
References

[BG89] David Bernstein and Izidor Gertner. Scheduling expressions on a pipelined processor
with a maximal delay of one cycle. ACM Transactions on Programming Languages and

Systems, 11(1):57{66, January 1989.

[BHH97] Peter Brucker, Thomas Hilbig, and Johann Hurink. A branch and bound algorithm
for a single-machine scheduling problem with positive and negative time-lags. Technical
Report Reihe P, Nr. 179, Universitat Osnabruck, Osnabrucker Schriften zur Mathematik,
1997.

[BJS80] John Bruno, John W. Jones, III, and Kimming So. Deterministic scheduling with
pipelined processors. IEEE Transactions on Computers, C-29(4):308{316, April 1980.

[BK98] Peter Brucker and Sigrid Knust. Complexity results for single-machine problems with pos-
itive �nish-start time-lags. Technical Report Reihe P, Heft 202, Universitat Osnabruck,
Osnabrucker Schriften zur Mathematik, 1998.

[BLV95] Egon Balas, Jan Karel Lenstra, and Alkis Vazacopoulos. The one-machine problem with
delayed precedence constraints and its use in job shop scheduling. Management Science,
41(1):94{109, 1995.

[BRG89] David Bernstein, Michael Rodeh, and Izidor Gertner. Approximation algorithms for
scheduling arithmetic expressions on pipelined machines. Journal of Algorithms, 10:120{
139, 1989.

[DLY91] Jianzhong Du, Joseph Y-T. Leung, and Gilbert H. Young. Scheduling chain-structured
tasks to minimize makespan and mean ow time. Information and Computation, 92:219{
236, 1991.

[FL96] L. Finta and Z. Liu. Single machine scheduling subject to precedence delays. Discrete

Applied Mathematics, 70:247{266, 1996.

[GJ79] M.R. Garey and D.S. Johnson. Computers and Intractability: A Guide to the Theory of

NP-Completeness. W.H. Freeman, 1979.

[GLLR79] R.L. Graham, E.L. Lawler, J.K. Lenstra, and A.H.G. Rinnooy Kan. Optimization and
approximation in deterministic sequencing and scheduling: A Survey. Annals of Discrete
Mathematics, 5:287{326, 1979.

[Hu61] T. C. Hu. Parallel sequencing and assembly line problems. Operations Research, 9:841{
848, 1961.

[Law78] Eugene L. Lawler. Sequencing jobs to minimize total weighted completion time subject
to precedence constraints. Annals of Discrete Mathematics, 2:75{90, 1978.

[Li77] Hon F. Li. Scheduling trees in parallel/pipelined processing environments. IEEE Trans-

actions on Computers, C-26(11):1101{1112, 1977.

[TGS94] V.S. Tanaev, V.S. Gordon, and Y.M. Shafransky. Scheduling Theory. Single-Stage Sys-

tems. Kluwer Academic Publishers, Boston, USA, 1994.

23

p P jintree; pj = 1; li;j = ljCmax [Li77]
p P jouttree; pj = 1; li;j = ljCmax [BJS80]
p P jintree; pj = 1; li;j = lj

P
Cj Section 3.1

p P jouttree; pj = 1; li;j = lj
P

Cj Section 3.1
p 1jprec; pj = 1; li;j 2 f0; 1g jCmax [BRG89]
? 1jprec; pj = 1; li;j 2 f0; 1g j

P
Cj

? 1jprec; pj = 1; li;j = L(L � 2) jCmax

? 1jprec; pj = 1; li;j = L(L � 2) j
P

Cj

� 1jprec; pj = 1; li;j = ljCmax Section 3.2
� 1jprec; pj = 1; li;j = lj

P
Cj Section 3.2

(a)

p 1jprec; li;j = 1jCmax [FL96]
? 1jprec; li;j = 1j

P
Cj

� 1jchain; pj 2 f1; 2g; li;j = L (L � 2)jCmax Section 2.4
� 1jchain; pj 2 f1; 2g; li;j = L (L � 2)j

P
Cj Section 2.4

(b)

Table 4: Complexity boundary involving scheduling problems and the makespan and mean ow time
objective functions.

3.3 Complexity Boundary Analysis

In this section we have examined unit execution time problems involving non-chain structured tasks
and constant distance constraints. Although allowing more general precedence constraints than sim-
ple chains does, in general, make the scheduling problems more di�cult, the more general precedence
constraints do not necessarily make the problem NP-complete as we saw in Section 3.1.

Table 4 presents the known boundary for unit execution time scheduling problems involving
various precedence constraints with respect to the makespan and mean ow time objective functions.
Note that the results obtained in this section are either minimal NP-complete results or maximal
polynomial-time solvable results. Figure 3 depicts this boundary graphically.

4 Conclusions

We have presented several new complexity results for scheduling problems involving distance con-
straints. This work sharpens the boundary between known polynomial time solvable scheduling
problems and known NP-complete scheduling problems; however, there are still several open prob-
lems of practical interest. The 1j�1; pj = 1; li;j 2 f0; LgjCmax problem corresponds to code scheduling
on a single pipelined processor where some instructions have a �xed latency L and others have zero
latency (corresponding to full bypass circuitry for some, but not all, instructions). Even though
bypass circuitry can decrease the complexity of the code scheduling problem, it is not always prac-
tical to add this extra hardware to the processor design. This is particularly true in Digital Signal
Processors (DSPs). DSPs typically do not contain bypass logic; thus, code scheduling for these DSPs
corresponds to solving the 1jprec; pj = 1; li;j = L (L � 2)jCmax scheduling problem.

22

constrained to be scheduled in the time interval between task Xi+1 and task Xi+2. The
resultant template has 2q non-full intervals, I1; I2; : : : ; I2q, within which the remaining
tasks are scheduled. The tasks from the Di dags are scheduled without idle times in the
remaining time slots of the intervals. Furthermore, due to the distance constraints and
lengths of the chains D(i;s(ai)+1) � D(i;s(ai)+2) � � � � � D(i;s(ai)+q�1), the �rst s(ai)
tasks from these dags, Di; 1 � i � 3q; must be scheduled in the �rst q intervals Ij ;
1 � j � q, and the last s(ai) tasks from these dags must be scheduled in the last q
intervals Ij; q + 1 � j � 2q:

Consider the �rst interval I1 and only the �rst s(ai) tasks in the dags Di. Let
S1 be the set of dags Di that have their �rst s(ai) tasks, D(i;1); D(i;2); : : : ; D(i;s(ai)),
scheduled in I1. The template dag leaves B time units to schedule other tasks in I1.
Assume that

P
Di2S1

s(ai) = B � c for some c > 0. Consider the interval Iq+1. The
template dag leaves B + 3q � 3 time units to schedule other tasks in Iq+1. There are
at most 3q tasks, D(i;j); s(ai) + 1 � j � s(ai) + q � 1; from the dags Di that may be
scheduled in this interval. The only additional tasks that may be scheduled in this time
interval are the �nal s(ai) tasks of the dags Di whose �rst s(ai) tasks were scheduled
in the �rst interval I1 such that Di 2 S1. jS1j � 3 by the constraints in the 3-Partition
Problem, and c is characterized by the following function due to our assumptions on
B and s(ai); ai 2 A:

c �

8>><
>>:

B if jS1j = 0
B=2 + 1 if jS1j = 1
2 if jS1j = 2
3 if jS1j = 3

Therefore, there are c � 3 + jS1j > 0 idle time slots in interval Iq+1. It follows that
our assumption is incorrect, and

P
Di2S1

s(ai) = B. An iterative application of this
argument leads to the identi�cation of sets Sj with

P
Di2Sj

s(ai) = B for 1 � j � q and
to the conclusion that we have a `Yes' instance of 3-Partition.

We may assume without loss of generality that the optimum solution to 1jprec; pj = 1; lj;k =
ljCmax does not contain any idle times. Since this problem involves unit execution time tasks, the

mean ow time to the optimum schedule for 1jprec; pj = 1; lj;k = ljCmax is
P

Cj =
PCmax

j=1 j =Pn

j=1 j. This is the smallest mean ow time that any schedule may have. Therefore, �nding a

schedule to 1jprec; pj = 1; lj;k = lj
P

Cj with mean ow time of
Pn

j=1 j �nds an optimum schedule
to 1jprec; pj = 1; lj;k = ljCmax, and 1jprec; pj = 1; lj;k = lj

P
Cj is strongly NP-complete. This

result is formalized in the following theorem.

Theorem 3.4 1jprec; pj = 1; lj;k = lj
P

Cj is NP-complete in the strong sense.

Proof We reduce the known strongly NP-complete problem 1jprec; pj = 1; lj;k = ljCmax to
1jprec; pj = 1; lj;k = lj

P
Cj. Without loss of generality we assume that the optimum

schedule, Sopt, to 1jprec; pj = 1; lj;k = ljCmax does not contain any idle time slots. The

mean ow time for Sopt is
1
n

PCmax

j=1 j = 1
n

Pn

j=1 j.

Given an instance of 1jprec; pj = 1; lj;k = ljCmax, we assign a weight of one
to all tasks. Let y =

Pn

j=1 j. The optimum solution to 1jprec; pj = 1; lj;k = ljCmax

is a solution to 1jprec; pj = 1; lj;k = lj
P

Cj such that
Pn

j=1Cj � y. Conversely, any

solution to 1jprec; pj = 1; lj;k = lj
P

Cj such that
Pn

j=1Cj � y is clearly an optimum
solution to 1jprec; pj = 1; lj;k = ljCmax. The theorem follows.

21

Given an instance of the 3-Partition Problem, we construct the following in-
stance of 1jprec; pj = 1; lj;k = ljCmax. We de�ne the non-zero distance constraint to
be

l = B + 3q � 3:

There are l(4q + 1) + 4q + 2 tasks arranged in 3q + 1 separate dags. For each ai 2 A
there is one dag Di containing 2s(ai) + q � 1 tasks, D(i;1); D(i;2); : : : ; D(i;(2s(ai)+q�1)).
The precedence constraints within Di are de�ned as follows. D(i;j) � D(i;s(ai)+1); 1 �
j � s(ai). D(i;j) � D(i;+1); s(ai) + 1 � j � s(ai) + q � 1. D(i;s(ai)+q�1) � D(i;j);
s(ai) + q � j � 2s(ai) + q � 1.

One additional dag, X, is created. X contains l(2q+1)+4q+2+2
Pq

i=1(l�B�
3(i � 1)) tasks. The central feature of X is a chain of 4q + 2 tasks, X1; X2; : : : ; X4q+2.
All other tasks of X are connected to at least one of these chain tasks and most are
connected to two of the chain tasks. A non-chain task has precedence relations with
chain tasks only. For simplicity in the de�nition of the remaining precedence constraints
we note a non-chain task of X as Yj . We also use the following invariant. If it is stated
that chain task Xi precedes non-chain task Yj , Xi � Yj , then it is also true that Yj
precedes Xi+3, Yj � Xi+3, if Xi+3 exists.

The remaining precedence constraints in X are de�ned as follows. Y0;j � X3;
1 � j � l: Xi � Yi;j; 1 � j � l; 1 � i � 4q; and i is even. Xi � Yi;j; 1 � j �
l � B � 3(o(i) � 1); 1 � i � 2q; i is odd, and o(i) returns the index of i in the list of
odd numbers greater than zero, e.g., o(1) = 1; o(3) = 2; o(5) = 3; o(7) = 4. Xi � Yi;j ;
1 � j � l � B � 3(q � o(i � 2q)); 2q + 1 � i � 4q; i is odd, and o(i) is de�ned as above.

All distance constraints are equal to l.

The deadline for the schedule is z = l(4q+1)+4q+2. Note that the processing
times of all the tasks is equal to z; thus, any schedule that completes before the deadline
must not have any idle time. It is easy to verify that this reduction requires time
polynomial in the parameters of the 3-Partition problem.

Suppose we have a `Yes' instance of 3-Partition. A schedule of length z is
constructed as follows. Start the tasks of chain X as soon as possible. X(4q+2) �nishes
at time z. The remaining Yi;j tasks are constrained to be scheduled in the time interval
between task Xi+1 and task Xi+2. The resultant template has 2q non-full intervals,
I1; I2; : : : ; I2q, within which the remaining tasks must be scheduled. These intervals
occur between tasks Xi and Xi+1 for 1 � i � 4q and i even. The number of empty time
slots in each interval Ii are characterized by the following function.

empty(Ii) =

�
B + 3(i � 1) 1 � i � q
B + 3(2q � i) q + 1 � i � 2q

By assumption of a `Yes' instance of 3-Partition, there exists q disjoint B-task
sets, H1; H2; : : : ; Hq, with processing time of B and comprised of the �rst s(ai) tasks
from the dags Di; 1 � i � 3q: Schedule Hk in interval Ik; 1 � k � q. Consider tasks
D(i;1); D(i;2); : : : ; D(i;s(ai)) scheduled in interval Ij (j � q due to how we scheduled
the sets Hk). The tasks D(i;s(ai)+1); D(i;s(ai)+2); : : : ; D(i;s(ai)+q�1) can be scheduled
during the next q � 1 intervals. The additional empty time slots above the B needed
to schedule Hj allow these `pass-through' tasks to be scheduled in these intervals. By
scheduling them thus, The tasks D(i;s(ai)+q); D(i;s(ai)+q+1); : : : ; D(i;2s(ai)+q�1) can be
scheduled in the interval Ij+q . The resulting schedule is feasible with a makespan of z.

Conversely, suppose that we have a schedule of length z. As before, the tasks
in chain X must be scheduled as soon as possible, and the remaining Yi;j tasks are

20

dependent on any node 2 E(t+1) except Tj. This is because at l time units away, there
is one slot corresponding to each slot at time t + 1. Note that can not be an empty
time slot. If it were, then we could interchange Tj and Ti and interchange si;1 and .
The resulting schedule would have a lower mean ow time contradicting our assumption
on the optimality of the original schedule.

We may now interchange Tj and Ti and interchange si;1 and . We repeat
this analysis for si;2; si;3; : : : until no interchange is required. Since l(Tj) > l(Ti), an
interchange is always feasible until si;a 2 E(t+ al+ �) for some a and � � 1. Then, no
further interchange is required. Observe that si;x = sj;y for some x and some y with y >
x. The interchange will always terminate at some point because s(si;x�1) < s(sj;y�1).

Theorem 3.1 Hu's algorithm optimally schedules instances of the P jintree; pj = 1; lj;k = lj
P

Cj

problem.

Proof Follows from Lemma 3.1 and Lemma 3.2.

3.1.2 Pjouttree;pj = 1; lj;k = lj
P

Cj

Bruno et. al. [BJS80] proved that a critical path based algorithm optimally solves the problem
P jouttree; pj = 1; lj;k = ljCmax. The critical path algorithm is similar to Hu's algorithm and may
be simply stated as: at each time step schedule those ready tasks with the largest label. The label
of task Tj , l(Tj), is de�ned to be l(Tj) = maxfNj1 ; : : : ; Njkg + 1, where Nj1 ; : : : ; Njk are the
labels of the immediate successors of task Tj . The label of a task with no immediate successors is 1.

The proof of optimality relies on the analysis of congestion regions, i.e., regions where more than
m tasks are ready to execute during a time slot, where m is the number of machines. Bruno et. al.
were able to prove that tasks that are not scheduled in a congestion region are scheduled as early
as possible, i.e., given an in�nite number of processors, these tasks could not be scheduled any
earlier. They also proved that congestion regions do not contain any idle time slots, except possibly
during the last time slot of the region. Finally, they proved that a critical path schedule during
one congestion region does not induce idle time slots in a critical path schedule during another
congestion region. Consequently, the proof given in [BJS80] is valid for the following theorem and
is not repeated here.

Theorem 3.2 The critical path algorithm optimally schedules instances of the P jouttree; pj =
1; lj;k = lj

P
Cj problem.

3.2 1jprec; pj = 1; lj;k = ljCmax;
P
Cj

We now consider the problems in the previous section but with arbitrary precedence constraints,
namely 1jprec; pj = 1; lj;k = ljCmax and 1jprec; pj = 1; lj;k = lj

P
Cj. Unfortunately, allowing

arbitrary precedence constraints makes the problems strongly NP-complete.
We reduce the 3-Partition problem to 1jprec; pj = 1; lj;k = ljCmax in a manner similar to the

reductions used for chain structured tasks. Precedence constraints are used to create a speci�c
template structure in a similar manner to the way the zero distance constraints and arbitrary
execution times are used in the reductions involving chain structured tasks.

Theorem 3.3 1jprec; pj = 1; lj;k = ljCmax is NP-complete in the strong sense.

Proof 1jprec; pj = 1; lj;k = ljCmax is clearly in NP. To prove that it is also strongly NP-hard,
we reduce the 3-Partition Problem to it.

19

3.1 1jtree; pj = 1; lj;k = ljCmax;
P
Cj

We �rst consider the unit execution time scheduling problem where all distance constraints are
equal and the precedence constraints form a tree. When the precedence constraint topology is
an intree, the makespan problem P jintree; pj = 1; lj;k = ljCmax is solvable in polynomial time
by Hu's algorithm [Li77]. When the precedence constraint topology is an outtree, the makespan
problem P jouttree; pj = 1; lj;k = ljCmax is solvable in polynomial time by using a critical path based
algorithm [BJS80].

We show that Li's results [Li77] for the makespan objective function are easily extended to the
mean ow time problem P jintree; pj = 1; lj;k = lj

P
Cj. We also show that the proof of optimality

for the makespan problem for outtrees given by Bruno et. al. [BJS80] is valid for the mean ow time
problem P jouttree; pj = 1; lj;k = lj

P
Cj .

3.1.1 Pjintree;pj = 1; lj;k = lj
P

Cj

We prove that the problem P jintree; pj = 1; lj;k = lj
P

Cj is solvable in polynomial-time by Hu's
algorithm [Hu61]. Our proof of optimality closely follows that of Li [Li77] for the makespan objective
function.

Hu's algorithm may be simply stated as: at each time step schedule those ready tasks with the
largest label. The label of task Tj , l(Tj), is de�ned to be l(Tj) = Nj + 1, where Nj is the label of
the immediate successor of task Tj . The label of a task with no immediate successor is 1.

We �rst make an observation on the structure of an optimum schedule.

Lemma 3.1 In an optimum schedule to P jtree; pj = 1; lj;k = lj
P

Cj, no machine is left idle during

a time slot in which a task is ready to be scheduled.

Proof By contradiction. Assume that we have an optimum schedule that contains an idle time
slot, t, during which a task Tj was ready to execute. Since Tj is ready during time slot t
but scheduled at some time greater than t, we may reschedule Tj in time slot t without
a�ecting the feasibility of the schedule and without rescheduling any other tasks. The
rescheduled completion time of Tj is less than its original value. Thus, we have found
a schedule with a smaller mean ow time contradicting our assumption of an optimum
schedule.

The proof of the following lemma is identical to the one provided by Li [Li77]. It is repeated
here for completeness.

Lemma 3.2 At any time t, in generating a schedule for P jtree; pj = 1; lj;k = lj
P

Cj, for the

remaining tree of n nodes to be optimally scheduled, those tasks with the highest labels should be

scheduled �rst.

Proof Let s(j) be the scheduled time of task Tj . E(t) is de�ned to be the set of tasks scheduled
at time t. sj;1 is the immediate successor of task Tj , and sj;i is the immediate successor
of task sj;i�1.

By induction. For n = 1, the lemma trivially holds. Assume that the lemma is
true for n � k � 1. Then, for n = k suppose there exists an optimum schedule where
there is a ready task at time t, Tj 62 E(t), but l(Tj) > l(Ti) for some Ti 2 E(t). In case
there is more than one such Ti, choose the one with the lowest label value.

By our induction hypothesis Tj 2 E(t+1). If si;1 2 E(t+�) for some � > l, then
Tj and Ti may be interchanged in the schedule without a�ecting feasibility or optimality.

If si;1 2 E(t+l), then sj;1 2 E(t+l+�) for some � � 1. Then 9 2 E(t+l+1)
such that is either not dependent on any node 2 E(t + 1) or sj;1 where sj;1 is not

18

p P jchain; pj = 1j
P

Cj [Hu61]
p P jchain; pj = 1; li;j = ljCmax [Li77]
p P jchain; pj = 1; li;j = lj

P
Cj Section 3.1

p 1jchain; pj = 1; li;j 2 f0; 1gjCmax [BRG89]
p 1jchain; pj = 1; j

P
wjCj [Law78]

� 1jchain; pj = 1; li;j 2 f0; lgjCmax Section 2.3
� 1jchain; pj = 1; li;j 2 f0; lgj

P
Cj Section 2.3

� 1jchain; pj = 1; li;j = 1j
P

wjCj [TGS94]
� P2jchain; pj = 1j

P
wjCj Section 2.5

Table 3: Complexity boundary involving multiple machine chain scheduling problems and the
makespan and mean (weighted) ow time objective functions.

Theorem 2.10 ([DLY91]) Pmjchainj
P

wjCj is strongly NP-complete.

Theorem 2.11 ([DLY91]) Preemption cannot reduce the mean weighted ow time for a set of

chains.

Theorem 2.12 ([DLY91]) Pmjchain; pmtnj
P

wjCj is strongly NP-complete.

We now show that Pmjchain; pj = 1j
P

wjCj is strongly NP-complete.

Theorem 2.13 Pmjchain; pj = 1j
P

wjCj is strongly NP-complete.

Proof Consider the problem Pmjchain;pmtnj
P

wjCj. Without loss of generality we assume
that all tasks in Pmjchain;pmtnj

P
wjCj have integral processing times, pj . We rep-

resent each task Tj 2 T as a chain of pj unit execution time tasks Cj;1 � � � � � Cj;pj .
To preserve the original precedence constraints, we add precedence constraints Ci;pi �
Cj;1 8 Ti � Tj in the original problem.

With each task Cj;pj we associate the weight wj . The weight for all other tasks
is set to zero.

This reduction is performed in pseudo-polynomial time since the number of
tasks in the reduced problem is equal to

P
pj .

SolvingPmjchain;pj = 1j
P

wjCj clearly �nds a feasible schedule to Pmjchain;pmtnj-P
wjCj. By Theorem 2.11 the optimum schedule to Pmjchain;pj = 1j

P
wjCj is

an optimum schedule to Pmjchain;pmtnj
P

wjCj . Therefore, solving Pmjchain;pj =
1j
P

wjCj solves Pmjchain;pmtnj
P

wjCj. Thus, Pmjchain;pj = 1j
P

wjCj is strongly
NP-complete.

Table 3 presents the known boundary involving multiple machine unit execution time chain
scheduling problems and makespan, mean ow time, and weighted mean ow time objective func-
tions.

3 Arbitrary Precedence Structured Tasks

We now examine the complexity of several problems involving tree and prec precedence constraint
topologies. We show that for the makespan, Cmax, and mean ow time,

P
Cj , objective functions the

problems involving tree structured precedence constraint topologies are polynomial-time solvable,
and for the problems involving prec structured precedence constraint topologies are strongly NP-
complete; therefore, they are strongly NP-complete for all of the objective functions shown in
Figure 1.

17

p 1jchain; pj = 1; li;j = ljCmax [Li77]
p 1jchain; pj = 1; li;j = lj

P
Cj [BK98]

p 1jchain; pj = 1; li;j 2 f0; 1gjCmax [BG89]
? 1jchain; pj = 1; li;j 2 f0; 1gj

P
Cj

? 1jchain; pj = 1; li;j 2 f0; Lg (L � 2)jCmax

? 1jchain; pj = 1; li;j 2 f0; Lg (L � 2)j
P

Cj

� 1jchain; pj = 1; li;j 2 f0; lgjCmax Section 2.3
� 1jchain; pj = 1; li;j 2 f0; lgj

P
Cj Section 2.3

(a)

p 1jchain; li;j = 1jCmax [FL96]
? 1jchain; li;j = 1j

P
Cj

? 1jchain; pmtn; li;j = L (L � 2)jCmax

? 1jchain; pmtn; li;j = L (L � 2)j
P

Cj

� 1jchain; pmtn; li;j = ljCmax Section 2.2
� 1jchain; pmtn; li;j = lj

P
Cj Section 2.2

� 1jchain; pj 2 f1; 2g; li;j = L (L � 2)jCmax Section 2.4
� 1jchain; pj 2 f1; 2g; li;j = L (L � 2)j

P
Cj Section 2.4

(b)

Table 2: Complexity boundary involving single machine chain scheduling problems and the makespan
and mean ow time objective functions.

2.5 Complexity Boundary Analysis involving Chains

We have proven the strong NP-completeness of several single machine problems involving chain
structured tasks. By extension, the multiple machine versions of these problems are also strongly
NP-complete. These results lead naturally to the question of where is the boundary between
polynomial time solvable problems and NP-complete problems.

Table 2 presents the known boundary for the single machine case with respect to the makespan
and mean ow time objective functions. Polynomial time solvable problems are denoted by a `p.'
Strongly NP-complete problems are denoted by a `�.' And, problems with an unknown complexity
are denoted by a `?.' Note that the complexity results obtained in this section are all new minimal
NP-complete results.

A graphical representation of this boundary with respect to allowable task processing times and
distance constraints is shown in Figure 2. The graph in Part (a) of the �gure depicts the boundary
for the makespan objective function, and the graph in Part (b) of the �gure depicts the boundary
for the mean ow time objective function.

We now examine the complexity boundary involving multiple machine problems and problems
that do not involve distance constraints. In order to more fully delineate the boundary we present
one additional NP-completeness proof for a parallel machine scheduling problem that does not
involve distance constraints, namely Pmjchain; pi = 1j

P
wjCj for any �xed m with m � 2. Du,

Leung, and Young proved that Pmjchain; pmtnj
P

wjCj is strongly NP-complete by showing that
preemption can not improve the mean weighted ow time to Pmjchainj

P
wjCj [DLY91]. This

result suggests that requiring all processing times to be equal to one time unit, i.e., �3 is set to
pj = 1, does not reduce the complexity of the problem. We prove this to be the case after stating
the main results obtained in [DLY91].

16

characterized by the following function

empty(Ii) =

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

0 i =

8>><
>>:

1
j(B + 6) +B + 3 0 � j � q � 1
j(B + 6) +B + 5 0 � j � q � 1
j(B + 6) +B + 7 0 � j � q � 1

1 i = k + j(B + 6) + 1; 1 � k � B; 0 � j � q � 1

2 i =

8<
:

j(B + 6) +B + 2 0 � j � q � 1
j(B + 6) +B + 4 0 � j � q � 1
j(B + 6) +B + 6 0 � j � q � 1

By assumption of a `Yes' instance of 3-Partition, there exists q disjoint 3-element
sets, H1; H2; : : : ; Hq, with each element aj corresponding to chain Cj. Schedule the
corresponding chains of the elements in H1 during the �rst 3+B non-full intervals. Note
that of these 3+B intervals, each of the �rst B intervals has one idle time unit and each
of the last three intervals has 2 idle time units. The tasks corresponding to H1 consist
of B tasks with pj = 1 and three tasks with pj = 2. The precedence constraints are such
that the tasks corresponding to H1 may be scheduled in the �rst 3+B non-full intervals.
(A non-full interval is an interval that contains a non-zero amount of unused processing
time after all chains Xi and Y are scheduled.) Similarly, the tasks corresponding to H2

may be scheduled in the next 3+B non-full intervals, and so on. The resulting schedule
is feasible and has a makespan of z.

Conversely, suppose that we have a schedule of length z. As before, the tasks
in chains Xi; 1 � i � L � 1; must be scheduled as soon as possible, and the tasks from
chain Y must be scheduled as soon as possible within the (6 + B)q + 1 intervals. The
tasks from the Cj chains are scheduled without idle times in the remaining time slots
of the schedule. Furthermore, tasks with an execution time of 1 are only scheduled in
intervals containing a task of Y with an execution time of 1, and tasks with an execution
time of 2 are only scheduled in intervals that do not contain a task from Y .

Consider the �rst 3+B non-full intervals. Each of the �rst B intervals contains
a unit execution time task in a chain. By assumption on a schedule of length z, intervals
IB+2; IB+4; and IB+6 each contain a non-Y task with execution time of 2. Since all
non-Y tasks with an execution time of 2 are the �nal tasks in the C chains, there must
be three chains Ci; Cj ; and Ck, that have their respective �rst s(ai); s(aj); and s(ak),
tasks scheduled in the �rst B intervals. Therefore, chains Ci; Cj; and Ck are completely
scheduled during the �rst 3+B non-full intervals. Ci; Cj; and Ck correspond to set H1

containing the elements ai; aj ; and ak such that jH1j = s(ai) + s(aj) + s(ak) = B. An
iterative application of this argument over each of the q sets of 3 +B non-full intervals
leads to the identi�cation of sets Hj with jHjj = B for 1 � j � q and to the conclusion
that we have a `Yes' instance of 3-Partition.

The complexity proof for the mean ow time objective function is identical to the complexity
proof for the makespan objective function. This is because the reduction forces the tasks to have a
known sum of completion times. There is no variability in the sum of completion times if there is a
`Yes' solution to the 3-Partition problem. Therefore, by replacing z in the complexity proof for the
makespan objective function with the sum of the completion times of chains Xi; 1 � i � L � 1, Y ,
and Cj; 8 aj 2 A, the proof remains valid for the mean ow time objective function.

Theorem 2.9 1jchain; pj 2 f1; 2g; lj;k = L (L � 2)j
P

Cj is NP-complete in the strong sense.

15

Theorem 2.8 1jchain; pj 2 f1; 2g; lj;k = L (L � 2)jCmax is NP-complete in the strong sense.

Proof This problem is clearly in NP. To prove that it is strongly NP-hard we reduce the
3-Partition Problem to it.

Given an instance of the 3-Partition Problem, we construct an instance of the
1jchain; pj 2 f1; 2g; lj;k = L (L � 2)jCmax problem as follows. There are [(6 + B)q +
1](L�2)+3q(3+B)+1 tasks. For each aj 2 A, there is a chain Cj consisting of s(aj)+1
tasks, Cj;1 � Cj;2 � � � � � Cj;s(aj)+1, with processing times pj;k = 1, 1 � k � s(aj),
and pj;s(aj)+1 = 2.

L additional chains, Xi; 1 � i � L� 1, and Y , are created. Xi; 1 � i � L� 1,
contains (6 +B)q + 2 tasks each with processing time 1. Y contains (3 +B)q + 1 tasks
with processing times of

p(Yi) =

8<
:

2 i = 0
1 j(3 +B) + 1 � i � j(3 + B) + B; 0 � j � q � 1
2 j(3 +B) + B + 1 � i � j(3 + B) +B + 3; 0 � j � q � 1:

All distance constraints are equal to a constant L � 2.

We de�ne z = [(6 + B)q + 1]L + L � 1. Note that the sum of the processing
times of all tasks is equal to z; therefore, any schedule that completes by time z must
not have any idle time. Figure 6 illustrates how the template chains Xi and the enforcer
chain Y create a template within which the Cj chains must be scheduled. It is easy to
verify that this reduction requires time polynomial in the parameters of the 3-Partition
problem.

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

Y
3

Y
2

Y
1

Y
0

X 1X X2 X30

�
�
�

�
�
�

�
�
�

�
�
�

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

XB+7 YB+4YB+2 XB+5 XB+6 YB+3X B XB+1 XB+2 X B+3 XB+4YB YB+1

�
�
�
�X (6+B)q Y(3+B)q X(6+B)q X(6+B)q Y(3+B)q X (6+B)q X(6+B)q Y(3+B)q X(6+B)q X(6+B)q Y(3+B)q X(6+B)q

��
��
��
��

��
��
��
��

��
��
��
��-6 -3 -5 -4 -2 -3 -2 +1-1-1

Figure 6: Template formed from the Xi chains and the Y chain in the proof of Theorem 2.8. Xk in
the �gure corresponds to the set of tasks Xi;k; 1 � i � L � 1: The shaded regions indicate unused
processing times after chains Xi; 1 � i � L � 1; and Y have been scheduled.

Suppose that there exists a `Yes' solution to the 3-Partition Problem. Schedule
the tasks of chains Xi; 1 � i � L � 1; as soon as possible. Xi;(6+B)q+2 �nish at times
[z � L + 1; z]. We have (6 + B)q + 1 intervals, I1; I2; : : : ; I(6+B)q+1, each of length 2
within which the remaining tasks can be scheduled. Chain Y has (3 + B)q + 1 tasks;
however, due to the processing times of the tasks in Xi and the distance constraints
there are 3q intervals during which a task from Y cannot be scheduled, e.g., the interval
between tasks Xi;B+6 and Xi;B+7 8i. Therefore, we must schedule the tasks of Y as
early as possible. After scheduling chain Y the empty time slots in each interval Ii are

14

be the �rst task to complete an integral amount of processing after time ti in S. Let
tj > ti be the time slot in which this unit of C completes. We may move this unit of
processing time of C to time slot tk where ti � tk � tj and tk is the earliest time slot
not already containing a �xed unit of processing time in which this unit of C may be
scheduled. Fix this unit of C in time slot tk. Note that due to distance constraints tk
may not be equal to ti.

All non C tasks that were scheduled in the interval [tk; tj] in S may be `com-
pressed' into the interval [tk+1; tj] where the compression does not change the scheduled
time of �xed task segments. The compression maintains the ordering of the compressed
tasks in the schedule, and it does not change the completion times of any task in the
schedule S except possibly decreasing the completion time of task C. Thus, the modi�ed
schedule is still optimal.

By iteratively �nding a time slot ti and a task C, we construct the schedule S0

that contains preemptions only at integral boundaries, and the lemma is proven.

The complexity results for the makespan scheduling problem containing chains, unit execution
time tasks, and all distance constraints equal to either zero of l for some l input to the problem
follow directly from Theorem 2.3 and Lemma 2.1.

Theorem 2.5 1jchain; pj = 1; lj;k 2 f0; lgjCmax is NP-complete in the strong sense.

Proof Follows from Theorem 2.3 and Lemma 2.1.

Likewise, the complexity for the mean weighted ow time objective follows from Theorem 2.4
and Lemma 2.1.

Theorem 2.6 1jchain; pj = 1; lj;k 2 f0; lg j
P

wjCj is NP-complete in the strong sense.

Proof Follows from Theorem 2.4 and Lemma 2.1.

However, we can do better than this. The complexity for the mean ow time objective function
follows from the complexity for the makespan when all processing times are equal to one.

Theorem 2.7 1jchain; pj = 1; lj;k 2 f0; lgj
P

Cj is NP-complete in the strong sense.

Proof We restrict the problem to instances where the optimum schedule Sopt contains no

idle time. The sum of the completion times for Sopt is
PCmax

i=1 i =
Pn

i=1 i =
1
2n(n + 1).

Solving for the optimumsum of completion times is equivalent to solving for the optimum
makespan. The theorem then follows from Theorem 2.5.

2.4 1jchain; pj 2 f1; 2g; lj;k = L (L � 2)jCmax;
P
Cj

We now turn our attention to the case when the values of the distance constraints are no longer
part of the input to the problem, but instead are a �xed value. We consider the problem when
all distance constraints are equal to a �xed value L. When L = 0, 1j�1; �2; �3; li;j = 0jCmax;

P
Cj

are solvable in polynomial time. When L = 1, 1j�1; �2; �3; li;j = 1jCmax are solvable in polynomial
time; however, the complexity of many of these problems is unknown for the sum of completion
time objective function

P
Cj. We consider problems for which L � 2 and �1 = chain. We further

restrict the problem to contain only tasks with processing times of either 1 or 2. In other words,
we examine the complexity for 1jchain; pj 2 f1; 2g; lj;k = L (L � 2)jCmax;

P
Cj. We prove that

1jchain; pj 2 f1; 2g; lj;k = L (L � 2)jCmax;
P

Cj are strongly NP-complete problems. These results
are stronger than the results from Section 2.1.

13

these intervals. By scheduling them thus, C(j;(q+1)) can be scheduled in the interval
Ii+q . The resulting schedule is feasible with a mean ow time � z.

Conversely, suppose that we have a schedule with a mean ow time � z. As
before, the tasks in chain X must be scheduled as soon as possible, and exactly one task
from chain Y must be scheduled in each interval Ii; 1 � i � l5+2q: The tasks from the
Cj chains are scheduled without idle times in the remaining time slots of the intervals.
If this is not the case, then there must be at least one task, Tk, with completion time Ck

� (l5 + 2q + 1)B �
P2q

i=1[2lif(i)] contradicting our assumption on the mean ow time
of the schedule. Furthermore, due to the distance constraints and lengths of the chains
Cj, the �rst tasks from these chains, C(j;1); 1 � j � 3q; must be scheduled in the �rst q
intervals Ii; 1 � i � q, and the last tasks from these chains, C(j;(q+1)); 1 � j � 3q; must
be scheduled in the last q intervals Ii; q + 1 � i � 2q:

Consider the �rst interval I1 and only the �rst tasks in the chains Cj. Let S1 be
the set of C(j;1) tasks that are started and �nished in I1. Task Y1 requires 3q�2 time units
in I1 leaving B time units to schedule other tasks. Assume that

P
C(j;1)2S1

pj = B � c

for some c > 0. Consider the interval Iq+1. Yq+1 has an execution time of 1. There
are at most 3q unit execution time tasks from the chains Cj that may be scheduled in
this interval. The only additional tasks that may be scheduled in this time interval are
the �nal tasks of the chains Cj whose �rst task was scheduled in the �rst interval I1
such that C(j;1) 2 S1. jS1j � 3 by the constraints in the 3-Partition Problem, and c is
characterized by the following function due to our assumptions on B and s(aj); aj 2 A:

c �

8>><
>>:

B if jS1j = 0
B=2 + 1 if jS1j = 1
2 if jS1j = 2
3 if jS1j = 3

Therefore, there are c � 3 + jS1j > 0 idle time slots in interval Iq+1. It follows that
our assumption is incorrect, and

P
C(j;1)2S1

pj = B. An iterative application of this

argument leads to the identi�cation of sets Sj with
P

C(j;1)2Si
pj = B for 1 � i � q and

to the conclusion that we have a `Yes' instance of 3-Partition.

2.3 1jchain; pj = 1; lj;k 2 f0; lgjCmax;
P
Cj

The strong NP-completeness results for the preemptive version of the problem suggests that if the
problem is restricted to have integral processing times and distance constraints, then preemptions
may occur at integral boundaries only without a�ecting the complexity of the problem. The following
lemma formalizes this observation.

Lemma 2.1 If all input parameters are integral valued, then there exists an optimal solution to

1j�1; pmtn; �3; �5 j Cmax;
P

Cj such that all preemptions occur at integral time boundaries.

Proof We will prove this lemma by constructing an optimal solution S0 containing preemptions
only at integral time boundaries from an optimal solution S that may have preemptions
at non-integral time boundaries. The solution S0 will be constructed by iteratively
`�xing' a unit of execution time from a single task into a time slot. Once a unit of
execution time is `�xed' at a particular time slot it will remain at that time slot for the
remainder of the iterations.

Let S be an optimal solution to a problem in 1j�1; pmtn; �3; �5 j Cmax;
P

Cj .
Let ti be the �rst time slot in S that has more than one task scheduled in it. Fix the
schedule through time slot ti�1. Considering only non-�xed task segments, let task C

12

For each aj 2 A there is one chain Cj containing q+1 tasks, C(j;1); C(j;2); : : : ; C(j;(q+1)).
The processing times for C(j;1) and C(j;(q+1)) are s(aj). All other processing times for
the tasks in Cj are equal to 1.

Two additional chains, X and Y , are created. X contains l5+2q+1 tasks each
with processing time l. Y contains l5 + 2q tasks with processing times of

p(Yi) =

8<
:

3q � 3i+ 1 for 1 � i � q
3i� 3q � 2 for q + 1 � i � 2q

l for 2q + 1 � i � l5 + 2q

All distance constraints are equal. We de�ne the non-zero distance constraint
to be

l = B + 3q � 2:

The target mean ow time for the schedule is

z =

l5+2q+1X
i=1

[l(2i� 1)] +

l5+2qX
i=2q+1

[2li] +

2qX
i=1

[2lif(i)];

where f(i) is de�ned as

f(i) =

�
4 + [(3q� 2)� (3q � 3i+ 1)] 1 � i � q
4 + [(3q� 2)� (3i � 3q � 2)] q + 1 � i � 2q

It is easy to verify that this reduction requires time polynomial in the parameters of the
3-Partition problem.

Suppose we have a `Yes' instance of 3-Partition. A schedule with mean ow
time � z is constructed as follows. Start the tasks of chain X as soon as possible. Thus,

l5+2q+1X
i=1

CXi
=

l5+2q+1X
i=1

[l(2i� 1)]:

We have l5+2q intervals, I1; I2; : : : ; Il5+2q , each of length l within which the remaining
tasks must be scheduled. Chain Y has l5+2q tasks; therefore, one task of chain Y must
be executed during each interval. Furthermore, the distance constraints require that no
more than one task of Y may be executed during any one interval. Thus, schedule Yi
in interval Ii. It is easily seen that if the �rst 2q tasks of X and Y are not scheduled as
above, then the schedule will have a mean ow time > z. After scheduling chain Y , the
empty time slots in each interval Ii are characterized by the following function.

empty(Ii) =

8<
:

B + 3(i � 1) 1 � i � q
B + 3(2q � i) q + 1 � i � 2q

0 2q + 1 � i � l5 + 2q

By assumption of a `Yes' instance of 3-Partition, there exists q disjoint 3-task
sets, H1;H2; : : : ;Hq, with processing time of B and comprised of the �rst task from the
chains Cj; 1 � j � 3q: Schedule Hk in interval Ik; 1 � k � q. Consider task C(j;1)

scheduled in interval Ii (i � q due to how we scheduled the sets Hk). The tasks C(j;2);
C(j;3); : : : ; C(j;q) can be scheduled during the next q � 1 intervals. The additional
empty time slots left by chain Y allow these `pass-through' tasks to be scheduled in

11

the chains Cj; 1 � j � 3q: Schedule Hk in interval Ik; 1 � k � q. Consider task
C(j;1) scheduled in interval Ii (i � q due to how we scheduled the sets Hk). The tasks
C(j;2); C(j;3); : : : ; C(j;q) can be scheduled during the next q�1 intervals. The additional
empty time slots left by chain Y allow these `pass-through' tasks to be scheduled in these
intervals. By scheduling them thus, C(j;(q+1)) can be scheduled in the interval Ii+q . The
resulting schedule is feasible with a makespan of z.

Conversely, suppose that we have a schedule of length z. As before, the tasks
in chain X must be scheduled as soon as possible, and exactly one task from chain Y
must be scheduled in each interval Ii; 1 � i � 2q: The tasks from the Cj chains are
scheduled without idle times in the remaining time slots of the intervals. Furthermore,
due to the distance constraints and lengths of the chains Cj, the �rst tasks from these
chains, C(j;1); 1 � j � 3q; must be scheduled in the �rst q intervals Ii; 1 � i � q, and
the last tasks from these chains, C(j;(q+1)); 1 � j � 3q; must be scheduled in the last q
intervals Ii; q + 1 � i � 2q:

Consider the �rst interval I1 and only the �rst tasks in the chains Cj. Let S1 be
the set of C(j;1) tasks that are started and �nished in I1. Task Y1 requires 3q�2 time units
in I1 leaving B time units to schedule other tasks. Assume that

P
C(j;1)2S1

pj = B � c

for some c > 0. Consider the interval Iq+1. Yq+1 has an execution time of 1. There
are at most 3q unit execution time tasks from the chains Cj that may be scheduled in
this interval. The only additional tasks that may be scheduled in this time interval are
the �nal tasks of the chains Cj whose �rst task was scheduled in the �rst interval I1
such that C(j;1) 2 S1. jS1j � 3 by the constraints in the 3-Partition Problem, and c is
characterized by the following function due to our assumptions on B and s(aj); aj 2 A:

c �

8>><
>>:

B if jS1j = 0
B=2 + 1 if jS1j = 1
2 if jS1j = 2
3 if jS1j = 3

Therefore, there are c � 3 + jS1j > 0 idle time slots in interval Iq+1. It follows that
our assumption is incorrect, and

P
C(j;1)2S1

pj = B. An iterative application of this

argument leads to the identi�cation of sets Si with
P

C(j;1)2Si
pj = B for 1 � i � q and

to the conclusion that we have a `Yes' instance of 3-Partition.

As in the previous section, the proof for 1jchain; pmnt; lj;k = lj
P

Cj follows the proof for
1jchain; pmnt; lj;k = ljCmax. This is achieved by making the template chain X and the enforcer
chain Y much longer than the chains corresponding to the elements of A. The increased lengths
of X and Y ensures that they are scheduled as soon as possible except possibly at the end. The
chains corresponding to the elements of A must then be scheduled without idle times in the �rst 2q
intervals caused by X if there is a `Yes' instance of 3-Partition. Scheduling a task from these chains
after all tasks in X (or most tasks in X) causes the mean ow time of the resultant schedule to be
greater than the target value z.

Theorem 2.4 1jchain; pmnt; lj;k = lj
P

Cj is NP-complete in the strong sense.

Proof 1jchain; pmnt; lj;k = lj
P

Cj is clearly inNP . To prove that it is also stronglyNP-hard,
we reduce the 3-Partition Problem to it.

Without loss of generality we assume that B � 3 and that s(aj)� 3; 8 aj 2 A:
If this is not the case, then we may scale B and s(aj); 8 aj 2 A; by a constant without
a�ecting the 3-Partition Problem. Given an instance of the 3-Partition Problem, we
construct the following instance of 1jchain; pmnt; lj;k = lj

P
Cj. There are 3q+2 chains.

10

X q-2 Yq-2 Xq-1 Yq-1 Xq Yq
X q+1 Yq+1

����
����
����
����

���
���
���
���

���
���
���
���

���
���
���
���

2ql 2ql+2l 2ql+3l 2ql+4l2ql-l2ql-2l2ql-3l2ql-4l 2ql+l
2ql+l+1 2ql+3l+42ql-l+12ql-3l+4

C
(j,q-1)

p
(j,q-1)

=1

C
(j,q)

p
(j,q)

=1 =s(a)j

C
(j,q+1)

p
(j,q+1)

7l+3q-11

X 0
Y

0
Y

2 X3
Y

3X2
Y

11X

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��0 l 2l 3l 4l 5l 6l 7l

l+3q-2 3l+3q-5 5l+3q-8

8l

=s(a)j

C
(j,1)

p
(j,1)

(j,2)
C

p
(j,2)

=1

C
(j,3)

=1p
(j,3)

C
(j,4)

=1p
(j,4)

X 2q2q-1
Y2q-1X

2q-2
YX2q-2X2q-3

Y
2q-3

��
��
��
��

��
��
��
��

��
��
��
��

4ql+l4ql4ql-l4ql-2l4ql-3l4ql-4l4ql-5l4ql-6l
4ql-5l+3q-8 4ql-3l+3q-5 4ql-l+3q-2

Figure 5: Template formed from the X chain and the Y chain in the proof of Theorem 2.3. This
template limits the scheduling structure of the Cj chains.

Two additional chains, X and Y , are created. X contains 2q+1 tasks each with
processing time l (de�ned below). Y contains 2q tasks with processing times of

p(Yi) =

�
3q � 3i+ 1 for 1 � i � q
3i� 3q � 2 for q + 1 � i � 2q

All distance constraints are equal. We de�ne the non-zero distance constraint
to be

l = B + 3q � 2:

The deadline for the schedule is z = 4ql + l. Note that the processing times of
all the tasks is equal to 4ql + l; thus, any schedule that completes before the deadline
must not have any idle time. Figure 5 illustrates how the template chain X and the
enforcer chain Y create a template within which the Cj chains must be scheduled. It
is easy to verify that this reduction requires time polynomial in the parameters of the
3-Partition problem.

Suppose we have a `Yes' instance of 3-Partition. A schedule of length z is
constructed as follows. Start the tasks of chain X as soon as possible. X(2q+1) �nishes at
time z. We have 2q intervals, I1; I2; : : : ; I2q, each of length l within which the remaining
tasks must be scheduled. Chain Y has 2q tasks; therefore, one task of chain Y must
be executed during each interval. Furthermore, the distance constraints require that no
more than one task of Y may be executed during any one interval. Thus, schedule Yi
in interval Ii. After scheduling chain Y , the empty time slots in each interval Ii are
characterized by the following function.

empty(Ii) =

�
B + 3(i � 1) 1 � i � q
B + 3(2q � i) q + 1 � i � 2q

By assumption of a `Yes' instance of 3-Partition, there exists q disjoint 3-task
sets, H1;H2; : : : ;Hq, with processing time of B and comprised of the �rst task from

9

Then,

Pn

j=1Cj �
PM

j=1Cj

�
Pq

j=1[j3qB + (j � 1)B] +
PM

j=q+1[j3qB + (j � 1)B + 1]

= z + (M � q) �
Pq

j=1[3(3qB +B)j

� z + (M � q) � 3
2 (3qB + B)q(q + 1)

= z + (M � q) � 3
4 (M � q)

> z;

which is a contradiction. Thus, the tasks of the chain X must be scheduled as early as
possible.

In order for the mean ow time of the schedule to be at most z the tasks Tj;
1 � j � 3q, must be scheduled before task Xq+1. Since there are exactly B time units
between each of the tasks in X and preemption is not allowed, each set of tasks Si
scheduled between tasks Xi�1 and Ti, 2 � i � q + 1, must have exactly B units of
execution time. Furthermore, since B=4 < pj < B=2 8Tj there must be at least three
tasks in each set Si. The fact that there are exactly q sets Si requires that there be
exactly three tasks in each set Si. Thus, there exists a partition into q 3-element subsets
Si, such that

P
j2Si

pj =
P

j2Si
s(aj) = B (1 � j � q), and the schedule is witness to

such a partition. Thus, we have a `Yes' instance of 3-Partition.

2.2 1jchain; pmnt; lj;k = ljCmax;
P
Cj

A slightly `easier' version of the above problems allows preemption in a feasible schedule. The
NP-completeness proofs for the non-preemptive problems do not hold when preemption is allowed.
Therefore, we must reexamine their complexity in light of preemption.

Balas et. al.[BLV95] were able to prove that when preemption is allowed and the distance con-
straints are restricted to a set of two values that are inputs to the problem, the problem with the
makespan objective function is strongly NP-complete. We improve upon this result by showing
that preemption does not improve the complexity of the problem when all distance constraints are
equal to the same value, i.e., 1jchain; pmnt; lj;k = ljCmax;

P
Cj are strongly NP-complete.

The NP-completeness proofs are very similar to those for the non-preemptive problems. The
main di�erences are that each element of A corresponds to a chain of tasks instead of a single
task and the template chains form 2q intervals within which these tasks may be scheduled. The
key idea is that the schedule from the �rst q intervals (corresponding roughly to the schedule in
the non-preemptive proofs) constrains the possible schedules in the second q intervals (the mirror
schedule).

Theorem 2.3 1jchain; pmnt; lj;k = ljCmax is NP-complete in the strong sense.

Proof 1jchain; pmnt; lj;k = ljCmax is clearly in NP. To prove that it is also strongly NP-hard,
we reduce the 3-Partition Problem to it.

Without loss of generality we assume that B � 3 and that s(aj)� 3; 8 aj 2 A:
If this is not the case, then we may scale B and s(aj); 8 aj 2 A; by a constant without
a�ecting the 3-Partition Problem. This constraint is required to ensure the validity of
the transformation.

Given an instance of the 3-Partition Problem, we construct the following in-
stance of 1jchain; pmnt; lj;k = ljCmax. There are 3q

2 + 7q + 1 tasks arranged in 3q + 2
chains. For each aj 2 A there is one chain Cj containing q + 1 tasks, C(j;1); C(j;2); : : : ;
C(j;(q+1)). The processing times for C(j;1) and C(j;(q+1)) are s(aj). All other processing
times for the tasks in Cj are equal to 1.

8

q intervals each containing B time units, each of the q sets Si may be scheduled within
one interval for a total schedule time of 2qB + B.

Suppose that a schedule of length z exists. The chain X requires a minimum
time of 2qB +B to complete. Since there are exactly B time units between each of the
tasks in X in a schedule that completes in time 2qB+B and preemption is not allowed,
each set of tasks Si scheduled between tasks Xi�1 and Xi must have exactly B units of
execution time. Furthermore, since B=4 < pj < B=2 8Tj there must be at least three
tasks in each set Si. The fact that there are exactly q sets Si requires that there be
exactly three tasks in each set Si. Thus, there exists a partition into q 3-element subsets
Si, such that

P
Tj2Si

pj =
P

Tj2Si
s(aj) = B (1 � i � q), and the schedule is a witness

to such a partition. Thus, we have a `Yes' instance of 3-Partition.

The reduction for the mean ow time objective function is essentially identical to the reduction
for the makespan objective function. The main di�erence is that the template chain X has a large
number of extra tasks in it. Combined with the appropriate cost z, these extra tasks force the tasks
in chain X to be scheduled as soon as possible. A large number of extra tasks are required in X
since the exact �nish times of the tasks corresponding to the elements of A are not known. The sum
of the �nish times of the tasks corresponding to the elements in A may only be bounded. Thus,
without the additional tasks in chain X, it is possible to have a solution with mean ow time at
most z when the corresponding 3-Partition problem does not contain a `Yes' solution.

Theorem 2.2 ([BK98]) 1jchain; lj;k = lj
P

Cj is NP-complete in the strong sense.

Proof This problem is clearly in NP. To prove that it is strongly NP-hard we reduce the
3-Partition Problem to it.

Given an instance of the 3-Partition Problem, we construct an instance of
1jchain; lj;k = lj

P
Cj as follows. There are n = 3q + M tasks where M = 2(3qB +

B)q(q +1) + q. For each aj 2 A, there is a task Tj with processing time pj = s(aj). For
each i 2 f1; : : : ;Mg, there is a task Xi with processing time pi = 3qB. The tasks Xi

form a chain X = X1 � X2 � � � � � XM with all distance constraints equal to B. The
tasks Tj have no precedence constraints associated with them. We de�ne

z =
MX
i=1

[3qBi+ B(i � 1)] +

qX
j=1

[3j(3qB + B)]:

Suppose that there exists a `Yes' solution to the 3-Partition Problem. Since
there exists a `Yes' solution to the 3-Partition Problem, there exist q 3-element subsets
Si such that

P
Tj2Si

pj = B. Since the chain X can be scheduled such that there exists
M � 1 `holes' each containing B time units, the tasks in X are scheduled as soon as
possible. Thus, each of the q sets Si may be scheduled within one hole. We schedule the
sets Si in the �rst q holes. The resulting mean ow time of the schedule satis�es

Pn

j=1Cj =
PM

j=1Cj +
P3q

i=1CM+i

�
PM

i=1[3qBi+ B(i � 1)] +
Pq

j=1[3j(3qB + b)]

= z:

Suppose that a schedule with mean ow time at most z exists. The �rst q tasks
of chain X must be scheduled as early as possible. Assume that this is not the case.

7

NP-completeness proofs. The 3-Partition problem is stated as follows.

Given a set of 3q elements A = fa1; a2; : : : ; a3qg, a bound B, and a size s(aj) for each
aj 2 A such that B=4 < s(aj) < B=2 and

P
aj2A

s(aj) = qB, can A be partitioned into

q disjoint sets A1; A2; : : : ; Aq such that for 1 � k � q;
P

aj2Ak
s(aj) = B?

For each scheduling problem � in which this reduction is performed we show that for every
instance of 3-Partition we can compute an instance of � and a value z in polynomial or pseudo-
polynomial time such that the instance of 3-Partition has a `Yes' solution if and only if the instance
of � has a schedule of length at most z (for the makespan objective) or the sum of the completion
times is at most z (for the mean ow time objective). The strong NP-completeness results follow
from the fact that 3-Partition is NP-complete in the strong sense [GJ79].

2.1 1jchain; lj;k = ljCmax;
P
Cj

The most basic chain structured tasks scheduling problems involving distance constraints are 1jchain; lj;k =
ljCmax;

P
Cj. The complexity of these problems was �rst examined by Balas et. al.[BLV95] and

Brucker and Knust[BK98] respectively. Balas et. al. were able to prove the strong NP-completeness
of 1jchain; lj;k = ljCmax with a simple reduction from 3-Partition. Brucker and Knust extended
this proof in a straight forward manner to handle the mean ow time objective function. The
problems examined in the remainder of this section are restricted versions of these two problems
(in the sense that they contain additional � constraints compared with these problems), and their
respective NP-completeness proofs are very similar in structure to the simple NP-completeness
proofs of 1jchain; lj;k = ljCmax;

P
Cj. For this reason, we repeat the NP-completeness proofs for

1jchain; lj;k = ljCmax;
P

Cj .

Theorem 2.1 ([BLV95]) 1jchain; lj;k = ljCmax is NP-complete in the strong sense.

Proof This problem is clearly in NP. To prove that it is strongly NP-hard we reduce the
3-Partition Problem to it.

Given an instance of the 3-Partition Problem, we construct an instance of the
1jchain; lj;k = ljCmax problem as follows. There are 4q+1 tasks. For each aj 2 A, there
is a task Tj with processing time pj = s(aj). For each i 2 f0; : : : ; qg, there is a task Xi

with processing time pi = B. The tasks Xi form a chain X = X0 � X1 � � � � � Xq

with all distance constraints equal to B. The tasks Tj have no precedence constraints
associated with them. We de�ne z = 2qB + B: Note that the precedence constraints
form a single chain and that the processing times of all the tasks is equal to z. Also,
note that the chain X requires z time units to complete due to the distance constraints.
Thus, any schedule that completes before the deadline, z, must not have any idle time,
and the tasks in X must be scheduled as soon as possible. The template formed by X
is shown in Figure 4. It is easily veri�ed that this reduction requires time polynomial in
the parameters of the 3-Partition Problem.

2qB+B2qB-B2qB-3B2qB-5B7B5B3BB
2B 4B 6B 2qB-2B2qB-6B 2qB2qB-4B0

X0 X1 X2 X3
XqXq-3 Xq-2 Xq-1

��
��
��
��

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

��
��
��
��

Figure 4: Template formed from the X chain in the proof of Theorem 2.1.

Suppose there exists a `Yes' solution to the 3-Partition Problem. Since there
exists a `Yes' solution to the 3-Partition Problem, there exist q 3-element subsets Si
such that

P
j2Si

pj = B. Since the chain X can be scheduled in time 2qB + B leaving

6

1j�1; pj = 1;�5jCmax

��
��
�
��l
��
��
�
��l
��
��
�
��l

��
��
�
��l
��
��
�
��l
��
��
�
��l

��
��
�
��l
��
��
�
��l

lx

��
��
�
��l
��
��
�
��l

|

��
��
�
��l
��
��
�
��l
��
��
�
��l

lx

lx

lx

|

|

|

|

|

|

- - - -

- - - -

- - - -

- -

- -

- -

HHHj
HHHj

HHHj

HHHj
HHHj

HHHj

HHHj
HHHj

HHHj

��
�*

��
�*

��
�*

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

chain

tree

prec

li;j = 0 li;j = 1 li;j = L = O(1) li;j = l

li;j 2 f0;1g li;j 2 f0;Lg li;j 2 f0; lg

li;j

(a)

1j�1; pj = 1;�5j
P
Cj

��
��
�
��l
��
��
�
��l
��
��
�
��l

��
��
�
��l
��
��
�
��l
��
��
�
��l

��
��
�
��l

l

lx

��
��
�
��l

l

|

lx

lx

lx

lx

lx

lx

|

|

|

|

|

|

- - - -

- - - -

- - - -

- -

- -

- -

HHHj
HHHj

HHHj

HHHj
HHHj

HHHj

HHHj
HHHj

HHHj

��
�*

��
�*

��
�*

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

chain

tree

prec

li;j = 0 li;j = 1 li;j = L = O(1) li;j = l

li;j 2 f0;1g li;j 2 f0;Lg li;j 2 f0; lg

li;j

(b)

Figure 3: Graphical representation of the known complexity boundary for unit execution time
scheduling problems. Part (a) depicts the boundary for the makespan objective function. Part (b)
depicts the boundary for the mean ow time objective functions.

5

1jchain;�2; �3;�5jCmax

��
��
��
��
��
��

�
��
�
��
�
��

l

l

l

��
��
��
��
��
��

�
��
�
��
�
��

l

l

l

��
��
�
��l

|

|

��
��
�
��l

|
��
��
�
��|

��
��
�
��l

lx

lx

lx

|

|

|

|
��
��
�
��|

|

|
��
��
�
��|

- - - -

- - - -

- - - -

- -

- -

- -

HHHj
HHHj

HHHj

HHHj
HHHj

HHHj

HHHj
HHHj

HHHj

��
�*

��
�*

��
�*

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

pj = 1

pj 2 f1;2g

pj

li;j = 0 li;j = 1 li;j = L = O(1) li;j = l

li;j 2 f0;1g li;j 2 f0;Lg li;j 2 f0; lg

li;j

(a)

1jchain;�2; �3;�5j
P
Cj

��
��
��
��
��
��

�
��
�
��
�
��

l

l

l

��
��
�
��l

lx

lx

��
��
�
��l

|

|

��
��
�
��l

|
��
��
�
��|

lx

lx

lx

lx

|

|

|

|
��
��
�
��|

|

|
��
��
�
��|

- - - -

- - - -

- - - -

- -

- -

- -

HHHj
HHHj

HHHj

HHHj
HHHj

HHHj

HHHj
HHHj

HHHj

��
�*

��
�*

��
�*

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

pj = 1

pj 2 f1;2g

pj

li;j = 0 li;j = 1 li;j = L = O(1) li;j = l

li;j 2 f0;1g li;j 2 f0;Lg li;j 2 f0; lg

li;j

(b)

Figure 2: Graphical representation of the known boundary for single machine scheduling problems
involving chain precedence constraints. Part (a) depicts the boundary for the makespan objective
function. Part (b) depicts the boundary for the mean ow time objective function. Nodes cor-
responding to problems with new complexity bounds presented in this paper are boxed. Nodes
corresponding to problems whose complexity was previously known are doubly circled. We use the
representation given by [GJ79]. Problems are represented by circles, �lled-in if known to be NP-
complete, empty if known to be in P, and dotted if their complexity is unknown. An arrow from
�1 to �2 signi�es that �1 is a subproblem of �2.

4

Problem Presented
�1jchain; pmtn; li;j = ljCmax Section 2.2
�1jchain; pmtn; li;j = lj

P
Cj Section 2.2

�1jchain; pj = 1; li;j 2 f0; lgjCmax Section 2.3
�1jchain; pj = 1; li;j 2 f0; lgj

P
Cj Section 2.3

�1jchain; pj 2 f1; 2g; li;j = L (L � 2)jCmax Section 2.4
�1jchain; pj 2 f1; 2g; li;j = L (L � 2)j

P
Cj Section 2.4

�Pmjchain; pj = 1j
P

wjCj Section 2.5
P jintree; pj = 1; li;j = l; j

P
Cj Section 3.1

P jouttree; pj = 1; li;j = l; j
P

Cj Section 3.1
�1jprec; pj = 1; li;j = ljCmax Section 3.2
�1jprec; pj = 1; li;j = lj

P
Cj Section 3.2

Table 1: Complexity results presented in this paper. A `�' indicates the problem to be strongly
NP-complete.

NP-complete in the strong sense2 for both of these objective functions; therefore, the problems
are NP-complete in the strong sense for all of the standard objective functions shown in Figure 1.
Table 1 summarizes our complexity results.

These complexity results narrow the boundary between known polynomial time solvable problems
and known NP-complete problems. Figure 2 graphically illustrates the boundary with regard to
possible task processing times and distance constraints on a single machine. Figure 3 graphically
illustrates the boundary with regard to possible constraint topologies and distance constraints on a
single machine. Each circle represents a problem. A �lled-in circle represents a known NP-complete
problem. An empty circle represents a known polynomial-time solvable problem, and a dotted circle
represents an unknown complexity for the problem. Problems with new complexity results obtained
in this paper are marked with a square. Problems whose complexity was previously known are
marked with a circle.

The remainder of this paper is organized as follows. Section 2 presents the NP-completeness
proofs for several related problems with �1 = chain and discusses the boundary between NP-
complete problems and polynomial time solvable problems with respect to them. Section 3 presents
polynomial time scheduling algorithms for a simple problem involving �1 = intree and �1 = outtree
along with the NP-completeness results for several related problems with �1 = prec. The boundary
between NP-complete problems and polynomial time solvable problems with respect to these prob-
lems is also discussed. Finally, Section 4 summarizes the results of this work and discusses some
related open problems.

2 Chain Structured Tasks

In this section we examine the complexity of several problems involving chain structured tasks,
i.e., problems in which the precedence constraints form sets of chains. We show that for the
makespan, Cmax, and the mean ow time,

P
Cj, objective functions these problems are strongly

NP-complete; therefore, they are strongly NP-complete for all of the objective functions shown in
Figure 1.

The 3-Partition problem is reduced to all of the various scheduling problems in their respective

2A problem isNP-complete in the strong sense if it cannot be solved by a pseudo-polynomial time algorithm. Thus,
a strongly NP-complete problem cannot be solved in pseudo-polynomial time even if its parameters are bounded by
a polynomial.

3

P
Cj

P
wjCj

Cmax

Lmax

P
Tj

P
wjTj

P
Uj

P
wjUj

6

6

6

6 6

�
���

�
���

�
���

Figure 1: Complexity hierarchy for scheduling problems that di�er only in their objective functions.
An arrow from 1 to 2 indicates that � j� j1 / � j� j2.

We use the �j�j notation introduced in [GLLR79] to specify scheduling problems. � denotes the
type of scheduling problem and the number of machines to be used. In the paper we only consider
� 2 f1; P; Pmg. The single machine environment, � = 1, is the simplest machine environment
that is a special case of all other more complicated machine environments. � = P indicates that the
scheduling will be performed on an arbitrary number (given as input to the problem) of identical
parallel machines, and � = Pm indicates that the scheduling will be performed on a �xed number
m of identical parallel machines. � denotes the constraints on the task characteristics and on a
feasible schedule. We specify � using �ve parameters, �1, �2, �3, �4, and �5

1. �1 2 f�; chain;
intree; outtree; tree; precg denotes the precedence constraint topology. �2 2 f� ; pmtng denotes the
allowability of preemptions in a feasible schedule. �3 2 f�; pj = 1; pj 2 Pjg denotes restrictions
on the task processing times. �4 2 f� ; rjg denotes the presence of nonzero release times, and
�5 2 f� ; li;j = L = O(1); li;j = l; li;j 2 f0; lgg denotes restrictions on the distance constraints.
li;j = L indicates that all distance constraints are equal in value, and the value is a �xed constant.
Whereas, li;j = l indicates that all distance constraints are equal in value, but the value is given as
an input to the problem. li;j 2 f0; lg indicates that the distance constraint values may only be one
of the values in the given set, i.e., 0 or l. denotes the objective function to be minimized. We only
consider problems with 2 fCmax;

P
Cjg.

A complexity hierarchy describing the relationships between scheduling problems that di�er only
in their objective functions is shown in Figure 1. This hierarchy indicates that a problem with the
objective function at the head of an arc reduces to a problem with the objective function at the tail
of the arc, e.g., � j� jCmax reduces to � j� jLmax. Thus, problems with an objective function of Cmax

and
P

Cj are the simplest with respect to their objective functions, and determining that they are
NP-complete proves that the corresponding problem is NP-complete for all objective functions in
the complexity hierarchy.

We examine the complexity of several single machine distance-constrained scheduling problems
for both the Cmax and the

P
Cj objective functions. We prove that most of these problems are

1The absence of constraints of type �i; 1 � i � 5; is denoted by a �. For clarity, these symbols are not included
in the �j�j problem statement.

2

Complexity Results for Single Machine Distance Constrained

Scheduling Problems

MIT-LCS-TM-587

Daniel W. Engels David Karger Srinivas Devadas

dragon@caa.lcs.mit.edu karger@theory.lcs.mit.edu devadas@caa.lcs.mit.edu

Laboratory for Computer Science

Massachusetts Institute of Technology

Cambridge, MA 02139

November 1998

Abstract

Scheduling problems that involve timing constraints between tasks occur often in machine
shop scheduling (e.g., job shop scheduling problems) and code scheduling during software com-
pilation for pipelined processors (e.g., multiprocessor sequencing and scheduling problems). The
timing constraints often take the form of start-start and �nish-start time lags. We consider the
case of non-negative �nish-start time lags li;j , i.e., distance constraints, that require a minimum
time from the completion of task Ti to the start of task Tj . New complexity results are derived
for several single machine scheduling problems for both the makespan, Cmax, and mean ow
time,

P
Cj , objective functions.

Keywords: scheduling, distance constraints, time lags, complexity theory

1 Introduction

We examine the complexity of several single machine scheduling problems in which distance con-
straints (non-negative �nish-start time lags) are associated with the precedence constraints. Distance
constraint li;j requires that there exist a minimum of li;j time units from the completion time Ci of
task Ti to the start time sj of task Tj , i.e., Ci + li;j � sj . Distance constraints are a generalization
of the classical precedence constrained scheduling problems where li;j = 0.

Distance constraints often arise in practice. For example, scheduling software on a pipelined
functional unit that does not contain bypass circuitry requires that all instructions complete the
last stage of the pipeline before their results are available to any other instruction. Therefore, if
the pipeline has k stages, then all instructions that require the result from a previous instruction a
must wait at least k cycles after instruction a enters the pipelined functional unit before entering
the pipelined functional unit. This software scheduling problem may be made more di�cult if some,
but not full, bypass circuitry exists or di�erent instructions require di�erent numbers of pipeline
stages to complete. Thus, the distance constraints may not all be equal.

Recent work [BHH97] has shown that scheduling distance constrained tasks on a single machine
is often at least as hard as scheduling the same tasks without distance constraints on multiple
machines. Although this relationship is not always true, it indicates that the addition of distance
constraints can drastically increase the complexity of a single machine scheduling problem.

1

