# THE DESIGNERS GUIDE TO PROGRAMMED LOGIC

# For PLS 400 Systems



PLS- 403 PROGRAMMED LOGIC SYSTEM

ATTRACTOR OF THE OWNER OWNE

THE

DESIGNERS GUIDE TO PROGRAMMED LOGIC

For PLS 400 Systems

Written by

Matt Biewer

PRO-LOG CORPORATION

852 Airport Road

Monterey, California

Price: \$10.00

15 August 1973

|                                              | i Maria di Kabupatén di Kabupatén<br>Kabupatén di Kabupatén di Kabupaté | n Marana an taona an an taona an ang panantan ang panang pang pang Pangang pang pang pang pang pang pang pan |   |
|----------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|---|
|                                              |                                                                                                                                                                                                                                     |                                                                                                              |   |
|                                              |                                                                                                                                                                                                                                     |                                                                                                              |   |
|                                              |                                                                                                                                                                                                                                     |                                                                                                              |   |
|                                              |                                                                                                                                                                                                                                     |                                                                                                              |   |
|                                              |                                                                                                                                                                                                                                     |                                                                                                              |   |
|                                              |                                                                                                                                                                                                                                     |                                                                                                              |   |
|                                              |                                                                                                                                                                                                                                     |                                                                                                              |   |
|                                              |                                                                                                                                                                                                                                     |                                                                                                              |   |
| 1949<br>1947<br>1947<br>1947<br>1947<br>1947 |                                                                                                                                                                                                                                     |                                                                                                              | • |
|                                              |                                                                                                                                                                                                                                     |                                                                                                              |   |
|                                              |                                                                                                                                                                                                                                     |                                                                                                              |   |
|                                              |                                                                                                                                                                                                                                     |                                                                                                              |   |
|                                              |                                                                                                                                                                                                                                     |                                                                                                              |   |
|                                              |                                                                                                                                                                                                                                     |                                                                                                              |   |
|                                              | n<br>San San San San San San San San San San                                                                                                                                                                                        | a da ser en                                                              |   |
|                                              |                                                                                                                                                                                                                                     |                                                                                                              |   |

# TABLE OF CONTENTS

|    |                                                                                                                                                                                                                                                                                                           | Page                                                                                                                                                               |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1. | SUMMARY                                                                                                                                                                                                                                                                                                   | 1-1                                                                                                                                                                |
|    | ROM Program Memory<br>RAM Register Storage<br>Input/Output                                                                                                                                                                                                                                                | 1-3<br>1-3<br>1-3                                                                                                                                                  |
| 2. | PLS 400 HARDWARE                                                                                                                                                                                                                                                                                          | 2-1                                                                                                                                                                |
|    | PLS 401 Data Sheet<br>PLS 402 Data Sheet<br>PLS 403 Data Sheet                                                                                                                                                                                                                                            | 2-2<br>2-4<br>2-6                                                                                                                                                  |
| 3. | TIMING AND DEVICE DATA SHEETS                                                                                                                                                                                                                                                                             | 3-1                                                                                                                                                                |
|    | Timing<br>Device Data Sheets                                                                                                                                                                                                                                                                              | 3-1<br>3-3                                                                                                                                                         |
| 4. | PLS 400 SYSTEM ORGANIZATION                                                                                                                                                                                                                                                                               | 4-1                                                                                                                                                                |
|    | Central Processing Unit<br>PLS 400 Systems<br>Instruction Register<br>Program Address Counter<br>Subroutine Address Stack<br>Index Registers<br>Arithmetic Logic Unit<br>Program Memory<br>ROM Program Memory<br>RWM Program Memory<br>RAM Register Storage<br>Inputs and Outputs<br>Hexadecimal Notation | $\begin{array}{c} 4 - 1 \\ 4 - 1 \\ 4 - 3 \\ 4 - 3 \\ 4 - 3 \\ 4 - 4 \\ 4 - 5 \\ 4 - 5 \\ 4 - 5 \\ 4 - 5 \\ 4 - 5 \\ 4 - 7 \\ 4 - 7 \\ 4 - 7 \\ 4 - 9 \end{array}$ |
| 5. | INSTRUCTION TABLE                                                                                                                                                                                                                                                                                         | 5-1                                                                                                                                                                |
| 6. | INSTRUCTION DESCRIPTIONS                                                                                                                                                                                                                                                                                  | 6-1                                                                                                                                                                |
|    | No Operation<br>Jump On Condition<br>Fetch Immediate<br>Send Register Control<br>Fetch Indirect<br>Jump Indirect<br>Jump Unconditional                                                                                                                                                                    | 6-1<br>6-2<br>6-2<br>6-4<br>6-4<br>6-5                                                                                                                             |

i

### TABLE OF CONTENTS (Cont)

Page Jump to Subroutine 6 - 5Increment Register 6-6 Increment Register Skip if Zero 6-6 Add Register to Accumulator 6-6 Subtract Register from Accumulator 6 - 7Load Register to Accumulator 6 - 8Exchange Register with Accumulator 6-8 Branch Back and Load Accumulator 6-8 Load Data to Accumulator 6-9 Write Accumulator into RAM Character 6-9 Write Memory Port 6 - 10Write ROM Port 6 - 10Write to Program Memory 6 - 10Write into RAM Status Character 0 6-11 Write into RAM Status Character 1 6-11 Write into RAM Status Character 2 6-11 Write into RAM Status Character 3 6-11 Subtract from Memory with Borrow 6 - 12Read RAM Character 6-12 Read ROM Port 6 - 12Add from Memory with Carry 6-12 Read RAM Status Character 0 6 - 12Read RAM Status Character 1 6 - 13Read RAM Status Character 2 6 - 13Read RAM Status Character 3 6 - 13Clear Both 6 - 13Clear Carry 6-13 Increment Accumulator 6-13 Complement Carry 6 - 13Complement Accumulator 6 - 14Rotate Left 6 - 14Rotate Right 6 - 15Transmit Carry and Clear 6-15 Decrement Accumulator 6-15 Transfer Carry Subtract 6 - 15Set Carry 6-16 Decimal Adjust Accumulator 6-16 Keyboard Process 6-16 Designate Command Line 6 - 17IMPLEMENTING PROGRAMMED LOGIC 7-1 System Block Diagram 7-1 7-3 Flow Charts Register Maps 7 - 47-6 Hex Coding Form 7-8 PLS Design Example

7.

# TABLE OF CONTENTS (Concluded)

|    |                          | Page |
|----|--------------------------|------|
| 8. | PROGRAMMING APPLICATIONS | 8-1  |
|    | Subroutines              | 8-1  |
|    | Counting                 | 8-7  |
|    | Time Delays              | 8-12 |
|    | Compare Subroutines      | 8-18 |
|    | Logical Operations       | 8-20 |
|    | Addition                 | 8-23 |
|    | Multiplication           | 8-24 |
|    | Square Root              | 8-27 |
|    | Teletype                 | 8-31 |

| APPENDIX A | Symbols and Definitions       | A-1 |
|------------|-------------------------------|-----|
| APPENDIX B | Table of Powers of Two        | B-1 |
| APPENDIX C | Hexadecimal/Decimal Integers  | C-1 |
| APPENDIX D | Hexadecimal/Decimal Fractions | D-1 |
| APPENDIX E | Table of Powers of Sixteen    | E-1 |
| APPENDIX F | Conversion Tables             | F-1 |

# LIST OF TABLES

Page

| 4-1 | RAM Addressing                                                                                     | 4-7  |
|-----|----------------------------------------------------------------------------------------------------|------|
| 4-2 | Hexadecimal Notation for Sixteen Combinations                                                      | 4-9  |
| 6-1 | I/O Port and RAM Selection for One Bank by Even<br>Register Contents, as Used with SRC Instruction | 6-3  |
| 8-1 | Number of Steps Gained or Lost When a Routine<br>is Executed as a Subroutine                       | 8-3  |
| 8-2 | ISZ Register Settings for "N" Operations                                                           | 8-10 |
| 8-3 | Delay Time Using Cascaded ISZ Instructions                                                         | 8-13 |
| 8-4 | Boolean Laws of Operation for 0 and 1                                                              | 8-20 |

# LIST OF ILLUSTRATIONS

|                                        |                                                                                                                                                                                                                                                                                                 | Page                                   |
|----------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|
| 1-1<br>3-1<br>3-2<br>3-3<br>4-1<br>4-2 | PLS-400 Programmed Logic System Application<br>CPU Instruction Timing for Most Instructions<br>CPU Timing for SRC Instruction<br>CPU Timing for I/O and RAM Register Instructions<br>PLS-400 System Data Flow<br>Instruction Register, Program Address Counter,<br>and Subroutine Address Stack | 1-2<br>3-1<br>3-2<br>3-3<br>4-2<br>4-3 |
| 4-3<br>4-4                             | Index Registers<br>Organization of Program Memory as Defined by<br>the CPU Instructions                                                                                                                                                                                                         | 4-4<br>4-6                             |
| 4-5                                    | RAM Index Register                                                                                                                                                                                                                                                                              | 4-8                                    |
| 7-1                                    | System Block Diagram                                                                                                                                                                                                                                                                            | 7-2                                    |
| 7-2                                    | Flow Chart                                                                                                                                                                                                                                                                                      | 7-3                                    |
| 7-3                                    | Register Maps                                                                                                                                                                                                                                                                                   | 7-5                                    |
| 7-4                                    | Hex Coding Form                                                                                                                                                                                                                                                                                 | 7-7                                    |
| 7-5                                    | Instruction and Operand Examples                                                                                                                                                                                                                                                                | 7-8                                    |
| 7-6                                    | Electronic Calculator Block Diagram                                                                                                                                                                                                                                                             | 7-9                                    |
| 7-7                                    | First Level Flow Chart                                                                                                                                                                                                                                                                          | 7-10                                   |
| 7-8                                    | Flow Chart for Keyboard Scan                                                                                                                                                                                                                                                                    | 7-11                                   |
| 7-9<br>8-1                             | Flow Chart for Key Process<br>Example Showing how a Subroutine can be Used Many<br>Times From Various Places in a Routine                                                                                                                                                                       | 7-13<br>8-2                            |
| 8-2<br>8-3<br>8-4                      | Example Showing Nesting of Subroutines<br>Example of a Subroutine with Multiple Endings<br>Example of Subroutines Sharing a Common<br>Ending Sequence (Stacking)                                                                                                                                | 8-4<br>8-5<br>8-6                      |
| 8-5                                    | Flow chart of Execute and Count                                                                                                                                                                                                                                                                 | 8-8                                    |
| 8-6                                    | Flow Chart of Count and Execute                                                                                                                                                                                                                                                                 | 8-8                                    |
| 8-7                                    | Subroutine to Count Three Decimal Decades                                                                                                                                                                                                                                                       | 8-11                                   |
| 8-8                                    | Flow Chart of Short Delay                                                                                                                                                                                                                                                                       | 8-14                                   |
| 8-9                                    | Flow Chart of Longer Delay                                                                                                                                                                                                                                                                      | 8-15                                   |
| 8-10                                   | Flow Chart of Control Timeout                                                                                                                                                                                                                                                                   | 8-16                                   |
| 8-11                                   | Flow Chart of Holdover                                                                                                                                                                                                                                                                          | 8-17                                   |
| 8-12                                   | (Compare) Four Bits                                                                                                                                                                                                                                                                             | 8-18                                   |
| 8-13                                   | (Compare) Eight Bits                                                                                                                                                                                                                                                                            | 8-19                                   |
| 8-14                                   | Logical Operations                                                                                                                                                                                                                                                                              | 8-22                                   |
| 8-15                                   | Multiple Precision Addition                                                                                                                                                                                                                                                                     | 8-23                                   |
| 8-16                                   | Brute-Force Method of Multiplication                                                                                                                                                                                                                                                            | 8-24                                   |
| 8-17                                   | Long-Hand Method of Multiplication                                                                                                                                                                                                                                                              | 8-26                                   |
| 8-18                                   | Example of Decimal Long-Hand Square Root                                                                                                                                                                                                                                                        | 8-27                                   |
| 8-19                                   | Example of Binary Long-Hand Square Root                                                                                                                                                                                                                                                         | 8-27                                   |
| 8-20                                   | Flowchart for Long-Hand Square Root                                                                                                                                                                                                                                                             | 8-28                                   |
| 8-21                                   | Teletype Interface                                                                                                                                                                                                                                                                              | 8-32                                   |
| 8-22                                   | TTY Data Line Format                                                                                                                                                                                                                                                                            | 8-34                                   |
| 8-23                                   | TTY Character Set                                                                                                                                                                                                                                                                               | 8-35                                   |
| 8-24                                   | Flow Chart for TTY Read Without Echo                                                                                                                                                                                                                                                            | 8-36                                   |

## 1. SUMMARY

PLS 400 systems are micro-programmable processing systems suitable for implementing random logic, and numeric and small alpha numeric data handling applications. As shown in Figure 1-1, the PLS-400 system consists of a CPU, RAM register storage, ROM program memory, and input/output ports. The CPU is an Intel 4004 CPU chip, RAM registers are the Intel 4002 circuits, ROM program memory is implemented using Intel 1702 or NSC 5202 erasable reprogrammable ROM's or equivalents, and I/O ports are TTL latches and selectors.

#### CPU CAPABILITIES

- Twelve bit program address
- Three level address stack for subroutines
- Sixteen, four bit index registers
- A four bit accumulator plus carry
- One, eight bit instruction word per cycle
- Forty one single word instructions
- Five double word instructions
- Arithmetic and accumulator instructions

Add and subtract with carry

Complement, rotate, increment, decrement, clear, and load the accumulator

Complement, clear, and set carry

- Decimal arithmetic instructions
- Decision making (address control instructions)

Test accumulator for zero or nonzero

- Test carry for logic one or zero
- Test external input for high or low
- Increment any index register and test for zero
- Input/output instructions
- RAM register instructions
- Register instructions



1-2

## FIGURE 1-1

PLS-400 Programmed Logic System Application

### ROM PROGRAM MEMORY

- Programmable erasable ROM's MSC 5202, Intel 1702
- 256 eight bit instructions words per page
- Sixteen pages maximum (ROM's) 4096 words of instruction

### RAM REGISTER STORAGE

- Intel 4002 RAM
- Organized as four registers of 16 four bit words plus four status words for each register
- Requires CPU instruction addressing
- Includes four output lines used with CPU output instruction

## INPUT/OUTPUT

- TTL output latches and input selectors
- Requires CPU selection by instruction
- 128 lines directly selectable
- Input instruction, gates data into the CPU accumulator
- Output instruction, latches accumulator data at output

## 2. PLS 400 HARDWARE

The PLS 400 series provides a choice of micro-processor card sets with varying expandability. Each set provides the CPU, ROM program memory, RAM register storage and I/O. All sets are implemented with CPU clock and external reset and power-on reset circuits. ROM program memory on each card set is implemented with programmable erasable ROM. The use of erasable, reprogrammable ROMs provides a speedy tool for implementing programmed logic. The PLS 401 one card set is complete on a single card providing the lowest cost for limited system size. The system expansion is limited to 1024 words of ROM program memory, 320 characters of RAM register storage, four output ports, four input ports, and one RAM output port.

The PLS 402 two card set provides for reasonable program memory and extensive I/O. The system expansion is limited to 1536 words os program memory, 320 characters of RAM register storage, 4 RAM output ports, and up to 128 I/O lines.

The PLS 403 three card set provides maximum expansion capability on ROM, RAM and I/O. The system expansion is unlimited to the full CPU capability of 4096 words of program memory, 1280 characters of RAM register storage, 48 lines of RAM output, and 128 lines of I/O. The PLS 403 CPU Card 4111 will accept either eight 4002 RAM register devices or eight 4001 masked ROM devices. This card in itself can become a one card system with masked ROMs.

# PLS-401 SINGLE CARD SYSTEM

A programmable logic system which implements the Intel  $MCS^{TM}-4$  Micro Computer Set into a working system with CPU, ROM program memory, RAM register storage and I/O on a single card. The PLS-401 organization provides for reasonable program and I/O capacity to give the lowest cost approach to investigating PLS technology.

# FEATURES

- Single card programmed logic system for protypes or production
- 1024 words of ROM program memory capacity (4 ROMs)
- 320 characters of RAM register storage capacity (4 RAMs)
- Four output ports (16 lines)
- Four input ports (16 lines)
- One RAM output port (4 lines)





PLS-401 ONE CARD PROGRAMMED LOGIC

# **PLS-401 SPECIFICATIONS**

Card Dimensions

4.5 inches high

6.5 inches long

0.48 inch maximum profile thickness

0.062 inch printed circuit board thickness

Includes:

Card ejector One 4004 CPU soldered to board One 4002 RAM soldered to board plus three RAM sockets One 1702A ROM and four ROM sockets Master power-on and external reset circuit Two phase CPU clock circuit Four TTL output ports (16 lines) Four TTL input ports (16 lines) One MOS output port (4 lines) CPU test input (MOS)

Maximum System Capabilities

Four 4002 RAMs (320 four bit characters) Four 1302, 1602 or 1702 ROMs (1024 words of program memory) 20 output lines

16 TTL port lines 4 MOS RAM port lines

16 TTL input lines

Instruction Execution Capability

Capable of executing all 46 of the 4004 CPU Instruction except for DCL and WPM 10.8 microseconds instruction execution time

Logic Levels of External Connections:

Low level active

| TTL Port:   | Standard TTL compatibility and loading                        |
|-------------|---------------------------------------------------------------|
| MOS Input:  | Standard TTL compatibility                                    |
| MOS Output: | Drive capability, one LPTTL or one standard TTL load with 12K |
|             | pull-down to -VDD                                             |

**Power Requirement** 

+VCC = +5 volts 5% @ 550 mA maximum fully loaded (30 mA per RAM, 35 mA per ROM) GND = 0 volts -VDD = -10 volts 5% @ 350 mA maximum fully loaded (30 mA per RAM, 35 mA per ROM)

Connector Requirements

56 pin, 28 position dual-readout on 0.125 centers

MCS<sup>TM</sup> is a registered trademark of the Intel Corporation

# PLS-402 TWO CARD SYSTEM

A programmable logic system which implements the Intel  $MCS^{TM}$ -4 Micro Computer Set into a working system with CPU, ROM program memory, RAM register storage and I/O on two cards. The PLS-402 organization provides for reasonalbe program capacity and unlimited I/O capacity within the MCS-4 capability. The CPU card can be applied individually or used with one or more I/O cards depending on system requirements.

# FEATURES

- Two card programmed logic system with expandable I/O
- 1536 words of ROM program memory capacity (6 ROMs)
- 320 characters of RAM register storage capacity (4 RAMs)
- Eight I/O ports (32 lines) expandable to 128 lines
- Four RAM output ports (16 lines)



PLS-402 TWO CARD PROGRAMMED LOGIC

# **PLS-402 SPECIFICATIONS**

Card Dimensions

- 4.5 inches high
- 6.5 inches long

0.48 inch maximum profile thickness

0.062 inch printed circuit board thickness

Includes:

One 4115 CPU card One 4113 I/O card

CPU Card Includes:

Card ejector One 4004 CPU soldered to board One 4002 RAM soldered to board plus three RAM sockets One 1702A ROM and six ROM sockets Master power-on and external reset Two phase CPU clock circuit Four MOS output ports (16 lines) when four RAMs are used One MOS CPU Test input

I/O Card Includes:

Card ejector Eight TTL ports (32 lines) Each port selectable as either an input port or output port Output port lines can be wired for either high level or low level active Common and individual reset inputs for each port

Maximum System Capabilities

Four 4002 RAMs (320 four bit characters) Six 1302, 1602, or 1702 ROMs (1536 words of program memory) 16 MOS RAM port lines 128 TTL I/O port lines (requires four 4113 I/O cards)

64 output lines 64 input lines

Instruction Execution Capability

Executes all 46 of the 4004 CPU instructions except for DCL and WPM 10.8 microseconds instruction execution time

Logic Levels of External Connections:

Low level active

| TTL Port:   | Standard TTL compatibility and loading                        |
|-------------|---------------------------------------------------------------|
| MOS Input:  | Standard TTL compatibility                                    |
| MOS Output: | Drive capability, one LPTTL or one standard TTL load with 12K |
|             | pull-down to -VDD                                             |

Power Requirement: One CPU card and one I/O card both fully loaded

 +VCC = +5 volts 5% @
 950 mA maximum
 (30 mA per RAM, 35 mA per ROM)

 GND = 0 volts
 -VDD = -10 volts 5% @
 450 mA maximum
 (30 mA per RAM, 35 mA per ROM)

Connector Requirements for each card

56 pin, 28 position dual-readout on 0.125 centers

MCS<sup>TM</sup> is a registered trademark of the Intel Corporation

# PLS-403 THREE CARD SYSTEM

A programmable logic system which implements the Intel  $MCS^{TM}$ -4 Micro Computer Set into a working system with CPU, ROM program memory, RAM register storage and I/O on three cards. The PLS-403 organization provides for unlimited program and I/O capacity within the MCS-4 capability. This modular arrangement allows the designer to tailor system size to suit his needs.

# FEATURES

- Three card programmed logic system with expandable RAM, ROM and I/O
- 2560 words of ROM program memory capacity expandable to 4096 words
- 640 characters of RAM register storage capacity expandable to 1280 characters
- Eight I/O ports (32 lines) expandable to 128 lines
- Six RAM output port capacity (24 lines) expandable to 48 lines
- CPU card can be used as a single card system with masked ROMs
- Allows use of RAM program memory



PLS-403 THREE CARD PROGRAMMED LOGIC

## **PLS 403 SPECIFICATIONS**

Card Dimensions

4.5 inches high
6.5 inches long
0.48 inch maximum profile thickness
0.062 inch printed circuit board thickness

Includes:

One 4111 CPU card One 4112 ROM card One 4113 I/O card

CPU Card Includes:

Card ejector One 4004 CPU soldered to board One 4002 RAM with eight RAM sockets Master power-on and external system reset Separate external CPU reset Two phase CPU clock circuit Six MOS port (24 lines) available when used with RAMs or masked ROMs One MOS CPU TEST input RAM sockets will accommodate 4001 masked ROMs

**ROM** Card Includes

Card ejector One 1702A with 10 ROM sockets Signal lines for controlling RAM program memory

I/O Card Includes

Card Ejector Eight TTL ports (32 lines) Each port is selectable as either an input port or output port Output port lines can be wired for either high level or low level active Common and individual reset inputs for each port

Maximum System Capabilities

16 4002 RAMs (1280 four bit characters) or 16 masked ROMs (4096 words of program memory) 16 1302, 1602, or 1702 ROMs (4096 words of program memory) with ROM expander 4112-2 12 MOS ports (RAM or 4001 masked ROM) with CPU expander 4111-2

64 output lines 64 input lines

Instruction Execution Capability

Capable of executing all 46 of the 4004 CPU instructions 10.8 microseconds instruction execution time

Logic Levels of External Connections

Low Level active

| TTL Port:   | Standard TTL compatibility and loading                        |
|-------------|---------------------------------------------------------------|
| MOS Input:  | Standard TTL compatibility                                    |
| MOS Output: | Drive capability, one LPTTL or one standard TTL load with 12K |
|             | pull-down to -VDD                                             |

Power Requirement: One CPU card, one ROM card, one I/O card all fully loaded

+VCC = +5 volts 5% @ 1.3 amp maximum (30 mA per RAM, 35 mA per ROM) GND = 0 volts

-VDD = -10 volts 5% @ 0.7 amp maximum (30 mA per RAM, 35 mA per ROM)

Connector Requirements for each card

56 pin, 28 position dual-readout on 0.125 centers

MCS<sup>TM</sup> is a registered trademark of the Intel Corporation

### 3. TIMING AND DEVICE DATA SHEETS

#### TIMING

The PLS 400 systems use a 4 bit micro-processor thus all data is communicated between the system elements in groups of 4 bits. The instruction cycle for the CPU requires eight, 4 bit time intervals as shown in Figure 3-1. The eight time intervals accomplish program memory addressing, instruction retrieval, and instruction execution. The 12 bit address, required to address up to 4096 words of program memory, is sent from the CPU to the program memory in three time intervals defined as Al, A2, and A3. The eight bits of instruction for each word are sent from the addressed program memory to the CPU in two time intervals defined as Ml and M2. During the last three time intervals defined as X1, X2, and X3 the CPU executes the instruction.

Each time interval is generated by the operation of the two phase CPU clock circuit. The two phase clock accomplishes the operations within the MOS CPU, RAM, and CPU interface devices.



FIGURE 3-1

CPU Instruction Timing for Most Instructions

3-1

The sync pulse sent from the CPU keeps the RAM register and CPU interface devices in step with the CPU. The CM line signals the RAM registers and the CPU interface device to accept and decode chip select information on the CPU bus. CM always occurs at A3 time as this is the ROM program memory chip select (page) address. CM also occurs at X2 time as shown in Figure 3-2 during the SRC instructions for addressing RAM register devices and I/O ports, and at M2 time shown in Figure 3-3 during I/O and RAM register instructions for sending operand information to the RAM registers and the CPU interface circuits.

CM-RAM lines available from the CPU are used for bank switching of RAM register devices. If four or less RAM register devices are used on a system they may be tied to the CM line. When the CM-RAM lines are used and selected using the DCL instruction the timing is identical to the CM timing shown in Figures 3-1, 3-2, and 3-3.



FIGURE 3-2 CPU Timing for SRC Instruction



#### FIGURE 3-3

CPU Timing for I/O and RAM Register Instructions

#### DEVICE DATA SHEETS

The PLS 400 series uses 4000 series MOS devices. For exact specifications on the electrical and timing requirements of these devices refer to the Intel data sheets. As an aid to the user the 4001, 2, 3, 4 electrical specifications are shown with power supply reference of +5 and -10 volts as used in the PLS 400 system.

## ABSOLUTE MAXIMUM RATINGS

Power Dissipation

Ambient Temperature Under Bias Input Voltages and Supply Voltage With Respect to  $V_{SS}$ 

### DC AND OPERATING CHARACTERISTICS

 $\mathrm{T}_{A}$  = 0°C to +70°C;  $\mathrm{V}_{DD}$  = -10 V ±5%,  $\mathrm{V}_{SS}$  = +5 ±5% Logic "O" is defined as the more positive voltage (V\_{IH},  $\rm \dot{V}_{OH})\,,$  Logic "1" is defined as the more negative voltage ( $V_{IL}$ ,  $V_{OL}$ )

+0.5 to -20  $\rm V$ 1.0 W

0°C to +70°C

| SUPPLY CURRENT |                   |                                                       |                                    |         |              |            |                                                  |
|----------------|-------------------|-------------------------------------------------------|------------------------------------|---------|--------------|------------|--------------------------------------------------|
|                |                   |                                                       |                                    | Limit   |              |            |                                                  |
| Product        | Symbol            | Parameter                                             | Min                                | Тур     | Max          | Unit       | Test Conditions                                  |
| 4001           | 1 <sub>DD1</sub>  | Average Supply Current                                |                                    | 15      | 20           | mA         | $T_A = 25^{\circ}C$                              |
| 4002           | <sup>1</sup> DD2  | Average Supply Current                                |                                    | 17      | 33           | mA         | $T_A = 25^{\circ}C$                              |
| 4003           | 1 <sub>DD3</sub>  | Average Supply Current                                |                                    | 5.0     | 8.5          | mA         | $t_{WL} = t_{WH} = 8 \ \mu s; T_A = 25^{\circ}C$ |
| 4004           | 1 <sub>DD4</sub>  | Average Supply Current                                |                                    | 30      | 40           | mA         | $T_A = 25^{\circ}C$                              |
|                |                   | INPUT C                                               | HARAC:                             | TERISTI | cs           |            | · · · · · · · · · · · · · · · · · · ·            |
| 4001/2/3/4     | l <sub>Ll</sub>   | Input Leakage Current                                 |                                    |         | 10           | mA         | $v_{IL} = v_{DD}$                                |
| 4001/2/3/4     | VIH               | Input High Voltage<br>(all inputs except<br>clock)    | +3.5                               |         | +5.3         | ν.         |                                                  |
| 4001/2/3/4     | V <sub>IL</sub> . | Input Low Voltage<br>(all inputs except<br>clock)     | V <sub>DD</sub><br>V <sub>DD</sub> |         | -0.5<br>-1.5 | v<br>v     | Inverting Input<br>Noninverting Input            |
| 4001/2/4       | VILC              | Clock Input Low Voltage                               | VDD                                |         | -8.4         | v          |                                                  |
| 4001/2/4       | VIHC              | Clock Input High<br>Voltage                           | +3.5                               |         | +5.3         | <b>v</b> : |                                                  |
| 4001           | RI                | I/O Pins Input<br>Resistance                          | 10                                 | 18      | 35           | KΩ         | Internal input resistor is optional              |
|                |                   | OUTPUT                                                | CHARAC                             | TERIST  | ICS          |            |                                                  |
| 4001/2/4       | ILO               | Data Bus Output<br>Leakage Current                    |                                    |         | 10           | mA         | $V_{OUT} = -7 V$ , chip disabled                 |
| 4001/2/3/4     | V <sub>OH</sub>   | Output High Voltage                                   |                                    | 5.0     | 4.5          | v          | Driving 4000 series loads<br>only                |
| 4001/2/4       | I <sub>OL1</sub>  | Data Lines Sinking<br>Current "1" Level               | 10                                 | 18      |              | mA         | $V_{OUT} = 5 V$                                  |
| 4001/2         | I <sub>OL2</sub>  | L/O Output Lines<br>Sinking Current,<br>"l" Level     | 2.5                                | 5       | -            | mA         | V <sub>OUT</sub> = 5 V                           |
| 4003           | I <sub>OL3</sub>  | Parallel Out Pins<br>Sinking Current,<br>"1" Level    | 0.6                                | 1.0     |              | mA         | V <sub>OUT</sub> = 5 V                           |
| 4003           | I <sub>OL4</sub>  | Serial Out Sinking<br>Current, "1" Level              | 1.0                                | 2.0     |              | mA         | V <sub>OUT</sub> = 5 V                           |
| 4004           | I <sub>OL5</sub>  | CM-ROM Sinking Current<br>"1" Level                   | 6.5                                | 12      |              | mA         | $V_{OUT} = 5 V$                                  |
| 4004           | IOL6              | CM-RAM Lines Sinking<br>Current "1" Level             | 2.5                                | 4       |              | mA         | $V_{OUT} = 5 V$                                  |
| 4001/2/4       | VOLI              | Data Lines, CM Lines,<br>Sync Output Low Voltage      | -7                                 | -5      | -1.5         | · V        | $I_{OL1} = 500 \ \mu A$                          |
| 4003           | v <sub>OL3</sub>  | Output Low Voltage                                    | -6                                 | -2.5    | -1.5         | V.         | $I_{OL3} = 10 \ \mu \Lambda$                     |
| 4001/2         | V <sub>OL2</sub>  | I/O Output Lines<br>Output Low Voltage                | -7                                 | -2.5    | -1.5         | v          | $I_{OL2} = 50 \ \mu A$                           |
| 4001/2/4       | R <sub>OH1</sub>  | Output Resistance Data<br>Lines "O" Level             |                                    | 150     | 250          | Ω          | V <sub>OUT</sub> = 4.5 V                         |
| 4001/2         | R <sub>OH2</sub>  | Output Resistance<br>I/O Line "O" Level               |                                    | 1.2     | 1.8          | KΩ         | V <sub>OUT</sub> = 4.5 V                         |
| 4003           | R <sub>OH2</sub>  | Parallel-Out Pins Out-<br>put Resistance "O"<br>Level |                                    | 400     | 750          | Ω          | $V_{OUT} = 4.5 V$                                |
| 4003           | R <sub>OH4</sub>  | Serial Out Output<br>Resistance "O" Level             |                                    | 650     | 1200         | Ω          | $v_{OUT} = 4.5 v$                                |
| 4004           | R <sub>OH5</sub>  | CM-ROM Output<br>Resistance "O" Level                 |                                    | 320     | 600          | Ω          | $V_{OUT} = 4.5 V$                                |
| 4004           | R <sub>OH6</sub>  | CM-RAM Lines Output<br>Resistance "O" Level           |                                    | 1.1     | 1.8          | KΩ         | V <sub>OUT</sub> = 4.5 V                         |
|                |                   |                                                       |                                    |         |              |            |                                                  |

Typical values are for  ${\tt T}_{\rm A}$  = 25°C and Nominal Supply Voltages

## 4. PLS 400 SYSTEM ORGANIZATION

## CENTRAL PROCESSING UNIT

Central processing unit consist of a central processing unit (CPU) and a memory that has a stored sequence of instructions for the CPU. The CPU is operated by a clock circuit to alternately fetch and execute the memory instructions. The CPU fetches an instruction by sending an address from a program address counting register to the program memory. The program memory decodes the address and sends the selected instruction to the CPU. The CPU stores the instruction in an instruction register where it is decoded and executed.

## PLS 400 SYSTEMS

The PLS 400 systems are controlled by the Intel 4004 CPU chip. The CPU performs control and data transfer functions with the logic elements shown in the system data flow diagram Figure 4-1. The CPU communicates with program memory, RAM registers and I/O ports by connecting appropriate elements of the system to the 4 bit CPU BUS. Conceptually the information paths exist as shown in Figure 4-1.

In addition to an instruction register and program address counter, the CPU contains a program address counter stack, an arithmetic logic unit (ALU) with a four bit accumulator register, and 16 four bit registers for intermediate data storage.

#### INSTRUCTION REGISTER

The instruction register shown in Figure 4-2 consists of eight bits of storage and decoding for single word and the first word of double word instructions as they are received from the program memory. The 4 bits associated with Ml time are always instruction information. The 4 bits at M2 time can be additional instruction information, data constants, or page address information.

The second word of a double word instruction does not go to the instruction register but goes as either data to the index registers or as a word address to Al and A2 of the program address counter.



PLS-400 System Data Flow

4-2



## FIGURE 4-2

Instruction Register, Program Address Counter, and Subroutine Address Stack

#### PROGRAM ADDRESS COUNTER

The program address counter shown in Figure 4-2 is a 12 bit sequential counter which keeps track of the location of the next instruction to be executed from program memory. The four most significant bits (A3) are called the page address and the eight least significant bits (A2 and A1) are the word address of the instruction on a page. The program address counter is normally incremented by 1 for each instruction word unless the instruction is the type which modifies the count by loading a new address.

## SUBROUTINE ADDRESS STACK

The subroutine address stack shown in Figure 4-2 consists of three 12 bit registers used to save the program return address for each of three allowable subroutine levels. The subroutine address stack is controlled by two CPU instructions, an entry instruction JMS and a return instruction BBL. Each entry to a subroutine causes the program address counter to be transferred to the top most level of the subroutine address stack. The three levels in turn are pushed-down to accommodate the new entry. The lowest level is lost off the bottom of the stack. Each return from a subroutine causes the stack to be pulled-up one level with the top most address going to the program address counter.

#### INDEX REGISTERS

The index registers consist of sixteen 4 bit registers which can be directly operated on by various instructions, either individually or in pairs. Figure 4-3 shows the registers organized as the even numbered and the odd numbered registers, or as seven pairs, each pair consisting of one even and one odd numbered register.

When the registers are being used with the 4 bit accumulator by various instructions they are used individually. When data is loaded direct from program memory or the registers are used for address control they are used in pairs because of the 8 bit requirement for these functions.

## ARITHMETIC LOGIC UNIT

The arithmetic logic unit consists of a 4 bit accumulator register and a carry flip-flop as shown in Figure 4-3. In addition to providing the arithmetic functions of ADD and SUBtract the accumulator is the central control and distribution point for data flow in the system. All data transfers to and from I/O. RAM registers and the index register occurs with the accumulator register.



FIGURE 4-3 Index Registers

In addition to the instructions which control data transfer to or from the accumulator there are instructions which directly control the accumulator or its associated carry bit. The accumulator can be tested, incremented, decremented, set to any value, cleared, complemented, rotated right or left through the carry besides being manipulated for decimal arithmetic. The carry bit can be set, cleared, complemented, or tested.

#### PROGRAM MEMORY

Program memory stores the instruction to be executed by the CPU and is defined by the CPU instruction set as a page oriented memory of 256 words per page as shown in Figure 4-4. The CPU addresses the page and word and the program memory sends the 8 bit word at that address to the CPU.



## FIGURE 4-4

Organization of Program Memory as Defined by the CPU Instructions The 12 bit addressing capability of the CPU allows direct access to 16 pages with the four A3 bits used as page address. The eight bits at Al and A2 are used for the word address within a page. It is important to understand the page organization in terms of the address control instructions (jumping and branching). Certain address instructions use the full twelve bits of address and may be used to change control within a page or from page to page. Other address control instructions use only eight bits of address and are limited to changing control only within a page.

The PLS 400 systems are implemented with ROM (read only memory) program memory only. In addition the PLS 403 has all the control lines available for implementing RWM (read write memory) program memory. ROM program memory is used for systems in fixed applications. RWM memory is used where it is desired to change the system application by the operator. RWM is a considerable step in system complexity in hardware and programs, and is therefore not recommended unless absolutely necessary.

#### ROM PROGRAM MEMORY

ROM program memory on the PLS 400 system is accomplished as shown in Figure 4-4 using programmable erasable ROMs organized as 256 location of 8 bits. This organization is equivalent to the page size of the CPU therefore each ROM chip equals one page. Other ROM sizes and organizations can be used if the appropriate hardware addressing is provided.

ROM program memory addressing is an automatic function of the PLS hardware. The only control the program designer has over ROM memory is use of the program control instructions to change the instruction sequence.

#### RWM PROGRAM MEMORY

RWM program memory can be accomplished on the PLS 403 system only. The Intel 4008 and 4009 interface devices provide the address lines and control lines necessary for writing into the desired memory type. The WPM instruction allows writing 4 bits at a time from the accumulator to the RWM. For applications and suggested implementation, refer to the Intel 4008 and 4009 data sheet.

#### RAM REGISTER STORAGE

The PLS 400 systems use the Intel 4002 RAM register devices for program controlled data storage. Each 4002 is organized as four registers of 20 characters as shown in Figure 4-5. Each 20 character register consists of 16 individually addressable characters of main storage plus 4 instruction selectable status characters.

The instruction capability of the CPU allows addressing of up to 32 of the 4002 RAM devices. This is accomplished through an organization of 8 banks of 4 RAM chips per bank. RAM banks are selected by the DCL instruction that specifies which of the four CM-RAM lines out of the CPU will be active. The active CM-RAM line designates which RAM bank will respond to the SRC instruction. The SRC instruction selects the RAM chip, register and character. A summary of RAM addressing is given in Table 4-1 and further definition of RAM addressing is given in Section 6 under the SRC and DCL instructions.

#### TABLE 4-1

#### RAM Addressing

| Level         | Instruction                        |  |  |  |  |
|---------------|------------------------------------|--|--|--|--|
| RAM Bank      | DCL                                |  |  |  |  |
| RAM Chip      | SRC, Even Register high order bits |  |  |  |  |
| RAM Register  | SRC, Even Register low order bits  |  |  |  |  |
| RAM Character | SRC, Odd Register 4 bits           |  |  |  |  |
|               |                                    |  |  |  |  |

#### INPUTS AND OUTPUTS

The flow of data into and out of the PLS systems is accomplished through the I/O ports of four lines each. To accomplish an input or output function a port must first be addressed by the CPU instruction SRC. The even register of the SRC pair contains the address of the port to be selected. Once a port has been addressed it remains selected for as many input or output operations as desired until another port is addressed.

There are two types of output ports and one type of input port. Each RAM register device has an output port packaged physically within the device. This port shares chip select addressing with the RAM but has its own instruction WMP for the transfer of data from the accumulator to the port. The port latches any data sent to it and retains it as a stable output until a subsequent WMP instruction changes the data. The RAM port lines are MOS low level active outputs capable of driving one low power TTL load.



# INSTRUCTIONS RDM, WRM

## FIGURE 4-5

### RAM Index Register

The other type of output port is implemented in the PLS 400 systems using TTL logic. The CPU instruction WRR is used to send data to a TTL quad D type flip-flop from the accumulator. The TTL flipflops latch the data as a stable output until a subsequent WRR instruction changes the data.

The PLS 400 input ports are also implemented with TTL logic. The CPU instruction RDR reads data from the selected input port into the accumulator.

#### HEXADECIMAL NOTATION

The basic 4 bit structure of the CPU makes it convenient to use hexadecimal notation to express with a single character, one-of-sixteen possible combinations.

The single hexadecimal character notation  $0 \rightarrow 9$ ,  $A \rightarrow F$  is used to refer to the:

- 16 Basic Instructions
- 16 I/O and RAM Instructions
- 16 Accumulator Instructions
- 16 Index Registers
- 16 Pages of Program Memory Capacity
- 16 RAM Register Chip Capacity
- 16 Characters in a RAM Register
- 16 Output Ports
- 16 Input Ports

A double hexadecimal character notation is applied to the 8 bit instruction word address for program memory, where the decimal addresses 000 through 255 are given as 00 through FF in hexadecimal.

Table 4-2 shows the hexadecimal notation for sixteen combinations. Additional hexadecimal tables are given in the appendix.

### TABLE 4-2

Hexadecimal Notation for Sixteen Combinations

| Hexadecimal | Binary | Decimal |
|-------------|--------|---------|
| 0           | 0000   | 0       |
| 1           | 0001   | 1       |
| 2           | 0010   | 2       |
| 3           | 0011   | 3       |
| 4           | 0100   | 4       |
| 5           | 0101   | 5       |
| 6           | 0110   | 6       |
| 7           | 0111   | 7       |
| 8           | 1000   | 8       |
| 9           | 1001   | 9       |
| A           | 1010   | 10      |
| В           | 1011   | 11      |
| С           | 1100   | 12      |
| D           | 1101   | 13      |
| E           | 1110   | 14      |
| F           | 1111   | 15      |

# 5. INSTRUCTION TABLE

This section presents the 4004 CPU instructions in a short table form. Section 6 contains detailed descriptions of the instructions.

| HEX                        |                                                      | MNEMONIC                          |                                    |                                                                                                                                                                                        |  |  |
|----------------------------|------------------------------------------------------|-----------------------------------|------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| CODING                     |                                                      | OPR                               | OPA                                | DESCRIPTION OF OPERATION                                                                                                                                                               |  |  |
| 0                          | 0                                                    | NOP                               |                                    | No operation.                                                                                                                                                                          |  |  |
| 1<br>A2                    | C <sub>x</sub><br>A <sub>1</sub>                     | JCN                               | C <sub>X</sub><br>LABEL            | Jump on condition $C_{\rm X}$ to the program memory address A1, A2, otherwise continue in sequence.                                                                                    |  |  |
| <b>2</b><br>D <sub>2</sub> | ${}^{P_{X}e}_{D_{1}}$                                | FIM<br>D <sub>2</sub>             | P <sub>x</sub> O<br>D <sub>1</sub> | Fetch immediate from program memory data $\text{D}_1,~\text{D}_2$ to index register pair $\text{P}_x$                                                                                  |  |  |
| 2                          | P <sub>X</sub> o                                     | SRC                               | P <sub>x</sub> 1                   | Send register control. Send the contents of index register pair $P_X$ to I/O ports and RAM register as chip select and RAM character address.                                          |  |  |
| 3                          | P <sub>X</sub> e                                     | FIN                               | Р <sub>х</sub> О                   | Fetch indirect. Send contents of register pair 0 out as a program memory address. Data fetched is placed into register pair $P_X$                                                      |  |  |
| 3                          | P <sub>x</sub> o                                     | JIN                               | P <sub>x</sub> 1                   | Jump indirect. Jump to the program memory address designated by contents of register pair $\mathbf{P}_{\mathbf{X}}$                                                                    |  |  |
| <b>4</b><br>A2             | A3<br>A1                                             | JUN                               | LABEL                              | Jump unconditional to program memory address $A_1$ , $A_2$ , $A_3$ .                                                                                                                   |  |  |
| 5<br>A2                    | А <sub>3</sub><br>А <sub>1</sub>                     | JMS                               | LABEL                              | Jump to subroutine located at program memory address $A_1$ , $A_2$ , $A_3$ . Save previous address (push down in stack).                                                               |  |  |
| 6                          | Rx                                                   | INC                               | R <sub>X</sub>                     | Increment contents of register $R_x$ .                                                                                                                                                 |  |  |
| <b>7</b><br>A2             | $\substack{\mathbf{R}_{\mathbf{X}}\\\mathbf{A}_{1}}$ | ISZ                               | R <sub>X</sub><br>LABEL            | Increment and skip on zero. Increment contents of register $R_x$ , if result is not 0 go to program memory address $A_1$ , $A_2$ , otherwise skip to the next instruction in sequence. |  |  |
| 8                          | R <sub>x</sub>                                       | ADD                               | R <sub>X</sub>                     | Add contents of register $R_X$ to accumulator.                                                                                                                                         |  |  |
| 9                          | R <sub>x</sub>                                       | SUB                               | R <sub>X</sub>                     | Subtract contents of register $R_X$ to accumulator with borrow.                                                                                                                        |  |  |
| A                          | R <sub>x</sub>                                       | LD                                | R <sub>X</sub>                     | Load contents of register $R_X$ to accumulator.                                                                                                                                        |  |  |
| В                          | R <sub>X</sub>                                       | XCH                               | R <sub>X</sub>                     | Exchange contents of index register $\mathbf{R}_{\mathbf{X}}$ and accumulator.                                                                                                         |  |  |
| C                          | D <sub>1</sub>                                       | BBL                               | D <sub>1</sub>                     | Branch back one level in stack to the program memory address stored by a prior JMS instruction. Load data $D_1$ to accumulator.                                                        |  |  |
| D                          | D <sub>1</sub>                                       | LDM                               | D <sub>1</sub>                     | Load data $D_1$ to accumulator.                                                                                                                                                        |  |  |
| E                          | х                                                    | I/O and RAM register instructions |                                    |                                                                                                                                                                                        |  |  |
| F                          | х                                                    | Accumulator instructions          |                                    |                                                                                                                                                                                        |  |  |

| ${}^{A_1}_{A_2}$ | Low order address bits<br>High order address bits                | $R_X$ | Register 0 F      |
|------------------|------------------------------------------------------------------|-------|-------------------|
| A <sub>3</sub>   | Chip select                                                      | D1    | Data character #1 |
| ₽ <sub>x</sub> 0 | Register $P_{O}$ through $P_{\eta}$ designated by odd characters | $D_2$ | Data character #2 |
| A                | 1, 3, 5, 7, 9, B, D, F                                           | Cv    | Jump conditions   |
| $P_{x}^{1}$      | Register $P_0$ through $P_7$ designated by even characters       | А     | •<br>•            |
|                  | 0, 2, 4, 6, 8, A, C, E                                           |       |                   |

#### I/O AND RAM REGISTER INSTRUCTIONS

| HEX<br>CODING |         | MNEMONIC |     |                                                                                                     |  |  |  |
|---------------|---------|----------|-----|-----------------------------------------------------------------------------------------------------|--|--|--|
|               |         | OPR      | OPA | DESCRIPTION OF OPERATION                                                                            |  |  |  |
| E             | E O WRM |          |     | Write the contents of the accumulator into the previously selected RAM register character.          |  |  |  |
| E             | 1       | WMP      |     | Write the contents of the accumulator into the previously selected RAM output port. (Output lines.) |  |  |  |
| E             | 2       | WRR      |     | Write the contents of the accumulator into the previously selected output port. (I/O lines.)        |  |  |  |
| E             | 3       | WPM      |     | Write the contents of the accumulator into the previously selected RAM program memory.              |  |  |  |
| . E           | 4       | WRO      |     | Write the contents of the accumulator into the previously selected RAM status character 0.          |  |  |  |
| E             | 5       | WR1      |     | Write the contents of the accumulator into the previously selected RAM status character 1.          |  |  |  |
| E             | 6       | WR2      |     | Write the contents of the accumulator into the previously selected RAM status character 2.          |  |  |  |
| E             | 7       | WR3      |     | Write the contents of the accumulator into the previously selected RAM status character 3.          |  |  |  |
| E             | .8      | SBM      |     | Subtract the previously selected RAM register character from accumulator with borrow.               |  |  |  |
| E             | 9       | RDM      |     | Read the previously selected RAM register character into the accumulator.                           |  |  |  |
| E             | A       | RDR      |     | Read the contents of the previously selected input port into the accumulator. (I/O lines.)          |  |  |  |
| E             | B       | ADM      |     | Add the previously selected RAM register character to accumulator with carry.                       |  |  |  |
| E             | C       | RDO      |     | Read the previously selected RAM status character 9 into accumulator.                               |  |  |  |
| E             | D       | RD1      |     | Read the previously selected RAM status character 1 into accumulator.                               |  |  |  |
| E             | E       | RD2      |     | Read the previously selected RAM status character 2 into accumulator.                               |  |  |  |
| E             | E       | RD3      |     | Read the previously selected RAM status character 3 into accumulator.                               |  |  |  |

#### ACCUMULATOR INSTRUCTIONS

| HEX<br>CODING |   | MNEMONIC |     |                                                                                                          |  |  |
|---------------|---|----------|-----|----------------------------------------------------------------------------------------------------------|--|--|
|               |   | OPR      | OPA | DESCRIPTION OF OPERATION                                                                                 |  |  |
| F             | 0 | CLB      |     | Clear both. (Accumulator and carry.)                                                                     |  |  |
| F             | 1 | CLC      |     | Clear carry.                                                                                             |  |  |
| F             | 2 | IAC      |     | Increment accumulator.                                                                                   |  |  |
| F             | 3 | СМС      |     | Complement carry.                                                                                        |  |  |
| F             | 4 | СМА      | ·   | Complement accumulator.                                                                                  |  |  |
| F             | 5 | RAL      |     | Rotate left. (Accumulator and carry.)                                                                    |  |  |
| F             | 6 | RAR      |     | Rotate right. (Accumulator and carry.)                                                                   |  |  |
| F             | 7 | TCC      |     | Transmit carry to accumulator and clear carry.                                                           |  |  |
| F             | 8 | DAC      |     | Decrement accumulator.                                                                                   |  |  |
| F             | 9 | TCS      |     | Transfer carry subtract and clear carry.                                                                 |  |  |
| F             | A | STC      |     | Set carry.                                                                                               |  |  |
| F             | B | DAA      |     | Decimal adjust accumulator.                                                                              |  |  |
| F             | C | КВР      |     | Keyboard process. Converts the contents of the accumulator from a one out of four code to a binary code. |  |  |
| F             | D | DCL      |     | Designate command line.                                                                                  |  |  |
| F             | Ε |          |     |                                                                                                          |  |  |
| F             | F |          |     |                                                                                                          |  |  |

|            |                            | $C_8$ |   | C <sub>2</sub> |                  | Invert Jump Condition<br>Jump if Accumulator = 0<br>Jump if Carry Bit = 0 |
|------------|----------------------------|-------|---|----------------|------------------|---------------------------------------------------------------------------|
| JCN<br>HEX | C <sub>x</sub><br>MNEMONIC |       |   |                | C <sub>1</sub> - | Jump if Test Input = 0                                                    |
| 10         |                            | 0     | 0 | 0              | 0                | NO OPERATION                                                              |
| 11         | то                         | 0     | 0 | 0              | 1                | Jump if test = 0                                                          |
| 12         | C1                         | 0     | 0 | 1              | 0                | Jump if CY = 1                                                            |
| 13         | `ТО - С1                   | 0     | 0 | 1              | 1                | Jump if test = 0 or CY = 1                                                |
| 14         | AO                         | 0     | 1 | 0              | 0                | Jump if AC = 0                                                            |
| 15         | TO+AO                      | 0     | 1 | 0              | 1                | Jump if test = 0 or AC - 0                                                |
| 16         | C1+AO                      | 0     | 1 | 1              | 0                | Jump if $CY = 1$ or $AC = 0$                                              |
| 17         | TO+C1+AO                   | 0     | 1 | 1              | 1                | Jump if test = 0 or CY = 1 or AC = 0                                      |
| 18         |                            | 1     | 0 | 0              | 0                | Jump Unconditionally                                                      |
| 19         | T1                         | 1     | 0 | 0              | 1                | Jump if test = 1                                                          |
| 1A         | ĊO                         | 1     | 0 | 1              | 0                | Jump if CY = 0                                                            |
| 1B         | T1CO                       | 1     | 0 | 1              | 1                | Jump if test = $1$ and CY = $0$                                           |
| 1C         | A1                         | 1     | 1 | 0              | 0                | Jump if AC $\neq$ 0                                                       |
| 1D         | T1A1                       | 1     | 1 | 0              | 1                | Jump if test = 1 and AC $\neq$ 0                                          |
| 1E         | COA1                       | 1     | 1 | 1              | 0                | Jump if $CY = 0$ and $AC \neq 0$                                          |
| 1F         | T1COA1                     | 1     | 1 | 1              | 1                | Jump if test = 1 and CY = 0 and AC $\neq 0$                               |

.

Condition Table for ICN Instruction
#### 6. INSTRUCTION DESCRIPTIONS

#### NO OPERATION

NOP

**O**0

| _ |   | M | 1 |   |   | M | 2 |   |
|---|---|---|---|---|---|---|---|---|
|   | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| L | 8 | 4 | 2 | 1 | 8 | 4 | 2 | 1 |

No operation is performed by this instruction except that the program address counter counts to the next instruction address in sequence. This instruction can be used as a one cycle time delay. To avoid problems with power-on reset, the first instruction at program address 000 should always be an NOP.



If the designated condition  $(C_x)$  is true, program control is transferred to the instruction located at the 8 bit address  $A_2$ ,  $A_1$  of the current page, otherwise program control continues in sequence. If the JCN occupies the last two positions of a page or overlaps the page boundary, program control is transferred to the 8 bit address on the next page in sequence.

JCN is one of the two decision making instructions of the CPU, the other being ISZ. JCN allows a decision on the following tests:

Test accumulator for zero or nonzero Test carry bit for logic one or zero Test external input lead for high or low

Table 5 provides detailed definitions of conditions C<sub>x</sub>.

## FETCH IMMEDIATE



FIM

SRC

**7** P<sub>x</sub>1

Load the 8 bits of data from the second word  $D_2$ ,  $D_1$  to the designated pair of index registers  $P_x0$ .

FIM uses the even register numbers to designate a pair. The only valid operand codes for  $P_{\rm X}0$  are 0, 2, 4, 6, 8, A, C, and E. FIM provides the most efficient way to initialize a pair of index registers.

RRR defines one of the eight register pairs P0 through P7. The 0 following RRR is part of the command decoding and distinguishes the FIM from the SRC.

#### SEND REGISTER CONTROL

M1 M2 0 0 1 0 R R R 1 8 4 2 1 8 4 2 1

Send the contents of index register pair  $P_xl$  to the I/O ports and RAM registers as chip select and/or RAM character select. SRC uses the odd register numbers to designate a pair. The only valid operand codes for  $P_xl$  are 1, 3, 5, 7, 9, B, D, and F.

RRR defines one of the eight register pairs P0 through P7. The l following RRR is part of the command decoding and distinguishes the SRC from the FIM.

It is necessary to address the I/O port or RAM register character using an SRC instruction before an I/O operation or a RAM register operation can be performed. The same SRC instruction can be used to address both I/O ports and RAM registers, however, the meaning of the address in the designated pair  $P_X$ l is different for each as shown below.

The I/O port is addressed by the contents of the even register designated by  $P_{\rm X}$ . The odd register does not serve any purpose in selecting I/O ports.



The RAM chip select is addressed by the high order 2 bits of the even register, the RAM register within the selected chip is addressed by the low order 2 bits of the even register and the character within the RAM register is addressed by the 4 bits of the odd register.

Addressing of the I/O port and RAM registers by the even register is tabulated in Table 6-1. The table covers any one bank of RAM registers. To select other RAM banks refer to the DCL instructions.

#### TABLE 6-1

I/O Port and RAM Selection for One Bank by Even Register Contents, as Used with SRC Instruction

| CONTENTS<br>OF<br>EVEN<br>REGISTER | I/O PORT<br>SELECTED | RAM #            | ‡ AND RAM RE<br>REGISTER | RAM<br>DEVICE<br>TYPE | RAM<br>PIN 10<br>WIRED |
|------------------------------------|----------------------|------------------|--------------------------|-----------------------|------------------------|
| 0<br>1<br>2<br>3                   | 0<br>1<br>2<br>3     | 0<br>0<br>0<br>0 | 0<br>1<br>2<br>3         | 4002-1                | HIGH                   |
| 4<br>5<br>6<br>7                   | 4<br>5<br>6<br>7     | 1<br>1<br>1<br>1 | 0<br>1<br>2<br>3         | 4002-1                | LOW                    |
| 8<br>9<br>A<br>B                   | 8<br>9<br>A<br>B     | 2<br>2<br>2<br>2 | 0<br>1<br>2<br>3         | 4002-2                | HIGH                   |
| C<br>D<br>E<br>F                   | C<br>D<br>E<br>F     | 3<br>3<br>3<br>3 | 0<br>1<br>2<br>3         | 4002-2                | LOW                    |

6-3

## FETCH INDIRECT

|   | N | 1 |   |   | M | 2 |   |   |
|---|---|---|---|---|---|---|---|---|
| 0 | 0 | 1 | 1 | R | R | R | 0 |   |
| 8 | 4 | 2 | 1 | 8 | 4 | 2 | 1 | i |

The 8 bit content of register pair 0 is sent out as an address to the current page of program memory. The 8 bit word at that location is loaded as data into the designated index register pair  $P_X0$ . If the FIN occupies the last position of a page, data will be fetched from the next page in sequence. The program counter is not affected.

After the FIN has been executed the next instruction in sequence will be addressed. However, the FIN is a one word instruction, and it requires an additional instruction cycle to retrieve the 8 bits of data for the designated register pair. This extra cycle must be considered when the FIN is used in routines with timing considerations.

FIN uses the even register numbers to designate a pair. The only valid operand codes for  $P_X0$  are 0, 2, 4, 6, 8, A, C, and E. The FIN instruction is useful for retrieving data from look-up or translation tables.

RRR defines one of the eight register pairs P0 through P7. The 0 following RRR is part of the command decoding and distinguishes the FIN from the JIN.

#### JUMP INDIRECT

JIN

 $3 P_{x}1$ 

|   | M | 1 |   |   | <u> </u> | 2 |   |   |
|---|---|---|---|---|----------|---|---|---|
| 0 | 0 | 1 | 1 | R | R        | R | 1 |   |
| 8 | 4 | 2 | 1 | 8 | 4        | 2 | + | I |

The 8 bit content of the designated register pair  $P_X$ l is loaded into the low order 8 positions of the program address counter. Program control is transferred to the instruction at that address on the same page. If the JIN occupies the last position of the current page program control transfers to the 8 bit address of the next page in sequence.

The 8 bit content of the register pair is not affected.

JIN uses the odd register numbers to designate the pair  $P_X$ . The only valid operand codes for  $P_X$ l are 1, 3, 5, 7, 9, B, D, and F.

RRR defines one of the eight register pairs P0 through P7. The l following RRR is part of the command decoding and distinguishes the JIN from the FIN.

 $3 P_x 0$ 

#### JUMP UNCONDITIONAL



Program control is unconditionally transferred to the instruction located at the address  $A_3$ ,  $A_2$ , and  $A_1$ . The CPU accomplishes this internally by transferring  $A_3$  from the operand of the instruction register and  $A_2$ ,  $A_1$  from program memory to the program address counter.

#### JUMP TO SUBROUTINE

| M1<br>0 1 0 1<br>8 4 2 1  | M2<br>A <sub>3</sub><br>8 + 4 + 2 + 1 | First Word  | 5 <sup>A</sup> 3              |
|---------------------------|---------------------------------------|-------------|-------------------------------|
| A <sub>2</sub><br>8 4 2 1 | A <sub>1</sub><br>8 + 4 + 2 + 1       | Second Word | A <sub>2</sub> A <sub>1</sub> |

The subroutine address stack is pushed down one level. The program address counter, containing the 12 bit address of the instruction following the second word of the JMS, is transferred to the topmost stack level. Program control is transferred to the instruction located at  $A_3$ ,  $A_2$ , and  $A_1$  from program memory to the program address counter.

First word. In Instruction Register 5 A<sub>3</sub> Second word. From Program Memory Program Address Counter

Subroutine Address Stack -

## 

Stack shown fully loaded

JUN

JMS

6-5

INCREMENT REGISTER



The 4 bit content of the designated register  $R_x$  is incremented by 1. If the count causes the register to overflow, the register is set to zero.

The carry bit and accumulator are not affected.

#### INCREMENT REGISTER SKIP IF ZERO

The contents of the designated register  $R_x$  is incremented by 1. If the result is zero, program control continues in sequence. If the result is not zero, program control is transferred to the instruction located at the 8 bit address  $A_2$ ,  $A_1$  on the same page. If the ISZ occupies the last two positions of a page, or overlaps the page boundary, program control is transferred to the 8 bit address on the next page in sequence.

The accumulator and carry are not affected.

ISZ is one of the two decision making in structions of the CPU. The other is JCN. ISZ allows a program control decision to be made based on the count of a register. Examples of ISZ use may be found in Section 8 of this manual.

#### ADD REGISTER TO ACCUMULATOR

The 4 bit content of the designated index register  $R_X$  is added to the contents of the accumulator with carry. The result is stored in the accumulator. The carry is set to 1 if a sum greater than 15 was generated, otherwise the carry is set to 0.

**6** R<sub>x</sub>

ISZ

INC

ADD

**R** R<sub>x</sub>

The contents of the index register is not affected.

| Accumulator | in  |    | ag a <sub>4</sub> a <sub>2</sub>             | al   | Augend    |
|-------------|-----|----|----------------------------------------------|------|-----------|
| Carry       | in  |    |                                              | Cin  | Carry in  |
| Register    |     | +) | R <sub>8</sub> R <sub>4</sub> R <sub>2</sub> | Rl   | Addend    |
| Accumulator | out |    | ag a4 a2                                     | al   | Sum       |
| Carry       | out |    |                                              | Cout | Carry out |

Addition of words longer than 4 bits (multiple precision addition) may be accomplished by starting with the LSD, working on 4 bits at a time until the desired word length has been operated on. It is important not to modify the carry bit between each 4 bits.

## SUBTRACT REGISTER FROM ACCUMULATOR

1 0 0 1 8 4 7 7 1

The 4 bit content of the designated register  $R_{\rm X}$  is subtracted from the accumulator with borrow. The result is stored in the accumulator. If a borrow is generated, (i.e.,  $R_X > accumulator$ ) the carry bit is set to 0; is a borrow is not generated the carry is set to 1.

The content of the index register  $R_x$  is not affected.

The CPU performs the subtraction by adding the complement of the index register plus the complement of the carry to the accumulator.

| Accumulator | in  |    | ag a4 a2                                       | al                  | Minuend    |
|-------------|-----|----|------------------------------------------------|---------------------|------------|
| Carry       | in  |    |                                                | $\overline{C_{in}}$ | Borrow in  |
| Register    |     | +) | $\overline{R_8} \overline{R_4} \overline{R_2}$ | R1                  | Subtrahend |
| Accumulator | out |    | ag a4 a2                                       | al                  | Result     |
| Carry       | out |    |                                                | Cout                | Borrow out |

Subtraction of words longer than 4 bits (multiple precision subtraction) can be accomplished by starting with the LSD, working on 4 bits at a time until the desired word length has been operated It is required that the carry bit be complemented between each on. 4 bits for the correct result.

The SUB instruction is useful for performing a compare function. The compare is performed by initially clearing the carry bit and subtracting the 4 bit word  $R_X$  to be compared from the accumulator.

**g** R<sub>x</sub>

SUB

The conditions to be tested for comparison results following subtraction are presented below:

| COMPARISON     | ACCUMULATOR | CARRY | MNEMONIC<br>TEST CONDITION |
|----------------|-------------|-------|----------------------------|
| REG > ACC      | ≠ 0         | 0     | со                         |
| REG = ACC      | 0           | 1     | AO                         |
| REG < ACC      | <b>≠</b> 0  | 1     | Al·Cl                      |
| $REG \leq ACC$ | X           | 1     | Cl                         |
| REG $\neq$ ACC | ≠ 0         | Х     | Al                         |

#### LOAD REGISTER TO ACCUMULATOR



The 4 bit content of the designated index register  $R_X$  is loaded into the accumulator. The previous contents of the accumulator are lost.

The content of the index register and the carry bit are not affected.

## EXCHANGE REGISTER WITH ACCUMULATOR

|   | M | 1 |   | <u>M2</u>      |
|---|---|---|---|----------------|
| 1 | 0 | 1 | 1 | R <sub>X</sub> |
| 8 | 4 | 2 | 1 | 8 4 2 1        |

The 4 bit content of the designated index register  $R_X$  is loaded into the accumulator. The prior content of the accumulator is loaded into the designated register  $R_X$ .

The carry bit is not affected.

This is the only instruction which allows the accumulator to be loaded into an index register.

#### BRANCH BACK AND LOAD ACCUMULATOR



BBL is used to return from subroutine to main program. The subroutine address stack is pulled up one level. The top-most address is placed in the program address counter causing program control to be transferred to the sequential instruction following the previous JMS.

LD

A R<sub>x</sub>

XCH

BBL

 $\int D_x$ 

| Program Add | lress Coun | ter | Ph 1 | <sup>P</sup> m <sup>P</sup> 1 |
|-------------|------------|-----|------|-------------------------------|
|             |            | ,   |      | BBL                           |
| Program     |            |     | (Le  | vel 1)                        |
| Address     |            |     | [Le  | vel 2]                        |
| Stack       |            |     | Lev  | vel 3                         |

## Stack shown fully loaded

The 4 bits of data  $D_{\rm X}$  in the operand portion of the instruction are loaded into the accumulator. The previous accumulator data is lost.

The carry bit is not affected.

LOAD DATA TO ACCUMULATOR

|   | N | 11   |   | <u>M2</u>      |
|---|---|------|---|----------------|
| 1 | 1 | 0    | 1 | D <sub>1</sub> |
| L | + | 1-2- | + |                |

The 4 bits of data  $D_1$  stored in the operand field of the instruction word are loaded into the accumulator. The previous contents of the accumulator are lost.

The carry bit is not affected.

## WRITE ACCUMULATOR INTO RAM CHARACTER

|       | <u> </u> | 1 |      |   | N   | 12 |               |
|-------|----------|---|------|---|-----|----|---------------|
| 1     | 1        | 1 | 0    | 0 | 0   | 0  | 0             |
| L_8-1 | 4        |   | <br> | 8 | + 4 | +  | $\frac{1}{1}$ |

The accumulator content is written into the RAM main memory character location previously selected by an SRC instruction.

The accumulator and carry are not affected.

LDM

WRM

EO

6-9

WRITE MEMORY PORT

|   | N | 11 |   |          | Ň | 12            |   |
|---|---|----|---|----------|---|---------------|---|
| 1 | 1 | 1  | 0 | 0        | 0 | 0             | 1 |
| 2 | - | 1- | - | <u> </u> |   | $\frac{1}{2}$ | + |

The content of the accumulator is transferred to the RAM output port previously selected by an SRC instruction. The data is available on the output pins until a new WMP is executed on the same RAM chip.

The accumulator and carry are not affected.

#### WRITE ROM PORT

|   | M | 1 |    |   | M | 12  |                      |
|---|---|---|----|---|---|-----|----------------------|
| 1 | 1 | 1 | 0  | 0 | 0 | 1   | 0                    |
|   | 4 | 2 | -1 | 8 | 4 | 1 2 | $\left  \right _{1}$ |

The content of the accumulator is transferred to the output port previously selected by an SRC instruction. The data is available on the output pins until a new WRR is executed on the same port.

The accumulator and carry are not affected.

WRITE TO PROGRAM MEMORY

|   | M | 1     |   |     | M          | 2 |         |
|---|---|-------|---|-----|------------|---|---------|
| 1 | 1 | 1     | 0 | 0   | 0          | 1 | 1       |
|   |   |       |   |     |            |   | <b></b> |
| 8 | 4 | ' 2 ' | 1 | 8 ' | <u>د</u> ا | 2 | 1       |

This instruction is used to write data into RAM program memory 4 bits at a time. The WPM instruction must be executed twice for each 8 bit RAM program memory location.

Program memory page select lines are forced to llll. The previous SRC address is sent out on the program memory address bus and the accumulator contents becomes available as 4 bits of data on the I/O bus. Two control lines from the CPU interface circuitry control writing into the RAM.

The WPM instruction is not applicable to PLS 401 and PLS 402 systems since the program memory address bus is not available to the user. The PLS 403 configuration provides all necessary lines for implementing RAM program memory.

**E1** 

WMP

WRR E2

WPM

**E3** 

WRITE INTO RAM STATUS CHARACTER 0

|   | M | 1 |   | <u>M2</u> |   |   |               |  |
|---|---|---|---|-----------|---|---|---------------|--|
| 1 | 1 | 1 | 0 | 0         | 1 | 0 | 0             |  |
| 8 |   | 2 | 1 | 8         | 4 | 2 | $\frac{1}{1}$ |  |

The content of the accumulator is written into the RAM status character 0 previously selected by an SRC instruction.

The accumulator and carry are not affected.

## WRITE INTO RAM STATUS CHARACTER 1

|   | M | 1 |   |   | M | 2 |   |   |
|---|---|---|---|---|---|---|---|---|
| 1 | 1 | 1 | 0 | 0 | 1 | 0 | 1 |   |
| L | 4 | 2 |   | 8 | 4 | 2 | + | I |

The content of the accumulator is written into the RAM status character 1 previously selected by an SRC instruction.

The accumulator and carry are not affected.

## WRITE INTO RAM STATUS CHARACTER 2

|              | M | 1 |                              |   | M | 2   |               |
|--------------|---|---|------------------------------|---|---|-----|---------------|
| 1            | 1 | 1 | 0                            | 0 | 1 | 1   | 0             |
| <b>└</b> _8┥ | 4 |   | $\left  \frac{1}{1} \right $ | 8 | 4 | 1-2 | $\frac{1}{1}$ |

The content of the accumulator is written into the RAM status character 2 previously selected by an SRC instruction.

The accumulator and carry are not affected.

## WRITE INTO RAM STATUS CHARACTER 3

|   |     | <u>M1</u> |   |   |   |   | M | 2 |   |
|---|-----|-----------|---|---|---|---|---|---|---|
| 1 | 1   |           | 1 | 0 | 0 | 1 |   | 1 | 1 |
| 8 | +-4 | +-        | 2 | 1 | 8 | 4 | + | 2 | + |

The content of the accumulator is written into the RAM status character 3 previously selected by an SRC instruction.

The accumulator and carry are not affected.

WR2

F6

WR1

**E**5

WRO

**E4** 

.

WR3

SUBTRACT FROM MEMORY WITH BORROW

| ·  |     | [1  |   |   | N | 12  |   |  |
|----|-----|-----|---|---|---|-----|---|--|
| 11 | . 1 | 1   | 0 | 1 | 0 | 0   | 0 |  |
| 8  | 4   | 1 2 | + |   | 4 | 1 2 | 1 |  |

The content of the RAM character previously selected by an SRC instruction is subtracted from the accumulator with borrow.

The RAM character is unaffected.

READ RAM CHARACTER



The content of the RAM character is transferred to the accumulator. The carry is not affected. The 4 bit data in memory is unaffected.

READ ROM PORT

|   | M | 1   |   |   | N | 2 |                | ľ |
|---|---|-----|---|---|---|---|----------------|---|
| 1 | 1 | 1   | 0 | 1 | 0 | 1 | 0              |   |
| 8 | + | 1 2 |   | 8 | + | 2 | $\overline{1}$ |   |

The data present at the input lines of the port previously selected by an SRC instruction is transferred to the accumulator.

The carry is not affected.

ADD FROM MEMORY WITH CARRY

|   | M | 1    |     |       | <u> </u> | 2 |   |
|---|---|------|-----|-------|----------|---|---|
| 1 | 1 | 1    | 0   | 1     | 0        | 1 | 1 |
| 8 | - | ┣-┯┥ | i d | l g l |          |   | 1 |

The content of the RAM character previously selected by an SRC instruction is added to the accumulator with carry.

The RAM character is not affected.

## READ RAM STATUS CHARACTER 0

|   | <u> </u> | 1 |   |   | N | 2   |               |   |
|---|----------|---|---|---|---|-----|---------------|---|
| 1 | 1        | 1 | 0 | 1 | 1 | 0   | 0             |   |
| 8 | 4        | 2 | 1 | 8 | 4 | 1.2 | $\frac{1}{1}$ | 1 |

The 4 bits of status character 0 of the RAM register previously selected by an SRC instruction are transferred to the accumulator.

The carry and the status character are not affected.

SBM

**E8** 

ROM

**E**9

RDR

EA

ADM

EB

RDO

EC

READ RAM STATUS CHARACTER 1

|       | M   | 1 |   |   | M | 2 |   |
|-------|-----|---|---|---|---|---|---|
| 1     | 1   | 1 | 0 | 1 | 1 | 0 | 1 |
| L_8-1 | ┝┰┥ | 2 | 1 | 8 | 4 | 2 |   |

The 4 bits of status character 1 of the RAM register previously selected by an SRC instruction are transferred to the accumulator.

The carry and the status character are not affected.

## READ RAM STATUS CHARACTER 2

|      | <u>M</u> | 1 |   |   | M | 2 |   |
|------|----------|---|---|---|---|---|---|
| 1    | 1        | 1 | 0 | 1 | 1 | 1 | 0 |
| -8-1 | 4        | 2 | 1 | 8 | 4 | 2 |   |

The 4 bits of status character 2 of the RAM register previously selected by an SRC instruction are transferred to the accumulator.

The carry and the status character are not affected.

## READ RAM STATUS CHARACTER 3

|   | M | 1 |                    | M2 |   |      |     |  |
|---|---|---|--------------------|----|---|------|-----|--|
| 1 | 1 | 1 | 0                  | 1  | 1 | 1    | 1   |  |
| 8 | 4 | 2 | $\left  - \right $ | 8  | 4 | 1-2- | ┝┯┙ |  |

The 4 bits of status character 3 of the RAM register previously selected by an SRC instruction are transferred to the accumulator.

The carry and the status character are not affected.

## CLEAR BOTH

|   | M | 1 |   | <u>M2</u> |   |   |                              |  |
|---|---|---|---|-----------|---|---|------------------------------|--|
| 1 | 1 | 1 | 1 | 0         | 0 | 0 | 0                            |  |
| 8 | 4 | 2 |   | 8         | 4 | 2 | $\left  \frac{1}{1} \right $ |  |

Set accumulator and carry to 0.

## CLEAR CARRY

|   | M | 1 |   |   | M | 2 |  |
|---|---|---|---|---|---|---|--|
| 1 |   |   | 1 |   |   |   |  |
| 8 | 4 | 2 | 1 | 8 | 4 | 2 |  |

Set carry to 0.

The accumulator is not affected.

ED

RD2

EE

RD3

ΈF

CLC

CLB

FO

F1

INCREMENT ACCUMULATOR

|      | M | 1 |      |   | N | 2             |                              |
|------|---|---|------|---|---|---------------|------------------------------|
| 1    | 1 | 1 | 1    | 0 | 0 | 1             | 0                            |
| -8-1 | 4 | 2 | ┝╌┰┙ | 8 | 4 | $\frac{1}{2}$ | $\left  \frac{1}{1} \right $ |

The content of the accumulator is incremented by 1. No overflow sets the carry to 0; overflow sets the carry to a 1.

## COMPLEMENT CARRY

|   | M | 1 |   |   | M | 2   |                  |   |
|---|---|---|---|---|---|-----|------------------|---|
| 1 | 1 | 1 | 1 | 0 | 0 | 1   | 1                |   |
| 8 | 4 | 2 |   | 8 | 4 | 1 2 | $\mathbf{H}_{1}$ | I |

The carry content is complemented.

The accumulator is not affected.

## COMPLEMENT ACCUMULATOR

|   | M | 1 |      |   | N | 2   |   |
|---|---|---|------|---|---|-----|---|
| 1 | 1 | 1 | 1    | 0 | 1 | 0   | 0 |
| 8 | - | 2 | ┝╌┯┙ | 8 | 4 | + 2 | + |

The content of the accumulator is complemented.

The carry is not affected.

## ROTATE LEFT

|   | M | 1 |   |   | M | 2 |   |
|---|---|---|---|---|---|---|---|
| 1 | 1 | 1 | 1 | 0 | 1 | 0 | 1 |
| 8 | 4 | 2 |   | 8 | 4 | 2 |   |

The content of the accumulator and carry are rotated left one bit position.

> A8  $A_1$ AΔ A2 су



CMA

**F4** 

**F**5

RAL

6-14

**F2** 

CMC

**F**3

ROTATE RIGHT

|          | M | 1             |   |   | M | 2 |            |
|----------|---|---------------|---|---|---|---|------------|
| 1        | 1 | 1             | 1 | 0 | 1 | l | 0          |
| <b>6</b> | 4 | $\frac{1}{2}$ | + | 8 | 4 | 2 | $\vdash_1$ |

The content of the accumulator and carry are rotated right 1 bit position.



TRANSMIT CARRY AND CLEAR

|              | M | 1         |   |   | <u>M</u> | 2 |            |
|--------------|---|-----------|---|---|----------|---|------------|
| 1            | 1 | 1         | 1 | 0 | 1        | 1 | 1          |
| <b>L</b> _81 |   | <u>⊢_</u> | 1 | 8 | 4        | 2 | $\vdash_1$ |

The accumulator is cleared. The least significant position of the accumulator is set to the value of the carry. The carry is set to 0. This instruction is used for decimal arithmetic.

DECREMENT ACCUMULATOR



Decrementing when the accumulator equals zero sets the carry to 0. Decrementing when the accumulator is not zero sets the carry to 1. The initial value of the carry bit does not affect the content of the accumulator.

TRANSFER CARRY SUBTRACT



The accumulator is set to 9 if the carry is 0. The accumulator is set to 10 if the carry is a 1. The carry is set to 0. This instruction is used for decimal arithmetic.

**F6** 

TCC

F7

TCS

SET CARRY

|   | M | 1 |     |   | h | 12 |   | _ |
|---|---|---|-----|---|---|----|---|---|
| 1 | 1 |   | 1   |   |   |    |   |   |
| 8 | 4 | 2 | + 1 | 8 | 4 | 2  | + | 1 |

Set carry to a 1.

The accumulator is not affected.

## DECIMAL ADJUST ACCUMULATOR

|   | M | 1 |   |   | M | 2  | ,<br>    |
|---|---|---|---|---|---|----|----------|
| 1 | 1 | 1 | 1 | 1 | 1 | 0  | 1        |
|   | 4 | 2 |   | 8 | 4 | 12 | $\vdash$ |

The accumulator is incremented by 6 if either the carry is 1 or if the accumulator content is greater than 9. The carry is set to a 1 if the result generates a carry, otherwise it is unaffected. This instruction is used for decimal arithmetic.

#### KEYBOARD PROCESS

|   | M | 1 |   |   | N | 2  |          |  |
|---|---|---|---|---|---|----|----------|--|
| 1 | 1 | 1 | 1 | 1 | 1 | 0  | 0        |  |
|   | 1 |   | 1 |   | L | I  | <b>I</b> |  |
| 8 | 4 | 2 |   | 8 | 4 | 12 | 1        |  |

A code conversion is performed on the accumulator content, from 1 out of n to binary code. If the accumulator content has more than 1 bit on, the accumulator will be set to 15 (to indicate error). The carry is not affected. The conversion table is shown below:

| (ACC) b<br>Hex | efore KBP<br>Binary |        | (ACC) after<br>Binary | KBP<br>Hex   |
|----------------|---------------------|--------|-----------------------|--------------|
| 0              | 0 0 0 0             |        | - 0000                | 0            |
| 1              | 0001                |        | - 0,001               | 1            |
| 2              | 0010                |        | - 0010                | 2            |
| 4              | 0 1 0 0             | ·      | - 0011                | 3            |
| 8              | 1000                |        | - 0100                | 4            |
| 3              | 0 0 1 1             |        | - 1111                | F            |
| 5              | 0101                |        | - 1111                | F            |
| 6              | 0 1 1 0             | ······ | - 1111                | F            |
| 7              | 0 1 1 1             |        | 1111                  | F            |
| 9              | 1 0 0 1             |        | - 1111                | F            |
| A              | 1 0 1 0             |        | - 1111                | F            |
| В              | 1011                |        | - 1111                | $\mathbf{F}$ |
| С              | 1 1 0 0             |        | - 1111                | F            |
| D              | 1 1 0 1             |        | - 1111                | F            |
| Е              | 1 1 1 0             |        | - 1111                | $\mathbf{F}$ |
| F              | 1111                |        | - 1111                | F            |

FB

DAA

KBP

FC



FA

DESIGNATE COMMAND LINE

|   | M | 1 |    |     | M | 2 |                              |
|---|---|---|----|-----|---|---|------------------------------|
| 1 | 1 | 1 | 1  | 1   | 1 | 0 | 1                            |
| 8 | 4 |   | -1 | -81 | 4 | 2 | $\left  \frac{1}{1} \right $ |

The content of the three least significant accumulator bits is transferred to the CM-RAM output lines on the CPU.

This instruction provides RAM bank selection when multiple RAM banks are used. When the CPU is reset, RAM Bank zero is automatically selected. DCL remains latched until it is changed or reset.

| (ACC)<br>8421 | CM-RAM <sub>i</sub> Enabled               | Bank No. |
|---------------|-------------------------------------------|----------|
| X000          | CM-RAM                                    | Bank 0   |
| X001          | CM-RAM1                                   | Bank l   |
| X010          | CM-RAM <sub>2</sub>                       | Bank 2   |
| X100          | CM-RAM4                                   | Bank 3   |
| X011          | CM-RAM <sub>1</sub> , CM-RAM <sub>2</sub> | Bank 4   |
| X101          | CM-RAM <sub>1</sub> , CM-RAM <sub>4</sub> | Bank 5   |
| X110          | CM-RAM <sub>2</sub> , CM-RAM <sub>4</sub> | Bank 6   |
| X111          | CM-RAM1, CM-RAM2, CM-RAM4                 | Bank 7   |

The selection is made according to the following truth table:

A low power TTL one-of-eight decoder may be tied to the CM-RAM<sub>1</sub>, CM-RAM<sub>2</sub>, and CM-RAM<sub>4</sub> lines to expand the number of RAM banks to 8. The command lines must be buffered for MOS compatibility.



The DCL instructions does not apply to PLS 401 and PLS 402 systems since they have capacity for only 4 RAM devices wired to RAM Bank 0.

DCL

FD

## 7. IMPLEMENTING PROGRAMMED LOGIC

Logic diagrams using graphic symbology are the key to visualization and implementation of hardwired logic designs. The sequential nature of programmed logic does not lend itself to logic diagrams. The visual and verbal aids available to the program logic designer are block diagrams, flow charts, register maps, and coding forms.

The designer begins with a block diagram to make input and output, ROM, and RAM register assignments. The problem is flow charted and detailed assignments made of registers on register maps. The flow charts are progressively partitioned into more and more detail until each flow symbol can be converted to program instructions on the coding forms.

The instructions are first written in mnemonic form for easily verbalizing the solution to the problem. When the complete problem or a workable partition has been solved, the mnemonic instructions are converted to code for the ROM. The code is programmed into the ROM and tested with the hardware on the breadboard system.

## SYSTEM BLOCK DIAGRAM

One of the first steps in implementing programmed logic is construction of a system block diagram showing assignment of the external input and output connections. Figure 7-1 represents a block diagram work sheet available for PLS-401 systems. Similar worksheets for other PLS-400 systems are available. The worksheet block diagrams show the elements of the PLS systems, and the lines in and out of the system that are available to the designer. Figure 7-1 shows the number of inputs and outputs, RAM memory capacity, ROM program memory capacity, and the CPU microprocessor, interconnected via the CPU bus. The program sequence stored in ROM program memory controls the interaction between the elements connected on the CPU bus.



FIGURE 7-1 System Block Diagram

7-2

## FLOW CHARTS

The sequential nature of programmed logic fits directly into the graphic representation provided by flow charts. Programmed logic being sequential with only yes or no decisions allows for very simple flow charting procedures The graphic symbols used in examples in this manual are shown in Figure 7-2. The main symbols being the rectangle for operations and the diamond for decisions. The rectangle contains an abbreviated statement of the operation or operations. The diamond contains an abbreviated question concerning the decision.

The PLS 400 systems have only two decision instructions, JCN and ISZ. Any time a diamond symbol appears in the flow chart one of these two instructions must be involved. All other instructions perform operations, either alone or in groups, and are thus represented by the rectangle. The use of flow charts correlates to the use of logic block diagrams in hardware design. The hardware designer progressively partitions his problem into more and more detailed logic diagrams until each block represents a logic The program logic designer uses progressively more device. detailed flow diagrams to the point where individual instructions or groups of instructions can be written for each flow symbol. For examples of flow charts refer to Section 8 of this manual.



FIGURE 7-2 Flow Chart

## REGISTER MAPS

In addition to the block diagram and flow charts, register maps are valuable for visualizing register storage allocation. Figure 7-3 illustrates maps for both the index registers and the RAM registers.

The index register map shows the 16 four bit registers organized such that they can be referred to either individually or in pairs as used by the CPU instructions. The RAM register map shows all the bits available in one 4002 device. The organization is four registers of 20 four bit characters addressable by SRC. Each register contains 16 characters addressable by SRC and 4 characters addressable by individual instructions.

When using register maps it is helpful to write an abbreviated mnemonic on the map to verbalize its assignment.

A mnemonic is written for each register used in a routine to show which registers have been used and what they are used for. When a register is used for individual flag bits it is helpful to expand these in a table showing the individual bit assignment.

A convenient place for recording register maps is on the document containing the flow chart. Examples of register mapping are given in Section 8 of this manual.

## INDEX REGISTER MAP

|      | _ |   |         |   |      |   |            |   |   |     |
|------|---|---|---------|---|------|---|------------|---|---|-----|
| EVEN |   |   |         |   | REG  |   |            |   |   | GQO |
| ш    | 8 | 4 | 2       | 1 | PAIR | 8 | 4          | 2 | 1 | õ   |
| Ε    |   |   |         |   | P7   |   |            |   |   | F   |
| С    |   |   |         |   | P6   |   |            |   |   | D   |
| Α    |   |   |         |   | Р5   |   |            |   |   | В   |
| 8    |   |   |         |   | Р4   |   | יייין<br>1 |   |   | 9   |
| 6    |   |   | T · · · |   | P3   |   |            |   |   | 7   |
| 4    |   |   |         |   | P2   |   |            |   |   | 5   |
| 2    |   |   | · · · · |   | P1   |   |            |   |   | 3   |
| 0    |   |   | 1       |   | PO   |   |            |   |   | 1   |

RAM REGISTER MAP



FIGURE 7-3 Register Maps

#### HEX CODING FORM

1

3

5

The Hex Coding form, or some variation of the form, is an absolute necessity for keeping track of the bookeeping details inherrent in programming. In addition, when properly implemented, the coding form becomes the program listing defining how the program accomplishes its task. The program listing in programmed logic is equivalent to a combined logic schematic, wire list and assembly drawing of a hard-wired logic system.

The hex coding form is divided into two major sections each serving a distinct requirement. The major portion of the form is used for mnemonic listing of the program as it is generated. The two left most columns constitute the second section which provides the hexadecimal coding of addresses and instructions used by the CPU and Program memory.

The mnemonic section of the form is completed first as the designer sequentially lists the program steps in easy to remember mnemonic form. When the designer has solidified the mnemonic listing the hex address and instruction codes are assigned. The coding operation of programmed logic is similar to assigning device location, pin numbers, and wire listing in hardware logic.

The mnemonic listing of instructions in programmed logic is equivalent to the hardware logic operation of creating a logic schematic diagram where the program designer assembles instructions and subroutines in a mnemonic list and the hardware designer selects gates MSI and LSI.

Hexadecimal program memory page address. Single character for 16 pages of program memory.

Hexadecimal program memory word address. Two hexadecimal character for 256 words per page of memory with the least significant hex digit preprinted on the form.

Hexadecimal instruction word, as cross referenced between mnemonic and hex code from Section 5.

Mnemonic address label used to verbalized the destination of the address control instructions. Address labels in this column must appear only once with each label having unique spelling. This column is left blank if the line does not require a label.

Mnemonic instructions, usually an abbreviation that verbalizes the operation. The second word of double word instructions does not have a mnemonic and is left blank. The exception is the FIM where the even register data character is inserted. See Figure 7-5. Mnemonic operand which can be blank, data constants, instruction modifiers, register designation, register pair designation, or a source address label. Instructions 0 through 9 and A through D always require operand information. I/O, RAM and accumulator instructions never have operand information. See Figure 7-5. for examples of operands.

6

[7]

Written comments defining the purpose of an instruction or a group of instructions.

| ł |              | DING     |                                       | MN                                                                                               | EMONIC LISTING           |                                       |
|---|--------------|----------|---------------------------------------|--------------------------------------------------------------------------------------------------|--------------------------|---------------------------------------|
| 0 | ADDRESS<br>W | BED DORE | ADDRESS ADDRESS                       | 1,86 <sup>1</sup><br>(1,10<br>(1)<br>(1)<br>(1)<br>(1)<br>(1)<br>(1)<br>(1)<br>(1)<br>(1)<br>(1) | ortion<br>Enonic Operano | Preventer S                           |
|   | ADR          | INSTR    | LABEL                                 | MNEMONIC                                                                                         | OPERAND                  | COMMENTS                              |
|   | 0            |          |                                       |                                                                                                  |                          | · · · · · · · · · · · · · · · · · · · |
|   | 1            |          |                                       |                                                                                                  | ······                   |                                       |
|   | 2            |          |                                       |                                                                                                  |                          |                                       |
|   | 3            |          |                                       |                                                                                                  |                          |                                       |
|   | 4            |          |                                       |                                                                                                  |                          |                                       |
|   | 5            |          |                                       |                                                                                                  |                          |                                       |
|   | 7            |          |                                       |                                                                                                  |                          |                                       |
|   | 8            |          |                                       | 1                                                                                                |                          |                                       |
|   | 9            |          |                                       |                                                                                                  |                          |                                       |
|   | A            |          |                                       |                                                                                                  |                          |                                       |
|   | В            |          |                                       |                                                                                                  |                          |                                       |
|   | C            |          |                                       |                                                                                                  |                          |                                       |
|   | D            |          | · · · · · · · · · · · · · · · · · · · | <u> </u>                                                                                         |                          |                                       |
|   | E            |          |                                       |                                                                                                  |                          |                                       |
|   | F            |          |                                       |                                                                                                  |                          |                                       |

FIGURE 7-4 Hex Coding Form

| $\square$ | ADR | INSTR | LABEL                                 | MNEMONIC | OPE RAND | COMMENTS                           |
|-----------|-----|-------|---------------------------------------|----------|----------|------------------------------------|
|           | 0   |       |                                       |          |          |                                    |
|           | 1   |       | INSTRUCTION                           |          | λ.       | OPERAND                            |
|           | 2   |       | EXAMPLES                              | · · · ·  |          | EXAMPLES                           |
|           | 3   |       | - <b>L</b> F                          |          |          |                                    |
|           | 4   |       | · · · · · · · · · · · · · · · · · · · |          |          | REGISTER                           |
|           | 5   |       |                                       |          |          |                                    |
|           | 6   |       |                                       |          |          | REGISTER PAIR                      |
|           | 7   |       | INSTRUCTIONS -                        |          |          |                                    |
|           | 8   |       |                                       |          | 1        | DATA                               |
|           | 9   |       |                                       |          |          |                                    |
|           | A   |       |                                       | LD 🗲     | A        | NO OPERAND, BLANK                  |
| 1         | В   |       |                                       | FIM 🗲    | P0       |                                    |
|           | С   |       | DATA                                  | 3        | D        | ADDITIONAL INSTRUCTION INFORMATION |
|           | D   |       |                                       | RAL 🗲    |          |                                    |
|           | Е   |       | BLANK                                 | JCN 🚽    | TI       | ADDRESS LABEL                      |
|           | F   |       |                                       |          | STOP     |                                    |

## FIGURE 7-5

## Instruction and Operand Examples

### PLS DESIGN EXAMPLE

An example for implementing an electronic calculator is given to illustrate the techniques of using the block diagram, flow charts, register maps, and coding forms. The problem is defined as being a four function eight digit calculator where two separate entries of up to eight digits are operated upon. Each entry is displayed as it is keyed into the unit. The result of the operation is displayed following entry of the second operation.

The block diagram is generated as shown in Figure 7-6, consisting of a PLS 401 system, eight digits of latching display, and a 16 key keyboard. The keyboard is assigned as a four-by-four matrix, with four key columns driven by four output lines and the key closures sensed as four input row lines.

The latching displays are connected for separate strobe inputs and common BCD data lines plus decimal point. The display data lines are shared with the keyboard matrix column selection lines. An additional key is used on the external reset input for a clear function.



FIGURE 7-6 Electronic Calculator Block Diagram

7-9

A very basic flow diagram, Figure 7-7, is generated which shows the two major operations of scanning the keys and processing the data. In addition, a RAM register map is generated showing assignment of the entries to be processed.



| REG | 0 | FIRST ENTRY OR RESULT |  | Π    |   |
|-----|---|-----------------------|--|------|---|
| REG | 1 | SECOND ENTRY          |  |      |   |
| REG | 2 |                       |  |      |   |
| REG | 3 |                       |  |      |   |
|     |   |                       |  | <br> | • |

RAM REGISTER MAP

FIGURE 7-7 First Level Flow Chart

The operation of scanning the keys is expanded upon as shown in Figure 7-8. The main purpose of this routine is to scan the keyboard matrix for a closure and to debounce the asynchronous key closures and openings. At this time, three registers are assigned on the index register map, KEY ROW, KEY COL and COL COUNT. KEY ROW and KEY COL are used to store the row and column bits of a detected key. COL COUNT is used to keep track of which column is being scanned.







The four key columns are scanned one at a time by rotating a bit through the columns. As each column is scanned the rows are read as inputs and tested for a key closure. If a key closure is detected a debouncing delay is generated and the same column is read again. If the key is still closed, it is checked to determine if the same key had previously been closed. If the closure was the same key detected in a previous scan, the routine ignores the key and returns to scanning the key columns. If the key was not previously closed, the row and column of the new key are stored and the routine exits to process the key.

If no key closure is detected on a column, the column register is tested to see if a key in that column was previously closed. If it is the same column where a key was previously closed, the column register is reset indicating that a key was just released. The routine returns to column scanning. If the key that was just released bounces and is detected on the next scan, the debounce delay and second read should find the key open.

The operation of processing keys from the keyboard is expanded in the flow chart of Figure 7-9. The purpose of this routine is to decide the key matrix so the indicated function may be performed.

The KEY COL register is examined to determine if the key closure occurred in Column 1. If the closure was in Column 1 the individual bits of KEY ROW are examined to determine which of the function keys  $(+, -, X, \text{ or } \div)$  was closed. If the closure was not in Column 1, ROW 1 is examined to determine if either of the other functions CE or CP are closed.

If the closure is determined to be a data key, the row and column data is converted to a single hex character and used as an address for a lookup table. The table translates the key matrix address to the appropriate decimal key data.



FIGURE 7-9

Flow Chart for Key Process

# Mnemonic Listing for Keyboard Scan

| Π         | ADR    | INSTR    | LABEL                                 | MNEMONIC   | OPERAND    | COMMENTS                              |
|-----------|--------|----------|---------------------------------------|------------|------------|---------------------------------------|
|           | 0      |          | SCAN                                  | LD         | P          | T CHECK FOR LAST COL                  |
|           | 1      |          |                                       | RAL        |            |                                       |
|           | 2      |          | · · · · · · · · · · · · · · · · · · · | JLN        | Co         |                                       |
|           | 3      |          |                                       |            | NOT LAST   | V                                     |
| t         | 4      |          | START SCAN                            | LDM        | 1          | T SET COLCOUNT FOR COLL               |
|           | -5     |          |                                       | XCH        | D          | V                                     |
|           | 6      |          | NOT LAST                              | FIM        | PO         | T SELECT KEY COL                      |
|           | 7      |          |                                       | 0          | 0          |                                       |
|           | 8      |          |                                       | SRC        | PO         |                                       |
|           | 9      |          |                                       | LD         | D          |                                       |
|           | A      |          |                                       | WRR        |            | ¥                                     |
|           | в      |          |                                       | RDR        |            | T READ KEY BOARD                      |
|           | C      |          |                                       | JCN        | AO         |                                       |
|           | D      |          |                                       |            | NO KEY     | Ψ                                     |
| $\square$ | Е      |          |                                       | FIM        | Po         | T DEBOUNCE KEY                        |
|           | F      | · ·      |                                       | F          | <u> </u>   |                                       |
|           | 0      | <u> </u> | <u> </u>                              | 15Z        | 0          |                                       |
|           | 1      |          |                                       |            | <u> </u>   |                                       |
|           | 2      |          |                                       | 15 Z       | 1          | · · · · · · · · · · · · · · · · · · · |
|           | 3      |          |                                       |            | <u>ہ</u> 1 |                                       |
|           | 4      |          |                                       | RDR        |            | T READ KEY BOARD                      |
|           | 5      |          | ·····                                 | JCN        | Ao         | l                                     |
|           | 6      |          |                                       | KBP        | NO KEY     |                                       |
| $\vdash$  | 7      |          |                                       |            |            | T CHECK FOR DOUBLE KEY                |
|           | 8      |          |                                       | CMA<br>JCN | Ao         | <u> </u>                              |
|           | 9      |          | · · · · · · · · · · · · · · · · · · · | JUN        | SCAN       | 1                                     |
|           | A<br>B |          | ·····                                 | CLC        | SCAN       | T SAVE NEW ROW DATA                   |
|           | c      |          | her                                   | CMA        |            | SAVE NEW NOW DATA                     |
| $\vdash$  | D      |          |                                       | XCH        | E          |                                       |
|           | E      |          |                                       | SUB        | Ē          | T CHECK IF SAME ROW                   |
|           | F      |          |                                       | JCN        | AI         |                                       |
|           | 0      |          |                                       |            | SAVE COL   | V                                     |
|           | 1      |          |                                       | CLC        |            | T CHECK IF SAME COL                   |
| t-t       | 2      | 1        |                                       | LD         | D          |                                       |
|           | 3      |          |                                       | SUB        | F          |                                       |
|           | 4      |          |                                       | JCN        | Ao         |                                       |
|           | 5      | · · ·    |                                       |            | SCAN       | W                                     |
|           | 6      |          | SAVE COL                              | ZD         | D          | T SAVE NEW COL                        |
|           | 7      |          |                                       | XCH        | F          | V                                     |
|           | 8      |          |                                       | •          | ·          | T PROCESS NEW KEY                     |
|           | 9      |          |                                       |            |            |                                       |
|           | A      |          |                                       |            |            |                                       |
|           | в      |          |                                       | —          |            |                                       |
|           | с      |          |                                       |            |            |                                       |
|           | D      |          | NO KEY                                | CLC        |            | T CHECK IF SAME COL                   |
|           | E      |          |                                       | LD         | D          |                                       |
|           | F      |          |                                       | SUB        | F          |                                       |
|           | 0      |          |                                       | JCN        | AI         |                                       |
|           | 1      |          |                                       |            | SCAN       | Ψ                                     |
|           | 2      |          |                                       | XCH        | F          | RESET KEY COL                         |
|           | 3      |          |                                       | JUN        |            |                                       |
| Ц         | 4      |          |                                       | l          | SCAN       |                                       |

| AD | R INSTR | LABEL                                 | MNEMONIC | OPERAND                                       | COMMENTS                       |
|----|---------|---------------------------------------|----------|-----------------------------------------------|--------------------------------|
|    | 0       | KEY PROCESS                           | LD       | F                                             | T CHECK IF KEY IS IN COL1      |
|    | 1       |                                       | RAL      |                                               | $(+,-,x,\neq)$                 |
|    | 2       |                                       | JCN.     | co                                            |                                |
|    | 3       |                                       |          | NOT COL 1                                     | V                              |
|    | 4       |                                       | LD       | E                                             | T CHECK IF ADD KEY             |
|    | 5       |                                       | RAR      |                                               |                                |
|    | 6       |                                       | JCN      | C1                                            |                                |
|    | 7       |                                       |          | PLUS                                          | V                              |
|    | 8       |                                       | RAR      |                                               | T CHECK IF SUB KEY             |
|    | 9       |                                       | JUN      | C]                                            |                                |
|    | A       |                                       |          | MINUS                                         | V                              |
|    | В       |                                       | RAR      |                                               | T CHECK IF MULT KEY            |
| _  | С       | · · · · · · · · · · · · · · · · · · · | JCN      | C                                             |                                |
| -  | D       |                                       | ļ        | TIMES                                         | ¥                              |
|    | Е       |                                       |          |                                               | T DIVIDE A by B                |
| -  | F       |                                       | <u> </u> |                                               |                                |
|    | 0       |                                       |          |                                               |                                |
| +  | 1       |                                       |          |                                               | +                              |
|    | 2       |                                       |          |                                               |                                |
| -  | 3       | NOT COL 1                             |          | E                                             | T CHECK IF KEY IS IN ROW 1     |
| _  | 4       |                                       | RAR      |                                               |                                |
| +- | 5       |                                       | JCN      | Co                                            |                                |
|    | 6       |                                       | LD       | NOT ROW 1                                     |                                |
|    | 7       |                                       |          | F                                             | T CHECK IF CLEAR ENTRY KEY     |
| -  | 8       |                                       | RAL      |                                               |                                |
| -  | 9       |                                       | RAL      | <u> </u>                                      |                                |
| -  | A<br>B  |                                       | JCN      | CI<br>CLEAR ENTRY                             | <u>†↓</u>                      |
|    | C       |                                       | RAL      | CLEAR ENIRY                                   | T CHECK IF DECIMAL POINT KEY   |
|    | D       |                                       | JON      | cT                                            | T CHECK IF DECIMAL FOINT KEY   |
|    | E       |                                       | 100      | DP                                            | 1                              |
|    | F       | NOTROW 1                              | 10       | Ē                                             | T CONVERT ROW & COL TO A       |
| +  |         | NOTROW 1                              | KBP      |                                               | HEX DIGIT FOR LOOKUP TABLE     |
|    | 0       |                                       | DAC      |                                               | ILA DIGH FOR LOOKOT TABLE      |
| +  | 2       |                                       | XCH      |                                               |                                |
| -  | 3       |                                       | LD       | F                                             | 1                              |
|    | 4       |                                       | KBP      | <i>'</i>                                      |                                |
|    | 5       |                                       | DAC      |                                               |                                |
|    | 6       |                                       | RAL      |                                               |                                |
| 1- | 7       |                                       | RAL      |                                               |                                |
| 1  | 8       |                                       | CLC      | · · · ·                                       | <u> </u>                       |
| 1  | 9       |                                       | ADD      | 1                                             |                                |
| 1  | A       |                                       | XCH      | 1                                             |                                |
| 1  | в       |                                       | LDM      | F                                             | T USE HEXDIGIT AS ADDRESS IN   |
| 1  | c       |                                       | XCH      | 0                                             | LOCATION FX                    |
| 1  | D       |                                       | FIN      | PO                                            | 1                              |
| 1  | E       |                                       | -        | <u>, , , , , , , , , , , , , , , , , , , </u> | T DISPLAY DECIMAL CHAR & STORE |
|    | F       |                                       |          |                                               |                                |
| 1- | 0       |                                       |          |                                               | 11                             |
| -  | 1       |                                       | -        | i                                             | 10                             |

## Mnemonic Listing for Keyboard Process

Coding for Keyboard Lookup Table

| F٥  |    |  |     |                                       |
|-----|----|--|-----|---------------------------------------|
| F1  |    |  |     |                                       |
| F2  |    |  |     |                                       |
| F3  |    |  |     |                                       |
| F4  |    |  |     |                                       |
| F5  | 03 |  | 3 - | KEY BOARD MATRIX TRANSLATION          |
| F 6 | 06 |  | 6   |                                       |
| F 7 | 09 |  | 9   |                                       |
| F 8 |    |  |     |                                       |
| F9  | 02 |  | 2   |                                       |
| FA  | 05 |  | 5   |                                       |
| Fв  | 08 |  | 8   |                                       |
| Fc  | 00 |  | 0   | · · · · · · · · · · · · · · · · · · · |
| FD  | 01 |  | 1   |                                       |
| FΕ  |    |  | 4   |                                       |
| Fr  | 07 |  | 71  |                                       |

When the complete problem has been charted and listed in mnemonic form the hexadecimal address and instruction codes are assigned on the coding form. The address and instruction data is then transferred to the program memory for system and program debugging.

## 8. PROGRAMMING APPLICATIONS

#### SUBROUTINES

A group of instructions written to perform a function with common usage is referred to as a subroutine. The PLS 400 systems have two instructions, JMS and BBL, which allow subroutines to be used conveniently and efficiently. The JMS instruction allows the program to exit and perform a common routine and the BBL instruction at the end of a subroutine causes the sequence to return to the main program.

As shown in Figure 8-1 the JMS instruction can be used as many times as needed to execute the same subroutine and automatically return to the proper place in sequence in the main program. Using subroutines is very efficient in terms of program storage space if the subroutine is long enough and used often enough. If a subroutine is too short or is not used enough it is possible to waste program storage space. This results because it requires two program locations to enter a subroutine plus one to return in addition to the routine itself. Table 8-1 presents the program locations that can be gained or lost by using subroutines based on how many steps in the routine and how many times the routine occurs. As an example a subroutine of two steps will always result in a loss of three locations no matter how many times it is used. A subroutine of three steps must be used four times to break even.

Subroutines are implemented so that the CPU hardware keeps track of the return address by storing the program address counter in the subroutine address stack when a JMS is executed and by retrieving it back to the program address counter when a BBL is executed.

#### Nesting

The subroutine address stack in the 4004 CPU can store up to three subroutine return addresses. This feature allows nesting of subroutines as shown in Figure 8-2. Nesting means that a subroutine may have other subroutines within itself. A one-level subroutine may have other subroutines within itself. A one-level subroutine is one which does not contain any other subroutine. A two level-subroutine contains at least one, one-level subroutine


# FIGURE 8-1

Example Showing how a Subroutine can be Used Many Times From Various Places in a Routine

# TABLE 8-1

Number of Steps Gained or Lost When a Routine is Executed as a Subroutine

|    | 1  | 2   | 3    | 4    | 5     | 6     | 7     | Х            |
|----|----|-----|------|------|-------|-------|-------|--------------|
| 1  | -3 | -4  | -5   | -6   | -7    | -8    | -9    | -x -2        |
| 2  | -3 | -3  | -3   | -3   | -3    | -3    | -3    | -3           |
| 3  | -3 | -2  | -1   | 0    | 1     | 2     | 3     | x -4         |
| 4  | -3 | -1  | 1    | 3    | 5     | 7     | 9     | 2 X -5       |
| 5  | -3 | 0   | 3    | 6    | 9     | 12    | 15    | 3 X -6       |
| 6  | -3 | 1   | 5    | 9    | 13    | 17    | 21    | 4 x -7       |
| 7  | -3 | 2   | 7    | 12   | 17    | 11    | 27    | 5 X -8       |
| 8  | -3 | 3   | 9    | 15   | 21    | 27    | 33    | 6 X -9       |
| 9  | -3 | 4   | 11   | 18   | 25    | 32    | 39    | 7 X -10      |
| 10 | -3 | 5   | 13   | 21   | 29    | 37    | 45    | 8 X -11      |
| N  | -3 | N-5 | 2N-7 | 3N-9 | 4N-11 | 5N-13 | 6N-15 | (N-2)X-(N+1) |

Number of Steps in Routine (N)

Number of Times Routine Occurs (X)



#### FIGURE 8-2

# Example Showing Nesting of Subroutines

and a three-level subroutine contains at least one, two-level subroutine. The subroutine address stack is referred to as a "pushdown" stack where each time a new subroutine is entered, the stack is pushed-down with the old return addresses going to the bottom of the stack and the most current being on top. When a BBL return is executed the most current or the address at the top of the stack is used first and the stack is pulled-up one level. The subroutine stack only has three levels and it is possible to push the stack down too far by executing more than three JMS instructions without an intervening return. In order to keep track of the three subroutine levels, parenthesis (), brackets [], and braces {} are used as shown below:

Parentheses, (LABEL X) denotes a one level subroutine.

Brackets, [LABEL Y] denotes a two level subroutine.

Braces, {LABEL Z} denotes a three level subroutine.

The rules for nesting of mathematical factors apply to the nesting of subroutines where any lower level subroutine may be nested within a higher level subroutine. A subroutine like a mathematical factor may not have nested within itself one of its own level or a higher level. Examples of nesting

- 1.  $\{[(----)]\}$
- 2.  $\{[---] [---] [(---) (---)]\}$

### Multiple Ending Subroutines

The BBL instruction has the feature of forcing a constant value into the accumulator. This feature can be put to use as shown in Figure 8-3 where a subroutine can make decisions and terminate with multiple endings. Each ending can be executed with a BBL with its own constant value forced into the accumulator. Therefore the main program could test the accumulator in order to determine which ending occurred.





# Common Ending Subroutines

In a complex program it is relatively easy to reach three levels of subroutines. A technique which helps conserve levels is the use of subroutine stacking in specialized situations. Figure 8-4 shows an example where subroutines are stacked to share a common ending. Basically this technique uses a jump unconditional to an existing subroutine rather than pushing the stack down another level. This technique is useful only when a JMS occurs at the very end of a subroutine. When this occurs a JUN is used in place of the JMS. This keeps the stack at the same level.



#### FIGURE 8-4

Example of Subroutines Sharing a Common Ending Sequence (Stacking)

#### COUNTING

Counting is one of the logical functions PLS systems can easily do with the INC, IAC, DAC, and ISZ instructions. The simplest count is use of INC to perform a binary hex count from 0 through F on any of the index registers. When it is desirable to count greater than 15, the ISZ instructions may be cascaded to reach any practical value. The example below shows cascading ISZ instructions where the first register overflows, the second register is then counted, and when the second register overflows the third register is counted. This technique can be extended to any number of registers for large counts.

| $\square$ | ADR | INSTR | LABEL                                   | MNEMONIC | OPERAND | COMMENTS                  |
|-----------|-----|-------|-----------------------------------------|----------|---------|---------------------------|
|           | 0   |       | , , , , , , , , , , , , , , , , , , , , | -        |         |                           |
|           | 1   |       |                                         |          |         |                           |
|           | 2   |       | COUNT -                                 | 1SZ      | 0       | INCREMENT FIRST REGISTER  |
|           | 3   |       |                                         | F        | COUNT   |                           |
|           | 4   |       |                                         | 15Z      | 1       | INCREMENT SECOND REGISTER |
|           | 5   |       | 4                                       | +        | COUNT   |                           |
|           | 6   |       |                                         | INC      | 2       | INCREMENT THIRD REGISTER  |
|           | 7   |       |                                         | -        |         |                           |
|           | 8   |       |                                         |          |         |                           |
|           | 9   |       |                                         | -        |         |                           |
|           | A   |       |                                         |          |         |                           |

Counters may be used simply to tally up the number of times a function occurs or in other situations they may be used to control the number of times a function occurs. In the control situation, the count is compared to some preset limit and the routine terminated when the limit is reached. The ISZ instruction provides an efficient means for performing this control function by counting preset registers and terminating when the registers overflow.

Two options exist in counting; one is to execute the functions to be counted before counting and the other is to count first and then execute. This distinction is important when presetting registers to be counted. In the execute and count technique the function will always be executed at least once, since the decision to terminate is a function of the count. In the count and execute technique it is possible for the count to terminate the routine without performing any execution. Figures 8-5 and 8-6 show two ways to implement these techniques.



FIGURE 8-5 Flowchart of Execute and Count

FIGURE 8-6 Flowchart of Count and Execute

Coding for execute and count

| DR  | INSTR | LABEL   | M             | NEMONIC | OPERAND    | COMMENTS                     |
|-----|-------|---------|---------------|---------|------------|------------------------------|
| 0   |       |         |               |         |            |                              |
| 11  |       |         | 1             |         |            |                              |
| 2   | 20    |         |               | FIM     | PO         | T INITIALIZE THE COUNTER     |
| 13  | 00    |         |               | 0       | 0          |                              |
| 4   | 22    | ·       |               | FIM     | <b>P</b> / |                              |
| 5   | 00    |         |               | 0       | 0          | ↓                            |
| 6   | -     | EXECUTE | $\rightarrow$ |         |            | T EXECUTE SOME FUNCTION      |
| 7   | -     |         |               |         |            |                              |
| 18  | -     |         | N.            |         |            |                              |
| 9   | -     |         |               | -       |            |                              |
| A   | -     |         |               | -       |            |                              |
| 4в  |       |         |               |         |            | <b>IV</b>                    |
| l C | 70    |         |               | 152     | 0          | T COUNT HOW MANY EXECUTIONS  |
| D   | 46    |         |               | •       | EXECUTE    |                              |
| E   | 71    |         |               | ISZ     | <u> </u>   |                              |
| F   | 46    |         |               | -       | EXECUTE    |                              |
| 50  | 72    |         |               | 1.5 Z   | 5          |                              |
| 51  | 46    |         | 14            |         | FXFCUTE    |                              |
| 5 2 | 73    |         |               | 152     | 3          |                              |
| 53  | 46    |         | 4-            |         | EXECUTE    |                              |
| 5 4 | 1-    |         |               |         |            | T OVERFLOW OR ENDING ROUTINE |
| 55  |       |         |               |         |            |                              |
| 56  |       |         |               |         |            |                              |
| 57  | -     |         |               |         |            |                              |

# Coding for count and execute

| AD | R INSTR     | LABEL        | MNEMONIC        | OPERAND    | COMMENTS                    |
|----|-------------|--------------|-----------------|------------|-----------------------------|
| (  | 2 C         |              |                 |            |                             |
|    | ۱ I         |              | -               |            |                             |
|    | 2           |              |                 |            |                             |
| 6  |             |              | FIN             | PO         | T INITIALIZE THE COUNTER    |
| 6  |             |              | Do              | D,         |                             |
| 6  |             |              | F //.'          | <u>P 1</u> |                             |
| 6  |             |              | Dz              | D3         | V                           |
| 6  |             | COUNT        | 152             | 0          | - COUNT HOW MANY EXECUTIONS |
| 6  |             | <del>[</del> |                 | EXECUTE    | +++                         |
| 6  |             |              | 15 <del>2</del> | EXECUTE    |                             |
| 6  |             | ·····        |                 | Z          |                             |
| 6  |             | 17           | 157             | EXECUTE    |                             |
| 6  |             |              | 152             | - ZECOLE   |                             |
| 6  |             |              |                 | EXECUTE    |                             |
| 6  |             |              |                 | 2 41 221   | T OVERFLOW ROUTINE          |
| 7  |             |              |                 |            |                             |
| 7  |             |              |                 |            |                             |
| 7  | 2           |              |                 |            |                             |
| 7  |             |              |                 |            |                             |
| 7  |             | EXECUTE 4    | -               |            | T EXECUTE SOME FUNCTION     |
| 7  | 5           |              | -               |            |                             |
| 7  |             |              |                 |            |                             |
| 7  |             |              |                 |            |                             |
|    | 8           |              | -               |            | V                           |
| 7  |             |              | JCN             | <u>A</u>   | Τ                           |
| 7  | <u>a 67</u> |              |                 | COUNT      | V                           |
| 7  |             |              |                 |            | TENDING ROUTINE             |
| 7  | D           |              |                 | ·          |                             |

### Binary Count

The nature of the ISZ instruction requires that the preset count provide a binary complement limit of the desired count. For the execute/count situation the preset value is the complement plus one and for the count/execute technique the preset value is the straight complement. Table 8-2 is presented as a convenience for determining register settings for counting with cascaded ISZ instructions. Register 0 must be set according to whether the technique is count/execute or execute/count. The total desired count is determined by adding all the individual register counts.

Example for count of 2387 using execute/count:

|       | Setting | N <sub>X</sub> |
|-------|---------|----------------|
| Reg 2 | 6       | 2304           |
| Reg l | A       | 80             |
| Reg 0 | D       | 3              |
|       |         | 2387           |

| EX | G O<br>XEC<br>UNT | CO | G O<br>UNT<br>KEC |   | EG 1<br>N1 |   | EG 2<br>N2  |     | EG 3<br>N3 | F | REG 4<br>N4 |
|----|-------------------|----|-------------------|---|------------|---|-------------|-----|------------|---|-------------|
| F  | 1                 | F  | 0                 | F | 0          | F | 0           | F   | 0          | F | 0           |
| Е  | 2                 | E  | 1                 | E | 16         | Е | <b>2</b> 56 | Е   | 4096       | Е | 65536       |
| D  | 3                 | D  | 2                 | D | 32         | D | 512         | D   | 8192       | D | 131072      |
| C  | 4                 | С  | 3                 | C | 48         | С | 768         | С   | 12288      | С | 196608      |
| в  | 5                 | В  | 4                 | в | 64         | В | 1024        | В   | 16384      | В | 262144      |
| Α  | 6                 | Α  | 5                 | Α | 80         | Α | 1280        | Α   | 20480      | Α | 327680      |
| 9  | 7                 | 9  | 6                 | 9 | 96         | 9 | 1536        | 9   | 24576      | 9 | 393216      |
| 8  | 8                 | 8  | 7                 | 8 | 112        | 8 | 1792        | 8   | 28672      | 8 | 458752      |
| 7  | 9                 | 7  | 8                 | 7 | 128        | 7 | 2048        | 7   | 32768      | 7 | 524288      |
| 6  | 10                | 6  | 9                 | 6 | 144        | 6 | 2304        | 6   | 36864      | 6 | 589824      |
| 5  | 11                | 5  | 10                | 5 | 160        | 5 | 2560        | 5   | 40960      | 5 | 655360      |
| 4  | 12                | 4  | 11                | 4 | 176        | 4 | 2816        | 4   | 45056      | 4 | 720896      |
| 3  | 13                | 3  | 12                | 3 | 192        | 3 | 3072        | 3   | 49152      | 4 | 786432      |
| 2  | 14                | 2  | 13                | 2 | 208        | 2 | 3328        | 2   | 53248      | 2 | 851968      |
| 1  | 15                | 1  | 14                | 1 | 224        | 1 | 3584        | 1   | 57344      | 1 | 917504      |
| 0  | 16                | 0  | 15                | 0 | 240        | 0 | 3840        | - 0 | 61440      | 0 | 983040      |

# TABLE 8-2

ISZ Register Settings for "N" Operations

 $N_{TOTAL} = N_0 + N_1 + N_2 + N_3 + N_4$ 



Decimal Count

All CPU instructions count directly in binary. When it is necessary to do a decimal count such as for displays, the DAA instruction becomes useful.

An example of a subroutine to count three decimal decades is given in Figure 8-7. The carry is initially cleared. The units decade is loaded to the accumulator and incremented. The accumulator is decimal adjusted and the result saved as the new units decade. The TCC instruction moves the carry, if any, to the accumulator and the tens decade is added. The accumulator is again decimal adjusted and saved with the TCC moving any decimal overflow to the accumulator for adding the hundreds decade.



| EVEN |      | 1       | PALI | R        | ODD |
|------|------|---------|------|----------|-----|
| E    |      |         | 7    |          | F   |
| C    |      |         | 6    |          | D   |
| A    |      |         | 5    |          | В   |
| 8    |      |         | 4    | ,        | 9   |
| 6    |      |         | 3    | HUNDREDS | 7   |
| 4    | TENS |         | 2    | UNITS    | 5   |
| 2    |      |         | 1    |          | 3   |
| 0    |      |         | 0    |          | 1   |
|      |      | INDEX R | EGI  | STER MAP | -   |

FIGURE 8-7

Subroutine to Count Three Decimal Decades

| Π | ADR | INSTR | LABEL       | MNEMONIC | OPERAND | COMMENTS             |
|---|-----|-------|-------------|----------|---------|----------------------|
|   | 0   |       | (COUNT DEC) | CLC      | ······· | T INCREMENT UNITS    |
|   | 1   |       |             | LD       | 5       |                      |
|   | 2   |       |             | IAC      |         | COUNT                |
|   | 3   |       |             | DAA      |         | DECIMAL ADJUST       |
|   | 4   |       |             | XCH      | .5      | VSAVE                |
|   | 5   |       |             | TCC      |         | T INCREMENT TENS     |
|   | 6   |       |             | ADD      | 4       |                      |
|   | 7   |       |             | DAA      |         | DECIMAL ADJUST       |
|   | 8   |       |             | XCH      | 4       | V                    |
|   | 9   |       |             | TCC      |         | T INCREMENT HUNDREDS |
|   | A   |       | 1           | ADD      | 7       |                      |
|   | В   |       |             | DAA      |         | DECIMAL ADJUST       |
|   | с   |       |             | XCH      | 7       | V                    |
|   | D   |       |             | BBL      | 0       | RETURN               |
|   | Е   |       |             |          |         |                      |
|   | F   |       |             |          |         |                      |

#### TIME DELAYS

Time delay circuits can be simulated with programmed logic using simple counting techniques. Since each instruction word requires 10.8 microseconds to execute, the simplest time delay can be achieved by executing a number of nonoperative instructions such as the NOP. Using this method, any significant time delay would soon use up considerable program memory space.

A more efficient time delay can be implemented using the ISZ instruction executed so that it loops on itself.

| Х | ADR | INSTR | LABEL | ,  | MNEMONIC | OPERAND | 1 | COMMEN | TS    |
|---|-----|-------|-------|----|----------|---------|---|--------|-------|
|   | 20  |       |       |    |          |         |   |        |       |
|   | 21  | 70    | SELF  | -  | 152      | 0       | Т | TIME   | DELAY |
|   | 22  | 21    |       | -4 |          | SELF    | ۷ |        |       |
|   | 23  |       |       |    |          |         |   |        |       |

For a 10.8 microsecond instruction cycle each execution of the two word ISZ instruction uses 21.6 microseconds. Therefore, if an ISZ instruction initially starts from 0 and loops through 16 passes before it leaves the loop, a total of 345.6 microseconds is required.

By cascading two ISZ instructions one after another with the loops of both returning to the first ISZ, the time delay will be doubled for each pass through the second ISZ.

| X | ADR | INSTR | LABEL |   | MNEMONIC | OPE RAND | COMMENTS              |
|---|-----|-------|-------|---|----------|----------|-----------------------|
|   | 20  |       |       |   |          |          |                       |
|   | 21  | 70    | FIRST | - | 157      | 0        | T CASCADED TIME DELAY |
|   | 22  | 21    |       | - | -        | FIRST    |                       |
|   | 23  | 7/    |       |   | ISZ      | 1        |                       |
|   | 24  | 21    |       | 4 | -        | FIRST    | V                     |

If two registers, started from zero, are cascaded in this fashion a total of 5.88 milliseconds is required before the program exits the loop. Cascading of additional registers will further increase the time delay in an exponential manner.

Table 8-3 is presented for determining the register settings for ISZ cascading up to six registers.

| N  | REG 0 | T0<br>MICRO<br>SEC | REG 1 | T1<br>MILLI<br>SEC | REG 2 | T2<br>MILLI<br>SEC | REG 3 | T3<br>SEC | REG 4 | T4<br>SEC | REG 5 | T5<br>SEC |
|----|-------|--------------------|-------|--------------------|-------|--------------------|-------|-----------|-------|-----------|-------|-----------|
| 1  | F     | 21.6               | F     | 0.022              | F     | 0.02               | F     | 0.000     | F     | 0.00      | F     | 0.0       |
| 2  | E     | 43.2               | Е     | 0.389              | E     | 5.92               | Ε     | 0.094     | Е     | 1.51      | E     | 24.2      |
| 3  | D     | 64.8               | D     | 0.756              | D     | 11.82              | D     | 0. 189    | D     | 3.02      | D     | 48.3      |
| 4  | С     | 86.4               | С     | 1.123              | C     | 17.71              | С     | 0.283     | С     | 4.53      | C     | 72.4      |
| 5  | В     | 108.0              | В     | 1.490              | В     | 23.61              | В     | 0.378     | В     | 6.04      | В     | 96.6      |
| 6  | Α     | 129.6              | Α     | 1.858              | Α     | 29.51              | Α     | 0.472     | Α     | 7.55      | Α     | 120.7     |
| 7  | 9     | 151.2              | 9     | 2.225              | 9     | 35.40              | 9     | 0.566     | 9     | 9.06      | 9     | 144.9     |
| 8  | 8     | 172.8              | 8     | 2.592              | 8     | 41.30              | 8     | 0.660     | 8     | 10.56     | 8     | 169.0     |
| 9  | 7     | 194.4              | 7     | 2.959              | 7     | 47.20              | 7     | 0.755     | 7     | 12.08     | 7     | 193.2     |
| 10 | 6     | 216.0              | 6     | 3.326              | 6     | 53.09              | 6     | 0.850     | 6     | 13.59     | 6     | 217.3     |
| 11 | 5     | 237.6              | 5     | 3.694              | 5     | 58.99              | 5     | 0.944     | 5     | 15.10     | 5     | 241.5     |
| 12 | 4     | 259.2              | 4     | 4.061              | 4     | 64.89              | 4     | 1.038     | 4     | 16.61     | 4     | 265.6     |
| 13 | 3     | 280.8              | 3     | 4.317              | 3     | 70.78              | 3     | 1.132     | 3     | 18.12     | 3     | 289.8     |
| 14 | 2     | 302.4              | 2     | 4.795              | 2     | 76.68              | 2     | 1.227     | 2     | 19.63     | 2     | 313.9     |
| 15 | 1     | 224.0              | 1     | 5.162              | 1     | 82.58              | 1     | 1.321     | 1     | 21.14     | 1     | 338.1     |
| 16 | 0     | 345.6              | 0     | 5.530              | 0     | 88.47              | 0     | 1.416     | 0     | 22.65     | 0     | 362.2     |

# TABLE 8-3

Delay Time using Cascaded ISZ Instructions

N = NUMBER OF COUNTS

t = TIME FOR EACH COUNT = 21.6  $\mu$ sec

 $T_{TOTAL} = T_0 + T_1 + T_2 + T_3 + T_4 + T_5$ 

### Short Delay

The following routine accomplishes a variable time delay with a setable range of 44 microseconds to 5.88 milliseconds, by presetting two registers before the routine is entered. The routine simply uses two cascaded ISZ instructions as previously defined. The procedure for entering this routine as a subroutine requires four instruction words as follows:

|   | ADR | INSTR | LABEL | MNEMONIC | OPERAND   | COMMENTS                        |
|---|-----|-------|-------|----------|-----------|---------------------------------|
| - | 0   |       |       |          |           |                                 |
|   | 1   | -     |       |          |           |                                 |
|   | 2   | 20    |       | FIM      | PO        | T DELAY 44 ASEC TO S.8 Millisec |
|   | 3   | Do D, |       | Do       | $D_1$     |                                 |
|   | 4   | 5 X   | ·     | JMS      | N         |                                 |
| - | 5   | 00    |       |          | (SHORT D) | V                               |
| - | 6   | -     |       | —        |           |                                 |
|   | 7   |       |       |          |           |                                 |

Register pair zero is fetched to the data constants from Table 8-3 to give the delay time required.



| ADF | INSTR | LABEL     | MNEMONIC | OPE RAN D | COMMENTS                  |
|-----|-------|-----------|----------|-----------|---------------------------|
| 00  | 70    | (SHORT S) | 152      | 0         | COUNT THE FIRST REGISTER  |
| 01  | 00    |           | <b>-</b> | (SHORT △) |                           |
| 0 2 | 71    |           | 152      | 1         | COUNT THE SECOND REGISTER |
| 0:  | 00    | 4         |          | (SHORTA)  |                           |
| 0   | 1Co   |           | BBL      | 0         | RETURN                    |
| 0   |       |           |          |           |                           |
| 0   |       |           |          |           |                           |
|     | 7     |           | 1        |           |                           |

## Longer Delays (5.8 milliseconds to 1.5 seconds)

For delays longer than 5.8 milliseconds provided by (Short  $\triangle$ ) the following routine is useful. This routine basically cascades four registers but based on where the routine is entered a couple of variations are possible. By fetching register pair 1 before entering at (Long  $\triangle$ ) and allowing the subroutine to set pair 0 to zero the delay setting has a resolution of 5.8 milliseconds.

| ADR   | INSTR | LABEL | MNEMONIC | OPERAND  |   | COMMENTS | 5  |        |       |    |         |
|-------|-------|-------|----------|----------|---|----------|----|--------|-------|----|---------|
| 0     | -     |       |          |          |   |          |    |        |       |    |         |
| 1     | 1     |       | -        |          |   |          |    |        |       |    |         |
| <br>2 | 22    |       | FIM      | PI       | T | FFICH    | P1 | BEFORE | GOING | 70 | (LONGO) |
| 3     | D2 D3 |       | $D_2$    | D3       |   |          |    |        |       |    |         |
| 4     | 5 x   |       | JMS      |          |   |          |    |        |       |    |         |
| 5     | 10    |       |          | (LONG D) | V |          |    |        |       |    |         |

By externally setting both pairs 1 and 0 and entering at (VAR  $\triangle$ ) a resolution of 22 microseconds can be obtained.

| $\square$ | ADR | INSTR     | LABEL | MNEMONIC | OPE RAND       | COMMENTS                                 |
|-----------|-----|-----------|-------|----------|----------------|------------------------------------------|
|           | 0   | -         |       | -        |                |                                          |
|           | 1   | -         |       | 1        |                |                                          |
|           | 2   | 20        |       | FIM      | Po             | T FETCH PO AND PI BEFORE GOING TO (VARA) |
|           | 3   | DoD,      |       | Do       | $D_1$          |                                          |
|           | 4   | 22        |       | FIM      | PI             |                                          |
|           | 5   | $D_2 D_3$ |       | D2       | D3             |                                          |
|           | 6   | 5 X       |       | JMS      |                |                                          |
|           | 7   | 12        |       |          | $(VAR \Delta)$ | V                                        |



| EVEN |                      | PAI | R        | 0 DD |
|------|----------------------|-----|----------|------|
| Е    |                      | 7   |          | F    |
| С    |                      | 6   |          | D    |
| Α    |                      | 5   |          | в    |
| 8    |                      | 4   |          | 9    |
| 6    |                      | 3   |          | 7    |
| 4    |                      | 2   |          | 5    |
| 2    | COUNT D2             | 1   | COUNT D3 | 3    |
| 0    | COUNT D <sub>O</sub> | 0   | COUNT D1 | 1    |
|      |                      |     |          | -    |

INDEX REGISTER MAP

| ADR     | INSTR | LABEL    | MNEMONIC | OPERAND        | Comments                          |
|---------|-------|----------|----------|----------------|-----------------------------------|
| 10      | 20    | (LONG A) | FIM      | PO             | T SET REGISTER PAIR O             |
| / 1     | 00    |          | 0        | 0              |                                   |
| 12      | 20    | (VAR △)  | 152      | 0              | T COUNT REG. PAIRO (5.8 Millisee) |
| <br>13  | 12    | 4        | -        | (VARA)         |                                   |
| 14      | 7/    |          | /SZ      | 1              |                                   |
| <br>/ 5 | 12    | *        | -        | (VAR D)        | V                                 |
| /6      | 72    |          | 15Z      | 2              | T COUNT REG. PAIR I               |
| 17      | 12    |          | -        | $(VAR \Delta)$ | FROM 5.8 Millisec TO 1.5 SEC      |
| /8      | 73    |          | /SZ      | 3              |                                   |
| <br>/9  | 12    | 4-       | -        | (VARD)         | IV                                |
| / A     | CO.   |          | BBL      | 0              | RETURN                            |

# Control Timeout

By interjecting a test condition within a delay loop, a timeout can be affected.

In the example given the simplest test condition is used. If the test condition occurs within the selected time interval the routine will terminate with the TEST EXIT. If the test condition does not occur within the selected time count the routine will terminate with a TIMEOUT EXIT.











| ADR | INSTR | LABEL     | MNEMONIC | OPERAND | COMMENTS                                |
|-----|-------|-----------|----------|---------|-----------------------------------------|
| 20  | 20.   | (TIMEOUT) | FIM      | PO      | T_SET TIMEOUT COUNT                     |
| 21  |       |           | Do       | D,      |                                         |
| 22  | 19    | TEST -    | JCN      | T1      | T EXIT IF CPU TEST INPUT OCCURS         |
| 23  |       |           |          | EXIT    | <b>v</b>                                |
| 24  | 70    |           | 157      | 0       | T COUNT THE TIMEOUT                     |
| 25  | 22    | 4-        | - 1      | TEST    |                                         |
| 26  | 71    |           | 1SZ      | 1       |                                         |
| 27  | 22    | lar_      |          | TEST    | ₩ · · · · · · · · · · · · · · · · · · · |
| 28  | CO    |           | BBL      | 0       | RETURN ON TIMEOUT                       |

Holdover

A variation of the timeout subroutine is the holdover, where the timeout count is reset if the test condition occurs.



| ADR | INSTR | LABEL    |     | MNEMONIC | OPE RAN D  | COMMENTS                               |
|-----|-------|----------|-----|----------|------------|----------------------------------------|
| 0   |       | (HOLD OV | ER) | FIM      | PO         | T SET HOLD OVER COUNT                  |
| 1   |       |          |     | Do       | D,         | $\mathbf{V}$                           |
| 2   |       | TEST     |     | JCN      | TI .       | T RESET COUNT IF CPU TEST INPUT OCCURS |
| 3   |       |          |     |          | (HOLDOVER) | Ψ                                      |
| 4   |       |          |     | 152      | 0          | T COUNT TIMFOUT                        |
| 5   |       |          | -   | -        | TEST       |                                        |
| 6   |       |          | 1   | ISZ      | 1          |                                        |
| 7   |       |          | 4   |          | TEST       | V                                      |
| 8   |       |          |     | BEL      | 0          | RETURN WHEN HOLDOVEF TIMEOUT OCCURS    |
| 9   |       |          |     |          |            |                                        |
| A   |       |          |     |          |            |                                        |
| В   | 1     |          |     |          |            |                                        |
| с   |       |          |     |          |            |                                        |

8-17

## COMPARE SUBROUTINES

A basic technique in data handling is the use of the SUB instruction to perform data comparisons. If the carry bit is initially cleared and two characters are subtracted the resulting accumulator and carry bit provide the following comparison conditions easily tested using the JCN instruction.

| COMPARISON     | ACCUMULATOR | CARRY | TEST CONDITION |
|----------------|-------------|-------|----------------|
| REG > ACC      | <b>≠</b> 0  | 0     | СО             |
| REG = ACC      | 0           | 1     | AO             |
| REG < ACC      | <b>≠</b> 0  | 1     | Al · Cl        |
| REG $\leq$ ACC | Х           | 1     | Cl             |
| REG $\geq$ ACC | <b>≠</b> 0  | 0     | CO or AO       |
|                | 0           | 1     |                |
| $REG \neq ACC$ | ≠0          | Х     | Al             |

## (Compare) Four Bits

A subroutine which indicates only equal or not-equal conditions is sufficient in many applications. In this example the carry bit is cleared, register 7 is loaded to the accumulator and register 5 is then subtracted from the accumulator. The JCN instruction tests the accumulator and goes to a BBL 1 return if zero, or clears the carry and does a BBLO return if nonzero.

Some features of this routine are that the registers are unaffected and the compare condition is available in either the carry bit or the accumulator.



FIGURE 8-12 (Compare) Four Bits

| ADR | INSTR | LABEL      | MNEMONIC | OPERAND    | COMMENTS                 |       |
|-----|-------|------------|----------|------------|--------------------------|-------|
| 80  | FI    | (COMPARE)  | CLC      |            | T COMPARE REGISTERS 3\$5 |       |
| 81  | A3    |            | LD       | 7          |                          |       |
| 8 2 | 95    |            | SUB      | 5          |                          |       |
| 83  | 10    |            | JCN      | AI         |                          |       |
| 8 4 | 86    |            | F        | NO COMPARE |                          |       |
| 25  | CI    |            | BBL      | 1          | CI OR AI EQUALS COMPAR   | E     |
| 86  | FI    | NO COMPARE | CLC      |            |                          |       |
| 87  | 60    |            | BBL      | 0          | CO OR AO EQUALS NO CO    | MPARE |
| 8   | 100   |            | 002      | <u>_</u>   |                          |       |

## (Compare) Eight Bits

A variation of the preceeding routine is presented which provides equal or not-equal comparing of 8 bits. This routine provides the same features as the 4 bit routine and can be extended in increments of 4 bits to any practical length.



| Π | ADR | INSTR | LABEL        | MNEMONIC | OPERAND    | COMMENTS                   |
|---|-----|-------|--------------|----------|------------|----------------------------|
|   | 80  | FI    | (COMPARE)    | CLC      |            | T COMPARE REGISTERS 3 8 5  |
|   | 81  | A3    |              | LD       | 7          |                            |
|   | 82  | 95    |              | SUB      | 5          |                            |
|   | 83  | 1C    |              | JCN      | A          |                            |
|   | 84  | 8 B   |              | -        | NO COMPARE | V                          |
|   | 85  | FI    |              | CLC      |            | T COMPARE REGISTERS 4 & 6  |
|   | 86  | A4    |              | 4D       | 6          |                            |
|   | 87  | 96    |              | SUB      | 4          |                            |
|   | 88  | 10    |              | JCN      | <u>A/</u>  |                            |
|   | 89  | 88    |              |          | NO COMPARE | V                          |
|   | 8 A | CI    |              | BBL      | 1          | CI OR AL EQUALS COMPARE    |
|   | 8в  | F1    | NO COMPARE 4 |          |            |                            |
|   | 8 c | CO    |              | BBL      | 0          | CO OR AO EQUALS NO COMPARE |

ODD

F

D

В

9

7

5

3

1

#### LOGICAL OPERATIONS

Logical operations such as AND, OR, and exclusive OR (XOR) can be performed on either the register bit level or on the program decision level.

For a review of these operations and how they might be used to set, clear, or complement bits within a register see Table 8-4 The CPU instructions set does not include any instructions for directly performing the logical operations AND, OR, and XOR on the index registers. Manipulating bits within the registers can be accomplished using the RAL and RAR instructions to rotate the bits individually into the carry where they can be set, cleared, or complemented with the STC CLC or CMC instructions.

#### TABLE 8-4

Boolean Laws of Operation for 0 and 1

| OR  | (+)                  |            |               |                                   |                     |     |    |          |        |        |        |    |          |                             |        |    |          |        |        |        |   |        |
|-----|----------------------|------------|---------------|-----------------------------------|---------------------|-----|----|----------|--------|--------|--------|----|----------|-----------------------------|--------|----|----------|--------|--------|--------|---|--------|
|     | 0 +<br>1 +           | x =<br>x = | X<br>1        | meaning<br>meaning                | : i:<br>: i:        | E X |    | 1,<br>1, | 0<br>1 | +<br>+ | 1      | H  | 1,<br>1; | if<br>if                    | X<br>X | H  | 0,<br>0, | 0<br>1 | +<br>+ | 0<br>0 | H | 0<br>1 |
| AND | (•)                  |            |               |                                   |                     |     |    |          |        |        |        |    |          |                             |        |    |          |        |        |        |   |        |
|     |                      |            |               | meaning<br>meaning                |                     |     |    |          |        |        |        |    |          |                             |        |    |          |        |        |        |   |        |
| XOR | (⊕)                  |            |               |                                   |                     |     |    |          |        |        |        |    |          |                             |        |    |          |        |        |        |   |        |
|     | 0 ⊕<br>1 ⊕           | x =<br>x = | $\frac{X}{X}$ | meaning<br>meaning                | : it<br>: it        |     | =  | 1,<br>1, | 0<br>1 | ⊕      | 1<br>1 | =  | 1;<br>0; | if<br>if                    | X<br>X |    | 0,<br>0, | 0<br>1 | ⊕<br>⊕ | 0<br>0 | = | 0<br>1 |
| Exa | mple                 | of         | four          | bit ope                           | erati               | ons | 5  |          |        |        |        |    |          |                             |        |    |          |        |        |        |   |        |
|     | Oper<br>Oper<br>Resu | ator       | •             | OR                                | XXXX<br>101<br>11X1 |     |    |          |        | 1      |        | X  | OR       | $\frac{110}{\overline{XX}}$ | 1      |    |          |        |        |        |   |        |
|     | mary                 |            |               | -                                 |                     |     |    | 2        | 1210   |        |        |    |          |                             |        |    |          |        |        |        |   |        |
|     | OR<br>AND<br>XOR     | =          | Rese          | any bits<br>at any bi<br>lement a | its w               | hei | ce | the      | A      | ND     | 0      | pe | rat      | or                          | eq     | ua | ls       |        | ls     | 1      |   |        |
|     |                      |            | -             | ·                                 | -                   |     |    |          |        | : •    |        |    |          |                             |        |    | · · ·    |        |        |        |   |        |

An example might be where a 4 bit register is used to store, up to 4 individual flags for remembering the occurrence of random functions. An example is given where such a flag register is loaded to the accumulator and rotated to the desired bit which is cleared (set or complemented) and then rotated back into position and restored in the flag register.

When using register bits 8 or 4 for flags, use a RAL/RAR sequence to save program steps. Likewise, when using bits 2 or 1 for flags, use a RAR/RAL sequence.

| ADR | INSTR | LABEL | MNEMONIC | OPE RAN D | COMMENTS                                |
|-----|-------|-------|----------|-----------|-----------------------------------------|
| 0   |       |       |          |           |                                         |
| 1   |       |       | - 1      |           |                                         |
| 2   | AA    |       | LD       | A         | LOAD FLAG REGISTER TO ACCUMULATOR       |
| 3   | F5    |       | RAL      | •         | T ROTATE BIT 4 TO CARRY                 |
| 4   | F5    |       | RAL      |           | ↓ ↓ · · · · · · · · · · · · · · · · · · |
| 5   | FA    |       | STC      |           | SET THE FLAG                            |
| 6   | F6    |       | RAR      |           | T ROTATE BIT 4 BACK                     |
| 7   | F6    | 1     | RAR      |           |                                         |
| 8   | BA    |       | ХСН      | A         | RESTORE FLAG REGISTER                   |
| 9   |       |       |          |           |                                         |
| A   |       |       |          |           |                                         |
| в   |       |       |          |           |                                         |

Performing logical operations on the programming level is accomplished using combinations of the two decision instructions JCN and ISZ. These instructions are combined in sequences to perform programmed decisions such as AND, OR, and XOR; and their dual operations NAND, NOR and compare.

The AND and its dual, NOR, are accomplished as shown in Figure 8-14 where two positive decisions are required to give A  $\cdot$  B. The OR and its dual, NAND, function are accomplished as shown in Figure 8-14 where either of two decisions being positive gives A + B.

The XOR and its dual, compare, function require three decisions as shown in Figure 8-14 where if A is a positive decision, B must be a negative decision, or if A is a negative decision, B must be a positive decision to give the result  $\overline{A} \cdot B + A \cdot \overline{B}$ .

An example of a programmed AND is given where N passes AND flag 8 are required to continue in sequence.



FIGURE 8-14 Logical Operations

| ADR | INSTR | LABEL | MNEMONIC | OPERAND   | COMMENTS                        |
|-----|-------|-------|----------|-----------|---------------------------------|
| 0   |       |       | -        |           |                                 |
| 1   |       |       | -        |           |                                 |
| 2   |       |       | _        |           |                                 |
| 3   |       |       | 15Z      | 7         | T N PASSES                      |
| 4   |       |       |          | NOT N     | V                               |
| 5   |       |       | LD       | A_        | T FLAG 8                        |
| 6   | 1     |       | RAL      |           |                                 |
| 7   |       |       | JCN      | <u> </u>  |                                 |
| 8   |       |       |          | NOT FLAG8 | V                               |
| 9   |       |       |          |           | T EXECUTE IF NPASSES AND FLAG 8 |
| A   |       |       | -        |           |                                 |
| В   |       |       |          |           |                                 |
| C   |       |       |          |           |                                 |

### ADDITION

Addition of two 4 bit numbers can be done directly by the ADD or ADM instructions. The ADD instruction adds from one of the index registers to the accumulator and the ADM adds from the selected RAM register into the accumulator.

Numbers longer than 4 bits can be added in multiples of 4 bits. This technique is referred to as multiple precision arithmetic. The carry bit automatically maintains the carry/link between each group of 4 bits to be added. The example shows a routine for adding two 16 bit binary numbers. Note that the first step clears the carry bit. The least significant bits are added first so that the carry/link will propagate. If an overflow occurs the carry bit will contain a 1 at the end of the routine.







Multiple Precision Addition

|   | ADR | INSTR | LABEL | MNEMONIC | OPERAND | COMMENTS                       |
|---|-----|-------|-------|----------|---------|--------------------------------|
|   |     |       |       |          |         |                                |
|   | 0   | FI    | (ADD) | CLC      | ·       | T ADD AB89 TO 4523             |
|   | 1   | A9    |       | LD       | 9       | T ADD REG 9 TO REG 3           |
|   | 2   | 83    |       | ADD      | 3       |                                |
|   | 3   | B3    |       | XCH      | 3       |                                |
| 1 | 4   | A8    |       | LD       | 8       | T ADD REG 8 TO REG2 WITH CARRY |
|   | 5   | 82    |       | ADD      | 2       |                                |
|   | 6   | BZ    |       | XCH      | 2       |                                |
|   | 7   | AB    |       | LD       | β -     | T ADD REG B TO REGS WITH CARRY |
|   | 8   | 85    |       | ADD      | 5       |                                |
|   | 9   | B5    |       | XC#      | 5       | I V                            |
|   | A   | AA    |       | LD.      | A       | T ADD REGA TO REG4 WITH CARRY  |
|   | В   | 84    |       | ADD      | 4       |                                |
|   | с   | 84    |       | XCH      | 4       |                                |
|   | D   | CO    |       | BBL      | 0       | V RETURN                       |

### MULTIPLICATION

The two methods of multiplication are the brute-force method and long-hand method.

## Brute-Force Method

Multiply is accomplished with repeated addition. Beginning with a number to be multiplied (Multiplicand) and a number to multiply by (Multiplier) the brute-force method adds the multiplicand repeatedly into the product, doing the addition as many times as designated by the multiplier. This method is sufficient and sometimes appropriate for small numbers but can take considerable time for large numbers.

One example of the brute-force method of multiply is given where the multiplicand is multiplied by a constant K. The routine clears the product registers, sets the multiplier to K and then adds the multiplicand to the product, K times. Since the ISZ instruction is used to count K, the complement plus one must be used for the constant. Table 8-2 is useful for determining these constant. It should be noted that this routine performs the execute/count sequence as defined in the section on counting.



Brute-Force Method of Multiplication

| ADR | INSTR | LABEL       | MNEMONIC | OPERAND     | COMMENTS                      |
|-----|-------|-------------|----------|-------------|-------------------------------|
| Ao  | 22    | [MULT by K] | FIM      | P/          | T CLEAR THE PRODUCT           |
| A 1 | 00    |             | 0        | 0           |                               |
| A 2 | 24    |             | FIM      | P2          |                               |
| A 3 | 00    |             | 0        | 0           | V                             |
| A 4 | 26    |             | FIN      | P3          | T FETCH MULTIPLIER, K         |
| A 5 | D6D7  |             | D6       | 07          | V                             |
| A 6 | 5X    | ADDKTIMES   | JMS      |             | T ADD MULTIPLICAND TO PRODUCT |
| A 7 |       |             |          | (ADD)       | I ↓                           |
| A 8 | 77    |             | /5₹      | 7           | T DO K ADDITIONS              |
| A 9 | A6    |             |          | ADD K TIMES |                               |
| A A | 76    |             | /SZ      | 6           |                               |
| Ав  | A6    |             |          | ADD K TIMES | $\mathbf{V}$                  |
| Аc  | CO    |             | BBL      | 0           | RETURN                        |

#### Long-Hand Method

Consider an example of multiplying six by seven.

The brute-force method suggests adding the number 6 to the product, 7 times for the result. Now consider the example again as shown done in the long-hand method.

| Multiplicand | 0110           | =  | 6     |   |    |
|--------------|----------------|----|-------|---|----|
| Multiplier   | x) <u>0111</u> | == | 7     |   |    |
|              | 0110           | =  | 1 x 6 | = | 6  |
|              | 01100          | =  | 2 x 6 | = | 12 |
|              | 011000         | =  | 4 x 6 | = | 24 |
|              | +) 0000000     | =  | 8 x 0 | = |    |
| Product      | 101010         | =  |       |   | 42 |

When done by the long-hand method only three additions are needed. Each bit position of the multiplier containing a 1, adds the multiplicand times the multiplier bit position weight. Multiplying the multiplicand by the bit position weight is accomplished by a left shift operation.

An example of the long-hand method of multiply is given where the multiplier can be variable. The routine shifts the multiplier right and tests the LSB in the carry bit. If the LSB is 1, the multiplicand is added to the product. If the LSB is 0 the addition is skipped. The multiplier is tested for all zeroes to determine completion. If the operation is not complete the multiplicand is shifted left one place to multiply it by the current bit position weight. The routine then proceeds as above testing the LSB and adding until the multiplier becomes all zeros.

This routine assumes the product area is initially cleared. In addition, overflow is stored in the carry bit and can be tested by the main program. The multiplier and multiplicand are not saved. Note that the entry point [MULT] is not at the beginning. The (ADD) subroutine is given in the section on addition.



| EVEN |                                       | 0 DD |          |     |
|------|---------------------------------------|------|----------|-----|
| εſ   |                                       | 7    |          | T F |
| c    | · · · · · · · · · · · · · · · · · · · | 6    |          | D   |
| A [  | MPLICAND                              | 5    | MPLICAND | В   |
| 8    | MPLICAND                              | 4    | MPLICAND | 9   |
| 6    | MPLIER                                | 3    | MPLIER   | 7   |
| 4    | PROD                                  | 2    | PROD     | 5   |
| 2    | PROD                                  | 1    | PROD     | 3   |
| 0    |                                       | 0    |          | 1   |

# FIGURE 8-17 Long-Hand Method of Multiplication

| ADR      | INSTR | LABEL    | MNEMONIC | OPERAND  | COMMENTS                           |
|----------|-------|----------|----------|----------|------------------------------------|
| Co       | 5 X   | NEXT BIT | JMS      |          | T SHIFT MULTIPLICAND LEFT          |
| C1       | ΕO    |          |          | (AB89 🖛) | V                                  |
| C 2      | 5X    | [MULT]   | JMS      |          | T SHIFT MULTIPLIER RIGHT           |
| C 3      | FO    |          |          | (67->)   | V                                  |
| C4       | A     |          | JCN      | CO       | T IS MULTIPLIER BIT = O            |
| C 5      | C8    |          |          | ZERO     | V                                  |
| C 6      | 5X    |          | JMS      |          | T ADD MULTIPLICAND TO PRODUCT      |
| C 7      |       |          |          | (ADD)    | V IF MULTIPLIER BIT = 1            |
| C 8      | A7    | ZERO     | LD       | 7        | T IS REMAINING MULTIPLIER = O      |
| <u> </u> | 1C    |          | JCN      | A        |                                    |
| CA       | C0    |          |          | NEXT BIT |                                    |
| СВ       | A6    |          | LD       | 6        |                                    |
| Сc       | 1C    |          | JCN      | A /      |                                    |
| CD       | CO    |          |          | NEXT BIT | W                                  |
| ÇЕ       | CO    |          | BBL      | 0        | EXIT WHEN MULTIPLIER IS ALL ZEROES |

| ADR INSTR          | LABEL                                 | MNEMONIC  | OPERAND                               | COMMENTS                      |
|--------------------|---------------------------------------|-----------|---------------------------------------|-------------------------------|
| EO FI              | (AB89~)                               | CLC       | · · · · · · · · · · · · · · · · · · · | T SHIFT REGISTERS AB89 LEFT   |
| E1 A9              |                                       | LD        | 9                                     | ONE POSITION                  |
| E2 F5              |                                       | RAL       |                                       |                               |
| E3 B9              |                                       | XCH       | 9                                     |                               |
| E4 A8              |                                       | LD        | 8                                     |                               |
| E5 F5              |                                       | RAL       |                                       |                               |
| E6 BB              |                                       | XCH       | 8                                     |                               |
| ET AB              |                                       | LD        | B                                     |                               |
| <br>E8 F5          |                                       | RAL       |                                       |                               |
| <br>E9 BB          | · · · · · · · · · · · · · · · · · · · | XCH       | B                                     |                               |
| EAAA               | · · · · · · · · · · · · · · · · · · · | LD        | A                                     |                               |
| EB F5              | <u> </u>                              | RAL       |                                       |                               |
| <br>EC BA          |                                       | XCH       | <u> </u>                              |                               |
| <br>ED CO          |                                       | BBL       | 0                                     | Y                             |
| <br>EE             |                                       |           |                                       |                               |
| <br>EF             | 775                                   | 610       |                                       | CHIEF DISCUSSION CAR ACT      |
| <br>FO FI<br>FI AG | (67→)                                 | CLC       |                                       | T SHIFT REGISTERS 6 & 7 RIGHT |
| <br>F1 A6<br>F2 F6 |                                       | 2D<br>RAR | 6                                     | ONE POSITION                  |
| <br>F 3 B6         |                                       | _         |                                       |                               |
| <br>F 4 A7         |                                       | LD<br>LD  | 6                                     |                               |
| <br>F 5 F6         |                                       | RAR       |                                       | ·····                         |
| <br>F 6 B7         |                                       | XCH       | -7                                    |                               |
| <br>FICO           |                                       | BBL       | 1                                     |                               |

#### SQUARE ROOT

There are various formulas for approximating the square root of a number. There is also the long-hand division technique learned in grade school. As shown in the example using a decimal number the technique is to first separate the number into pairs of digits. Α trial divisor is then selected for the most significant pair. When one is found that gives zero or the smallest positive remainder it is saved as a partial result. This partial result is doubled and multiplied by ten to become the basis for a new trail divisor. Α new trial divisor digit is added to the doubled partial result. The new trail divisor operates on a new partial remainder, again looking for zero or the smallest positive remainder. The new partial remainder consists of the division remainder plus the next two digits of the dividend.





Example of Decimal Long-Hand Square Root

The long-hand square root technique also works for binary numbers and in fact is simpler because of the binary operations. In binary there are only two trial choices, 1 or 0 and to double the partial result is simply a shift left, as is multiplying the partial result by the number base. Also, the final result can be derived from the trial division by shifting right one place at the end of the operation. This allows the quotient and divisor to use the same register.

| Trial Divisor Digit 1 0 0 1 1 |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                      |  |  |  |  |  |  |  |
|-------------------------------|----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|--|--|--|--|--|--|--|
| Trial Divisor 0               | Ŏ        | $\sqrt{\frac{01\ 01\ 01\ 10\ 10\ 01}{01}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Dividend             |  |  |  |  |  |  |  |
| 10                            | 0        | $\begin{array}{c} 0 \\ \hline 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Partial remainder #1 |  |  |  |  |  |  |  |
| 100                           | 0        | $     \begin{array}{c}       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\     $ | Partial remainder #2 |  |  |  |  |  |  |  |
| 1000                          | 1        | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Partial remainder #3 |  |  |  |  |  |  |  |
| 10010                         | 1        | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Partial remainder #4 |  |  |  |  |  |  |  |
|                               | <b>.</b> |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Final remainder      |  |  |  |  |  |  |  |

Example of Binary Long-Hand Square Root

A programming example for the square root of a 16 bit integer is given. The routine initializes the remainder and quotient and sets a pass counter for the 8 pairs of the 16 bit integer. Two bits of the integer are shifted into the partial remainder area where the trial divisor is subtracted. Before the subtractions, the trial divisor is doubled and set to "1". If the subtraction gave a positive result the new partial remainder is saved and the trial "1" is inserted into the combined quotient-divisor as a result. If the subtraction gave a negative result, the trial "1" bit is removed from the divisor.

The process of shifting two bits into the remainder and subtracting the trial divisor is repeated for 8 passes. When the operation is complete, the trial divisor is shifted right one place to obtain the quotient.

This subroutine requires approximately 8.3 milliseconds to execute when the CPU clock is 10.8 microseconds.



# Program for square root subroutine

| Π         | ADR      | INSTR    | LABEL                                 | MNEMONIC   | OPERAND                               | COMMENTS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|-----------|----------|----------|---------------------------------------|------------|---------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|           | 0        |          | [SQ ROOT]                             | FIM        | P7                                    | T CLEAR REMAINDER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|           | 1        |          |                                       | 0          | 0                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|           | 2        |          |                                       | FIM        | P6                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|           | 3        |          |                                       | 0          | 0                                     | V V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|           | 4        |          |                                       | F/M        | P3                                    | T CLEAR QUOTIENT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|           | 5        |          |                                       | 0          | 0                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|           | 6        |          |                                       | FIM        | P2                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|           | 7        |          |                                       | . 0        | 0                                     | V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|           | 8        |          |                                       | F/M        | PO                                    | T SET FOR 8 PASSES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|           | 9        |          |                                       | 0          | 8                                     | <u>V</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|           | A        |          | TWO MORE                              | JMS        | · · · · · · · · · · · · · · · · · · · | T SHIFT TWO BITS INTO SUB AREA (REMAINDER)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|           | В        |          |                                       |            | (FCDA889-)                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|           | с        |          |                                       | JMS        |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|           | D        |          |                                       |            | (FCDAB89 <del>&lt;</del> )            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| $\square$ | E        |          |                                       | STC        |                                       | TRY A "I" TRIAL DIGIT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|           | F        |          |                                       | JMS        |                                       | T_MULTIPIY PARTIAL RESULT BY 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|           | <u> </u> |          |                                       | 610        | (745←)                                | V Charles and the second secon |
|           | 1        |          |                                       | CLC        |                                       | SUBTRACT PARTIAL RESULT FROM REMAINDER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|           | 2        |          |                                       | LD         | D<br>5                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|           | 3        |          |                                       | SUB        |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|           | .4       |          |                                       | XCH        | 3                                     | SAVE NEW REMAINDER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|           | 5        |          |                                       | CMC        |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|           | 6        |          |                                       | LD         | <u> </u>                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|           | 7        |          |                                       | SUB        | 4                                     | Sauce User REMANDER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|           | 8        |          |                                       | XCH<br>CMC | ٤                                     | SAVE NEW REMAINDER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|           |          |          |                                       | LD         | F                                     | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|           | A<br>B   |          |                                       | SUB        | 7                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|           | C D      |          |                                       | JCN        | CO                                    | T CHECK FOR NEGATIVE RESULT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|           | D        |          |                                       | 1 UCN      | NEG                                   | CHECK FOR NEGATIVE RESULT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|           | E        |          | · · · ·                               | XCH        | F                                     | T USE NEW REMAINDER IF POS RESULT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|           | F        | t        | ····                                  | LD         | 2                                     | USE NEW KEMAINDER IF FUS RESULT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|           | 0        |          |                                       | XCH        |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|           | 1        |          |                                       | LD         | 3                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|           | 2        |          |                                       | XCH        | D                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|           | 3        |          |                                       | INC        | 5                                     | INSERT A "1" IN RESULT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| +         | 4        | <b> </b> | COUNT                                 | 152        |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|           | 5        |          |                                       | +          | TWO MORE                              | T DO 8 PASSES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|           | 6        |          |                                       | JMS        |                                       | T SHIFT TRIAL DIVISOR RIGHT FOR FINAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|           | 7        |          |                                       | 1          | (745-7)                               | V RESULT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|           | 8        |          | ****                                  | BBL        |                                       | EXIT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|           | 9        |          | NEG                                   | LD         | 5                                     | T REMOVE THE TRIAL "I" IF NEG RESULT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|           | A        |          | ,                                     | DAC        |                                       | THE THE FURE I JE NEG TESSET                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|           | В        |          |                                       | XCH        | 5                                     | V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|           | C        |          | · · · · · · · · · · · · · · · · · · · | JUN        |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|           | D        |          |                                       | 1          | COUNT                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

8-29

# Subroutines used in [square root]

| ADR | INSTR | LABEL                                  | MNEMONIC | OPERAND                                | COMMENTS                  |
|-----|-------|----------------------------------------|----------|----------------------------------------|---------------------------|
| 0   |       | (FCDAB89+)                             | CLC      | ······································ | T SHIFT REGISTERS FCDAB89 |
| 1   |       |                                        | LD       | 9                                      | LEFT ONE POSITION         |
| 2   |       |                                        | RAL      |                                        |                           |
| 3   |       |                                        | XCH      | 9                                      |                           |
| 4   |       |                                        | LD       | 8                                      |                           |
| 5   |       |                                        | RAL      |                                        |                           |
| 6   | 1     |                                        | XCH      | 8<br>B                                 |                           |
| 7   |       |                                        | LD       | <i>B</i>                               | 4                         |
| 8   |       | ······································ | RAL      |                                        |                           |
| 9   |       |                                        | XCH      | B                                      |                           |
| A   |       |                                        | LD       | A                                      |                           |
| В   |       |                                        | RAL      |                                        |                           |
| c   |       |                                        | XCH      | <u>A</u>                               |                           |
| D   |       |                                        | LD       |                                        |                           |
| Е   |       |                                        | RAL      |                                        |                           |
| F   |       |                                        | XCH      | D                                      |                           |
| 0   |       |                                        | LD       | С                                      | <u></u>                   |
| 1   | _     |                                        | RAL      |                                        |                           |
| 2   |       |                                        | XCH      | <u> </u>                               |                           |
| 3   |       | h                                      | LD       | F                                      |                           |
| 4   | -     |                                        | RAL      |                                        |                           |
| 5   |       |                                        | XCH      | F                                      |                           |
| 6   | _     | · · · · · · · · · · · · · · · · · · ·  | BBL      | 0                                      | <u> </u>                  |

| $\square$ | ADR | INSTR |          | MNEMONIC | OPERAND | COMMENTS              |
|-----------|-----|-------|----------|----------|---------|-----------------------|
|           | 0   |       | (745 🔶 ) | CLC      |         | T SHIFT REGISTERS 745 |
|           | 1   |       |          | LD       | 5       | LEFT ONE POSITION     |
|           | 2   |       |          | RAL      |         |                       |
|           | 3   |       |          | XCH      | 5       |                       |
|           | 4   |       |          | LD       | 4       |                       |
|           | 5   |       |          | RAL      |         |                       |
|           | 6   |       |          | XCH      | 4       |                       |
|           | 7   |       |          | LD       | 7       |                       |
|           | 8   |       |          | RAL      |         |                       |
|           | 9   |       |          | XCH      | 7       |                       |
|           | A   |       |          | BBL      | 0       | V                     |
|           | В   |       |          |          |         |                       |
|           | с   |       |          |          |         |                       |
|           | D   |       |          |          |         |                       |
|           | Е   |       |          |          |         |                       |
|           | F   |       |          |          |         |                       |
|           | 0   |       | (745 →)  | CLC      |         | T_SHIFT REGISTER 745  |
|           | 1   |       |          | LD       | 7       | RIGHT ONE POSITION    |
|           | 2   |       |          | RAR      |         |                       |
|           | 3   |       |          | XCH      | 7       |                       |
|           | 4   |       |          | LD       | 4       |                       |
|           | 5   |       |          | RAR      |         |                       |
|           | 6   |       |          | XCH      | 4       |                       |
|           | 7   |       |          | LD       | 5       |                       |
|           | 8   |       |          | RAR      |         |                       |
|           | 9   |       |          | XCH      | 5       |                       |
|           | A   |       |          | BBL      | 0       | V                     |
|           | В   |       |          |          |         |                       |

### TELETYPE

The Pro-Log teletype interface shown in Figure 8-21 is a three circuit, six-wire connection which allows full-duplex send and receive, and remote reader control. The three, two-wire circuits are:

- (1) Data to TTY
- (2) Data from TTY
- (3) Reader Control to TTY

This interface can be used in the following modes with Appropriate TTY Configurations:

- 1. Simplex receive
- 2. Simplex send
- 3. Full duplex
- 4. With or without Remote Reader Control

#### TTY MODES

Simplex Send mode allows the TTY to be used as an input device in LINE operation.



Simplex Receive mode allows the TTY to be used as an output device in LINE operation.





8-32

<u>Full-Duplex</u> mode allows the TTY to be used as an input and output device in LINE operation. The separate send and receive allows the data terminal to edit the input data before printing and/or punching the output data.



Remote Reader mode allows the TTY paper tape reader to be activated by a remote device in LINE operation. This mode would be used in conjunction with Simplex Send or Full-Duplex operation. In Full-Duplex, the remote reader control allows paper tape editing.

#### TTY REQUIREMENTS

The full PRO-LOG TTY interface requires specific teletype configurations. The general configuration requires a TTY modified for Full-Duplex and Remote Reader Control. Specifically there are three circuit connection requirements for the TTY:

- (1) 20 mA neutral loop send
- (2) 20 mA neutral loop receive
- (3) 15 volt neutral loop reader control

#### TTY FORMAT

The programming examples given here assume a serial by character, serial by bit TTY data format as shown in Figure 8-22. The character structure consists of a minimum of ten equal time intervals; one start bit, 8 data bits and at least one stop bit. When the TTY is in a stopped state the line is held in the logical 1 state. The first transition on the line is always a start bit (logical 0).



#### FIGURE 8-22

#### TTY Data Line Format

The character set assumed is 7 level ASC II plus parity with the codes defined as in Figure 8-23. The bit sequence is least significant bit first, to most significant in ascending consecutive order. A character parity bit follows the most significant bit of the data character. The character parity is assumed to be even over the eight bits i.e., an even number of 1 bits per character including the parity bit.

With a full duplex TTY interface various methods can be used when reading. The most common method is to simply echo each bit back to the TTY as it is detected and print the incoming character immediately. Another method is to completely read the entire TTY character and then issue a separate print response to the TTY only if desired. This allows the incoming data to be edited before printing.

## TTY Read Without Echo

In this example the program is written to receive from the TTY without echoing a print response. The program reads the TTY input line searching for a start bit. When the start bit occurs, the program clocks off 4.5 milliseconds of delay and then makes eight periodic samples, one every 9 milliseconds. At each 9 milliseconds sample the TTY input is read as either a 1 or 0 bit. The eight serial bits are assembled into the ASC II character by shifting the bits inot a data storage area. When the eight bits have been read, an additional 9 milliseconds interval is generated to prevent the program from returning to a subsequent read too early.

| B, b7 | <sup>b6</sup> b5 |   |         |         |                   | <sup>0</sup> 000 | <sup>0</sup> 0 <sub>1</sub> | <sup>0</sup> 1 <sub>0</sub> | <sup>0</sup> 1 <sub>1</sub> | <sup>1</sup> 0 <sub>0</sub> | <sup>1</sup> 0 <sub>1</sub> | <sup>1</sup> 1 <sub>0</sub> | 1 <sub>11</sub> |
|-------|------------------|---|---------|---------|-------------------|------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------|
| Bits  | b4<br>t          |   | b2<br>t | bl<br>t | Column ><br>Row + | 0                | 1                           | 2                           | 3                           | 4                           | 5                           | 6                           | 7               |
|       | 0                | 0 | 0       | 0       | 0                 | NUL              | DLE                         | SP                          | .0                          | 0                           | Р                           | N                           | р               |
|       | 0                | 0 | 0       | 1       | 1                 | SOH              | DC1                         | !                           | 1                           | А                           | Q                           | a                           | Ч               |
|       | 0                | 0 | 1       | 0       | 2                 | STX              | DC2                         | н                           | 2                           | В                           | R                           | b                           | r               |
|       | 0                | 0 | 1       | 1       | 3                 | ETX              | DC 3                        | #                           | 3                           | С                           | S                           | с                           | s               |
|       | 0                | 1 | 0       | 0       | 4                 | EOT              | DC4                         | \$                          | 4                           | D                           | Т                           | đ                           | t               |
|       | 0                | 1 | 0       | 1       | 5                 | ENΩ              | NAK                         | 60                          | 5                           | Е                           | U                           | е                           | u               |
|       | 0                | 1 | 1       | 0       | 6                 | ACK              | SYN                         | 8.                          | 6                           | F                           | V                           | f                           | v               |
|       | 0                | 1 | 1       | 1       | 7                 | BEL              | ETB                         | 1                           | 7                           | G                           | W                           | g                           | w               |
|       | 1                | 0 | 0       | 0       | 8                 | BS               | CAN                         | (                           | 8                           | Н                           | х                           | h                           | x               |
|       | 1                | 0 | 0       | 1       | 9                 | НТ               | ЕM                          | )                           | 9                           | I                           | Y                           | i                           | У               |
|       | 1                | 0 | 1       | 0       | 10                | LF               | SUB                         | *                           | :                           | J                           | Z                           | j                           | Z               |
|       | 1                | 0 | 1       | 1       | 11                | VT               | ESC                         | +                           | ;                           | К                           | [                           | k                           | {               |
|       | 1                | 1 | 0       | 0       | 12                | FF               | FS                          | ,                           | <                           | L                           | Λ.                          | 1                           |                 |
|       | 1                | 1 | 0       | 1       | 13                | CR               | GS                          | -                           | =                           | М                           | ]                           | m                           | }               |
|       | 1                | 1 | 1       | 0       | 14                | SO               | RS                          | •                           | >                           | N                           | $\land$                     | n                           | $\sim$          |
|       | 1                | 1 | 1       | 1       | 15                | SI               | ΰS                          | 1                           | ?                           | 0                           | —                           | 0                           | DEL             |

Control Characters

| the second s |                                           |     |                           |  |
|----------------------------------------------------------------------------------------------------------------|-------------------------------------------|-----|---------------------------|--|
| NUL                                                                                                            | Null                                      | DLF | Data Link Escape          |  |
| SOH                                                                                                            | Start of Heading                          |     | Device Control 1          |  |
| STX                                                                                                            | Start of Text                             |     | Device Control 2          |  |
| ETX                                                                                                            | End of Text                               |     | Device Control 3          |  |
| EOT                                                                                                            | End of Transmission                       | DC4 | Device Control 4 (Stop)   |  |
| ENQ                                                                                                            | Enquiry                                   | NAK | Negative Acknowledge      |  |
| ACK                                                                                                            | Acknowledge                               | SYN | Synchronous Idle          |  |
| BEL                                                                                                            | Bell (audible or attention signal         | ETB | End of Transmission Block |  |
| BS                                                                                                             | Backspace                                 | CAN | Cancel                    |  |
| нт                                                                                                             | Horizontal Tabulation (punched card skip) | ЕM  | End of Medium             |  |
|                                                                                                                |                                           | SUB | Substitute                |  |
| $\mathbf{LF}$                                                                                                  | Line Feed                                 | ESC | Escape                    |  |
| VT                                                                                                             | Vertical Tabulation                       | FS  | File Separator            |  |
| FF                                                                                                             | Form Feed                                 | GS  | Group Separator           |  |
| CR                                                                                                             | Carriage Return                           | RS  | Record Separator          |  |
| SO                                                                                                             | Shift Out                                 | US  | Unit Separator            |  |
| SI                                                                                                             | Shift In                                  | DEL | Delete                    |  |
| L                                                                                                              |                                           |     |                           |  |

FIGURE 8-23 TTY Character Set



| EVEN | PAIR      |   |         | ODD |
|------|-----------|---|---------|-----|
| ε.   | •         | 7 |         | F   |
| c    |           | 6 |         | D   |
| A    | · · · · · | 5 |         | в   |
| 8    |           | 4 |         | 9   |
| 6    | TTY MSD   | 3 | TTY LSD | 7   |
| ÷4 [ |           | 2 |         | 5   |
| 2    | DELAY     | 1 | DELAY   | 3   |
| . 0  | DELAY     | 0 | DELAY   | . 1 |
|      |           |   |         |     |

INDEX REGISTER MAP



Flow Chart for TTY Read without Echo

# Mnemonic Listing for TTY Read

| ADR | INSTR | LABEL     | MNEMONIC |                  | Comments                          |
|-----|-------|-----------|----------|------------------|-----------------------------------|
| 0   |       | [RD TTY]  | JCN      | ТО               | T FIND START BIT                  |
| 1   |       |           |          | [RD TTY]         | V                                 |
| 2   |       |           | FIM      | PO               | T DELAY ONE-HALF BIT TIME         |
| 3   |       |           | 7        | 3                |                                   |
| 4   |       |           | JMS      |                  |                                   |
| 5   |       |           |          | (SHORT A)        | Ψ                                 |
| 6   |       |           | FIM      | P2               | T SET COUNT FOR 8 BITS            |
| 7   |       |           | 0        | 8                | V                                 |
| 8   | L     | NEXT BIT  | JMS      |                  | T DELAY ONE BIT TIME              |
| 9   | 1     |           |          | (9 MS)           | V                                 |
| A   |       |           | CLB      |                  | CLEAR BIT                         |
| В   |       |           | JCN      | T1_              | T READ ONE TTY BIT                |
| с   |       |           |          | NO BIT           | V                                 |
| D   |       |           | STC      |                  | SET BIT                           |
| E   |       | NO BIT    | JMS      |                  | T ROTATE DATA BITS INTO PAIR 3    |
| F   |       |           |          | <u>(Rot</u> P3→) | <b>↓</b>                          |
| 0   |       |           | 15Z      | 5                | T READ 8 BITS                     |
| 1   |       |           |          | NEXT BIT         | V                                 |
| 2   |       |           | JMS      |                  | T STOP BIT DELAY                  |
| 3   |       |           |          | (9 MS)           | V                                 |
| 4   |       |           | BBL      | 0                |                                   |
| 5   |       |           |          |                  |                                   |
| 6   |       |           | L        |                  |                                   |
| 7   | L     |           |          |                  |                                   |
| 8   |       |           |          |                  | ļ                                 |
| 9   |       | (ROT P3→) | LD       | 6                | T SHIFT REG 6 & 7 RIGHT ONE PLACE |
| A   |       |           | RAR      |                  |                                   |
| В   |       |           | XCH      | 6                |                                   |
| c   |       |           | LD       | 7                |                                   |
| D   |       |           | RAR      |                  |                                   |
| Е   |       |           | XCH      | 7                |                                   |
| F   |       |           | BBL      | 0                | V                                 |
### APPENDIX A

### SYMBOLS AND DEFINITIONS

The symbols and definitions presented in this appendix are used throughout PRO-LOG documentation.

### BACKGROUND INFORMATION

### Physical and Active States in Binary Logic (0 and 1)

Binary logic implies a two-state system. In physical applications of binary logic, the two states can be any meaningful pair of physical states such as high/low, positive/negative, in/out, up/ down, etc that will either cause a function to happen or to not happen.

### Binary Operations

Binary logic application is governed by the rules of Boolean Algebra. There exist only three operations in Boolean Algebra; AND, OR, NOT (invert).

#### AND

AND implies a combination of two or more active conditions to achieve a result.

### OR

OR implies a choice between two or more active conditions to achieve a result.

### NOT

NOT implies the negative or inverse. Since there are only two states in binary logic, the inverse of a function must always assume the opposite state, thus  $\overline{0} = 1$ ,  $\overline{1} = 0$ .

#### Duality of Operations

The inherent property of the NOT operation establishes a dual relationship between the AND and OR operations. The dual relationship is such that the AND and OR functions can be interchanged if the active conditions (0 and 1 states) are inverted. This property is stated as De Morgan's theorem in Boolean Algebra. The importance of this property in physical systems is that the active state can and will assume either physical state if the logic operations have been assembled to achieve a result.

#### DEFINITIONS

## Logic Block Diagram

A logic diagram is one which depicts logic functions with no reference to physical implementations. It consists primarily of logic symbols and is used to depict all logic relationships as simply and understandably as possible. Nonlogic functions are not normally shown. This basic logic diagram is used for educational purposes. The purpose of the logic block diagram is to communicate the overall system concept.

#### Detailed Logic Diagram

A diagram that depicts all logic functions and also shows nonlogic functions, locations, pin numbers, test points, and other physical elements necessary to describe the physical and functional aspects of the logic is a detailed logic diagram. The detailed logic diagram is used primarily to facilitate the rapid diagnosis and localization of equipment malfunctions. It also is used to verify the physical consistency of the logic and to prepare fabrication instructions. The symbols can be connected by lines that represent signal paths or can be cross-referenced through the use of mnemonic identifiers.

### Logic Function

A logic function is a combinational, storage, delay, or sequential function expressing a relationship between signal input(s) to a system or device and the resultant output(s). Logic functions are expressed graphically with the use of logic symbols.

#### Logic Symbol

A logic symbol is the graphic representation of a logic function.

#### Symbol Orientation

The orientation of a symbol on a diagram does not alter the meaning of the symbol. However, logic diagrams indicate direction of signal flow by symbol orientation and should, therefore, be logically oriented, consistent with the overall information flow.

#### Symbol Line Thickness

The weight of a line does not affect the meaning of a symbol. In specific cases, a heavier line may be used for emphasis.

### Symbol Size

A symbol may be drawn to any proportional size that suits a drawing, depending on the reduction or enlargement anticipated. Relative sizes of the symbols should be equivalent for related functions.

### Table of Combinations

For purposes of this standard, tables of combinations describe the active input/output conditions of the basic logic functions; i.e., HIGH (H) more positive, and LOW (L) relatively less positive or negative.

### Identifiers

Identification information is required on and adjacent to logic symbols to specify unique location of logic function on the drawing, within the equipment and its circuit diagram. Identification is required for clarity as follows:

- a. Notations shall be placed about the periphery of symbols to identify input and output pin numbers and test points.
- b. Line conditions, signal routing, etc may also be labeled for clarity.
- c. Details such as stylized waveforms and timing durations may be included when required for clarity.

### Mnemonic Identifiers

A mnemonic identifier is a name given to a logic function output for the purpose of cross-reference identification. It is usual practice to assign a meaningful name for the purpose of implying what function is being accomplished. These identifiers can be words, abbreviations, word-number combinations, numbers or symbols. In all cases when mnemonic identifiers are used, they must always appear identically written.

### Signal Flow Direction

Logic Diagrams indicate direction of signal flow by symbol orientation, preferred signal flow direction is from left to right. For increased clarity, arrows superimposed on lines may be used. However, arrowheads shall not be placed immediately adjacent to any graphic symbol input or output.

#### Stylized Waveforms

Stylized waveforms may be placed adjacent to signal lines (where required) to indicate the nature and timing of the signals.

## SYMBOLS

Line Symbols

Single Channel Path

Multiple Channel Paths

n = Number of Channels

Example: Multiple Channel Paths With Junction



Signal Paths Crossing With no Connection (not necessarily perpendicular)



Junction of Signal Paths

Single Paths:



Multiple Paths:



Signal Flow

## Inputs and Outputs

Preferred (left to right signal flow, no arrows required)



Undesirable But Acceptable (right to left signal flow, arrows required for clarity)



### Logic Symbols for Binary Operations

### Low Level State Indicators

A small circle symbol at any input or output of a function is used to represent the active low state. A small circle at the input indicates that the relatively low (L) input signal activates the input. Conversely, the absence of a small circle indicates that the relatively high (H) input signal activates the input. A small circle at a symbol output indicates that when the function is activated the output terminal is relatively low (L).

### NOT (Invert)

The NOT function is implied when a high input activates a low output or a low input activates a high output. This is represented in its simplest form using the appropriate symbol below. The invert function using low level state indicators applies to AND, OR, and other more complex symbols.



AND

The symbol shown below represents the AND function. The AND symbol can be used with active low state indicators as shown in Table A-1. The AND output is active only if all inputs are active.



OR

The symbol shown below represents the OR function. The OR symbol can be used with active low state indicators as shown in Table A-1. The OR output is active only is any one or more inputs is active.

## TABLE A-1

### Table of Combinations

The following table of combinations illustrates the applications and functions of two variables illustrating duality and use of low level state indicators.



A-7

## APPENDIX B

# TABLE OF POWERS OF TWO

|                                                         | 2 <sup>n</sup>           | n                    | 2 <sup>-n</sup>                  |            |            |            |            |            |            |            |            |            |            |            |     |   |
|---------------------------------------------------------|--------------------------|----------------------|----------------------------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|-----|---|
|                                                         | 1<br>2<br>4<br>8         | 0<br>1<br>2<br>3     | 1.0<br>0.5<br>0.25<br>0.125      |            |            |            |            |            |            |            |            |            |            |            |     |   |
|                                                         | 16<br>32<br>64<br>128    | 4<br>5<br>6<br>7     | 0.062<br>0.031<br>0.015<br>0.007 | 25<br>625  | 5          |            |            |            |            |            |            |            |            |            |     |   |
|                                                         | 256<br>512<br>024<br>048 | 8<br>9<br>10<br>11   | 0.003<br>0.001<br>0.000<br>0.000 | 953<br>976 | 125<br>562 |            |            |            |            |            |            |            |            |            |     |   |
| 8<br>16                                                 | 096<br>192<br>384<br>768 | 12<br>13<br>14<br>15 | 0.000<br>0.000<br>0.000<br>0.000 | 122<br>061 | 070<br>035 | 312<br>156 | 25         |            |            |            |            |            |            |            |     |   |
| 131<br>262                                              | 536<br>072<br>144<br>288 | 16<br>17<br>18<br>19 | 0.000<br>0.000<br>0.000<br>0.000 | 007<br>003 | 629<br>814 | 394<br>697 | 531<br>265 | 25<br>625  | 5          |            |            |            |            |            |     |   |
| 1 048<br>2 097<br>4 194<br>8 388                        | 152<br>304               | 20<br>21<br>22<br>23 | 0.000<br>0.000<br>0.000<br>0.000 | 000<br>000 | 476<br>238 | 837<br>418 | 158<br>579 | 203<br>101 | 125<br>562 |            |            |            |            |            |     |   |
| 16 777<br>33 554<br>67 108<br>134 217                   | 432<br>864               | 24<br>25<br>26<br>27 | 0.000<br>0.000<br>0.000<br>0.000 | 000<br>000 | 029<br>014 | 802<br>901 | 322<br>161 | 387<br>193 | 695<br>847 | 312<br>656 | 25         |            |            |            |     |   |
| 268 435<br>536 870<br>1 073 741<br>2 147 483            | 912<br>824               | 28<br>29<br>30<br>31 | 0.000<br>0.000<br>0.000<br>0.000 | 000<br>000 | 001<br>000 | 862<br>931 | 645<br>322 | 149<br>574 | 230<br>615 | 957<br>478 | 031<br>515 | 45<br>625  | 5          |            |     |   |
| 4 294 967<br>8 589 934<br>17 179 869<br>34 359 738      | 592<br>184               | 32<br>33<br>34<br>35 | 0.000<br>0.000<br>0.000<br>0.000 | 000<br>000 | 000<br>000 | 116<br>058 | 415<br>207 | 321<br>660 | 826<br>913 | 934<br>467 | 814<br>407 | 453<br>226 | 125<br>562 |            |     |   |
| 68 719 476<br>137 438 953<br>274 877 906<br>549 755 813 | 472<br>944               | 36<br>37<br>38<br>39 | 0.000<br>0.000<br>0.000<br>0.000 | 000<br>000 | 000<br>000 | 007<br>003 | 275<br>637 | 957<br>978 | 614<br>807 | 183<br>091 | 425<br>712 | 903<br>951 | 320<br>660 | 312<br>156 | 25  |   |
| 1 099 511 627                                           | 776                      | 40 <sup>.</sup>      | 0.000                            | 000        | 000        | 000        | 909        | 494        | 701        | 772        | 928        | 237        | 915        | 039        | 062 | 5 |

## APPENDIX C

| Hex | Decimal        | Hex | Decimal       | Hex | Decimal     | Hex | Decimal    | Hex | Decimal          | Hex | Decimal | Hex | Decimal | Hex | Decimal | Hex | Decimal |
|-----|----------------|-----|---------------|-----|-------------|-----|------------|-----|------------------|-----|---------|-----|---------|-----|---------|-----|---------|
| 0   | 0              | 0   | 0             | 0   | 0           | 0   | 0          | 0   | 0                | 0   | 0       | 0   | 0       | 0   | 0       | 0   | 0       |
| 1   | 4,294,967,296  | 1   | 268,435,456   | 1   | 16,777,216  | 1   | 1,048,576  | 1   | 65,536           | 1   | 4,096   | 1   | 256     | 1   | 16      | 1   | 1       |
| 2   | 8,589,934,592  | 2   | 536,870,912   | 2   | 33,554,432  | 2   | 2,097,152  | 2   | 131,072          | 2   | 8,192   | 2   | 512     | 2   | 32      | 2   | 2       |
| 3   | 12,884,901,888 | 3   | 805,306,368   | 3   | 50,331,648  | 3   | 3,145,728  | 3   | 196,608          | 3   | 12,288  | 3   | 768     | 3   | 48      | 3   | 3       |
| 4   | 17,179,869,184 | 4   | 1,073,741,824 | 4   | 67,108,864  | 4   | 4,194,304  | 4   | 262,144          | 4   | 16,384  | 4   | 1,024   | 4   | 64      | 4   | 4       |
| 5   | 21,474,836,480 | 5   | 1,342,177,280 | 5   | 83,886,080  | 5   | 5,242,880  | 5   | 327,680          | 5   | 20,480  | 5   | 1,280   | 5   | 80      | 5   | 5       |
| 6   | 25,769,803,776 | 6   | 1,610,612,736 | 6   | 100,663,296 | 6   | 6,291,456  | 6   | 393,216          | 6   | 24,576  | 6   | 1,536   | 6   | 96      | 6   | 6       |
| 7   | 30,064,771,072 | 7   | 1,879,048,192 | 7   | 177,440,512 | 7   | 7,340,032  | 7   | 458,752          | 7   | 28,672  | 7   | 1,792   | 7   | 112     | 7   | 7       |
| 8   | 34,359,738,368 | 8   | 2,147,483,648 | 8   | 134,217,728 | 8   | 8,388,608  | 8   | 524,288          | 8   | 32,768  | 8   | 2,048   | 8   | 128     | 8   | 8       |
| 9   | 38,654,705,664 | 9   | 2,415,919,104 | 9   | 150,994,944 | 9   | 9,437,184  | 9   | 589,824          | 9   | 36,864  | 9   | 2,304   | 9   | 144     | 9   | 9       |
| A   | 42,949,672,960 | A   | 2,684,354,560 | A   | 167,772,160 | A   | 10,485,760 | A   | 655 <b>,36</b> 0 | Α   | 40,960  | A   | 2,560   | A   | 160     | A   | 10      |
| В   | 47,244,640,256 | B   | 2,952,790,016 | В   | 184,549,376 | В   | 11,534,336 | В   | 720,896          | В   | 45,056  | B   | 2,816   | B   | 176     | B   | 11      |
| С   | 51,539,607,552 | С   | 3,221,225,472 | С   | 201,326,592 | С   | 12,582,912 | С   | 786,432          | С   | 49,152  | С   | 3,072   | С   | 192     | С   | 12      |
| D   | 55,834,574,848 | D   | 3,489,660,928 | D   | 218,103,808 | D   | 13,631,488 | D   | 851,968          | D   | 53,248  | D   | 3,328   | D   | 208     | D   | 13      |
| E   | 60,129,542,144 | Е   | 3,758,096,384 | Е   | 234,881,024 | E   | 14,680,064 | E   | 917,504          | E   | 57,344  | E   | 3,584   | E   | 224     | Ε   | 14      |
| F   | 64,424,509,440 | F   | 4,026,531,840 | F   | 251,658,240 | F   | 15,728,640 | F   | 983,040          | F   | 61,440  | F   | 3,840   | F   | 240     | F   | 15      |
|     | 9              |     | 8             |     | 7           |     | 6          |     | 5                |     | 4       |     | 3       |     | 2       |     | 1       |

#### HEXADECIMAL TO DECIMAL

This table allows for conversion of hexadecimal numbers of up to nine characters in length to their decimal equivalents.

Locate the columns in the table corresponding to the position of each character of the hexadecimal number. Record the decimal equivalents of the characters. The sum of these numbers is the converted number. Hexadecimal number F4D is used as an example.

| Hex. Char. | Column | Decimal Equiv. |
|------------|--------|----------------|
| F          | 3      | 3,840          |
| 4          | 2      | 64             |
| D          | 1      | 13             |
|            |        | 3,917 = F4D    |

To convert a number without using the table:

- Assign the units decimal equivalent to each hexadecimal character.
- (2) Starting with the decimal equivalent of the mostsignificant character, multiply by 16, add the decimal equivalent of the next most-significant character to the result and again multiply by 16.
- (3) Repeat this process until the last character is added.

Hexadecimal number F4D is again used as the example.

| Hex. Char. | Units Dec. Equiv. |                                  |
|------------|-------------------|----------------------------------|
| F          | 15                | 15<br><u>X16</u><br>240          |
| 4          | 4                 | +4<br>244<br><u>X16</u><br>3,904 |
| D          | 13                | $\frac{+13}{3,917} = F4D$        |

#### DECIMAL TO HEXADECIMAL

To convert decimal to hexadecimal using the table:

- (1) Select the largest decimal number that is equal to or less than the number to be converted. Record the hexadecimal equivalent as the most-significant character of the hexadecimal number.
- Subtract the selected number from the number to be converted.
- (3) Select the decimal number that is equal to or less than the result obtained from step 2 and record the hexadecimal equivalent as the second mostsignificant digit.
- (4) Continue the process until there is no remainder.

Decimal number 3,917 is used as the example.



Conversion without using the table is accomplished by successively dividing by 16 and collecting the remainders in reverse order as shown below.



## APPENDIX D

## HEXADECIMAL/DECIMAL FRACTIONS

| Hex | Decimal | Hex | Deci  | mal  | Hex  |       | Decima | 1    | Hex   |       | Deci | mal  |      | Hex    |       |      | Decima | 1    |      |
|-----|---------|-----|-------|------|------|-------|--------|------|-------|-------|------|------|------|--------|-------|------|--------|------|------|
| .0  | .0000   | .00 | .0000 | 0000 | .000 | .0000 | 0000   | 0000 | .0000 | .0000 | 0000 | 0000 | 0000 | .00000 | .0000 | 0000 | 0000   | 0000 | 0000 |
| .1  | .0625   | .01 | .0039 | 0625 | .001 | .0002 | 4414   | 0625 | .0001 | .0000 | 1525 | 8789 | 0625 | .00001 | .0000 | 0095 | 3674   | 3164 | 0625 |
| .2  | . 1250  | .02 | .0078 | 1250 | .002 | .0004 | 8828   | 1250 | .0002 | .0000 | 3051 | 7578 | 1250 | .00002 | .0000 | 0190 | 7348   | 6328 | 1250 |
| .3  | .1875   | .03 | .0117 | 1875 | .003 | .0007 | 3242   | 1875 | .0003 | .0000 | 4577 | 6367 | 1875 | .00003 | .0000 | 0286 | 1022   | 9492 | 1875 |
| .4  | .2500   | .04 | .0156 | 2500 | .004 | .0009 | 7656   | 2500 | .0004 | .0000 | 6103 | 5156 | 2500 | .00004 | .0000 | 0381 | 4697   | 2656 | 2500 |
| .5  | . 3125  | .05 | .0195 | 3125 | .005 | .0012 | 2070   | 3125 | .0005 | .0000 | 7629 | 3945 | 3125 | .00005 | .0000 | 0476 | 8371   | 5820 | 3125 |
| .6  | . 3750  | .06 | .0234 | 3750 | .006 | .0014 | 6484   | 3750 | .0006 | .0000 | 9155 | 2734 | 3750 | .00006 | .0000 | 0572 | 2045   | 8984 | 3750 |
| .7  | .4375   | .07 | .0273 | 4375 | .007 | .0017 | 0898   | 4375 | .0007 | .0001 | 0681 | 1523 | 4375 | .00007 | .0000 | 0667 | 5720   | 2148 | 4375 |
| . 8 | .5000   | .08 | .0312 | 5000 | .008 | .0019 | 5312   | 5000 | .0008 | .0001 | 2207 | 0312 | 5000 | .00008 | .0000 | 0762 | 9394   | 5312 | 5000 |
| .9  | .5625   | .09 | .0351 | 5625 | .009 | .0021 | 9726   | 5625 | .0009 | .0001 | 3732 | 9101 | 5625 | .00009 | .0000 | 0858 | 3068   | 8476 | 5625 |
| . A | .6250   | .0A | .0390 | 6250 | .00A | .0024 | 4140   | 6250 | .000A | .0001 | 5258 | 7890 | 6250 | .0000A | .0000 | 0953 | 6743   | 1640 | 6250 |
| . B | .6875   | .0B | .0429 | 6875 | .00B | .0026 | 8554   | 6875 | .000B | .0001 | 6784 | 6679 | 6875 | .0000B | .0000 | 1049 | 0417   | 4804 | 6875 |
| .C  | .7500   | .0C | .0468 | 7500 | .00C | .0029 | 2968   | 7500 | .000C | .0001 | 8310 | 5468 | 7500 | .0000C | .0000 | 1144 | 4091   | 7968 | 7500 |
| .D  | .8125   | .00 | .0507 | 8125 | .00D | .0031 | 7382   | 8125 | .0000 | .0001 | 9836 | 4257 | 8125 | .00000 | .0000 | 1239 | 7766   | 1132 | 8125 |
| . E | .8750   | .0E | .0546 | 8750 | .00E | .0034 | 1796   | 8750 | .000E | .0002 | 1362 | 3046 | 8750 | .0000E | .0000 | 1335 | 1440   | 4296 | 8750 |
| .F  | .9375   | .OF | .0585 | 9375 | .00F | .0036 | 6210   | 9375 | .000F | .0002 | 2888 | 1835 | 9375 | .0000F | .0000 | 1430 | 5114   | 7460 | 9375 |
|     | 1       |     | 2     |      |      |       | 3      |      |       |       | 4    |      |      |        |       |      | 5      |      |      |

#### FRACTIONAL HEXADECIMAL TO DECIMAL

When using the table, fractional hexadecimal to decimal conversion is accomplished in the same manner as for integer conversion. Hexadecimal .F4D is converted as shown below:

| Hex. Char. | Column | Decimal Equiv.                                                   |
|------------|--------|------------------------------------------------------------------|
| .F         | 1      | .9375                                                            |
| .04        | 2      | .0156 2500                                                       |
| .00D       | 3      | $\frac{.0031}{.9562} \frac{7382}{9882} \frac{8125}{8125} = .F4D$ |
| .000       | 3      | .9562 9882 8125                                                  |

Conversion without using the table is accomplished as follows:

.F4D = .956298828125

$$.F4D = \frac{F4D_{16}}{16^3} = \frac{3917}{4096} = .956298828125$$

#### FRACTIONAL DECIMAL TO HEXADECIMAL

Fractional decimal to hexadecimal conversion is accomplished in the same manner as for integer conversion when using the table. Decimal .9563 is converted as shown below.

| .9563 |      |      |              |
|-------|------|------|--------------|
| 9375  |      |      | ≖ ,F         |
| .0188 | 0000 |      |              |
| 0156  | 2500 |      | <b>=</b> .04 |
| .0031 | 7500 | 0000 |              |
| 0031  | 7382 | 8125 | = .00D       |
| .0000 | 0117 | 1875 | .F4D         |

Conversion without using the table is accomplished by multiplying successively by 16 and collecting the integers from the products.



## APPENDIX E

TABLE OF POWERS OF SIXTEEN

|           | <u>16</u> | ו<br> |     |             | n                     |
|-----------|-----------|-------|-----|-------------|-----------------------|
|           |           |       |     | 1           | 0                     |
|           |           |       |     | 16          | 1                     |
|           |           |       |     | 256         | 1<br>2<br>3<br>4<br>5 |
|           |           |       | 4   | 096         | 3                     |
|           |           |       | 65  | 536         | 4                     |
|           |           | 1     | 048 | 576         |                       |
|           |           | 16    | 777 | 216         | 6                     |
|           |           | 268   | 435 | 456         | 7                     |
|           | 4         | 294   | 967 | 296         | 8                     |
|           | 68        | 719   | 476 | 736         | 9                     |
| 1         | 099       | 511   | 627 | 776         | 10                    |
| 17        | 592       | 186   | 044 | 416         | 11                    |
| 281       | 474       | 976   | 710 | 65 <b>6</b> | 12                    |
| 4 503     | 599       | 627   | 370 | 496         | 13                    |
| 72 057    | 594       | 037   | 927 | 936         | 14                    |
| 1 152 921 | 504       | 606   | 846 | 976         | 15                    |

## APPENDIX F

### CONVERSION TABLES

This appendix contains the following reference tables:

### Title

Hexadecimal Arithmetic

Addition Table

Multiplication Table

Powers of 16<sub>10</sub>

Powers of 10<sub>16</sub>

Hexadecimal-Decimal Integer Conversion

Hexadecimal-Decimal Fraction Conversion

Powers of Two

Mathematical Constants

## **HEXADECIMAL ARITHMETIC**

| 0 | 1  | 2  | 3  | 4  | 5  | 6  | 7    | 8  | 9  | А  | B  | с  | D  | E  | F  |
|---|----|----|----|----|----|----|------|----|----|----|----|----|----|----|----|
| 1 | 02 | 03 | 04 | 05 | 06 | 07 | 08   | 09 | 0A | OB | 0C | 0D | OE | 0F | 10 |
| 2 | 03 | 04 | 05 | 06 | 07 | 08 | 09   | 0A | OB | 0C | 0D | 0E | 0F | 10 | 11 |
| 3 | 04 | 05 | 06 | 07 | 08 | 09 | 0A _ | ОВ | 0C | 0D | OE | OF | 10 | 11 | 12 |
| 4 | 05 | 06 | 07 | 08 | 09 | 0A | OB   | 0C | 0D | OE | OF | 10 | 11 | 12 | 13 |
| 5 | 06 | 07 | 08 | 09 | 0A | OB | 0C   | 0D | 0E | OF | 10 | 11 | 12 | 13 | 14 |
| 6 | 07 | 08 | 09 | 0A | OB | 0C | 0D   | OE | OF | 10 | 11 | 12 | 13 | 14 | 15 |
| 7 | 08 | 09 | 0A | ОВ | 0C | 0D | OE   | 0F | 10 | 11 | 12 | 13 | 14 | 15 | 16 |
| 8 | 09 | 0A | OB | 0C | 0D | 0E | OF   | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 |
| 9 | 0A | OB | 0C | 0D | OE | OF | 10   | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 |
| A | OB | 0C | 0D | OE | OF | 10 | 11   | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 |
| В | 0C | 0D | OE | OF | 10 | 11 | 12   | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 1A |
| с | 0D | OE | OF | 10 | 11 | 12 | 13   | 14 | 15 | 16 | 17 | 18 | 19 | 1A | 1B |
| D | OE | 0F | 10 | 11 | 12 | 13 | 14   | 15 | 16 | 17 | 18 | 19 | 1A | 1B | 1C |
| E | 0F | 10 | 11 | 12 | 13 | 14 | 15   | 16 | 17 | 18 | 19 | 1A | 1B | 1C | 1D |
| F | 10 | 11 | 12 | 13 | 14 | 15 | 16   | 17 | 18 | 19 | 1A | 1B | ۱C | ID | ١E |

MULTIPLICATION TABLE

| 1 | 2  | 3  | 4    | 5               | 6  | 7  | 8  | 9  | A  | В  | с  | D  | E  | F  |
|---|----|----|------|-----------------|----|----|----|----|----|----|----|----|----|----|
| 2 | 04 | 06 | 08   | 0A              | 0C | OE | 10 | 12 | 14 | 16 | 18 | 1A | ۱C | 1E |
| 3 | 06 | 09 | 0C   | OF              | 12 | 15 | 18 | 1B | 1E | 21 | 24 | 27 | 2A | 2D |
| 4 | 08 | 0C | 10   | 14              | 18 | 1C | 20 | 24 | 28 | 2C | 30 | 34 | 38 | 3C |
| 5 | 0A | 0F | 14   | 19              | 1E | 23 | 28 | 2D | 32 | 37 | 3C | 41 | 46 | 4B |
| 6 | 0C | 12 | 18   | 1E <sup>3</sup> | 24 | 2A | 30 | 36 | 3C | 42 | 48 | 4E | 54 | 5A |
| 7 | OE | 15 | 10   | 23              | 2A | 31 | 38 | 3F | 46 | 4D | 54 | 5B | 62 | 69 |
| 8 | 10 | 18 | 20   | 28              | 30 | 38 | 40 | 48 | 50 | 58 | 60 | 68 | 70 | 78 |
| 9 | 12 | 1B | 24   | 2D              | 36 | 3F | 48 | 51 | 5A | 63 | 6C | 75 | 7E | 87 |
| A | 14 | 1E | 28   | 32              | 3C | 46 | 50 | 5A | 64 | 6E | 78 | 82 | 8C | 96 |
| В | 16 | 21 | 2C   | 37              | 42 | 4D | 58 | 63 | 6E | 79 | 84 | 8F | 9A | A5 |
| С | 18 | 24 | 30   | 3C              | 48 | 54 | 60 | 6C | 78 | 84 | 90 | 9C | A8 | B4 |
| D | 1A | 27 | 34   | 41              | 4E | 5B | 68 | 75 | 82 | 8F | 9C | А9 | Bó | C3 |
| E | 10 | 2A | 38   | 46              | 54 | 62 | 70 | 7E | 8C | 9A | A8 | B6 | C4 | D2 |
| F | 1E | 2B | 3C 1 | 4B              | 5A | 69 | 78 | 87 | 96 | A5 | B4 | C3 | D2 | E1 |

TABLE OF POWERS OF SIXTEEN $_{10}$ 

|   |     |     |     |     |     | 16 <sup>n</sup> | n  |         |       | 16 <sup>-n</sup> |       |   |                   |
|---|-----|-----|-----|-----|-----|-----------------|----|---------|-------|------------------|-------|---|-------------------|
|   |     |     |     |     |     | 1               | 0  | 0.10000 | 00000 | 00000            | 00000 | x | 10                |
|   |     |     |     |     |     | 16              | 1  | 0.62500 | 00000 | 00000            | 00000 | × | 10-1              |
|   |     |     |     |     |     | 256             | 2  | 0.39062 | 50000 | 00000            | 00000 | x | 10 <sup>-2</sup>  |
|   |     |     |     |     | 4   | 096             | 3  | 0.24414 | 06250 | 00000            | 00000 | x | 10 <sup>-3</sup>  |
|   |     |     |     |     | 65  | 536             | 4  | 0.15258 | 78906 | 25000            | 00000 | x | 10 <sup>-4</sup>  |
|   |     |     |     | ١   | 048 | 576             | 5  | 0.95367 | 43164 | 06250            | 00000 | x | 10 <sup>-6</sup>  |
|   |     |     |     | 16  | 777 | 216             | 6  | 0.59604 | 64477 | 53906            | 25000 | × | 10 <sup>-7</sup>  |
|   |     |     |     | 268 | 435 | 456             | 7  | 0.37252 | 90298 | 46191            | 40625 | x | 10 <sup>-8</sup>  |
|   |     |     | 4   | 294 | 967 | 296             | 8  | 0.23283 | 06436 | 53869            | 62891 | x | 10 <sup>-9</sup>  |
|   |     |     | 68  | 719 | 476 | 736             | 9  | 0.14551 | 91522 | 83668            | 51807 | × | 10 <sup>-10</sup> |
|   |     | 1   | 099 | 511 | 627 | 776             | 10 | 0.90949 | 47017 | 72928            | 23792 | x | 10 <sup>-12</sup> |
|   |     | 17  | 592 | 186 | 044 | 416             | 11 | 0.56843 | 41886 | 08080            | 14870 | x | 10 <sup>-13</sup> |
|   |     | 281 | 474 | 976 | 710 | 656             | 12 | 0.35527 | 13678 | 80050            | 09294 | x | 10 <sup>-14</sup> |
|   | 4   | 503 | 599 | 627 | 370 | 496             | 13 | 0.22204 | 46049 | 25031            | 30808 | x | 10 <sup>-15</sup> |
|   | 72  | 057 | 594 | 037 | 927 | 936             | 14 | 0.13877 | 78780 | 78144            | 56755 | × | 10 <sup>-16</sup> |
| 1 | 152 | 921 | 504 | 606 | 846 | 976             | 15 | 0.86736 | 17379 | 88403            | 54721 | × | 10 <sup>-18</sup> |

# TABLE OF POWERS OF 1016

|       |         |         | 10 <sup>n</sup> | n  |          | 10      | n       |         |   |                   |
|-------|---------|---------|-----------------|----|----------|---------|---------|---------|---|-------------------|
|       |         |         | 1               | 0  | 1.0000   | 0000    | 0000    | 0000    |   |                   |
|       |         |         | А               | 1  | 0.1999   | 9999    | 9999    | 999A    |   | -                 |
|       |         |         | 64              | 2  | 0.28F5   | C28F    | 5 C 2 8 | F 5 C 3 | × | 16 <b>-1</b>      |
|       |         |         | 3 E 8           | 3  | 0.4189   | 374B    | C6 A7   | E F 9 E | × | 16 <sup>-2</sup>  |
|       |         |         | 2710            | 4  | 0.68DB   | 8 B AC  | 710C    | B296    | × | 16 <sup>-3</sup>  |
|       | ·       | 1       | 86A0            | 5  | 0.A7C5   | AC47    | 1B47    | 8423    | × | 16-4              |
|       |         | F       | 4240            | 6  | 0.10C6   | F 7 A0  | B5ED    | 8 D3 7  | × | 16-4              |
|       |         | 98      | 9680            | 7  | 0.1 AD7  | F 2 9 A | BCAF    | 4858    | × | 16 <sup>-5</sup>  |
|       |         | 5 F 5   | E 100           | 8  | 0.2 AF 3 | 1 DC4   | 6118    | 73BF    | × | 16 <sup>-6</sup>  |
|       |         | 3 B 9 A | C A0 0          | 9  | 0.44B8   | 2 F A0  | 9 B 5 A | 52CC    | × | 16 <sup>-7</sup>  |
|       | 2       | 540B    | E400            | 10 | 0.6 DF 3 | 7F67    | 5 E F 6 | E ADF   | × | 16 <sup>-8</sup>  |
|       | 17      | 4876    | E800            | 11 | 0.AFEB   | FFOB    | CB 2 4  | AAF F   | × | 16-9              |
|       | E 8     | D4A5    | 1000            | 12 | 0.1197   | 9981    | 2 DE A  | 1119    | × | 16 <sup>-9</sup>  |
|       | 918     | 4E72    | A000            | 13 | 0.1C25   | C268    | 4976    | 81C2    | × | 16 <sup>-10</sup> |
|       | 5 AF 3  | 107A    | 4000            | 14 | 0.2 D0 9 | 370D    | 4257    | 3604    | × | 16-11             |
| 3     | 8 D7 E  | A4C6    | 8000            | 15 | 0.480E   | BE7B    | 9 D5 8  | 566D    | × | 16-12             |
| 23    | 8652    | 6FC1    | 0000            | 16 | 0.734A   | CA5 F   | 6226    | FOAE    | × | 16 <sup>-13</sup> |
| 163   | 4578    | 5 D8 A  | 0000            | 17 | 0.B877   | AA3 2   | 36A4    | B449    | × | 16-14             |
| DE 0  | B 6 B 3 | A764    | 0000            | 18 | 0.1272   | 5 DD 1  | D243    | AB A 1  | x | 16 <sup>-14</sup> |
| 8 AC7 | 2304    | 89E8    | 0000            | 19 | 0.1 D8 3 | C94F    | B 6 D2  | AC35    | x | 16-15             |

The table below provides for direct conversions between hexadecimal integers in the range 0-FFF and decimal integers in the range 0-4095. For conversion of larger integers, the table values may be added to the following figures:

| Hexade    | cimal                                                                                                                                   | Deci  | mal  | Hexad | decimal | Dec  | imal    |      |          |
|-----------|-----------------------------------------------------------------------------------------------------------------------------------------|-------|------|-------|---------|------|---------|------|----------|
| 01 000    | n de la composition<br>Notae de la composition de la compositio | 4 (   | 096  | 20    | 000     | 1    | 31 072  |      |          |
| 02 000    |                                                                                                                                         | 8     | 192  | 30    | 000     | 1    | 96 608  |      |          |
| 03 000    |                                                                                                                                         | 12 :  | 288  | 40    | 000     | 2    | 62 144  |      | 2.       |
| 04 000    |                                                                                                                                         | 16 3  | 384  |       | 000     |      | 27 680  |      |          |
| 05 000    |                                                                                                                                         | 20 4  | 480  |       | 000     |      | 93 216  |      |          |
| 06 000    |                                                                                                                                         | 24 :  |      |       | 000     |      | 58 752  |      |          |
| 07 000    |                                                                                                                                         | 28 0  |      |       | 000     |      | 24 288  |      | 3.       |
| 08 000    |                                                                                                                                         | 32    |      |       | 000     |      | 89 824  |      | 0.       |
| 09 000    |                                                                                                                                         | 36    |      |       | 000     |      | 55 360  |      |          |
| 0A 000    |                                                                                                                                         | 40    |      |       | 000     |      | 20 896  |      |          |
| OB 000    |                                                                                                                                         | 45 (  |      |       | 000     |      | 86 432  |      |          |
| 00 000 OC |                                                                                                                                         | 49    |      |       | 000     |      | 51 968  |      |          |
| 0D 000    |                                                                                                                                         | 53 3  |      |       | 000     |      | 17 504  |      | De       |
| 0E 000    |                                                                                                                                         | 57 3  |      |       | 000     |      | 83 040  |      |          |
|           |                                                                                                                                         |       |      |       |         |      |         |      | by<br>Af |
| OF 000    |                                                                                                                                         | 614   |      |       | 000     |      | 48 576  |      |          |
| 10 000    |                                                                                                                                         | 65 5  |      |       | 000     |      | 97 152  |      | for      |
| 11 000    |                                                                                                                                         | 69 0  |      |       | 000     |      | 45 728  |      | he       |
| 12 000    |                                                                                                                                         | 73    |      |       | 000     |      | 94 304  |      | USE      |
| 13 000    |                                                                                                                                         | 77    |      |       | 000     |      | 42 880  |      | mu       |
| 14 000    |                                                                                                                                         | 81 9  |      |       | 000     |      | 291 456 |      | r        |
| 15 000    |                                                                                                                                         | 86 (  |      |       | 000     |      | 340 032 |      | Ex       |
| 16 000    |                                                                                                                                         | 90    |      |       | 000     |      | 888 608 |      |          |
| 17 000    |                                                                                                                                         | 94 :  |      |       | 000     |      | 37 184  |      |          |
| 18 000    |                                                                                                                                         | 98 3  |      | ,A00  |         |      | 85 760  |      |          |
| 19 000    |                                                                                                                                         | 102 - |      |       | 000     |      | 34 336  |      |          |
| 1A 000    |                                                                                                                                         | 106 - |      |       | 000     |      | 82 912  |      |          |
| 1B 000    |                                                                                                                                         | 110 : |      |       | 000     |      | 31 488  |      |          |
| 1C 000    |                                                                                                                                         | 114   |      |       | 000     |      | 80 064  |      |          |
| 1D 000    |                                                                                                                                         | 118   |      |       | 000     |      | 28 640  |      |          |
| 1E 000    |                                                                                                                                         | 122   |      | 1 000 |         |      | 77 216  |      |          |
| 1F_000    | )                                                                                                                                       | 126   | 976  | 2 000 | 000     | 33.5 | 54 432  |      |          |
|           | 0                                                                                                                                       | 1     | 2    | 3     | 4       | 5    | 6       | 7    |          |
| 000       | 0000                                                                                                                                    | 0001  | 0002 | 0003  | 0004    | 0005 | 0006    | 0007 |          |
| 010       | 0016                                                                                                                                    | 0017  | 0018 | 0019  | 0020    | 0021 | 0022    | 0023 |          |
| 020       | 0032                                                                                                                                    | 0033  | 0034 | 0035  | 0036    | 0037 | 0038    | 0039 |          |
| 030       | 0048                                                                                                                                    | 0049  | 0050 | 0051  | 0052    | 0053 | 0054    | 0055 |          |
|           |                                                                                                                                         |       |      |       |         |      |         |      |          |
| 040       | 0064                                                                                                                                    | 0065  | 0066 | 0067  | 0068    | 0069 | 0070    | 0071 |          |
| 050       | 0080                                                                                                                                    | 0081  | 0082 | 0083  | 0084    | 0085 | 0086    | 0087 |          |
| 060       | 0096                                                                                                                                    | 0097  | 0098 | 0099  | 0100    | 0101 | 0102    | 0103 |          |
| 070       | 0112                                                                                                                                    | 0113  | 0114 | 0115  | 0116    | 0117 | 0118    | 0119 |          |
| 0,0       | 0112                                                                                                                                    | 0110  | 0114 | 0110  | 0110    | 0117 | 0110    | 0117 |          |
| 080       | 0128                                                                                                                                    | 0129  | 0130 | 0131  | 0132    | 0133 | 0134    | 0135 |          |
| 090       | 0144                                                                                                                                    | 0145  | 0146 | 0147  | 0148    | 0149 | 0150    | 0151 |          |
| 0A0       | 0160                                                                                                                                    | 0161  | 0162 | 0163  | 0164    | 0165 | 0166    | 0167 |          |
| OBO       | 0176                                                                                                                                    | 0177  | 0178 | 0179  | 0180    | 0181 | 0182    | 0183 |          |
| 0C0       | 0192                                                                                                                                    | 0193  | 0194 | 0195  | 0196    | 0197 | 0198    | 0199 |          |
| 0C0       | 0192                                                                                                                                    | 0193  | 0194 | 0195  | 0198    | 0197 | 0178    | 0177 |          |
| 0E0       | 0208                                                                                                                                    | 0209  | 0210 | 0211  | 0212    | 0213 | 0214    | 0213 |          |
|           |                                                                                                                                         |       | 0220 |       | 0228    | 0229 | 0230    | 0231 |          |
| 0F0       | 0240                                                                                                                                    | 0241  | UZ4Z | 0243  | UZ44    | 0243 | UZ40    | UZ4/ |          |

Hexadecimal fractions may be converted to decimal fractions as follows:

 Express the hexadecimal fraction as an integer times 16<sup>-n</sup>, where n is the number of significant hexadecimal places to the right of the hexadecimal point.

2. Find the decimal equivalent of the hexadecimal integer

$$CA9 BF3_{16} = 13 278 195_{10}$$

3. Multiply the decimal equivalent by 16<sup>-n</sup>

$$\begin{array}{r} 13\ 278\ 195 \\ \times\ 596\ 046\ 448\ \times\ 10^{-16} \\ \hline 0.791\ 442\ 096_{10} \end{array}$$

Decimal fractions may be converted to hexadecimal fractions by successively multiplying the decimal fraction by 16<sub>10</sub>. After each multiplication, the integer portion is removed to form a hexadecimal fraction by building to the right of the hexadecimal point. However, since decimal arithmetic is used in this conversion, the integer portion of each product must be converted to hexadecimal numbers.

Example: Convert 0.89510 to its hexadecimal equivalent



| IF, 000 |      | 126  | 970  | 2 000 | 000  | 33 3 | 54 432 |      |      | 10   |      | $\cup$ |      |      |      |      |
|---------|------|------|------|-------|------|------|--------|------|------|------|------|--------|------|------|------|------|
|         | 0    | 1    | 2    | 3     | 4    | 5    | 6      | 7    | 8    | 9    | Α    | В      | С    | D    | E    | F    |
| 000     | 0000 | 0001 | 0002 | 0003  | 0004 | 0005 | 0006   | 0007 | 0008 | 0009 | 0010 | 0011   | 0012 | 0013 | 0014 | 0015 |
| 010     | 0016 | 0017 | 0018 | 0019  | 0020 | 0021 | 0022   | 0023 | 0024 | 0025 | 0026 | 0027   | 0028 | 0029 | 0030 | 0031 |
| 020     | 0032 | 0033 | 0034 | 0035  | 0036 | 0037 | 0038   | 0039 | 0040 | 0041 | 0042 | 0043   | 0044 | 0045 | 0046 | 0047 |
| 030     | 0048 | 0049 | 0050 | 0051  | 0052 | 0053 | 0054   | 0055 | 0056 | 0057 | 0058 | 0059   | 0060 | 0061 | 0062 | 0063 |
|         |      |      |      |       |      |      |        |      |      |      |      |        |      |      |      |      |
| 040     | 0064 | 0065 | 0066 | 0067  | 0068 | 0069 | 0070   | 0071 | 0072 | 0073 | 0074 | 0075   | 0076 | 0077 | 0078 | 0079 |
| 050     | 0080 | 0081 | 0082 | 0083  | 0084 | 0085 | 0086   | 0087 | 0088 | 0089 | 0090 | 0091   | 0092 | 0093 | 0094 | 0095 |
| 060     | 0096 | 0097 | 0098 | 0099  | 0100 | 0101 | 0102   | 0103 | 0104 | 0105 | 0106 | 0107   | 0108 | 0109 | 0110 | 0111 |
| 070     | 0112 | 0113 | 0114 | 0115  | 0116 | 0117 | 0118   | 0119 | 0120 | 0121 | 0122 | 0123   | 0124 | 0125 | 0126 | 0127 |
|         |      |      |      |       |      |      |        |      |      |      |      |        |      |      |      |      |
| 080     | 0128 | 0129 | 0130 | 0131  | 0132 | 0133 | 0134   | 0135 | 0136 | 0137 | 0138 | 0139   | 0140 | 0141 | 0142 | 0143 |
| 090     | 0144 | 0145 | 0146 | 0147  | 0148 | 0149 | 0150   | 0151 | 0152 | 0153 | 0154 | 0155   | 0156 | 0157 | 0158 | 0159 |
| 0A0     | 0160 | 0161 | 0162 | 0163  | 0164 | 0165 | 0166   | 0167 | 0168 | 0169 | 0170 | 0171   | 0172 | 0173 | 0174 | 0175 |
| OBO     | 0176 | 0177 | 0178 | 0179  | 0180 | 0181 | 0182   | 0183 | 0184 | 0185 | 0186 | 0187   | 0188 | 0189 | 0190 | 0191 |
|         |      |      |      |       |      |      |        |      |      |      |      |        |      |      |      |      |
| 0C0     | 0192 | 0193 | 0194 | 0195  | 0196 | 0197 | 0198   | 0199 | 0200 | 0201 | 0202 | 0203   | 0204 | 0205 | 0206 | 0207 |
| 0D0     | 0208 | 0209 | 0210 | 0211  | 0212 | 0213 | 0214   | 0215 | 0216 | 0217 | 0218 | 0219   | 0220 | 0221 | 0222 | 0223 |
| 0E0     | 0224 | 0225 | 0226 | 0227  | 0228 | 0229 | 0230   | 0231 | 0232 | 0233 | 0234 | 0235   | 0236 | 0237 | 0238 | 0239 |
| 0F0     | 0240 | 0241 | 0242 | 0243  | 0244 | 0245 | 0246   | 0247 | 0248 | 0249 | 0250 | 0251   | 0252 | 0253 | 0254 | 0255 |
|         |      |      |      |       |      |      |        |      |      |      |      |        |      |      |      |      |

## HEXADECIMAL-DECIMAL INTEGER CONVERSION (cont.)

|            | 0            | 1            | 2            | 3            | 4            | 5            | 6            | 7            | 8            | 9            | А            | В            | С            | D                     | E            | F            |
|------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|-----------------------|--------------|--------------|
| 100        | 0256         | 0257         | 0258         | 0259         | 0260         | 0261         | 0262         | 0263         | 0264         | 0265         | 0266         | 0267         | 0268         | 0269                  | 0270         | 0271         |
| 110        | 0272         | 0273         | 0274         | 0275         | 0276         | 0277         | 0278         | 0279         | 0280         | 0281         | 0282         | 0283         | 0284         | 0285                  | 0286         | 0287         |
| 120        | 0288         | 0289         | 0290         | 0291         | 0292         | 0293         | 0294         | 0295         | 0296         | 0297         | 0298         | 0299         | 0300         | 0301                  | 0302         | 0303         |
| 130        | 0304         | 0305         | 0306         | 0307         | 0308         | 0309         | 0310         | 0311         | 0312         | 0313         | 0314         | 0315         | 0316         | 0317                  | 0318         | 0319         |
| 140        | 0320         | 0321         | 0322         | 0323         | 0324         | 0325         | 0326         | 0327         | 0328         | 0329         | 0330         | 0331         | 0332         | 0333                  | 0334         | 0335         |
| 150        | 0336         | 0337         | 0338         | 0339         | 0340         | 0341         | 0342         | 0343         | 0344         | 0345         | 0346         | 0347         | 0348         | 0349                  | 0350         | 0351         |
| 160        | 0352         | 0353         | 0354         | 0355         | 0356         | 0357         | 0358         | 0359         | 0360         | 0361         | 0362         | 0363         | 0364         | 0365                  | 0366         | 0367         |
| 170        | 0368         | 0369         | 0370         | 0371         | 0372         | 0373         | 0374         | 0375         | 0376         | 0377         | 0378         | 0379         | 0380         | 0381                  | 0382         | 0383         |
| 180        | 0384         | 0385         | 0386         | 0387         | 0388         | 0389         | 0390         | 0391         | 0392         | 0393         | 0394         | 0395         | 0396         | 0397                  | 0398         | 0399         |
| 190        | 0400         | 0401         | 0402         | 0403         | 0404         | 0405         | 0406         | 0407         | 0408         | 0409         | 0410         | 0411         | 0412         | 0413                  | 0414         | 0415         |
| 1A0<br>1B0 | 0416<br>0432 | 0417<br>0433 | 0418<br>0434 | 0419<br>0435 | 0420<br>0436 | 0421<br>0437 | 0422<br>0438 | 0423<br>0439 | 0424<br>0440 | 0425<br>0441 | 0426<br>0442 | 0427<br>0443 | 0428<br>0444 | 0429<br>0445          | 0430         | 0431         |
|            |              |              |              |              |              |              |              |              |              |              |              |              |              |                       | 0446         | 0447         |
| 1C0        | 0448         | 0449         | 0450         | 0451         | 0452         | 0453         | 0454         | 0455         | 0456         | 0457         | 0458         | 0459         | 0460         | 0461                  | 0462         | 0463         |
| 1D0        | 0464         | 0465         | 0466         | 0467         | 0468         | 0469         | 0470         | 0471         | 0472         | 0473         | 0474         | 0475         | 0476         | 0477                  | 0478         | 0479         |
| 1E0<br>1F0 | 0480<br>0496 | 0481<br>0497 | 0482<br>0498 | 0483<br>0499 | 0484<br>0500 | 0485<br>0501 | 0486<br>0502 | 0487<br>0503 | 0488<br>0504 | 0489<br>0505 | 0490<br>0506 | 0491<br>0507 | 0492<br>0508 | 0493<br>0509          | 0494<br>0510 | 0495<br>0511 |
|            |              |              |              |              |              |              |              | · · · · · ·  |              |              |              |              |              |                       | · · ·        |              |
| 200        | 0512         | 0513         | 0514         | 0515         | 0516         | 0517         | 0518         | 0519         | 0520         | 0521         | 0522         | 0523         | 0524         | 0525                  | 0526         | 0527         |
| 210        | 0528         | 0529         | 0530         | 0531         | 0532         | 0533         | 0534         | 0535         | 0536         | 0537         | 0538         | 0539         | 0540         | 0541                  | 0542         | 0543         |
| 220        | 0544         | 0545         | 0546         | 0547         | 0548         | 0549         | 0550         | 0551         | 0552         | 0553         | 0554         | 0555         | 0556         | 0557                  | 0558         | 0559         |
| 230        | 0560         | 0561         | 0562         | 0563         | 0564         | 0565         | 0566         | 0567         | 0568         | 0569         | 0570         | 0571         | 0572         | 0573                  | 0574         | 0575         |
| 240        | 0576         | 0577         | 0578         | 0579         | 0580         | 0581         | 0582         | 0583         | 0584         | 0585         | 0586         | 0587         | 0588         | 0589                  | 0590         | 0591         |
| 250        | 0592         | 0593         | 0594         | 0595         | 0596         | 0597         | 0598         | 0599         | 0600         | 0601         | 0602         | 0603         | 0604         | 0605                  | 0606         | 0607         |
| 260        | 0608         | 0609         | 0610         | 0611         | 0612         | 0613         | 0614         | 0615         | 0616         | 0617         | 0618         | 0619         | 0620         | 0621                  | 0622         | 0623         |
| 270        | 0624         | 0625         | 0626         | 0627         | 0628         | 0629         | 0630         | 0631         | 0632         | 0633         | 0634         | 0635         | Q636         | 0637                  | 0638         | 0639         |
| 280        | 0640         | 0641         | 0642         | 0643         | 0644         | 0645         | 0646         | 0647         | 0648         | 0649         | 0650         | 0651         | 0652         | 0653                  | 0654         | 0655         |
| 290        | 0656         | 0657         | 0658         | 0659         | 0660         | 0661         | 0662         | 0663         | 0664         | 0665         | 0666         | 0667         | 0668         | 0669                  | 0670         | 0671         |
| 2A0<br>2B0 | 0672<br>0688 | 0673<br>0689 | 0674<br>0690 | 0675<br>0691 | 0676<br>0692 | 0677<br>0693 | 0678<br>0694 | 0679<br>0695 | 0680<br>0696 | 0681<br>0697 | 0682<br>0698 | 0683<br>0699 | 0684<br>0700 | 0685<br>0701          | 0686<br>0702 | 0687<br>0703 |
|            |              |              |              |              |              |              |              |              |              |              |              |              |              |                       |              |              |
| 2C0        | 0704         | 0705         | 0706         | 0707         | 0708         | 0709         | 0710         | 0711         | 0712         | 0713         | 0714         | 0715         | 0716         | 0717                  | 0718         | 0719         |
| 2D0        | 0720         | 0721         | 0722         | 0723         | 0724         | 0725         | 0726         | 0727<br>0743 | 0728         | 0729         | 0730         | 0731         | 0732         | 0733                  | 0734         | 0735         |
| 2E0<br>2F0 | 0736<br>0752 | 0737<br>0753 | 0738<br>0754 | 0739<br>0755 | 0740<br>0756 | 0741<br>0757 | 0742<br>0758 | 0743         | 0744<br>0760 | 0745<br>0761 | 0746<br>0762 | 0747<br>0763 | 0748<br>0764 | 0749<br>0765          | 0750<br>0766 | 0751<br>0767 |
|            |              |              |              |              |              |              |              |              |              |              |              |              |              |                       |              |              |
| 300        | 0768         | 0769         | 0770         | 0771         | 0772         | 0773         | 0774         | 0775         | 0776         | 0777         | 0778         | 0779         | 0780         | 0781                  | 0782         | 0783         |
| 310<br>320 | 0784<br>0800 | 0785<br>0801 | 0786<br>0802 | 0787<br>0803 | 0788<br>0804 | 0789<br>0805 | 0790<br>0806 | 0791<br>0807 | 0792<br>0808 | 0793<br>0809 | 0794<br>0810 | 0795<br>0811 | 0796<br>0812 | 07 <i>9</i> 7<br>0813 | 0798<br>0814 | 0799<br>0815 |
| 330        | 0816         | 0817         | 0818         | 0803         | 0820         | 0821         | 0822         | 0823         | 0824         | 0825         | 0826         | 0827         | 0812         | 0829                  | 0830         | 0831         |
| 340        | 0832         | 0833         | 0834         | 0835         | 0836         | 0837         | 0838         | 0839         | 0840         | 0841         | 0842         | 0843         | 0844         | 0845                  | 0846         | 0847         |
| 350        | 0848         | 0849         | 0850         | 0851         | 0852         | 0853         | 0854         | 0855         | 0856         | 0857         | 0858         | 0859         | 0860         | 0861                  | 0862         | 0863         |
| 360        | 0864         | 0865         | 0866         | 0867         | 0868         | 0869         | 0870         | 0871         | 0872         | 0873         | 0874         | 0875         | 0876         | 0877                  | 0878         | 0879         |
| 370        | 0880         | 0881         | 0882         | 0883         | 0884         | 0885         | 0886         | 0887         | 0888         | 0889         | 0890         | 0891         | 0892         | 0893                  | 0894         | 0895         |
| 380        | 0896         | 0897         | 0898         | 0899         | 0900         |              | 0902         | 0903         | 0904         | 0905         | 0906         | 0907         | 0908         | 0909                  | 0910         | 0911         |
| 390        | 0912         | 0913         | 0914         | 0915         | 0916         | 0917         | 0918         | 0919         | 0920         | 0921         | 0922         | 0923         | 0924         | 0925                  | 0926         | 0927         |
| 3A0        | 0928         | 0929         | 0930         | 0931         | 0932         | 0933         | 0934         | 0935         | 0936         | 0937         | 0938         | 0939         | 0940         | 0941                  | 0942         | 0943         |
| 3B0        | 0944         | 0945         | 0946         | 0947         | 0948         | 0949         | 0950         | 0951         | 0952         | 0953         | 0954         | 0955         | 0956         | 0957                  | 0958         | 0959         |
| 3C0        | 0960         | 0961         | 0962         | 0963         | 0964         | 0965         | 0966         | 0967         | 0968         | 0969         | 0970         | 0971         | 0972         | 0973                  | 0974         | 0975         |
| 3D0        | 0976         | 0977         | 0978         | 0979         | 0980         | 0981         | 0982         | 0983         | 0984         | 0985         | 0986         | 0987         | 0988         | 0989                  | 0990         | 0991         |
| 3E0        | 0992         | 0993         | 0994         | 0995         | 0996         | 0997         | 0998         | 0999         | 1000         | 1001         | 1002         | 1003         | 1004         | 1005                  | 1006         | 1007         |
| 3F0        | 1008         | 1009         | 1010         | 1011         | 1012         | 1013         | 1014         | 1015         | 1016         | 1017         | 1018         | 1019         | 1020         | 1021                  | 1022         | 1023         |

## HEXADECIMAL-DECIMAL INTEGER CONVERSION (cont.)

|   |            | 0            | 1            | 2            | 3            | 4            | 5            | 6            | 7            | 8             | 9            | A            | В            | С            | D            | E            | F            |
|---|------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|---------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|
| ſ | 400        | 1024         | 1025         | 1026         | 1027         | 1028         | 1029         | 1030         | 1031         | 1032          | 1033         | 1034         | 1035         | 1036         | 1037         | 1038         | 1039         |
|   | 410        | 1040         | 1041         | 1042         | 1043         | 1044         | 1045         | 1046         | 1047         | 1048          | 1049         | 1050         | 1051         | 1052         | 1053         | 1054         | 1055         |
|   | 420        | 1056         | 1057         | 1058         | 1059         | 1060         | 1061         | 1062         | 1063         | 1064          | 1065         | 1066         | 1067         | 1068         | 1069         | 1070         | 1071         |
|   | 430        | 1072         | 1073         | 1074         | 1075         | 1076         | 1077         | 1078         | 1079         | 1080          | 1081         | 1082         | 1083         | 1084         | 1085         | 1086         | 1087         |
|   | 440        | 1088         | 1089         | 1090         | 1091         | 1092         | 1093         | 1094         | 1095         | 1096          | 1097         | 1098         | 1099         | 1100         | 1101<br>1117 | 1102<br>1118 | 1103<br>1119 |
|   | 450<br>460 | 1104<br>1120 | 1105<br>1121 | 1106         | 1107         | 1108<br>1124 | 1109<br>1125 | 1110<br>1126 | 1111<br>1127 | 1112          | 1113         | 1114<br>1130 | 1115<br>1131 | 1116<br>1132 | 1133         | 1134         | 1135         |
| ľ | 400        | 1120         | 1137         | 1138         | 1139         | 1124         | 1125         | 1142         | 1143         | 1128          | 1145         | 1146         | 1147         | 1148         | 1149         | 1150         | 1151         |
|   |            |              | 11.57        | 1150         | 1137         | 1140         |              |              |              | 1144          | 1145         | 1140         |              |              |              |              |              |
|   | 480        | 1152         | 1153         | 1154         | 1155         | 1156         | 1157         | 1158         | 1159         | 1160          | 1161         | 1162         | 1163         | 1164         | 1165         | 1166         | 1167         |
|   | 490        | 1168         | 1169         | 1170         | 1171         | 1172         | 1173         | 1174         | 1175         | 1176          | 1177         | 1178         | 1179         | 1180         | 1181         | 1182         | 1183         |
|   | 4A0        | 1184         | 1185         | 1186         | 1187         | 1188         | 1189         | 1190         | 1191         | 1192          | 1193         | 1194         | 1195         | 1196         | 1197         | 1198         | 1199         |
|   | 4B0        | 1200         | 1201         | 1202         | 1203         | 1204         | 1205         | 1206         | 1207         | 1208          | 1209         | 1210         | 1211         | 1212         | 1213         | 1214         | 1215         |
|   | 4C0        | 1216         | 1217         | 1218         | 1219         | 1220         | 1221         | 1222         | 1223         | 1224          | 1225         | 1226         | 1227         | 1228         | 1229         | 1230         | 1231         |
|   | 4D0        | 1232         | 1233         | 1234         | 1235         | 1236         | 1237         | 1238         | 1239         | 1240          | 1241         | 1242         | 1243         | 1244         | 1245         | 1246         | 1247         |
|   | 4E0        | 1248         | 1249         | 1250         | 1251         | 1252         | 1253         | 1254         | 1255         | 1256          | 1257         | 1258         | 1259         | 1260         | 1261         | 1262         | 1263         |
|   | 4F0        | 1264         | 1265         | 1266         | 1267         | 1268         | 1269         | 1270         | 1271         | 1272          | 1273         | 1274         | 1275         | 1276         | 1277         | 1278         | 1279         |
|   | 500        | 1280         | 1281         | 1282         | 1283         | 1284         | 1285         | 1286         | 1287         | 1288          | 1289         | 1290         | 1291         | 1292         | 1293         | 1294         | 1295         |
|   | 510        | 1296         | 1297         | 1298         | 1299         | 1300         | 1301         | 1302         | 1303         | 1304          | 1305         | 1306         | 1307         | 1308         | 1309         | 1310         | 1311         |
|   | 520        | 1312         | 1313         | 1314         | 1315         | 1316         | 1317         | 1318         | 1319         | 1320          | 1321         | 1322         | 1323         | 1324         | 1325         | 1326         | 1327         |
|   | 530        | 1328         | 1329         | 1330         | 1331         | 1332         | 1333         | 1334         | 1335         | 1336          | 1337         | 1338         | 1339         | 1340         | 1341         | 1342         | 1343         |
|   | 540        | 1344         | 1345         | 1346         | 1347         | 1348         | 1349         | 1350         | 1351         | 1 <b>3</b> 52 | 1353         | 1354         | 1355         | 1356         | 1357         | 1358         | 1359         |
|   | 550        | 1360         | 1361         | 1362         | 1363         | 1364         | 1365         | 1366         | 1367         | 1368          | 1369         | 1370         | 1371         | 1372         | 1373         | 1374         | 1375         |
|   | 560        | 1376         | 1377         | 1378         | 1379         | 1380         | 1381         | 1382         | 1383         | 1384          | 1385         | 1386         | 1387         | 1388         | 1389         | 1390         | 1391         |
|   | 570        | 1392         | 1393         | 1394         | 1395         | 1396         | 1397         | 1398         | 1399         | 1400          | 1401         | 1402         | 1403         | 1404         | 1405         | 1406         | 1407         |
|   | 580        | 1408         | 1409         | 1410         | 1411         | 1412         | 1413         | 1414         | 1415         | 1416          | 1417         | 1418         | 1419         | 1420         | 1421         | 1422         | 1423         |
|   | 590        | 1424         | 1425         | 1426         | 1427         | 1428         | 1429         | 1430         | 1431         | 1432          | 1433         | 1434         | 1435         | 1436         | 1437         | 1438         | 1439         |
|   | 5A0        | 1440         | 1441         | 1442         | 1443         | 1444         | 1445         | 1446         | 1447         | 1448          | 1449         | 1450         | 1451         | 1452         | 1453         | 1454         | 1455         |
|   | 5B0        | 1456         | 1457         | 1458         | 1459         | 1460         | 1461         | 1462         | 1463         | 1464          | 1465         | 1466         | 1467         | 1468         | 1469         | 1470         | 1471         |
|   | 5C0        | 1472         | 1473         | 1474         | 1475         | 1476         | 1477         | 1478         | 1479         | 1480          | 1481         | 1482         | 1483         | 1484         | 1485         | 1486         | 1487         |
|   | 5D0        | 1488         | 1489         | 1490         | 1491         | 1492         | 1493         | 1494         | 1495         | 1496          | 1497         | 1498         | 1499         | 1500         | 1501         | 1502         | 1503         |
|   | 5E0        | 1504         | 1505         | 1506         | 1507         | 1508         | 1509         | 1510         | 1511         | 1512          | 1513         | 1514         | 1515         | 1516         | 1517         | 1518         | 1519         |
|   | 5F0        | 1520         | 1521         | 1522         | 1523         | 1524         | 1525         | 1526         | 1527         | 1528          | 1529         | 1530         | 1531         | 1532         | 1533         | 1534         | 1535         |
|   | 600        | 1536         | 1537         | 1538         | 1539         | 1540         | 1541         | 1542         | 1543         | 1544          | 1545         | 1546         | 1547         | 1548         | 1549         | 1550         | 1551         |
|   | 610<br>620 | 1552         | 1553<br>1569 | 1554<br>1570 | 1555<br>1571 | 1556<br>1572 | 1557<br>1573 | 1558<br>1574 | 1559<br>1575 | 1560<br>1576  | 1561<br>1577 | 1562<br>1578 | 1563<br>1579 | 1564<br>1580 | 1565<br>1581 | 1566<br>1582 | 1567<br>1583 |
|   | 630        | 1584         | 1585         | 1586         | 1587         | 1588         | 1589         | 1590         | 1575         | 1578          | 1593         | 1594         | 1595         | 1580         | 1597         | 1598         | 1599         |
|   | 640        | 1600         | 1601         | 1602         | 1603         | 1604         | 1605         | 1606         | 1607         | 1608          | 1609         | 1610         | 1611         | 1612         | 1613         | 1614         | 1615         |
|   | 650        | 1616         | 1617         | 1618         | 1619         | 1620         | 1605         | 1622         | 1623         | 1608          | 1625         | 1626         | 1627         | 1628         | 1613         | 1630         | 1631         |
|   | 660        | 1632         | 1633         | 1634         | 1635         | 1636         | 1637         | 1638         | 1639         | 1640          | 1641         | 1642         | 1643         | 1644         | 1645         | 1646         | 1647         |
|   | 670        | 1648         | 1649         | 1650         | 1651         | 1652         | 1653         | 1654         | 1655         | 1656          | 1657         | 1658         | 1659         | 1660         | 1661         | 1662         | 1663         |
|   | 680        | 1664         | 1665         | 1666         | 1667         | 1668         | 1669         | 1670         | 1671         | 1672          | 1673         | 1674         | 1675         | 1676         | 1677         | 1678         | 1679         |
|   | 690        | 1680         | 1681         | 1682         | 1683         | 1684         | 1685         | 1686         | 1687         | 1688          | 1689         | 1690         | 1691         | 1692         | 1693         | 1694         | 1695         |
|   | 6A0        | 1696         | 1697         | 1698         | 1699         | 1700         | 1701         | 1702         | 1703         | 1704          | 1705         | 1706         | 1707         | 1708         | 1709         | 1710         | 1711         |
|   | 6B0        | 1712         | 1713         | 1714         | 1715         | 1716         | 1717         | 1718         | 1719         | 1720          | 1721         | 1722         | 1723         | 1724         | 1725         | 1726         | 1727         |
|   | 6C0        | 1728         | 1729         | 1730         | 1731         | 1732         | 1733         | 1734         | 1735         | 1736          | 1737         | 1738         | 1739         | 1740         | 1741         | 1742         | 1743         |
|   | 6D0        | 1744         | 1745         | 1746         | 17,47        | 1748         | 1749         | 1750         | 1751         | 1752          | 1753         | 1754         | 1755         | 1756         | 1757         | 1758         | 1759         |
|   | 6E0        | 1760         | 1761         | 1762         | 1763         | 1764         | 1765         | 1766         | 1767         | 1768          | 1769         | 1770         | 1771         | 1772         | 1773         | 1774         | 1775         |
|   | 6F0        | 1776         | 1777         | 1778         | 1779         | 1780         | 1781         | 1782         | 1783         | 1784          | 1785         | 1786         | 1787         | 1788         | 1789         | 1790         | 1791         |

HEXADECIMAL-DECIMAL INTEGER CONVERSION (cont.)

|            | 0            | 1            | 2            | 3            | 4            | 5            | 6            | 7            | 8            | 9            | A            | В            | С            | D            | E            | F            |
|------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|
| 700        | 1792         | 1793         | 1794         | 1795         | 1796         | 1797         | 1798         | 1799         | 1800         | 1801         | 1802         | 1803         | 1804         | 1805         | 1806         | 1807         |
| 710        | 1808         | 1809         | 1810         | 1811         | 1812         | 1813         | 1814         | 1815         | 1816         | 1817         | 1818         | 1819         | 1820         | 1821         | 1822         | 1823         |
| 720        | 1824         | 1825         | 1826         | 1827         | 1828         | 1829         | 1830         | 1831         | 1832         | 1833         | 1834         | 1835         | 1836         | 1837         | 1838         | 1839         |
| 730        | 1840         | 1841         | 1842         | 1843         | 1844         | 1845         | 1846         | 1847         | 1848         | 1849         | 1850         | 1851         | 1852         | 1853         | 1854         | 1855         |
| 740        | 1856         | 1857         | 1858         | 1859         | 1860         | 1861         | 1862         | 1863         | 1864         | 1865         | 1866         | 1867         | 1868         | 1869         | 1870         | 1871         |
| 750        | 1872         | 1873         | 1874         | 1875         | 1876         | 1877         | 1878         | 1879         | 1880         | 1881         | 1882         | 1883         | 1884         | 1885         | 1886         | 1887         |
| 760        | 1888         | 1889         | 1890         | 1891         | 1892         | 1893         | 1894         | 1895         | 18%          | 1897         | 1898         | 1899         | 1900         | 1901         | 1902         | 1903         |
| 770        | 1904         | 1905         | 1906         | 1907         | 1908         | 1909         | 1910         | 1911         | 1912         | 1913         | 1914         | 1915         | 1916         | 1917         | 1918         | 1919         |
| 780        | 1920         | 1921         | 1922         | 1923         | 1924         | 1925         | 1926         | 1927         | 1928         | 1929         | 1930         | 1931         | 1932         | 1933         | 1934         | 1935         |
| 790        | 1936         | 1937         | 1938         | 1939         | 1940         | 1941         | 1942         | 1943         | 1944         | 1945         | 1946         | 1947         | 1948         | 1949         | 1950         | 1951         |
| 7A0        | 1952<br>1968 | 1953         | 1954         | 1955         | 1956         | 1957         | 1958         | 1959         | 1960         | 1961         | 1962         | 1963         | 1964         | 1965         | 1966         | 1967         |
| 7B0        | 1908         | 1969         | 1970         | 1971         | 1972         | 1973         | 1974         | 1975         | 1976         | 1977         | 1978         | 1979         | 1980         | 1981         | 1982         | 1983         |
| 7C0        | 1984         | 1985         | 1986         | 1987         | 1988         | 1989         | 1990         | 1991         | 1992         | 1993         | 1994         | 1995         | 1996         | 1997         | 1998         | 1999         |
| 7D0        | 2000         | 2001         | 2002         | 2003         | 2004         | 2005         | 2006         | 2007         | 2008         | 2009         | 2010         | 2011         | 2012         | 2013         | 2014         | 2015         |
| 7E0        | 2016         | 2017         | 2018         | 2019         | 2020         | 2021         | 2022         | 2023         | 2024         | 2025         | 2026         | 2027         | 2028         | 2029         | 2030         | 2031         |
| 7F0        | 2032         | 2033         | 2034         | 2035         | 2036         | 2037         | 2038         | 2039         | 2040         | 2041         | 2042         | 2043         | 2044         | 2045         | 2046         | 2047         |
| 800        | 2048         | 2049         | 2050         | 2051         | 2052         | 2053         | 2054         | 2055         | 2056         | 2057         | 2058         | 2059         | 2060         | 2061         | 2062         | 2063         |
| 810        | 2064         | 2065         | 2066         | 2067         | 2068         | 2069         | 2070         | 2071         | 2072         | 2073         | 2074         | 2075         | 2076         | 2077         | 2078         | 2079         |
| 820        | 2080         | 2081         | 2082         | 2083         | 2084         | 2085         | 2086         | 2087         | 2088         | 2089         | 2090         | 2091         | 2092         | 2093         | 2094         | 2095         |
| 830        | 2096         | 2097         | 2098         | 2099         | 2100         | 2101         | 2102         | 2103         | 2104         | 2105         | 2106         | 2107         | 2108         | 2109         | 2110         | 2111         |
| 840        | 2112         | 2113         | 2114         | 2115         | 21 16        | 2117         | 2118         | 2119         | 2120         | 2121         | 2122         | 2123         | 2124         | 2125         | 2126         | 2127         |
| 850        | 2128         | 2129         | 2130         | 2131         | 2132         | 2133         | 2134         | 2135         | 2136         | 2137         | 2138         | 2139         | 2140         | 2141         | 2142         | 2143         |
| 860        | 2144         | 2145         | 2146         | 2147         | 2148         | 2149         | 2150         | 2151         | 2152         | 2153         | 2154         | 2155         | 2156         | 2157         | 2158         | 2159         |
| 870        | 2160         | 2161         | 2162         | 2163         | 2164         | 2165         | 2166         | 2167         | 2168         | 2169         | 2170         | 2171         | 2172         | 2173         | 2174         | 2175         |
| 880        | 2176         | 2177         | 2178         | 2179         | 2180         | 2181         | 2182         | 2183         | 2184         | 2185         | 2186         | 2187         | 2188         | 2189         | 2190         | 2191         |
| 890        | 2192         | 2193         | 2194         | 2195         | 2196         | 2197         | 2198         | 2199         | 2200         | 2201         | 2202         | 2203         | 2204         | 2205         | 2206         | 2207         |
| 8A0<br>8B0 | 2208<br>2224 | 2209<br>2225 | 2210<br>2226 | 2211<br>2227 | 2212<br>2228 | 2213<br>2229 | 2214<br>2230 | 2215<br>2231 | 2216<br>2232 | 2217<br>2233 | 2218<br>2234 | 2219<br>2235 | 2220<br>2236 | 2221<br>2237 | 2222<br>2238 | 2223         |
| ODU        | 2224         | LLLJ         | 2220         | /            | 2220         | 2227         | 2230         | 2231         | 2232         | 2233         | 2234         | 2235         | 2230         | 223/         | 2230         | 2239         |
| 8C0        | 2240         | 2241         | 2242         | 2243         | 2244         | 2245         | 2246         | 2247         | 2248         | 2249         | 2250         | 2251         | 2252         | 2253         | 2254         | 2255         |
| 8D0        | 2256         | 2257         | 2258         | 2259         | 2260         | 2261         | 2262         | 2263         | 2264         | 2265         | 2266         | 2267         | 2268         | 2269         | 2270         | 2271         |
| 8E0<br>8F0 | 2272<br>2288 | 2273         | 2274         | 2275         | 2276         | 2277         | 2278         | 2279         | 2280         | 2281         | 2282         | 2283         | 2284         | 2285         | 2286         | 2287         |
| 850        | 2288         | 2289         | 2290         | 2291         | 2292         | 2293         | 2294         | 2295         | 2296         | 2297         | 2298         | 2299         | 2300         | 2301         | 2302         | 2303         |
| 900<br>910 | 2304<br>2320 | 2305<br>2321 | 2306<br>2322 | 2307<br>2323 | 2308<br>2324 | 2309<br>2325 | 2310<br>2326 | 2311<br>2327 | 2312<br>2328 | 2313<br>2329 | 2314<br>2330 | 2315<br>2331 | 2316<br>2332 | 2317<br>2333 | 2318<br>2334 | 2319<br>2335 |
| 920        | 2336         | 2327         | 2338         | 2325         | 2324         | 2341         | 2342         | 2343         | 2328         | 2345         | 2330         | 2331         | 2332         | 2335         | 2354         | 2355         |
| 930        | 2352         | 2353         | 2354         | 2355         | 2356         | 2357         | 2358         | 2359         | 2360         | 2361         | 2362         | 2363         | 2364         | 2365         | 2366         | 2367         |
| 940        | 2368         | 2369         | 2370         | 2371         | 2372         | 2373         | 2374         | 2375         | 2376         | 2377         | 2378         | 2379         | 2380         | 2381         | 2382         | 2383         |
| 950        | 2384         | 2385         | 2386         | 2387         | 2388         | 2389         | 2390         | 2391         | 2392         | 2393         | 2394         | 2395         | 2396         | 2397         | 2398         | 2399         |
| 960        | 2400         | 2401         | 2402         | 2403         | 2404         | 2405         | 2406         | 2407         | 2408         | 2409         | 2410         | 2411         | 2412         | 2413         | 2414         | 2415         |
| 970        | 2416         | 2417         | 2418         | 2419         | 2420         | 2421         | 2422         | 2423         | 2424         | 2425         | 2426         | 2427         | 2428         | 2429         | 2430         | 2431         |
| 980        | 2432         | 2433         | 2434         | 2435         | 2436         | 2437         | 2438         | 2439         | 2440         | 2441         | 2442         | 2443         | 2444         | 2445         | 2446         | 2447         |
| 990        | 2448         | 2449         | 2450         | 2451         | 2452         | 2453         | 2454         | 2455         | 2456         | 2457         | 2458         | 2459         | 2460         | 2461         | 2462         | 2463         |
| 9A0        | 2464         | 2465         | 2466         | 2467         | 2468         | 2469         | 2470         | 2471         | 2472         | 2473         | 2474         | 2475         | 2476         | 2477         | 2478         | 2479         |
| 9B0        | 2480         | 2481         | 2482         | 2483         | 2484         | 2485         | 2486         | 2487         | 2488         | 2489         | 2490         | 2491         | 2492         | 2493         | 2494         | 2495         |
| 900        | 2496         | 2497         | 2498         | 2499         | 2500         | 2501         | 2502         | 2503         | 2504         | 2505         | 2506         | 2507         | 2508         | 2509         | 2510         | 2511         |
| 9D0        | 2512         | 2513         | 2514         | 2515         | 2516         | 2517         | 2518         | 2519         | 2520         | 2521         | 2522         | 2523         | 2524         | 2525         | 2526         | 2527         |
| 9E0        | 2528         | 2529         | 2530         | 2531         | 2532         | 2533         | 2534         | 2535         | 2536         | 2537         | 2538         | 2539         | 2540         | 2541         | 2542         | 2543         |
| 9F0        | 2544         | 2545         | 2546         | 2547         | 2548         | 2549         | 2550         | 2551         | 2552         | 2553         | 2554         | 2555         | 2556         | 2557         | 2558         | 2559         |

## HEXADECIMAL-DECIMAL INTEGER CONVERSION (cont.)

|       |      |      |      |        |      |      |       |      |      |      |      |      |      |      | · · · |      |
|-------|------|------|------|--------|------|------|-------|------|------|------|------|------|------|------|-------|------|
|       | 0    | 1    | 2    | 3      | 4    | 5    | 6     | 7    | 8    | 9    | А    | В    | С    | D    | E     | F    |
| A00   | 2560 | 2561 | 2562 | 2563   | 2564 | 2565 | 2566  | 2567 | 2568 | 2569 | 2570 | 2571 | 2572 | 2573 | 2574  | 2575 |
| A10   | 2576 | 2577 | 2578 | 2579   | 2580 | 2581 | 2582  | 2583 | 2584 | 2585 | 2586 | 2587 | 2588 | 2589 | 2590  | 2591 |
| A20   | 2592 | 2593 | 2594 | 2595   | 2596 | 2597 | 2598  | 2599 | 2600 | 2601 | 2602 | 2603 | 2604 | 2605 | 2606  | 2607 |
| A30   | 2608 | 2609 | 2610 | 2611   | 2612 | 2613 | 2614  | 2615 | 2616 | 2617 | 2618 | 2619 | 2620 | 2621 | 2622  | 2623 |
| A40   | 2624 | 2625 | 2626 | 2627   | 2628 | 2629 | 2630  | 2631 | 2632 | 2633 | 2634 | 2635 | 2636 | 2637 | 2638  | 2639 |
| A50   | 2640 | 2641 | 2642 | 2643   | 2644 | 2645 | 2646  | 2647 | 2648 | 2649 | 2650 | 2651 | 2652 | 2653 | 2654  | 2655 |
| A60   | 2656 | 2657 | 2658 | 2659   | 2660 | 2661 | 2662  | 2663 | 2664 | 2665 | 2666 | 2667 | 2668 | 2669 | 2670  | 2671 |
| A70   | 2672 | 2673 | 2674 | 2675   | 2676 | 2677 | 2678  | 2679 | 2680 | 2681 | 2682 | 2683 | 2684 | 2685 | 2686  | 2687 |
| A80   | 2688 | 2689 | 2690 | 2691   | 2692 | 2693 | 2694  | 2695 | 2696 | 2697 | 2698 | 2699 | 2700 | 2701 | 2702  | 2703 |
| A90   | 2704 | 2705 | 2706 | 2707   | 2708 | 2709 | 2710  | 2711 | 2712 | 2713 | 2714 | 2715 | 2716 | 2717 | 2718  | 2719 |
| AA0   | 2720 | 2721 | 2722 | 2723   | 2724 | 2725 | 2726  | 2727 | 2728 | 2729 | 2730 | 2731 | 2732 | 2733 | 2734  | 2735 |
| ABO   | 2736 | 2737 | 2738 | 2739   | 2740 | 2741 | 2742  | 2743 | 2744 | 2745 | 2746 | 2747 | 2748 | 2749 | 2750  | 2751 |
| AC0   | 2752 | 2753 | 2754 | 2755   | 2756 | 2757 | 2758  | 2759 | 2760 | 2761 | 2762 | 2763 | 2764 | 2765 | 2766  | 2767 |
| AD0   | 2768 | 2769 | 2770 | 2771   | 2772 | 2773 | 2774  | 2775 | 2776 | 2777 | 2778 | 2779 | 2780 | 2781 | 2782  | 2783 |
| AE0   | 2784 | 2785 | 2786 | 2787   | 2788 | 2789 | 2790  | 2791 | 2792 | 2793 | 2794 | 2795 | 2796 | 2797 | 2798  | 2799 |
| AF0   | 2800 | 2801 | 2802 | 2803   | 2804 | 2805 | 2806  | 2807 | 2808 | 2809 | 2810 | 2811 | 2812 | 2813 | 2814  | 2815 |
| BOO   | 2816 | 2817 | 2818 | 2819   | 2820 | 2821 | 2822  | 2823 | 2824 | 2825 | 2826 | 2827 | 2828 | 2829 | 2830  | 2831 |
| B10   | 2832 | 2833 | 2834 | 2835   | 2836 | 2837 | 2838  | 2839 | 2840 | 2841 | 2842 | 2843 | 2844 | 2845 | 2846  | 2847 |
| B20   | 2848 | 2849 | 2850 | 2851   | 2852 | 2853 | 2854  | 2855 | 2856 | 2857 | 2858 | 2859 | 2860 | 2861 | 2862  | 2863 |
| B30   | 2864 | 2865 | 2866 | 2867   | 2868 | 2869 | 2870  | 2871 | 2872 | 2873 | 2874 | 2875 | 2876 | 2877 | 2878  | 2879 |
| B40   | 2880 | 2881 | 2882 | 2883   | 2884 | 2885 | 2886  | 2887 | 2888 | 2889 | 2890 | 2891 | 2892 | 2893 | 2894  | 2895 |
| B50   | 2896 | 2897 | 2898 | 2899   | 2900 | 2901 | 2902  | 2903 | 2904 | 2905 | 2906 | 2907 | 2908 | 2909 | 2910  | 2911 |
| B60   | 2912 | 2913 | 2914 | 2915   | 2916 | 2917 | 2918  | 2919 | 2920 | 2921 | 2922 | 2923 | 2924 | 2925 | 2926  | 2927 |
| B70   | 2928 | 2929 | 2930 | 2931   | 2932 | 2933 | 2934  | 2935 | 2936 | 2937 | 2938 | 2939 | 2940 | 2941 | 2942  | 2943 |
| - B80 | 2944 | 2945 | 2946 | 2947   | 2948 | 2949 | 2950  | 2951 | 2952 | 2953 | 2954 | 2955 | 2956 | 2957 | 2958  | 2959 |
| B90   | 2960 | 2961 | 2962 | 2963   | 2964 | 2965 | 2966  | 2967 | 2968 | 2969 | 2970 | 2971 | 2972 | 2973 | 2974  | 2975 |
| BAO   | 2976 | 2977 | 2978 | 2979   | 2980 | 2981 | 2982  | 2983 | 2984 | 2985 | 2986 | 2987 | 2988 | 2989 | 2990  | 2991 |
| BBO   | 2992 | 2993 | 2994 | 2995   | 2996 | 2997 | 2998  | 2999 | 3000 | 3001 | 3002 | 3003 | 3004 | 3005 | 3006  | 3007 |
| BCO   | 3008 | 3009 | 3010 | 3011   | 3012 | 3013 | 3014  | 3015 | 3016 | 3017 | 3018 | 3019 | 3020 | 3021 | 3022  | 3023 |
| BDO   | 3024 | 3025 | 3026 | 3027   | 3028 | 3029 | 3030  | 3031 | 3032 | 3033 | 3034 | 3035 | 3036 | 3037 | 3038  | 3039 |
| BEO   | 3040 | 3041 | 3042 | 3043   | 3044 | 3045 | 3046  | 3047 | 3048 | 3049 | 3050 | 3051 | 3052 | 3053 | 3054  | 3055 |
| BFO   | 3056 | 3057 | 3058 | 3059   | 3060 | 3061 | 3062  | 3063 | 3064 | 3065 | 3066 | 3067 | 3068 | 3069 | 3070  | 3071 |
| C00   | 3072 | 3073 | 3074 | 3075   | 3076 | 3077 | 307.8 | 3079 | 3080 | 3081 | 3082 | 3083 | 3084 | 3085 | 3086  | 3087 |
| C10   | 3088 | 3089 | 3090 | 3091   | 3092 | 3093 | 3094  | 3095 | 3096 | 3097 | 3098 | 3099 | 3100 | 3101 | 3102  | 3103 |
| C20   | 3104 | 3105 | 3106 | 3107   | 3108 | 3109 | 3110  | 3111 | 3112 | 3113 | 3114 | 3115 | 3116 | 3117 | 3118  | 3119 |
| C30   | 3120 | 3121 | 3122 | 3123   | 3124 | 3125 | 3126  | 3127 | 3128 | 3129 | 3130 | 3131 | 3132 | 3133 | 3134  | 3135 |
| C40   | 3136 | 3137 | 3138 | 3139   | 3140 | 3141 | 3142  | 3143 | 3144 | 3145 | 3146 | 3147 | 3148 | 3149 | 3150  | 3151 |
| C50   | 3152 | 3153 | 3154 | 3155   | 3156 | 3157 | 3158  | 3159 | 3160 | 3161 | 3162 | 3163 | 3164 | 3165 | 3166  | 3167 |
| C60   | 3168 | 3169 | 3170 | 3171   | 3172 | 3173 | 3174  | 3175 | 3176 | 3177 | 3178 | 3179 | 3180 | 3181 | 3182  | 3183 |
| C70   | 3184 | 3185 | 3186 | 3187   | 3188 | 3189 | 3190  | 3191 | 3192 | 3193 | 3194 | 3195 | 3196 | 3197 | 3198  | 3199 |
| C80   | 3200 | 3201 | 3202 | 3203 · | 3204 | 3205 | 3206  | 3207 | 3208 | 3209 | 3210 | 3211 | 3212 | 3213 | 3214  | 3215 |
| C 90  | 3216 | 3217 | 3218 | 3219   | 3220 | 3221 | 3222  | 3223 | 3224 | 3225 | 3226 | 3227 | 3228 | 3229 | 3230  | 3231 |
| CA0   | 3232 | 3233 | 3234 | 3235   | 3236 | 3237 | 3238  | 3239 | 3240 | 3241 | 3242 | 3243 | 3244 | 3245 | 3246  | 3247 |
| СВО   | 3248 | 3249 | 3250 | 3251   | 3252 | 3253 | 3254  | 3255 | 3256 | 3257 | 3258 | 3259 | 3260 | 3261 | 3262  | 3263 |
| CC0   | 3264 | 3265 | 3266 | 3267   | 3268 | 3269 | 3270  | 3271 | 3272 | 3273 | 3274 | 3275 | 3276 | 3277 | 3278  | 3279 |
| C D0  | 3280 | 3281 | 3282 | 3283   | 3284 | 3285 | 3286  | 3287 | 3288 | 3289 | 3290 | 3291 | 3292 | 3293 | 3294  | 3295 |
| CEO   | 3296 | 3297 | 3298 | 3299   | 3300 | 3301 | 3302  | 3303 | 3304 | 3305 | 3306 | 3307 | 3308 | 3309 | 3310  | 3311 |
| CF0   | 3312 | 3313 | 3314 | 3315   | 3316 | 3317 | 3318  | 3319 | 3320 | 3321 | 3322 | 3323 | 3324 | 3325 | 3326  | 3327 |
| L     |      |      |      |        |      |      |       |      |      |      |      |      |      |      |       |      |

HEXADECIMAL-DECIMAL INTEGER CONVERSION (cont.)

|            | 0            | 1            | 2            | 3            | 4            | 5            | 6            | 7            | 8            | 9            | A            | В            | с            | D            | E            | F            |
|------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|
| D00        | 3328         | 3329         | 3330         | 3331         | 3332         | 3333         | 3334         | 3335         | 3336         | 3337         | 3338         | 3339         | 3340         | 3341         | 3342         | 3343         |
| D10        | 3344         | 3345         | 3346         | 3347         | 3348         | 3349         | 3350         | 3351         | 3352         | 3353         | 3354         | 3355         | 3356         | 3357         | 3358         | 3359         |
| D20        | 3360         | 3361         | 3362         | 3363         | 3364         | 3365         | 3366         | 3367         | 3368         | 3369         | 3370         | 3371         | 3372         | 3373         | 3374         | 3375         |
| D30        | 3376         | 3377         | 3378         | 3379         | 3380         | 3381         | 3382         | 3383         | 3384         | 3385         | 3386         | 3387         | 3388         | 3389         | 3390         | 3391         |
| D40        | 3392         | 3393         | 3394         | 3395         | 3396         | 3397         | 3398         | 3399         | 3400         | 3401         | 3402         | 3403         | 3404         | 3405         | 3406         | 3407         |
| D50        | 3408         | 3409         | 3410         | 3411         | 3412         | 3413         | 3414         | 3415         | 3416         | 3417         | 3418         | 3419         | 3420         | 3421         | 3422         | 3423         |
| D60        | 3424         | 3425         | 3426         | 3427         | 3428         | 3429         | 3430         | 3431         | 3432         | 3433         | 3434         | 3435         | 3436         | 3437         | 3438         | 3439         |
| D70        | 3440         | 3441         | 3442         | 3443         | 3444         | 3445         | 3446         | 3447         | 3448         | 3449         | 3450         | 3451         | 3452         | 3453         | 3454         | 3455         |
| D80        | 3456         | 3457         | 3458         | 3459         | 3460         | 3461         | 3462         | 3463         | 2444         | 3465         | 3466         | 3467         | 3468         | 3469         | 3470         | 3471         |
| D90        | 3450         | 3457         | 3458<br>3474 | 3439         | 3460         | 3477         | 3402<br>3478 | 3403<br>3479 | 3464<br>3480 | 3485         | 3482         | 3487<br>3483 | 3488         | 3469         | 3470         | 3487         |
| DAO        | 3488         | 3489         | 3490         | 3491         | 3492         | 3493         | 3494         | 3495         | 3496         | 3497         | 3498         | 3499         | 3500         | 3501         | 3502         | 3503         |
| DBO        | 3504         | 3505         | 3506         | 3507         | 3508         | 3509         | 3510         | 3511         | 3512         | 3513         | 3514         | 3515         | 3516         | 3517         | 3518         | 3519         |
|            |              |              |              |              |              |              | -            |              |              |              |              |              |              |              |              |              |
| DC0        | 3520         | 3521         | 3522         | 3523         | 3524         | 3525         | 3526         | 3527         | 3528         | 3529         | 3530         | 3531         | 3532         | 3533         | 3534         | 3535         |
| DDO        | 3536         | 3537         | 3538         | 3539         | 3540         | 3541         | 3542         | 3543         | 3544         | 3545         | 3546         | 3547         | 3548         | 3549         | 3550         | 3551         |
| DEO        | 3552         | 3553         | 3554         | 3555         | 3556         | 3557         | 3558         | 3559         | 3560         | 3561         | 3562         | 3563         | 3564         | 3565         | 3566         | 3567         |
| DF0        | 3568         | 3569         | 3570         | 3571         | 3572         | 3573         | 3574         | 3575         | 3576         | 3577         | 3578         | 3579         | 3580         | 3581         | 3582         | 3583         |
| EOO        | 3584         | 3585         | 3586         | 3587         | 3588         | 3589         | 3590         | 3591         | 3592         | 3593         | 3594         | 3595         | 3596         | 3597         | 3598         | 3599         |
| E10        | 3600         | 3601         | 3602         | 3603         | 3604         | 3605         | 3606         | 3607         | 3608         | 3609         | 3610         | 3611         | 3612         | 3613         | 3614         | 3615         |
| E20        | 3616         | 3617         | 3618         | 3619         | 3620         | 3621         | 3622         | 3623         | 3624         | 3625         | 3626         | 3627         | 3628         | 3629         | 3630         | 3631         |
| E30        | 3632         | 3633         | 3634         | 3635         | 3636         | 3637         | 3638         | 3639         | 3640         | 3641         | 3642         | 3643         | 3644         | 3645         | 3646         | 3647         |
| 540        | 2/40         | 2/40         | 2/50         | 2/51         | 2452         | 2/52         | 2/54         | 2/55         | 2/5/         | 2457         | 2/50         | 2450         | 2/40         | 2//1         | 2412         | 24/2         |
| E40<br>E50 | 3648<br>3664 | 3649<br>3665 | 3650<br>3666 | 3651<br>3667 | 3652<br>3668 | 3653<br>3669 | 3654<br>3670 | 3655<br>3671 | 3656<br>3672 | 3657<br>3673 | 3658<br>3674 | 3659<br>3675 | 3660<br>3676 | 3661<br>3677 | 3662<br>3678 | 3663<br>3679 |
| E60        | 3680         | 3681         | 3682         | 3683         | 3684         | 3685         | 3686         | 3687         | 3688         | 3689         | 3690         | 3691         | 3692         | 3693         | 3694         | 3695         |
| E70        | 3696         | 3697         | 3698         | 3699         | 3700         | 3701         | 3702         | 3703         | 3704         | 3705         | 3706         | 3707         | 3708         | 3709         | 3710         | 3711         |
|            |              |              | ••••         | ••••         |              |              | •••••=       |              |              |              |              | •••••        |              |              |              | •••••        |
| E80        | 3712         | 3713         | 3714         | 3715         | 3716         | 3717         | 3718         | 3719         | 3720         | 3721         | 3722         | 3723         | 3724         | 3725         | 3726         | 3727         |
| E90        | 3728         | 3729         | 3730         | 3731         | 3732         | 3733         | 3734         | 3735         | 3736         | 3737         | 3738         | 3739         | 3740         | 3741         | 3742         | 3743         |
| EA0        | 3744         | 3745         | 3746         | 3747         | 3748         | 3749         | 3750         | 3751         | 3752         | 3753         | 3754         | 3755         | 3756         | 3757         | 3758         | 3759         |
| EBO        | 3760         | 376)         | 3762         | 3763         | 3764         | 3765         | 3766         | 3767         | 3768         | 3769         | 3770         | 3771         | 3772         | 3773         | 3774         | 3775         |
| EC0        | 3776         | 3777         | 3778         | 3779         | 3780         | 3781         | 3782         | 3783         | 3784         | 3785         | 3786         | 3787         | 3788         | 3789         | 3790         | 3791         |
| EDO        | 3792         | 3793         | 3794         | 3795         | 3796         | 3797         | 3798         | 3799         | 3800         | 3801         | 3802         | 3803         | 3804         | 3805         | 3806         | 3807         |
| EEO        | 3808         | 3809         | 3810         | 3811         | 3812         | 3813         | 3814         | 3815         | 3816         | 3817         | 3818         | 3819         | 3820         | 3821         | 3822         | 3823         |
| EF0        | 3824         | 3825         | 3826         | 3827         | 3828         | 3829         | 3830         | 3831         | 3832         | 3833         | 3834         | 3835         | 3836         | 3837         | 3838         | 3839         |
| 500        | 2040         | 20.41        | 2040         | 2042         | 2014         | 2045         | 2044         | 20.47        | 2040         | 2040         | 2050         | 2051         | 2050         | 2052         | 2054         | 2055         |
| F00<br>F10 | 3840<br>3856 | 3841<br>3857 | 3842<br>3858 | 3843<br>3859 | 3844<br>3860 | 3845<br>3861 | 3846<br>3862 | 3847<br>3863 | 3848<br>3864 | 3849<br>3865 | 3850<br>3866 | 3851<br>3867 | 3852<br>3868 | 3853<br>3869 | 3854<br>3870 | 3855<br>3871 |
| F20        | 3872         | 3873         | 3874         | 3875         | 3876         | 3877         | 3878         | 3879         | 3880         | 3881         | 3882         | 3883         | 3884         | 3885         | 3886         | 3887         |
| F30        | 3888         | 3889         | 3890         | 3891         | 3892         | 3893         | 3894         | 3895         | 3896         | 3897         | 3898         | 3899         | 3900         | 3901         | 3902         | 3903         |
| <b> </b>   |              |              |              |              |              |              |              |              |              |              |              |              |              |              |              |              |
| F40        | 3904         | 3905         | 3906         | 3907         | 3908         | 3909         | 3910         | 3911         | 3912         | 3913         | 3914         | 3915         | 3916         | 3917         | 3918         | 3919         |
| F50        | 3920         | 3921         | 3922         | 3923         | 3924         | 3925         | 3926         | 3927         | 3928         | 3929         | 3930         | 3931         | 3932         | 3933         | 3934         | 3935         |
| F60<br>F70 | 3936<br>3952 | 3937<br>3953 | 3938<br>3954 | 3939<br>2055 | 3940<br>3956 | 3941<br>3957 | 3942<br>3958 | 3943<br>3959 | 3944<br>3960 | 3945<br>3961 | 3946<br>3962 | 3947<br>3963 | 3948         | 3949<br>3965 | 3950<br>3966 | 3951<br>3967 |
| 1 10       | 3732         | 5755         | J7J4         | 3955         | 3730         | 5757         | 3730         | 3737         | 3700         | J701         | J70Z         | 3703         | 3964         | 3700         | J 700        | J 70/        |
| F80        | 3968         | 3969         | 3970         | 3971         | 3972         | 3973         | 3974         | 3975         | 3976         | 3977         | 3978         | 3979         | 3980         | 3981         | 3982         | 3983         |
| F90        | 3984         | 3985         | 3986         | 3987         | 3988         | 3989         | 3990         | 3991         | 3992         | 3993         | 3994         | 3995         | 3996         | 3997         | 3998         | 3999         |
| FA0        | 4000         | 4001         | 4002         | 4003         | 4004         | 4005         | 4006         | 4007         | 4008         | 4009         | 4010         | 4011         | 4012         | 4013         | 4014         | 4015         |
| FBO        | 4016         | 4017         | 4018         | 4019         | 4020         | 4021         | 4022         | 4023         | 4024         | 4025         | 4026         | 4027         | 4028         | 4029         | 4030         | 4031         |
| FC0        | 4032         | 4033         | 4034         | 4035         | 4036         | 4037         | 4038         | 4039         | 4040         | 4041         | 4042         | 4043         | 4044         | 4045         | 4046         | 4047         |
| FD0        | 4032         | 4033         | 4054         | 4033         | 4030         | 4057         | 4038         | 4037         | 4040         | 4041         | 4042         | 4043         | 4044         | 4045         | 4040         | 404/         |
| FEO        | 4064         | 4065         | 4066         | 4067         | 4068         | 4069         | 4070         | 4071         | 4072         | 4073         | 4074         | 4075         | 4076         | 4077         | 4078         | 4079         |
| FFO        | 4080         | 4081         | 4082         | 4083         | 4084         | 4085         | 4086         | 4087         | 4088         | 4089         | 4090         | 4091         | 4092         | 4093         | 4094         | 4095         |
| L          | L            |              |              |              |              |              | _            |              | ··           |              |              |              |              |              |              |              |

## **HEXADECIMAL-DECIMAL FRACTION CONVERSION**

| Hexadecimal                  | Decimal                      | Hexadecimal                  | Decimal                      | Hexadecimal                  | Decimal                      | Hexadecimal                  | Decimal                      |
|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|
| .00 00 00 00.                | .00000 00000                 | .40 00 00 00                 | .25000 00000                 | .80 00 00 00                 | .50000 00000                 | .C0 00 00 00                 | .75000 00000                 |
| .01 00 00 00                 | .00390 62500                 | .41 00 00 00                 | .25390 62500                 | .81 00 00 00                 | .50390 62500                 | .C1 00 00 00                 | .75390 62500                 |
| .02 00 00 00                 | .00781 25000                 | .42 00 00 00                 | .25781 25000                 | .82 00 00 00                 | .50781 25000                 | .C2 00 00 00                 | .75781 25000                 |
| .03 00 00 00                 | .01171 87500                 | .43 00 00 00                 | .26171 87500                 | .83 00 00 00                 | .51171 87500                 | .C3 00 00 00                 | .76171 87500                 |
| .04 00 00 00                 | .01562 50000                 | .44 00 00 00                 | .26562 50000                 | .84 00 00 00                 | .51562 50000                 | .C4 00 00 00                 | .76562 50000                 |
| .05 00 00 00                 | .01953 12500                 | .45 00 00 00                 | .26953 12500                 | .85 00 00 00                 | .51953 12500                 | .C5 00 00 00                 | .76953 12500                 |
| .06 00 00 00                 | .02343 75000                 | .46 00 00 00                 | .27343 75000                 | .86 00 00 00                 | .52343 75000                 | .C6 00 00 00                 | .77343 75000                 |
| .07 00 00 00                 | .02734 37500                 | .47 00 00 00                 | .27734 37500                 | .87 00 00 00                 | .52734 37500                 | .C7 00 00 00                 | .77734 37500                 |
| .08 00 00 00                 | .03125 00000                 | .48 00 00 00                 | .28125 00000                 | .88 00 00 00                 | .53125 00000                 | .C8 00 00 00                 | .78125 00000                 |
| .09 00 00 00                 | .03515 62500                 | .49 00 00 00                 | .28515 62500                 | .89 00 00 00                 | .53515 62500                 | .C9 00 00 00                 | .78515 62500                 |
| .0A 00 00 00                 | .03906 25000                 | .4A 00 00 00                 | .28906 25000                 | .8A 00 00 00                 | .53906 25000                 | .CA 00 00 00                 | .78906 25000                 |
| .0B 00 00 00                 | .04296 87500                 | .4B 00 00 00                 | .29296 87500                 | .8B 00 00 00                 | .54296 87500                 | .CB 00 00 00                 | .79296 87500                 |
| .0C 00 00 00<br>.0D 00 00 00 | .04687 50000                 | .4C 00 00 00                 | .29687 50000                 | .8C 00 00 00                 | .54687 50000                 | .CC 00 00 00                 | .79687 50000                 |
|                              | .05078 12500                 | .4D 00 00 00                 | .30078 12500                 | .8D 00 00 00                 | .55078 12500                 | .CD 00 00 00                 | .80078 12500                 |
| .0E 00 00 00<br>.0F 00 00 00 | .05468 75000                 | .4E 00 00 00                 | .30468 75000                 | .8E 00 00 00                 | .55468 75000                 | .CE 00 00 00                 | .80468 75000                 |
|                              | .05859 37500                 | .4F 00 00 00                 | .30859 37500                 | .8F 00 00 00                 | .55859 37500                 | .CF 00 00 00                 | .80859 37500                 |
| .10 00 00 00                 | .06250 00000                 | .50 00 00 00                 | .31250 00000                 | .90 00 00 00                 | .56250 00000                 | .D0 00 00 00                 | .81250 00000                 |
| .11 00 00 00                 | .06640 62500                 | .51 00 00 00                 | .31640 62500                 | .91 00 00 00                 | .56640 62500                 | .D1 00 00 00                 | .81640 62500                 |
| .12 00 00 00                 | .07031 25000                 | .52 00 00 00                 | .32031 25000                 | .92 00 00 00                 | .57031 25000                 | .D2 00 00 00                 | .82031 25000                 |
| .13 00 00 00                 | .07421 87500                 | .53 00 00 00                 | .32421 87500                 | .93 00 00 00                 | .57421 87500                 | .D3 00 00 00                 | .82421 87500                 |
| .14 00 00 00                 | .07812 50000                 | .54 00 00 00                 | .32812 50000                 | .94 00 00 00                 | .57812 50000                 | .D4 00 00 00                 | .82812 50000                 |
| .15 00 00 00                 | .08203 12500                 | .55 00 00 00                 | .33203 12500                 | .95 00 00 00                 | .58203 12500                 | .D5 00 00 00                 | .83203 12500                 |
| .16 00 00 00                 | .08593 75000                 | .56 00 00 00                 | .33593 75000                 | .96 00 00 00                 | .58593 75000                 | .D6 00 00 00                 | .83593 75000                 |
| .17 00 00 00                 | .08984 37500                 | .57 00 00 00                 | .33984 37500                 | .97 00 00 00                 | .58984 37500                 | .D7 00 00 00                 | .83984 37500                 |
| .18 00 00 00                 | .09375 00000                 | .58 00 00 00                 | .34375 00000                 | .98 00 00 00                 | .59375 00000                 | .D8 00 00 00                 | .84375 00000                 |
| .19 00 00 00                 | .09765 62500                 | .59 00 00 00                 | .34765 62500                 | .99 00 00 00                 | .59765 62500                 | .D9 00 00 00                 | .84765 62500                 |
| .1A 00 00 00                 | .10156 25000                 | .5A 00 00 00                 | .35156 25000                 | .9A 00 00 00                 | .60156 25000                 | .DA 00 00 00                 | .85156 25000                 |
| .1B 00 00 00<br>.1C 00 00 00 | .10546 87500                 | .5B 00 00 00                 | .35546 87500                 | .9B 00 00 00                 | .60546 87500                 | .DB 00 00 00                 | .85546 87500                 |
| .1D 00 00 00                 | .10937 50000                 | .5C 00 00 00                 | .35937 50000                 | .9C 00 00 00                 | .60937 50000                 | .DC 00 00 00                 | .85937 50000                 |
| .1E 00 00 00                 | .11328 12500<br>.11718 75000 | .5D 00 00 00<br>.5E 00 00 00 | .36328 12500                 | .9D 00 00 00                 | .61328 12500                 | .DD 00 00 00                 | .86328 12500                 |
| .1F 00 00 00                 | .12109 37500                 | .5F 00 00 00                 | .36718 75000<br>.37109 37500 | .9E 00 00 00<br>.9F 00 00 00 | .61718 75000<br>.62109 37500 | .DE 00 00 00<br>.DF 00 00 00 | .86718 75000<br>.87109 37500 |
| .20 00 00 00                 | .12500 00000                 | .60 00 00 00                 | .37500 00000                 | .A0 00 00 00                 | .62500 00000                 | .E0 00 00 00                 | .87500 00000                 |
| .21 00 00 00                 | .12890 62500                 | .61 00 00 00                 | .37890 62500                 | .A1 00 00 00                 | .62890 62500                 | .E1 00 00 00                 | .87890 62500                 |
| .22 00 00 00                 | .13281 25000                 | .62 00 00 00                 | .38281 25000                 | .A2 00 00 00                 | .63281 25000                 | .E2 00 00 00                 | .88281 25000                 |
| .23 00 00 00                 | .13671 87500                 | .63 00 00 00                 | .38671 87500                 | .A3 00 00 00                 | .63671 87500                 | .E3 00 00 00                 | .88671 87500                 |
| .24 00 00 00                 | .14062 50000                 | .64 00 00 00                 | .39062 50000                 | .A4 00 00 00                 | .64062 50000                 | .E4 00 00 00                 | .89062 50000                 |
| .25 00 00 00                 | .14453 12500                 | .65 00 00 00                 | .39453 12500                 | .A5 00 00 00                 | .64453 12500                 | .E5 00 00 00                 | .89453 12500                 |
| .26 00 00 00                 | .14843 75000                 | .66 00 00 00                 | .39843 75000                 | .A6 00 00 00                 | .64843 75000                 | .E6 00 00 00                 | .89843 75000                 |
| .27 00 00 00                 | .15234 37500                 | .67 00 00 00                 | .40234 37500                 | .A7 00 00 00                 | .65234 37500                 | .E7 00 00 00                 | .90234 37500                 |
| .28 00 00 00                 | .15625 00000                 | .68 00 00 00                 | .40625 00000                 | .A8 00 00 00                 | .65625 00000                 | .E8 00 00 00                 | .90625 00000                 |
| .29 00 00 00                 | .16015 62500                 | 69 00 00 00                  | .41015 62500                 | .A9 00 00 00                 | .66015 62500                 | .E9 00 00 00                 | .91015 62500                 |
| .2A 00 00 00                 | .16406 25000                 | .6A 00 00 00                 | .41406 25000                 | .AA 00 00 00                 | .66406 25000                 | .EA 00 00 00                 | .91406 25000                 |
| .28 00 00 00                 | .16796 87500                 | .6B 00 00 00                 | .41796 87500                 | .AB 00 00 00                 | .66796 87500                 | .EB 00 00 00                 | .91796 87500                 |
| .2C 00 00 00                 | .17187 50000                 | .6C 00 00 00                 | .42187 50000                 | .AC 00 00 00                 | .67187 50000                 | .EC 00 00 00                 | .92187 50000                 |
| .2D 00 00 00                 | .17578 12500                 | .6D 00 00 00                 | .42578 12500                 | .AD 00 00 00                 | .67578 12500                 | .ED 00 00 00                 | .92578 12500                 |
| .2E 00 00 00                 | .17968 75000                 | .6E 00 00 00                 | .42968 75000                 | .AE 00 00 00                 | .67968 75000                 | .EE 00 00 00                 | .92968 75000                 |
| .2F 00 00 00                 | .18359 37500                 | .6F 00 00 00                 | .43359 37500                 | .AF 00 00 00                 | .68359 37500                 | .EF 00 00 00                 | .93359 37500                 |
| .30 00 00 00                 | .18750 00000                 | .70 00 00 00                 | .43750 00000                 | .BO 00 00 00                 | .68750 00000                 | .F0 00 00 00                 | .93750 00000                 |
| .31 00 00 00                 | .19140 62500                 | .71 00 00 00                 | .44140 62500                 | .B1 00 00 00                 | .69140 62500                 | .F1 00 00 00                 | .94140 62500                 |
| .32 00 00 00                 | .19531 25000                 | .72 00 00 00                 | .44531 25000                 | .B2 00 00 00                 | .69531 25000                 | .F2 00 00 00                 | .94531 25000                 |
| .33 00 00 00                 | .19921 87500                 | .73 00 00 00                 | .44921 87500                 | .B3 00 00 00                 | .69921 87500                 | .F3 00 00 00                 | .94921 87500                 |
| .34 00 00 00                 | .20312 50000                 | .74 00 00 00                 | .45312 50000                 | .B4 00 00 00                 | .70312 50000                 | .F4 00 00 00                 | .95312 50000                 |
| .35 00 00 00                 | .20703 12500                 | .75 00 00 00                 | .45703 12500                 | .B5 00 00 00                 | .70703 12500                 | .F5 00 00 00                 | .95703 12500                 |
| .36 00 00 00                 | .21093 75000                 | .76 00 00 00                 | .46093 75000                 | .B6 00 00 00                 | .71093 75000                 | .F6 00 00 00                 | .96093 75000                 |
| .37 00 00 00                 | .21484 37500                 | .77 00 00 00                 | .46484 37500                 | .B7 00 00 00                 | .71484 37500                 | .F7 00 00 00                 | .96484 37500                 |
| .38 00 00 00                 | .21875 00000                 | .78 00 00 00                 | .46875 00000                 | .88 00 00 00                 | .71875 00000                 | .F8 00 00 00                 | .96875 00000                 |
| .39 00 00 00                 | 22265 62500                  | .79 00 00 00                 | .47265 62500                 | .B9 00 00 00                 | .72265 62500                 | .F9 00 00 00                 | .97265 62500                 |
| .3A 00 00 00                 | .22656 25000                 | .7A 00 00 00                 | .47656 25000                 | .BA 00 00 00                 | .72656 25000                 | .FA 00 00 00                 | .97656 25000                 |
| .3B 00 00 00                 | .23046 87500                 | .7B 00 00 00                 | .48046 87500                 | .BB 00 00 00                 | .73046 87500                 | .FB 00 00 00                 | .98046 87500                 |
| .3C 00 00 00                 | .23437 50000                 | .7C 00 00 00                 | .48437 50000                 | .BC 00 00 00                 | .73437 50000                 | .FC 00 00 00                 | .98437 50000                 |
| .3D 00 00 00<br>.3E 00 00 00 | .23828 12500                 | .7D 00 00 00                 | .48828 12500                 | .BD 00 00 00                 | .73828 12500                 | .FD 00 00 00                 | .98828 12500                 |
| .3F 00 00 00                 | .24218 75000<br>.24609 37500 | .7E 00 00 00<br>.7F 00 00 00 | .49218 75000<br>.49609 37500 | .BE 00 00 00<br>.BF 00 00 00 | .74218 75000<br>.74609 37500 | .FE 00 00 00                 | .99218 75000                 |
|                              | .24007 37 300                | .71 00 00 00                 | .+7007 3/300                 | .BF 00 00 00                 | ./ 4007 3/ 300               | .FF 00 00 00                 | .99609 37500                 |

## HEXADECIMAL-DECIMAL FRACTION CONVERSION (cont.)

| Hexadecimal                  | Decimal                      | Hexadecimal                  | Decimal                      | Hexadecimal                  | Decimal                      | Hexadecimal                  | Decimal                      |
|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|
| .00 00 00 00                 | .00000 00000                 | .00 40 00 00                 | .00097 65625                 | .00 80 00 00                 | .00195 31250                 | .00 C0 00 00                 | .00292 96875                 |
| .00 01 00 00                 | .00001 52587                 | .00 41 00 00                 | .00099 18212                 | .00 81 00 00                 | .00196 83837                 | .00 C1 00 00                 | .00294 49462                 |
| .00 02 00 00                 | .00003 05175                 | .00 42 00 00                 | .00100 70800                 | .00 82 00 00                 | .00198 36425                 | .00 C2 00 00                 | .00296 02050                 |
| .00 03 00 00                 | .00004 57763                 | .00 43 00 00                 | .00102 23388                 | .00 83 00 00                 | .00199 89013                 | .00 C3 00 00                 | .00297 54638                 |
| .00 04 00 00<br>.00 05 00 00 | .00006 10351<br>.00007 62939 | .00 44 00 00<br>.00 45 00 00 | .00103 75976                 | .00 84 00 00<br>.00 85 00 00 | .00201 41601<br>.00202 94189 | .00 C4 00 00<br>.00 C5 00 00 | .00299 07226                 |
| .00 05 00 00                 | .00007 82737                 | .00 43 00 00                 | .00105 28564<br>.00106 81152 | .00 85 00 00                 | .00202 94189                 | .00 C5 00 00                 | .00300 59814<br>.00302 12402 |
| .00 07 00 00                 | .00010 68115                 | .00 47 00 00                 | .00108 33740                 | .00 87 00 00                 | .00205 99365                 | .00 C7 00 00                 | .00303 64790                 |
| .00 08 00 00                 | .00012 20703                 | .00 48 00 00                 | .00109 86328                 | .00 88 00 00                 | .00207 51953                 | .00 C8 00 00                 | .00305 17578                 |
| .00 09 00 00                 | .00013 73291                 | .00 49 00 00                 | .00111 38916                 | .00 89 00 00                 | .00209 04541                 | .00 C9 00 00                 | .00306 70166                 |
| .00 0A 00 00<br>.00 0B 00 00 | .00015 25878<br>.00016 78466 | .00 4A 00 00<br>.00 4B 00 00 | .00112 91503<br>.00114 44091 | .00 8A 00 00<br>.00 8B 00 00 | .00210 57128<br>.00212 09716 | .00 CA 00 00<br>.00 CB 00 00 | .00308 22753<br>.00309 75341 |
| .00 00 00 00 00              | .00018 31054                 | .00 45 00 00                 | .00115 96679                 | .00 8C 00 00                 | .00212 07718                 | .00 CC 00 00                 | .00311 27929                 |
| .00 0D 00 00                 | .00019 83642                 | .00 4D 00 00                 | .00117 49267                 | .00 8D 00 00                 | .00215 14892                 | .00 CD 00 00                 | .00312 80517                 |
| .00 0E 00 00                 | .00021 36230                 | .00 4E 00 00                 | .00119 01855                 | .00 8E 00 00                 | .00216 67480                 | .00 CE 00 00                 | .00314 33105                 |
| .00 0F 00 00                 | .00022 88818                 | .00 4F 00 00                 | .00120 54443                 | .00 8F 00 00                 | .00218 20068                 | .00 CF 00 00                 | .00315 85693                 |
| .00 10 00 00                 | .00024 41406                 | .00 50 00 00                 | .00122 07031                 | .00 90 00 00                 | .00219 72656                 | .00 D0 00 00                 | .00317 38281                 |
| .00 11 00 00                 | .00025 93994                 | .00 51 00 00                 | .00123 59619                 | .00 91 00 00                 | .00221 25244                 | .00 D1 00 00                 | .00318 90869                 |
| .00 12 00 00<br>.00 13 00 00 | .00027 46582<br>.00028 99169 | .00 52 00 00<br>.00 53 00 00 | .00125 12207<br>.00126 64794 | .00 92 00 00                 | .00222 77832<br>.00224 30419 | .00 D2 00 00<br>.00 D3 00 00 | .00320 43457<br>.00321 96044 |
| .00 13 00 00                 | .00030 51757                 | .00 54 00 00                 | .00128 17382                 | .00 94 00 00                 | .00225 83007                 | .00 D3 00 00                 | .00323 48632                 |
| .00 15 00 00                 | .00032 04345                 | .00 55 00 00                 | .00129 69970                 | .00 95 00 00                 | .00227 35595                 | .00 D5 00 00                 | .00325 01220                 |
| .00 16 00 00                 | .00033 56933                 | .00 56 00 00                 | .00131 22558                 | .00 96 00 00                 | .00228 88183                 | .00 D6 00 00                 | .00326 53808                 |
| .00 17 00 00                 | .00035 09521                 | .00 57 00 00                 | .00132 75146                 | .00 97 00 00                 | .00230 40771                 | .00 D7 00 00                 | .00328 06396                 |
| .00 18 00 00<br>.00 19 00 00 | .00036 62109<br>.00038 14697 | .00 58 00 00<br>.00 59 00 00 | .00134 27734<br>.00135 80322 | .00 98 00 00                 | .00231 93359<br>.00233 45947 | .00 D8 00 00<br>.00 D9 00 00 | .00329 58984<br>.00331 11572 |
| .00 1A 00 00                 | .00039 67285                 | .00 5A 00 00                 | .00137 32910                 | .00 9A 00 00                 | .00234 98535                 | .00 DA 00 00                 | .00332 64160                 |
| .00 1B 00 00                 | .00041 19873                 | .00 5B 00 00                 | .00138 85498                 | .00 9B 00 00                 | .00236 51123                 | .00 DB 00 00                 | .00334 16748                 |
| .00 1C 00 00                 | .00042 72460                 | .00 5C 00 00                 | .00140 38085                 | .00 9C 00 00                 | .00238 03710                 | .00 DC 00 00                 | .00335 69335                 |
| .00 1D 00 00                 | .00044 25048                 | .00 5D 00 00                 | .00141 90673                 | .00 9D 00 00                 | .00239 56298                 | .00 DD 00 00                 | .00337 21923                 |
| .00 1E 00 00<br>.00 1F 00 00 | .00045 77636<br>.00047 30224 | .00 5E 00 00<br>.00 5F 00 00 | .00143 43261<br>.00144 95849 | .00 9E 00 00<br>.00 9F 00 00 | .00241 08886<br>.00242 61474 | .00 DE 00 00<br>.00 DF 00 00 | .00338 74511<br>.00340 27099 |
|                              |                              |                              |                              |                              |                              |                              |                              |
| .00 20 00 00<br>.00 21 00 00 | .00048 82812<br>.00050 35400 | .00 60 00 00<br>.00 61 00 00 | .00146 48437<br>.00148 01025 | .00 A0 00 00<br>.00 A1 00 00 | .00244 14062<br>.00245 66650 | .00 E0 00 00<br>.00 E1 00 00 | .00341 79687<br>.00343 32275 |
| .00 22 00 00                 | .00051 87988                 | .00 62 00 00                 | .00148 01023                 | .00 A1 00 00                 | .00247 19238                 | .00 E2 00 00                 | .00344 84863                 |
| .00 23 00 00                 | .00053 40576                 | .00 63 00 00                 | .00151 06201                 | .00 A3 00 00                 | .00248 71826                 | .00 E3 00 00                 | .00346 37451                 |
| .00 24 00 00                 | .00054 93164                 | .00 64 00 00                 | .00152 58789                 | .00 A4 00 00                 | .00250 24414                 | .00 E4 00 00                 | .00347 90039                 |
| .00 25 00 00                 | .00056 45751                 | .00 65 00 00                 | .00154 11376                 | .00 A5 00 00                 | .00251 77001                 | .00 E5 00 00                 | .00349 42626                 |
| .00 26 00 00<br>.00 27 00 00 | .00057 98339<br>.00059 50927 | .00 66 00 00<br>.00 67 00 00 | .00155 63964<br>.00157 16552 | .00 A6 00 00<br>.00 A7 00 00 | .00253 29589<br>.00254 82177 | .00 E6 00 00<br>.00 E7 00 00 | .00350 95214<br>.00352 47802 |
| .00 28 00 00                 | .00061 03515                 | .00 68 00 00                 | .00158 69140                 | .00 A8 00 00                 | .00256 34765                 | .00 E8 00 00                 | .00354 00390                 |
| .00 29 00 00                 | .00062 56103                 | .00 69 00 00                 | .00160 21728                 | .00 A9 00 00                 | .00257 87353                 | .00 E9 00 00                 | .00355 52978                 |
| .00 2A 00 00                 | .00064 08691                 | .00 6A 00 00                 | .00161 74316                 | .00 AA 00 00                 | .00259 39941                 | .00 EA 00 00                 | .00357 05566                 |
| .00 2B 00 00<br>.00 2C 00 00 | .00065 61279                 | .00 68 00 00                 | .00163 26904                 | .00 AB 00 00<br>.00 AC 00 00 | .00260 92529                 | .00 EB 00 00                 | .00358 58154<br>.00360 10742 |
| .00 2C 00 00                 | .00067 13867<br>.00068 66455 | .00 6C 00 00<br>.00 6D 00 00 | .00164 79492                 | .00 AC 00 00                 | .00262 45117<br>.00263 97705 | .00 EC 00 00<br>.00 ED 00 00 | .00361 63330                 |
| .00 2E 00 00                 | .00070 19042                 | .00 6E 00 00                 | .00167 84667                 | .00 AE 00 00                 | .00265 50292                 | .00 EE 00 00                 | .00363 15917                 |
| .00 2F 00 00                 | .00071 71630                 | .00 6F 00 00                 | .00169 37255                 | .00 AF 00 00                 | .00267 02880                 | .00 EF 00 00                 | .00364 68505                 |
| .00 30 00 00                 | .00073 24218                 | .00 70 00 00                 | .00170 89843                 | .00 B0 00 00                 | .00268 55468                 | .00 F0 00 00                 | .00366 21093                 |
| .00 31 00 00                 | .00074 76806                 | .00 71 00 00                 | .00172 42431                 | .00 B1 00 00                 | .00270 08056                 | .00 F1 00 00                 | .00367 73681                 |
| .00 32 00 00                 | .00076 29394                 | .00 72 00 00                 | .00173 95019                 | .00 B2 00 00                 | .00271 60644                 | .00 F2 00 00                 | .00369 26269                 |
| .00 33 00 00<br>.00 34 00 00 | .00077 81982<br>.00079 34570 | .00 73 00 00                 | .00175 47607                 | .00 B3 00 00                 | .00273 13232<br>.00274 65820 | .00 F3 00 00<br>.00 F4 00 00 | .00370 78857<br>.00372 31445 |
| .00 35 00 00                 | .00079 34570                 | .00 75 00 00                 | .00177 00195<br>.00178 52783 | .00 B4 00 00<br>.00 B5 00 00 | .00274 85820                 | .00 F5 00 00                 | .00373 84033                 |
| .00 36 00 00                 | .00082 39746                 | .00 76 00 00                 | .00180 05371                 | .00 B6 00 00                 | .00277 70996                 | .00 F6 00 00                 | .00375 36621                 |
| .00 37 00 00                 | .00083 92333                 | .00 77 00 00                 | .00181 57958                 | .00 B7 00 00                 | .00279 23583                 | .00 F7 00 00                 | .00376 89208                 |
| .00 38 00 00                 | .00085 44921                 | .00 78 00 00                 | .00183 10546                 | .00 B8 00 00                 | .00280 76171                 | .00 F8 00 00                 | .00378 41796                 |
| .00 39 00 00<br>.00 3A 00 00 | .00086 97509<br>.00088 50097 | .00 79 00 00<br>.00 7A 00 00 | .00184 63134<br>.00186 15722 | .00 B9 00 00<br>.00 BA 00 00 | .00282 28759<br>.00283 81347 | .00 F9 00 00<br>.00 FA 00 00 | .00379 94384<br>.00381 46972 |
| .00 3A 00 00                 | .00090 02685                 | .00 7B 00 00                 | .00187 68310                 | .00 BA 00 00                 | .00285 33935                 | .00 FB 00 00                 | .00382 99560                 |
| .00 3C 00 00                 | .00091 55273                 | .00 7C 00 00                 | .00189 20898                 | .00 BC 00 00                 | .00286 86523                 | .00 FC 00 00                 | .00384 52148                 |
| .00 3D 00 00                 | .00093 07861                 | .00 7D 00 00                 | .00190 73486                 | .00 BD 00 00                 | .00288 39111                 | .00 FD 00 00                 | .00386 04736                 |
| .00 3E 00 00                 | .00094 60449                 | .00 7E 00 00                 | .00192 26074                 | .00 BE 00 00                 | .00289 91699                 | .00 FE 00 00                 | .00387 57324<br>.00389 09912 |
| .00 3F 00 00                 | .00096 13037                 | .00 7F 00 00                 | .00193 78662                 | .00 BF 00 00                 | .00291 44287                 | .00 FF 00 00                 | .00307 07712                 |

## HEXADECIMAL-DECIMAL FRACTION CONVERSION (cont.)

| r                            |                              |                              |                              |                              |                              |                              |                              |
|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|
| Hexadecimal                  | Decimal                      | Hexadecimal                  | Decimal                      | Hexadecimal                  | Decimal                      | Hexadecimal                  | Decimal                      |
| .00 00 00 00                 | .00000 00000                 | .00 00 40 00                 | .00000 38146                 | .00 00 80 00                 | .00000 76293                 | .00 00 C0 00                 | .00001 14440                 |
| .00 00 01 00                 | .00000 00596                 | .00 00 41 00                 | .00000 38743                 | .00 00 81 00                 | .00000 76889                 | .00 00 C1 00                 | .00001 15036                 |
| .00 00 02 00                 | .00000 01192                 | .00 00 42 00                 | .00000 39339                 | .00 00 82 00                 | .00000 77486                 | .00 00 C2 00                 | .00001 15633                 |
| .00 00 03 00                 | .00000 01788                 | .00 00 43 00                 | .00000 39935                 | .00 00 83 00                 | .00000 78082                 | .00 00 C3 00                 | .00001 16229                 |
| .00 00 04 00<br>.00 00 05 00 | .00000 02384<br>.00000 02980 | .00 00 44 00<br>.00 00 45 00 | .00000 40531                 | .00 00 84 00                 | .00000 78678                 | .00 00 C4 00                 | .00001 16825                 |
| .00 00 05 00                 | .00000 02980                 | .00 00 45 00                 | .00000 41727                 | .00 00 85 00<br>.00 00 86 00 | .00000 79274<br>.00000 79870 | .00 00 C5 00<br>.00 00 C6 00 | .00001 17421<br>.00001 18017 |
| .00 00 07 00                 | .00000 04172                 | .00 00 47 00                 | .00000 42319                 | .00 00 87 00                 | .00000 80466                 | .00 00 C0 00                 | .00001 18613                 |
| .00 00 08 00                 | .00000 04768                 | .00 00 48 00                 | .00000 42915                 | .00 00 88 00                 | .00000 81062                 | .00 00 C8 00                 | .00001 19209                 |
| .00 00 09 00                 | .00000 05364                 | .00 00 49 00                 | .00000 43511                 | .00 00 89 00                 | .00000 81658                 | .00 00 C9 00                 | .00001 19805                 |
| .00 00 0A 00                 | .00000 05960                 | .00 00 4A 00                 | .00000 44107                 | .00 00 8A 00                 | .00000 82254                 | .00 00 CA 00                 | .00001 20401                 |
| .00 00 0B 00                 | .00000 06556                 | .00 00 48 00                 | .00000 44703                 | .00 00 88 00                 | .00000 82850                 | .00 00 CB 00                 | .00001 20997                 |
| .00 00 0C 00                 | .00000 07152                 | .00 00 4C 00                 | .00000 45299                 | .00 00 8C 00                 | .00000 83446                 | .00 00 CC 00                 | .00001 21593                 |
| .00 00 0D 00                 | .00000 07748                 | .00 00 4D 00                 | .00000 45895                 | .00 00 8D 00                 | .00000 84042                 | .00 00 CD 00                 | .00001 22189                 |
| .00 00 0E 00<br>.00 00 0F 00 | .00000 08344<br>.00000 08940 | .00 00 4E 00<br>.00 00 4F 00 | .00000 46491<br>.00000 47087 | .00 00 8E 00<br>.00 00 8F 00 | .00000 84638<br>.00000 85234 | .00 00 CE 00<br>.00 00 CF 00 | .00001 22785<br>.00001 23381 |
|                              |                              |                              |                              |                              |                              | .00 00 CF 00                 |                              |
| .00 00 10 00                 | .00000 09536                 | .00 00 50 00                 | .00000 47683                 | .00 00 90 00                 | .00000 85830                 | .00 00 D0 00                 | .00001 23977                 |
| .00 00 11 00<br>.00 00 12 00 | .00000 10132<br>.00000 10728 | .00 00 51 00<br>.00 00 52 00 | .00000 48279                 | .00 00 91 00                 | .00000 86426                 | .00 00 D1 00                 | :00001 24573                 |
| .00 00 12 00                 | .00000 10728                 | .00 00 52 00                 | .00000 48875<br>.00000 49471 | .00 00 92 00<br>.00 00 93 00 | .00000 87022<br>.00000 87618 | .00 00 D2 00<br>.00 00 D3 00 | .00001 25169<br>.00001 25765 |
| .00 00 14 00                 | .00000 11920                 | .00 00 54 00                 | .00000 50067                 | .00 00 94 00                 | .00000 88214                 | .00 00 D3 00                 | .00001 25785                 |
| .00 00 15 00                 | .00000 12516                 | .00 00 55 00                 | .00000 50663                 | .00 00 95 00                 | .00000 88810                 | .00 00 D5 00                 | .00001 26957                 |
| .00 00 16 00                 | .00000 13113                 | .00 00 56 00                 | .00000 51259                 | .00 00 96 00                 | .00000 89406                 | .00 00 D6 00                 | .00001 27553                 |
| .00 00 17 00                 | .00000 13709                 | .00 00 57 00                 | .00000 51856                 | .00 00 97 00                 | .00000 90003                 | .00 00 D7 00                 | .00001 28149                 |
| .00 00 18 00                 | .00000 14305                 | .00 00 58 00                 | .00000 52452                 | .00 00 98 00                 | .00000 90599                 | .00 00 D8 00                 | .00001 28746                 |
| .00 00 19 00                 | .00000 14901                 | .00 00 59 00                 | .00000 53048                 | .00 00 99 00                 | .00000 91195                 | .00 00 D9 00                 | .00001 29342                 |
| .00 00 1A 00<br>.00 00 1B 00 | .00000 15497<br>.00000 16093 | .00 00 5A 00<br>.00 00 5B 00 | .00000 53644                 | .00 00 9A 00                 | .00000 91791                 | .00 00 DA 00                 | .00001 29938                 |
| .00 00 16 00                 | .00000 18073                 | .00 00 56 00                 | .00000 54240<br>.00000 54836 | .00 00 9B 00<br>.00 00 9C 00 | .00000 92387<br>.00000 92983 | .00 00 DB 00<br>.00 00 DC 00 | .00001 30534<br>.00001 31130 |
| .00 00 1D 00                 | .00000 17285                 | .00 00 5D 00                 | .00000 55432                 | .00 00 9C 00                 | .00000 92983                 | .00 00 DC 00                 | .00001 31730                 |
| .00 00 1E 00                 | .00000 17881                 | .00 00 5E 00                 | .00000 56028                 | .00 00 9E 00                 | .00000 94175                 | .00 00 DE 00                 | .00001 32322                 |
| .00 00 1F 00                 | .00000 18477                 | .00 00 5F 00                 | .00000 56624                 | .00 00 9F 00                 | .00000 94771                 | .00 00 DF 00                 | .00001 32918                 |
| .00 00 20 00                 | .00000 19073                 | .00 00 60 00                 | .00000 57220                 | .00 00 A0 00                 | .00000 95367                 | .00 00 E0 00                 | .00001 33514                 |
| .00 00 21 00<br>.00 00 22 00 | .00000 19669<br>.00000 20265 | .00 00 61 00                 | .00000 57816                 | .00 00 A1 00                 | .00000 95963                 | .00 00 E1 00                 | .00001 34110                 |
| .00 00 22 00                 | .00000 20285                 | .00 00 62 00<br>.00 00 63 00 | .00000 58412<br>.00000 59008 | .00 00 A2 00<br>.00 00 A3 00 | .00000 96559<br>.00000 97155 | .00 00 E2 00<br>.00 00 E3 00 | .00001 34706<br>.00001 35302 |
| .00 00 24 00                 | .00000 21457                 | .00 00 64 00                 | .00000 59604                 | .00 00 A3 00                 | .00000 97751                 | .00 00 E3 00                 | .00001 35898                 |
| .00 00 25 00                 | .00000 22053                 | .00 00 65 00                 | .00000 60200                 | .00 00 A5 00                 | .00000 98347                 | .00 00 E5 00                 | .00001 36494                 |
| .00 00 26 00                 | .00000 22649                 | .00 00 66 00                 | .00000 60796                 | .00 00 A6 00                 | .00000 98943                 | .00 00 E6 00                 | .00001 37090                 |
| .00 00 27 00                 | .00000 23245                 | .00 00 67 00                 | .00000 61392                 | .00 00 A7 00                 | .00000 99539                 | .00 00 E7 00                 | .00001 37686                 |
| .00 00 28 00                 | .00000 23841                 | .00 00 68 00                 | .00000 61988                 | 00 8A 00 00.                 | .00001 00135                 | .00 00 E8 00                 | .00001 38282                 |
| .00 00 29 00                 | .00000 24437                 | .00 00 69 00                 | .00000 62584                 | .00 00 A9 00                 | .00001 00731                 | .00 00 E9 00                 | .00001 38878                 |
| .00 00 2A 00<br>.00 00 2B 00 | .00000 25033                 | .00 00 6A 00                 | .00000 63180                 | 00 AA 00 00.                 | .00001 01327                 | .00 00 EA 00                 | .00001 39474                 |
| .00 00 28 00                 | .00000 25629<br>.00000 26226 | .00 00 6B 00<br>.00 00 6C 00 | .00000 63776<br>.00000 64373 | .00 00 AB 00<br>.00 00 AC 00 | .00001 01923<br>.00001 02519 | .00 00 EB 00<br>.00 00 EC 00 | .00001 40070<br>.00001 40666 |
| .00 00 20 00                 | .00000 26822                 | .00 00 6D 00                 | .00000 64969                 | .00 00 AC 00                 | .00001 02319                 | .00 00 EC 00                 | .00001 41263                 |
| .00 00 2E 00                 | .00000 27418                 | .00 00 6E 00                 | .00000 65565                 | .00 00 AE 00                 | .00001 03712                 | .00 00 EE 00                 | .00001 41203                 |
| .00 00 2F 00                 | .00000 28014                 | .00.00 6F 00                 | .00000 66161                 | .00 00 AF 00                 | .00001 04308                 | .00 00 EF 00                 | .00001 42455                 |
| .00 00 30 00                 | .00000 28610                 | .00 00 70 00                 | .00000 66757                 | .00 00 B0 00                 | .00001 04904                 | .00 00 F0 00                 | .00001 43051                 |
| .00 00 31 00                 | .00000 29206                 | .00 00 71 00                 | .00000 67353                 | .00 00 B1 00                 | .00001 05500                 | .00 00 F1 00                 | .00001 43647                 |
| .00 00 32 00                 | .00000 29802                 | .00 00 72 00                 | .00000 67949                 | .00 00 B2 00                 | .00001 06096                 | .00 00 F2 00                 | .00001 44243                 |
| .00 00 33 00<br>.00 00 34 00 | .00000 30398<br>.00000 30994 | .00 00 73 00<br>.00 00 74 00 | .00000 68545                 | .00 00 B3 00                 | .00001 06692                 | .00 00 F3 00                 | .00001 44839                 |
| .00 00 35 00                 | .00000 30994                 | .00 00 74 00                 | .00000 69141<br>.00000 69737 | .00 00 B4 00<br>.00 00 B5 00 | .00001 07288<br>.00001 07884 | .00 00 F4 00<br>.00 00 F5 00 | .00001 45435<br>.00001 46031 |
| .00 00 36 00                 | .00000 31370                 | .00 00 76 00                 | .00000 70333                 | .00 00 B3 00                 | .00001 07884                 | .00 00 F5 00                 | .00001 46031                 |
| .00 00 37 00                 | .00000 32782                 | .00 00 77 00                 | .00000 70929                 | .00 00 BC 00                 | .00001 09076                 | .00 00 F7 00                 | .00001 47223                 |
| .00 00 38 00                 | .00000 33378                 | .00 00 78 00                 | .00000 71525                 | .00 00 B8 00                 | .00001 09672                 | .00 00 F8 00                 | .00001 47819                 |
| .00 00 39 00                 | .00000 33974                 | .00 00 79 00                 | .00000 72121                 | .00 00 89 00                 | .00001 10268                 | .00 00 F9 00                 | .00001 48415                 |
| .00 00 3A 00                 | .00000 34570                 | .00 00 7A 00                 | .00000 72717                 | .00 00 BA 00                 | .00001 10864                 | .00 00 FA 00                 | .00001 49011                 |
| .00 00 3B 00                 | .00000 35166                 | .00 00 7B 00                 | .00000 73313                 | .00 00 BB 00                 | .00001 11460                 | .00 00 FB 00                 | .00001 49607                 |
| .00 00 3C 00<br>.00 00 3D 00 | .00000 35762<br>.00000 36358 | .00 00 7C 00<br>.00 00 7D 00 | .00000 73909                 | .00 00 BC 00                 | .00001 12056                 | .00 00 FC 00                 | .00001 50203                 |
| .00 00 3D 00                 | .00000 36358                 | .00 00 7D 00                 | .00000 74505<br>.00000 75101 | .00 00 BD 00<br>.00 00 BE 00 | .00001 12652<br>.00001 13248 | .00 00 FD 00<br>.00 00 FE 00 | .00001 50799<br>.00001 51395 |
| .00 00 3F 00                 | .00000 37550                 | .00 00 7E 00                 | .00000 75697                 | .00 00 BE 00                 | .00001 13248                 | .00-00 FF 00                 | .00001 51395                 |
|                              |                              |                              |                              |                              |                              |                              | .00001 51771                 |