October 1986

COPYRIGHT

Copyright (c) 1986 by Personal CAD Systems, Inc. (P-CAD).

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior written permission of Personal CAD Systems, Inc.

Personal CAD Systems, Inc. provides this manual "as is" without warranty of any kind, either expressed or implied, including, but not limited to, the implied warranties of merchantability and fitness for a particular purpose. P-CAD may make improvements and/or changes in the product(s) and/or the program(s) described in this manual at any time and without notice. Although P-CAD has gone to great effort to verify the integrity of the information herein, this publication could contain technical inaccuracies or typographical errors. Changes are periodically made to the information herein. These changes will be incorporated in new editions of this publication.

TRADEMARK

P-CAD, PC-CAPS, PC-CARDS, PC-LOGS, PC-BACK, PC-DRC/NLC, PC-DRILL, PC-FORM, PC-HISTO, PC-LINK, PC-MODEL, PC-NODES, PC-PACK, PC-PHOTO, PC-PLOTS, PC-PRINT, PC-ROUTE, POSTSIM, PREPACK, and PRESIM are trademarks of Personal CAD Systems, Inc. (P-CAD).

Fairchild is a registered trademark of Fairchild, Inc.

CONTENTS

OVERVIEW. 1
FILE MANAGEMENT 2
CREATING A DESIGN 3
Layer Structure 3
Drawing Sheets. 5
Components. 5
GENERAL INFORMATION 5
NAMING CONVENTIONS. 5
FOOTPRINTS 6
PADSTACKS 6
COMPONENT LIST BY SEQUENCE 7
COMPONENT LIST BY FUNCTION 9
DIP PIN SEQUENCE LIST 13
COMPONENT PLOTS 29
GERBER PHOTOPLOTTER APERTURE CHART 31
TABLES

1. LAYS.PCB Layer Structure. 3

OVERVIEW

Abstract

The P-CAD/Fairchild ${ }^{\circledR}$ F100K ECL Packaged Parts Library consists of this manual and the Fairchild F100K ECL Packaged Parts diskette. The library has been developed jointly with Fairchild at the request of our users, and we welcome any suggestions for improvements or additions.

The library diskette contains the following files for use with the PC-CARDS printed circuit board (PCB) layout program:

- Component files
- Layer structure file, LAYS.PCB
- Standard-size drawing sheet files, ASIZE.PCB through ESIZE.PCB
- F100K.FIL and F100K.LIB files

F100K.FIL is a sample text file used as input into PREPACK to create the binary file F100K.LIB that contains packaging information for PC-PACK. Both F100K.FIL and F100K.LIB contain all the components in the Fairchild F100K ECL Library. Normal usage is to extract only those components used in a design and put them in a new. FIL file for input to PREPACK.

- Padstack and special symbol files (<filename>.PS and <filename>.SSF)

The padstacks and special symbol files are samples of what can be used in the PC-CARDS environment. Refer to the PC-CARDS User's Manual and the Padstacks section of this manual for more information on how to use padstacks and special symbol files.

FILE MANAGEMENT

The complete Fairchild F100K ECL Parts Library includes more than 250 KB of files. If you are loading the library onto the hard disk of your stand-alone computer, you should omit any of the components that you will not need in order to conserve disk space. This is especially important if you are using a 10 MB hard disk.

If your hard disk space is very limited, you can remove individual unneeded parts from the library. Each part is contained in a separate DOS file, and individual parts can be erased using the DOS erase command. Refer to your IBM DOS manual or the "DOS Reference" chapter in your PC-CAPS or PC-CARDS User's Manuals for instructions on listing and erasing files.

P-CAD recommends a specific directory structure for efficient system operation. Your library parts are normally placed in a specific subdirectory to make it easy to manage these files. The directory structure is described in your P-CAD Installation Guide.

CREATING A DESIGN

To use the library in a design, run PC-CARDS. Instructions are given in the "Using PC-CARDS" chapter of your PC-CARDS User's Manual. When the menu appears, select FILE/LOAD and load the layer structure. You can load LAYS.PCB or one of the standard-size drawing sheet files, ASIZE.PCB through ESIZE.PCB.

Layer Structure

One layer structure file, LAYS.PCB, is included with this library.

LAYS.PCB, shown in Table 1, is a standard P-CAD layer structure and is recommended when creating schematics.

Table 1. LAYS.PCB Layer Structure
Layer Name Pen Status Use

1	PADCOM	4	ON	Graphic component pads
2	FLCOMP	4	OFF	Flash component pads
3	PADSLD	8	OFF	Graphic solder pads
4	FLSOLD	8	OFF	Flash solder pads
$\mathbf{5}$	PADINT	9	OFF	Graphic internal pads
6	FLINT	9	OFF	Flash internal pads
7	GNDCON	10	OFF	Graphic internal ground connections

Table 1 Continued

Layer	Name	Pen	Status	Use
8	FLGCON	10	OFF	Flash internal ground connections
9	CLEAR	7	OFF	Graphic universal clearance
10	FLCLER	7	OFF	Flash universal clearance
11	PWRCON	13	OFF	Graphic internal power connections
12	FLPCON	13	OFF	Flash internal power connections
13	SLDMSK	14	OFF	Graphic solder mask relief
14	FLSMSK	14	OFF	Flash solder mask
15	DRILL	15	OFF	Graphic drill template
16	FLDRLL	15	OFF	Flash drill template
17	PIN	4	ON	Graphic pin connections
18	BRDOUT	12	ON	Board outline
19	FLTARG	11	OFF	Flash alignment targets
20	SLKSCR	6	ON	Silkscreen paint
21	DEVICE	5	ON	Device names
22	ATTR	6	OFF	Attributes
23	REFDES	6	ON	Reference designators
24	COMP	1	ABL (A)	Component side traces
25	SOLDER	2	ABL	Solder side traces
26	INT1	3	OFF	Internal layer traces

Drawing Sheets

The standard-size drawing sheet files, ASIZE.PCB through ESIZE.PCB, were created using the LAYS.PCB layer structure. When loaded, they provide the correct layer structure for the library plus a standard-size drawing sheet border.

Components

When you have loaded the layer structure or drawing sheet file, you can enter the components, wires, text, instances, and net names. Complete instructions are given in the "Using PC-CARDS" chapter of your PC-CARDS User's Manual.

GENERAL INFORMATION

This library was created using the Fairchild F100K ECL Data Book and Fairchild's F100K ECL August 1986 Preliminary Data Sheet. IEEE representations of all the devices are included.

Although the Fairchild F100K components come in both DIP and flatpack packages, only the DIP packages are included in this library. P-CAD does not support surface mount technology at this time.

NAMING CONVENTIONS

In this library, all signal names are entered exactly as shown in the Fairchild F100K ECL Data Book and the Preliminary Data Sheet. Signal names for the parts are given in the Dip Pin Sequence List section of this manual.

FOOTPRINTS

The components in this library have been assigned footprint attributes on the ATTR layer for PC-PLACE. All DIP parts have the footprint attribute : FP=DIPxx where xx is the number of pins for that part.

PADSTACKS

The padstacks included in the Fairchild F100K library are the standard P-CAD padstacks. They are not complete enough to be used as is. The padstacks for pad types 11 through 14 (which are used for supply and reference voltages) do not have the appropriate layers defined for the different voltages required of 100 K ECL. All of the padstacks require the addition of the appropriate layers required by your design. Refer to the PC-CARDS User's Manual for more information on how to use padstacks and special symbols files.

COMPONENT LIST BY SEQUENCE

The component filename consists of the component number plus the extension .PRT; for example, 100142D.PRT. "Plot Number" refers to the plots in the last section of this manual.

Component Number	Disk Number	Plot Number
100101D	1	
100102D	1	1
100104D	1	1
100107D	1	1
100112D	1	1
100113D	1	1
100114D	1	1
100117D	1	1
100118D	1	1
100121D	1	1
100122D	1	1
100123D	1	1
100124D	1	1
100125D	1	1
100126D	1	1
100128D	1	1
100130D	1	1
100131D	1	1
100135D	1	1
100136D	1	1
100139D	1	1
100140D	1	1
100141D	1	1
100142D	1	1
100145D	1	1
100150D	1	1
100151D		1
100155D	1	1

Component Number	Disk Number	Plot Number
100156D	1	2
100158D	1	2
100160D	1	2
100163D	1	2
100164D	1	2
100165D	1	2
100166D	1	2
100170D	1	2
100171D	1	2
100175D	1	2
100179D	1	2
100180D	1	2
100181D	1	2
100182D	1	2
100183D	1	2
100241D	1	2
100413D		2

COMPONENT LIST BY FUNCTION

The components described below come only in DIP packaging. The filename for these components have a "D" suffix, such as 100101D.SYM, to indicate DIP packaging.

AND/NAND Gates

100104 Quint 2-input

Arithmetic Operators

100156 4-bit mask-merge/latch
$100158 \quad 8$-bit shift matrix
100160 Dual 9-bit parity checker/generator
100165 8-input priority encoder
100166 9-bit comparator
100179 Carry lookahead
100180 High speed 6-bit adder
100181 4-bit binary/BCD ALU
100182 9-bit Wallace tree adder
100183 2x8 decode multiplier

Buffers

100121 9-bit inverter
100122 9-bit buffer
100126 9-bit backplane driver
100413 16x8 FIFO memory buffer

Content Addressable Memory

100142 4x4-bit content addressable memory

Counters/Prescalers

100136 4-bit binary (count up/down)
100139 4-bit binary (async reset)

100140 4-bit decade (count down)

Demultiplexer/Decoders
100170 Universal (dual 1 of 4 /single 1 of 8)

Exclusive OR/NOR Gates
100107 Quint EXCLUSIVE OR/NOR

Flip-Flops
100131 Triple D (async set/reset)
100135 Triple J-K (async set)
100151 Hex D (async reset)

Latches
$100130 \quad$ Triple D (async set/reset)
100150 Hex D (async reset)
100155 Quad 2-input MUX/latch (async reset)
100175 Quint latch 100 K in $/ 10 \mathrm{~K}$ out

Line Bus Drivers/Transceivers/Receivers

100112	Quad line driver
100113	Quad line driver
100114	Quint differential line receiver
100123	Hex bus driver

Multiplexers

100155	Quad 2-input MUX/latch (async reset)
100163	Dual 8-input
100164	16-input MUX
100171	Triple 4-input (W/enable)

OR-AND/OR-AND-INVERT Gates
$100117 \quad$ Triple 2-wide OA/OAI

OR/NOR Gates
100101 Triple 5-input

100102 Quint 2-input

RAMS
100145 16x4-bit register file

Shift Registers

100136	4-bit bidirectional
100141	8 -bit bidirectional
100241	8 -bit bidirectional

Translators

100124 Hex TTL-100K ECL
100125 Hex 100K ECL-TTL
100128 Octal ECL/TTL bidirectional

DIP PIN SEQUENCE LIST

100101D: Number of gates per package $=3$
Pin Signal Pin Signal Pin Signal

$=\mathrm{D} 3$ (C)	$9=O^{\prime}(\mathrm{B})$	$17=$ D1 (B)
$2=\mathrm{D} 4$ (C)	$10=\mathrm{O}^{\prime}(\mathrm{A})$	$18=\mathrm{VEE}$
$3=\mathrm{D} 5$ (C)	$11=O(A)$	$19=\mathrm{D} 2$ (B)
$4=O(C)$	$12=\mathrm{D} 1$ (A)	$20=\mathrm{D} 3$ (B)
$5=\mathrm{O}^{\prime}(\mathrm{C})$	$13=\mathrm{D} 2$ (A)	$21=\mathrm{D} 4$ (B)
$6=\mathrm{VCC}$	$14=\mathrm{D} 3$ (A)	$22=$ D5 (B)
$7=\mathrm{VCCA}$	$15=\mathrm{D} 4$ (A)	$23=$ D1 (C)
$8=0(B)$	$16=\mathrm{D} 5$ (A)	$24=$ D2 (C)

100102D: Number of gates per package $=5$

| Pin | Signal | Pin | Signal | Pin |
| ---: | :--- | ---: | :--- | ---: | Signal

100104D: Number of gates per package $=1$

Pin	Signal	Pin	Signal	Pin	Signa
1	OE			17	$=\mathrm{D} 2 \mathrm{~B}$
2	OE'		OB'	18	$=$ VEE
3	OD		OB	19	$=\mathrm{DlC}$
4	OD'		OA'	20	= D2C
5	F		OA		= D2D
6	VCC		D1A	22	$=\mathrm{D} 1 \mathrm{D}$
7	VCCA		D2A		= D1E
8	OC'		D1B		$=\mathrm{D} 2 \mathrm{E}$

100107D: Number of gates per package $=1$

Pin	Signal	Pin	Signal	Pin	Signa
	$=\mathrm{OE}$			17	D2B
	$=O E^{\prime}$		OB'	18	VEE
	$=\mathrm{OD}$			19	D1C
	$=O D^{\prime}$		OA'	20	D2C
	$=\mathrm{F}$				D2D
	$=\mathrm{VCC}$		D1A	22	D1D
7	$=\mathrm{VCCA}$		D2A	23	D1E
	$=O^{\prime}$		D1B		D2E

100112D: Number of gates per package $=4$

Pin	Signal	Pin	Signal	Pin	Signal
1	$=\mathrm{O}^{\prime}(\mathrm{D})$	9	$=\mathrm{O} 2(\mathrm{~B})$	17	$=\mathrm{D}(\mathrm{B})$
2	= O2' (C)	10	$=O 1^{\prime}(\mathrm{B})$	18	$=\mathrm{VEE}$
	= O1' ${ }^{\text {(C) }}$		$=\mathrm{O} 2^{\prime}(\mathrm{B})$	19	$=\mathrm{E}$
	$=\mathrm{O} 2(\mathrm{C})$	12	$=\mathrm{O} 2^{\prime}(\mathrm{A})$	20	$=\mathrm{D}(\mathrm{C})$
	$=\mathrm{Ol}$ (C)		= O1' (A)	21	$=\mathrm{D}(\mathrm{D})$
6	$=\mathrm{VCC}$		$=\mathrm{O} 2(\mathrm{~A})$	22	= O1 (D)
7	$=\mathrm{VCCA}$		$=01(A)$	23	= O2 (D)
	$=\mathrm{Ol}$ (B)		$=\mathrm{D}(\mathrm{A})$		= O1' (D)

100113D: Number of gates per package $=4$

Pin	Signal	Pin	Signal	Pin	Signal
	O2' (D)		O2 (B)		D (B)
	= O2' (C)		O1' (B)		VEE
	= O1' (C)		O2' (B)		E
	= O2 (C)		O2' (A)		D (C)
	= O1 (C)		O1' (A)		D (D)
	$=\mathrm{VCC}$		O2 (A)		O1 (D)
	$=$ VCCA		O1 (A)		02 (D)
	= Ol (B)		D (A)		O1' (D)

100114D: Number of gates per package $=5$

Pin	Signal	Pin	Signal	Pin	Signal
	$=D^{\prime}(E)$		$=\mathrm{O}(\mathrm{C})$	17	$=D^{\prime}(\mathrm{B})$
	$=O^{\prime}(E)$		= O^{\prime} (B)	18	$=\mathrm{VEE}$
	$=O(E)$		$=O(B)$	19	$=\mathrm{VBB}$
	= O' (D)		$=O^{\prime}(\mathrm{A})$	20	$=\mathrm{D}(\mathrm{C})$
	$=O(D)$		$=\mathrm{O}(\mathrm{A})$	21	$=D^{\prime}(C)$
	$=\mathrm{VCC}$		$=\mathrm{D}(\mathrm{A})$		$=\mathrm{D}(\mathrm{D})$
7	$=\mathrm{VCCA}$		$=D^{\prime}(\mathrm{A})$		$=D^{\prime}(\mathrm{D})$
	$=\mathrm{O}^{\prime}(\mathrm{C})$		$=\mathrm{D}(\mathrm{B})$		$=\mathrm{D}(\mathrm{E})$

100117D: Number of gates per package $=3$
Pin Signal Pin Signal Pin Signal

$1=\mathrm{D} 2$ (C)	$9=O^{\prime}(B)$	$17=\mathrm{E}(\mathrm{B})$
$2=\mathrm{D} 3$ (C)	$10=O^{\prime}(\mathrm{A})$	$18=\mathrm{VEE}$
$3=\mathrm{D} 4$ (C)	$11=0(A)$	$19=\mathrm{E}(\mathrm{C})$
$4=O(C)$	$12=\mathrm{D} 1$ (A)	$20=$ D1 (B)
$5=\mathrm{O}^{\prime}(\mathrm{C})$	$13=\mathrm{D} 2(\mathrm{~A})$	$21=$ D2 (B)
$6=\mathrm{VCC}$	$14=\mathrm{D} 3$ (A)	$22=$ D3 (B)
$7=$ VCCA	$15=\mathrm{D} 4(\mathrm{~A})$	$23=\mathrm{D} 4$ (B)
$8=0(B)$	$16=\mathrm{E}(\mathrm{A})$	$24=$ D1 (C)

100118D: Number of gates per package $=1$
Pin Signal Pin Signal Pin Signal
$\left.\begin{array}{lrl}1 & =\text { D2D } & 9=\text { O }\end{array}\right) 17=$ D3B

100121D: Number of gates per package $=9$

Pin	Signal	Pin	Signal	Pin	Signal
	VCCA		$\mathrm{O}^{\prime}(\mathrm{G})$	17	D (G)
	O' (C)		O^{\prime} (F)	18	VEE
	O' (B)		O' (E)	19	VCCA
	O' (A)	12	O' (D)	20	D (H)
	O^{\prime} (I)		VCCA		D (I)
	VCC		D (D)		D (A)
	VCCA		D (E)		D (B)
	O' (H)		D (F)		D (C)

100122D: Number of gates per package $=9$

Pin	Signal	Pin	Signal	Pin	Signal
1	$=\mathrm{VCCA}$		O (G)		D (G)
	$=\mathrm{O}(\mathrm{C})$		O (F)	18	VEE
	$=0(B)$		O (E)	19	VCCA
	$=\mathrm{O}(\mathrm{A})$		O (D)		D (H)
	$=\mathrm{O}(\mathrm{I})$	13	VCCA		D (I)
	$=\mathrm{VCC}$		D (D)		D (A)
7	$=\mathrm{VCCA}$		D (E)		D (B)
	$=\mathrm{O}(\mathrm{H})$		D (F)		D (C)

100123D: Number of gates per package $=3$

Pin	Signal	Pin	Signal	Pin	Signal
1	$=\mathrm{VCCA} 2(\mathrm{C})$	9	VCCA2 (A)		DE (B)
2	$=\mathrm{OA}(\mathrm{C})$		OB (A)		VEE
3	$=\mathrm{VCCAl}$ (C)		VCCA1 (B)	19	E
	$=\mathrm{OB}$ (B)		OA (B)		DE (C)
	$=\mathrm{VCCA} 2(\mathrm{~B})$		DA (B)		DB (C)
6	$=\mathrm{VCC}$	14	DB (A)		DA (C)
	$=\mathrm{VCCA1}(\mathrm{~A})$		DA (A)		DB (B)
8	$=\mathrm{OA}(\mathrm{A})$		DE (A)		OB (C)

100124D: Number of gates per package $=6$
Pin Signal Pin Signal Pin Signal

	$=O^{\prime}(\mathrm{A})$	$9=O(D)$	$17=\mathrm{D}(\mathrm{D})$
2	$=O(B)$	$10=O^{\prime}(\mathrm{D})$	$18=\mathrm{VEE}$
3	$=O^{\prime}(\mathrm{B})$	$11=\mathrm{O}^{\prime}(\mathrm{E})$	$19=\mathrm{E}$
4	$=\mathrm{O}^{\prime}(\mathrm{C})$	$12=O(E)$	$20=$ VTTL
5	$=0$ (C)	$13=O^{\prime}(\mathrm{F})$	$21=\mathrm{D}(\mathrm{A})$
6	$=\mathrm{VCC}$	$14=O(F)$	$22=\mathrm{D}(\mathrm{B})$
7	$=\mathrm{VCCA}$	$15=\mathrm{D}(\mathrm{F})$	$23=\mathrm{D}(\mathrm{C})$
8	$=\mathrm{VCCA}$	$16=\mathrm{D}(\mathrm{E})$	$24=0(\mathrm{~A})$

100125D: Number of gates per package $=6$
Pin Signal Pin Signal Pin Signal

$1=0(\mathrm{~F})$	$9=O(B)$	$17=\mathrm{VBB}$
$2=O$ (E)	$10=O(A)$	$18=$ VEE
$3=0$ (D)	$11=\mathrm{D}^{\prime}(\mathrm{A})$	$19=\mathrm{D}(\mathrm{D})$
$4=$ VTTL	$12=\mathrm{D}(\mathrm{A})$	$20=\mathrm{D}^{\prime}(\mathrm{D})$
$5=$ VTTL	$13=D^{\prime}(B)$	$21=\mathrm{D}(\mathrm{E})$
$6=\mathrm{VCC}$	$14=\mathrm{D}(\mathrm{B})$	$22=\mathrm{D}^{\prime}(\mathrm{E})$
$7=\mathrm{VCC}$	$15=\mathrm{D}^{\prime}(\mathrm{C})$	$23=\mathrm{D}(\mathrm{F})$
$8=0$ (C)	$16=\mathrm{D}(\mathrm{C})$	$24=\mathrm{D}^{\prime}(\mathrm{F})$

100126D: Number of gates per package $=9$

Pin	Signal	Pin	Signal	Pin	Signal
1	$=\mathrm{VCCA}$		O (G)		D (G)
	$=\mathrm{O}(\mathrm{C})$		O (F)	18	VEE
	$=0(B)$		O (E)	19	VCCA
	$=\mathrm{O}(\mathrm{A})$		O (D)		D (H)
	$=\mathrm{O}(\mathrm{I})$		VCCA		D (I)
	$=\mathrm{VCC}$		D (D)		D (A)
	$=\mathrm{VCCA}$		D (E)		D (B)
8	$=\mathrm{O}(\mathrm{H})$		D (F)		D (C)

100128D: Number of gates per package $=1$

Pin	Signal	Pin	Signal
		Pin	Signal
$1=$	E4	$9=$ T7	$17=$ LE
$2=$	E5	$10=$ T6	$18=$ VEE
$3=$	$11=$ T5	$19=$ VCC	
$4=$ E7	$12=$ T4	$20=$ VTTL	
$5=$ OE	$13=$ T3	$21=$ E0	
$6=$ VCC	$14=$ T2	$22=$ E1	
$7=$ VCCA	$15=$ T1	$23=$ E2	
$8=$ DIR	$16=$ T0	$24=$ E3	

100130D: Number of gates per package $=3$

Pin	Signal	Pin	Signal	Pin	Signal
	$=\mathrm{CD}(\mathrm{C})$	9	Q' (B)	17	EC'
	$=E^{\prime}(\mathrm{C})$		Q' (A)	18	VEE
	$=\mathrm{D}(\mathrm{C})$		Q (A)	19	MR
	$=\mathrm{Q}(\mathrm{C})$		D (A)	20	SD (B)
	$=Q^{\prime}(C)$		E' (A)		D (B)
6	$=\mathrm{VCC}$		CD (A)		E' (B)
7	$=\mathrm{VCCA}$		SD (A)		CD (B)
8	$=\mathrm{Q}(\mathrm{B})$		MS		SD (C)

100131D: Number of gates per package $=3$

Pin	Signal	Pin	Signal	Pin	Signal
	CD (C)		Q' (B)	17	$=\mathrm{CPC}$
	CP (C)		Q' (A)	18	= VEE
	D (C)		Q (A)	19	$=\mathrm{MR}$
	Q (C)		D (A)		$=\mathrm{SD}(\mathrm{B})$
	Q' (C)		CP (A)		$=\mathrm{D}(\mathrm{B})$
	VCC		CD (A)		$=\mathrm{CP}(\mathrm{B})$
7	VCCA		SD (A)		$=C D(B)$
	Q (B)		MS		$=\mathrm{SD}(\mathrm{C})$

100135D: Number of gates per package $=3$
Pin Signal Pin Signal Pin Signal

$=\mathrm{S}(\mathrm{C})$	$9=\mathrm{Q}(\mathrm{B})$	$17=\mathrm{S}(\mathrm{B})$
$2=\mathrm{J}(\mathrm{C})$	$10=\mathrm{Q}^{\prime}(\mathrm{A})$	$18=\mathrm{VEE}$
$3=\mathrm{K}(\mathrm{C})$	$11=\mathrm{Q}(\mathrm{A})$	$19=\mathrm{K}(\mathrm{B})$
$4=Q^{\prime}(C)$	$12=\mathrm{S}(\mathrm{A})$	$20=\mathrm{J}$ (B)
$5=\mathrm{Q}(\mathrm{C})$	$13=C(A)$	$21=C P(B)$
$6=\mathrm{VCC}$	$14=\mathrm{CP}(\mathrm{A})$	$22=C$ (B)
$7=\mathrm{VCCA}$	$15=\mathrm{J}(\mathrm{A})$	$23=C P(C)$
$8=$ Q' ${ }^{\text {(B) }}$	$16=\mathrm{K}(\mathrm{A})$	$24=C(C)$

100136D: Number of gates per package $=1$

Pin	Signal	Pin	Signal	Pin	Signal
1	$=\mathrm{TC}^{\prime}$	9	Q2'	17	CP
2	$=\mathrm{Q} 0$	10	Q3'	18	VEE
	$=\mathrm{Q} 0{ }^{\prime}$			19	
	$=\mathrm{Q} 1^{\prime}$	12		20	
	$=\mathrm{Q} 1$				
6	$=\mathrm{VCC}$				
7	$=\mathrm{VCCA}$	15		23	CEP'
	$=\mathrm{Q} 2$				D0/CET

100139D: Number of gates per package $=1$

Pin	Signal	Pin	Signal	Pin	Signal
1	$=\mathrm{P} 0$	9	PE1	17	CP
2	$=\mathrm{Q} 0{ }^{\circ}$	10	TC15	18	VEE
3	$=\mathrm{Q} 0$	11	TC14	19	CEP
4	$=\mathrm{Q} 1$ '		Q2'	20	MR
	$=\mathrm{Q} 1$			21	CET
	$=\mathrm{VCC}$			22	
7	$=\mathrm{VCCA}$				
8	$=$ TC14'		PE2		

100140D: Number of gates per package $=1$

Pin	Signal	Pin	Signal	Pin	Signal
1	$=\mathrm{P} 0$	9	$=\mathrm{PE} 1$		CP
2	$=\mathrm{Q} 0^{\prime}$	10	$=\mathrm{TC} 0^{\prime}$	18	VEE
	$=\mathrm{Q} 0$	11	$=\mathrm{TCl}$		CEP
	$=\mathrm{Q} 1{ }^{1}$	12	$=\mathrm{Q} 2^{\prime}$	20	MR
	$=\mathrm{Q} 1$		$=\mathrm{Q}^{2}$		CET
	$=\mathrm{VCC}$		$=\mathrm{Q}^{\prime}$		
7	$=\mathrm{VCCA}$		$=\mathrm{Q} 3$		
	$=\mathrm{TCl}{ }^{\prime}$		$=\mathrm{PE} 2$		

100141D: Number of gates per package $=1$

Pin	Signal	Pin
	Signal	Pin
$1=\mathrm{D} 0$	$9=\mathrm{Q} 5$	$17=\mathrm{CP}$
$2=\mathrm{Q} 0$	$10=\mathrm{Q} 6$	$18=\mathrm{VEE}$
$3=\mathrm{Q} 1$	$11=\mathrm{Q} 7$	$19=\mathrm{S} 0$
$4=\mathrm{Q} 2$	$12=\mathrm{D} 7$	$20=\mathrm{S} 1$
$5=\mathrm{Q} 3$	$13=\mathrm{P} 7$	$21=\mathrm{P} 3$
$6=\mathrm{VCC}$	$14=\mathrm{P} 6$	$22=\mathrm{P} 2$
$7=\mathrm{VCCA}$	$15=\mathrm{P} 5$	$23=\mathrm{P} 1$
$8=\mathrm{Q} 4$	$16=\mathrm{P} 4$	$24=\mathrm{P} 0$

100142D: Number of gates per package $=1$

| Pin | Signal | Pin |
| :--- | ---: | :--- | Signal \quad Pin \quad Signal

100145D: Number of gates per package $=1$
Pin Signal Pin Signal Pin Signal

$=\mathrm{AR} 2$	$9=\mathrm{Q} 3$	17 = WE2
$2=$ AR1	$10=$ D3	$18=$ VEE
$3=$ AR0	$11=\mathrm{D} 2$	19 = MR
$4=\mathrm{Q} 0$	$12=\mathrm{D} 1$	$20=$ AW0
$5=\mathrm{Q} 1$	$13=\mathrm{D} 0$	21 = AW1
$6=\mathrm{VCC}$	$14=\mathrm{OE} 1$	$22=$ AW2
$7=\mathrm{VCCA}$	$15=\mathrm{OE} 2$	$23=$ AW3
$8=$ Q2	16 = WE1	$24=$ AR3

100150D: Number of gates per package $=6$
Pin Signal Pin Signal Pin Signal

	$=\mathrm{Q}^{\prime}(\mathrm{F})$	9	$=\mathrm{Q}(\mathrm{C})$		$=\mathrm{D}(\mathrm{D})$
2	$=Q^{\prime}(E)$	10	$=Q^{\prime}(B)$	18	$=\mathrm{VEE}$
3	$=\mathrm{Q}(\mathrm{E})$	11	$=\mathrm{Q}(\mathrm{B})$	19	$=\mathrm{MR}$
4	$=\mathrm{Q}^{\prime}(\mathrm{D})$	12	$=\mathrm{Q}^{\prime}(\mathrm{A})$	20	$=\mathrm{EA}^{\prime}$
5	$=\mathrm{Q}(\mathrm{D})$		$=\mathrm{Q}(\mathrm{A})$	21	$=E B^{\prime}$
6	$=\mathrm{VCC}$		$=\mathrm{D}(\mathrm{A})$	22	$=\mathrm{D}(\mathrm{E})$
7	$=\mathrm{VCCA}$		$=\mathrm{D}(\mathrm{B})$		$=\mathrm{D}(\mathrm{F})$
	$=\mathrm{Q}^{\prime}(\mathrm{C})$	16	$=\mathrm{D}(\mathrm{C})$		$=\mathrm{Q}(\mathrm{F})$

100151D: Number of gates per package $=6$
Pin Signal Pin Signal Pin Signal

$1=\mathrm{Q}^{\prime}(\mathrm{F})$	$9=Q(C)$	$17=\mathrm{D}(\mathrm{D})$
$2=Q^{\prime}(E)$	$10=Q^{\prime}(B)$	$18=\mathrm{VEE}$
$3=Q(E)$	$11=\mathrm{Q}$ (B)	$19=\mathrm{MR}$
$4=\mathrm{Q}^{\prime}(\mathrm{D})$	$12=\mathrm{Q}^{\prime}(\mathrm{A})$	$20=\mathrm{CPA}$
$5=\mathrm{Q}$ (D)	$13=\mathrm{Q}(\mathrm{A})$	$21=$ CPB
$6=\mathrm{VCC}$	$14=\mathrm{D}(\mathrm{A})$	$22=\mathrm{D}(\mathrm{E})$
$7=\mathrm{VCCA}$	$15=\mathrm{D}(\mathrm{B})$	$23=\mathrm{D}(\mathrm{F})$
$8=$ Q' (C)	$16=\mathrm{D}(\mathrm{C})$	$24=\mathrm{Q}(\mathrm{F})$

100155D: Number of gates per package $=4$
Pin Signal Pin Signal Pin Signal

$=\mathrm{D} 1$ (D)	$9=Q(B)$	$17=$ S1
$2=\mathrm{Q}$ (D)	$10=\mathrm{Q}(\mathrm{A})$	$18=$ VEE
$3=Q^{\prime}(\mathrm{D})$	$11=\mathrm{Q}^{\prime}(\mathrm{A})$	19 = MR
$4=Q^{\prime}(C)$	$12=\mathrm{D} 0$ (A)	$20=E 1$ '
$5=\mathrm{Q}(\mathrm{C})$	$13=\mathrm{D} 1(\mathrm{~A})$	$21=$ E2'
$6=\mathrm{VCC}$	$14=\mathrm{D} 0$ (B)	$22=\mathrm{D} 0$ (C)
$7=\mathrm{VCCA}$	$15=$ D1 (B)	$23=\mathrm{D} 1$ (C)
$8=$ Q' ${ }^{\text {(B) }}$	$16=\mathrm{S}^{\prime}$	$24=$ D0 (D)

100156D: Number of gates per package $=1$

Pin	Signal	Pin	Signal	Pin	Signal
1	$=\mathrm{AM1}$	9		17	E'
2	= A3	10		18	VEE
3	= B3		A0	19	AS0
	$=\mathrm{Q} 3$	12		20	BS 1
	$=\mathrm{Q} 2$	13		21	AS1
6	$=\mathrm{VCC}$	14		22	BM0
7	$=\mathrm{VCCA}$	15		23	AM0
	$=\mathrm{Q} 1$	16	BSO	24	BM1

100158D: Number of gates per package $=1$
Pin Signal Pin Signal Pin Signal

$1=\mathrm{Z} 7$	$9=\mathrm{Z} 2$	$17=\mathrm{S} 1$
$2=\mathrm{Z} 6$	$10=\mathrm{Z} 1$	$18=\mathrm{VEE}$
$3=\mathrm{Z} 5$	$11=\mathrm{Z} 0$	$19=\mathrm{M}$
$4=\mathrm{Z} 4$	$12=\mathrm{D} 0$	$20=\mathrm{S} 2$
$5=$ VCCA	$13=\mathrm{D} 1$	$21=\mathrm{D} 4$
$6=$ VCC	$14=\mathrm{D} 2$	$22=\mathrm{D} 5$
$7=$ VCCA	$15=\mathrm{D} 3$	$23=\mathrm{D} 6$
$8=\mathrm{Z} 3$	$16=\mathrm{S} 0$	$24=\mathrm{D} 7$

100160D: Number of gates per package $=1$
Pin Signal Pin Signal Pin Signal

$1=\mathrm{I} 6 \mathrm{~B}$	$9=1 A$	$17=17 \mathrm{~A}$
$2=17 B$	$10=10 A$	$18=$ VEE
$3=\mathrm{IB}$	$11=11 \mathrm{~A}$	$19=10 \mathrm{~B}$
$4=\mathrm{ZB}$	$12=12 A$	$20=11 B$
$5=C^{\prime}$	$13=13 A$	$21=$ I2B
$6=\mathrm{VCC}$	$14=14 \mathrm{~A}$	$22=13 B$
$7=\mathrm{VCCA}$	$15=15 A$	$23=14 \mathrm{~B}$
$8=\mathrm{ZA}$	$16=16 A$	$24=$ I5B

100163D: Number of gates per package $=2$
Pin Signal Pin Signal Pin Signal

= D3 (B)	$9=\mathrm{D} 0$ (A)	$17=\mathrm{S} 0$
$2=\mathrm{D} 2$ (B)	$10=$ D1 (A)	$18=\mathrm{VEE}$
$3=\mathrm{D} 1$ (B)	$11=\mathrm{D} 2$ (A)	19 = S1
$4=\mathrm{D} 0$ (B)	$12=\mathrm{D} 3(\mathrm{~A})$	$20=\mathrm{S} 2$
$5=\mathrm{Z}$ (B)	$13=$ D4 (A)	$21=\mathrm{D} 7$ (B)
$6=\mathrm{VCC}$	$14=$ D5 (A)	$22=\mathrm{D} 6$ (B)
7 = VCCA	15 = D6 (A)	$23=\mathrm{D} 5$ (B)
$8=\mathrm{Z}(\mathrm{A})$	$16=$ D7 (A)	$24=$ D4 (B)

100164D: Number of gates per package $=1$

Pin	Signal	Pin	Signal	Pin	Signa
			$=18$		$=\mathrm{S} 0$
			= 19	18	= VEE
	I5	11	= I 10		= S1
			= I11		$=\mathrm{S} 2$
	I7		= I 12		= S3
	VCC		= I13		= 10
7	VCCA		= I14		= I1
	Z		$=115$		= I 2

100165D: Number of gates per package $=1$

Pin	Signal	Pin	Signal
		Pin	Signal
$1=\mathrm{Q} 0$	$9=\mathrm{Q} 2$,	$17=\mathrm{OE}$	
$2=\mathrm{Q} 0^{\prime}$	$10=\mathrm{Q}^{\prime}$,	$18=\mathrm{VEE}$	
$3=\mathrm{Q} 1$	$11=\mathrm{Q} 3^{\prime}$	$19=\mathrm{E}$	
$4=\mathrm{Q} 1$	$12=\mathrm{Q} 3$	$20=\mathrm{M}$	
$5=\mathrm{GS} 1$	$13=\mathrm{I} 7$	$21=\mathrm{I} 3$	
$6=\mathrm{VCC}$	$14=\mathrm{I} 6$	$22=\mathrm{I} 2$	
$7=\mathrm{VCCA}$	$15=\mathrm{I} 5$	$23=\mathrm{I} 1$	
$8=$ GS2	$16=\mathrm{I} 4$	$24=\mathrm{I} 0$	

100166D: Number of gates per package $=1$

| Pin | Signal | Pin |
| :--- | :--- | :--- | Signal \quad Pin \quad Signal

100170D: Number of gates per package $=1$

Pin	Signal	Pin \quad Signal	Pin
		Signal	
1	$=$ A1B	$9=$ Z0	$17=$ EB1
$2=$ Z7	$10=$ Z2	$18=$ VEE	
$3=$ Z4	$11=$ Z1	$19=$ EB2	
$4=$ Z6	$12=$ A0A	$20=$ EA2	
$5=$ Z5	$13=$ A1A	$21=$ HA	
$6=$ VCC	$14=$ M	$22=$ HC	
$7=$ VCCA	$15=$ A2A	$23=$ HB	
$8=$ Z3	$16=$ EA1	$24=$ A0B	

100171D: Number of gates per package $=3$

Pin	Signal	Pin	Signal	Pin	Signal
	I1 (C)	9	Z' (B)		= S1
	I2 (C)	10	Z' (A)	18	= VEE
	I3 (C)	11	Z (A)		$=\mathrm{E}^{\prime}$
	Z (C)		10 (A)		$=10$ (B)
	Z' (C)		I1 (A)		$=\mathrm{I} 1$ (B)
	VCC		I2 (A)		= I 2 (B)
7	VCCA		I3 (A)		= I3 (B)
8	Z (B)		S0		$=10(\mathrm{C})$

100175D: Number of gates per package $=5$

Pin	n Signal	Pin	Signal	Pin	Signal
	$=\mathrm{VCCA}$	7	E2		D (E)
	$=\mathrm{Q}(\mathrm{A})$	8	VEE		D (A)
	$=\mathrm{Q}(\mathrm{B})$		D (B)		Q (D)
	$=\mathrm{Q}(\mathrm{C})$		D (D)		Q (E)
	$=\mathrm{D}(\mathrm{C})$				VCC
	= E1				

100179D: Number of gates per package $=1$

Pin	Signal	Pin	Signal	Pin	Signal
1	$=\mathrm{P} 1$	9	$=\mathrm{CN}+8$		
2	$=\mathrm{G} 2$	10	$=\mathrm{G} 3$	18	VEE
	$=\mathrm{P} 2$	11	$=\mathrm{P} 3$	19	CN
4	$=\mathrm{CN}+2$	12	$=\mathrm{G} 4$	20	
5	$=\mathrm{CN}+4$	13	$=\mathrm{P} 4$		
	$=\mathrm{VCC}$	14	= G5		
7	$=\mathrm{VCCA}$	15	$=\mathrm{P} 5$		
8	$=\mathrm{CN}+6$	16	= G6		

100180D: Number of gates per package $=1$
Pin Signal Pin Signal Pin Signal

$=\mathrm{A} 0$	$9=F 5$	$17=\mathrm{A} 3$
$2=\mathrm{F} 0$	$10=\mathrm{P}$	$18=\mathrm{VEE}$
$3=\mathrm{Fl}$	$11=\mathrm{G}$	$19=\mathrm{CN}$
$4=\mathrm{F} 2$	$12=\mathrm{B} 5$	$20=\mathrm{B} 2$
$5=\mathrm{F} 3$	$13=\mathrm{A} 5$	$21=\mathrm{A} 2$
$6=\mathrm{VCC}$	$14=\mathrm{B} 4$	$22=$ B1
7 = VCCA	$15=\mathrm{A} 4$	$23=\mathrm{Al}$
$8=\mathrm{F} 4$	$16=\mathrm{B} 3$	$24=\mathrm{B} 0$

100181D: Number of gates per package $=1$

Pin	Signal	Pin	Signal	Pin	Signal
1	$=\mathrm{A} 0$		P		S1
2	$=\mathrm{F} 0$		G	18	VEE
3	$=\mathrm{Fl}$		CN		
4	$=\mathrm{F} 2$				S2
5	= F3				
6	$=\mathrm{VCC}$				
7	$=\mathrm{VCCA}$				
8	$=\mathrm{CN}+4$		S0		

100182D: Number of gates per package $=1$

Pin	Signal	Pin
		Signal
1	$=$ D1	Pin

100183D: Number of gates per package $=1$
Pin Signal Pin Signal Pin Signal

$1=$ B0	$9=$ F5	$17=$ B4
$2=$ F0	$10=$ F6	$18=$ VEE
$3=$ F1	$11=$ F7	$19=$ A2
$4=$ F2	$12=$ F8	$20=$ A1
$5=$ F3	$13=$ B8	$21=$ A0
$6=$ VCC	$14=$ B7	$22=$ B3
$7=$ VCCA	$15=$ B6	$23=$ B2
$8=$ F4	$16=$ B5	$24=$ B1

100241D: Number of gates per package $=1$

Pin	Signal	Pin	Signal	Pin	Signal
1	$=\mathrm{D} 0$		Q5		
2	$=\mathrm{Q} 0$		Q6	18	VEE
	$=\mathrm{Q} 1$				
4	= Q2		D7	20	
	= Q3				
6	$=\mathrm{VCC}$				
7	$=\mathrm{VCCA}$				
8	$=\mathrm{Q} 4$		P4		

100413D: Number of gates per package $=1$

| Pin | Signal | Pin | Signal |
| ---: | :--- | ---: | :--- | Pin | Signal |
| :--- |
| $1=$ |

E100142D: Number of gates per package $=1$

Pin	Signal	Pin	Signal	Pin	Signal
	MK3			17	A2
2	M0	10	Q1	18	VEE
3	M1			19	WS
4	M2		MK 1	20	
5	M3				
6	VCC	14	MK0	22	
7	VCCA				MK2
	Q3		A3		

E100165D: Number of gates per package $=1$
Pin Signal Pin Signal Pin Signal

$=\mathrm{Q} 0$	$9=\mathrm{Q} 2$	$17=16$
$2=\mathrm{Q} 0^{\prime}$	$10=$ Q2	$18=$ VEE
$3=\mathrm{Q} 1$ '	11 = $\mathrm{Q}^{\prime}{ }^{\prime}$	$19=15$
$4=\mathrm{Q} 1$	$12=\mathrm{Q} 3$	$20=17$
$5=$ GS1	$13=M$	$21=11$
$6=\mathrm{VCC}$	$14=\mathrm{OE}$ '	$22=\mathrm{I} 2$
7 = VCCA	$15=E^{\prime}$	$23=13$
$8=$ GS2	$16=10$	$24=14$

			$\stackrel{\rightharpoonup}{\circ}$					

SLOTd LNANOdNOD

I ${ }^{10} \mathrm{Id}$

100166 D

100164D

100180D

1 100413D
नलNMMप्पष्नNMNMN

100241D

MnNunvinumunu b 1001820

100171D

GERBER PHOTOPLOTTER APERTURE CHART

LAYER	$\begin{gathered} \text { TYPE } 0 \\ \text { V50R28C.PS } \end{gathered}$	$\begin{array}{cc} \text { TYPE } 2 \\ (N / C) & 60 R 32 C . P S \end{array}$	$\begin{gathered} \text { TYPE } 3 \\ \text { (N/C) } 60 R 32 \mathrm{G.PS} \end{gathered}$	$\begin{gathered} \text { TYPE } 4 \\ (N / C) \quad 60 R 32 P . P S \end{gathered}$
PADCOM	. 050 Circle	. 060 Circle	. 060 Circle	. 060 Circle
FLCOMP	Aperture 15	Aperture 9	Aperture 9	Aperture 9
PADSLD	. 050 Circle	. 060 Circle	. 060 Circle	. 060 Circle
FLSOLD	Aperture 15	Aperture 9	Aperture 9	Aperture 9
PADINT	. 050 circle	. 060 Circle	. 060 circle	. 060 Circle
flint	Aperture 15	Aperture 9	Aperture 9	Aperture 9
GNDCON	$\begin{aligned} & .020 \text { Ring } \\ & .060 \text { Inner Diam } \\ & .100 \text { Outer Diam } \end{aligned}$.020 Ring . 060 Inner Diam . 100 Outer Diam	Aperture 9 . 025 Width X . 100 Outer Diam	.020 Ring . 060 Inner Diam
FLGCON	Aperture 8	Aperture 8	Aperture 22	Aperture 8
CLEAR	. 100 Circle solid Circle	. 125 Circle Solid Circle	.125 Circle Solid Circle	. 125 Circle Solid Circle
FLCLER	Aperture 20	Aperture 21	Aperture 21	Aperture 21
PURCON	$\begin{aligned} & .020 \text { Ring } \\ & .060 \text { Inner Diam } \\ & .100 \text { Outer Diam } \end{aligned}$. 020 Ring . 060 Inner Diam . 100 Outer Diam	.020 Ring . 060 Inner Diam . 100 Outer Diam	Aperture 9 . 025 Width X
FLPCON	Aperture 8	Aperture 8	Aperture 8	Aperture 22
SLDMSK	. 060 Circle	. 070 Circle	. 070 Circle	. 070 Circle
flSmSK	Aperture 9	Aperture 11	Aperture 11	Aperture 11
DRILL	+28	+32	+32	+32
FLDRLL	$\begin{gathered} \text { Aperture } 23 \\ \text { Text } 28 \end{gathered}$	$\begin{gathered} \text { Aperture } 23 \\ \text { Text } 32 \end{gathered}$	$\begin{gathered} \text { Aperture } 23 \\ \text { Text } 32 \end{gathered}$	$\begin{gathered} \text { Aperture } 23 \\ \text { Text } 32 \end{gathered}$
PIN*	. 050	. 050	. 050	. 050

* The pin layer reflects connectivity (C) with a solid circle or no connectivity (N) with a hollow circle.

GERBER PHOTOPLOTTER APERTURE CHART (Continued)

LAYER	TYPE 1 (N/C) $60 S 32 C . P S$	$\begin{array}{cc} \text { TYPE } 5 \\ (N / C) & 60532 P . P S \end{array}$	TYPE 6 $(N / C) 60 s 32 G . P S$
PADCOM	. 060 Square	. 060 Square	. 060 Square
FLCOMP	Aperture 10	Aperture 10	Aperture 10
PADSLD	. 060 Square	. 060 Square	. 060 Square
FLSOLD	Aperture 10	Aperture 10	Aperture 10
PADINT	. 060 Circle	. 060 Circle	. 060 Circle
FLINT	Aperture 9	Aperture 9	Aperture 9
GNDCON	. 020 Ring . 060 Inner Diam . 100 Outer Diam	.020 Ring . 060 Inner Diam . 100 Outer Diam	Aperture 9 . 025 Width X
FLGCON	Aperture 8	Aperture 8	Aperture 22
CLEAR	. 125 Circle Solid Circle	.125 circle Solid Circle	.125 Circle Solid Circle
flcler	Aperture 21	Aperture 21	Aperture 21
PURCON	. 020 Ring . 060 Inner Diam . 100 Outer Diam	Aperture 9 . 025 width X . 100 Outer Diam	. 020 Ring . 060 Inner Diam
flpCon	Aperture 8	Aperture 22	Aperture 8
SLDMSK	. 070 Square	. 070 Square	. 070 Square
FLSMSK	Aperture 12	Aperture 12	Aperture 12
DRILL	+32	+32	+32
FLDRLL	$\begin{gathered} \text { Aperture } 23 \\ \text { Text } 32 \end{gathered}$	$\begin{gathered} \text { Aperture } 23 \\ \text { Text } 32 \end{gathered}$	$\begin{gathered} \text { Aperture } 23 \\ \text { Text } 32 \end{gathered}$
PIN*	. 050	. 050	. 050

* The pin layer reflects connectivity (C) with a solid circle or no connectivity (N) with a hollow circle.
1

