by +127. The eight bits of the exponent give a range of
o through 255. Subtracting the bias yields an exponent range of
-127 through +128. The mantissa has an implicit leading one, and
is 23 bits long. Zero is represented by all zeros.

examples:
"1" =
"-10" =

o 1 8 9
3
1

+-+--------+-----------------------+
Real Is I exponent I mantissa I

+-+--------+-----------------------+

o 01111111 000000000000000g0000000 = 3F80 0000
1 10000010 010000000000000g0000000 = C120 0000

Real Numbers (Double Precision)

Double real numbers are similar to real numbers, except that the
mantissa is 52 bits and the exponent is 11 bits. The exponent is
biased by +1023. The eleven exponent bits give a range of 0
through 2047. Subtracting the bias yields an exponent range of
-1023 through +1024.

o 1
1 1
1 2

6
3

+-+-----------+------------------------------+
Double Real lsi exponent I mantissa I

+-+-----------+------------------------------+
examples:
"1" = 0 01111111111 00000000000000 ••• 000000000000 = 3FF0 0000 0000 0000
"-10"= 1 10000000010 01000000000000 ••• 000000000000 = C024 0000 0000 0000

9008-B -15-

Ridge Processor

SYNTAX CONVENTIONS

In the descriptions of instructions, the 16 general registers are
referred to as Rx or Ry. A register pair is referred to as RPx and
consists of Rx and R(x + 1). Registers S through 15 are referred
to as RS through RIS. The program counter is referred to as PC.

Some instructions can optionally specify the 4-bit value in the Ry
register field instead of the contents of Ry. This is indicated by
using "Ry field" instead of "Ry".

Specific bits of a register are enclosed in brackets. For example,
bit 3 of a register is referred to as Rx[3]. The symbol "
denotes a range of bits. For example, consecutive bits 6 through 9
of a register are referred to as Rx[6 •• 9].

The instructions in the following sections are documented in the
format shown below:

-16-

Name of Instruction or Instruction Class

Instruction Summary:

Instruction
Mnemonic

TYP

Operation:

Instruction
Function

Typical

Syntactical
Description

This is a typical
instruction

The TYP instruction has no operation, it is
an example of syntax conventions.

9SS8-B

Ridge Processor

CHAPTER 2: MEMORY REFERENCE INSTRUCTIONS

INSTRUCTION FORMATS

Memory reference instructions use either the short displacement or
long displacement memory address instruction formats as shown
below. These instructions either load data from memory to a
register or store data in a register to memory.

Short displacement
memory address

Long displacement
memory address

1 1 113
o 1 3 467 8 1 2 561

+-+--+-+---+-+----+----+----------------+
I Icdl01 Ixl Rx I Ry I displacement I
+-+--+-+---+-+----+----+---------------~+

opcode

1 1 114
o 1 346 7 8 1 2 567

+-+--+-+---+-+----+----+------------------+
I Icdl11 Ixl Rx I Ry I displacement I
+-+--+-+---+-+----+----+------------------+

opcode

cd = code or data space reference.
code is specified as 00, 11
data is specified as 01, 10

x = indexed

The Ridge 32 processor has two addressing modes, direct and
indexed. These modes may be used in accessing either code or data
space, and with either short or long displacement memory address
formats. One bit of the opcode is used to specify that the
instruction is indexed, one bit is used to specify long
displacement, and two bits in combination indicate code or data
space.

The 32-bit short displacement memory address format instructions,
have a 16-bit displacement field, which is sign extended to a full
32 bits. The 48-bit long displacement memory address format
instructions, have a 32-bit displacement field.

The effective address for a memory reference instruction is
calculated as follows.

Address
Space Indexed Effective Address
------- ----~-- -----------~-----

Data No Displacement
Data Yes Ry + displacement

Code No PC + displacement
Code Yes PC + Ry + displacement

9008-B -17-

Ridge Processor

Each effective address for a memory reference instruction is
explained below.

Displacement. The memory address is the displacement field
from the instruction. All memory references are 32-bit virtual
addresses. This form references data space.

Ry + displacement. The contents of register Ry are added to
the displacement field. Memory is then read or written at this
location.

PC + displacement. Instructions that reference code space do
so relative to the program counter (PC). PC is added to the
displacement field and memory is read from this location. Code
space is never written.

PC + Ry + displacement. PC is added to the displacement field,
the result is added to the contents of Ry. Memory is then read
at this location.

Indexing takes place with full 32-bit signed integers in two's
complement notation. Displacements are also treated as 32-bit
signed integers in two's complement notation. Short displacement
memory addresses are sign extended to 32 bits by replicating the
MSB into the upper 16 bits. The resulting effective address is an
absolute displacement from location zero in the data space.
Negative addresses (MSB set) are virtual addresses in the range of
two to four billion.

These address computations allow indexes to be positive or negative
relative to the displacement, or allow the displacement to be
positive or negative relative to the index. Code space addresses
are program counter (PC) relative and thus make relocatable
constants.

All addressing formats have the same instruction execution time.
Instructions referencing data space optionally add Ry to the
displacement as the address is presented to memory. Instructions
referencing code space optionally add Ry to the precomputed PC +
displacement. The fetch unit contains logic that performs this
function as part of the instruction prefetch.

INSTRUCTION DESCRIPTIONS

Descriptions of load, store, and load address memory instructions
follow.

-18-

Ridge Processor

Load Instructions

Instruction Summary:

LOADB Load Byte Rx[24 •• 3l] <- contents of (Ry + displacement)
Rx[0 •• 23] <- 0

LOADH Load Halfword Rx [16 •• 31] <- contents of (Ry + displacement)
Rx [0 •• 15] <- 0

LOAD Load Word Rx <- contents of (Ry + displacement)
LOADD Load Double RPx <- contents of (Ry + displacement)

Word

Operation:

The register Rx is loaded with the data stored in memory at
the effective address. Ry may optionally be used as an index
register. The data element must be aligned on a boundary that
is a multiple of the length of the data element.

The LOADB instruction loads the byte into bits 24-31 of the
specified register and sets bits 0-23 to zero.

The LOADH instruction loads the halfword into bits 16-31 of
the specified register and sets bits 0-15 to zero.

The LOAD instruction loads the word into the specified
register.

The LOADD instruction loads two words into RPx.

The instructions shown above are for loading
space. A load-from-code-space form for
instructions (LOADBP, LOADHP, LOADP, LOADDP)
the Ridge Assembler Manual.

store Instructions

Instruction Summary:

STOREB Store Byte Rx [24 •• 31] -) contents
STOREH Store Halfword Rx[16 •• 3l] -) contents
STORE Store Word Rx -) contents
STORED Store Double RPx -) contents

Word

9008-B

data from data
each of the above
is described in

of (Ry + displacement)
of (Ry + displacement)
of (Ry + displacement)
of (Ry + displacement)

-19-

Ridge Processor

Operation:

The store instructions move data from
memory. The effective address must
length of the data element.

the registers into
be a multiple of the

The STOREB instruction places bits 24-31 of the specified
register into memory at the effective address. Other bits
(0-23) are ignored.

The STOREH instruction places bits 16-31 of the specified
register into memory at the effective address. Other bits
(0-15) are ignored.

The STORE instruction places the word into memory at the
effective address.

The STORED instruction places the double words into memory at
the effective address.

Load Address Instructions

Instruction Summary:

LADDR Load Address Rx <- (value of Ry) + displacement
LADDRP Load Code Address Rx <- (value of PC) +

Ry + displacement

Operation:

-20-

The load address instructions store the effective address into
Rx. These instructions do not perform a memory reference, but
instead load a constant from the instruction stream into a
register.

The LADDR instruction can be used to load two- or four-byte
immediate values and, in indexed mode, can be used to add a
constant to a register.

The LADDRP instruction is similar to the LAD DR instruction
except that PC is added to the displacement field.

9008-B

Ridge Processor

CHAPTER 3: REGISTER FORMAT INSTRUCTIONS

INSTRUCTION FORMAT

Register-to-register format instructions process data taken from a
specified general register. These instructions use the register
to-register instruction format shown below. Generally, two
registers are specified and the result usually replaces Rx.

111
078 1 2 5

+--------+----+----+
Register-to-register I opcode I Rx I Ry I

+--------+----+----+
A few register-to-register format instructions also have an
immediate mode. In immediate mode the 4-bit value of the Ry
register field is used to specify an integer in the range from 0 to
15.

INSTRUCTION DESCRIPTIONS

Descriptions of the register-to-register
follow.

9008-B

format instructions

-21-

Ridge Processor

Integer Arithmetic Instructions

Instruction Summary:

ADD Integer add Rx <- Rx + Ry
DIV Integer divide Rx <- Rx/Ry
MPY Integer multiply Rx <- Rx*Ry
NEG Integer negate Rx <- 2 1 s complement of Ry
REM Integer remainder Rx <- Rx - «Rx/Ry)*Ry)
SUB Integer subtract Rx <- Rx - Ry

Operation:

-22-

The integer arithmetic instructions operate on 32-bit two's
complement integers.

The ADD instruction adds Rx and Ry and puts the sum in Rx.

The DIV instruction divides Rx by Ry and puts the quotient in
Rx.

The MPY instruction multiplies Rx and Ry and replaces the
contents ofRx with the low order 32 bits of the product.

The NEG instruction puts the 2's complement of Ry in Rx.

The REM instruction divides Rx by Ry and puts the signed
remainder in Rx. The sign of the remainder will be the sign
of the divisor.

The SUB instruction subtracts Rx from Ry and puts the
difference in RX.

9""8-B

Ridge Processor

Logical Operator Instructions

Instruction Summary:

AND
MOVE
NOT
OR
XOR
NOP

Operation:

Logical And
Move Register
Logical Not
Logical Or
Logical Xor
No operation

Rx
Rx
Rx
Rx
Rx
Rx

<- Rx AND Ry
<- Ry
<- lis complement of Ry
<- Rx OR Ry
<- Rx XOR Ry
<- Rx

The logical operator instructions operate on 32-bit unsigned
integers in registers. The result replaces the contents of
Rx.

The AND instruction performs logical AND on the contents of Rx
and Ry and puts the result in Rx.

The MOVE instruction copies the contents of Ry into Rx.

The NOT instruction complements the contents of Ry and puts
the result in Rx.

The OR instruction performs logical OR on the contents of Rx
and Ry and puts the result in Rx.

The XOR instruction performs logical XOR on the contents of Rx
and Ry and puts the result in RX.

The NOP instruction performs no operation and is often used to
fill instruction space thus consum1ng time. It supplies
padding between modules to allow for proper alignment.

9008-B -23-

Ridge Processor

Integer and Logical Immediate Instructions

Instruction Summary:

MOVE
NOT
ADD
SUB
AND
MPY

Move immediate Rx <- Ry field
Not immediate Rx <- One's complement of Ry field
Add immediate Rx <- Rx + Ry field
Subtract immediate Rx <- Rx - Ry field
And immediate Rx <- Rx AND Ry field
Multiply immediate Rx <- Rx*Ry field

Operation:

The integer and logical immediate instructions share the same
format and perform the same operations as the integer
arithmetic and logical operator instructions previously
described. The immediate instructions differ in that the
four-bit value of the Ry field is used instead of the register
contents of Ry. The integer and logical immediate register
to-register instruction format is shown below.

III
023 4 7 8 125

+---+-+----+----+----+
Register-to-register I III I Rx I Ry I

+---+-+----+----+----+
opcode

The Ry field is treated as a 4-bit integer constant.

-24- 9008-B

Ridge Processor

Extended Precision Integer Instructions

Instruction Summary:

EADD Extended Integer Rx <- Rx + Ry + R~[3l]
Add R~[3l] <- carry

R~[3~] <- overflow

EDIV Extended Integer Rx <- RPx/Ry
Divide Ry <- the remainder

EMPY Extended Integer RPx <- Rx*Ry
Multiply

ESUB Extended Integer Rx <- Rx l's complement
Subtract + Ry + R~ [31]

R~[3l] <- carry,
R~ [3~] <- overflow

Operation:

The extended preC1S10n integer instructions can be used to
implement multiple-word arithmetic.

The EADD instruction adds the two's-complement integers in Rx
and Ry, and at the same time adds the carry-in from R~[3l],
and puts the least significant 32 bits of the sum in Rx. The
carry-out (most significant) bit is put in R~[3l]. Overflow
is indicated in R~[30]. The upper 3~ bits of R~ are set to
zero.

The typical use of the EADD instruction to
multiple-word arithmetic is used as follows: R~[3l]
zero. The least significant words are EADDed, the
significant words are EADDed, and so on to
significant words. Overflow can then be checked
last EADD.

implement
is set to
next-most
the most

after the

The ED IV instruction divides the 64-bit unsigned contents of
RPx by the unsigned 32-bit contents of Ry, and places the
unsigned quotient in Rx and the unsigned remainder in Ry.

The EMPY instruction takes two unsigned 32-bit integers and
produces an unsigned 64-bit product and places it in RPx.

The ESUB instruction one's complement subtracts the two's
complement integers in Rx and Ry, and at the same time adds
the carry-in from R~[3l], then puts the least significant 32-
bit two's complement difference in Rx. The carry-out (most
significant) bit is put in R0[3l]. Overflow is indicated in
R~[30]. The upper 30 bits of R~ are set to zero.

90~8-B -25-

Ridge Processor

-26-

The typical use of the ESUB instruction to
multiple-word arithmetic is used as follows: RO[3l]
one. The least significant words are ESUBed, the
significant words are ESUBed, and so on to
significant words. Overflow can then be checked
last ESUB.

9008-B

implement
is set to
next-most
the most

after the

Ridge Processor

Real Instructions

Instruction Summary:

FIXR Round Real Rx <- ROUND Ry
to Integer

FIXT Truncate Real Rx <- TRUNC Ry
to Integer

FLOAT Convert Integer Rx <- FLOAT Ry
to Real

MAKERD Convert Real RPx <- DOUBLE Ry
to Double Real

RADD Real Add Rx <- Rx + Ry
RDIV Real Divide Rx <- Rx/Ry
RMPY Real Multiply Rx <- Rx*Ry
RNEG Real Negate Rx <- -Ry
RSUB Real Subtract Rx <- Rx - Ry

Operation:

These instructions operate on 32-bit real numbers.

The FIXR instruction converts the single-precision real
contents of Ry into a two's complement integer in Rx.
Fractions of .5 or more are rounded up to the next higher
absolute value.

The FIXT instruction converts the single-precision real number
in Ry into a 32-bit integer in Rx. All bits to the right of
the decimal pOint are lost.

The FLOAT instruction converts the integer in Ry into a real
number in Rx and rounds if necessary.

The MAKERD instruction converts the real number in Ry into a
double precision real number in RPx.

The RADD instruction adds the 32-bit real numbers in Rx and Ry
and puts the sum in Rx.

The RDIV instruction divides the 32-bit real number in Rx by
the 32-bit real number in Ry and puts the result in Rx.

The RMPY instruction multiplies the 32-bit real numbers in Rx
and Ry and puts the product in Rx.

The RNEG instruction negates the real number in Ry and puts
the result in Rx.

The RSUB instruction subtracts the real number in Ry from the
real number in Rx and puts the difference in Rx.

9BB8-B -27-

Ridge Processor

Double Real Instructions
---------------~--------

Instruction Summary:

DFIXR Round Double Rx <- ROUND RPy
Real to Integer

DFIXT Truncate Double Rx <- TRUNe RPy
Real to Integer

DFLOAT Convert Integer RPx <- DOUBLE FLOAT Ry
to Double Real

DRADD Double Real Add RPx <- RPx + RPy
DRDIV Double Real RPx <- RPx/RPy

Divide
DRMPY Double Real RPx <- RPx*RPy

Multiply
DRNEG Double Real RPx <- -RPy

Negate
DRSUB Double Real RPx <- RPx - RPy

Subtract
MAKEDR Round Double Real Rx <- REAL RPy

to Real

Operation:

The double real instructions perform the same operations as
the real instructions previously described, except the double
real instructions operate on double real format data, working
on register pairs.

-28- 9008-B

Ridge Processor

Bit-Oriented Instructions

Instruction Summary:

CBIT Clear Bit

SBIT Set Bit

TBIT Test Bit

Operation:

RPx[Ry mod 64] <- 0

RPx[Ry mod 64] <- 1

Rx[3l] <- RPx[Ry mod 64]
Rx [0 •• 3 0] < - 0

The CBIT instruction specifies a bit number from 0-63 in Ry
and the specified bit of RPx is set to zero.

The SBIT instruction specifies a bit number from 0-63 in Ry
and the specified bit of RPx is set to 1.

In the TBIT instruction Ry specifies a bit number from 0-63
which is tested in RPx. The tested bit is duplicated in bit
31 of Rx, and bits 9-30 of Rx are set to zero.

9008-B -29-

Ridge Processor

Test Instruction

Instruction Summary:

TEST Test Values Rx <- I if Rx relop Ry is true,
or Rx relop (4-bit Ry field)
is true

Rx <- 9 if Rx relop Ry is true,
or Rx relop (4-bit Ry field)
is false

Operation:

-30-

The TEST instruction uses a relational operator (relop) to
compare two values and sets Rx to either 9 or 1, depending on
the result of the test. The second operand is either the
contents of the register Ry, or the 4-bit value of the Ry
field. The comparison is done using signed two's complement
arithmetic. The comparison relop may be one of the following:
equal to (=), less than «), greater than (», not equal to
«», less than or equal to «=), or greater than or equal to
(>=) •

9~08-B

Ridge Processor

Compare Instructions

Instruction Summary:

LCOMP Logical Compare

DCOMP Double Integer
Compare

RCOMP Real Compare

DRCOMP Double Real
Compare

Operation:

Rx
Rx
Rx

Rx
Rx
Rx

Rx
Rx
Rx

Rx
Rx
Rx

<- -I,
<- 9,
<- I,

<- -I,
<- 9,
<- I,

<- -I,
<- 9,
<- I,

<- -I,
<- 9,
<- I,

if Rx < Ry
if Rx = Ry
if Rx > Ry

if RPx < RPy
if RPx = RPy
if RPx > RPy

if Rx < Ry
if Rx = Ry
if Rx > Ry

if RPx < RPy
if RPx = RPy
if RPx > RPy

The LCOMP instruction compares registers Rx and Ry using
unsigned arithmetic. Register Rx is set to -1, 9, or +1,
depending on whether Rx is less than, equal to, or greater
than Ry, respectively.

The DCOMP instruction compares register pairs RPx and RPy
using two's complement arithmetic. Register Rx is set to -1,
9, or +1, depending on whether RPx is less than, equal to, or
greater than RPy, respectively.

The RCOMP instruction compares real numbers in registers Rx
and Ry using sign magnitude form. Register Rx is set to -1,
9, or +1, depending on whether Rx is less than, equal to, or
greater than Ry, respectively.

The DRCOMP instruction compares double real numbers in
register pairs RPx and RPy using sign magnitude form.
Register Rx is set to -1, 9, or +1, depending on whether RPx
is less than, equal to, or greater than RPy, respectively.

9~~8-B -31-

Ridge Processor

Shift Instructions

The shift instructions take the shift count from the contents of
register Ry or from the 4-bit value of the Ry field. All shift
execution times are independent of the number of bits shifted due
to the use of the barrel shifter.

Single register shifts shift the value in Rx from 0 to 31 bits.
Double register shifts shift the value in RPx from 0 to 63 bits.
Only the low order 5 bits (6 bits for double shifts) of Ry are used
as the shift count. The immediate shift forms allow shifts from 0
to 15 bits using the four bits of Ry field as the shift count.

Instruction Summary:

CSL

LSL

LSR

ASL

ASR

DLSL

DLSR

Circular Shift
Left

Logical Shift
Left

Logical Shift
Right

Arithmetic
Shift Left

Arithmetic
Shift Right

Double Logical
Shift Left

Double Logical
Shift Right

Rx circularly shifted left by
Ry or 4-bit Ry field

Rx shifted left by Ry
or 4-bit Ry field

Rx shifted right by Ry
or 4-bit Ry field

Rx shifted left by Ry
or 4-bit Ry field

Rx shifted right by Ry or 4-bit
Ry field, filling with sign bit

RPx shifted left by Ry
or 4-bit Ry field

RPx shifted right by Ry
or 4-bit Ry field

Operation:

-32-

The CSL instruction circularly shifts bits left in Rx. Bits
shifted out of bit 0 are shifted into bit 31.

The LSL instruction shifts bits left in Rx and fills emptied
positions with zeros.

The LSR instruction shifts bits right in Rxand fills emptied
positions with zeros.

The ASL instruction shifts left and preserves the sign bit.

The ASR instruction shifts right and fills the left bits with
duplicates of the sign bit.

The DLSL and DLSR instructions correspond to LSL and LSR,
except that RPx is treated as a single 64-bit register.

Ridge Processor

Sign Extend Instructions

Instruction Summary:

SEB

SEH

Operation:

Sign Extend Byte

Sign Extend
Ha1fword

Rx[0 •• 23] <- Ry[24],
Rx[24 •• 31] <- Ry[24 •• 31]
Rx[0 •• 15] <- Ry[16],
Rx [16 •• 31] < - Ry [16 •• 31]

The sign extend instructions change 8- or 16-bit integers into
full word integers.

The SEB instruction makes bits 0-23 in register Rx the same as
bit 24 in register Ry. Bits 24-31 in Ry are copied to Rx.

The SEH instruction makes bits 0-15 in register Rx the same as
bit 16 in register Ry. Bits 16-31 in Ry are copied to Rx.

9008-B -33-

Ridge Processor

BLANK

-34- 9£IJ£lJ8-R

Ridge Processor

CHAPTER 4: PROGRAM CONTROL INSTRUCTIONS

BRANCH INSTRUCTIONS

INSTRUCTION FORMAT

Branch instructions use either the short or long displacement
memory address instruction formats shown below. When the least
significant bit of the displacement is set, the branch is predicted
to be taken.

Short displacement
memory address

Long displacement
memory address

1 1 1 1
7 8 1 2 5 6

3
1

+--------+----+----+----------------+
I opcode I Rx I Ry I displacement I
+--------+----+----+----------------+

1 1 114
9781256 7

+--------+----+----+-----------------------+
I opcode I Rx I Ry I displacement I
+--------+----+----+-----------------------+

Branch instructions either switch execution to the instruction at
the branch target address, or have no effect. If the branch
instructions have no effect then the next sequential instruction
following the branch is executed. Branch instructions affect the
value of the program counter (PC) as shown below.

Next PC <- PC + branch (next sequential instruction)
instruction length

or
Next PC <- PC + displacement (branch target address)

The branch instructions use program counter (PC) relative
addressing, which allows self-relocating code. The target address
of the branch instruction is computed by adding the 32-bit signed
displacement (sign extended to 32 bits in the short form case) to
the PC at the beginning of the branch instruction.

The least significant bit of the displacement field is used by the
processor to predict whether or not the branch will be taken. If
the bit is one, the processor will prefetch the instruction at the
target address. If the bit is zero, the processor will prefetch
the next sequential instruction. If the bit is incorrect, the
program will execute correctly, but the next instruction after the
branch will be delayed by four cycles to fill the pipeline.

-35- 9098-B

Ridge Processor

INSTRUCTION DESCRIPTIONS

Descriptions of the branch instructions follow.

Branch Instructions

Instruction Summary:

BR

BR

Operation:

Unconditional
Branch

Conditional
Branch

PC <- PC + displacement

if Rx relop Ry,
PC <- PC + displacement

The unconditional branch instruction changes PC to the target
address (PC + displacement). The branch prediction bit is
ignored and the target instruction is always prefetched.

The conditional branch instruction compares Rx to the contents
of Ry or to the 4-bit value of the Ry field, then may
conditionally branch to the target location. The conditional
branch instruction comparisons are made using two·s complement
arithmetic. The comparison uses the relational operator
(relop), which may be: equal to (=), less than «), greater
than (», not equal to «», less than or equal to «=), or
greater than or equal to (>=).

Loop Control Instruction

Instruction Summary:

LOOP Increment and
Branch

Operation:

Rx <- Rx + Ry field,
if Rx < 9,
PC <- PC + displacement

The LOOP instruction is similar to the conditional branch
described above. The LOOP instruction adds the 4-bit value of
the Ry field to the contents of Rx and branches to the target
location if the result is less than zero. If Rx is equal to
or greater than zero, the next sequential instruction is
executed.

9""'8-B -36-

Ridge Processor

SUBROUTINE CALL AND RETURN INSTRUCTIONS

There are three subroutine call and return instructions: call
subroutine, call subroutine register and return from subroutine.

Call Subroutine Instruction

Instruction Format:

The call subroutine instruction uses the short and long
displacement memory address instruction format shown below. The
second operand field, Ry, is not used in this instruction.

7 8
1 I
5 6

3
1

Short displacement
memory address

+--------+----+----+----------------+
I CALL I Rx I I displacement I
+--------+----+----+----------------+

114
07856 7

Long displacement
memory address

+--------+----+----+----------------------+
I CALL I Rx I I displacement I
+--------+----+----+----------------------+

Instruction Summary:

CALL Call Subroutine Rx <- PC + instruction length,
PC <- PC + displacement

Operation:

-37-

The call instruction places the address of the next
instruction in Rx and transfers execution to the target
location (PC + displacement). Short displacement memory
addresses are sign extended. Like the branch instructions,
the call instruction uses program counter (PC) relative
addressing, which allows self-relocating code.

9~~B-B

Ridge Processor

Call Subroutine Register and Return Instructions

Instruction Format:

The CALLR and RET instructions use the
instruction format shown below.

III
07812 5

+--------+----+----+
Register-to-register I opcode I Rx I Ry I

+--------+----+----+
Instruction Summary:

register-to-register

CALLR Call Subroutine Register Rx <- PC + 2,
PC <- PC + Ry

RET Return from Subroutine Rx <- PC + 2,
PC <- Ry

Operation:

The CALLR instruction
sequential instruction
location PC + Ry.

stores
(PC +

the address of the next
2) in Rx, and branches to the

The RET instruction stores the address of the next sequential
instruction (PC + 2) in Rx, and branches to the absolute
address in Ry. The main use of RET is in returning from
subroutines, but it can also be used as a call to a subroutine
when the absolute rather than the relative address is known.
Care must be taken in using the RET instruction for this
purpose so that the code remains self-relocating.

I
w
\0
I

INSTRUCTION FORMATS:

o 3 4 7

I OP+DE I
711 1112 15

OPCOD! I O:~DS I
REGISTER FORMAT

7 8 1112 1S 15 31

OPCODE I O~~=S I OFFSET I
MEMORY REFERENCE, SHORT FORMAT

7 8 11 12 15 14 47

OPCODE I O:';~S I OFFSET

MEMORY REFERENCE. LONG FORMAT

Segment
Referef!ced

Code

Code

Dala

Data
Memory
Reference
Format

Dala

Data

Code

Code

Register
Format

Length

Short

Long

Shorl

Long

Short

long

Short

Long

~
i
8-
0

= e-
li

~
z

I
'g.
iii ..
0
:t

A

8

C

0

RIDGE OPCODE MAP

Leut Slgnlllcant NIbble (Hez). ()pcode (4:71

o 9 A

MOVE NEG ADD SUB IIPY DIV REM NOT OR XOR

NOP MOVE ADO SUB MPY NOT
Immed Immed Immect Immect Immed

FlXT FIXA RNEG RADO ASUB RMPY RDIY UAKERD LCOUP FLOAT RCOMP

DFIXT OFIXR OANEG ORADD DRSU8 DRMPV OnDIV MAKEDR DCOMP DFLOAT DRCOMP

MOVe
SUS LUS RUM LDAEGS TRANS DIRT I

SR-fl : R_SR

I TEST I CALLA TEST Immediate AET I TEST I
I I

>
I

< I .. <= I >= I > < = <>

LSL UA ASL ASA DLSL DLSA CSL SEa

r-- r--
LSL Un ASL DLSL OLSA ASR CSL

SEH Immed "nmed Immed Immed Immed Immect ImmecI

I

> .. > I < I .. < .. <>
! I

- BA I- BA CALL --BRllIVII8CIIate--- - LOOP I- - -- '- BR

> > 1 < I < .. <> =
I I

=

I I I I
I I I I

f-- STOREB -
X X X X

- STOREH - - - STORI! - r - STORED -

I I I !
I I I I

X X X X

I I I I

I I I
X X X X 1-- LOADB - - LOADH - - -LOAD- - - - LOAOD -

I I I

I I I
I X X X X

I I i
I I I

X)()(x f- - LOADBP - - - LOADHP - - LOADP - -- LOAODP -

I I I

I I I I
)()()(x

x = Indend (•. e .. la'9,,1 add,ess is lurtll". ollsel by a '''gille, nllmed in Ihe hcond ope,and ',eld)
Immedlale (Immedl = lhe second ope,and 'ield conlalnS a vaJua.

S

AND

AND
Immed

TAAP

ICCALL

SR

C D E F

CDIT I HIT TaIT CHK

CHIC
ImmecI

£ADO I ESua EMPY EDI'I

UAINT I READ WRITE

, I

TEST Immedlale

<= I
> = -~ <>

<= I > .. I <>
I I

- - SR I_dlate - -

<= I > .. I <> I I

,
I

X
- - LADOR -

I

i
X

I

I
X

- LADDRP

I

,
)(

••

!::O
OJ
to
Cl)

to
N
o
o
Cl)
til
til
o
N

•

Ridge Computers
Corporate Headquarters

2451 Mission College Blvd.
Santa Clara , California 95054
Phone: (408) 986-8500
Telex: 176956

,/

	000
	001
	002
	003
	004
	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34
	35
	36
	37
	38
	39
	xBack

