Olympia Service
 electronic compact

Funktionsbeschreibung Description of function Description de fonctionnement Descripción de Funciones

Olympia Intemational

Supplement to Function Description 1/14/042/10

Please use the following instead of the last paragraph on Page 15:
The ribbon change lever A12 can sense the type of ribbon cassette. If a normal carbon ribbon cassette is used, the arm of ribbon change lever would not operate and enables the full stroke of the ribbon feed arm A6 for 4 teeth on the feed wheel A8. At this location the multicarbon ribbon cassette has a lug. It pushes the ribbon change lever, so that the transport stroke will be 1 tooth only.

```
List of Contents
```

```
1. Technical data
2. General characteristics
3. Description of function
3.01 Power pack
3.02 Switching-on routine
3.03 Keyboard, keyboard scanning
3.04 Microcomputer
3.05 Control circuit board
3.06 Delay circuit, Reset circuit
3.07 Shift
3.08 Buzzer
3.09 Hammer solenoid, Impression
3.10 Expander circuit
3.11 Motors, Driver circuit
3.12 Photo interrupters
3.13 Printing
3.14 Ribbon lift, Ribbon transport
3.15 Correction tape lift, transport
3.16 Paper feed
4. Adjustments, measurements
4.01 Chassis, horizontal drive
4.02 Chassis, paper injector
4.03 Printer
4.04 Printer, ribbon, correction ribbon
4.05 Motor excitation, impression, resistance of coils
5. Disassembly and assembly
5.01 Housing
5.02 Printer
5.03 Ribbon mechanism
5.04 Printer head
5.05 Selection motor
5.06 Printer PCB, flat cable
5.07 Platen
5.08 Drive unit (wire and pulley)
5.09 Horizontal motor
5.10 Keyboard with control PCB
5.11 Keyswitch, Keyboard diodes
5.12 Power pack
5.13 Fuses
6. Lubrication
7. Trouble shooting
8. Acceptance check
```

9. Foldouts, circuit diagrams, layouts

A Ribbon lift, feed
B Printerhead
C Block circuit diagram
D Circuit diagram power pack
E Layout power pack
F Circuit diagram control PCB
G Layout control PCB
H Circuit diagram keyboard
I Layout keyboard
J Circuit diagram printer PCB
K Layout printer PCB
L. Connector diagram

Type of machine	Electronic typewriter with typewheel
Approvals	UL, CSA, CEE, VDE
Voltage	
Primary circuit	$115 \mathrm{~V} / 60 \mathrm{~Hz}$ or $220 \mathrm{~V} / 50 \mathrm{~Hz} \pm 15 \%$
Secondary circuit	$\mathrm{UH}=+36 \mathrm{~V}$
	$U L=+12 \mathrm{~V}$
	ULL $=+6 \mathrm{~V}$
	$U C=+5 \mathrm{~V}$
	GND $=\varnothing$ - potential control PCB
Consumption	60 W Rated load 21 W Stand-by
Motors	1 Stepping motor $36 \mathrm{~V} / 12 \mathrm{~V}$
	Typewheel selection
	1 Stepping motor $36 \mathrm{~V} / 12 \mathrm{~V} / 6 \mathrm{~V}$
	Horizontal drive (Printer)
	1 Stepping motor 36V/6V
	Vertical drive (Index, paper feed)
	1 Stepping motor $36 \mathrm{~V} / 6 \mathrm{~V}$
	Ribbon

Fuses
$115 \mathrm{~V} / 60 \mathrm{~Hz} \quad 220 \mathrm{~V} / 50 \mathrm{~Hz}$
Primary $\quad 11,25 \mathrm{~A}$ slow-blow 1 1,25A slow-blow circuit $\quad 1$ Thermal fuse $125^{\circ} \mathrm{C} \quad 1$ Thermal fuse $125^{\circ} \mathrm{C}$
Secondary $\quad 11,25 \mathrm{~A}$ slow-blow (VH) $11,25 \mathrm{~A}$ slow-blow (UM) circuit $\quad 12,5 \mathrm{~A}$ slow-blow (UL) $12,5 \mathrm{~A}$ slow-blow (UL)

1 2,OA slow-blow (ULL) 1 2,0A slow-blow (ULL)
1 Thermal fuse $125^{\circ} \mathrm{C}$
Printer Typewheel with 96 or 100 characters, interchangeable, positioning by stepping motor, typing speed 11 cps , impression control switchable 3 grades, original + 4 copies, Typing pitch
Pica $\quad 10 /$ inch $=2.54 \mathrm{~mm}$ Elite $\quad 12 /$ inch $=2.2 \mathrm{~mm}$ Micro $\quad 15 /$ inch $=1.69 \mathrm{~mm}$

Ribbons	Special cassette Correctable carbon ribbon (lift-off), colour code yellow $13 \mathrm{~mm} \times 105 \mathrm{~m}$, 80,000 strikes Carbon ribbon normal, colour code red $13 \mathrm{~mm} \times 105 \mathrm{~m}, 80,000$ strikes Carbon ribbon multi, colour code blue $13 \mathrm{~mm} \times 105 \mathrm{~m}, 320,000$ strikes
Correction ribbon	Lift-off ribbon 7 mm x 7 m, 1700 corrections
Keyboard	48 alphanumeric keys, mechanical switch, buffer memory 11 characters, repeat function on every key except dead keys
	Function keys: Margin release key, Margin set key (L\&R), Back space key*, Correction key*, Relocation key, Tab set key, Tab clear key, Index key* Reverse index key*, Return key*, Shift key (L\&R), Shift lock key (LED), Express key, Space bar*, Half space key, Repeat key
	Key with * repeats its function by pressing the key deeper or pressing the repeat key after the operation of each key.
	Slide switches: Pitch selector $10,12,15$ Line space selector $1,1-1 / 2,2$ Impression control 3 grades
Paper holder	Platen size Length 346 mm (13.62 in) Diameter $40.3 \mathrm{~mm}(1.59 \mathrm{in})$
	Paper capacity 355.6 mm (14 inches) Typing capacity 292.1 mm (11.5 in) Pica 115 characters Elite 138 characters Micro 172 characters
	Line spacing 4.23 mm at selection 1 , variable line spacer, paper injector, paper end gauge, paper release lever
Electronic control	Single chip microcomputer System 8049 (or microprocessor 8039 with external EPROM)
Correction memory TAB memory	```46 characters (46 spaces) 16 settings```

Present margin Left 20 Right 85 on Pica
Self demonstration for service
Prints out all characters, space, backspace, correction, carrier return,relocation express
Dimension
Width 491 mm (19.3 in)
Width 491 mm (19.3 in) Length 376 mm (14.8 in) Height 137 mm (5.4 in)
Weight9 kg
2. General characteristicsThis electronic typewriter model ELECTRONIC COMPACT consists ofthe following six major assemblies

- Chassis and platen unit
- Keyboard
- Printer assemblywith typewheel motor, hammer solenoid, photo interrupters fortypewheel and printer home position, ribbon feed mechanism,correction mechanism
- Power packto transform AC to regulated DC- Control Print Circuit Boardwith 8 bit microcomputer for controlling all functions, driverdevice for stepping motors and hammer solenoid, buzzer
- Housing

3. Description of function
3.01 Power pack
(Circuit Diagram D)
The power pack is transforming the power voltage with the ferro-magnetic constant voltage transformer T1. This transformer is keeping its iron core with a resonance circuit within the saturation phase, so that the voltage changes within permissible range of $+15 \%$ will not influence the secondary voltages.

At the power input, a filter consisting of coil L1 and capacitor C1 works against interfering frequencies.

The primary winding in the constant voltage transformer T 1 is protected by a thermal fuse which functions at $125^{\circ} \mathrm{C}$ and a delay fuse 1.25 A .

Voltage for the secondary circuit is rectified by the bridge rectifiers D1 and D2. The ripple voltage generated in the secondary circuit is smoothed by the capacitors C4, C5, C6, C8. High frequency noise is attenuated by the capacitor C7.

5 V DC for the microcomputer system (UC) is regulated from the 12 V (UL) via ICI.
3.02 Switching-on routine

All control lines outgoing from the CPU (IC4) are set to logic $\sigma(+5 \mathrm{~V})$ when switching on the machine (See 3.06).
The printer is moved to the left until the arm of reset plate is pulled out of the photo interrupter PH2. After recognizing the left end, the horizontal step motor is activated by the microcomputer so as to move the printer 20 spacings to the right from σ on the margin scale (on Pica). This pre-set margin is programed to set at 20 on the left, 85 on the right (on Pica).
The typewheel is turned by the switching-on routine to the basic position via its stepping motor.
The ribbon step motor also moves to its base position.
3.03 Keyboard, Key scanning

The key switch modules are mechanical contact switches and they close and open at the cross points of the key matrix 8×9 (See circuit Diagram H).
When a key is depressed, the contact is closed and effecting the connection between the columns and rows. The microprocessor IC4 is scanning the lines $S p 0 \ldots$ Sp 8 and Ze $0 \ldots$ Ze 8 every 12.6 ms in the BCD code. Its output pin $35 \ldots 38$ send the scanning pulse one after another to the columns $\mathrm{Sp} 0 \ldots \mathrm{Sp} 8$ via the binary decoder IC 5 by tapping 4 ports to 10 with H-signal $(+5 \mathrm{~V})$. The signal scanned forms
an octal code, which is read via the keyboard buffer IC 1 by the input pin 12 ... 19 of the IC 4 (See Circuit Diagram F). A signal is recognized as correct after two times scanning for one time key operation.
The octal codes (8 bits data) of the last 11 characters or functions are memorized in the RAM of IC 4 as the key operation memory (key buffer memory). At the same time, the 8 bits data in the IC 4 is the address for the command which is written in the $2 K-R O M$ (or EPROM IC 2). The command makes the microcomputer activating the machine functions via the driver circuit and the actuators.

The 8 bits microcomputer 8049 is a single chip type computer with N-MOS system. It is replaced during the introduction by the pincompatible microprocessor 8039 (Identification IC 4 on the control circuit board, see Diagram F) with external EPROM IC 2. The microcomputer is including the ALU, $2 K \times 8$ bits programme memory, 128×8 bits RAM data memory, 27 I/O lines (3×8 bits I/0 ports, 1 interrupt input and 2 test inputs), multiplex address/data bus. The internal clock generator in CPU is clocked by means of a quartz with 6 MHz .

Fig-1

Fig-2

The IC 4 processes the information from the keyboard, the operation keys and photo interrupters and controls stepping motors and buzzer (See Circuit Diagram F).

3.05 Control circuit board (Circuit Diagram F)

The IC components of the control circuit board are:
IC 1 - Keyboard buffer
IC 2 - EPROM (programme memory) 2716 D
IC 3 - Address latch (octale 3-state D-latch)
IC 4 - CPU
IC 5 - 4 to 10 decoder
IC 6 - I/0 expander
IC 7 - NOR Gate 4001 BC for CPU reset and delay-1
NOR Gates for shift control (flip flop)-2
IC 8 - NAND Gate for buzzer
IC 9
IC 10 - Inverter for driver circuit activation IC 11
TRA1 - Transistor Array 2004C
The control circuit board includes the drivers for the motors and the hammer solenoid beside the control components (See G).

The plug arrangement is:
Cone 1 Keyboard output Ze
2 Keyboard input Sp
3 Horizontal motor (printer)
4 Vertical motor (index)
5 Printer PCB
6 Power pack
7 Paper injector switch

3.06 Delay circuit, Reset circuit
(Circuit Diagram F)

Since the voltage $U L+12 V$ and then $U C+5 \mathrm{~V}$ are not soon available when switching on the machine, a switching-on delay circuit is effected to $U C+5 \mathrm{~V}$ which activates the motors and the hammer solenoid.
The CPU (IC 4) has H-level at its pin 33 and the NOR gate IC 7 at pin 13 when the machine is switched on. During increasing of the UL to +12 V , the Zener diode $Z D 1$ gives 4.5 V ($\mathrm{UL}-7.5 \mathrm{~V}$) to the base of transistor $\operatorname{Tr} 3$. And its collector comes to L-level when the UL reaches 10 V or more. The L-level goes to the pin 12 of NOR gate
IC 7 . The L-level is led to the base of $\operatorname{Tr} 31$ from the output of IC 7 and the $\operatorname{Tr} 31$ is opened. In the meantime $\operatorname{Tr} 6$ for the driver circuit still keeps opening.
Then the capacitor C 2 is charged, the reset input pin 4 of CPU comes to H -level and the CPU initiates its programme. After the CPU has initiated the programme, the pin 33 comes to L-level and the pin 13 of IC 7 also comes to L-level. The output of IC 7 comes to H -level. Then the transistor $\operatorname{Tr} 31$ and $\operatorname{Tr} 6$ open and the control voltage +5 V is switched through to the driver circuit. When the machine is switched off or when the UL drops below 9V, $\operatorname{Tr} 3$ opens and pin 12 of IC 7 comes to H -level. The output of IC 7 comes to L-level. Then the transistors $\operatorname{Tr} 31$ and $\operatorname{Tr} 6$ open and the control voltage +5 V for the driver circuit is switched off. The switched-through transistor ($\operatorname{Tr} 3$) gives H -level to the base of $\operatorname{Tr} 4$, which makes the pin 4 of CPU L-level via the reset line. Then the reset is effected by means of the capacitor $C 2$.
3.07 Shift
(Circuit Diagram F)
The emitter of transistor $\operatorname{Tr} 1$ has H-level from the CPU (IC 4) via the pin 9 of IC 5.
When pressing the shift lock key, +5 V goes to the pin 1 of IC 7 via the cone 1 pin 9 and the cone 2 pin 1, and the flip flop is set. Since the output of flip flop comes to H-level and one of the TRA 1 is inverted, L-level goes to the LED via the cone 1 pin 10 and the LED lights on. In the meantime H-level goes to the keyboard diode $D \emptyset$ via the collector of $\operatorname{Tr} 1$ and cone 2 pin 3 , and goes to the keyboard buffer IC 1 via the cone 1 pin 4 . Thus the key scanning from CPU detects the shift lock key being depressed.

When one of the shift keys is depressed, +5 V goes to the pin 6 of IC 7 via the cone 2 pin 1, and the flip flop is reset. Since +5 V goes through the diode D 2 and inverts one of the TRA 1, L-level goes to the LED via the cone 1 pin 10 and the LED lights on. And the key scanning from CPU detects the shift key being depressed. While the shift key is depressed, the current keeps flowing via $D 2$ to TRA 1 and the LED keeps lighting on. However, the output of IC 7 keeps L-level.

When the shift key is released, the input of the IC 7 comes to Llevel and the output is keeping its L-level. Since. the base of Tr 1 comes to H-level and it opens, the LED has no voltage and lights off. In the meantime L-level goes to the keyboard diode D \emptyset via the cone 2 pin 3 , and goes to the keyboard buffer IC 1 via
cone 1 pin 4. Thus the key scanning from CPU detects the shift key being not depressed.
3.08 Buzzer
(Circuit Diagram F)
The buzzer is operated by a single shot multi-vibrator consisting of the lower 2 NAND gates of the IC 8.
The CPU (IC 4) applies a L-impulse to the multi-vibrator from the pin 34 . A H-level is formed for about 0.5 second at the pin 3 of IC 8 and operates the oscillator (higher 2 NAND gates) which activates the buzzer BUZ via the transistor $\operatorname{Tr} 2$.
3.09 Hammer solenoid, Impression
(Circuit Diagram F)
The CPU (IC 4) applies continuously H-level to its pin 31. The base of $T 29$ comes to L-level via one of TRA 1 . It locks and keeps the hammer solenoid. The pin 31 of CPU comes to L-level for character printing. The base of $\operatorname{Tr} 29$ comes to H -level with +5 V from $\operatorname{Tr} 6$. Then the current from +36 V flows to the magnet coil via the cone 5 pin a8 and to the collector of $\operatorname{Tr} 29$ from another end of the magnet coil via the one 5 pin b7. Thus the striking of plunger for printing is activated.

After striking, the Zener diode ZD 6 limits the fly-back voltage to 51V.

The current flows the solenoid for constant printing is limited by the $\operatorname{Tr} 30$ under the control of the $\operatorname{Tr} 20$ base. The total printing impression can be adjusted by the variable resistor VR 1, which changes the volume of current flowing to the hammer solenoid.

Impression
The different type contour of characters is considered so that the current will flow to the hammer solenoid for a different time. It is divided into 3 stages:

- Normal : All normal capital and small letters and symbols.
- Strong : Large space letters (for example Ww Mm \& §).
- Weak : Small space symbols (for example ,.-_').

The necessary time for the concerned characters are filed in the ROM of CPU or EPROM. It controls the output time of L-level from the CPU.

The print impression can be selected with the slide switch on the keyboard according to the number of copies. It also controls the output time of L-level from the CPU.

Position 1 Normal impression
No contact and therefore no signal to the CPU.
Position 2 Higher impression
Slide switch contact S2 in the keyboard matrix is closed. The CPU detects it by key scanning as described in paragraph 3.03.

This makes the output time of L-level 0.38 ms longer from the pin 31.

Position 3 Highest impression
Slide switch contact S 1 in the keyboard matrix is closed. The output time of L-level is 0.59 ms longer.
3.10 Expander circuit

Since the 8039 (IC 4) has only 27 I/0 lines, extension of the output lines port $20 \ldots 23$ (pin $21 \ldots 24$) is effected to the ribbon, vertical, typewheel and horizontal motors via the I/0 expander IC 6.

The IC 6 has a programme port with one line, 4 input and 4 output ports each with 4 lines. The 4 output ports operate the driver circuit.

Fig. 4

3.11 Motors, driver circuit

The stepping motors make movements with following step spaces:
Typewheel positioning
1 full step of motor $=3.6^{\circ}=1$ spoke of typewheel
Horizontal positioning
1 full step of motor $=7.5^{\circ}=1 / 60$ in $=0.423 \mathrm{~mm}$
6 full steps of motor $=1$ pitch $10 \mathrm{cpi}=2.54 \mathrm{~mm}$
5 full steps of motor $=1$ pitch $12 \mathrm{cpi}=2.12 \mathrm{~mm}$
4 full steps of motor $=1$ pitch $15 \mathrm{cpi}=1.69 \mathrm{~mm}$

Vertical positioning

$$
\begin{aligned}
1 \text { full step of motor } & =7.50=1 / 72 \text { in }=0.3528 \mathrm{~mm} \\
8 \text { full steps of motor } & =1 \text { line spacing }=1 / 6 \text { in }=4.23 \mathrm{~mm} \\
12 \text { full steps of motor } & =1-1 / 2 \text { line spacing }=1 / 4 \text { in }=6.35 \mathrm{~mm} \\
16 \text { full steps of motor } & =2 \text { line spacing }=1 / 3 \mathrm{in}=8.46 \mathrm{~mm}
\end{aligned}
$$

Ribbon motor
For cassette ribbon feed and lift, 11 steps $=82.5^{\circ}$ from basic position in both directions

For correction tape feed and lift, 30 steps $=22^{\circ}$ from basic position in one direction and back.

For the typewheel motor, a bit pattern is transmitted from the CPU via the port $10 \ldots 13$ of IC 6 to the 4 control lines. It is inverted by the inverter IC 9 and switches on the basis of $\operatorname{Tr} 12 \ldots$ Tr 15. The motor works by changing the bit patterns in order.

Above description also applies to other stepping motors under the consideration of each switching time and driving device.

Bitmuster/Timing Chart

Fig. 5
$t_{A}=10 \mu \mathrm{~s}$ const, $t_{B}=x \mathrm{~ms}$ const, $t_{C}=130 \mu \mathrm{~s} \ldots 5 \mathrm{~ms}$
Typewheel motor $x=500 \mathrm{~ms}$, horizontal motor $x=1.3 \mathrm{~ms}$, vertical motor $x=1.6 \mathrm{~ms}$

The power control for motors is effected from the port 1 of CPU to the basis of $\operatorname{Tr} 8 \ldots$ Tr 11 via inverting in the transistor arrey TRA 1. Since the horizontal motor needs 3 different voltages, $\operatorname{Tr} 7$ is activated exclusively for this motor.

During motor functioning the operation voltage switches continuously between VHH and VHL via the transistors $\operatorname{Tr} 7 \ldots \operatorname{Tr} 11$ (See Fig. 5).

Motors Operation voltage Keeping voltage

Typewheel motor
VHH VHL

Horizontal motor Vertical motor Ribbon motor

36 V
36 V
36 V
36 V

VHL

12 V	0 V
12 V	6 V
6 V	0
6 V	0 V

Fig. 6

3.12 Photo interrupters

The basic positions of the step motors except the vertical motor are detected by the CPU via the photo interrupters.

Motor
Typewheel motor Horizontal motor Ribbon motor

Photo interrupter
PH 3 on the printer head
PH 2 on the printer PCB
PH 1 on the printer PCB

When printer head is pulled backward for ejection of the typewheel, its arm releases the reset crank and the reset plate leaves the PH 2 (See Drawing B).

3.13 Character printing

After pressing a key (paragraph 3.03), the typewheel motor controlled by the CPU (paragraph 3.11) brings the typewheel to the position for printing of the selected character. The shortest turning distance from the last typewheel position will be selected. At the same time the ribbon lift and feed are effected by the ribbon motor. After a certain waiting time, the hammer solenoid is powered and strikes the plunger with the hammer and the typewheel spoke against the platen. Then the carrier transport starts the spacing step selected by the pitch selector slide switch. At the same time the ribbon is lowered. If no further signal of key operation follows, the typewheel turns back after 1.3 sec . to its home position (See Fig 7).

Typenabdruck/Typing

Korrektur/Correction

Fig-7
3.14 Ribbon transport, ribbon lift

The ribbon motor A1 moves from its home position 11 steps $=82.5^{\circ}$ in one direction.
The ribbon lift cam A2 swings the ribbon center guide-R B4 via the cam follower and the ribbon lift crank B5. The center guide $-L$ is turned together by means of the tooth connection. Thus the ribbon is lifted to the printing position.
The ribbon feed cam A5 moves the ribbon feed arm A6 via the cam follower and the cam lever A7. The ribbon feed arm pushes the finger plate, so that the feed wheel A8 turns counterclockwise. The ribbon is transported by the rubber roller A9. The ribbon feed spring A10 turns the ribbon feed pulley A11 and the used ribbon is wound up.
After printing, the ribbon motor turns back its home position. For
the next character printing, the motor will move 11 steps in the opposite direction.

The ribbon change lever A12 can sense the type of ribbon cassette. If a normal carbon ribbon cassette is used, the arm of ribbon change lever gets into a opening of the cassette and enables the full stroke of the ribbon feed arm A6 for 4 teeth on the feed wheel A8. In the meantime, the multi-carbon ribbon cassette has no opening on the referring section, it pushes the ribbon change lever, so that the transport stroke will be 1 tooth only.

3.15 Correction tape transport and lift

When pressing the correction key, the information from the keyboard matrix is transmitted to the CPU (paragraph 3.03). The typewheel motor and the ribbon motor are activated according to the 46 -correction memory stored in the RAM range.

The ribbon motor turns counterclockwise 30 steps $=225^{\circ}$ from its basic position. The correct cam A13 lifts the correct arm A14 at the end of the movement. At the same time the correct feed pawl A15 feeds the correct feed ratchet A16 and the correction tape is transported. The brake spring A17 keeps the correction tape tension at the correct tape spool.
After the correction performed, the ribbon motor turns back to its home position.
3.16 Paper feed

If the paper bail shaft is pulled forward beyond its pressure point for activating of the paper feed, the angle of right paper bail arm closes the first contact $S 10$ of the paper feed switch.

The key scanning by the CPU transmits H -level via the decoder IC 5, connector 7 pin 1, switch S 10, buffer IC 1 to the input pin 17 of CPU (see paragraph 3.03). Then the horizontal motor activated in single function.

When pulling the paper bail further forward, the second contact is closed. H-level is transmitted via the cone 7 pin 3 , switch S 11 buffer IC 1 to the input pin 19 of the CPU. Thus the horizontal motor is activated in repeat function.

The horizontal motor drives the platen via the drive gear, drive pulley, drive cog belt and platen pulley.

The index key (forward) and the reverse index key (backward) activates the corresponding platen movement via the contacts on the keyboard matrix.
4.01 Chassis, horizontal drive

4.01 Chassis, horizontal drive

	Function : Printing, type distance Clearance between : Typewheel / Platen Clearance $: 3.5$ mm Adjustment : At adjustplate even left and right by slacken-off the set screws Screw c is fixed fulcrum, screws a and b must be loosed Function : Motion adjustment Clearance : Printout uniform of complete characters Adjustment : Screw b is fixed fulcrum, screws a and c must be loosed.
Gestell-Rahmen Chassis side frame OW-Rahmen	Function/assembly $:$ Final position of printer / Chassis frame Clearance between $:$ Chassis frame outside / Adjust screw Clearance $: \approx 6,5 \mathrm{~mm}$ Adjustment : Screw on $\approx 6,5 \mathrm{~mm}$. Position the printer to the left end so that the guide hole of reset plate will be hidden half. Excite the motor (see 4.05 .1) and adjust the screw again so that the guide hole will be hidden half.
	Function $:$ Line space detent Clearance between $:$ Platen pulley / Variable spring Clearance : When vertical motor is excited (see 405.1$),$ the tips of the variable spring must engage in teeth of platen pulley. Adjustment : Excite the vertical motor, slacken off the nut (spanner size $17 \mathrm{~mm})$, turn the bushing (spanner size 10 mm$)$ of variable

4.02 Chassis, paper injector

	Function/assembly $:$ Paper injector switch Clearance between : Paper injector switch final position / Paper bail arm right Clearance $: 0 \mathrm{~mm}$, contact Adjustment $:$ Adjust the paper bail arm right Note $:$ If switch is pressed into second stage, the paper bail arm must contact the switch holder just before final position.
	Function/assembly $:$ Tension of drive belt / Vertical drive pulley Clearance $: 3.5 \ldots 4 \mathrm{~mm}$ slack at $5 \mathrm{~N}(500 \mathrm{~g})$ load Adjustment : At eccentric bearing screw and nut (spanner size 13 mm$)$ Note : Ensure detent of platen and engagement of motor pinion / drive pulley Function : Vertical motor pinion / drive pulley Clearance : 0.1 mm backlash Adjustment : Repositioning of vertical motor Note $:$ Motor must be able to be rotated by hand freely.
	Function/assembly $:$ Plater / Chassis plate Clearance between $:$ Right side of rubber portion / inside of chassis plate Clearance $: 17 \mathrm{~mm}$ distance 0.02 mm lateral play of platen Adjustment $: 2$ set screws right and 2 set screws left on platen

	4.03 Printer
	Function/assembly $:$ Line locator / Frinter chassis Clearance between $:$ Line locator / typing line Clearance $:$ Adjust after typing lilili liliili Adjustment : Lateral : Repositioning after slacken-off the screws Height : Forming the arms of printer chassis
	Function/assembly : Line locator Clearance between $:$ Line locator / platen Clearance $: 0.3 \ldots 0.5 \mathrm{~mm}$ Adjustment : Repositioning of the Iine locator
$\stackrel{\rightharpoonup}{0}$	Function/assembly $:$ Typewheel motor / Photo interruptor Clearance $=$ Position detector must be in the middle of the light barrier if motor is in home position. Adjustment : Repositioning of position detector Note : Excitation of typewheel motor (see 4.05 .1)

4.03 Printer

: Printerhead, hammer solenoid \quad| : Hammer / Typewheel |
| :--- |

4.04 Printer, Ribbon/Correction Ribbon
: Ribbon lift cam, ribbon feed cam / printer chassis
: Home position see drawing
4.04 Printer, Ribbon/Correction Ribbon

N	Function/assembly : Ribbon feed / ribbon base Clearance : Ribbon feed gear $4-2 / 3$ teeth for correctabie carbon ribbon $1-2 / 3$ teeth for multicarbon ribbon Adjustment : See fine-adjustment of foliower arm home position (4.04.3). Note Following multicarbon ribbon adjustment correct if necessary.
	Function/assembly $:$ Correction ribbon - basic position Clearance between $:$ Edge of the ribbon / line iocator scale Clearance $: 1.5 \ldots 2.0 \mathrm{~mm}$ Adjustment $:$ Ey forming the stopper portion on right side of ribbon base
	```Function/assembily : Correction ribbon lift Adjustment : Excitation of ribbon motor (see 4.05.1) Repositioning of correct cam so that neutral surface of cam contacts the cam follower of correct cam```

4.05 Motor excitation, impression, resistance of coils

5. Disassembly and assembly
5.01 Housing

1. Pull out the platen knob and remove the top cover.
2. Loosen the bottom pan fastening screws (2 pcs) at the rear side of the main cover.
3. Latch off the main cover from the bottom pan by pressing both lower sides of the main cover at the same time. Remove the main cover by lifting off from the right side.
4. Remove 4 nuts which fasten the chassis to the bottom pan.
5. Assemble in the reverse sequence.
5.02 Printer
6. Remove the housing.
7. Remove the keyboard assembly if necessary (see 5.10).
8. Disconnect the flat cable from the control board and remove the cable clamps.
9. Remove the wire holder set screws (2 pcs) from the bottom of the printer.
10. Remove the right side adjust plate after removing the screws and washers.
11. The printer unit will be removed from the guide shaft by pulling it out to right.
12. Assemble in the reverse sequence. Adjustment of ring and and cylinder by the adjust plate is required after the installation (see 4.01.4)!
5.03 Ribbon mechanism
13. Remove the top cover.
14. Remove the ribbon feed spring B 10 and correct arm spring A 3.
15. Remove the ribbon base set screws (3 pcs) and a nut.
16. Remove the ribbon base unit from the printer.
17. Assemble in reverse sequence.
5.04 Printer head
18. Remove the ribbon base unit (see 5.03).
19. Unhook the toggle lever spring A 4 from the printer chassis.
20. Disconnect fromprinter PCB the connector sockets wired from the typewheel motor, hammer solenoid and photo-interrupter.
21. Remove the printer head unit after loosening the center screw and nut.
22. Assemble in the reverse sequence.

Adjust the play between the center screw and the head frame shaft so that the printer head functions properly without any rickety.
5.05 Typewheel motor

1. Remove the printer head assembly (see 5.04).
2. Take the lead wires off the slits of printer head frame.
3. Remove the photo-interrupter B 10 by slacking-off set screw.
4. Remove the nut B 6 on right hand. Pull out the head frame
shaft B 9 to left and remove the spacer B 7.
5. Remove the motor set nuts (3 pcs).
6. Remove the typewheel motor by pressing downward.
7. Assemble in the reverse sequence. Adjustment of positioning typewheel motor and photo-interrupter will be required (see 4.03.3).
5.06 Printer PCB, Flat Cable
8. Remove the printer assembly (see 5.02).
9. Remove the ribbon motor A 1 by slacking-off 2 screws and disconnect the connector socket 13 from the printer PCB.
10. Remove the cam shaft B 5 if it was not removed together with the ribbon motor.
11. Disconnect the connector sockets from the printer PCB. Remove the shoulder screw and tooth washer.
12. The printer PCB may be removed.
13. After slacking-off the flat cable holder, remove the flat cable. Ensure to avoid bending and rubbing the flat cable.
14. Assemble in the reverse sequence. Check the positioning of photo-interrupters.
5.07 Platen
15. Move the paper end gauge to left and slacken-off the platen socket screws (2 pcs).
16. Pull out the platen knob comp. to left.
17. Remove the paper end gauge with washer and spring.
18. Remove the platen shaft set c-clip on the right side.
19. Lift off the platen to upper left.
20. Assemble in the reverse sequence. Ensure for adjustments 4.02.3.

5.08 Drive unit (wire and pulleys)
21. Remove the top cover.
22. Slacken-off the tension pulley set nuts left and right.
23. Slacken-off the drive wire by driving both eccentric tension pulley screws to the center.
24. Remove the drive wire from the wire holder and the tension pulleys.

25. Remove the drive pulley from the shaft after removing c-clip.
26. Pull the drive wire out of the drive pulley.
27. When assembling, ensure: The drive wire is divided into two parts by the metal stopper. Wind the longer end 3-1/2 turns clockwise and the shorter end 3-1/2 turns counterclockwise around the drive gear. Ensure coils not crossed. When the drive wire is hooked around the tension pulleys, holding the wound wire by adhesive tape will be suggested.
5.09 Horizontal motor
28. Remove the housing.
29. Remove the keyboard unit (see 5.10).
30. Disconnect the connector cone 3 from the control PCB.
31. Remove the motor set screws (2 pcs) at rear of chassis.
32. Remove the motor from the bracket.
33. Assemble in the reverse sequence. Follow the adjustment for positioning motor in 4.05.1 !
5.10 Keyboard with control PCB
34. Remove the housing.
35. Remove the keyboard set screws (2 pcs) from the bottom pan.
36. Stand the keyboard up and disconnect the flat cable connector (cone 5) and 4 lead wire connectors (cone $3,4,6,7$ ) from the control PCB.
37. Disconnect 2 flat cable connectors (cone 1,2 ).
38. Remove 4 control PCB set nuts and a tooth washer. Remove the board by holding edges.
Note: The control PCB should be wrapped up in conductive foil or aluminum foil for electrostatic shielding.
39. Assemble in the reverse sequence. Check all functions after the installation.
5.11 Key switch, Keyboard diodes
40. Remove the keyboard with the control PCB (see 5.10).
41. Pull out the individual key top straight upward.
42. Pull out the key switch straight upward after removing 2 soldered points on the reverse side of keyboard. 5 keys with repeat function have 4 soldered points.
43. The diode corresponding to each key will be accessible through the slit on the keyboard panel. Remove 2 soldered points of the diode.
44. Assemble in the reverse sequence.

### 5.12 Power pack

1. Disconnect the power supply cord from the outlet. Remove the housing.
2. Remove the switch cover by removing the switch cover set screw. Take out the switch and power inlet with wires.
3. Remove the wire clamps and disconnect the connector 6 from the control PCB (Remove the control PCB if necessary - see 5.10).
4. Remove the 4 power pack set screws located around the transformer.
5. Remove the power pack cover by slacking-off 2 set screws.
6. Remove the power pack from the bottom pan.
7. Assemble in the reverse sequence. Check electrical safety!
5.13 Fuses
8. Disconnect the power supply cord from the outlet. Remove the top cover.
9. Remove the power pack cover set screws (2 pcs). Remove the power pack through the room between the paper pan and the bottom pan.
10. Check the cause of the fuse functioned.
11. Assemble in the reverse sequence.



-		$\begin{aligned} & 3 \\ & = \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & N \\ & N \\ & \vdots \\ & \vdots \\ & \hline \end{aligned}$	$\begin{aligned} & 3 \\ & L \\ & 0 \\ & \sim \\ & 0 \\ & 0 \\ & 0 \\ & \hline \\ & \hline \\ & 0 \\ & \hline \end{aligned}$	$u$ 0 $\sim$ 0 0 0 0 $\vdots$ $\pm$ 0 $u$
(1)	Bandtransportkurve Lager Cam shaft			X	
	Druckerachse Head frame shaft			$x$	
	Druckwerk-Gleitbuchsen Carrier slide bushes	X			
	Steuerschieber (1)   Reset plate   Steuerhebel (2)   Reset crank.		$x$	X	
	```Farbband-Schaltrad (3) (1 u. 2) Ribbon feed roller```	X		x	


	Bestellnummern/Reference Number $\begin{array}{ll} W=4 / 511 / 0041 & F=4 / 521 / 0044 \\ M_{Z}=4 / 502 / 0021 & F W=4 / 521 / 0107 \end{array}$	$\begin{aligned} & 3 \\ & z \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & N \\ & \Sigma \\ & Z \\ & \vdots \\ & O \end{aligned}$		
	Kassettenhalte-Mechanismus (1, 2, 3) Cassette hold mechanism			x	
	Papierlöser (1 u. 2) Paper release übrige Lagerstellen other bearing points	X		X	
	$\begin{aligned} & \text { Papierhaltearm-Rastung } \\ & \text { Paper bail arm right } \end{aligned}$			x	
	Schreibwalzenlager links u. rechts Platen bearing left and right Walzenrastfeder Variable spring for platen			x	x
	Papierführungsrollen Paper feed roller			x	
Alle übrigen Lager-u. Gl And all other bearing and	$\begin{aligned} & \text { eitstellen } \\ & \text { sliding points } \end{aligned}$	X			

7. Trouble shooting

7.1 Supply voltage

ICI

IC2

IC3

IC4

IC5

IC6

IC7

IC8

IC9. . ICl1

TRA 1

1. Packing

Check the packing for signs of damage
2. Housing

Following the removal of the transit safety devices the housing should be checked for signs of damage
3. Operating controls

The operating controls such as the platen release lever, platen knobs, paper release lever, paper retaining bails etc. should be checked for signs of damage
4. Feed-in and transport of the paper

Check the correct feed-in and transport of the paper
5. Paper release

Check the paper release function. In the released setting it should be possible to reposition the original and four duplicates
6. Print

Commence the automatic reproduction of the range of characters by the simultaneous operation of the margin release and on/off keys, repeating this process for all the pitches and settings of the impression energy switch. During this process check the backspacing, printer return and correction functions.
7. Corrections

Corrections must be made so as to lift-off the complete character from the paper without leaving traces. The correction ribbon must transport one tooth and remain tensioned.
8. Ribbon lift/ribbon transport

Ribbon lift must take place correctly in both halves of the ribbon.
Check the transport of the ribbon for correction functioning depending on the type of cassette used.
9. Typewheel

Check the interchangeability and the freedom of movement of the typewheel
10. Keyboard functioning test

Check all the functions of the keyboard
Check :

- the operation of all keys, spacing trip, backspace key
- the shift and shift lock functions
- the set and clear functions of the tabulator

Farbbandhebung, -Transport Ribbon lift, feed

1 Farbband Motor Ribbon motor
2 Bandhubkurve
Ribbon lift cam
3. Zugfeder f. Korrekturbandträger Correct arm spring
4 Zugfeder für Führungshebel Toggle lever spring
5 Bandtransportkurve Cam shaft
6 Transportarm
Ribbon feed arm
7 Koppel
Cam change lever
8 Bandschaltrad
Feed roller
9 Transportrolle Rubber roller
10 Transportfeder Feed spring
11 Transportrad Ribbon feed gear
12 Transportwechsler Ribbon change lever
13 Korrekturbandkurve Correct cam
14 Korrekturbandtrăger Correct arm

15 Transportklinke f. Korrektur Feed pawl

16 Korrekturschaltrad Correct feed ratchet
17 Bremsdrehfeder
Brake spring

Druckwerkskern

Printer head

1 Farbbandheber links Center guide left
2 Abschlagmagnet Hammer solenoid

3 Hammer hammer

4 Farbbandheber rechts Center guide right
5 Farbbandhubarm Center guide lift crank

6 Mutter Nut

7 Distanzrohr Spacer
8 Positionsfinder Position detector

9 Druckerachse Head frame shaft
Gabellichtschranke Photo interrupter
11 Typenradmotor Selection motor

12 Arm am Rahmen für Druckwerkskern Arm at printer head chassis

13 Steuerhebel Reset crank
14 Steuerschieber Reset plate


```
Blockschaltbild Block circuit diagram
```


1	IC 2	EPROM
2	$\begin{aligned} & \text { st } \quad, \\ & \text { CONE } \end{aligned}$	Stecker tastatur Connector keyboard
3	IC 8	$\begin{aligned} & \text { NAND-Gate Summer } \\ & \text { Buzzer } \end{aligned}$
4	Tr 2	Summer-Transistor Buzzer-Transistor
5	IC 5	- to 9 Decoder
6	IC 7	Input mor Gate CPU reset
7	ir 1	Transistor Umschaltung/Shift
8	$\begin{aligned} & \text { St } 2 \\ & \text { CONE } \end{aligned}$	Stecker Tastatur Connector keyboard
9	Tr 4	Transistor Reset CPU
0	Ir 3	Transistor 5 V-veribgerung/Delay
1	Tr 31	Transistor 5 - -Verzogerung/delay
2	ir 6	Transistor $5 \boldsymbol{\gamma}$-verzogerung/Delay
3	Tr 29	Leistungstransistor Abschlagmagnet/Hammer drive transistor
14	tar 1	Transistor-Array for Anpassung CPU on Leistungstransistoren Transistor-Array for matching CPU to power transistors
15	$\begin{aligned} & \text { St } 6 \\ & \text { CONE } 6 \end{aligned}$	stecker stromverscrgung Connector power supply
6	Tr 7	Transistor Transistor power down mode
1	$\begin{aligned} & \mathrm{st}^{3} \\ & \text { CONE } \end{aligned}$	stecker Horizontalmotor Connector cerrler motor
8	$\begin{aligned} & \text { St } 7 \\ & \text { CONE } 7 \end{aligned}$	Stecker Paplerelnzugsschalter Connector paper feed suitch
19	$\begin{aligned} & \text { St } 8 \\ & \text { CONE } 8 \end{aligned}$	Testanschluß fur Lelterplatte lestpin for PCB
0	$\begin{aligned} & \text { St } 5 \\ & \text { Cone } \\ & \hline \end{aligned}$	Stecker oruckwerks-leiterplatte Connector carrier PCB
1	Tr 8...tr 11	Lelstungstransistoren Motoren Power transistors for motors
22	IC 9...ic 11	Inverter fur Anpassung CPU an Motor-Trelberstufen Inverters for matching CPU to motor power transistors
23	Tr 12...tr 21	Leistungstransistoren fur Schrittmotoren Orive transistors for stepping motors
24	Tr 30	Transistor Abdruckkonstanz Constant current (impression)
25	vRI	Trimer fur abdruckenergie Variable resistor for impression
26	IC 6	1/0 Exponder 08243 C
27	$1{ }^{1} 2$	CPU 6 bit-MIkroprozessor 8039 CPU bit Wicrocomputer 8039
28	Buz	Sumer/buzzer
29	$\begin{aligned} & \text { ste } \\ & \text { CONE } \end{aligned}$	stecker Vertikelmotor Connector indexmotor
30	IC 3	Octal 3-state laten fur Adressen
31	IC 1	Tastaturbuffer (Octal 3 -state bus buffer) for keyboard

Circuit diagram, keyboard

PH 1
St 11
CONE 11
St 10 CONE 10

St 13 CONE 13
PH 2
St 14 CONE 14
St 15 CONE 15
St 12
CONE 12

Farbband-Lichtschranke/Ribbon sensor Stecker Abschlagmagnet Connector Hammer solenoid Stecker Typenrad-Lichtschranke Connector selection sensor Stecker Typenrad-Motor Connector selection sensor Druckwerk-Lichtschranke/Carrier sensor Stecker Farbbandmotor Connector ribbon motor Stecker Steuer-Leiterplatte Connector control PCB
Stecker DW-Positions LED Connector carsol LED

SI/CONEI
Tastatur/keybourd

SM/CONET
Papierennzugschaller
Paperfeed swich

Si2/CONE2
Tastatur/keyboard

Sis/CONES
Druckwerks-Leiterpialte Carrier P.C.B
国

SIII/CONEII)
Typenriad-Licheschranhe
Sexectura vensur

Sill/CONEII
Abvehlagmagnea Hammer swienoict

S12/CONE12 DW-Positions-LED Carsot LED

SIS/CONEIS Stever-Leiterpiane Control P.C.B

Sit/CONE 4
verrikal mutur Inder mosur

Si6/ CONE Stromvers. bunz
Powerpuck

Bu3/SOCKET3
Typenrab-Lichtschranke Selection sensor

SII4/CONEI4
Farbbundmexor

Ribbern monor

St 3 / CONE 3
Horizontal motor
Carrier mosor

븐

$$
12
$$

