¥
Il W I R R S S N N B R S Ba T BN B O EE B =

THE DESIGNERS GUIDE
TO PROGRAMMED LOGIC

For PLS 400 Systems

PRO-LOG CORPCRATION
852 Airport Road
Monterey, California

THE
DESIGNERS GUIDE
TO PROGRAMMED LOGIC

For PLS 400 Systems

Written by

Matt Biewer

PRO-LOG CORPORATION

852 Airport Road

Monterey, California

15 August 1973

TABLE OF CONTENTS

SUMMARY

ROM Program Memory
RAM Register Storage
Input/Output

PL.S 400 HARDWARE

PLS 401 Data Sheet
PLS 402 Data Sheet
PLS 403 Data Sheet

TIMING AND DEVICE DATA SHEETS

Timing
Device Data Sheets

PLS 400 SYSTEM ORGANIZATION

Central Processing Unit
PLS 400 Systems
Instruction Register
Program Address Counter
Subroutine Address Stack
Index Registers
Arithmetic Logic Unit
Program Memory

ROM Program Memory

RWM Program Memory

RAM Register Storage
Inputs and Outputs
Hexadecimal Notation

INSTRUCTION TABLE
INSTRUCTION DESCRIPTIONS

No Operation

Jump On Condition
Fetch Immediate

Send Register Control
Fetch Indirect

Jump Indirect

Jump Unconditional

g
o]
Q
(]

ww w NN[}) N HBERHE
WHE H addND = WwWww =

[N Y Y Y EY HOY N A I |
=

| IO R R R B I
G BN H H ONNdJouoord S 0wk =

Ao O U bbb DD DD D
I

ii

‘Write into RAM Status Character

TABLE OF CONTENTS (Cont)

Jump to Subroutine

Increment Register

Increment Register Skip if Zero
Add Register to Accumulator
Subtract Register from Accumulator
Load Register to Accumulator

‘Exchange Register with Accumulator

Branch Back and Load Accumulator
Load Data to Accumulator

Write Accumulator into RAM Character
Write Memory Port

Write ROM Port

Write to Program Memory

Write into RAM Status Character
Write into RAM Status Character
Write into RAM Status Character

wNhEF—Oo

Subtract from Memory with Borrow
Read RAM Character

Read ROM Port

Add from Memory with Carry
Read RAM Status Character 0
Read RAM Status Character 1
Read RAM Status Character 2
Read RAM Status Character 3
Clear Both

Clear Carry

Increment Accumulator
Complement Carry
Complement Accumulator
Rotate Left

Rotate Right

Transmit Carry and Clear
Decrement Accumulator
Transfer Carry Subtract

Set Carry

Decimal Adjust Accumulator
Keyboard Process

Designate Command Line

IMPLEMENTING PROGRAMMED LOGIC

System Block Diagram
Flow Charts

Register Maps

Hex Coding Form

PLS Design Example

e,
o]
Q
(0]

1
HPROVOVWOOO~JOAOO U

o

o

o - =+ e e e N it \io o it it e o !
I I

e

o

6-11
6-11
6-12
6-12
6-12
6-12
6-12
6-13
6-13
6-13
6-13
6-13
6-13
6-13
6-14
6-14
6-15
6-15
6-15
6-15
6-16

" TABLE OF CONTENTS (Concluded)

8. PROGRAMMING APPLICATIONS
Subroutines
Counting
Time Delays
Compare Subroutines
Logical Operations
Addition
Multiplication
Square Root
Teletype
APPENDIX A Symbols and Definitions
APPENDIX B Table of Powers of Two
APPENDIX C Hexadecimal/Decimal Integers
APPENDIX D Hexadecimal/Decimal Fractions
APPENDIX E Table of Powers of Sixteen
APPENDIX I Conversion Tables
LIST OF TABLES
- RAM Addressing
4-2 Hexadecimal Notation for Sixteen Combinations

6-1 I/0 Port and RAM Selection for One Bank by Even
Register Contents, as Used with SRC Instruction

8-1 Number of Steps Gained or Lost When a Routine
is Executed as a Subroutine

8-2 IS7Z Register Settings for "N" Operations

8-3 Delay Time Using Cascaded ISZ Instructions

8-4 Boolean Laws of Operation for 0 and 1

Page

4-7
4-9
6-3

8-10
8-13
8~-20

iii

iv

B WWwWw
1
NHWND =

[T
It
= W

ONNNN NN
1
HFOWONOUTEWNDHO

OOO'OCD
W

(DCDG)C:J(DOJG)
HHEWONOWU!

LIST OF ILLUSTRATIONS

PLS-400 Programmed Logic System Application

CPU Instruction Timing for Most Instructions

CPU Timing for SRC Instruction

CPU Timing for I/O and RAM Register Instructions

PLS-400 System Data Flow

Instruction Register, Program Address Counter,
and Subroutine Address Stack

Index Registers

Organization of Program Memory as Defined by
the CPU Instructions

RAM Index Register

System Block Diagram

Flow Chart

Register Maps

Hex Coding Form

Instruction and Operand Examples

Electronic Calculator Block Diagram

First Level Flow Chart

Flow Chart for Keyboard Scan

~ Flow Chart for Key Process

Example Showing how a Subroutine can be Used Many
Times From Various Places in a Routine
Example Showing Nesting of Subroutines

Example of a Subroutine with Multiple Endings
Example of Subroutines Sharing a Common
Ending Sequence (Stacking)

Flow chart of Execute and Count

Flow Chart of Count and Execute
Subroutine to Count Three Decimal Decades
Flow Chart of Short Delay

Flow Chart of Longer Delay

Flow Chart of Control Timeout

Flow Chart of Holdover

(Compare) Four Bits

(Compare) Eight Bits

Logical Operations

Multiple Precision Addition

Brute~Force Method of Multiplication
Long-Hand Method of Multiplication
Example of Decimal Long-Hand Square Root
Example of Binary Long-Hand Square Root
Flowchart for Long-Hand Square Root
Teletype Interface

TTY Data Line Format

TTY Character Set

Flow Chart for TTY Read Without Echo

o)
o
Q
0]

bW WwWwH
i
WNWNFN

P
I
[e) W >3

[o« JEN LN BEN BEN RN IR QU I T
I
MHERFRFFWOWONNUTWND

o 0
]
o Ut b

1. SUMMARY

PLS 400 systems are micro-programmable processing systems suitable
for implementing random logic, and numeric and small alpha numeric
data handling applications. As shown in Figure 1-1, the PLS-400
system consists of a CPU, RAM register storage, ROM program memory,
and input/output ports. The CPU is an Intel 4004 CPU chip, RAM
registers are the Intel 4002 circuits, ROM program memory is
implemented using Intel 1702 or NSC 5202 erasable reprogrammable
ROM's or equivalents, and I/O ports are TTL latches and selectors.

CPU CAPABILITIES

® Twelve bit program address

Three level address stack for subroutines
Sixteen, four bit index registers

A four bit accumulator plus carry

One, eight bit instruction word per cycle
Forty one single word instructions

Five double word instructions

Arithmetic and accumulator instructions

Add and subtract with carry

Complement, rotate, increment, decrement, clear,
and load the accumulator

Complement, clear, and set carry
® Decimal arithmetic instructions

® Decision making (address control instructions)

Test accumulator for zero or nonzero
Test carry for logic one or zero

Test external input for high or low

Increment any index register and test for zero

® Input/output instructions

RAM register instructions

® Register instructions

PLS 40O PROGRAMMED LOGIC SYSTEM

RAM ROM ROM ROM ROM
PROGRAM PROGRAM PROGRAM PROGRAM
REGISTER [HMEMORY MEMORY MEMORY HEMORY

CPU BUS

Z Z
N\ N

V4
N

4
<

QUTPUT OuUTPUT INPUT INPUT
PORT PORT PORT PORT

) D)) (U,

OUTPUT INPUT
INTERFACE = 170 DEVICE = INTERFACE
DRIVERS BUFFERS

-

0uTPUT INPUT
INTERFACE 1/0 DEVICE INTERFACE
DRIVERS BUFFERS

AN
-

1/0 DEVICES APPLICATIONS

f

KEYBOARDS DATA TERMINALS ——
DISPLAY MEDICAL ELECTRONICS
TELETYPE CONTROL SYSTEMS
PAPER TAPE - TEST SYSTEMS
MAGNETIC TAPE BUSINESS MACHINES
CONTROL PANELS
D/A- CONVERTERS
A/D CONVERTERS

MEMORY
N MODEMS _/

CRT

FIGURE 1-1

PLS-400 Programmed Logic System Application

ROM PROGRAM MEMORY

® Programmable erasable ROM's MSC 5202, Intel 1702
® 256 eight bit instructions words per page
® Sixteen pages maximum (ROM's) 4096 words of instruction

RAM REGISTER STORAGE

® Intel 4002 RAM

® Organized as four registers of 16 four bit words
plus four status words for each register

® Requires CPU instruction addressing
® Includes four output lines used with CPU output
instruction

INPUT/OUTPUT

® TTL output latches and input selectors

® Requires CPU selection by instruction

® 128 lines directly selectable

® Input instruction, gates data into the CPU accumulator

® Output instruction, latches accumulator data at output

2. PLS 400 HARDWARE

The PLS 400 series provides a choice of micro-processor card sets
with varying expandability. Each set provides the CPU, ROM pro-
gram memory, RAM register storage and I/0. All sets are imple-
mented with CPU clock and external reset and power-on reset
circuits. ROM program memory on each card set is implemented
with programmable erasable ROM. The use of erasable, reprogram-
mable ROMs provides a speedy tool for implementing programmed
logic. The PLS 401 one card set is complete on a single card
providing the lowest cost for limited system size. The system
expansion is limited to 1024 words of ROM program memory, 320
characters of RAM register storage, four output ports, four
input ports, and one RAM output port.

The PLS 402 two card set provides for reasonable program memory
and extensive I/0. The system expansion is limited to 1536 words
os program memory, 320 characters of RAM register storage, 4 RAM
output ports, and up to 128 I/O lines.

The PLS 403 three card set provides maximum expansion capability
on ROM, RAM and I/O. The system expansion is unlimited to the
full CPU capability of 4096 words of program memory, 1280 char-
acters of RAM register storage, 48 lines of RAM output, and 128
lines of I/O. The PLS 403 CPU Card 4111 will accept either eight
4002 RAM register devices or eight 4001 masked ROM devices. This
card in itself can become a one card system with masked ROMs.

PLS-401 SINGLE CARD SYSTEM

A programmable logic system which implements the Intel MCSTM_4 Micro Computer Set into a working
system with CPU, ROM program memory, RAM register storage and I/O on a single card. The PLS-401
organization provides for reasonable program and 1/O capacity to give the lowest cost approach to investi-

gating PLS technology.

FEATURES

@ Single card programmed logic system for protypes or production

® 1024 words of ROM program memory capacity (4 ROMs)
® 320 characters of RAM register storage capacity (4 RAMs)

TEST

EXT
RESET

COMPUTER ROM PROGRAM MEMORY

® Four output ports (16 lines)
@ Four input ports (16 lines)
® One RAM output port (4 lines)

INPUT/OUTPUT

cPu

CPU BUS —_— | cPu

RESET

CLock

- o

1/0 BUS

——— PORT

ouTPUT

INTERFACE

/= =\
RAM P o ROM

N—q 80 P—° =256 x 8}—=
cHar p—0 g
0 p—a= ADDRESS [}

BUS

20 ROM
o \;1256 X 8=

RAM ROM
d 8¢ N—=256 x =/

~
~

RAM L ROM
80 = |y x o=

3 3

UP TO b RAMS UP TO 4 ROMS

DATA
BUS

0 -~

INPUT

N PORT

ouTPUT

3 F_' PORT

INPUT

P PORT

32 1/0 LINES TOTAL
16 OUTPUT LINES
16 INPUT LINES

PLS-401 ONE CARD PROGRAMMED LOGIC

PLS-401 SPECIFICATIONS

Card Dimensions

4.5 inches high

6.5 inches long

0. 48 inch maximum profile thickness
0.062 inch printed circuit board thickness

Includes: -

Card ejector

One 4004 CPU soldered to board

One 4002 RAM soldered to board plus three RAM sockets
One 1702A ROM and four ROM sockets

Master power-on and external reset circuit

Two phase CPU clock circuit

Four TTL output ports (16 lines)

Four TTL input ports (16 lines)

One MOS output port (4 lines)

CPU test input (MOS)

Maximum System Capabilities

Four 4002 RAMs (320 four bit characters)
Four 1302, 1602 or 1702 ROMs (1024 words of program memory)
20 output lines

16 TTL port lines
4 MOS RAM port lines

16 TTL input lines
Instruction Execution Capability

Capable of executing all 46 of the 4004 CPU Instruction except for DCL and WPM
10.8 microseconds instruction execution time

Logic Levels of External Connections:

Low level active

TTL Port: Standard TTL compatibility and loading

MOS Input: Standard TTL compatibility

MOS Output: Drive capability, one LPTTL or one standard TTL load with 12K
pull-down to -VDD

Power Requirement

+VCC = +5volts 5% @ 550 mA maximum fully loaded (30 mA per RAM, 35 mA per ROM)
GND = Ovolts
-VDD = -10 volts 5% @ 350 mA maximum fully loaded (30 mA per RAM, 35 mA per ROM)

Connector Requirements

56 pin, 28 position dual-readout on 0. 125 centers Mcs™ is a registered trademark

of the Intel Corporation

PLS-402 TWO CARD SYSTEM

A programmable logic system which implements the Intel MCSTM_4 Micro Computer Set into a working
system with CPU, ROM program memory, RAM register storage and 1/0O on two cards. The PLS-402
organization provides for reasonalbe program capacity and unlimited 1/0 capacity within the MCS-4
capability. The CPU card can be applied individually or used with one or more 1/0 cards depending on
system requirements.

FEATURES

Two card programmed logic system with expandable /O
1536 words of ROM program memory capacity (6 ROMs)
320 characters of RAM register storage capacity (4 RAMs)
Eight I/O ports (32 lines) expandable to 128 lines

Four RAM output ports (16 lines)

COMPUTER ROM PROGRAM MEMORY INPUT/OUTPUT

Py 170
P BUS Py 1/0 8US
- porT |
TEST O— P q wverFace == orT
Ve = 5
EXT ROM
RESET =1 5 - 170
\ PORT
ADDRESS 256% 8 DATA
BUS BUS

e

ROM

1/0

256X 8 N\ PORT

2

ROM UP TO 32 INPUT OR OUTPUT

2 LINES
256 8 i

'

1/0 4113

ROM
- 3 -
¥ 256% 8)
L
UP TO 4 RAMS UP TO 6 ROMS TOTAL UP TO 64 1/0 LINES TOTAL

4115 1/0 4113

* 128 LINES WITH FOUR 1/0 CARDS

CPU ROM | 1/0

TCITCCELEI

|

S

— —
SY 10048 XA sha | Ve
PAC-LOG MADE (N USA

PLS-402 TWO CARD PROGRAMMED LOGIC

PLS-402 SPECIFICATIONS

Card Dimensions

4.5 inches high

6.5 inches long

0. 48 inch maximum profile thickness
0.062 inch printed circuit board thickness

Includes: .
One 4115 CPU card
One 4113 1/0 card

CPU Card Includes:

Card ejector

One 4004 CPU soldered to board

One 4002 RAM soldered to board plus three RAM sockets
One 1702A ROM and six ROM sockets :
Master power-on and external reset

Two phase CPU clock circuit

Four MOS output ports (16 lines) when four RAMs are used
One MOS CPU Test input

1/0 Card Includes:

Card ejector

Eight TTL ports (32 lines)

Each port selectable as either an input port or output port

Output port lines can be wired for either high level or low level active
Common and individual reset inputs for each port

Maximum System Capabilities
Four 4002 RAMs (320 four bit characters)
Six 1302, 1602, or 1702 ROMs (1536 words of program memory)

16 MOS RAM port lines \
128 TTL I/O port lines (requires four 4113 I/O cards)

64 output lines
64 input lines

Instruction Execution Capability

Executes all 46 of the 4004 CPU instructions except for DCL and WPM
10. 8 microseconds instruction execution time

Logic Levels of External Connections:
Low level active
TTL Port: Standard TTL compatibility and loading
MOS Input: Standard TTL compatibility
MOS Output: Drive capability, one LPTTL or one standard TTL load with 12K
pull-down to -VDD

Power Requirement: One CPU card and one I/O card both fully loaded

+VCC = +5 volts 5% @ 950 mA maximum (30 mA per RAM, 35 mA per ROM)
GND = 0 volts , 4
-VDD = -10 volts 5% @ 450 mA maximum (30 mA per RAM, 35 mA per ROM)

Connector Requirements for each card

1 sis MCSTM is a registered trademark
56 pin, 28 position dual-readout on 0. 125 centers . of the Intel Corporation

PLS-403 THREE CARD SYSTEM

A programmable logic system which implements the Intel MCSTM_4 Micro Computer Set into a working
system with CPU, ROM program memory, RAM register storage and I/O on three cards. The PLS-403
organization provides for unlimited program and I/O capacity within the MCS-4 capability. This modular
arrangement allows the designer to tailor system size to suit his needs.

FEATURES

® Three card programmed logic system with expandable RAM, ROM and 1I/O

® 2560 words of ROM program memory capacity expandable to 4096 words

® 640 characters of RAM register storage capacity expandable to 1280 characters
® Eight I/O ports (32 lines) expandable to 128 lines

® Six RAM output port capacity (24 lines) expandable to 48 lines

® CPU card can be used as a single card system with masked ROMs

® Allows use of RAM program memory

COMPUTER ROM PROGRAM MEMORY INPUT/OUTPUT
cPU - 170 [~
1/0 BUS
TesT & d CPU BUS —— cPu /0 BU p— PORT
o0 \ INTERFACE N
c e
RESET = B 0
EXT L__RESET RAM g: ROM 170 |
RESET N -
N—d 80 - 256 x 8 PORT
CHAR D— ADDRESS 0 DATA |
BUS BUS
cLock l |
RAM g" L ROM
= -) - A
N—d so - 256 X
CHAR |

b [L]
UP TO 8 RAM REGISTERS -———— UP TO 10 ROMS
y q

U

: . | e

S

TO 32 INPUT OR OUTPUT LINES

CPU bin ROM 4112 1/0 4113
[2 L <
UP TO 16 RAM REGISTERS TOTAL UP TO 16 ROMS TOTAL UP TO 64 1/0 LINES TOTAL ~
CPU EXPANDER brii-2 ROM EXPANDER byi2-2 1/0 4113

* 128 LINES WITH FOUR 1/0 CARDS

CPU ROM 1/0

PLS-403 THREE CARD PROGRAMMED LOGIC

PLS 403 SPECIFICATIONS

Card Dimensions

4.5 inches high

6.5 inches long

0.48 inch maximum profile thlckness
0.062 inch printed circuit board thickness

Includes:

One 4111 CPU card
One 4112 ROM card
One 4113 I/O card

CPU Card Includes:

Card ejector

One 4004 CPU soldered to board

One 4002 RAM with eight RAM sockets

Master power-on and external system reset

Separate external CPU reset

Two phase CPU clock circuit

Six MOS port (24 lines) available when used with RAMs or masked ROMs
One MOS CPU TEST input

RAM sockets will accommodate 4001 masked ROMs

ROM Card Includes

Card ejector
One 1702A with 10 ROM sockets
Signal lines for controlling RAM program memory

1/0 Card Includes

Card Ejector

Eight TTL ports (32 lines)

Each port is selectable as either an input port or output port

Output port lines can be wired for either high level or low level active
Common and individual reset inputs for each port

Maximum System Capabilities

16 4002 RAMs (1280 four bit characters) or 16 masked ROMs (4096 words of program memory)
16 1302, 1602, or 1702 ROMs (4096 words of program memory) with ROM expander 4112-2
12 MOS ports (RAM or 4001 masked ROM) with CPU expander 4111-2

64 output lines
64 input lines

Instruction Execution Capability

Capable of executing all 46 of the 4004 CPU instructions
10.8 microseconds instruction execution time

Logic Levels of External Connections
Low Level active -

TTL Port: Standard TTL compatibility and loading

MOS Input: Standard TTL compatibility

MOS Output: Drive capability, one LPTTL or one standard TTL load with 12K
pull-down to -VDD

Power Requirement: One CPU card, one ROM card, one I/O card all fully loaded

+VCC = +5 volts 5% @ 1.3 amp maximum (30 mA pei' RAM 35 mA per ROM)
GND = 0 volts
-VDD = -10 volts 5% @.0.7 amp maxxmum (30 mA per RAM 35 mA per ROM)

Connector Requirements for each card ™
MCS' is-a registered trademark

56 pin, 28 position dual-readout on0.125 centers of the Intel Corporation

CM

3. TIMING AND DEVICE DATA SHEETS

TIMING

The PLS 400 systems use a 4 bit micro-processor thus all data is
communicated between the system elements in groups of 4 bits.

The instruction cycle for the CPU requires eight, 4 bit time
intervals as shown in Figure 3-1. The eight time intervals
accomplish program memory addressing, instruction retrieval, and
instruction execution. The 12 bit address, required to address
up to 4096 words of program memory, is sent from the CPU to the
program memory in three time intervals defined as Al, A2, and A3.
The eight bits of instruction for each word are sent from the
addressed program memory to the CPU in two time intervals defined
as M1l and M2. During the last three time intervals defined as X1,
X2, and X3 the CPU executes the instruction.

Each time interval is'generated by the operation of the two phase

CPU clock circuit. The two phase clock accomplishes the operations
within the MOS CPU, RAM, and CPU interface devices.

INSTRUCT ION CYCLE
19.8 us
1.35 us
I |

L

Al A2 A3 M1 M2 X1 X2 X3

ADDRESS INSTRUCT ION EXECUTION
|

FROM CPU TO FROM PROGRAM INCREMENT OR CHANGE
PROGRAM MEMORY MEMORY TO CPU PROGRAM ADDRESS COUNTER

LOW ORDER |HIGH ORDER| PAGE
WORD WORD ADDRESS OPR OPA
ADDRESS | ADDRESS

FIGURE 3-1

CPU Instruction Timing for Most Instructions

SYNC

The sync pulse sent from the CPU keeps the RAM register and CPU
interface devices in step with the CPU. The CM line signals the
RAM registers and the CPU interface device to accept and decode
chip select information on the CPU bus. CM always occurs at A3
time as this is the ROM program memory chip select (page) address.
CM also occurs at X2 time as shown in Figure 3-2 during the SRC
instructions for addressing RAM register devices and I/O ports,
and at M2 time shown in Figure 3-3 during I/O and RAM register
instructions for sending operand information to the RAM registers
and the CPU interface circuits.

CM-RAM lines available from the CPU are used for bank switching of
RAM register devices. If four or less RAM register devices are
used on a system they may be tied to the CM line. When the CM-RAM
lines are used and selected using the DCL instruction the timing
is identical to the CM timing shown in Figures 3-1, 3-2, and 3-3.

g1

I INSTRUCTION. CYCLE I
10.8 us)
1.35 us
| |]

L Eaw S s LrlLll_FiLJ

I
M_JL{L{I_i LJI_FL_LlrU

) =

CM 1 l l
Al A2 A3 M1 M2 X1 X2 X3
ADDRESS INSTRUCT ION EXECUTION
FROM CPU TO FROM PROGRAM INCREMENT PROGRAM
PROGRAM MEMORY MEMORY TO CPU ADDRESS COUNTER
LOW ORDER |HIGH ORDER| PAGE SRC | SRC
WORD WORD ADDRESS OPR OPA ADDRESS | ADDRESS
ADDRESS | ADDRESS EVEN REG | 0DD REG
FIGURE 3-2

CPU Timing for SRC Instruction

INSTRUCTION CYCLE
19.8 us

TS

| I

SYNC L—_I————
- | R
Al A2 A3 M1 M2 X1 X2 X3
ADDRESS INSTRUCT 10N EXECUTION
\ ‘
FROM CPU TO FROM PROGRAM INCREMENT PROGRAM
PROGRAM MEMORY MEMORY TO CPU ADDRESS COUNTER
LOW ORDER |HIGH ORDER| PAGE RAM OR
WORD WORD ADDRESS OPR OPA 1/0 DATA
ADDRESS ADDRESS TO RAM IN OR OUT
AND CPU
INTERFACE
FIGURE 3-3

CPU Timing for I/0O and RAM Register Instructions

DEVICE DATA SHEETS

The PLS 400 series uses 4000 series MOS devices. For exact spe-
cifications on the electrical and timing requirements of these
devices refer to the Intel data sheets. As an aid to the user

the 4001, 2, 3, 4 electrical specifications are shown with power
supply reference of +5 and -10 volts as used in the PLS 400 system.

ABSOLUTE MAXIMUM RATINGS DC AND OPERATING CHARACTERISTICS

Ambient Temperature Under Bias 0°C to +70°C Ta = 0°C to +70°C; Vpp = =10 V +5%, Vgg = +5 +5%
Input Voltages and Supply Voltage)

Logic "O" is defined as the more positive voltage
With Respect to Vgg +0.5 to =20 V = e ,

(Vig, Vo), Logic "1" is defined as the more
Power Dissipation 1.0w negative voltage (Vig, Vor,)

SUPPLY CURRENT

Limit)
Product Symbol Parameter Min Typ Max Unit Test Conditions
4001 1ppl Average Supply Current 15 20 mA | Ta = 25°C
4002 lpp2 Average Supply Current 17 33 mA Ta = 25°C
4003 1pp3 Average Supply Current 5.0 8.5 mA twr, = twg = 8 us; Ta = 25°C
4004 1ppa Average Supply Current 30 40 mA Ta = 25°C
INPUT CHARACTERISTICS
4001/2/3/4f 1r1 Input Leakage Current 10 mA | Vi, = Vpp
4001/2/3/4| Vg Input High Voltage +3.5 +5.3 v
(all inputs except
_} clock)
4001/2/3/4 | Vi1, - Input Low Voltage VbpD -0.5 v Inverting Input
(all inputs except VDD -1.5 v Noninverting Input
clock)
4001/2/4 Ve Clock Input Low Voltage | Vpp -8.4 \Y
4001/2/4 VIHc Clock Input High +3.5 +5.3] Vv
! Voltage .
4001 Rt I/0 Pins Input) 10 18 35 KQ Internal input resistor is
Resistance optional
OUTPUT CHARACTERISTICS
4001/2/4 I1o Data Bus Output 10 mA | Vour = -7 V, chip disabled
Leakage Current .
4001/2/3/4 | Vou Output High Voltage 5.0 4.5 v Driving 4000 series loads
only
4001/2/4 Ionl Data Lines Sinking 10 18 mA | Voyr = 5 V
. Current "1" Level
4001/2 Ion2 L/0 Output Lines 2.5 | 5 mA | Voyr = 5 V
Sinking Current,
"1l" Level
4003 IOL3 Parallel Out Pins 0.6 1.0 mA Voyr = 5V
Sinking Current,
"1" Level
4003 IoLs4 Serial Out Sinking 1.0 2.0 mA | Voyr = 5V
Current, "1" Level
4004 Ions CM~ROM Sinking Current 6.5 12 mA | Voyr = 5V
"1" Level
4004 Ione CM-RAM Lines Sinking 2.5 4 mA Vour = 5 V
Current "1" Level
4001/2/4 VoLl Data Lines, CM Lines, -7 -5 -1.5] "V Iopl = 500 uA
Sync Output Low Voltage
4003 VoL3 Output Low Voltage -6 -2.5| -1.5 v Iorn3 = 10 ud
4001/2 Vor2 I/0 Output Lines -7 -2.5| -1.5| v Ion2 = 50 A
. Output Low Voltage
4001/2/4 RoHl Output Resistance Data 150 250 Q Vouyr = 4.5 V
Lines "O" Level
4001/2 Ron2 Output Resistance 1.2 1.8 Ke | Vour = 4.5V
I/0 Line "O" Level
4003 ROH2 Parallel-Out Pins Out- 400 750 Q Vour = 4.5 V
put Resistance "O" :
Level
4003 ROH4 Serial Out Output 650 1200 Q Vouyr = 4.5V
Resistance "O" Level
4004 ROH5 CM-ROM Output 320 600 Q Vour = 4.5 V
Resistance "O" Level
4004 RoHE CM-RAM Lines Output 1.1 | 1.8 R | Vour = 4.5V
Resistance "O" Level

Typical values are for Tp = 25°C and Nominal Supply Voltages

4. PLS 400 SYSTEM ORGANIZATION

CENTRAL PROCESSING UNIT

Central processing unit consist of a central processing unit (CPU)
and a memory that has a stored sequence of instructions for the
CPU. The CPU is operated by a clock circuit to alternately fetch
and execute the memory instructions. The CPU fetches an instruc-
tion by sending an address from a program address counting register
to the program memory. The program memory decodes the address and
sends the selected instruction to the CPU. The CPU stores the
instruction in an instruction register where it is decoded and
executed. ‘

PLS 400 SYSTEMS

The PLS 400 systems are controlled by the Intel 4004 CPU chip.

The CPU performs control and data transfer functions with the

logic elements shown in the system data flow diagram Figure 4-1.
The CPU communicates with program memory, RAM registers and I/O

- ports by connecting appropriate elements of the system to the

4 bit CPU BUS. Conceptually the information paths exist as

shown in Figure 4-1. : ‘

In addition to an instruction register and program address counter,
the CPU contains a program address counter stack, an arithmetic
logic unit (ALU) with a four bit accumulator register, and 16

four bit registers for intermediate data storage.

INSTRUCTION REGISTER

The instruction register shown in Figure 4-2 consists of eight
bits of storage and decoding for single word and the first word

of double word instructions as they are received from the program
memory. The 4 bits associated with M1 time are always instruction
information. The 4 bits at M2 time can be additional instruction
information, data constants, or page address information.

The second word of a double word instruction does not go to the
instruction register but goes as either data to the index registers
or as a word address to Al and A2 of the program address counter.

e

FIGURE 4-1
PLS-400 System Data

Flow

cPU
TO OTHER RAM PROGRAM MEMORY 1T° OTHER RAM REGISTERS
L 4
INDEX REGISTER 3 RAM REGISTER
A A ' 1z REG a REG CHAR STATUS
= = CHAR
]84 2 14PAIRI8 4 2 14O 01 23456789ABCDEF[DT 23
WRITE E 7 m G h } 1 8
| A3 cmee | T RESEEAREASaRRaannRss bk
Y/ READ FIN PX £ B KT8 B & ¢ 1444414 L1413 44Y 0
Y Y v [NDR LZE MBI 1 8
7 . 73 M O 1131114} } 14111 HE B
3 =t 1 =t S e +++4++4 F+4+ 4+ 4+ 4+ + ++ +4 2
[} BB) DM [1rittttttttttittttettl’
- RAM 3
4 1 PROGRAM 1111 E + 3 4] REG
) & MEMORY = ITTITITITITI133111 >
/_ + 4 4 4+4444+4+++1 41 .~-,|
- 256 X 8
Ve FHidHi444- 11] ,.ﬁm
)| o 2l FORSEsRtasansssssng i INEY
. LD !‘ Y E 1 1 EVEN
A]sRe Px wRITE ACCUMULATOR XH RDM T
A2 Al . READ RAL " : WRM SRC 0DD
R -
% 8 L 21 [
; ' SRC - SRC
B S ’
‘ k -« WPM — . / '
- N \
CARRY BIT
INSTRUCTION }
1 REGISTER ‘S-TJC L} Y
{ i 81 opr € LDM X
1 , \ v o e BBL X
! N Z =lb
A3 CHIP SELECT / \ 8 - OUTPUT
i OPA - J = ’e)
F 24 M2 - N O
ROM 1 \ - D
PROGRAM ' JUN =
; O
A MEMORY L/ JUN 2 s
266 X 8 N\, JMS 2 = JIN PX A
JCN 2 = .
1Sz 2 k] Y t SRC
A2 Al S | A2 Al :
; PROGRAM ADDRESS T T .
FIN PO COUNTER
\ FIN PO o T
SRC PX
= 4 =/ N RDR | e —
A BBL}UMS Y - 2 -~ -0
1 = o)
] A Y
¢ SUBROUTINE 4———J+—+—+F+—+—+ LEVEL] b
TO OTHER ROM PROGRAM MEMORY ADDRESS STACK I4—t—t 4+ Jtpi1 LEVEL 2 o]
. LEVEL 3 TO OTHER 1/0 PORTS
8 -4 2108 4 2158 4 21

INSTRUCTION
REGISTER

OPR
M1

FIRST WORD FROM
PROGRAM MEMORY —

NI~ -

8 BITS OPA L o
M2 |
JUN
JUN 2 JMS
SECOND WORD FROM JMS 2 =
PROGRAM MEMORY JCN 2 ‘}
8 BITS 52 2 ' '
A3 A2 Al
PROGRAM ADDRESS I
COUNTER
ADDRESS TO P
PROGRAM MEMORY - L 85l | ms ¥
12 BITS
SUBROUTINE f——t 4——t—————] LEVEL]
ADDRESS STACK i+ + — tgz%t %
8§ 4 21018 4 218 & 2.1
FIGURE 4-2

Instruction Register, Program Address Counter,
and Subroutine Address Stack

PROGRAM ADDRESS COUNTER

The program address counter shown in Figure 4-2 is a 12 bit
sequential counter which keeps track of the location of the next
instruction to be executed from program memory. The four most
significant bits (A3) are called the page address and the eight
least significant bits (A2 and Al) are the word address of the
instruction on a page. The program address counter is normally
incremented by 1 for each instruction word unless the instruction
is the type which modifies the count by loading a new address.

SUBROUTINE ADDRESS STACK

The subroutine address stack shown in Figure 4-2 consists of

three 12 bit registers used to save the program return address for
each of three allowable subroutine levels. The subroutine address
stack is controlled by two CPU instructions, an entry instruction
JMS and a return instruction BBL. Each entry to a subroutine
causes the program address counter to be transferred to the top
most level of the subroutine address stack. The three levels in
turn are pushed-down to accommodate the new entry. The lowest
level is lost off the bottom of the stack. Each return from a
subroutine causes the stack to be pulled-up one level with the top
most address going to the program address counter.

INDEX REGISTERS

The index registers consist of sixteen 4 bit registers which can

be directly operated on by various instructions, either individually
or in pairs. Figure 4-3 shows the registers organized as the even
numbered and the odd numbered registers, or as seven pairs, each
pair consisting of one even and one odd numbered register.

When the registers are being used with the 4 bit accumulator by
various instructions they are used individually. When data is
loaded direct from program memory or the registers are used for
address control they are used in pairs because of the 8 bit require-
ment for these functions.

ARITHMETIC LOGIC UNIT

The arithmetic logic unit consists of a 4 bit accumulator register
and a carry flip-flop as shown in Figure 4-3. 1In addition to pro-
viding the arithmetic functions of ADD and SUBtract the accumulator
is the central control and distribution point for data flow in the
system. All data transfers to and from I/0O. RAM registers and

the index register occurs with the accumulator register.

INDEX REGISTER

REG
8 4 21 1PAIRI 8 4 21

PROGRAM MEMORY

/—/J 8 BITS

E P7 R F
FROM FIM PX = — 1
DATA FR) N ZH B ADDRESS TO
p ——t- r——t SR CPX
PROGRAM MEMORY cE] DI KN B 1/0 AND RAM
8 BITS N DN 2 N 5 8 BITS.
A N 2N N
J B BCE 2 | FIN PX ADDRESS TO
l

ADD Y
t BUS Y
LD n
ACCUMULATOR XCH Y
RAL RAR
8 4 2 1|
t x : DATA. FROM OR:TO
- 1/0 AND RAM .
REGISTERS
CARRY. BIT b BITS
J
1J
STC
cLC
CMC
FIGURE 4-3

Index Registers

In addition to the instructions which control data transfer to or
from the accumulator there are instructions which directly control
the accumulator or its associated carry bit. The accumulator can
be tested, incremented, decremented, set to any value, cleared,
complemented, rotated right or left through the carry besides
being manipulated for decimal arithmetic. The carry bit can be
set, cleared, complemented, or tested. :

PROGRAM MEMORY

Program memory stores the instruction to be executed by the CPU
and is defined by the CPU instruction set as a page oriented
memory of 256 words per page as shown in Figure 4-4. The CPU
addresses the page and word and the program memory sends the

8 bit word at that address to the CPU.

16 PAGES
A3

[00
01
02

256 WORDS
PER PAGE |
A2, Al

FC
FD
FE
L FF

8 B1TS/WORD

FIGURE 4-4

Organization of Program Memory as Defined
by the CPU Instructions

The 12 bit addressing capability of the CPU allows direct access
to 16 pages with the four A3 bits used as page address. The
eight bits at Al and A2 are used for the word address within a
page. It is important to understand the page organization in
terms of the address control instructions (jumping and branching).
Certain address instructions use the full twelve bits of address
and may be used to change control within a page or from page to
page. Other address control instructions use only eight bits of
address and are limited to changing control only within a page.

The PLS 400 systems are implemented with ROM (read only memory)
program memory only. In addition the PLS 403 has all the control
lines available for implementing RWM (read write memory) program
memory. ROM program memory is used for systems in fixed applica-
tions. RWM memory is used where it is desired to change the sys-
tem application by the operator. RWM is a considerable step in
system complexity in hardware and programs, and is therefore not
recommended unless absolutely necessary.

ROM PROGRAM MEMORY

ROM program memory on the PLS 400 system is accomplished as
shown in Figure 4-4 using programmable erasable ROMs organized
as 256 location of 8 bits. This organization is equivalent to
the page size of the CPU therefore each ROM chip equals one page.
Other ROM sizes and organizations can be used if the appropriate
hardware addressing is provided. '

ROM program memory addressing is an automatic function of the PLS
hardware. The only control the program designer has over ROM
memory is use of the program control instructions to change the
instruction sequence.

RWM PROGRAM MEMORY

RWM program memory can be accomplished on the PLS 403 system only.
The Intel 4008 and 4009 interface devices provide the address lines
and control lines necessary for writing into the desired memory
type. The WPM instruction allows writing 4 bits at a time from

the accumulator to the RWM. For applications and suggested imple-
mentation, refer to the Intel 4008 and 4009 data sheet.

RAM REGISTER STORAGE

The PLS 400 systems use the Intel 4002 RAM register devices for
program controlled data storage. Each 4002 is organized as four
registers of 20 characters as shown in Figure 4-5. FEach 20 char-
acter register consists of 16 individually addressable characters
of main storage plus 4 instruction selectable status characters.

The instruction capability of the CPU allows addressing of up to

32 of the 4002 RAM devices. This is accomplished through an
organization of 8 banks of 4 RAM chips per bank. RAM banks are
selected by the DCL instruction that specifies which of the four
CM-RAM lines out of the CPU will be active. The active CM-RAM
line designates which RAM bank will respond to the SRC instruction.
The SRC instruction selects the RAM chip, register and character.
A summary of RAM addressing is given in Table 4-1 and further
definition of RAM addressing is given in Section 6 under the SRC
and DCL instructions.

TABLE 4-1
RAM Addressing
Level Instruction
RAM Bank DCL
RAM Chip SRC, Even Register high order bits
RAM Register .SRC, Even Register low order bits
RAM Character SRC, 0dd Register 4 bits ‘

INPUTS AND OUTPUTS

The flow of data into and out of the PLS systems is accomplished
through the I/O ports of four lines each. To accomplish an input
or output function a port must first be addressed by the CPU
instruction SRC. The even register of the SRC pair contains the
address of the port to be selected. Once a port has been addressed
it remains selected for as many input or output operations as de-
sired until another port is addressed.

There are two types of output ports and one type of input port.
Each RAM register device has an output port packaged physically
within the device. This port shares chip select addressing with
the RAM but has its own instruction WMP for the transfer of data
from the accumulator to the port. The port latches any data sent
to it and retains it as a stable outout until a subsequent WMP
instruction changes the data. The RAM port lines are MOS low
level active outputs capable of driving one low power TTL load.

REG CHAR STATUS
CHAR
23456789 ABCDETF]DI 23
8
REG
4
21 o
l
8
R
, | REG
21 1
1
ﬁ REG
2l 2
|
E REG
2] 3 | srRe
| EvEN|
WRM SRC 0DD
\ N JW
16 MAIN CHARACTERS SELECTED L STATUS
ONE CHAR AT A TIME CHARACTERS
BY SRC ODD REGISTER. READ OR WRITE
READ OR WRITE INTO DIRECTLY BY
SELECTED CHARACTER BY INSTRUCTION
INSTRUCTIONS RDM, WRM RDX, WRX

FIGURE 4-5
RAM Index Register

>

L REGISTERS
SELECTED BY

SRC EVEN
REGISTER

The other type of output port is implemented in the PLS 400 systems
using TTL logic. The CPU instruction WRR is used to send data to

a TTL quad D type flip-flop from the accumulator. The TTL flip-
flops latch the data as a stable output until a subsequent WRR

instruction changes the data.

The PLS 400 input ports are also implemented with TTL logic.

The

CPU instruction RDR reads data from the selected input port into

the accumulator.

HEXADECIMAL NOTATION

The basic 4 bit structure of the CPU makes it convenient to use
hexadecimal notation to express with a single character, one-of-
sixteen possible combinations.

The singlé hexadecimal character notation 0—9, A—>F is used to
refer to the:

16 Basic Instructions

16 I/0 and RAM Instructions

16 Accumulator Instructions

16 Index Registers

16 Pages of Program Memory Capacity

16 RAM Register Chip Capacity

16 Characters in a RAM Register

16 Output Ports

16 Input Ports
A double hexadecimal character notation is applied to the 8 bit
instruction word address for program memory, where the decimal

addresses 000 through 255 are given as 00 through FF in
hexadecimal.

Table 4-2 shows the hexadecimal notation for sixteen combinations.
Additional hexadecimal tables are given in the appendix.

TABLE 4-2
Hexadecimal Notation for Sixteen Combinations
Hexadecimal Binary Decimal
0 0000 0
1 0001 1
2 0010 2
3 0011 3
4 0100 4
5 0101 5
6 0110 6
7 0111 7
8 1000 8
9 1001 9
A 1010 10
B 1011 11
C 1100 12
D 1101 13
E 1110 14
F 1111 15

5.

INSTRUCTION TABLE

This section presents the 4004 CPU instructions in a short table

form.

Section 6 contains

HEX
CODING

MNEMONIC

OPR

OPA

detailed descriptions of the instructions.

DESCRIPTION OF OPERATION

0

NOP

No operation.

1

Ag

CX
Ay

JCN

Cx
LABEL

Jump on condition Cx to the program memory address Aq,
Ag, otherwise continue in sequence.

2

Pye
Dy

FIM
Dy

PO
X
Dy

Fetch immediate from program memory data D1, Dg to
index register pair Py

P 1
X

Send register control. Send the contents of index register
pair Py to I/O ports and RAM register as chip select and
RAM character address.

Fetch indirect. Send contents of register pair 0 out as a
program memory address. Data fetched is placed into register
pair Py

Jump indirect. Jump to the program memory address designated
by contents of register pair Py

Jump unconditional to program memory address A1. Ag. Agz.

Jump to subroutine located at program memory address A{,
Ag, Ag. Save previous address (push down in stack).

Increment contents of register Ry.

Increment and skip on zero. Increment contents of register
Ry, if result is not 0 go to program memory address Ay, Ag,
otherwise skip to the next instruction in sequence.

Ry

Add contents of register Ry to accumulator.

Ry

Subtract contents of register Rx to accumulator with borrow.

LD

Ry

Load contents of register Rx to accumulator.

XCH

Ry

Exchange contents of index register Ry and accumulator.

BBL

Dy

Branch back one level in stack to the program memory address
stored by a prior JMS instruction. Load data Dy to accumulator.

LDM

Dy

Load data Dy to accumulator.

1/0 and RAM regi_ster instructions

Low order address bits

Accumulator instructions

High order address bits

Chip select

Rx Register 0 — F

Register Py through P..(designated by odd characters

1,8,5,7,9,B,D,F

D1 Data character #1
Do Data character #2
Cx Jump conditions

Register PO through P7 designated by even characters

0,2,4,6,8,A,C,E

1/O AND RAM REGISTER INSTRUCTIONS

HEX MNEMONIC
CODING OPR OPA DESCRIPTION OF OPERATION
E 0 | wrm Write the contents of the accumulator into the previously selected
RAM register character.
E] WMP Write the contents of the accumulator into the previously selected
RAM output port. (Output lines.)
E 2 WRR Write the contents of the accumulator into the previously selected
output port. (I/O lines.)
E 3 | wem Write the contents of the accumulator into the previously selected
RAM program memory.
<
E 4 | wro - Write the contents of the accumulator into the previously selected
RAM status character 0.
E 5 WR1 Write the contents of the accumulator into the previously selected
RAM status character 1.
E 6 WR2 Write the contents of the accumulator into the previously selected
RAM status character 2.
E 1 WR3 Write the contents of the accumulator into the previously selected
RAM status character 3.
E 8 | sem Subtract the previously selected RAM register character from
: accumulator with borrow.
E 9 RDM Read the previously selected RAM register character into the
accumulator.
E A RDR Read the contents of the previously selected input port into the
accumulator. (I/O lines.)
E B ADM Add the previously selected RAM register character to accumulator
with carry.
E C | RDO Read the previously selected RAM status character 9 into
accumulator.
E D |rDL Read the previously selected RAM status character 1 into
accumulator.
E E RD2 Read the previously selected RAM status character 2 into
accumulator.
E E RD3 Read the previously selected RAM status character 3 into
accumulator.
ACCUMULATOR INSTRUCTIONS
HEX . MNEMONIC
CODING OPR OPA DESCRIPTION OF OPERATION
F 0 CLB Clear both. (Accumulator and carry.)
F 1 CLC Clear carry.
F 2 1AC Increment accumulator.
F 3 CcMC Complement carry. !
F 4 CMA Complement accumulator.
F 5 RAL Rotate left. (Accumulator and carry.)
F 6 RAR Rotate right. (Accumulator and carry.)
F 1 TCC Transmit carry to accumulator and clear carry.
F 8 DAC Decrement accumulator.
F 9 TCS Transfer carry subtract and clear carry.
F A £TC Set carry.
F B DAA Decimal adjust accumuiator.
F C KBP Keyboard process. Converts the contents of the accumulator
from a one out of four code to a binary code.
F D |DpcL Designate command line.
F

Condition Table for ICN Instruction

Invert Jump Condition

Jump if Accumulator = 0

Jump if Carry Bit = 0

Cx
MNEMONIC Jump if Test Input = 0

NO OPERATION

TO Jump if test = 0

C1 ! Jump if CY =1

TO:C1 Jump if test = 0 or CY = 1
AO Jump if AC =0

TO+AO Jump if test = 0 or AC - 0
C1:AO Jump if CY =1 or AC=0

TO+C1+AO Jump if test =0or CY=10r AC=0

Jump Unconditionally

Jump if test = 1

Jump if CY =0

Jump if test = 1 and CY = 0
Al Jump if AC # 0

T1A1 Jump if test = 1 and AC # 0
COA1 Jump if CY = 0 and AC = 0

T1COA1 Jump if test = 1 and CY = 0 and AC # 0

6. INSTRUCTION DESCRIPTIONS

NO OPERATION NOP

o0 0 0|lo o o o 0o
8 2

No operation is performed by this instruction except that the
program address counter counts to the next instruction address in
sequence. This instruction can be used as a one cycle time delay.
To avoid problems with power-on reset, the first instruction at
program address 000 should always be an NOP.

JUMP ON CONDITION JCN
_M M2
0 0 0 1 C, First Word 1Cx
‘8=4=2418‘=4=2:I
A2 A Second Word Ay Ay
+—1—1 -+

g8 47271 8747271

If the designated condition (Cy) is true, program control is trans-
ferred to the instruction located at the 8 bit address As, Aj of
the current page, otherwise program control continues in sedquence.
If the JCN occupies the last two positions of a page or overlaps
the page boundary, program control is transferred to the 8 bit
address on the next page in sequence.

JCN is one of the two decision making instructions of the CPU, the
other being ISZ. JCN allows a decision on the following tests:

Test accumulator for zero or nonzero
Test carry bit for logic one or zero

Test external input lead for high or low

Table 5 provides detailed definitions of conditions Cy.

FETCH IMMEDIATE FIM
M1 M2
0 01 0OJRR RO First Word 2 Px0
8=4¥2=l 8}4=2=l
D) Dy Second Word D2 D1
[1 1 l | i
sl‘lzl] 8]4!2"
Load the 8 bits of data from the second word Dj, D; to the
designated pair of index registers PyO0.
FIM uses the even register numbers to designate a pair. The only
valid operand codes for P,0 are 0, 2, 4, 6, 8, A, C, and E. FIM

provides the most efficient way to initialize a pair of index
registers.

RRR defines one of the eight register pairs PO through P7. The 0
following RRR is part of the command decoding and distinguishes
the FIM from the SRC.

SEND REGISTER CONTROL SRC

M1
0
4

0
8

0

1
"

2Px1

1
3 1
T i 2

Send the contents of index register pair Pxl to the I/O ports and

RAM registers as chip select and/or RAM character select. SRC uses
the odd register numbers to designate a pair. The only valid
operand codes for Pyl are 1, 3, 5, 7, 9, B, D, and F.

RRR defines one of the eight register pairs PO through P7. The 1

following RRR is part of the command decoding and distinguishes
the SRC from the FIM.

It is necessary to address the I/0 port or RAM register character

using an SRC instruction before an I/0 operation or a RAM register
operation can be performed. The same SRC instruction can be used

to address both I/0 ports and RAM registers, however, the meaning

of the address in the designated pair Pyl is different for each as
shown below.

The I/0 port is addressed by the contents of the even register
designated by Pyx. The odd register does not serve any purpose
in selecting I/0O ports.

ELEMENT REGISTER PAIR Py
ADDRESSED
EVEN REGISTER ODD REGISTER
I/0 PORT PORT SELECT NOT USED
8 4 2 1 8~ 4 0 2 1
RAM CHIP |REGISTER
REGISTER SEEECT SEE?CT ?HAR§CTE§
8 4 2 71 8~ 4 2 "

The RAM chip select

the odd register.

is addressed by the high order 2 bits of the
even register, the RAM register within the selected chip is ad-
dressed by the low order 2 bits of the even register and the
character within the RAM register is addressed by the 4 bits of

Addressing of the I/O0 port and RAM registers by the even register

is tabulated in Table 6-1.

The table covers any one bank of RAM

registers. To select other RAM banks refer to the DCL instructions.

TABLE 6-1

I/0 Port and RAM Selection for One Bank by Even Register Contents,
as Used with SRC Instruction

CONTENTS RAM # AND RAM REGISTER SELECTED
OF RAM RAM
EVEN I/O PORT DEVICE PIN 10

REGISTER | SELECTED | RAM # | REGISTER TYPE WIRED
0 0 0 0
1 1 0. 1 4002-1 HIGH
2 2 0 2
3 3 0 3
4 4 1 0
5 5 1 1 4002-1 LOW
6 6 1 2
7 7 1 3
8 8 2 0
2 9 2 1 4002-2 HIGH
a A 2 2 :
B B 2 3
C c 3 0
D D 3
1 4002-2 LOW
E E 3 2
F F 3 3

FETCH INDIRECT

M

w2

FIN

3 py0

001 1|RR RO
8 =2

[T | I 1
T4t 20 8"’ 4 "

The 8 bit content of register pair 0 is sent out as an address to
the current page of program memory. The 8 bit word at that loca-
tion is loaded as data into the designated index register pair PxO0.
If the FIN occupies the last position of a page, data will be
fetched from the next page in sequence. The program counter is not
affected.

After the FIN has been executed the next instruction in sequence
will be addressed. However, the FIN is a one word instruction,
and it requires an additional instruction cycle to retrieve the

8 bits of data for the designated register pair. This extra cycle

‘must be considered when the FIN is used in routines with timing

considerations.

FIN uses the even register numbers to designate a pair. The only
valid operand codes for Py0 are 0, 2, 4, 6, 8, A, C, and E. The
FIN instruction is useful for retrieving data from look-up or
translation tables.

RRR defines one of the eight register pairs P0 through P7. The 0

following RRR is part of the command decoding and distinguishes
the FIN from the JIN.

JUMP INDIRECT ' . JIN

M1 M2
0 01 1|R R R 1 3ril

271 87472

1
8" 4

The 8 bit content of the designated register pair Pyl is loaded
into the low order 8 positions of the program address counter.
Program control is transferred to the instruction at that address
on the same page. If the JIN occupies the last position of the
current page program control transfers to the 8 bit address of the
next page in sequence.

The 8 bit content of the register pair is not affected.

JIN uses the odd register numbers to designate the pair Pyx. The
only valid operand codes for Pyl are 1, 3, 5, 7, 9, B, D, and F.

RRR defines one of the eight register pairs P0 through P7. The 1
following RRR is part of the command decoding and distinguishes
the JIN from the FIN.

JUMP UNCONDITIONAL JUN

M1 M2
01 0 O Aq First Word' 4 23
8=4= 2=I 8=4 =2:l
A2 il Second Word Ay Ay
)] 1 [[l [:
L

Program control is unconditionally transferred to the instruction
located at the address A3, Ay, and Aj. The CPU accomplishes this
internally by transferring A3 from the operand of the instruction

register and Ay, A] from program memory to the program address
counter.

JUMP TO SUBROUTINE JMS
M1 M2
01 0 1 A3 First Word 5 Aj

.08 A Second Word Az A

L
-
-
~
-
-
e
-
-
-
~N
——
-—

The subroutine address stack is pushed down one level. The pro-
gram address counter, containing the 12 bit address of the instruc-
tion following the second word of the JMS, is transferred to the
topmost stack level. Program control is transferred to the instruc-
tion located at A3, Aj, and A] from program memory to the program
address counter.

First word. In Instruction Register 5 Aj

Second word. From Program Memory ’ Ay, Ay

Program Address Counter |Pn Pp P31
(Level 1)

Subroutine Address Stack [Level 2]
{Level 3}

Stack shown fully loaded

INCREMENT REGISTER INC
M 7 |
01 1 0 Ry b Rx
1 | |8 1 [
2 2! 1

1
1 8 472"

The 4 bit content of the designated register Ry is incremented by
1. If the count causes the register to overflow, the register is
set to zero.

The carry bit and accumulator are not affected.

INCREMENT REGISTER SKIP IF ZERO

ISZ
M1 M2
0 1 1 1 Ry First Word 1 R«
L L R B T B R
A2 Al Second Word Ay Ay
} } 1 [| i
)

=
-—

The contents of the designated register Ry is incremented by 1.
If the result is zero, program control continues in sequence.
the result is not zero, program control is transferred to the
instruction located at the 8 bit address Ajp, Aj; on the same page.
If the ISZ occupies the last two positions of a page, or overlaps
the page boundary, program control is transferred to the 8 bit
address on the next page in sequence.

If

The accumulator and carry are not affected.

ISZ is one of the two decision making in structions of the CPU.
The other is JCN. 1ISZ allows a program control decision to be
made based on the count of a register. Examples of ISZ use may
be found in Section 8 of this manual.

ADD REGISTER TO ACCUMULATOR ADD
M1 M2

100 0 Ry 8 Rx
= L 1 1 1

The 4 bit content of the designated index register Ry is added to
the contents of the accumulator with carry. The result is stored
in the accumulator. The carry is set to 1 if a sum greater than
15 was generated, otherwise the carry is set to 0.

The contents of the index register is not affected.

Accumulator in ag a4 as aj Augend
Carry in Cin Carry in

Register +) Rg Rg Ry R7 Addend

Accumulator out ag a4 ap aj Sum
Carry out Cout Carry out

Addition of words longer than 4 bits (multiple precision addition)
may be accomplished by starting with the ISD, working on 4 bits at
a time until the desired word length has been operated on. It is

important not to modify the carry bit between each 4 bits.

SUBTRACT REGISTER FROM ACCUMULATOR SUB
M1)
10 0 1 Ry 9 Rrx
[1 L 1] [
g8 "4 "2 "1 8" 472"

The 4 bit content of the designated register R, is subtracted from

the accumulator with borrow. The result is stored in the accumula-
tor. If a borrow is generated, (i.e., Rx > accumulator) the carry
bit is set to 0; is a borrow is not generated the carry is set to 1.

The content of the index register Ry is not affected.

The CPU performs the subtraction by adding the complement of the
index register plus the complement of the carry to the accumulator.

Accumulator in ag a4 az aj Minuend
Carry in Cin Borrow in

Register +) Rg Rg Ry Ry Subtrahend

Accumulator out ag a4 apz aj Result
Carry out Cout Borrow out

Subtraction of words longer than 4 bits (multiple precision sub-
traction) can be accomplished by starting with the LSD, working

on 4 bits at a time until the desired word length has been operated
on. It is required that the carry bit be complemented between each
4 bits for the correct result.

The SUB instruction is useful for performing a compare function.
The compare is performed by initially clearing the carry bit and
subtracting the 4 bit word Ryx to be compared from the accumulator.

The conditions to be tested for comparison results following sub-
traction are presented below:
MNEMONIC
COMPARISON ACCUMULATOR CARRY TEST CONDITION
REG > ACC # 0 0 CO
REG = ACC 0 1 AO
REG < ACC # 0 1 Al-Cl
REG < ACC X 1 cl
‘REG # ACC # 0 X Al
LOAD REGISTER TO ACCUMULATOR LD
M1 M2
10 1 0 Ry ARx
. 1

[B
87472 "1

8 4

1
2

The 4 bit content of the designated index register Ry is loaded

into the accumulator.

are lost.

The content of the index register and the carry bit are not
affected.

EXCHANGE REGISTER WITH ACCUMULATOR

M1

Mz

1 c 1 1

Ry

1 [1
8§ 47271

1
84

T2

The previous contents of the accumulator

XCH

B Rx

The 4 bit content of the designated index register Ry is loaded

into the accumulator.

loaded into the designated register Ry.

The carrxy bit is not affected.

The prior content of the accumulator is

This is the only instruction which allows the accumulator to be
loaded into an index register.

BRANCH BACK AND LOAD ACCUMULATOR

M1

M2

X

-

BBL is used to return from subroutine to main program.
routine address stack is pulled up one level.

L
8" 4

T2

BBL

C ox

The sub-
The top-most

address is placed in the program address counter causing program
control to be transferred to the sequential instruction following
the previous JMS.

Program Address Counter Ph Pmn P1

BBL
Program (Level 1)
Address [Level 2]
Stack Level 3

Stack shown fully loaded
The 4 bits of data Dy in the operand portion of the instruction
are loaded into the accumulator. The previous accumulator data
is lost.

The carry bit is not affected.

LOAD DATA TO ACCUMULATOR LDM
M1 M2
110 1 Dy D D1
1 [

i [l [L
g8 47271 87472 "1

The 4 bits of data Dj stored in the operand field of the instruc-
tion word are loaded into the accumulator. The previous contents
of the accumulator are lost.

The carry bit is not affected.

WRITE ACCUMULATOR INTO RAM CHARACTER WRM

M M2
1110|000 0 ' EO

}] 1 L 1
§ 747271 847271
The accumulator content is written into the RAM main memory
character location previously selected by an SRC instruction.

The accumulator and carry are not affected.

WRITE MEMORY PORT - WMP
M

1 0jo 0 0 1 El
- ‘
2 L]

T 8745721

1 1
[
8" 4
The content of the accumulator is transferred to the RAM output
port previously selected by an SRC instruction. The data is

available on the output pins until a new WMP is executed on the
same RAM chip.

The accumulator and carry are not affected.

WRITE ROM PORT WRR
M1 M2

1110|0010 E2
R UL L N R S R

The content of the accumulator is transferred to the output port
previously selected by an SRC instruction. The data is available
on the output pins until a new WRR is executed on the same port.

The accumulator and carry are not affected.

WRITE TO PROGRAM MEMORY . WPM
M1 M2

1 110|001 1 E3
L N R R W

This instruction is used to write data into RAM program memory 4
bits at a time. The WPM instruction must be executed twice for

each 8 bit RAM program memory location.

6-10

Program memory page select lines are forced to 1111. The pre-
vious SRC address is sent out on the program memory address bus

and the accumulator contents becomes available as 4 bits of data on

the I/0 bus. Two control lines from the CPU interface circuitry
control writing into the RAM.

The WPM instruction is not épplicable to PLS 401 and PLS 402‘sys—
tems since the program memory address bus is not available to the
user. The PLS 403 configuration provides all necessary lines for

implementing RAM program memory.

WRITE INTO RAM STATUS CHARACTER 0 WRO
M1 M2
11 1 0j0 1 00 E4

11 —_1 1
8747271 847211

The content of the accumulator is written into the RAM status
character 0 previously selected by an SRC instruction.

The accumulator and carry are not affected.

WRITE INTO RAM STATUS CHARACTER 1 WR1
M M2

11 10[l0o 101 | E5
8" 4" le 8 ' 4 =2"

The content of the accumulator is written into the RAM status
character 1 previously selected by an SRC instruction.

The accumulator and carry are not affected.

WRITE INTO RAM STATUS CHARACTER 2 WR2
M1 M2
1110|011 0 E6
I [[L . | 1
84721 g4 "2 "1

The content of the accumulator is written into the RAM status
character 2 previously selected by an SRC instruction.

The accumulator and carry are not affected.

WRITE INTO RAM STATUS CHARACTER 3 : ' ‘ WR3
M M2
11 10/0 111 | E7
8" 4 =2{l 844 =2%I

The content of the accumulator is written into the RAM status
character 3 previously selected by an SRC instruction.

The accumulator and carry are not affected.

6-11

SUBTRACT FROM MEMORY WITH BORROW SBM

M M2
1110|1000 | | E8
1 (] | L. 1 [
847271 8747201
The content of the RAM character previously selected by an SRC

instruction is subtracted from the accumulator with borrow.

The RAM character is unaffected.

READ RAM CHARACTER ' ROM
] M .
1110|1001 | E9
[[L L 1 i
gt gttt

The content of the RAM character is transferred to the accumulator.

The carry is not affected. The 4 bit data in memory is unaffected.

READ ROM PORT ' RDR
M1 N2

11101010 EA

[[1
""2'1'8"'21

The data present at the input lines of the port previously selected
by an SRC instruction is transferred to the accumulator.

The carry is not affected.

ADD FROM MEMORY WITH CARRY ADM
M1 M2
111010011 | EB
R L R B B

The content of the RAM character previously selected by an SRC
instruction is added to the accumulator with carry.

The RAM character is not affected.

READ RAM STATUS CHARACTER 0 RDO

M n2
1110[1100 EC

L 1 1 [1 L
8§ 472" 84727
The 4 bits of status character 0 of the RAM register previously
selected by an SRC instruction are transferred to the accumulator.

The carry and the status character are not affected.

- 6-12 .

READ RAM STATUS CHARACTER 1

M1

M2

1 1 1 0

11 01

I I
g8 "472"1

L1 1
8472 "

RD1

ED

The 4 bits of status character 1 of the RAM register previously
selected by an SRC instruction are transferred to the accumulator.

The carry and the status character are not affected.

READ RAM STATUS CHARACTER 2 RD2
M1)
111 0(1110 EE
L 1 | I T
874" 271 8472 "

The 4 bits of status character 2 of the RAM register previously
selected by an SRC instruction are transferred to the accumulator.

The carry and the status character are not affected.

READ RAM STATUS CHARACTER 3 RD3
' Mi M2
1110f1111 EF
i S I | [R N |
8 421 8 4721

The 4 bits of status character 3 of the RAM register previously
selected by an SRC instruction are transferred to the accumulator.

The carry and the status character are not affected.

CLEAR BOTH : CLB
M1 M2 }
111 100 0 0 | FO
IS T L I

Set accumulator and carry to 0.

CLEAR CARRY CLC

M2

0 0 0 1

8421

Set carry to 0.

The accumulator is not affected.

Fi

6-13

6-14

INCREMENT ACCUMULATOR IAC
M1 M2
1111|0010 F2
1 | 1 1 i I
8§ 47271 8472 "
The content of the accumulator is incremented by 1. overflow
sets the carry to 0; overflow sets the carry to a 1.
COMPLEMENT CARRY CMC
Ml M2
111 1]0001 1 F3
L

1 1 [l
847271

I |
g4 2"

The carry content is complemented.

The accumulator is not affected.

COMPLEMENT ACCUMULATOR

M2

111 1

0 1 0O

CMA

F4

1 1 L 1 i
847271 84727
The content of the accumulator is complemented.

The carry is not affected.

ROTATE LEFT - RAL
Ml M2
111 1o 1 0 1 F5

1] i [[[
8747271 847271

The content of the accumulator and carry are rotated left one
bit position. '

Ag Ay Ao Al |-

ROTATE RIGHT RAR
M1 M2
11110110 F6
| I I { L1 1
87472 "1 8§74 721
The content of the accumulator and carry are rotated right 1 bit
position.
= Ag | Ay | A2 | AL
Cy
TRANSMIT CARRY AND CLEAR TCC
M M2
11 11/01 11 F1

1 I
8472 "1

The accumulator is cleared.
accumulator is set to the value of the carry.
0. This instruction is used for decimal arithmetic.

DECREMENT ACCUMULATOR

1 i [
842"

M

M2

1 111

1 0 0 O

—t 1
8747271

4 [
g 42701

The least significant position of the

The carry is set to

DAC

F8

Decrementing when the accumulator equals zero sets the carry to 0.

Decrementing when the accumulator is not zero sets the carry to 1.

The initial value of the carry bit does not affect the content of
the accumulator.

TRANSFER CARRY SUBTRACT TCS

11 1 1
1 1
8472711

1001 F9

— 1
847211

The accumulator is
This

The accumulator is set to 9 if the carry is 0.
set to 10 if the carry is a 1. The carry is set to 0.
instruction is used for decimal arithmetic.

6-15"

6-16

SET CARRY STC
M1 M2

1l 11 1]1 0 1 o
1 } : L ‘ . F“

4 7271

2 "1
Set carry to a 1.

The accumulator is not affected.

DECIMAL ADJUST ACCUMULATOR DAA
NI M2
111 1|11 0 1 FB
[[1 L (] 1
8§ "4"2"7 8472 "

The accumulator is incremented by 6 if either the carry is 1 or

if the accumulator content is greater than 9. The carry is set

to a 1 if the result generates a carry, otherwise it is unaffected.
This instruction is used for decimal arithmetic.

KEYBOARD PROCESS KBP
M1 M2
11 11]110 of FC
8 #4 =2 =| 8 =4 =2 :l

A code conversion is performed on the accumulator content, from 1
out of n to binary code. If the accumulator content has more than
1 bit on, the accumulator will be set to 15 (to indicate error).
The carry is not affected. The conversion table is shown below:

(ACC) before KBP (ACC) after KBP

Hex Binary Binary Hex

LI <> B w B @ W v < B T U~ SRR BYe SRS Y OURENN < S S ST S)
= M = P M 0O 0O 0 O M OO O O
= = H -0 O QO H H O O O o O
HF H O O FH H O K M O K O O+ o O
H O M- O K O K O K+ H o o O = O
[i e e N N R S R i = B e B~ B e
O = I R e e e i e i = = I = i = i)
e i e i i e i i R == T o i o S e]
O N i o = e R o R = Bl R)
L T T I T s R TR = B L R B = B SN OV R S T i)

DESIGNATE COMMAND LINE DCL
M1 M2
11 1 1]1 10 1 FD
i T R | 1 1
g8 '4"2 " 8'4 "2 "

The content of the three least significant accumulator bits is
transferred to the CM-RAM output lines on the CPU.

This instruction provides RAM bank selection when multiple RAM

banks are used. When the CPU is reset, RAM Bank zero is auto-

matically selected. DCL remains latched until it is changed or
reset.

~

The selection is made according to the following truth table:

(ACC)

8421 CM-RAM3j Enabled Bank No.
X000 CM-RAM Bank 0
X001 CM-RAM{ Bank 1
X010 CM-RAM, Bank 2
X100 CM-RAMy Bank 3
X011 CM-RAM;, CM-RAM) Bank 4
X101 CM-RAM;, CM-RAMy Bank 5
X110 CM-RAM,, CM-RAMy Bank 6
X111 CM-RAM;, CM-RAM,, CM-RAM, Bank 7

A low power TTL one-of-eight decoder may be tied to the CM-RAMj,
CM-RAMp, and CM-RAMg4 lines to expand the number of RAM banks to
8. The command lines must be buffered for MOS compatibility.

_ <i:x3— RAM BANKg
k;EﬂlE@lJ b >0—— RAM BANK]

] GCM-RAM]] I

sooh 2 CM-RAM, ONE > |
14 2 OF 3p—0>0—

cPu CM-RAMy, EIGHT '

13 4

DECODER 1 I

|

|

\|0\U1-l='wN—'

D—— >0—— RAM BANKy

The DCL instructions does not apply to PLS 401 and PLS 402 systems

since they have capacity for only 4 RAM devices wired to RAM Bank 0.

6-17

7. IMPLEMENTING PROGRAMMED LOGIC

Logic diagrams using graphic symbology are the key to visualiza-
tion and implementation of hardwired logic designs. The sequential
nature of programmed logic does not lend itself to logic diagrams.
The visual and verbal aids available to the program logic designer
are block diagrams, flow charts, register maps, and coding forms.

The designer begins with a block diagram to make input and output,
ROM, and RAM register assignments. The problem is flow charted
and detailed assignments made of registers on register maps. The
flow charts are progressively partitioned into more and more de-
tail until each flow symbol can be converted to program instruc-
tions on the coding forms.

The instructions are first written in mnemonic form for easily
verbalizing the solution to the problem. When the complete pro-
blem or a workable partition has been solved, the mnemonic instruc-
tions are converted to code for the ROM. The code is programmed
into the ROM and tested with the hardware on the breadboard system.

SYSTEM BLOCK DIAGRAM

One of the first steps in implementing programmed logic is con-
struction of a system block diagram showing assignment of the
external input and output connections. Figure 7-1 represents a
block diagram work sheet available for PLS-401 systems. Similar
worksheets for other PLS-400 systems are available. The work-
sheet block diagrams show the elements of the PLS systems, and
the lines in and out of the system that are available to the
designer. Figure 7-1 shows the number of inputs and outputs,
RAM memory capacity, ROM program memory capacity, and the CPU
microprocessor, interconnected via the CPU bus. The program
sequence stored in ROM program memory controls the interaction
between the elements connected on the CPU bus.

Z-L

1 | 6 | 5]] l 3 | 2 | 1
REVISIONS
F::::f:::' S :35!1552
"RAM REGISTER STORAGE ROM PROGRAH MEMORY .
EXTERNAL » :
TEST INPUT RAK 0O RAM | RAM 2 RAM 3 ROM O ROM 1 ROM 2 i ROM 3
80 cuar | | 80 cuar |] sc cuar |] 80 cHar | |256 woros]] 256 woros] | 256 woros)] 256 woros
Bel T T J T
RAM 0 ouTPUT outPuT INPUT INPUT INPUT
EXTERNAL ouTPUT PORT PORT PORT PORT PORT
T 2 3

RESET INPUT

RESET]

EXTERNAL

MOS RAM

. OUTPUT
PORT

EXTERNAL TTL OUTPUT PORTS

~BIT WEIGHT. RELATIONSHIP TO .

CPU ACCUMULATOR

EXTERNAL TTL INPYT PORTS

ACTIVE LODW STATE INDICATOR

PRO-LOG_CORPORATION

w

FIGURE 7-1
System Block Diagram

FLOW CHARTS

The sequential nature of programmed logic fits directly into the
graphic representation provided by flow charts. Programmed logic
being sequential with only yes or no decisions allows for very
simple flow charting procedures The graphic symbols used in
examples in this manual are shown in Figure 7-2. The main symbols
being the rectangle for operations and the diamond for decisions.
The rectangle contains an abbreviated statement of the operation
or operations. The diamond contains an abbreviated question con-
cerning the decision.

The PLS 400 systems have only two decision instructions, JCN and
ISZ. Any time a diamond symbol appears in the flow chart one of
these two instructions must be involved. All other instructions
perform operations, either alone or in groups, and are thus
represented by the rectangle. The use of flow charts correlates
to the use of logic block diagrams in hardware design. The hard-
ware designer progressively partitions his problem into more and
more detailed logic diagrams until each block represents a logic
device. The program logic designer uses progressively more
detailed flow diagrams to the point where individual instructions
or groups of instructions can be written for each flow symbol. For
examples of flow charts refer to Section 8 of this manual.

OFF PAGE CONNECTION

/ SYMBOL (ENTRY)

LABEL

XYY

STATEMENT J=—— OPERATION SYMBOL

PAGE AND WORD <
ADDRESS

/

DECISION SYMBOL

YES

QUESTION

OFF PAGE
CONNECTOR (EXIT)

y
——————een.

FIGURE 7-2
Flow Chart

REGISTER MAPS

In addition to the block diagram and flow charts, register maps
are valuable for visualizing register storage allocation. Figure
7-3 illustrates maps for both the index registers and the RAM
registers.

The index register map shows the 16 four bit registers organized
such that they can be referred to either individually or in pairs
as used by the CPU instructions. The RAM register map shows all
the bits available in one 4002 device. The organization is four
registers of 20 four bit characters addressable by SRC. Each
register contains 16 characters addressable by SRC and 4 char-
acters addressable by individual instructions.

When using register maps it is helpful to write an abbreviated
mnemonic on the map to verbalize its assignment.

A mnemonic is written for each register used in a routine to show
which registers have been used and what they are used for. When
a register is used for individual flag bits it is helpful to
expand these in a table showing the individual bit assignment.

A convenient place for recording register maps is on the document
containing the flow chart. Examples of register mapping are
given in Section 8 of this manual.

INDEX REGISTER MAP

RAM REGISTER MAP

REG CHAR STATUS
CHAR

23L4L56789ABCDETF 123

FIGURE 7-3
Register Maps

—_ N £~

— N &=~

— N & O

— N &= O

SRC.
Everj]

HEX CODING FORM

The Hex Coding form, or some variation of the form, is an absolute
necessity for keeping track of the bookeeping details inherrent in
programming. In addition, when properly implemented, the coding
form becomes the program listing defining how the program accom-
plishes its task. The program listing in programmed logic is
equivalent to a combined logic schematic, wire list and assembly
drawing of a hard-wired logic system. : : '

The hex coding form is divided into two major sections each serv-
ing a distinct requirement. The major portion of the form is used
for mnemonic listing of the program as it is generated. The two
left most columns constitute the second section which provides the
hexadecimal coding of addresses and instructions used by the CPU
and Program memory.

The mnemonic section of the form is completed first as the designer
sequentially lists the program steps in easy to remember mnemonic
form. When the designer has solidified the mnemonic listing the
hex address and instruction codes are ass1gned. The coding opera-
tion of programmed logic is similar to assigning device location,
pin numbers, and wire listing in hardware logic.

The mnemonic listing of instructions in programmed logic is equi-
valent to the hardware logic operation of creating a logic schematic
diagram where the program designer assembles instructions and sub-
routines in a mnemonic list and the hardware de51gner selects gates
MSI and LSTI. | : ;

Hexadecimal program memory page address. Single
character for 16 pages of program memory.

Hexadecimal program memory word address. Two hexa-
decimal character for 256 words per page of memory
with the least 31gn1flcant hex digit preprlnted on
the form.

Hexadecimal instruction word, as cross referenced
between mnemonic and hex code from Section 5.

Mnemonic address label used to verbalized the destina-
tion of the address control instructions. Address
labels in this column must appear only once with each
label having unique spelling. This column is left
blank if the line does not require a label.

Mnemonic instructions, usually an abbreviation that
verbalizes the operation. The second word of double
word instructions does not have a mnemonic and is
left blank. The exception is the FIM where the even
register data character is inserted. See Figure 7-5,

© © 0 0O

Mnemonic operand which can be blank, data constants,
instruction modifiers, register designation, register

pair designation, or a source address label. Instruc-
tions 0 through 9 and A through D always require
operand information. I/O, RAM and accumulator instruc-

tions never have operand information. See Figure 7-5,
for examples of operands.

Written comments defining the purpose of an instruction
or a group of instructions.

HEX CODING MNEMONIC LISTING
l 2 -] ”~ ~)
&
Q
Q |
5 5 < ~
<& <& & >
N & 3 WV N
& & ¢ < N
N < NI » S
& SN & L O 5
& L o D N & ¥
Q ® N N &
ONONO) ® ®) ® 5 |
ADR |INSTR LABEL MNEMONIC OPERAND COMMENTS

gijolo|w [P |olo]|l]janinnie wNiE (O

FIGURE 7-4

Hex Coding Form

ADR |INSTR| LABEL MNEMONIC OPERAND COMMENTS
o}
1 INSTRUCT 1ON ' OPERAND
2 EXAMPLES EXAMPLES
3
4 /== REGISTER
5 /
6 /= REGISTER PAIR
7 INSTRUCT 1ONS /
8 [Y /—orA
9 [/
A LD e A I///—NO OPERAND, BLANK
B FIM - /44
c DATA ———m | 3 D / /| ADDITIONAL INSTRUCTION INFORMATION
D RAL = ’ AN
E BLANK = | JCN = Ti 7 ADDRESS LABEL
F e sTop
FIGURE 7-5

Instruction and Operand Examples

PLS DESIGN EXAMPLE

An example for implementing an electronic calculator is given to
illustrate the techniques of using the block diagram, flow charts,
register maps, and coding forms. The problem is defined as being
a four function eight digit calculator where two separate entries
of up to eight digits are operated upon. Each entry is displayed
as it is keyed into the unit. The result of the operation is dis-
played following entry of the second operation.

The block diagram is generated as shown in Figure 7-6, consisting
of a PLS 401 system, eight digits of latching display, and a 16
key keyboard. The keyboard is assigned as a four-by-four matrix,
with four key columns driven by four output lines and the key
closures sensed as four input row lines.

The latching displays are connected for separate strobe inputs and
common BCD data lines plus decimal point. The display data lines
are shared with the keyboard matrix column selection lines. An

additional key is used on the external reset input for a clear
function.

8 | 5 | 4 l 3 2 | 1
REVISIONS
RAM REGISTER STORAGE ROM PROGRAM MEMORY
. — - .
RAM O RAM 1 RAM 2 RAM 3 ROM O ROM 1 ROM 2 ROM 3

)
DD

[®leJ J
AR

RAM 0 OUTPUT ouTPUT ouTPUT OUTPUT INPUT INPUT
OUTPUT PORT PORT PORT PORT PORT PORT
PORT PO Pl P2 P3 2 3
RESET « .
5falx EEE ssafs] slslgl=
P |
.8 B
/
L N\
CLEAR ;

oGl rf ~Nj ~]
é é ® é o| 8 DIGIT DISPLAY.
\ LLLLL
NN\
i 9 =
TYPICAL g 2
) (5

rp K88 /

N G) (F]) «e2
(':(: KB

@

16 KEY KEYBOARD

(OYONONE
)
)

[=)
m

tﬁ YD) b:390—8/

PRO-LOG_ CORPORATION
= =
D] 1"k
| 3 | 5 [4 I] 1

FIGURE 7-6

Electronic Calculator Block Diagram

10

A very basic flow diagram, Figure 7-7, is generated which shows
the two major operations of scanning the keys and processing the
data. In addition, a RAM register map is generated showing assign-

ment of the entries to be processed.

POWER ON
OR CLEAR

INITIALIZE

Y

SCAN KEYS

REG O [FIRST ENTRY OR RESULT
REG 1} SECOND ENTRY
.NO REG 2

REG 3

YES RAM REGISTER MAP

PROCESS DATA
& DISPLAY

FIGURE 7-7
Pirst Level Flow Chart

The operation of scanning the keys is expanded upon as shown in
Figure 7-8. The main purpose of this routine is to scan the key-
board matrix for a closure and to debounce the asynchronous key
closures and openings. At this time, three registers are assigned
on the index register map, KEY ROW, KEY COL and COL COUNT. KEY ROW
and KEY COL are used to store the row and column bits of a detected
key. COL COUNT is used to keep track of which column 'is being
scanned. ’ '

4

MOVE COL BIT

NO
LAST COL
START SCAN
YES

D——

SET FIRST cOL

<
4

A

SELECT KEYBD

NO

YES

RESET
coL
g
SAVE ROW
& CoL
:‘[; FIGURE 7-8

EVEN

m

KEYROW

KEYCOL

COL COUNT

o N & o © P O

Flow Chart for Keyboard Scan

INDEX REGISTER MAP

o
=3
o

- w WV N v m o T

12

The four key columns are scanned one at a time by rotating a bit
through the columns. As each column is scanned the rows are read
as inputs and tested for a key closure. If a key closure is
detected a debouncing delay is generated and the same column is
read again. If the key is still closed, it is checked to deter-
mine if the same key had previously been closed. If the closure
was the same key detected in a previous scan, the routine ignores
the key and returns to scanning the key columns. If the key was
not previously closed, the row and column of the new key are stored
and the routine exits to process the key.

If no key closure is detected on a column, the column register is
tested to see if a key in that column was previously closed. If
it is the same column where a key was previously closed, the
column register is reset indicating that a key was just released.
The routine returns to column scanning. If the key that was just
released bounces and is detected on the next scan, the debounce
delay and second read should find the key open.

The operation of processing keys from the keyboard is expanded in
the flow chart of Figure 7-9. The purpose of this routine is to
decide the key matrix so the indicated function may be performed.

The KEY COL register is examined to determine if the key closure
occurred in Column 1. If the closure was in Column 1 the indi-'
vidual bits of KEY ROW are examined to determine which of the
function keys (+, -, X, or :) was closed. If the closure was
not in Column 1, ROW 1 is examined to determine if either of the
other functions CE or CP are closed.

If the closure is determined to be a data key, the row and column
data is converted to a single hex character and used as an address
for a lookup table. The table translates the key matrix address
to the appropriate decimal key data.

KEY
PROCESS

v

\ 4

v

ADD
A+ B
SUBTRACT
A-B
MULTIPLY
A X B
DIVIDE
A: B
Yo NO
A
CONVERT ROW
AND COL TO SET DP FLAG
DATA DISPLAY DISPLAY DP
CHAR STORE DP
STORE CHAR

!

v

4

v

STORE RESULT
DISPLAY RESULT

FIGURE 7-9

Flow Chart for Key Process

SCAN

Mnemonic Listing for Keyboard Scan

ADR |INSTR| LABEL MNEMONIC| OPERAND COMMENTS

o SCAN LD D CHECK FoR_LAST cCoL
1 RAL

2 Je Cco

3 A/OTLAST

4 START SCAN| LDM 1 T SET CoL CouuT FoR Cor [
5 XCH D v

6 MoT LAsT | F/M PO SELECT KEY ColL
7 o] O

8 SRC PO

9 LD D

1y WRR

B RDR T READ KEY BOARD

c Jow Ao

D No KEY

E E/M Po T DEBovNcE KEY

F F C

0 Al /S2 o)

1 a1

2 o IsZ . 1

30 1 o 1

4 RDR T READ KEY BOARD

5 JCN Ao

6 No. KEY 4

7 KRP - CHEcK FOR_ DOVBLE KEY
8 CMA

9 JCu Ao

A SCANM

B cLC 11 SAVE AEW Row DATA
c CMA

D XCH E .
E SUR E T CHECK IF SAME Row.
F Jou Al]

o) SAVE coL (7

1 cLc T _CHECK IF SAME col

2 LD D

3 SVB F

4 JCNV Ao :

5 SCANM v

6 SAVE <ol D D T SAVE AEW Coc

7 XcH F v

8 -_ T PROCESS NEW KEY
. —

2 p—

B pun

c

D Mo Key CLC T CHECK JF _SAME Col
E LD D

F SUB F

0 JN Al

1 SCAN

2 XCH £ RESET WEY cCoL

3 JUN

4 SCAN

Mnemonic Listing for Keyboard Process

ADR |INSTR LABEL MNEMONIC| OPERAND COMMENTS

0 KEY PRocEss | LD F T CHECK IF KEYy 15 /A col 1
1 RAL (+,~ . x, =

2 Jo co

3 ot cot 1

4 LD E r CHECK IF_ADD KEy

s RAR :

6 Jen) cl

7 PLUS V

8 RAR T _CHECK IF_SuB KEY

9 Jowv [|

A Mirvs v

B RAR T CHECK IF _Muir kY

c Jwn [T

D TIMES Vv

E — - D/JviDE A by B

. —

o] r -

1 py

2 1 — V

3] | WoTrcor{ | 2D | E — CHECK IF KEY /80 Row 1
4 RAR

5 Ju Co

6 NoT Row 1

7 LD F T CHECK IF CLEAR ENTRY KEY
8 RAL]

9 RAL I

A Jew | el [

B CLEAR EwTRY |V

c RAL — CHECK IF _DECIMAL PoinT KEY
b Jend |l [

E DP v

F NMOT Row 1 LD £ T+ COMVERT Row £ (oL TO A
o KBF HEX DIGIT FOR _LOOKUP TABLE
1 DAC

2 XCH /

3 ZD F |

4 HEBP

S DAC

6 RA L

7 RAL

8 cLc

9 ADD /

A XcH 2z

B LDM F T USE HEXDIGIT AS ADDPRESS /N
[+ XCH] LocATIon FX

D - N PO

E — - DISPLAY DEC/MAL CHAR § STORE
r p—

5 py

T —

Coding for Keyboard Lookup Table

Fo

F2

F3

F 4

Es

03

KEY BOARD MATRIX TRANSLATIOL

Fse

06

F7

o3

F8

Fs

oz

Fa

o5

FB

o))

Fc

o0

)

ol

FE

o4

NP ~[0pn N ooy

Fr

o7

When the complete problem has been charted and listed in mnemonic
form the hexadecimal address and instruction codes are assigned

on the coding form. The address and instruction data is then
transferred to the program memory for system and program debugging.

8. PROGRAMMING APPLICATIONS

SUBROUTINES

A group of instructions written to perform a function with common
usage is referred to as a subroutine. The PLS 400 systems have
two instructions, JMS and BBL, which allow subroutines to be used
conveniently and efficiently. The JMS instruction allows the pro-
gram to exit and perform a common routine and the BBL instruction
at the end of a subroutine causes the sequence to return to the
main program.

As shown in Figure 8-1 the JMS instruction can be used as many
times as needed to execute the same subroutine and automatically
return to the proper place in sequence in the main program. Using
subroutines is very efficient in terms of program storage space if
the subroutine is long enough and used often enough. If a sub-
‘routine is too short or is not used enough it is possible to waste
program storage space. This results because it requires two pro-
gram locations to enter a subroutine plus one to return in addi-
tion to the routine itself. Table 8-1 presents the program
locations that can be gained or lost by using subroutines based
on how many steps in the routine and how many times the routine
occurs. As an example a subroutine of two steps will always
result in a loss of three locations no matter how many times it

is used. A subroutine of three steps must be used four times to
break even.

Subroutines are implemented so that the CPU hardware keeps track
of the return address by storing the program address counter in
the subroutine addrcss stack when a JMS is executed and by
retrieving it back to the program address counter when a BBL is
executed.

Nesting

The subroutine address stack in the 4004 CPU can store up to
three subroutine return addresses. This feature allows nesting
~of subroutines as shown in Figure 8-2. Nesting means that a sub-
routine may have other subroutines within itself. A one-level
subroutine may have other subroutines within itself. A one-level
subroutine is one which does not contain any other subroutine. A
two level-subroutine contains at least one, one-level subroutine

MAIN
PROGRAM

JMS

(XXX)

JMS

(XXX)

JMS

(XxX)

ENTER 1

FIGURE 8-1

SUBROUTINE

(XXX)

BBL

Example Showing how a Subroutine can be
Used Many Times From Various Places in a Routine

Number of Steps in Routine (N)

TABLE 8-1

Number of Steps Gained or Lost When a Routine
is Executed as a Subroutine

Number of Times Routine Occurs (X)

|1 2 3 a 5 6 7 X
1]-3| -1 -5 -6 -7 -8 -9 | -x -2
2]-3| -3 -3 -3 -3 -3 -3 | -3
3 -3 -2 -1 0 1 2 3 | x -4
4 -3 -1 1 3 5 7 9 |2 x -5
58-30 o 3 6 9 12 15 |3 x -6
6fl-3f 1 5 9 13 17 21 |4 x -7
70-3] 2 7 12 17 11 27 |5 x -8
s -3} 3 9 15 21 27 33 |6 x -9
9-3] 4 11 18 25 32 39 |7 x -10

10]-3] s 13 21 29 37 45 |8 X -11
N |-3 N-5 | 2N-7 | 3N-9 | 4N-11]5N-13 | 6N-15 | (N-2)X- (N+1)

MAIN
PROGRAM

THREE-LEVEL

Jus SUBROUTINE

{xxx} —_— {xxx}

TWO-LEVEL
JMS SUBROUTINE

] [yvy] —— [yvyy]

BBL

: ONE-LEVEL
JMs SUBROUT INE

re--

(zz2) ——— (zzz)

-——y

BBL

BBL

FIGURE 8-2

Example Showing Nesting of Subroutines

and a three-level subroutine contains at least one, two-level sub-
routine. The subroutine address stack is referred to as a "push-
down" stack where each time a new subroutine is entered, the stack
is pushed-down with the o0ld return addresses going to the bottom
of the stack and the most current being on top. When a BBL return
is executed the most current or the address at the top of the
stack is used first and the stack is pulled-up one level. The
subroutine stack only has three levels and it is possible to push
the stack down too far by executing more than three JMS instruc-
tions without an intervening return. In order to keep track of
the three subroutine levels, parenthesis (), brackets [], and
braces {} are used as shown below:

Parentheses, (LABEL X) denotes a one level subroutine.

Brackets, [LABEL Y] denotes a two level subroutine.

Braces, {LABEL Z} denotes a three level subroutine.
The rules for nesting of mathematical factors apply to the nesting
of subroutines where any lower level subroutine may be nested with-
in a higher level subroutine. A subroutine like a mathematical

factor may not have nested within itself one of its own level or a
higher 1level.

Examples of nesting
1. {l(-—-=)1}
2. {l-=-1 [-==1 [(-==) (-=-)1}

Multiple Ending Subroutines

The BBL instruction has the feature of forcing a constant value
into the accumulator. This feature can be put to use as shown

in Figure 8-3 where a subroutine can make decisions and terminate
with multiple endings. Each ending can be executed with a BBL

with its own constant value forced into the accumulator. Therefore
the main program could test the accumulator in order to determine
which ending occurred.

SUBROUTINE
ENTRY

(XXX)

L JCN

B YYy — YYy

L JCN

272 R E— 777 BBL 3

RETURN #3

BBL 2

RETURN #2

BBL 1

RETURN #1

FIGURE 8-3
Example of a Subroutine With Multiple Endings

Common Ending Subroutines

In a complex program it is relatively easy to reach three levels
of subroutines. A technique which helps conserve levels .is the
use of subroutine stacking in specialized situations. Figure 8-4
shows an example where subroutines are stacked to share a common
ending. Basically this technique uses a jump unconditional to an
existing subroutine rather than pushing the stack down another
level. This technique is useful only when a JMS occurs at the
very end of a subroutine. When this occurs a JUN is used in place
of the JMS. This keeps the stack at the same level.

ENTRY #1 ; ENTRY #2 : ENTRY #3
ONE-LEVEL ONE-LEVEL TWO-LEVEL
(XXX) (yyy) [zz22]

JUN AAA JMS

AAA / | (WwwW) r__ . (wWww)

ccc JUN
‘K\\\\\\\ —

BBL

BBL \

COMMON RETURN

FIGURE 8-4

Example of Subroutines Sharing a Common
Ending Sequence (Stacking)

COUNTING

Counting is one of the logical functions PLS systems can easily do
with the INC, IAC, DAC, and ISZ instructions. The simplest count
is use of INC to perform a binary hex count from 0 through F on
any of the index registers. When it is desirable to count greater
than 15, the ISZ instructions may be cascaded to reach any prac-
tical value. The example ‘-below shows cascading ISZ instructions
where the first register overflows, the second register is then
counted, and when the second register overflows the third register
is counted. This technique can be extended to any number of
registers for large counts.

INSTR] LABEL MNEMONIC OPERAND COMMENTS

»
<]
]

COUONT 4 /SZ o) TWCREMENT FIRST REGISTER
o] CounT
| /S / JNCREMENT SEconD REGISTER
¢ CoynNT
/A 2 ZNCREMEAMTF THIRD REGISTER

> |0 o |w]jo Ve Wi IO

Counters may be used simply to tally up the number of times a
function occurs or in other situations they may be used to con-
trol the number of times a function occurs. In the control
situation, the count is compared to some preset limit and the
routine terminated when the limit is reached. The ISZ instruc-
tion provides an efficient means for performing this control
function by counting preset registers and terminating when the
registers overflow.

Two options exist in counting; one is to execute the functions to
be counted before counting and the other is to count first and
then execute. This distinction is important when presetting
registers to be counted. In the execute and count technique the
function will always be executed at least once, since the decision
to terminate is a function of the count. 1In the count and execute
technique it is possible for the count to terminate the routine
without performing any execution. Figures 8-5 and 8-6 show two
ways to implement these techniques. ‘

INITIALIZE
COUNT

EXECUTE
FUNCTION
TO BE COUNTED

COUNT
NO
YES
FIGURE 8-5

and Count

Flowchart of Execute

Coding for execute and count

INITIALIZE
COUNT

COUNT

COUNT
OVERFLOW

EXECUTE

FIGURE 8-6

Flowchart of Count
and Execute

ADR |INSTR| LABEL

MNEMONIC|

OPERAND

—

F#

Po

INITIALIZE THE COQUNTER

o

Pl

[

SOME FunNCTION

!XZC“T!.{‘Q

NP eRlo

I1s 2

(@]

Exrcule

COUNT How MAMNY ExECUTIonS

iIs2

!

EXF CUTE

Ts2

2

-1

FXFCITE

7S 2

L4

Exe¢ulR

T CUERFLow ©R ENRING RouTIMVE

i

Coding for count and execute

ADR |INSTR LABEL MNEMONIC OPERAND COMMENTS

1 —_—
2 —

6320 F ik PO © INITEALI2E THE COUNMNTER
64100 Do 2

65|22 [8 Fi

{6 |00 D= D3

21170 CourT 153 O + CoutsT _How MANY EXECUTIONS
68174 o EXECVTE

(9 l7/ | 52

£a| 74 te- ExEcuif

48|72 /SE 2

scl74 - ExFeulg

40173 (52 =

GE|74 A ExFCulE v

{ F —_ T OVERFLow RouT/MNE

70 —

71 -

72

73

7 4 ExXFcuTr ¥ — EXECVYTE SoME Fumncr/ion/
75 -

76 -

77 b

78 -

791/ Jcw Al T

7al67 CounT v

78 — T END/AMG RouTINE

7cC -

70D —

Binary Count

The nature of the ISZ instruction requires that the preset count
provide a binary complement limit of the desired count. For the
execute/count situation the preset value is the complement plus
one and for the count/execute technique the preset value is the
straight complement. Table 8-2 is presented as a convenience for
determining register settings for counting with cascaded ISZ
instructions. Register 0 must be set according to whether the
technique is count/execute or execute/count. The total desired
count is determined by adding all the individual register counts.

Example for count of 2387 using execute/count:

Setting Ny

Reg 2 6 2304
Reg 1 A 80
Reg 0 D 3
‘ ‘ 2387

TABLE 8-2
ISZ Register Settings for "N" Operations

0

65536

131072

196608

262144

327680

393216

F
E
D
Cc
B
A
9
8

458752

-3

524288

589824

655360

720896

786432

851968

917504

983040

= N,.+N, + N, +N, + N

Nrorar = No+ Ny + Ny + Ny + N,

EXECUTE ' ‘ .

EXECUTE

8-10

Decimal Count

All CPU instructions count directly in binary. When it is
necessary to do a decimal count such as for displays, the DAA
instruction becomes useful.

An example of a subroutine to count three decimal decades is given
in Figure 8-7. The carry is initially cleared. The units decade
is loaded to the accumulator and incremented. The accumulator is
decimal adjusted and the result saved as the new units decade.

The TCC instruction moves the carry, if any, to the accumulator
and the tens decade is added. The accumulator is again decimal
adjusted and saved with the TCC moving any decimal overflow to

the accumulator for adding the hundreds decade.

[:EJ (COUNT DEC)

CLEAR CARRY
COUNT UNITS
DECIMAL

ADJUST EVEN PAIR oDD

E 7

COUNT TENS
DECIMAL
ADJUST

TENS UNETS

- w UV Ny W o T

6

5

sl

3| HUNDREDS
2

1

0

(=N S A e =]

COUNT HUNDREDS INDEX REGISTER MAP

DECIMAL
ADJUST
EXIT
FIGURE 8-7

- Subroutine to Count

Three Decimal Decades
ADR |INSTR| LABEL MNEMONIC OPERAND) . COMMENTS
o (count DEC) | CLC T JNCREMENT _UWNITS
1 /D 5 Ji o
2 ITAC i couwnvr
3 DAA | DECIMAL ADJUST

- 4 XCH K \ SAVE

5 TCC T JMCREMENT - T EMNS
6 ADD 4 -
7 DAA DEC/MAL ADJUST.
8 XCH 4
9 TcC T /NMNCREMENT 4 U DREDS
A ADD 7
B DAA DEC/MAL _ADJSVST
c XCH 7
D BBL o RE TURN
E
F

8-11

TIME DELAYS

Time delay circuits can be simulated with programmed logic using
simple counting techniques. Since each instruction word requires
10.8 microseconds to execute, the simplest time delay can be
achieved by executing a number of nonoperative instructions such
as the NOP. Using this method, any significant time delay would
soon use up considerable program memory space.

A more efficient time delay can be implemented using the ISz
instruction executed so that it loops on itself.

X [Aor |INSTR} LABEL MNEMONIC OPERAND COMMENTS
20
21170 SELF ™ /s®2 <] T _T/ME DEtay
22]2] —+ SELF v
23

For a 10.8 microsecond instruction cycle each execution of the two
word ISZ instruction uses 21.6 microseconds. Therefore, if an ISZ
instruction initially starts from 0 and loops through 16 passes
before it leaves the loop, a total of 345.6 microseconds is required.

By cascading two ISZ instructions one after another with the loops
of both returning to the first ISz, the time delay will be doubled
for each pass through the second ISZ.

% | aor |insTR] LABEL MNEMONIC OPERAND COMMENTS

20

21| 70 FIRST = /s2 [¢) T CASCADED T/ME DELAY
22121 —— FIRST

23| 7/ ISZ 1

Zal2l Lt FIRST

If two registers, started from zero, are cascaded in this fashion

a total of 5.88 milliseconds is required before the program exits

the loop. Cascading of additional registers will further increase
the time delay in an exponential manner.

Table 8-3 is presented for determining the register settings for
ISZ cascading up to six registers.

8-12

TABLE 8-3

Delay Time using Cascaded ISZ Instructions

N = NUMBER OF COUNTS
t = TIME FOR EACH COUNT = 21.6 usec-
TOTAL = T0+T1+T2+T3+T4+T5

8-13

Short Delay

The following routine accomplishes a variable time delay with a
setable range of 44 microseconds to 5.88 milliseconds, by pre-
setting two registers before the routine is entered. The routine
simply uses two cascaded ISZ instructions as previously defined.
The procedure for entering this routine as a subroutine requires
four instruction words as follows:

ADR |INSTR| LABEL MNEMONIC| OPERAND COMMENTS
ol — p—
1 — J—
2 | 2o] FiM Po DELAY 44 nsec 70 $8 Millisec
3 (D0, Do Dg
4 [3x JMs :
5 |00 (SHorRT &)
s | — -
7 — —

Register pair zero is fetched to the data constants from Table 8-3
to give the delay time required.

(SHORT A)

COUNT REG 0

EVEN PAIR

o
o
o

YES

o N &= O P> O
- W WY O M

COUNT Dg COUNT Dy

COUNT REG 1 ' INDEX REGISTER MAP

YES
FIGURE 8-8

RETURN Flow Chart of Short Delay

ADR |INSTR| LABEL MNEMONIC OPERAND COMMENTS
Co |70 (SHORT &) /52 [¢) CouNT THE FIRST REGIS TER
o1]00 = (SHRT &)
6217/ [{/s=2 / COUNT THE SECOMD REGISTER
o3loo - (SHoRT &)
04 |CO BBL [¢) RETURN
(o}]
06
7

8-14

Longer Delays (5.8 milliseconds to 1.5 seconds)

For delays longer than 5.8 milliseconds provided by (Short A) the

following routine is useful.
registers but based on where the routine is entered a couple

variations are possible. By fetching register pair 1 before

This routine basically cascades four

of

entering at (Long A) and allowing the subroutine to set pair 0 to

zero the delay setting has a resolution of 5.8 milliseconds.

ADR

INSTR]

LABEL

MNEMONIC OPERAND

COMMENTS

o)

1

2122 Fm P/ T FFicH P/_BFFORE _GO/NG TO (Lomg o)
3100, D, Dz

4 | Lx JMS

s{ /0 (tong &) \

By externally setting both pairs 1 and 0 and entering at (VAR A)

a resolution of 22 microseconds can be obtained.

ADR |INSTR LABEL MNEMONIC OPERAND COMMENTS
o | — —
1] = o
2 zo F/M Po T FErcH FPo AnD P/ BEFORKE Gorwég 7o (vAras)
3 | Do), Do Dy
al22 F/r Pt
5 | Ua Dy L2 D3
6 |5 X JMs
11/2 (VAR &)

(VAR A)

(LONG A)

SET PAIR 0
FOR 5.8 MS

COUNT 0O

REGISTER
PAIR O

REGISTER
PAIR 1

Flow Chart of Longer Delay

EVEN

COUNT D,

COUNT D 3

o N &= 0N O > O

COUNT Dg

COUNT D,

INDEX REGISTER MAP

FIGURE 8-9

o
(=)
o

- W UV YW m O T

8-15

ADR | INSTR| LABEL MNEMONIC OPERAND COMMENTS

lol2o] (Love &) TFIM 7o T SET REGISTER PAIR O

(1100) o))

12150 | (VARDI A ISP &) T COUNT REG PAIRC (5.8 Midlise<)
j31/2 e (VARD)

[4l7/ /S2 /

(5172 e]— (VAR A)

/6|72 /S2 2 T COUNT REG. PAIR I

J1]72 . — (VAR D) ERoMm 5.8 Millisse 10 /.§ SEC
/8172 /SZ 3

/9]72 — (VAR &) ‘

/AalCo BEL o) RETVRN

Control Timeout

By interjecting a test condition within a delay loop, a timeout
can be affected.

In the example given the simplest test condition is used. If the
test condition occurs within the selected time interval the
routine will terminate with the TEST EXIT. If the test condition
does not occur within the selected time count the routine will
terminate with a TIMEOUT EXIT.

(TIME oUT)

SET COUNT

EVEN PAIR -
E 7

o
o
o

TEST
EXIT

CONDITION

- W V1 0w O T

6
5
4
3
2
1
0

o N &= O P> O

COUNT Dy COUNT Dy

INDEX REGISTER MAP

FIGURE 8-10
TIME OUT

EXIT Flow Chart of Control Timeout
ADR | INSTR] LABEL MNEMONIC| OPERAND COMMENTS
20 |co Y(TimEOQUT) | FIM PO T SET TIMEOUT CounT
21 Do D, v
221/9 TEST =™ JCN T1 T EXIT IF CPU TEST /#PUT OCCURS
23 EXIT v]
24|70 ISZ o) COUNT THE TIMEouT
25|22 - TEST .
26 |7/ ISZ !
21122 o TEST
281CO] BBL [¢) RETYRN QA T/MEOUT

8-16

Holdover

A variation of the timeout subroutine is the holdover, where the

timeout count is reset if the test condition occurs.

(HOLDOVER)

SET COUNT

CONDITION

YES

EVEN PAIR 00D
E 7 F
¢ 6 D
A 5 B
8 4 9
6 3 7
4 2 5
2 1 3
0 COUNT Dg | o COUNT D, 1

INDEX REGISTER MAP

FIGURE 8-11
Flow Chart of Holdover

ADR |INSTR)] LABEL MNEMONIC| OPERAND COMMENTS
o (HoLDover)| FiuM FPo T SET HotD OVER COUNT
1 Do D, M
2 TEST | JCA T/ 1T RESET CoumnT IF CPU TEST /NPUT OCCURS
3 (HoLpoveER) |V
4 IS 2 o) T COUNT TIMFouT
5 v TEST]
6 sz I |
7 - TEST \2
8 BEL @) RETURN WHEN HoLDOVEF TIMEOUT Occuls
9
a
B
c

8-17

COMPARE SUBROUTINES

A basic technique in data handling is the use of the SUB instruc-
tion to perform data comparisons. If the carry bit is initially
cleared and two characters are subtracted the resulting accumula-
tor and carry bit provide the following comparison conditions
easily tested using the JCN instruction.

COMPARISON ACCUMULATOR CARRY TEST CONDITION
REG > ACC #0 0 co
REG = ACC 0 1 AO
REG < ACC #0 1 Al - Cl
REG £ ACC X 1 Ccl
REG > ACC #0 0 CO or AO
0 1
REG # ACC #0 X Al

(Compare) Four Bits

A subroutine which indicates only equal or .not—-equal conditions
is sufficient in many applications. In this example the carry
bit is cleared, register 7 is loaded to the accumulator and
register 5 is then subtracted from the accumulator. The JCN
instruction tests the accumulator and goes to a BBL 1 return if
zero, or clears the carry and does a BBLO return if nonzero.

Some features of this routine are that the registers are unaffected

and the compare condition is available in either the carry bit or
the accumulator.

Y

CLEAR CARRY
LOAD CHAR B EVEN PAIR
SUBTRACT

CHAR A E 7

RETURN WITH
YES . ACC = 1 AND CARRY = 1
(A =B)
NO

CLEAR CARRY

@ RETURN WITH
ACC = 0 AND G = O
(A # B)
FIGURE 8-12

(Compare) Four Bits

o

DATA B
DATA A

- W W1y W m O Mo

o N & 08 ® P O
o|l=|v|wjslwn]o

INDEX REGISTER MAP

ADR |INSTR]| LABEL MNEMONIC OPERAND COMMENTS

8o |F/ J (COMPARE) | CLC COMPARE REGISTERS 3 §5

81]A2 LD 7 I

821|9¢% SUB 5

g13]/c JCN Al

g 4| BE T NO COMPARE

EXR I 11 BEL / Cl oR Al EQUALS COMPARE

g6 |~/ | Vo comparel CLC

g81lce BBL o CO CR A0 EQUALS No COMPARE
8

(Compare) Eight Bits

A variation of the preceeding routine is presented which provides
equal or not-equal comparing of 8 bits.
same features as the 4 bit routine and can be extended in incre-

ments of 4 bits to any practical length.

CLEAR CARRY
LOAD CHAR B
SUB CHAR Aj
NO
EVEN PAIR
E 7
YES ¢ 5
CLEAR CARRY A 5
LOAD CHAR Bj 8 4
SUB CHAR Ay 6 | DATA B, 3| obatA By
4| DATA Ay 2| DATA A
2 1
RETURN WITH
Ace = 0 HYES ACC = 1 AND CARRY = | 0 0
(A =8) INDEX REGISTER MAP
NO
CLEAR CARRY
RETURN WITH
ACC = O AND CARRY = 0
(A £ B) FIGURE 8-13
(Compare) Eight Bits
ADR |INSTR| LABEL MNEMONIC OPERAND COMMENTS
8o |F| | (Comprre) | CLC COMPARE REGISTERS 3 & S
811A3 LD 7
82195 SUB 5
8311C JCMN A
84|88 — MO COMPARE
EXR cLc — COMPARE REGISTER: 4 £6
86 A4 LD 6
87]9%¢ SUE 4
88 |1C JCN Al
EEREL i+ MO COMPARE [V
galC] BEL 7 Cl oR A] FEQuALS COMPARE
8B |F/ | No CoMPAREM CLC
Scl|CO BEL o) CO oR A0 EQUALS NO COMPARE

This routine provides the

(=]
o
o

- W Vi 0w O T

8-19

8-20

LOGICAL OPERATIONS

Logical operations such as AND, OR, and exclusive OR (XOR) can
be performed on either the register bit level or on the program
decision level.

For a review of these operations and how they might be used to
set, clear, or complement bits within a register see Table 8-4
The CPU instructions set does not include any instructions for
directly performing the logical operations AND, OR, and XOR on
the index registers. Manipulating bits within the registers can
be accomplished using the RAL and RAR instructions to rotate the
bits individually into the carry where they can be set, cleared,
or complemented with the STC CLC or CMC instructions.

TABLE 8-4

Boolean Laws of Operation for 0 and 1

meaning:
meaning:

meaning:
meaning:

meaning: if X

X
X meaning: if X

X
X

Example of four bit operations

Operand XXXX XXXX
Operator OR 1101 AND 1101

Result 11X1 XX0X

Summary

OR Set any bits where the OR operator equals 1
AND Reset any bits where the AND operator equals 0
XOR Complement any bits where the XOR operator equals 1

An example might be where a 4 bit register is used to store, up to

4 individual flags for remembering the occurrence of random functions.
An example is given where such a flag register is loaded to the
accumulator and rotated to the desired bit which is cleared (set or
complemented) and then rotated back into position and restored in

the flag register.

When using register bits 8 or 4 for flags, use a RAL/RAR sequence
to save program steps. Likewise, when using bits 2 or 1 for flags,
use a RAR/RAL sequence. ‘

ADR | INSTR| LABEL MNEMONIC| OPERAND COMMENTS

5 pa—

1 —

2 [AA LD A LOAD F/AG REGISTER To ACCUMULATOR
31 F5 RAL . T _ROTATE BiT 4 To CARRY
s | F5 RAL v

5 |FA STC SET THE FLAG

6 | & RAR T ROTATE BIT 4 BACK

7 F6 \ RAR v

8 | BA XCH A RESTORE FLAGc REGISTER
9 —

A —

B

Performing logical operations on the programming level is
accomplished using combinations of the two decision instructions
JCN and ISZ. These instructions are combined in sequences to
perform programmed decisions such as AND, OR, and XOR; and their
dual operations NAND, NOR and compare.

The AND and its dual, NOR, are accomplished as shown in Figure 8-14
where two positive decisions are required to give A < B. The OR

and its dual, NAND, function are accomplished as shown in Figure 8-14
where either of two decisions being positive gives A + B.

The XOR and its dual, compare, function require three decisions
as shown in Figure 8-14 where if A is a positive decision, B must
be a negative decision, or if A is a negative decision, B must be

a positive decision to give the result A - B + A - B.

An example of a programmed AND is given where N passes AND flag 8
are required to continue in sequence.

8-21

AND
NOR

A + B (NOR)

XOR
COMPARE

>|

- B+ A - B (COMPARE)

D

- B+ A - B (XO0R)

<

FIGURE 8-14
Logical Operations

ADR |JNSTR| LABEL MNEMONIC| OPERAND COMMENTS
o =
1 —
2 —_ :
3 /IS®Z 7 T NM__PASSES
4 NoT A/
5 4D A - FLAG ¥
6] RAL
7 Jens co
8 MoT FLAC8
9 — T EXECUTE |F A/ PASSES AND FlAc ¥
'y = =
B =
c — ¥

8-22

ADDITION

Addition of two 4 bit numbers can be done directly by the ADD or
ADM instructions. The ADD instruction adds from one of the index
registers to the accumulator and the ADM adds from the selected
RAM register into the accumulator.

Numbers longer than 4 bits can be added in multiples of 4 bits.
This technique is referred to as multiple precision arithmetic.
The carry bit automatically maintains the carry/link between each
group of 4 bits to be added. The example shows a routine for
adding two 16 bit binary numbers. Note that the first step clears
the carry bit. The least significant bits are added first so that
the carry/link will propagate. If an overflow occurs the carry
bit will contain a 1 at the end of the routine.

N

CLEAR CARRY
ADD Ay + By | Lss
SAVE EVEN PAIR

o
o

- W VN YW w O Mmoo

Ay
A2

ADD Az + B,
+ CARRY
SAVE

I

ADD A3 + B3

+ CARRY
SAVE INDEX REGISTER MAP

;

ADD Ay + By
+ CARRY MSB
SAVE

Efj FIGURE 8-15

Multiple Precision Addition

A3
Ay

83
By

By
B2

o N 0N 0> O
oj—=|Nn|lw]s]lun|o

ADR | INSTR| LABEL MNEMONIC OPERAND COMMENTS

o|FI] (ADD) CLC — ADD ABSd To #5223

1|A9 LD T T ADD REG 7 To REG 3

2|53 ADD 3]

3|83 XCH 3 v

4 1A8 LD 8 T ADD REG 8 To REG2 ,yirH# cARRY
s [82 ADD 2 |

6 |[B2 XCH 2 v

1|AB LD B8 - — ADD REG B 7o _REGS with CARRY
8|85 ADD ke

9 IBS XCH 5

aAA] 12D A T ADD KEGA To REGHF wirk CARRY
5 |84 ADD 4]

c|B84 XCH & 17

plco . EB. o V RETURN

8-23

MULTIPLICATION

The two methods of multiplication are the brute-force method and
long-hand method.

Brute-Force Method

Multiply is accomplished with repeated addition. Beginning with
a number to be multiplied (Multiplicand) and a number to multiply
by (Multiplier) the brute-force method adds the multiplicand
repeatedly into the product, doing the addition as many times as
designated by the multiplier. This method is sufficient and some-

times appropriate for small numbers but can take considerable time
for large numbers.

One example of the brute-force method of multiply is given where
the multiplicand is multiplied by a constant K. The routine clears
the product registers, sets the multiplier to K and then adds the
multiplicand to the product, K times. Since the ISZ instruction
is used to count K, the complement plus one must be used for the
constant. Table 8-2 is useful for determining these constant. It
should be noted that this routine performs the execute/count
- sequence as defined in the section on counting.

16 BITS A B 8 9 Multiplicand
8 BITS X 6 7 Multiplier
16 BITS 4 5 2 3 Product

Registers used in multiply examples

CLEAR PRODUCT]
LOAD
MULTIPLIER
CONSTANT K

N
Y

EVEN PAIR

o
o
o

MPL1CAND
MPLICAND
MULT K
PROD
PROD

MPL1CAND
MPLICAND
MULT K
PROD
PROD

ADD
MULTIPLICAND
TO PRODUCT

o|l=|miwlEs|wn|o|~
- w WV Y oo M

O N = o8 P O

INDEX REGISTER MAP

FIGURE 8-16
Brute-Force Method of Multiplication

- 8-24

»
o
=
=
z
«
<]

LABEL MNEMONIC OPERAND COMMENTS

2z MoiT G K] | Fiudl V74 T CLEAR THE PRoDucT
oo o] o

Ao
Al
224 Fim P2
A3oo) [
A s 126 F/M P3 T FercH Mulr/PiieR , K
A 5 [DcDy Ds Dy v
A6 1S X | APDKT/MES | JHS T ADD MULT7PLICAND 70 PRoDVCT
A 7 (ADD) v
Asl|77 /S 2 7 Do K ApDir/ous
A9 AS ADD 4 T/MES
Aal7é /SZ
AB A6 ADD X T/MES
Aclco BBL [) RETORN

Long-Hand Method

Consider an example of multiplying six by seven.

The brute-force method suggests adding the number 6 to the product,
7 times for the result. Now consider the example again as shown
done in the long-hand method.

Multiplicand 0110 = 6
Multiplier x) 0111 = 7
0110 = 1x6 = 6
01100 = 2x6 = 12
011000 = 4 x6 = 24
+) 0000000 = 8x0 = 0
Product 101010 = 42

When done by the long-hand method only three additions are needed.
Each bit position of the multiplier containing a 1, adds the multi-
plicand times the multiplier bit position weight. Multiplying the
multiplicand by the bit position weight is accomplished by a left
shift operation.

An example of the long-hand method of multiply is given where the
multiplier can be variable. The routine shifts the multiplier

right and tests the LSB in the carry bit. If the LSB is 1, the
multiplicand is added to the product. If the LSB is 0 the addi-
tion is skipped. The multiplier is tested for all zeroes to
determine completion. If the operation is not complete the multi-
plicand is shifted left one place to multiply it by the current bit
position weight. The routine then proceeds as above testing the LSB
and adding until the multiplier becomes all zeros.

This routine assumes the product area is initially cleared. 1In
addition, overflow is stored in the carry bit and can be tested
by the main program. The multiplier and multiplicand are not
saved. Note that the entry point [MULT] is not at the beginning.
The (ADD) subroutine is given in the section on addition.

8-25

8-26

[D—

[Muct]

\ 2

SHIFT
MULTIPLICAND
LEFT

SHIFT
MULTIPLIER
RIGHT

‘ NO
YES

ADD
MULTIPLICAND
TO PRODUCT

EVEN PAIR
E 7
c 6
A | MPLICAND 5] MPLICAND
8 | MPLICAND 41 MPLICAND
6 MPLIER 3] MPLIER
4| Prop 2| PrROD
21 PROD 1] PROD
0 0

INDEX REGISTER MAP

FIGURE 8-17

Long-Hand Method
of Multiplication

ADR |INSTR| LABEL MNEMONIC OPERAND COMMENTS
Co |SXVHMEXT BiT JmMS T Shier MULTIPLICAND LEFT
ci1|£0 (ABg7 =) |V
c2lsx | ITMvcT] | IMS T SHIFT MULT1PLIER RIGHT
| _Ic3iFo c7>) 1V
| 1ca /A JCN co T 1S MULTIPLIER BIT =O
cs |cg ZERO v
Cc6 |5X JMS T ADD MULTIPLICANMND To PRoDucT
Cc1 (ADD) Y /F MULTIPLIER BT =]
C8lA7 ZERD LD 7 T /S REMA/NIAMG MOLTIPLIER = O
col/c JCN Al
cal|co NVexXT B)T
cB|AE LD A
ccl/C Je Al
co|Co . NEXT BT
CE[CO BBl [EX|T WHEN MOLT/IPLIER]S ALL Z EROES
ADR |INSTR| LABEL MNEMONIC| OPERAND COMMENTS
EFo|F| | (ABBT<) [CLC T SHIFT REGISTERS AB®9 LEFT
EF1l1lA9 LD 4 ONE PosITION
E2|Fs5 RAL
E3|B9 XCH g
E4iA8 LD 1
Es |Fg RAL
£6 | BB XCH 8
£71]|AB LD B
Fs|F RAL
E9 |88 XCH 8
Ea|AA LD A
EB|FS5 RAL
EclBA XCH A
Eplco BBL &)
EE
EFr i
FolFIT (7 =) [CLC T GHIFT REGISTERS G £ 7 RieHT
FLlA6] LD 4 ONE _PositionN
1F2]F¢ RAR
F318¢g XcH &
Fal4 LD 7
F51F6 KAR
F6lB7 XCH 7
7]Co BBL [@) \

0DD

- W WUV W w o M

SQUARE ROOT

There are various formulas for approximating the square root of a
number. There is also the long-hand division technique learned in
grade school. As shown in the example using a decimal number the
technique is to first separate the number into pairs of digits. A
trial divisor is then selected for the most significant pair. When
one is found that gives zero or the smallest positive remainder it
is saved as a partial result. This partial result is doubled and
multiplied by ten to become the basis for a new trail divisor. A
new trial divisor digit is added to the doubled partial result.

The new trail divisor operates on a new partial remainder, again
looking for zero or the smallest positive remainder. The new par-
tial remainder consists of the division remainder plus the next two
digits of the dividend.

Partial Result #1
Doubled
Partial ‘/T___———_ Partial Result #2

Result 1 2 8 -=— Tinal Result

Trial Divisor #1 V 01 63 84 Dividend

1

Trial Divisor #2 2 00 63 Partial Remainder
44

Trial Divisor #3 24 19 84 Partial Remainder

19 84

00 00 Final Remainder

FIGURE 8-18

Example of Decimal Long-Hand Square Root

The long-hand square root technique also works for binary numbers
and in fact is simpler because of the binary operations. In binary
there are only two trial choices, 1 or 0 and to double the partial
result is simply a shift left, as is multiplying the partial result
by the number base. Also, the final result can be derived from the
trial division by shifting right one place at the end of the opera-
tion. This allows the quotient and divisor to use the same register.

Trial Divisor Digit-‘

- Trial Divisor O Dividend

10 Partial remainder
Partial remainder
Partial remainder

Partial remainder

Final remainder

FIGURE 8-19

Example of Binary Long-Hand Square Root

8-27

A programming example for the square root of a 16 bit integer is
given. The routine initializes the remainder and quotient and
sets a pass counter for the 8 pairs of the 16 bit integer. Two
bits of the integer are shifted into the partial remainder area
where the trial divisor is subtracted. Before the subtractions,
the trial divisor is doubled and set to "1". If the subtraction
gave a positive result the new partial remainder is saved and the
trial "1" is inserted into the combined quotient-divisor as a
result. If the subtraction gave a negative result, the trial "1"
bit is removed from the divisor.

The process of shifting two bits into the remainder and subtract-
ing the trial divisor is repeated for 8 passes. When the operation

is complete, the trial divisor is shifted right one place to obtain
the quotient. ‘

This subroutine requires approximately 8.3 milliseconds to execute
when the CPU clock is 10.8 microseconds.

DIVISOR & QUOTIENT REMAINDER DIVIDEND
7 4 5 F|] C D|A|B 8 9
CLEAR
REMAINDER
CLEAR QUOTIENT
SET 8 PASSES
____—_i

SHIFT TWOBITS
TO REMAINDER
TRY A """
DOUBLE RESULT EVEN PAIR 0

SUB RESULT) £ 7
FROM REMA INDER
SAVE REMAINDER

“ﬂailligli!i" YES

NO

o

REMAINDER
REMAINDER
D1VIDEND
DIVIDEND
DIVISOR
DIVISOR

NEW REMAINDER
COUNT

REMAINDER
DIVIDEND
CIVIDEND

DIVISOR
NEW REMAINDER

- W VT N v O T O

o N = o8 P O
ol—=|v]|wls{w|o

USE NEW

REMAINDER REMOVE THE INDEX REGISTER MAP
INSERT "1 TRIAL "0
IN RESULT

3 “':IIIHE">
YES

RECOVER

FROM DIVISOR FIGURE 8-20
. Flowchart for Long-Hand
Square Root

8-28

Program for square root subroutine

ADR |INSTR| LABEL MNEMONIC OPERAND COMMENTS

o [SQ RooT] | F/M P7 CLEAR _REAA/N DER

1 O o

2 F/M P&

3 o] o

4 FI/M P3 T CLEAR QUOTIEAMNT

5 o) o) i

6 FIM P2 |

7 (&) o) \ 4

8 F/M PO T SET FoR & PASSES

9 (0] 8 v

A Two Moke [JMS T SHIFT Two BiTS /NTo SUB AREA (REUAINDER)
B (FCDAEsT=<)

c JMS

) (FCDABSI=)

E STC TRY A 17 TRIAL _DI6IT

F JMS T_MULTiPlY PART/AL RESULT BY 2

o (745<) |V

1 CLC = SUBTRACT PARTIAL RESULT FRom REMAINDER
2 LD D

3 SUB £

4 XCH 3 SAVE _WEW REMAIWDER

5 cme |

6 LD C

7 SUB 4

8 XCH 2 SAVE NEw REMAINDER

9 CMcC

A 4D ~

B SU8 7

c JCN Cco T CHECK FoR NEGATIVE RESULT

D NEG v

E XCH F T USE AEW REMAIMNDER JF _Pos RESULT
E LD 2 [

o xXcH [|

1 LD 3 |

2 XCH D v T

3 INC 5 INSERT A 1710 RESULT

4 C OUNT /52 / T DO 8 PASSES

5 Two MORE |V

6 JMS T SHIFT _TRIAL DivisoR RIGHT FOoR F/uAL
7 (745 =) RESULT

8 B8 L &) EX/T

9 NEG LD 5 REMoVE THE TRIAL 1" JF WEG RESULT
A DAC |

B XCH £ Vv

c Jun

D COUNT

8-29

8-30

Subroutines used in [square root]

»
o
=

INSTR]

LABEL

MNEMONIC!

OPERAND

COMMENTS

(FCDABRI<)

cLC

T SHIFT REGISTERS FCDABSY

| LEFT OWNE_PoSITron

RAL

xcH

4D

RAL

XCH

RAL

XCH

LD

RAL

XCH

RAL

XCH

RAL

XCH

RAL

X<CH

BBL

O MO O] [P el ookl [saleol

glalu]elulv|=lomimlolao|w (B o |w|eju|e wiNE- O

»
5]
b

INSTR|

LABEL

MNEMONIC

OPERAND

COMMENTS

(745 =)

CcLC

T_SHIFT REGISTERS 745

4D

LEFT OwnE PosiTion

RAL

XCH._

LD

RAL

XCH

LD

RAL

XCH

BEL

Ol INIB| [Biw] o

(745 =)

ClcC

SHIFT REGISTER 745

RiIGHT ONE PosiT/on/

RAR

XCH

RAR

X H

LD

RAR

X<cH

BEL

EERERNES

myomqmmhwwwommunm:&-wa«na\m‘wuwo

TELETYPE

The Pro-Log teletype interface shown in Figure 8-21 is a three
circuit, six-wire connection which allows full-duplex send and
receive, and remote reader control. The three, two-wire circuits
are:

(1) Data to TTY
(2) Data from TTY
(3) Reader Control to TTY

This interface can be used in the following modes with Appropriate
TTY Configurations:

1. Simplex receive

2. Simplex send

3. Full duplex

4. With or without Remote Reader Control
TTY MODES

Simplex Send mode allows the TTY to be used as an input device in
LINE operation. ’

TTY PRINTER
OR PUNCH

TTY DATA
l INTERFACE| TERMINAL

DATA FROM TTY
g

TTY KEYBOARD
OR READER

Simplex Receive mode allows the TTY to be used as an output device
in LINE operation.

TTY PRINTER |@DATA TO TTY
OR PUNCH

TTY DATA
INTERFACE TERMINAL

TTY KEYBOARD
OR READER

ce-8

r—— -
[
1
|
i
|

Lmm— s

TTY DISTRIBUTOR
(NORMALLY CLOSED, LOGIC 1)

TELETYPE

FROM CPU
OyTPUT

4.7 K

'll'f

+5

TO CPU
INPUT

DATA TO TTY

GRN +

+5

TAPE READER
CONTROL

20 mA

V!OLETI

r—-—=———== ==

20V ()

SELECTOR
colL

TELETYPE INTERFACE

FIGURE 8-21

Teletype Interface

WHT RELAY (TO BE ADDEO) !
4 i
T t O
[“707 1
! 1
$ 1
BLK| ¥ 1 O
L - - - = =]
T rELAY
COIL j CONTACTS
15 VA
6000
TELETYPE

Full-Duplex mode allows the TTY to be used as an input and output
device in LINE operation. The separate send and receive allows the
cdata terminal to edit the input data before printing and/or punch-
ing the output data.

TTY PRINTER DATA TO TTY
OR PUNCH i

TTY DATA
INTERFACE TERMINAL

TTY KEYBOARD | DATA FROM TTY
OR READER —»>

Remote Reader mode allows the TTY paper tape reader to be activated
by a remote device in LINE operation. This mode would be used in
conjunction with Simplex Send or Full-Duplex operation. 1In Full-
Duplex, the remote reader control allows paper tape editing.

TTY REQUIREMENTS

The full PRO-LOG TTY interface requires specific teletype configura-
tions. The general configuration requires a TTY modified for Full-
Duplex and Remote Reader Control. Specifically there are three
circuit connection requirements for the TTY:

(1) 20 mA neutral loop send
(2) 20 mA neutral loop receive
(3) 15 volt neutral loop reader control

TTY FORMAT

The programming examples given here assume a serial by character,
serial by bit TTY data format as shown in Figure 8-22. The char-
acter structure consists of a minimum of ten equal time intervals;
one start bit, 8 data bits and at least one stop bit. When the
TTY is in a stopped state the line is held in the logical 1 state.
The first transition on the line is always a start bit (logical 0).

8

33

9
MILLISECONDS

e

STOPISTARTT'—T"'—F'”'F—I__F'-*'I'—F" STOP
s ey P Py Py M P e P e

FIGURE 8-22

TTY Data Line Format

The character set assumed is 7 level ASC II plus parity with the
codes defined as in Figure 8-23. The bit sequence is least signifi-
cant bit first, to most significant in ascending consecutive order.
A character parity bit follows the most significant bit of the data
character. The character parity is assumed to be even over the
eight bits i.e., an even number of 1 bits per character including
the parity bit.

With a full duplex TTY interface various methods can be used when
reading. The most common method is to simply echo each bit back
to the TTY as it is detected and print the incoming character
immediately. Another method is to completely read the entire TTY
character and then issue a separate print response to the TTY only
if desired. This allows the incoming data to be edited before
printing. '

T7TY Read Without Echo

In this example the program is written to receive from the TTY
without echoing a print response. The program reads the TTY input
line searching for a start bit. When the start bit occurs, the
program clocks off 4.5 milliseconds of delay and then makes eight
periodic samples, one every 9 milliseconds. At each 9 milliseconds

-sample the TTY input is read as either a 1 or 0 bit. The eight

serial bits are assembled into the ASC II character by shifting the
bits inot a data storage area. When the eight bits have been read,
an additional 9 milliseconds interval is generated to prevent the
prooram from returning to a subsequent read too early.

N D7 he be = %, 1 %0y | %1 %1y Yoy | Poy {1, | 1y
ltS b4 ba| ba| by Column »

t t t t Row ¢ 0 1 2 3 4 5 6 7
oo oo 0 nur [pe |sp [o | e | p | N | p
0 0 0 1 1 SOH | DC1 ! 1 A Q a qa
0 0 1 0 2 STX | DC2 " 2 B R b r
oo 1] 3 erx {pc3 | ¢ | 3 | c |l s | c | s
0 1 0 0 4 EOT | DC4 $ 4 D T d t
0 1 0 1 5 ENQ | NAK % 5 E U e u
0 1 1 0 6 ACX | SYN & 6 F \ £ v
0 1 1 1 7 BEL | ETB / 7 G 1) g w
1 0 0 0 8 BS CAN (8 H X h X
1 0 0 1 9 HT EM) 9 I i Y
1 0 1 0 10 LF SUB * H J Z 3 z
1 0 1 1 11 VT ESC + ; K [k {
1|1 4fo0o]o 12 FF | Fs , L \ 1 P
1 1 0 1 13 CR GS - = M] m }
1 1 1 0 14 SO RS . N /N n ~
1 1 1 1 15 SI us / ? 0] - o DEL

Control Characters

NUL Null DLE Data Link Escapec

SOH Start of Heading ncl Device Control 1

STX Start of Text nc2 Device Control 2

ETX End of Text DC3 Device Control 3

EOT End of Transmission DC4 Device Control 4 (Stop)

ENQ Enquiry NAK Negative Acknowledge

ACK Acknowledge SYN Synchronous Idle

BEL Bell (audible or attention signal ETB End of Transmission Block

BS Backspace CAN Cancel

HT Horizontal Tabulation (punched EM End of Medium

card skip) SUB Substitute

LF Line Feed ESC Escape

VT Vertical Tabulation FS File Separator

FF Form Feed GS Group Separator

CR Carriage Return RS Record Separator

0 ~Shift Out us Unit Separator

ST Shift In DEL Delete

FIGURE 8-23
TTY Character Set

35

<]

NO
YES
SET 8 COUNT
Aj}'
NO
9 MS
YES
SET CARRY
YES
NO

CLEAR CARRY

-

y

ROTATE BIT
INTO PAIR 3

8 BITS

YES

o>

FIGURE 8-24

Flow Chart for TTY Read without Echo

EVEN PAIR
E. 7
¢ 6
A 5
8]
6] TTY MSD~ 3| TrYLsp
4 2
2| DELAY 1] DELAY
0 | . DELAY 0| DELAY

INDEX REGISTER MAP

0oDD

- W VI YW om O m

Mnemonic Listing for TTY Read

ADR |INSTR| LABEL MNEMONIC] OPERAND COMMENTS

o LROTTY | | JCN To T F/~#D START BiT

1 [RoTTY] v

2 Fim PO T DELAY ONE -HALF BT T/ME
3 7 3 |

4 JMS [

5 (SHoRT A) Y

6 FiM P2 T SET COUNT FoR 8 BITS
7 o g v

8 NEXT BIT JMS T DELAY ONE BiT TIME

9 (7 Ms) v

I CLB CLEAR BIT

B JCN T/ T READ OwnE TT7Y Bir

c No BiT v

D STC SET_BIT

E NO BIT JMS + ROTATE DATA BITS /uT0 FPAIR 3
F (RoT P23—>) |V

o /ISZ2 5 T _REAp ¥ BITS

1 NEXT BiT_ |V

2 JMS T STopP BiT DELAY

3 (9 Ms) v

4 BRL [}

S -

6

7

8|

9 (ReT P3>)] LD & T SHIFT REG & £ 7 RIGHT ONE PLACE
A RAR

B XcH ©

c LD i

D RAR

E XCH 7

E BB/ o)

APPENDIX A

SYMBOLS AND DEFINITIONS

The symbols and definitions presented in this appendix are used
throughout PRO-LOG documentation.

BACKGROUND INFORMATION

Physical and Active States in Binary Logic (0 and 1)

Binary logic implies a two-state system. In physical applications
of binary logic, the two states can be any meaningful pair of
physical states such as high/low, positive/negative, in/out, up/
down, etc that will either cause a function to happen or to not
happen.

Binary Operations

Binary logic application is governed by the rules of Boolean
Algebra. There exist only three operations in Boolean Algebra;
AND, OR, NOT (invert).

AND

AND implies a combination of two or more active conditions
to achieve a result.

OR

OR implies a choice between two or more active conditions to
achieve a result.

NOT

NOT implies the negative or inverse. Since there are only
two states in binary logic, the inverse of a function must

always assume the opposite state, thus 0 = 1, I = 0.

Duality of Operations

The inherent property of the NOT operation establishes a dual
relationship between the AND and OR operations. The dual relation-
ship is such that the AND and OR functions can be interchanged if
the active conditions (0 and 1 states) are inverted. This pro-
perty is stated as De Morgan's theorem in Boolean Algebra.

The importance of this property in physical systems is that the
active state can and will assume either physical state if the
logic operations have been assembled to achieve a result.

DEFINITIONS

Logic Block Diagram

A logic diagram is one which depicts logic functions with no
reference to physical implementations. It consists primarily of
logic symbols and is used to depict all logic relationships as
simply and understandably as possible. Nonlogic functions are
not normally shown. This basic logic diagram is used for educa-
tional purposes. The purpose of the logic block diagram is to
communicate the overall system concept.

Detailed Logic Diagram

A diagram that depicts all logic functions and also shows non-
logic functions, locations, pin numbers, test points, and other
physical elements necessary to describe the physical and func-
tional aspects of the logic is a detailed logic diagram. The
detailed logic diagram is used primarily to facilitate the rapid
diagnosis and localization of equipment malfunctions. It also is
used to verify the physical consistency of the logic and to pre-
pare fabrication instructions. The symbols can be connected by
lines that represent signal paths or can be cross-referenced
through the use of mnemonic identifiers.

Logic Function

A logic function is a combinational, storage, delay, or sequential
function expressing a relationship between signal input(s) to a
system or device and the resultant output(s). Logic functions are

- expressed graphically with the use of logic symbols.

Logic Symbol

A logic symbol is the graphic representation of a logic function.

Symbol Orientation

The orientation of a symbol on a diagram does not alter the mean-
ing of the symbol. However, logic diagrams indicate direction of
signal flow by symbol orientation and should, therefore, be logi-

"cally oriented, consistent with the overall information flow.

Symbol Line Thickness

The weight of a line does not affect the meaning of a symbol. 1In
specific cases, a heavier line may be used for emphasis.

Symbol Size

A symbol may be drawn to any proportional size that suits a draw-
ing, depending on the reduction or enlargement anticipated. Rela-
tive sizes of the symbols should be equivalent for related functions.

Table of Combinations

For purposes of this standard, tables of combinations describe the
active input/output conditions of the basic logic functions; i.e.,
HIGH (H) more positive, and LOW (L) relatively less positive or
negative.

Identifiers

Identification information is required on and adjacent to logic
symbols to specify unique location of logic function on the drawing,
within the equipment and its circuit diagram. Identification is
required for clarity as follows:

a. Notations shall be placed about the periphery of
symbols to identify input and output pin numbers
and test points. ‘

b. Line conditions, signal routing, etc may also be
labeled for clarity.

C. Details such as stylized waveforms and timing dura-
tions may be included when required for clarity.

Mnemonic Identifiers

A mnemonic identifier is a name given to a logic function output
for the purpose of cross-reference identification. It is usual
practice to assign a meaningful name for the purpose of implying
what function is being accomplished. These identifiers can be
words, abbreviations, word-number combinations, numbers or symbols.
In all cases when mnemonic identifiers are used, they must always
appear identically written.

Signal Flow Direction

Logic Diagrams indicate direction of signal flow by symbol orienta-
tion, preferred signal flow direction is from left to right. For
increased clarity, arrows superimposed on lines may be used. How-
ever, arrowheads shall not be placed immediately adjacent to any
graphic symbol input or output.

Stylized Waveforms

Stylized waveforms may be placed adjacent to signal lines (where
required) to indicate the nature and timing of the signals. '

SYMBOLS

Line Symbols

Single Channel Path

Multiple Channel Paths

n[n = Number of Channels

Example: Multiple Channel Paths With Junction

10/ 6/
7 7

Signal Paths Crossing With no Connection (not necessarily
perpendicular)

Junction of Signal Paths

Single Paths: ' Multiple Paths:

Signal Flow

Inputs and Outputs

Preferred (left to right signal flow, no arrows required)

1

Inputs —

Outputs

—
——
I

Undesirable But Acceptable (right to left signal flow,
arrows required for clarity)

Outputs

Inputs

—

—
<
L

Logic Symbols for Binary Operations

Low Level State Indicators

A small circle symbol at any input or output of a function is
used to represent the active low state. A small circle at
the input indicates that the relatively low (L) input signal
activates the input. Conversely, the absence of a small
circle indicates that the relatively high (H) input signal
activates the input. A small circle at a symbol output
indicates that when the function is activated the output
terminal is relatively low (L).

NOT (Invert)

The NOT function is implied when a high input activates a
low output or a low input activates a high output. This is
represented in its simplest form using the appropriate symbol
below. The invert function using low level state indicators
applies to AND, OR, and other more complex symbols.

AND
The symbol shown below represents the AND function. The AND

symbol can be used with active low state indicators as shown
in Table A-1. The AND output is active only if all inputs are

active.

The symbol shown below represents the OR function. The OR
symbol can be used with active low state indicators as shown
in Table A-1. The OR output is active only is any one or

more inputs is active.

OR

TABLE A-1
Table of Combinations

The following table of combinations.illustrates the applications
and functions of two variables illustrating duality and use of
low level state indicators.

AND OR

1
T

ikl

Lo L

ofelelc]
Y

i
el

prom|jprmm|irrom|PtpoEd|ipoon@n|orE@|rRnEm|e 0 mnm| o

Pl |pop | n|ponpojpnpn|eEp@lp@mpom| W
momoplmen|moeslrong|nopp|PREE|EEmEBR|EEEER]

00 A~ N =

17
34

68
137
274
549

1 099

00 N -

16

67
134

268
536
073
147

294
589
179
359

719
438
877
755

511

0 A N =

16

65
131
262
524

048
097
194
388

777
554
108
217

435
870
741
483

967
934
869
738

476
953
906
813

627

[o - F N NS R

32
64
128

256
512
024
048

096

192

384
768

536
072
144
288

576
152
304
608

216
432
864
728

456
912
824
648

296
592
184
368

736
472
944
888

776

Wo NONUNAE = O

=
— O

[
vthWnN

bt
O~

[SSIE ST (S I 8]
W N=O

NNNON
NONo A

N WNN
=~ O O

[SAR T
VTE KN

(SR N]
O oo

S
o

APPENDIX B

TABLE OF POWERS OF TWO

25
625
812

906
953
976
488

244
122
061
030

015
007
003
001

000
000
000
000

000
000
000
000

000
000
000
000

000
000
000
000

000
000
000
000

000

25

125
562
281

140
070
035
517

258
629
814
907

953
476
238
119

059
029
014
007

003
001
000
000

000
000
000
000

000
000
000
000

000

25

625
312
156
578

789
394
697
348

674
837
418
209

604
802
901
450

725
862
931
465

232
116
058
029

014
007
003
001

000

25
125

062
531
265
632

316
158
579
289

644
322
161
580

290
645
322
661

830
415
207
103

551
275
637
818

909

5
25
625
812

406
203
101
550

775
387
193
596

298
149
574
287

643
321
660
830

915
957
978
989

494

25

125
562
781

390
695
847
923

461
230
615
307

653
826
913
456

228
614
807
403

701

25

625
312
656
828

914
957
478
739

869
934
467
733

366
183
091
545

772

25
125

062
031
515
257

628
814
407
703

851
425
712
856

928

45
625
812

906
453
226
613

806
903
951
475

237

25

125
562
281

640
320
660
830

915

5
25

625

312 5
156 25
078 125

039 062 5

APPENDIX C

HEXADECIMAL/DECIMAL INTEGERS

Hex Decimal Hex Decimal [Hex Decimal |Hex| Decimal |Hex|Decimal|Hex|Decimal|Hex|Decimal|Hex|Decimal|Hex]Decimal
0 0} 0 o] o [0] o o] 0 0o}o 00 0 0 0
11 4,264,967,296f 1 268,435,456) 1 | 16,777,216| 1 | 1,048,576] 1 | 65,536 1 | 4,096 | 1 256 | 1 16 1 1
2| 8,589,934,592] 2 536,870,912| 2 | 33,554,432| 2 | 2,097,152f 2 |131,072| 2 | 8,192 | 2 512 | 2 32 2 2
3 (12,884,901,888} 3 805,306,368{ 3 | 50,331,648 3 | 3,145,728{ 3 1196,608] 3 |12,288 | 3 768 | 3 48 3 3
4 {17,179,869,184} 4 |1,073,741,824] 4 | 67,108,864| 4 | 4,194,304| 4 {262,144| 4 {16,384 | 4 | 1,024 | 4 64 4 4
5 |21,474,836,480f S5 }1,342,177,280] 5 | 83,886,080/ 5 | 5,242,880] 5 | 327,680/ 5 |20,480 | 5) 1,280 | 5 80 5 S
6 |25,769,803,776] 6 |1,610,612,736] 6 |100,663,296] 6 | 6,291,456| 6 }393,216{ 6 |24,576 | 6 § 1,536 | 6 96 6 6
7 130,064,771,072| 7 |1,879,048,192| 7 |177,440,512| 7 | 7,340,032} 7 1458,752} 7 |28,672 | 7 | 1,792 | 7 112 7 7
8 134,359,738,368| 8 |2,147,483,648| 8 |134,217,728] 8 8,388,608, 8 {524,288| B |32,768 | 8 | 2,048 | 8 128 8 8
9 | 38,654,705,664| 9 [2,415,919,104] 9 |150,994,044] 9 | 9,437,184, 9 |589,824] 9 |36,864 | 9 | 2,304 | 9 144 9 9
A 142,949,672,960| A |2,684,354,560] A |167,772,160] A]10,485,760| A | 655,360} A 40,960 | A | 2,560 | A 160 A 10
B | 47,244,640,256] B |2,952,790,016] B |184,549,376| B {11,534,336| B |720,896| B |45,056 | B | 2,816 | B 176 B 11
C }51,539,607,552| C |3,221,225,472] C | 201,326,592| C |12,582,912| C |786,432] C [49,152 } C | 3,072 | C 192 C 12
D }55,834,574,848} D | 3,489,660,928 D |218,103,808) D |13,631,488] D |851,968] D |53,248 | D | 3,328 | D 208 D 13
E |60,129,542,144| E | 3,758,096,384| E |234,881,024| E |14,680,064| E |917,504] E [57,344 | E | 3,584 | E 224 E 14
F |64,424,509,440| F |4,026,531,840| F |251,658,240| F |15,728,640] F |983,040] F |61,440 | F { 3,840 | F 240 F 15

9 8 . 7) 5 4 3 2 1

HEXADECIMAL TO DECIMAL
This table allows for conversion of hexadecimal numbers

of up to nine characters in length to their decimal
equivalents.

Locate the columns in the table corresponding to the
position of each character of the hexadecimal number.
The

Hexa-~

Record the decimal equivalents of the characters.
sum of these numbers is the converted number.

decimal number F4D is used as an example.

Hex. Char. Column Decimal Equiv.
3 3,840
4 2 64
1 13
3,917 = F4D

To convert a number without using the table:

m

Assign the units decimal equivalent to each
hexadecimal character.

(2) Starting with the decimal equivalent of the most-
significant character, multiply by 16, add the
decimal equivalent of the next most-significant
character to the result and again multiply by 16.

(3) Repeat this process until the last character is
added.

Hexadecimal number F4D is again used as the example.

Hex. Char. Units Dec. Equiv.

F 15 15

X16

240

4 4 +4

244

X16

3,904

D 13 +13
3,917 = F4D

DECIMAL TO HEXADECIMAL

To

convert decimal to hexadecimal using the table:

(1) Select the largest decimal number that is equal to

(2)

(3)

(4)

or less than the number to be converted. Record
the hexadecimal equivalent as the most-significant
character of the hexadecimal number.

Subtract the selected number from the number to
be converted.

Select the decimal number that is equal to or less
than the result obtained from step 2 and record
the hexadecimal equivalent as the secénd most-
significant digit.

Continue the process until there is no remainder.

Decimal number 3,917 is used as the example.

Decimal Number

from Table
3,840 3,917
-3.840 -»F4D
64 77
bl L 4
13 13
213

Conversion without using the table is accomplished by

successively dividing by 16 and collecting the remainders -

in reverse order as shown below.

244
16 3517
32

APPENDIX D

HEXADECIMAL/DECIMAL FRACTIONS

Hex {Decimal jHex Decimal Hex Decimal Hex Decimal Hex Decimal
.0 | .0000 {.00 |.0000 0000 |.000 |.0000 0000 0000 |.0000| .0000 0000 0000 0000| .00000(.0000 0000 0000 0000 0000
1| .0625 |.01 |.0039 0625 |.001 |.0002 4414 0625 |.0001| .0000 1525 8789 0625 .00001| .0000 00 3164 0625
2 | .1250 1.02-|.0078 1250 [.002 |.0004 8828 1250 [.0002] .0000 3051 7578 1250| .00002] .0000 0190 7348 6328 1250
3] .187% 1.03 |.0117 1875 |.003 ..0007 3242 1875 |.0003! .0000 4577 6367 1875] .000031 .0000 0286 1022 0492 1875
4 | .2500 |.04 |.0156 2500 |.004 |.0009 7656 2500 |.0004] .0000 6103 5156 2500] .00004{ .0000 0381 4697 2656 2500
5 | .3125 [.05 |.0195 3125 [.005 |.0012 2070 3125 |.0005] .0000 7629 3945 3125] .00005] .0000 0476 8371 5820 3125
6 | .3750 .06 |.0234 3750 {.006 |.0014 6484 3750 |.0006] .0000 9155 2734 3750] .00006] .0000 0572 2045 8984 3750

.7 | .4375 |.07 |.0273 4375 [.007 |.0017 0898 4375 |.0007| .0001 0681 1523 4375] .00007| .0000 0667 5720 2148 4375
"8] .5000].08 [.0312 5000 |.008 |.0019 G312 5000 |.0008] .0001 2207 0312 5000 .00008| .0000 0762 9394 5312 5000
9 | .5625].09 |.0351 5625 |.009 |.0021 90726 5625 |.0009| .0001 3732 9101 5625 .00009| .0000 0858) 6 5625
A | .6250 |.OA [.0330 6250 |.00A |.0024 4140 6250 |.000A| .0001 5258 7800 6250] .OO0O00A| .0000 0953 6743 1640 6250
B | .6875].0B |.0429 6875 |.00B |.0026 8554 6875 |.000B] .0001 6784 6679 6875] .0000B| .0000 1049 0417 4804 6875
C | .7500 |.0C |.0468 7500 |.00C |.0029 2968 7500 |.000C| .0001 8310 5468 7500] .0000C| .0000 1144 3091 7968 7500
D | .8125 [.0D [.0507 8125 |.00D |.0031 7382 BIZ5 [.000D0| .0001 0836 4257 8125] .0000D] 0000 1239 7766 1132 8125
E | 8750 |- L0546 8750 |.00E |.0034 1796 B750 |.O000E| .0002 1362 3046 8750| .O000L| .0000 1335 1440 4296 B/50 |
O3S [TOF 10585 9375 [T00F | 0036 6210 9375 |.000F| 0002 2588 1535 0375| .0000F| 0000 430 ST 7250 U375

1 2 3 4 S

FRACTIONAL HEXADECIMAL TO DECIMAL

When using the table, fractional hexadecimal to decimal

conversion is accomplished in the same manner as for
integer conversion. Hexadecimal .F4D is converted as
shown below:

Hex. Char. Column Decimal Equiv.
.F 1 .9375
.04 2 L0156 2500
.00D 3 .0031 7382 8125 _ _FaD

.9562 9882 8125

Conversion without using the table is accomplished as
follows:

.F4D = ,956298828125

F4D16 3917
.F4D = —— = —= .956298828125
16 4096

FRACTIONAL DECIMAL TO HEXADECIMAL

Fractional decimal to hexadecimal conversion
in the same manner as for integer conversion
table.

.9563

-.9375

.0188

-.0156

.0031

-.0031

.0000

0000
2500
7500
7382
0117

0000
8125
1875

= .F

= .04

= ,00D
TF4D

is accomplished

when using the

Decimal .9563 is converted as shown below.

Conversion without using the table is accomplished by multi-

plying successively by 16 and collecting the integers from

the products.

.9563

X16

15.3008

X16

4.8128

X16

13,0048
/

APPENDIX E

TABLE OF POWERS OF SIXTEEN

16 n

16
256

4 096

65 536

1 048 576

16 777 216

268 435 456

4 294 967 296

68 719 476 736

1 099 511 627 776 | 10

17 592 186 044 416 |11

281 474 976 710 656 | 12

4 503 599 627 370 496 |13

72 057 594 037 927 936 |14

1 152 921 504 606 846 976 | 15

CoNOAUTd_dWNNDEFEO

APPENDIX F

CONVERSION TABLES

This appendix contains the following reference tables:

Title

Hexadecimal Arithmetic
Addition Table
Multiplication Table
Powers of 1610

Powers of 10 16

Hexadecimal-Decimal Integer Conversion

Hexadecimal-Decimal Fraction Conversion

Powers of Two

Mathematical Constants

HEXADECIMAL ARITHMETIC

ADDITION TABLE

4 5 6 7 8 9 A B C D E F
1 02 03 04 05 06 07 08 09 0A 0B 0c 0D OE OF 10
03 04 05 06 07 08 09 0A 0B 0C 0D OE OF 10 11
3 04 05 06 07 08 09 OA OB 0C 0D OE OF 10 11 12
4 05 06 07 08 09 0A 0B 0C 0D OE OF 10 " 12 13
06 07 08 09 0A 0B 0C 0D 0E OF 10 1 12 13 14
6 07 08 09 0A 08 0c 0D OE OF 10 1 12 13 14 15
7 08 09 0A 0B 0C 0D OE OF 10 11 12 13 14 15 16
09 0A 0B @ 0D OE OF 10 11 12 13 14 15 16 17
9 0A 0B 0C oD OE OF 10 n 12 13 14 15 16 17 18
A 0B oc 0D OE OF 10 n 12 13 14 15 16 17 18 19
B 0C 0D /3 OF 10 B 12 13 14 15 16 17 18 19 1A
C oD OE OF 10 n 12 13 14 15 16 17 18 19 1A 1B
D OE OF 10 1 12 13 14 15 16 17 18 19 1A 18 [
E OF 10 1 12 13 14 15 16 17 18 19 1A 1B 1C 1D
F 10 1 12 13 14 15 16 17 18 19 1A 1B 1C iD 1E
MULTIPLICATION TABLE

1 2 3 4 5 6 7 8 9 A B C D E F

2 04 06 08 0A 0c OE 10 12 14 16 18 1A 1C 1E

3 06 09 0C OF 12 15 18 1B 1E 21 24 27 2A 2D

08 0OC 10 14 18 1C 20 24 28 2C 30 34 38 3C

0A OF 14 19 1E 23 28 2D 32 37 3C 4 46 48

oc 12 18 IE° 24 2A 30 36 3C 42 48 4E 54 5A

7 OE 15 1C 23 2A 31 38 3F 46 4D 54 58 62 69

8 10 18 20 28 30 38 40 48 50 58 60 68 70 78

9 12 1B 24 2D 36 3F 48 51 5A 63 6C 75 7E 87

A 14 1E 28 32 3C 46 50 5A 64 6E 78 82 8C 96

B 16 21 2C 37 42 4D 58 63 6E 79 84 8F A A5

C 18 24 30 3C 48 54 60 6C 78 84 90 9C AB B4

D 1A 27 34 41 4E 5B 68 75 82 8F ?C A? Bé Cc3

E 1IC 2A 38 46 54 62 70 7E 8C 9A A8 B6 c4 D2

F 1E 2B 3C 4B 5A 69 78 87 96 AS B4 c3 D2 El

23
163
DEO

8AC7

281

4 503
72 057
152 921

17
ES8
918
5AF3
8D7E
8652
4578
B6B3
2304

TABLE OF POWERS OF S]XTEENl

4

65

048

16 777

268 435

4 294 967
68 719 476
099 511 627
592 186 044
474 976 710
599 627 370
594 037 927
504 606 846
10"

1

A

64

3E8

2710

1 86A0

F 4240

98 9680
5F5 E100
3B9A CA00
5408 E400
4876 EB800
D4A5 1000
4E72 A000
107A 4000
A4C6 8000
6FC1 0000
5D8A 0000
A764 0000
89E8 0000

16
1
16
256
096
536
576
216
456
296
736
776
416
656
496
936
976

TABLE OF POWERS OF 101

—_ O

O WV 00 N O 0 A~ oW N

- O

O NV 0o N O 0 b~ w N

p—

12
13
14
15

0.10000
0.62500
0.39062
0.24414
0.15258
0.95367
0.59604
0.37252
0.23283
0.14551
0.90949
0.56843
0.35527
0.22204
0.13877
0.86736

1.0000
0.1999
0.28F5
0.4189
0.68DB
0.A7C5
0.10Cé
0.1AD7
0.2AF3
0.44B8
0.6DF 3
0.AFEB
0.1197
0.1C25
0.2D09
0.480E
0.734A
0.8B877
0.1272
0.1D83

6

10
0000
9999
C28F
3748
8BAC
AC47
F7AO
F29A
1DC4
2F A0
7F67
FFOB
92981
C268
370D
BE7B
CASF
AA32
5DD]
C94F

0

=N

00000 00000
00000 00000
50000 00000
06250 00000
78906 25000
43164 06250
64477 53906
90298 46191
06436 53869
91522 83668
47017 72928
41886 08080
13678 80050
46049 25031
78780 78144
17379 88403

0000
9999
5C28
C6A7
710C
1847
BSED
B CAF
6118
9B5A
SEFé6
CB24
2DEA
4976
4257
9D58
6226
36A4
D243
B6D2

00000
00000
00000
00000
00000
00000
25000
40625
62891
51807
23792
14870
09294
30808
56755
54721

0000
999A
F5C3
EF9E
B296
8423
8D37
4858
73BF
52CC
E ADF
AAFF
1119
81C2
3604
566D
FOAE
B449
AB A1l
AC35

HEXADECIMAL-DECIMAL INTEGER CONVERSION

The table below provides for direct conversions between hexa-
decimal integers in the range 0—FFF and decimal integersin
the range 0—4095. For conversion of larger integers, the
table values may be added to the following figures:

Hexadecimal fractions may be converted to decimal fractions
as follows:

1. Express the hexadecimal fraction as an integer times
16™", where n is the number of significant hexadecimal

Hexadecimal Decimal Hexadecimal Decimal places to the right of the hexadecimal point.

01 000 409 20 000 131 072 0. CA9BF3;, = CA9BF3;, x 167

02 000 8192 30 000 196 608

03 000 12 288 40 000 262 144 2. Find the decimal equivalent of the hexadecimal integer
04 000 16 384 50 000 327 680

05 000 20 480 60 000 393 216 CA9 BF3]6 = 13278 195]0

06 000 24 576 70 000 458 752

07 000 28 672 80 000 524 288 3. Multiply the decimal equivalent by 16™"

08 000 32 768 90 000 589 824

09 000 36 864 A0 000 655 360 13 278 195

0A 000 40 960 BO 000 720 896 x 596 046 448 x 10”16

0B 000 45 056 C0 000 786 432 0.791 442 09610

0C 000 49 152 DO 000 851 968

0D 000 53 248 EO 000 917 504 Decimal fractions may be converted to hexadecimal fractions
OE 000 57 344 FO 000 983 040 by successively multiplying the decimal fraction by 1610
OF 000 61 440 100 000 1 048 576 After each multiplication, the integer portion is removed to
10 000 65 536 200 000 2097 152 form a hexadecimal fraction by building to the right of the
11 000 69 632 300 000 3145728 hexadecimal point. However, since decimal arithmetic is
12 000 73728 400 000 4 194 304 used in this conversion, the integer portion of each product
13 000 77 824 500 000 5 242 880 must be converted to hexadecimal numbers.

14 000 81 920 600 000 6 291 456

15 000 86 016 700 000 7 340 032 Example: Convert 0.8951(to its hexadecimal equivalent
16 000 90 112 800 000 8 388 608 - ' 0.895

17 000 94 208 900 000 9 437 184) 16

18 000 98 304 /A00 000 10 485 760 @ 320

19 000 102 400 B0OO 000 11 534 336 ’

1A 000 106 496 C00000 12582912 / <14

18 000 110 592 D00 000 13 631 488 -1

1C 000 114 688 E00 000 14 680 064 ®_]92‘8'

“1D 000 118784 F0O0 000 15 728 640 /— '

1E 000 122 880 1 000 000 16 777 216

1F 000 126 976 2000 000 33 554 432 0.ES1E g~ 720

0 1 2 3 4 5 6 7 8 9 A B C D E F

000 | 0000 0001 0002 0003 0004 0005 0006 0007 0008 0009 0010 0011 0012 0013 0014 0015
010 | 0016 0017 0018 0019 0020 0021 0022 0023 0024 0025 0026 0027 0028 0029 0030 0031
020 | 0032 0033 0034 0035 0036 0037 0038 0039 0040 0041 0042 0043 0044 0045 0046 0047
030 | 0048 0049 0050 0051 0052 0053 0054 0055 0056 0057 0058 0059 0060 0061 0062 0053
040 | 0064 0065 0066 0067 0068 0069 0070 0071 0072 0073 0074 0075 0076 0077 0078 0079
050 | 0080 0081 0082 0083 0084 0085 0085 0087 0088 0089 0090 0091 0092 0093 0094 0095
060 | 0096 0097 0098 0099 0100 0101 0102 0103 0104 0105 0106 0107 0108 0109 0110 Ol11
070 | 0112 0113 0114 0115 0116 0117 0118 0119 0120 0121 0122 0123 0124 0125 0126 0127
080 | 0128 0129 0130 0131 0132 0133 0134 0135 0136 0137 0138 0139 0140 0141 0142 0143
090 | 0144 0145 0146 0147 0148 0149 0150 0151 0152 0153 0154 0155 0156 0157 0158 0159
0AQ | 0160 0161 0162 0163 0164 0165 0166 0167 0168 0169 0170 0171 0172 0173 0174 0175
0BO | 0176 0177 0178 0179 0180 0181 0182 0183 0184 0185 018 0187 0188 0189 0190 0191
0CO | 0192 0193 0194 0195 0196 0197 0198 0199 0200 0201 0202 0203 0204 0205 0206 0207
0DO | 0208 0209 0210 0211 0212 0213 0214 0215 0216 0217 0218 0219 0220 0221 0222 0223
OEO | 0224 0225 0226 0227 0228 0229 0230 0231 0232 0233 0234 0235 0236 0237 0238 0239
OF0 | 0240 0241 0242 0243 0244 0245 0246 0247 0248 0249 0250 0251 0252 0253 0254 0255

HEXADECIMAL-DECIMAL INTEGER CONVERSION (cont.)

0 ! 2 3 4 5 6 7 8 9 A B C D F
100 | 0256 0257 0258 0259 0260 0261 0262 0263 0264 0265 0266 0267 0268 0269 0270 0271
110 | 0272 0273 0274 0275 0276 0277 0278 0279 0280 0281 0282 0283 0284 0285 0286 0287
120 | 0288 0289 0290 0291 0292 0293 0294 0295 0296 0297 0298 0299 0300 0301 0302 0303
130 | 0304 0305 0306 0307 0308 0309 0310 0311 0312 0313 0314 0315 0316 0317 0318 0319
140 | 0320 0321 0322 0323 0324 0325 0326 0327 0328 0329 0330 0331 0332 0333 0334 0335
150 | 0336 0337 0338 0339 0340 0341 0342 0343 0344 0345 0346 0347 0348 0349 0350 0351
160 | 0352 0353 0354 0355 0356 0357 0358 0359 0360 0361 0362 0363 0364 0365 0366 0367
170 | 0368 0369 0370 0371 0372 0373 0374 0375 0376 0377 0378 0379 0380 0381 0382 0383
180 | 0384 0385 0386 0387 0388 0389 0390 0391 0392 0393 0394 0395 0396 0397 0398 0399
190 | 0400 0401 0402 0403 0404 0405 0406 0407 0408 0409 0410 0411 0412 0413 0414 0415
TAO | 0416 0417 0418 0419 0420 0421 0422 0423 0424 0425 0426 0427 0428 0429 0430 0431
1B0 | 0432 0433 0434 0435 0436 0437 0438 0439 0440 0441 0442 0443 0444 0445 0446 0447
1CO | 0448 0449 0450 0451 0452 0453 0454 0455 0456 0457 0458 0459 0460 0461 0462 0463
1D0 | 0464 0465 0466 0467 0468 0469 0470 0471 0472 0473 0474 0475 0476 0477 0478 0479
1E0 | 0480 0481 0482 0483 0484 0485 0486 0487 0488 0489 0490 0491 0492 0493 0494 0495
1FO | 0496 0497 0498 0499 0500 0501 0502 0503 0504 0505 0506 0507 0508 0509 0510 0511
200 | 0512 0513 0514 0515 0516 0517 0518 0519 0520 0521 0522 0523 0524 0525 0526 0527
210 | 0528 0529 0530 053} 0532 0533 0534 0535 0536 0537 0538 0539 0540 0541 0542 0543
220 [0544 0545 0546 0547 0548 0549 0550 0551 0552 0553 0554 0555 0556 0557 0558 0559
230 | 0560 0561 0562 0563 0564 0565 0566 0567 0568 0569 0570 0571 0572 0573 0574 0575
240 | 0576 0577 0578 0579 0580 0581 0582 0583 0584 0585 0586 0587 0588 0589 0590 0591
250 | 0592 0593 0594 0595 0596 0597 0598 0599 0600 0601 0602 0603 0604 0605 0606 0607
260 | 0608 0609 0610 0611 0612 0613 0614 0615 Q616 0617 0618 0619 0620 0621 0622 0623
270 | 0624 0625 0626 0627 0628 0629 0630 0631 0632 0633 0634 0635 Q636 0637 0638 0639
280 | 0640 0641 0642 0643 0644 0645 0646 0647 0648 0649 0650 0651 - 0652 0653 0654 0655
290 | 0656 0657 0658 0659 0660 0661 0662 0663 0664 0665 0666 0667 = 0668 0669 0670 0671
2A0 | 0672 0673 0674 0675 0676 0677 0678 0679 0680 0681 0682 0683 0684 0685 0686 0687
2B0 | 0688 0689 0690 0691 0692 0693 0694 0695 0696 0697 0698 0699 0700 0701 0702 0703
2C0 | 0704 0705 0706 0707 0708 0709 0710 0711 0712 0713 0714 0715 0716 0717 0718 0719
2D0 | 0720 0721 0722 0723 0724 0725 0726 0727 0728 0729 0730 0731 0732 0733 0734 0735
2E0 | 0736 0737 0738 0739 0740 0741 0742 0743 0744 0745 0746 0747 0748 0749 0750 0751
2F0 | 0752 0753 0754 0755 0756 0757 0758 0759 0760 0761 0762 0763 0764 0765 0766 0767
300 | 0768 0769 0770 0771 0772 0773 0774 0775 0776 0777 0778 0779 0780 0781 0782 0783
310 | 0784 0785 0786 0787 0788 0789 0790 0791 0792 0793 0794 0795 0796 0797 0798 0799
320 | 0800 0801 0802 0803 0804 0805 0806 0807 0808 0809 0810 0811 0812 0813 0814 0815
330 | 0816 0817 0818 0819 0820 0821 0822 0823 0824 0825 0826 0827 0828 0829 0830 0831
340 | 0832 0833 0834 0835 0836 0837 0838 0839 0840 0841 0842 0843 0844 0845 0846 0847
350 | 0848 0849 0850 0851 0852 0853 0854 0855 0856 0857 0858 0859 0860 0861 0862 0863
360 | 0864 0865 0866 0867 0868 0869 0870 0871 0872 0873 0874 0875 0876 0877 0878 0879
370 | 0880 0881 0882 0883 0884 0885 0886 0887 0888 0889 0890 0891 0892 0893 0894 0895
380 | 0896 0897 0898 0899 0900. 0901 0902 0903 0904 0905 0906 0907 0908 0909 0910 0911
390 | 0912 0913 0914 0915 0916 0917 0918 0919 0920 0921 0922 0923 0924 0925 0926 0927
3A0 | 0928 0929 0930 0931 0932 0933 0934 0935 0936 0937 0938 0939 0940 0941 0942 0943
3B0 | 0944 0945 0946 0947 0948 0949 0950 0951 0952 0953 0954 0955 0956 0957 0958 0959
3C0 | 0960 0961 0962 0963 0964 0965 0966 0967 0968 0969 0970 0971 0972 0973 0974 0975
3D0 | 0976 0977 0978 0979 0980 0981 0982 0983 0984 0985 0986 0987 0988 0989 0990 0991
3E0 | 0992 0993 0994 0995 0996 0997 0998 0999 1000 1001 1002 1003 1004 1005 1006 1007
3F0 | 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023

HEXADECIMAL-DECIMAL INTEGER CONVERSION (cont.)

0 1 2 3 4 5 6 7 8 9 A B C b E F
400 | 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039
410 | 1040 1041 1042 1043 . 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055
420 | 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071
430 | 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087
440 | 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103
450 | 1104 1105 1106 1107 1108 11092 1110 1N 1112 1113 1114 1115 1116 1117 1118 1119
460 | 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135
470 | 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151
480 | 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167
490 | 1168 1169 1170 1171 1172 1173 1174 1175 1z6 1177 1178 1179 1180 1181 1182 1183
4A0 | 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199
4BO | 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215
4C0 | 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231
4D0 | 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247
4E0 | 1248 1249 1250 125} 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263
4F0 | 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279
500 | 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295
510 | 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311
520 | 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327
530 | 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343
540 | 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359
550 | 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375
560 | 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391
570 | 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407
580 | 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423
590 | 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439
5A0 | 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455
5B0 | 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471
5C0 | 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487
5D0 | 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503
"5E0 | 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519
5F0 | 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535
600 | 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551
610 | 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567
620 | 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583
630 | 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599
640 | 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615
650 | 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631
660 | 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647
670 | 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663
680 | 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679
690 | 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695
6A0 | 169 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711
6B0 | 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727
6CO | 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743
6D0 | 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759
6E0 | 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775
6F0 | 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791

HEXADECIMAL-DECIMAL INTEGER CONVERSION (cont.)

0] 2 3 4 5 6 7 8 9 A B C D E F
700 | 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807
710 | 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823
720 | 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839
730 | 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855
740 | 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871
750 | 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887
760 | 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903
770 | 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919
780 | 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935
790 | 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951
7A0 | 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967
7B0 | 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983
7CO | 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999
7D0 | 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015
7E0 | 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031
7F0 | 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047
800 | 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063
810 | 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079
820 | 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095
830 | 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111
840 | 2112 2113 2114 2115 2116 2117 2118 2119 2120 21217 2122 2123 2124 2125 2126 2127
850 | 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143
860 | 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159
870 | 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175
880 | 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191
890 | 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207
8A0 | 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223
880 | 2224 2225 2226 2227 2228 2229 2230 223} 2232 2233 2234 2235 2236 2237 2238 2239
8CO | 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255
8D0 | 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271
8E0 | 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287
8F0 | 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303
900 | 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319
910 | 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335
920 | 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351
930 | 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367
940 | 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383
950 | 2384 2385 238 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399
960 | 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 241 2412 2413 2414 2415
970 | 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431
980 | 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447
990 | 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463
QAQ | 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479
9B0 | 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495
9CO | 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511
9D0 | 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527
9E0 | 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543
9F0 | 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559

HEXADECIMAL-DECIMAL INTEGER CONVERSION (cont.)

0 1 2 3 4 5 6 7 8 9 A B C D E F
AQ0 | 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575
A0 | 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591
A20 | 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607
A30 | 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623
A40 | 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639
A50 | 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655
Ab0 | 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671
A70 | 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687
A80 | 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703
A90 | 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719
AAOQ | 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 273} 2732 2733 2734 2735
ABO | 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751
ACO | 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767
ADO | 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783
AEOQ | 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799
AFQ | 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 ‘2812 2813 2814 2815
BOO | 2816 12817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831
B10 [2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847
B20 | 2848 2849 . 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863
B30 | 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879
B40 | 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895
B50 | 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 291
B60 | 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927
B70 | 2928 2929 2930 2931} 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943
B80 | 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959
BP0 | 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975
BAO | 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991
BBO | 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007
BCO | 3008 3009 3010 3011 3012 3013 3014 3015 - 3016 3017 3018 3019 3020 3021 3022 3023
BDO | 3024 3025 3026 3027 3028 3029 3030 303! 3032 3033 3034 3035 3036 3037 3038 3039
‘BEO | 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055
BFO | 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071
C00 | 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087
C10 | 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103
C20 | 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119
C30 | 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135
C40 | 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151
C50 | 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167
C60 | 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183
C70 | 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199
C80 | 3200 3201 3202 3203 - 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215
C90 | 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231
CAO | 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247
CBO | 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263
CCO | 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279
CDO | 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295
CEO [3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311
CFO | 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327

HEXADECIMAL-DECIMAL INTEGER CONVERSION (cont.)

0 1 2 3 4 5) 7 8 9 A B C D E F
D00 | 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343
D10 | 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359
D20 | 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375
D30 | 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391
D40 | 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407
D50 | 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423
D60 | 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439
D70 | 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455
D80 | 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471
D90 | 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487
DAQ | 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503
DBO | 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519
DCO | 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535
DDO | 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551
DEO § 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567
DFO | 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583
EO0 | 3584 3585 358 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599
E10 [3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615
E20 | 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631
E30 | 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647
E40 | 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663
E50 | 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679
E60 | 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695
E70 | 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711
E80 | 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727
E90 | 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743
EAO | 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759
EBO | 3760 376} 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775
ECO | 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791
EDO | 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807
EEO | 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823
EFO | 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839
FOO | 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855
F10 | 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871
F20 | 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887
F30 | 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903
F40 | 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919
F50 | 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935
F60 | 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951
F70 | 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967
F80 | 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983
F90 | 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999
FAO | 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015
FBO | 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031
FCO | 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047
FDO | 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063
FEO | 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079
FFO | 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095

HEXADECIMAL-DECIMAL FRACTION CONVERSION

Hexadecimal Decimal Hexadecimal Decimal Hexadecimal Decimal Hexadecimal Decimal

.00 000000 .00000 00000 .40 000000 .25000 00000 .80 000000 .50000 00000 .CO 000000 .75000 00000
.01 000000 .00390 62500 .41 000000 .25390 62500 .81 000000 .50390 62500 .C1 000000 .75390 62500
.02 000000 .00781 25000 .42 000000 .25781 25000 .82 000000 .50781 25000 .C2 000000 .75781 25000
.03 000000 .01171 87500 .43 000000 .26171 87500 .83 000000 .51171 87500 .C3 000000 .76171 87500
.04 00 00 00 .01562 50000 .44 00 00 00 .26562 50000 .84 00 00 00 .51562 50000 .C4 00 00 00 .76562 50000
.05 00 00 00 .01953 12500 .45 00 00 00 .26953 12500 .85 00 00 00 51953 12500 .C5 00 00 00 76953 12500
.06 0000 00 .02343 75000 .46 00 00 00 .27343 75000 .86 00 00 00 .52343 75000 .C6 00 00 00 77343 75000
.07 000000 .02734 37500 .47 000000 .27734 37500 .87 000000 .52734 37500 .C7 000000 .77734 37500
.08 0000 00 .03125 00000 .48 00 00 00 .28125 00000 .88 00 00 00 .53125 00000 .C8 00 00 00 .78125 00000
.09 00 00 00 .03515 62500 .49 00 00 00 .28515 62500° .89 00 00 00 .53515 62500 .C9 00 00 00 78515 62500
.0A 00 00 00 .03906 25000 .4A 00 00 00 .28%906 25000 .8A 00 00 00 53906 25000 .CA 00 00 00 .78906 25000
.0B 00 00 00 .04296 87500 .4B 00 00 00 .29296 87500 .8B 00 00 00 .54296 87500 .CB 00 00 00 79296 87500
.0C 00 00 00 .04687 50000 .4C 00 00 00 .29687 50000 .8C 00 00 00 .54687 50000 .CC 00 00 00 79687 50000
.0D 00 00 00 .05078 12500 .4D 00 00 00 .30078 12500 .8D 00 00 00 .55078 12500 .CD 00 00 00 .80078 12500
.0E 0000 00 .05468 75000 4E 0000 00 .30448 75000 .BE 0000 00 .55468 75000 .CE 0000 00 .80448 75000
.OF 00 00 00 .05859 37500 .4F Q0 00 00 .30859 37500 .8F 00 00 00 .55859 37500 .CF 00 00 00 .80859 37500
.10 00 00 00 .06250 00000 .50 00 00 00 .31250 00000 .90 00 00 00 .56250 00000 .DO 00 00 00 .81250 00000
.11 00 00 00 .06640 62500 .51 00 00 00 .31640 62500 .91 00 00 00 .56640 62500 .D1 00 00 00 .81640 62500
.12 00 00 00 .07031 25000 .52 0000 00 .32031 25000 .92 00 00 00 .57031 25000 .D2 00 00 00 .82031 25000
.13 00 00 00 .07421 87500 .53 0000 00 .32421 87500 .93 0000 00 .57421 87500 .D3 00 00 00 .82421 87500
.14 00 00 00 .07812 50000 .54 00 00 00 .32812 50000 .94 00 00 00 .57812 50000 .D4 00 00 00 .82812 50000
.15 00 00 00 .08203 12500 .55 0000 00 .33203 12500 .95 00 00 00 .58203 12500 .D5 00 00 00 .83203 12500
.16 0000 00 .08593 75000 .56 00 00 00 .33593 75000 .96 00 00 00 .58593 75000 .D6 00 00 00 .83593 75000
.17 000000 .08984 37500 .57 000000 .33984 37500 .97 000000 .58984 37500 .D7 0000 00 .83984 37500
.18 00 00 00 .09375 00000 .58 00 00 00 .34375 00000 .98 00 00 00 .59375 00000 .D8 00 00 00 .84375 00000
.19 000000 .09765 62500 .59 000000 .34765 62500 .99 000000 .59765 62500 .D9 00 00 00 .84765 62500
.1A 00 00 00 .10156 25000 .SA 00 00 00 .35156 25000 .9A 00 00 00 .60156 25000 .DA 00 00 00 .85156 25000
.1B Q0 00 00 .10546 87500 .5B 00 00 00 .35546 87500 .98 00 00 00 .60546 87500 .DB 00 00 00 .85546 87500
.1C 00 00 00 .10937 50000 .5C 00 00 00 .35937 50000 .9C 00 00 00 ~.60937 50000 .DC 00 00 00 .85937 50000
.1D 00 00 00 .11328 12500 .5D 00 00 00 .36328 12500 .9D 00 00 00 .61328 12500 .DD 00 00 00 .86328 12500
.1E 00 00 00 .11718 75000 .5E 00 00 00 .36718 75000 .9E 00 00 00 .61718 75000 .DE 00 00 00 .86718 75000
.1F 00 00 00 .12109 37500 .5F 00 00 00 .37109 37500 .9F 00 00 00 .62109 37500 .DF 00 00 00 .87109 37500
.20 0000 00 .12500 00000 .60 00 00 00 .37500 00000 .A0 0000 00 .62500 00000 .E0O 000000 .87500 00000
.21 00 00 00 .12890 62500 .61 00 00 00 .37890 62500 .Al 00 00 00 .62890 62500 .E1 00 00 00 .87890 62500
.22 00 00 00 .13281 25000 .62 00 00 00 .38281 25000 .A2 00 00 00 .63281 25000 .E2 00 00 00 .88281 25000
.23 000000 .13671 87500 63 000000 .38671 87500 .A3 000000 .63671 87500 .E3 000000 .88671 87500
.24 00 00 00 . 14062 50000 .64 00 00 00 .39062 50000 .A4 00 00 00 .64062 50000 .E4 00 00 00 .89062 50000
.25 000000 ° .14453 12500 .65 00 00 00 .39453 12500 .A5 00 00 00 .64453 12500 .E5 00 00 00 .89453 12500
.26 00 00 00 .14843 75000 .66 0000 00 .39843 75000 A6 00 00 00 .64843 75000 .E6 00 00 00 .89843 75000
.27 00 00 00 .15234 37500 .67 00 00 00 40234 37500 .A7 00 00 00 .65234 37500 .E7 0000 00 .90234 37500
.28 00 00 00 .15625 00000 .68 Q00 00 00 .40625 00000 .A8 0000 00 65625 00000 .E8 0000 00 .90625 00000
.29 00 00 00 .16015 62500 .69 00 00 00 .41015 62500 .A9 00 00 00 .66015 62500 .E? 00 00 00 .91015 62500
.2A 00 00 00 .16406 25000 .6A 0000 00 .41406 25000 .AA 00 00 00 .66406 25000 .EA 00 00 00 .91406 25000
.2B 00 00 00 16796 87500 .6B 00 00 00 41796 87500 .AB 00 00 00 66796 87500 .EB 00 00 00 .91796 87500
.2C 000000 .17187 50000 .6C 0000 00 .42187 50000 LAC 000000 .67187 50000 .EC 000000 .92187 50000
.2D 000000 .17578 12500 .6D 0000 00 .42578 12500 LAD 0000 00 .67578 12500 .ED 000000 .92578 12500
.2E 000000 .17948 75000 .6E 000000 .42968 75000 LAE 0000 00 .67968 75000 .EE 000000 .92968 75000
.2F 000000 .18359 37500 .6F 000000 .43359 37500 .AF 000000 .68359 37500 .EF 000000 .93359 37500
.30 00 00 00 .18750 00000 .70 00 00 00 .43750 00000 .BO 00 00 00 .68750 00000 .FO 00 00 00 .93750 00000
.31 00 00 00 19140 62500 .71 00 00 00 44140 62500 .B1 00 00 00 69140 62500 .F1 0000 00 .94140 62500
.32 0000 00 .19531 25000 .72 0000 00 .44531 25000 .B2 00 00 00 .69531 25000 .F2 00 00 00 .94531 25000
.33 00 00 00 .19921 87500 .73 00 00 00 44921 87500 .B3 00 00 00 69921 87500 .F3 00 00 00 .94921 87500
.34 0000 00 .20312 50000 .74 00 00 00 .45312 50000 .B4 00 00 00 .70312 50000 .F4 00 00 00 .95312 50000
.35 00 00 00 .20703 12500 .75 00 00 00 .45703 12500 .B5 00 00 00 .70703 12500 .F5 00 00 00 .95703 12500
.36 00 00 00 .21093 75000 .76 0000 00 .46093 75000 .B6 00 00 00 71093 75000 .F6 00 00 00 .96093 75000
.37 00 00 00 .21484 37500 .77 - 00 00 00 .46484 37500 .B7 00 00 00 71484 37500 .F7 00 00 00 .96484 37500
.38 00 00 00 .21875 00000 .78 0000 00 .46875 00000 .B8 00 00 00 71875 00000 .F8 00 00 00 .96875 00000
.39 0000 00 .22265 62500 .79 0000 00 47265 62500 .B9 00 00 00 72265 62500 .F9 00 00 00 .97265 62500
.3A 00 00 00 .22656 25000 .7A 00 00 00 47656 25000 .BA 00 00 00 72656 25000 .FA 00 00 00 97656 25000
.38 00 00 00 .23046 87500 .78 0000 00 .48046 87500 .BB 00 00 00 73046 87500 :FB 00 00 00 .98046 87500
.3C 00 00 00 .23437 50000 .7C 00 00 00 .48437 50000 .BC 00 00 00 .73437 50000 .FC 0000 00 .98437 50000
.3D 00 00 00 .23828 12500 .7D 00 00 00 .48828 12500 .BD .00 00 00 73828 12500 .FD 00 00 00 .98828 12500
.3E 000000 .24218 75000 .7E 000000 .49218 75000 .BE 000000 .74218 75000 .FE 000000 .99218 75000
.3F 00 00 00 .24609 37500 .7JF 00 00 00 49609 37500 .BF 00 00 00 .74609 37500 .FF 00 00 00 .99609 37500

HEXADECIMAL-DECIMAL FRACTION CONVERSION (cont.)

Hexadecimal

Hexadecimal Decimal Hexadecimal Decimal Hexadecimal Decimal Decimal

.00 00 00 00 .00000 00000 .0040 0000 .00097 65625 .0080 0000 .00195 31250 .00 CO 00 00 .00292 96875
.00 01 0000 .00001 52587 .0041 0000 .00099 18212 .0081 0000 .00196 83837 .00 C1 0000 .00294 49462
0002 0000 .00003 05175 .00 42 0000 .00100 70800 .0082 0000 .00198 36425 .00C2 00 00 .00296 02050
.00 03 0000 .00004 57763 .0043 0000 .00102 23388 .0083 0000 .00199 89013 .00 C3 00 00 .00297 54638
.0004 0000 .00006 10351 .00 44 0000 .00103 75976 .0084 0000 .00201 41601 .00C4 0000 .00299 0722%
.00 05 0000 .00007 62939 .0045 0000 .00105 28564 .0085 0000 .00202 94189 .00 C5 00 00 .00300 59814
.0006 0000 .00009 15527 .0046 0000 .00106 81152 .0086 0000 .00204 46777 .00 C6 00 00 .00302 12402
.0007 0000 .00010 68115 .0047 0000 .00108 33740 .0087 0000 .00205 99365 .00C7 00 00 .00303 64790
.00 08 0000 .00012 20703 .00 48 0000 .00109 86328 .0088 0000 .00207 51953 .00 C8 00 00 .00305 17578
.00 09 0000 .00013 73291 .00 49 0000 .00111 38916 .0089 0000 .00209 04541 .00C? 0000 .00306 70166
.00 0A 0000 .00015 25878 .00 4A 0000 .00112 91503 .00 8A 0000 .00210 57128 .00 CAO0 00 .00308 22753
.00 0B 0000 .00016 78466 .0048 0000 .00114 44091 .008B 0000 .00212 09716 .00 CB 00 00 .00309 75341
.000C 0000 .00018 31054 .004C 0000 .00115 96679 .008C 0000 .00213 62304 .00CC 0000 .00311 27929
.00 0D 00 00 .00019 83642 .00 4D 0000 .00117 49267 .00 8D 0000 .00215 14892 .00CD 0000 .00312 80517
.00 0E 0000 .00021 36230 .00 4 0000 .00119 01855 .00 8E 0000 .00216 67480 .00 CE 00 00 .00314 33105
.00 OF 00 00 .00022 88818 .00 4F 0000 .00120 54443 .00 8F 0000 .00218 20068 .00 CF 00 00 .00315 85693
.00 10 0000 .00024 41406 .0050 0000 .00122 07031 .0090 0000 .00219 72656 .00 DO 00 00 .00317 38281
.00 11 0000 .00025 93994 .0051 0000 .00123 59619 .00 91 0000 .00221 25244 .00 D1 0000 .00318 90869
.00 12 0000 .00027 46582 .0052 0000 .00125 12207 .00 92 0000 .00222 77832 .00 D2 00 00 .00320 43457
.00 13 0000 .00028 99169 .0053 0000 .00126 64794 .00 93 0000 .00224 30419 .00 D3 00 00 .00321 96044
.00 14 0000 .00030 51757 .00 54 0000 .00128 17382 .00 94 0000 .00225 83007 .00 D4 00 00 .00323 48632
.00 15 0000 .00032 04345 .0055 0000 .00129 69970 .00 95 0000 .00227 35595 .00 D5 00 00 .00325 01220
.00 16 0000 .00033 56933 .0056 0000 .00131 22558 .00 96 00 00 .00228 88183 .00 D6 00 00 .00326 53808
.0017 0000 .00035 09521 .0057 0000 .00132 75146 .00 97 0000 .00230 40771 .00 D7 00 00 .00328 06396
.00 18 0000 .00036 62109 .0058 0000 .00134 27734 .00 98 0000 .00231 93359 .00 D8 00 00 .00329 58984
.00 19 0000 .00038 14697 .0059 0000 .00135 80322 .00 99 0000 .00233 45947 .00 D? 00 00 .00331 11572
.00 1A 0000 .00039 67285 .00 5A 0000 .00137 32910 .00 9A 00 00 .00234 98535 .00 DA 00 00 .00332 64160
.00 1B 0000 .00041 19873 .005B 0000 .00138 85498 .00 98 0000 .00236 51123 .00 DB 00 00 .00334 16748
.00 1IC 00 00 .00042 72460 .005C 0000 .00140 38085 .00 9C 0000 .00238 03710 .00 DC 00 00 .00335 69335
.00 1D 00 00 .00044 25048 .00 5D 0000 .00141 90673 .00 9D 00 00 .00239 56298 .00 DD 00 00 .00337 21923
.00 1E 0000 .00045 77636 .00 5E 0000 .00143 43261 .00 9E 00 00 .00241 08886 .00 DE 00 00 .00338 74511
.00 1F 0000 .00047 30224 .00 5F 0000 .00144 95849 .00 9F 00 00 .00242 61474 .00 DF 00 00 .00340 27099
.00 20 00 00 .00048 82812 .00 60 0000 .00146 48437 .00 A0 00 00 .00244 14062 .00 EO 0000 .00341 79487
.00 21 0000 .00050 35400 .00 61 0000 .00148 01025 .00 A1 00 00 .00245 66650 .00 E1 0000 .00343 32275
.00 22 0000 .00051 87988 .0062 0000 .00149 53613 .00 A2 0000 .00247 19238 .00 E2 00 00 .00344 84863
.00 23 0000 .00053 40576 .00 63 00 00 .00151 06201 .00 A3 00 00 .00248 71826 .00 E3 00 00 .00346 37451
.00 24 0000 .00054 93164 .0064 0000 .00152 58789 .00 A4 0000 .00250 24414 .00 E4 0000 .00347 90039
.00 25 0000 .00056 45751 0065 0000 .00154 11376 .00 A5 0000 .00251 77001 .00 E5 00 00 .00349 42626
.00 26 0000 .00057 98339 0066 0000 .00155 6394 .00 A6 0000 .00253 29589 .00 E6 0000 .00350 95214
.00 27 0000 .00059 50927 .0067 0000 .00157 16552 .00 A7 0000 .00254 82177 .00 E7 0000 .00352 47802
.00 28 00 00 .00061 03515 .00 68 0000 .00158 69140 .00 A8 00 00 .00256 34765 .00 E8 0000 .00354 00390
.00 29 00 00 .00062 56103 .00 69 00 00 .00160 21728 .00 A9 00 00 .00257 87353 .00 E9 00 00 .00355 52978
.00 2A 0000 .00064 08691 .00 6A 0000 .00161 74316 .00 AA 00 00 .00259 39941 .00 EA 00 00 .00357 05566
.00 2B 0000 .00065 61279 .00 6B 0000 .00163 26904 .00 AB 0000 .00260 92529 .00 EB 00 00 .00358 58154
.00 2C 0000 .00067 13867 .00 6C 0000 .00164 79492 .00 AC0000 .00262 45117 .00 EC 0000 .00360 10742
.00 2D 00 00 .00068 66455 .00 6D 0000 .00166 32080 .00 AD00 00 .00263 97705 .00 ED 0000 .00361 63330
.00 2E 0000 .00070 19042 .00 6E 00 00 .00167 84667 .00 AE 00 00 .00265 50292 .00 EE 00 00 .00363 15917
.00 2F 00 00 .00071 71630 .00 6F 00 00 .00169 37255 .00 AF 00 00 .00267 02880 .00 EF 00 00 .00364 68505
.00 30 0000 .00073 24218 .0070 0000 .00170 89843 .00 BO 00 00 .00268 55448 .00 FO 0000 .00366 21093
.00 31 0000 .00074 76806 .0071 0000 .00172 42431 .00 B1 0000 .00270 08056 .00 F1 0000 .003467 73681
.0032 0000 .00076 29394 .0072 0000 .00173 95019 .00 B2 0000 .00271 60644 .00 F2 0000 .00369 26269
.00 33 0000 .00077 81982 0073 0000 .00175 47607 .00 B3 0000 .00273 13232 .00 F3 00 00 .00370 78857
.00 34 0000 .00079 34570 .0074 0000 .00177 00195 .00 B4 0000 .00274 65820 .00 F4 0000 .00372 31445
.00 35 0000 .00080 87158 .0075 0000 .00178 52783 .00 B5 0000 .00276 18408 .00 F5 00 00 .00373 84033
.00 36 0000 .00082 39746 .0076 0000 .00180 05371 .00 B6 0000 .00277 7099 .00 F6 0000 .00375 36621
.00 37 0000 .00083 92333 .0077 0000 .00181 57958 .00 B7 0000 .00279 23583 .00 F7 0000 .00376 89208
.00 38 0000 .00085 44921 .0078 0000 .00183 10546 .00B8 0000 .00280 76171 .00 F8 0000 .00378 41796
.00 39 0000 .00086 97509 .0079 0000 .00184 63134 .00 B9 0000 .00282 28759 .00 F9 00 00 .00379 94384
.00 3A 0000 .00088 50097 .007A 0000 .00186 15722 .00 BA 0000 .00283 81347 .00 FA 00 00 .00381 46972
.00 38 00 00 .00090 02685 .007B 0000 .00187 68310 .00 BB 0000 .00285 33935 .00 FB 0000 .00382 99540
.00 3C 0000 .00091 55273 .007C 0000 .00189 20898 .00BC 0000 .00286 86523 .00 FC 00 00 .00384 52148
.00 3D 0000 .00093 07861 .007D 0000 .00190 73486 .00 BD 0000 .00288 39111 .00 FD 00 00 .00386 04736
.00 3E 0000 .00094 60449 .007E 0000 .00192 26074 .00 BE 0000 .00289 91699 .00 FE 0000 .00387 57324
.00 3F 0000 .00096 13037 .00 7F 0000 .00193 78662 .00 BF 0000 .00291 44287 .00 FF 0000 .00389 09912

HEXADECIMAL-DECIMAL FRACTION CONVERSION (cont.)

Hexadecimal Decimal Hexadecimal Decimal Hexadecimal Decimal Hexadecimal Decimal

.00 0000 00 .00000 00000 .00 00 40 00 .00000 38146 .00 00 80 00 .00000 76293 .00 00 CO 00 .00001 14440
.00 0001 00 .00000 00596 .00 00 41 00 .00000 38743 .00 00 81 00 .00000 76889 .00 00 Ct 00 .00001 15036
.000002 00 .00000 01192 .00 00 42° 00 .00000 39339 .00 0082 00 .00000 77486 .00 00 C2 00 .00001 15633
.00 00 03 00 .00000 01788 .00 00 43 00 .00000 39935 .00 0083 00 .00000 78082 .00 00 C3 00 .00001 16229
.0000 04 00 .00000 02384 .00 0044 00 .00000 40531 .00 00 84 00 - .00000 78678 .00 00 C4 00 .00001 16825
.0000 05 00 .00000 02980 .00 0045 00 .00000 41127 .00 00 85 00 .00000 79274 .00 00 C5 00 .00001 17421
.00 00 06 00 .00000 03576 .00 00 46 00 .00000 41723 .00 00 86 00 .00000 79870 .00 00 C6 00 .00001 18017
.000007 00 .00000 04172 .00 0047 00 .00000 42319 .00 0087 00 .00000 80466 .0000C7 00 .00001 18613
.00 0008 00 .00000 04768 .00 00 48 00 .00000 42915 .00 00 88 00 .00000 81062 .00 00 C8 00 .00001 19209
.00 00 09 00 .00000 05364 .00 00 49 00 .00000 43511 .00 00 89 00 .00000 81658 .00 00 C9 00 .00001 19805
.00 00 OA 00 .00000 05960 .00 00 4A 00 .00000 44107 .00 00 8A 00 .00000 82254 .00 00 CA 00 .00001 20401
.00 00 0B 00 .00000 06556 .00 00 48 00 .00000 44703 .00 00 88 Q0 .00000 82850 .00 00 CB 00 .00001 20997
.00 00 0C 00- .00000 07152 .00 00 4C 00 .00000 45299 .00 00 8C 00 .00000 83446 .00 00 CC 00 .00001 21593
.00 00 0D 00 .00000 07748 .00 00 4D 00 .00000 45895 .00 00 8D 00 .00000 84042 .00 00 CD 00 .00001 22189
.00 00 OE 00 .00000 08344 .00 00 4E 00 .00000 46491 .00 00 8E 00 .00000 84638 .00 00 CE 00 .00001 22785
.00 00 OF 00 .00000 08940 .00 00 4F 00 .00000 47087 .00 00 8F 00 .00000 85234 .00 00 CF 00 .00001 23381
.00 0010 00 .00000 09536 .00 00 50 00 .00000 47683 .00 00 90 00 .00000 85830 .00 00 DO 00 .00001 23977
000011 00 .00000 10132 .00 00 51 00 .00000 48279 .00 00 91 00 .00000 86426 .00 00 D1 00 :00001 24573
.0000 12 00 .00000 10728 .00 00 52 00 .00000 48875 .00 00 92 00 .00000 87022 .00 00 D2 00 .00001 25169
.0000 13 00 .00000 11324 .00 00 53 00 .00000 49471 .00 00 93 00 .00000 87618 .00 00 D3 00 .00001 25765
.0000 14 00 .00000 11920 .00 00 54 00 .00000 50067 .00 00 94 00 .00000 88214 .00 00 D4 00 .00001 26361
000015 00 .00000 12516 .00 00 55 00 .00000 50663 .00 00 95 00 .00000 88810 .00 00 D5 00 .00001 26957
000016 00 .00000 13113 .00 00 56 00 .00000 51259 .00 00 96 00 .00000 89406 .00 00 D6 00 .00001 27553
000017 00 .00000 13709 .000057 00 .00000 51856 .000097 00 .00000 90003 .00 00 D7 00 .00001 28149
.0000 18 00 .00000 14305 .00 00 58 00 .00000 52452 .00 00 98 00 .00000 90599 .00 00 D8 00 .00001 28746
.0000 19 00 .00000 14901 .00 00 59 00 .00000 53048 .00 00 99 00 .00000 921195 .00 00 D9 00 .00001 29342
.00 00 1A 00 .00000 15497 .00 00 5A 00 .00000 53644 .00 00 %A 00 .00000 21791 .00 00 DA 00 .00001 29938
.0000 1B 00 .00000 16093 .00 00 5B 00 .00000 54240 .00 00 98 00 .00000 92387 .00 00 DB 00 .00001 30534
.00 00 1C 00 .00000 16689 .00 00 5C 00 .00000 54836 .00 00 9C 00 . .00000 92983 .00 00 DC 00 .00001 31130
.0000 1D 00 .00000 17285 .00 00 5D 00 .00000 55432 .00 00 9D 00 .00000 93579 .00 00 DD 00 .00001 31726
0000 1E 00 .00000 17881 .00 00 5 00 .00000 56028 .00 00 9E 00 .00000 94175 .00 00 DE 00 .00001 32322
.00 00 1F 00 .00000 18477 .00 00 5F 00 .00000 56624 .00 00 9F 00 .00000 94771 .00 00 DF 00 .00001 32918
.00 00 20 00 .00000 19073 .00 00 60 00 .00000 57220 .00 00 AQ 00 .00000 95367 .00 00 EO 00 .00001 33514
.00 00 21 00 .00000 19669 .00 00 61 00 .00000 57816 .00 00 A1 00 .00000 95963 .00 00 E1 00 .00001 34110
.00 00 22 00 .00000 20265 .00 0062 00 .00000 58412 .00 00 A2 00 .00000 96559 .00 00 E2 00 .00001 34706
.00 00 23 00 .00000 20861 .00 00 63 00 .00000 59008 .00 00 A3 00 .00000 97155 .00 00 E3 00 .00001 35302
.0000 24 00 .00000 21457 .00 00 64 00 .00000 59604 .00 00 A4 00 .00000 97751 .00 00 E4 00 .00001 35898
.0000 25 00 .00000 22053 .00 00 65 00 .00000 60200 .00 00 A5 00 .00000 98347 .00 00 E5 00 .00001 36494
.00 00 26 00 .00000 22649 .00 00 66 00 .00000 60794 .00 00 A6 00 .00000 98943 .00 00 E6 00 .00001 37090
~00 00 27 00 .00000 23245 .00 00 67 00 .00000 61392 .00 00 A7 00 .00000 99539 .00 00 E7 00 .00001 37686
.00 0028 00 .00000 23841 .00 00 68 00 .00000 61988 .00 00 A8 00 .00001 00135 .00 00 E8 00 .00001 38282
.00 00 29 00 .00000 24437 .00 00 69 00 .00000 62584 .00 00 A% 00 .00001 00731 .00 00 E? 00 .00001 38878
.00 00 2A 00 .00000 25033 .00 00 6A 00 .00000 63180 .00 00 AA 00O .00001 01327 .00 00 EA 00 .00001 39474
.00 00 28 00 .00000 25629 .00 00 6B 00 .00000 63776 .00 00 AB 00 .00001 01923 .00 00 EB 00 .00001 40070
.00 00 2C 00 .00000 26226 .00 00 6C 00 .00000 64373 .00 00 AC 00 .00001 02519 .00 00 EC 00 .00001 40666
.00 00 2D 00 .00000 26822 .00 00 6D 00 .00000 64969 .00 00 AD 00 .00001 03116 .00 00 ED 00 .00001 41263
.00 00 2E 00 .00000 27418 .00 00 6E 00 .00000 65565 .00 00 AE 00 .00001 03712 .00 00 EE 00 .00001 41859
.00 00 2F 00 .00000 28014 .00 00 6F 00 .00000 66161 .00 00 AF 00 .00001 04308 .00 00 EF 00 .00001 42455
.00 00 30 00 .00000 28610 .000070 00 .00000 66757 .00 00 BO 00 .00001 04904 .00 00 FO 00 .00001 43051
.00 0031 00 .00000 29206 .000071 00 .00000 67353 .00 00 B1 00 .00001 05500 .0000 F1 00 .00001 43647
.00 00 32 00 .00000 29802 .000072 00 .00000 67949 .00 00 B2 00 .00001 06096 .00 00 F2 00 .00001 44243
.00 00 33 00 .00000 30398 .000073 00 .00000 68545 .00 00 B3 00 .00001 06692 .00 00 F3 00 .00001 44839
.00 00 34 00 .00000 30994 .00 0074 00 .00000 69141 .00 00 B4 Q0 .00001 07288 .00 00 F4 00 .00001 45435
.00 00 35 00 .00000 315%0 .000075 00 .00000 69737 .00 00 BS 00 .00001- 07884 .00 00 F5 00 .00001 46031
.00 00 36 00 .00000 32186 .000076 00 .00000 70333 .00 00 B6 00 .00001 08480 .00 00 F6 00 .00001 46627
.00 00 37 00 .00000 32782 .00 00 77 00 .00000 70929 .00 00 B7 00 .00001 09076 .00 00 F7 00 .00001 47223
.00 00 38 00 .00000 33378 .00 00 78 00 .00000 71525 .00 00 B8 00 .00001 09672 .00 00 F8 00 .00001 47819
.00 00 39 00 .00000 33974 .00 00 79 00 .00000 72121 .00 00 B? 00 .00001 10268 .00 00 F? 00 .00001 48415
.00 00 3A 00 .00000 34570 .00 00 7A 00 .00000 72717 .00 00 BA 00 .00001 10864 .00 00 FA 00 .00001 49011
.00 00 3B 00 .00000 35166 .00 007B 00 .00000 73313 .00 00 BB 00 .00001 11460 .00 00 FB 00 .00001 49607
.00 00 3C 00 .00000 35762 .00 00 7C 00 .00000 73909 .00 00 BC 00 .00001 12056 .00 00 FC 00 .00001 50203
.00 00 3D 00 .00000 36358 .00007D 00 .00000 74505 .00 00 BD 00 .00001 12652 .00 00 FD 00 .00001 50799
.00 00 3E 00 .00000 36954 .00 00 7E 00 .00000 75101 .00 00 BE 00 .00001 13248 .00 00 FE 00 .00001 51395
.00 00 3F 00 .00000 37550 .00 00 7F 00 .00000 75697 .00 00 BF 00 .00001 13844 .00-00 FF 00 .00001 51991

F-12

