
LEAP
Assembler
Manual

16

m~
-0
(I) n
Q.~ -.:r o (I)

2.(1)
nC
Ut

LEAP
Assembler
Manual

TM13013041101

January 1970 Third Edition

© Copyright 1969 by Lockheed Electronics Company

Los Angeles, California All rights reserved

Printed in U. S. A.

16

m r
-0 CD n
!l.~ ... :s-o CD
:s CD ne a..
en

CHAPTER 1 - INTRODUCTION

GENERAL

Programmer Options

Features

THE ASSEMBLY PROCESS

Pass 1

Pass 2

CHAPTER 2 - LEAP LANGUAGE SYNTAX

GENERAL

THE CHARACTER SET

FIELDS

The LOCATION Field

Symbols

The OPERATION Field

LEAP CODING FORM

The VAR IABLE Field

The COMMENTS Field

The IDENTIFICATION Field

EXPRESSIONS

Elements

Value Assignment

Mode Assignment

Absolute

External

Relocatable

Data

Single Precision, Fixed-Point

Double Precision, Fixed-P9int

Single Precision, Floating-Point

Double Precision, Floating-Point

LEAP CODING FORM

Examples of Decimal Data

Hexadeci mal

USASCII

The Asterisk as an Element

Expression Operators

Elements and Operators in Expressions

Absolute Values

Relocatable Values

External Values

The Asterisk

Uses of Parentheses in Expressions

Summary of Legal and Illegal Expressions

TABLE OF CONTENTS

1-1

1-1

1-1

1-1

1-2

. 1-2

1-2

2-1

2-1

2-1

2-1

2-2

2-2

2-2

2-3

2-4

2-4

2-4

2-4

2-4

2-4

2-5
2-5
2-5
2-5

2-5
2-5
2-6
2-6
2-6
2-7

2-8

2-8
2-8
2-8
2-8
2-9
2-9
2-9
2-9
2-9

2-9
2-10 iii

iv

LITERALS

SUMMARY OF ASTERISK USES

ERROR CODES

TABLE OF CONTENTS (cont'd)

CHAPTER 3 - LEAP PSEUDO-OPERATIONS

ASSEMBLY CONTROLLING PSEUDO-OPERATIONS

BOOT - BOOTSTRAP FORMAT

DUP-Duplicate the Next Source Line

END - End of Source Program

ORG - Set Program Origin

SK I PF - Skip if False

SKIPT - Skip if True

DATA GENERATING PSEUDO-OPERATIONS

DC - Data Constant

MAC 16 Pri nt Out Example

PTR - Address Pointer

TXT - CHARACTER String

LISTING CONTROLLING PSEUDO-OPERATIONS

EJECT - Skip to the Top of the Next Page

LIST - List During Pass 2

NLiST - Don't List During Pass 2

SPACE - Space n Lines Before Resuming Listing

TITLE - heading to be Printed at Top of Page

LSTSY - List Symbol Table

EXTERNAL REFERENCE PSEUDO-OPERATIONS

EXTRN - External Symbol

ENTRY - External Symbol Definition

STORAG E AL LOCA TI NG PSEU DO-OPE RA TI ONS

CLEAR - Clear and Reserve an Area

COMN - Reserve an ARea in COMMON

DS - Reserve Data Storage Area

SYMBOL DEFINI NG PSEUDO-OPERATIONS

EOU - Symbol Equals Value and Type of Expression

EOUR - Symbol Equals Value of Expression, Relocatable Mode

REDEF - Redefine Symbol

MISCELLANEOUS PSEUDO-OPERATIONS

SETB - Set the Loading B Flip-Flop

RESB - Reset the Loading B Flip-Flop

PR I NT - PR I NT During Pass 1

MACRO Definition

Parameters

EXAMPLE 1 CODING FORM

EXAMPLE 2 CODING FORM

EXAMPLE 3 CODING FORM

2-10
2-10

2-11

3-1

3-1

3-1

3-2
3-2

3-3

3-3
3-4

3-5

3-5

3-6

3-8
3-8
3-8
3-8
3-8
3-9
3-9
3-9
3-9

3-10
3-10
3-10

3-11

3-11

3-12

3-12
3-13

3-13

3-14

3-14

3-14

3-14

3-14

3-15

3-15

3-15

3-16

3-17

3-18

TABLE OF CONTENTS (cont'd)

CHAPTER 4 - ASSEMBLING MAC 16 INSTRUCTIONS 4-1

CLASS 0: 16 BIT, UNMODIFIED 4-1

CLASS 1: MEMORY REFERENCE 4-1

CLASS 2: I/O INSTRUCTIONS 4-1

CLASS 3: SKIP INSTRUCTIONS 4-2

CLASS 4: N FI ELD 4-2

CLASS 5: IMMEDIATES 4-2

CLASS 6: STATUS MODIFIERS 4-2

CHAPTER 5 - INPUT/OUTPUT 5-1

SOURCE PROGRAM PREPARATION 5-1

Preamble-Start-of-File 5-1

Card I mages 5-1

End-of-File 5-1

ASSEMBLY LISTING FORMAT 5-1

Page Format 5-1

Line Format 5-1

Value Formats (Positions 13-21) 5-2

OBJECT CODE 5-3

Bootstrap Format 5-3

Extended Format 5-3

Checksum 5-5

APPENDIX A - USASCII CHARACTER SET AND HEXADECIMAL CODES A-1

APPENDIX B - MAC 16 MACHINE OPERATIONS B-1

APPENDIX C - LEAP PSEUDO-OPERATIONS C-1

v

Memoranda

vi

Chapter 1

This manual contains a discussion of the Lockheed

Electronics Assembly Program (LEAP) for the MAC 16

computer. Included are discussions of LEAP and its pur

pose, the LEAP language and the rules for using the

language, programming examples using the LEAP language,

and instructions for preparing a program for assembly.

Assumption is made that the reader is familiar with the

MAC 16 (described in the MAC 16 Programmer's Manual)

and is generally familiar with computer programming at the

assembly language level.

GENERAL

An assembly program is a language translator that trans

lates one language (called the source language) into another

language (called the object language). The process by which

the translation takes place is called the assembly process.

The source language is in symbolic form, a form easily

understood (and used) by the programmer. The object

language is in numeric form, a form understood by the

computer.

As in all languages, the LEAP source language has gram

matical rules that must be followed so that the "sender"

(the programmer) can be understood by the "receiver" (the

LEAP program). The entire set of grammatical rules of

language is called th€ syntax of the language. I n later sec

tions, the LEAP syntax is covered in detail; this section is

concerned primarily with general descriptive information

and definitions of terms.

Programmer Options

The LEAP assembly language provides several basic

programmer options that a user may exercise. First the

LEAP language contains two assembly modes, and second,

two formats for object code generation. The two modes

Introduction

of assembly are (1) absolute and (2) relocatable. Through

the use of pseudo-operations the programmer can change a

mode at will. For example, to access the MAC 16 executive

page in memory, an absolute memory location is specified;

whereas, unless the program is assembled in bootstrap

format, the majority of memory reference instructions refer

to locations that are of relocatable mode.

The two object code formats are (1) bootstrap and (2)

extended. A program object code format cannot be

changed during assembly. Basically, what makes assembling

in bootstrap format different from assembling in extended

format is that in bootstrap format the programmer must do

his own memory reference depaging, and also, he cannot

use external references or use the relocation mode of

assembly. See Section 3 for an explanation. Under

extended format, depaging is automatic during the loading

process, and also, both external and relocatable references

are allowed.

Features

Some LEAP features follow:

1. Two-pass assembler

2. The programmer completely controls depaging. If the

programmer wishes, the assembler/loader automatically

de pages programs of any size

3. As many as 200 symbols and/or literals can be defined

within the symbol table of the assembler operating on a

basic 4K MAC 16

4. Pseudo-operations are provided for:

a. defining constants of various types

1. Single and double precision, fixed-point {with

scaling)

2. Single and double precision, floating-point

3. Hexadecimal

4. Text 1-1

1-2

b. conditional assembling

c. defining COMMON data storage

d. reserving and/or clearing areas of computer memory

e. defining external programs and data

f. controlling the format of the object code (extended

or bootstrap)

g. controlling the program listing

5. Expressions are allowed, including parenthetical sub-

expressions, with a full range of operators

6. Literals are allowed

7. 16 error flags (up to 4 printed with each source line)

8. Macros

9. Symbol-table dump (in alphabetical order).

THE ASSEMBLY PROCESS

LEAP reads the source language (one line or statement

at a time) and produces the object language. The Loader

reads the object language, does whatever processing is

necessary (depaging, relocating, etc.), and stores the object

program in memory.

To assemble a program, LEAP reads the source program

two times. Each reading is called a pass; thus, LEAP is a

two-pass assembler. Object code is produced during pass 2.

Pass 1

The purpose of pass 1 is to:

1. Develop a table of defined symbols and assign memory

addresses (values) to them

2. Develop a table of external references

3. Develop a table of literals and assign values to them

4. Define Macros.

At the start of pass 1, the two location counters used

by LEAP are set to zero (Execution Location Counter, and

Common Counter); a source line is then read. If the source

line is a comment, the source line is passed over and LEAP

reads the next source line. If the OPERATION field con

tains a symbol-defining pseudo-operation, the symbol

appearing in the LOCATION field is entered into the

symbol table with the value of the VARIABLE field and

LEAP reads the next source line. Each time a pseudo

operation that modifies one of the Location Counters is

encountered, the proper Location Counter is modified

according to what appears in the VARIABLE field. If a

symbol appears in the LOCA TI ON field of one of these

pseudo-operations, a value may be assigned before or after

the modification, depending on the pseudo-operation. All

MAC 16 instructions cause the LEAP Location Counter to

be increased by one. If a symbol is encountered in the

LOCATION field of a MAC 16 instruction, it is assigned the

value of the Location Counter before the increase. If a

macro definition is encountered, the macro is stored for a

macro call. When a call is encountered for the macro, it is

inserted in the program in place of its call. This process

continues until the end of the program (END pseudo

operation) is encountered. Pass 2 now starts.

Pass 2

LEAP starts reading the source program again. If the

operation is a pseudo-operation controlling the assembly

process, the proper function is performed. If the operation

is a MAC 16 machine instruction, the proper operation

code is inserted into the object code. The first subfield is

evaluated in the VARIABLE field and its value is inserted

into the· object code (if it is legal to have a value in the

VARIABLE field). The second subfield is evaluated and if

not zero, the index bit is set to one in the object code (if it

is legal to have indexing for this instruction). If the first

subfield of the V AR I AB LE field was preceded by an

asterisk, the indirect address bit is set to one in the object

code (if indirect addressing is legal for this instruction). The

source line and the object code is now transferred to the

program listing device. The object code is placed in a table

and when the table is full, the code is transferred to the

object producing device.

This process continues until the end of the source

program (END pseudo-operation) is once again

encountered. The assembler then produces the object code

for literals and the process is complete.

Chapter 2

This section contains the grammatical rules (syntax) of

the LEAP language. Rules for forming symbols, expres

sions, data, operations, etc. are discussed along with some

possible error conditions and resultant consequences. This

section, along with Sections 3 and 4 provides a complete

description of the entire LEAP language. This Section is

primarily concerned with statement format; Sections 3 and

4 contain descriptions of the pseudo-operations and

machine operations recognized by LEAP.

GENERAL

Throughout this manual, little reference is made to

input/output media. LEAP is not concerned with external

representation of the source input, or the object and listing

output but communicates with the outside world via an

elementary executive. (LEAP asks for a source line and is

not concerned with where the executive received the source

line; in the same manner, the object code and listing code

are given to the executive for processing.)

The internal format for the source, object, and listing are:

SOURCE-80-column card image

OBJECT -72-column binary card image

LlSTING-1G8-column print image, plus

carriage control characters

An example of the coding sheet is shown on page 2-3.

Statements are composed of fields; each containing a

constant, a symbol, an expression, or two or more of these

separated by commas. The assembler evaluates constants

and expressions, and saves a tablt3 of the symbols and the

values assigned to these symbols when the programmer (or

the assembly program itself) defines them.

The four fields composing a statement are: the LOCA

TION field, the OPERATION field, the VARIABLE field,

and the COMMENT field, in that order. Fields are separated

LEAP
Language
Syntax

by one or more blanks. The LOCATION field begins with

the first character of the statement, and is terminated by

the first blank. The OPERATION field immediately follows

the LOCATION field and is terminated with a blank. The

VARIABLE (operand) field is defined by the first non

blank character following the OPERATION field if this

character is within 5 blank characters of the OPE RATION

field, and is terminated by the first blank character or by an

end of record signal. (The end of record signal on paper

tape is defined as a carriage return-line feed.) If the first

non-blank character after the OPE RATION field is greater

than 5 blank characters away, or if there is a non-blank

character following the VARIABLE field, the COMMENTS

field is defined. The COMMENTS field is terminated either

by the end-of-record signal or by the eightieth character.

An entire line of comments can be entered by writing an

asterisk in the first character position of the line. Fields are

usually written in fixed positions on a coding sheet; how

ever, any format that satisfies the above definition is per

missible. Free form tolerance is of greatest advantage in

overcoming a common keypunching error; that is, starting a

field in the wrong column or character position of the line.

TH E CHARACTE R SET .

The character set used by LEAP (and the MAC 16) is

the USA Standard Code for I nformation Interchange

(USASCII) set. There is syntactic significance to some of

the characters, but this is discussed later (see ELEMENTS

later in this section). The USASCII character set i's listed in

APPENDIX A.

FIELDS

The LEAP CODI NG FORM is used to assist the pro

grammer in writing a program in a consistent format

acceptable to LEAP. Each line of the form is used for 2-1

2-2

writing one symbolic line of the program (called a source

statement). The source statement is divided into five fields:
LOCATION

OPERATION

VARIABLE

COMMENTS

IDENTIFICATION

No provisions in LEAP are made for continuation of

source statements except as outlined in macro definition

(Section 3).

The LOCATION Field

The LOCATION field normally is used for a symbol by

which a source statement can be referenced from other

parts of the source program (often referred to as the

symbolic location). The LOCATION field has a special

meaning for some pseudo-operations and is ignored by

others; the discussion with each pseudo-operation (Section

3) specifically states the use of the LOCA TI ON field.

A legal symbol within the LOCATION field consists of

one or more (up to a maximum of six) alphanumeric char

acters (A through Z, 0 thru 9, and colon (:)), the first of

which must be alphabetic. The symbol must start in the

first character position of the LOCATION field and is

terminated by the first blank.

The special character colon (:) is considered a numeric

symbol by the syntax of the LEAP assembler when used

within the LOCATION or VARIABLE fields.

Symbols

Symbols consist of alphabetic characters. (letters A

through Z), numeric characters (numbers 0 through 9 and

colon (:)) or a combination of alphabetic and nu meric char

acters. A symbol may be formed of one to six characters,

but the first 'character of every symbol must be alphabetic.

The special character colon (:) is considered a numeric

character by the syntax of LEAP.

Example:

LEGAL

ALPHA

PI

A239B

P68475

X

ZAP:U

I LLEGAL (Error Code "S")

3P14 Does not begin with an alphabetic character

AB.CD Illegal character used (.)

ALPHABET More than six characters

'1 F F Illegal character used (')

:AB doesn't begin with an alphabetic character

If an asterisk (*) appears in card column 1 (and only in

card column 1) of the LOCATION field, the entire source

line is treated as a comment. That is, it will be printed on

the listing, but otherwise ignored by the assembler. This

allows the programmer to freely document his program list

ing without adding to the size of his object code.

The following are the only entries allowed in the

LOCATION field:

all blank

legal symbol

*in column 1

Violation of this rule causes the error code "S" to be

printed on the listing.

The remaining discussion assumes that no asterisk is

written in card column 1 (the remainder of the card is

ignored, if a comment).

The OPERATION Field

The OPERATION field is used for entering the

mnemonic for a desired operation. This operation can be

the mnemonic for a pseudo-operation (see Section 3) or a

machine operation (see Section 4). When the mnemonic

represents one of the MAC 16 machine operations, LEAP

inserts the appropriate code for that operation into the

object code produced by the source statement. When the

mnemonic represents one of the LEAP pseudo-operations,

the instructed action is taken. Appendices Band C sum

marize the mnemonics that are accepted by LEAP in the

OPERATION field. The contents of the OPERATION field

are optional i.e., a macro (see Section 3). The OPERATION

field starts with the first non-blank character following the

LOCATION field and is terminated by the first blank char

acter encountered.

A mnemonic entry within the OPERATION field con

sists of one to six alphanumeric characters (A thru Z, 0 thru

9, and colon (:)), the first of which must be alphabetic.

The remaining characters must conform to the syntax

for either a mnemonic or a valid pseudo-operation, a

machine operation or a predefined macro. Otherwise, the

statement is flagged with an error code "0".

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

~
W

PROGRAMMER

PROGRAM

LOCATION OPERATION
1234~6 1 B 'I 10 11 12 13

I- U~E (!SF Till
-=-

I T~E S:0L
LD~

* " T"F Fill

L cl~
~

i T~E F-0 LL 0~

LD~

LECW FORM 213-1

14 1,

~A
i .. .,.

Sy

-.5
!li" G

lIN ,5

VARIABLE
20 25

itl IE FIl: :EL 0

::tIL \-U ST R~ fiE b

~18 • J

XL L.~ ST IRlA TE S
~L

IL LU ST IQ~ TE S
Sl l(;l U CT l.mN
'Yet1 le~ 1,1

t). LEAP CODING FORM

DATE PAGE OF

CHARGE

132
COMMENTS IDENTIFICATION

3~ 40 45 50 55 60 65 ·70 7J 80

L 114!. i RE. FE. .R.E e-IC • fJN L.~I) I

~wl tIN Ina: 'itS: b IN 1ST R\J :C TJ:. rlN I
I 1
I I

ANI l:r~ n~ IDa: IrT .IiN orr IRU ~T ~~N I
I I

I I
A~I tIlN 101 RE Col -I E.r"' I

I I
I I

I I
I I

1 I
I I I

I I
I I

I I
I I

I

I I
I I I

I I
I I

I I
I I

I I
I I
I I
I I
I 1
I I

LOCKHEED ELECTRONICS COMPANY DATA PRODUCTS DIVISION

The VARIABLE Field

The VARI ABLE field or operand is so called because of

its function as modifier to the operation. The VARIABLE

field starts with the first non-blank character following the

OPE RATION field and is terminated with the first blank

encountered (or column 80, whichever is first). It is most

commonly used for specifying the variable part of a

machine instruction (address, M, N, amount of shift, etc.).

and the index register flag. When used for these purposes,

the VARIABLE field is actyally broken down into

subfields.

For memory-reference instructions, there are two sub

fields: the address subfield and the X (index) subfield. The

programmer indicates the separation of these two subfields

by placing a comma (,) between them.

Section 3 includes a description for the use of the

VARI ABLE field on various pseudo-operations; Section 4

describes the uses for the various machine operations.

If an asterisk (*) preceeds the mnemonic in the VARI

ABLE field, it is interpreted to mean that the instruction

indirect address tag, I, is to be set to a one. This is allowed

with all memory reference operations. If the operation is

not a memory reference type, the error code "I" is printed

on the listing.

LEAP terminates the scan of the VARIABLE field

when the first blank is encountered (exceptions: USASCII

data and the TXT and TITLE pseudo-operations).

The COMMENTS Field

The COMMENTS field is used for any remarks that the

programmer cares to write. The contents of the COM

MENTS field are printed on the program listing, but are

otherwise ignored by the assembler.

The COMMENTS field starts with the first blank

following the VARIABLE FIELD (except as noted above).

Although the starting position of the COMMENTS field is

variable, the program listing is less confusing if the pro

grammer always starts a comment in the same column. By

following this rule, a predictable separation exists between

the program instructions and the commentary, thus,

making a more readable listing.

The IDENTIFICATION Field

The IDENTIFICATION field may be used for record

2-4 identification (if cards are used) and is considered an exten-

sion of the COMMENTS field. Otherwise, IDENTIFICA

TION is treated in the same manner as described for COM

MENTS.

EXPRESSIONS

It is often desirable to specify a value in the VARI

ABLE field that is generated by combining more than one

value. LEAP provides the programmer with this capability

by allowing expressions in the VARIABLE field. An expres

sion is composed of elements and operators; it can be com

posed of a single element, or n elements separated by n-1

operators. The length of an expression is limited only to the

size of the VARIABLE field.

If two or more elements appear in an expression, all of

the elements in the expression must be single precision; i.e.,

a value that is not larger than 16 bits. The only time an

element is multiple precision (e.g., double precision num

bers, or text string of more than two characters, etc.) is

when the element is in the VARIABLE field of a multiple

precision DC or TXT pseudo-operation. Illegal use of

multiple precision elements causes the error code "C" to be

printed on the listing.

Elements

An element is an qperand in an expression. An element

may be a symbol, a datum, or the asterisk.

As stated, LEAP places special syntactic significance on

some characters in the character set. Some of this signifi

cance is associated with the first character of an element.

If the first character of an element is:

A thru Z: the element is a symbol

o thru 9 or the decimal point: the element is a decimal

number

$: the element is a hexadecimal number

': the element is USASCII data.

Value Assignment

A symbol normally has an assigned value when the

symbol is encountered in the LOCATION field of a source

line. When an undefined symbol (not in the LOCATION

field of any source line) is encountered in the VAR I ABLE

field, LEAP assigns a value of zero and causes the error

code "U" to be printed with the line in which the symbol

was encountered.

If a symbol does not have a unique value (Le., it was

encountered in the LOCATION field of more than one

source line). it is considered to be a multiple definition. The

value of the symbol is the value assigned by LEAP the last

time the symbol was encountered in the LOCATION field;

subsequent encounters change the value. Multiple defini

tions cause the error code "0" to be printed with the line

in which the symbol is encountered in the LOCATION

field. If a source statement refers to the multiply defined

symbol in the VARIABLE field, the error code "M" is

printed with the line in which the symbol is encountered.

The value of a symbol encountered in a pseudo

operation LOCATION field is the value and type of the

LEAP LOCATION counter at the time the source line is

encountered with two exceptions. These exceptions are the

EQU and EQUR pseudo-operations (see Section 3 for

further explanation.)

Mode Assignment

The mode of a symbol is dependent on the mode of the

value assigned to the symbol. A value may be either abso

lute, external, or relocatable.

Absolute

A symbol is absolute if the value assigned to the symbol

is absolute. This can be done in two ways:

1. LEAP assigns the value of the LOCA TI ON counter and

the mode of assembly is absolute; or,

2. the value is assigned through the use of a symbol

defining pseudo-operation and the expression in the

VARIABLE field is absolute.

A symbol is external if it appears in the VARIABLE

field of an EXTRN pseudo- operation.

Relocatable

A symbol is relocatable if the value assigned to the

symbol is relocatable.

This can be done in three ways:

1. LEAP assigns the value of the LOCA TI ON counter and

the mode of assembly is relocatable; or,

2. the value is assigned through the use of a symbol

defining pseudo-operation and the expression in the

V AR I AB LE field is relocatable; or

3. The symbol appears in the LOCATION field of a

COMN pseudo-operation.

Data

LEAP will process three different data notations as ele

ments: decimal, hexadecimal, and USASCII text.

DECIMAL

Single Precision, Fixed-Point (4+ decimal digits)

SINGLE PRECISION, FIXED-POINT (1 word)

S 15 bits of data

o 15

A single precision, fixed-point decimal number requires

one computer word (sign and 15 bits) and is written in two

parts: the numeric part and the scaling part.

The numeric part of the single precision, fixed-point

number is a signed or unsigned decimal number, with or

without a decimal point. If no sign is specified, the number

is assumed to be positive. If no decimal point is specified, it

is assumed to be immediately to the right of the final digit

of the numeric part (a decimal integer).

The scaling part of the single precision, fixed-point

number is composed of the binary scale factor and the

•

decimal scale factor. The binary scale factor may be I
omitted. The binary scale factor is the letter B followed by

a signed or unsigned decimal integer. The binary scale

factor specifies the position of the understood binary point

relative to the machine binary point (between bit positions

o and 1 of the computer word). If the binary scale factor is

positive, the understood binary point is to the right of the

machine binary point, if negative, it is to the left of the

machine binary point.

The decimal scale factor may be omitted, but if

included, it is the letter E followed by a signed or unsigned

decimal integer. The decimal scale factor specifies the loca

tion of the decimal point in the numeric part relative to the

written decimal point (if no decimal point had been

written, it is assumed to be immediately to the right of the

final digit). If the decimal scale factor is positive, the

decimal point is to the right; if negative, the decimal point

is to the left.

The binary scale factor may appear before the decimal

scale factor, or vice versa, but the scale factors must appear

after the numeric part (error code "C", if not). 2-5

2-6

•

If information is lost in the most significant part of the

word during conversion (improper scaling), the error code

"C" is printed on the listing.

Double Precision, Fixed-Point (9.4 decimal digits)

DOUBLE PRECISION, FIXED-POINT (2 words)

word

I S I 15 most-significant bits

o 15

(see footnote 1.)

word 2

15-bit extension

o 15
*Sign same as word 1

A double preCISion, fixed-point decimal number

requires two computer words (sign and 30 bits). A double

precision, fixed-point number is written the same way as

the single precision number, except that either two B's

must be written for the binary scale factor or two E's must

be written for the decimal scale factor (or both)

Single Precision, Floating-Point (7 significant decimal

digits)

SINGLE PRECISION, FLOATING-POINT (2 words)

word

S EXP

o

word 2

7 8 15
(see footnotes 2 and 3) (2 hexadecimal

digits of Fraction)

o (4 hexidecimal extension) 15

A single precision, floating-point decimal number

requires two computer words (sign, 7-bit exponent, and 6

1. S is the sign

hexadecimal digits of data) and is written in two parts: the

numeric part and the scal ing part.

The numeric part of the single precision, floating-point

number is a signed or unsigned decimal number, with a

decimal point. If no sign is specified, the number is assumed

to be positive. If no decimal point is specified, the number

is assumed to be an integer.

The scaling part of the single precision, floating-point

number is the decimal scale factor. The decimal scale factor

specifies the location of the decimal point relative to the

written decimal point in the numeric part. If the decimal

scale factor is positive, the decimal point is to the right; if

negative, the decimal point is to the left.

Double Precision, Floating-Point (16.7 significant decimal

digits)

word

S E XP fraction

o

word 2

o

word 3

o

word 4

o

7 8 15
(2 hexadecimal digits

of fraction)

15
(4 hexadecimal extension)

15
(4 hexadecimal extension)

15
(4 hexadecimal extension)

A double precision, floating-point decimal number

requires four computer words (sign, 7-bit hexadecimal

exponent, 14 hexadecimal digits of data).

A double precision, floating-point number is written the

same way as the single precision number, except that a

decimal scale factor must be specified, and two E's must be

written for the decimal scale factor.

I 2. EXP is the 7-bit exponent (power of 16). offset by 4016' The decimal range of the hexadecimal exponent is +63 to -64 (approximately

10+ 75 to 10-75)

3. Fraction is the normalized hexadecimal fraction; extensions are 4 hexadecimal digits.

2

3

4

5

6

• 7

8

9

.10

11

12 .13
14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

r;v
"

PROGRAMMER

PROGRAM

LOCATION OPERATION
123456 7 8 9 10 11 12 13

I IT~ Ie 11= lIS Lil

~
I il:~ iAN PL E i
,~ ~1 Dr
• III le)(. IN PI- F Z
1A Gt Dt- ")

~
I !EX AI~ PL E 3
l~ ~~ or "}

I
I ElY A~ p~ ~ 4
TA G~ CI' 4

"

LECW FORM 213-1

VARIABLE
14 15 20 25

IN II LU ~h' IglA TlE Is
ICE t~ I~A L o~ T~
~I ~~ LE Ll~ liS
!. S! ~

Itl0 u~ LE PI(It J.I~

.!4 I: ~!" l:c ~

~I NG LE PD I:~ r.s,
-1

l1(j U~ F Ll~ '[6
11. fE -1

(Ii_ LEAP CODING FORM

DATE PAGE OF

CHARGE

\32
COMMENTS IDENTIFICATION

35 40 45 ~O 55 60 65 70 7; 80

'11" B lnle FI INI Tl 0N ~F I

I I I
Ial N,IF ~l ED -J:l ifJl NT I

IE GU ~L S iJH~ 'I(no os. I

I I
l~ N~IF [~ Et:) .p ~I NI I

IE ~ AL S J4E X lit) 010 ~O 101 I
I I

"I' N .I~ IL~ AT IN G- 1>0 t~ r- I
IF ~n IAL S I"E)(C1. 10 100 pp I

I I
1ft ~ "IJ: Ill4 IAT lIN (2- DtJ ttlT I

IE ~Iu 14 L Is !"E ~ 40 9 ~9 e9 ~9 99 n~ In" I
I I

I I
I I

I I
I I

I I
I I

I I
I I

I
i

I
I I

I I
I I
I I
I I
I I
I I

LOCKHEED ELECTRONICS COMPANY DATA PRODUCTS DIVISION

•

2-8

Examples of Decimal Data

NUMBER

1.

1.B15

.1 EEl B30

-1.

1.EE-l

Hexadecimal

AS IT APPEARS ON
THE LISTING

FORMAT (H EXADECI MAL)

single precision, fixed-point 0001

single precision, floating-point 4110

0000

single precision, fixed-point 0001

double precision, fixed-point 0000

0001

single precision, floating-point CllO
0000

double precision, floating-point 4019
9999
9999
9999

A hexadecimal number is represented by the dollar sign

($) followed by a signed or unsigned string of hexadecimal

digits. A single precision hexadecimal number has less than

five digits; a double precision hexadecimal number has

more than four digits, but fewer than nine digits. If a

negative sign is specified, the resulting number is two's

complement.

USAsell

USASCII text is defined to be the single quote (')

followed by a string of characters. Two characters are

stored per word. If more than two characters are written,

the string will use more than one word. A single quote (')

terminates the strings.

Control characters (carriage return, line feed, tab, etc.)

and the single quote (') are not allowed in a USASCII text

string. If it is necessary to specify any of these a separate

DC statement must be used, with the character(s) specified

in hexadecimal.

Example of USASCII characters in a DC statement:

DC,4 'WEDNESDA'

The Asterisk As An Element

A single asterisk (*) may be used as an element in an

expression. The value of the asterisk is the value of the

LOCATION counter at the time the asterisk is encountered

during the expression evaluation. The value mode of the

asterisk depends on the current mode of assembly (absolute

or relocatable).

Expression Operators

I tems are combined using the operators defined in the

table below. The table also is a list of hierarchy numbers for

determining how the value of an expression is computed.

Operations with greater hierarchical value are performed

before operations having lesser hierarchical value. Opera

tions with the same hierarchical value are performed from

left to right. (Parentheses may be used to change this

hierarchical structure.)

Table 3

Hierarchy Operator

6 %

5 *

5 /

4 +

4

3 <

3

3 >

2 &

@

Description

Logical binary left shift

Arithmetic product

Arithmetic quotient

Arithmetic sum

Arithmetic difference

Boolean less than

Boolean equals

Boolean greater than

Logical product (AND)

Logical sum (OR)

Logical difference

(exclusive OR)

An expression can have a leading minus sign; if so, its

value is computed as though a zero preceded the minus

sign. Thus - 13% (-2) is evaluated as 0-(13%(-2)), which is

not the same as (0-13% (-2).

The value of an item will be right-justified in its

generated resultant field and unspecified leading bit posi

tions will contain zeros.

Note that the subexpression item provides for paren

thetical expressions; i.e., according to the above rules

(A+B)/2 is a valid expression.

Elements And Operators I n Expressions

If two or more elements appear in an expression, all of

the value are treated as 16-bit values. A multiple precision

element must exist alone in an expression and can only be

used in the VARIABLE field of a DC or TXT pseudo

operation.

Two consecutive elements are not permitted without an

operator separating them (3M does not mean 3*M and will

cause the error code "E" to be printed on the listing).

Consecutive operators are not permitted without ele

ments except for the minus sign (-). Any of the elements

described in this section may be used in expressions (with

the above-noted restriction on multiple precision elements).

Certain combinations, d!;lscribed below, have no meaning

and are not permitted. The table at the end of this section

summarizes the legal and illegal combinations.

Absolute Values

Any 16-bit absolute value can be combined with any

other 16-bit absolute value with any operator. Absolute

values are:

Symbols with absolute values

Data Elements

Relocatable Values

Only one relocatable value can exist in an expression,

unless the combination of relocatable values causes an

absolute result. For example, a relocatable value subtracted

from a relocatable value produces an absolute result. It is

the programmer's responsibility to group the elements in an

expression so that the value of the entire expression is

dependent on only one relocatable element. Violation of

this rule causes the error code uR" to be printed on the

listing.

External Values

External values cannot be combined with other

expressions elements. Violation of this rule causes the error

code "R" to be printed on the listing.

Relocatable and external values are not defined until

load time; absolute values are known at assembly time. The

use of relocatable and external values is assumed to be

associated with a reference to a memory location by the

Extended Loader. The following are the only memory

reference values recognized by the Extended Loader.

ABSOLUTE VALUE . oepage

POSTITIVE RELOCATABLE

VALUE. • . • . . Add relocation constant to

value and depage

POSITIVE EXTERNAL

VALUE. • Add value to value of external

symbol and depage.

The Asterisk

If the asterisk is used as an element and it has a relo

catable value, the restrictions described above apply for

relocatable values in expressions. There is no restriction

regarding the use of an asterisk as an absolute value.

The asterisk is also an operator and there is one

syntactical ambiguity in the use of the asterisk for either

purpose. LEAP evaluates asterisks in the VARI ABLE field

in the following manner. The first element, if an asterisk,

forces LEAP to evaluate the second element. If the second

item is a legal operator (+,-,*,/, etc., the value of the first

item (*) will be the value and type of the LOCATION

counter. If the second item is a legal element the first item

(*) will be used to define an indirect call to a location. With

this in mind the following example will be easy to decipher.

Example:
LOA **2

The value of the expression is the value of the

LOCATION counter multiplied by two. If the programmer

wished the value to be indirect through LOCATION

counter +2, a name (label) should be assigned to the desired

location and the coding written as

LOA *NAME

Uses of Parentheses I n Expressions

LEAP gives the programmer the capability to specify

subexpressions within expressions. A subexpression is a

string of elements and operators bounded by parentheses. A

subexpression starts after a left parenthesis and is closed

when a matching right parenthesis is encountered. After

evaluating a subexpression, the resulting 16-bit value is

treated as an element by LEAP.

Parenthetical subexpressions may be nested within sub

expressions. LEAP can evaluate up to five levels of nested

parenthetical subexpressions. However, for each left paren

thesis encountered, there must be a matching right

parenthesis within the expression. If there are more left or

right parentheses than the other, the error code "z" is

printed on the listing. 2-9

Examples:

(((((A+B)*(C-D))/E) & F) $FFFF)+l

(A)+(B)-(C*D)

Note, that redundant parentheses are allowed; A+B-C* D

would produce exactly the same results as this example.

ALPHA/(BETA-GAMMA-DE L TA)

(BITS/2) & 1

Shifts BITS right 1 place and keeps only low-order bit.

-EXTENT

Forms two's complement

Summary of Legal and Illegal Expressions

The following table lists the legal and illegal combina

tions of elements in expressions. If an illegal combination is

encountered, the error code "R" will be printed on the

listing. The table is applicable to values and intermediate

values. For example, the table shows that r+r is illegal;

therefore, r+r-r would also be illegal; however, r+(r-r) would

be interpreted as r+a, which is legal.

LEGAL

a=a r=r e=e

a+a=a a+r=r

a-a=a r+a=r

a*a=a r-a=r .

a/a=a r-r=a

a&a=a

a@a=a

a!a=a

a = absolute; e=external; r=relocatable

I LLEGAL (error code "R")

Any other combination of elements is illegal.

No!!. or 1 item may be an element of: * ,/,&,@,! operators

LITERALS

A literal is the equals sign(=), followed by any legal

expression. Multiple precision elements are not permitted

following the equals sign. If a multiple precision element is

encountered, the error code "E" is printed on the listing.

The value of a literal is the 16-bit address of the

2-10 memory location in which the literal is stored.

The value and mode of a literal is assigned at the end of

the first pass over the source program. For each literal

encountered in the literal table, LEAP assigns the value of

the LOCA TI ON counter and then increases the LOCA TI ON

counter by one. Mode assignment is dependent on the

mode of assembly at the time the END pseudo-operation is

encountered. If LEAP is assembling in the absolute mode,

the literals will be the absolute mode; if in the relocatable

mode, the mode will be relocatable.

Examples:

='AB' requires one word (USASCII string, two characters

per word).

=$1 F F requires one word (single precision, hexadecimal).

When LEAP is assembling in bootstrap format, literals are

used only if the program, including all literals, is less than

one page in size.

A literal expression is composed of more than one ele

ment (or a single element with a 16-bit value), and is always

a 16-bit word containing the value of the expression. Thus,

absolute, external, or relocatable values are elements in

literals.

Examples:

LDA =*+3

EXTRN SINE

means "Ioad the A-register with a word

containing the value of *+3," It does not

mean "Ioad the A-register with the word

that is three locations away."

LDX =SINE means "Ioad the index register with the

external value of SINE." At execution

time, this value will be the memory

address of where SINE had been placed

by the loader.

SUMMARY OF ASTERISK USES

The following are the various uses of the asterisk and

their meanings:

1, An asterisk in column 1 of the source statement: treat

entire source line as a comment,

2. An asterisk preceding a VARIABLE field mnemonic:

set indirect address flag.

3. An asterisk as an element in an expression: current

value and mode of the LOCATION counter.

4. An asterisk as an operator: form the product of the

adjacent elements.

ERROR CODES

The following is a summary of the error codes and their

meanings:

A ADDRESS SUBFIELD

A null expression was encountered in the address sub

field (memory reference instructions only). There must

always be an entry in the address subfield of memory

reference instructions, even if it is just a (zero).

B BOOTSTRAP

While running the bootstrap format, either a memory

reference instruction has attempted to address a loca

tion not in the current page or the base page, or an

illegal pseudo-operation has been encountered.

C CONVERSION

A data element cannot be correctly converted. This is

usually associated with an illegal character or combina

tion or characters in a data element; however, too many

characters in a hexadecimal element or improper scaling

of a decimal element can also cause this error.

D DOUBLE DEFINITION

A symbol has been defined more than once jn the

source program.

E EXPRESSION

An illegal expression has been encountered. There are

many reasons for this error; see Section 2 for details.

F FIELD OVERFLOW

A value has been formed that is too large for the

intended field. Examples of this are: a value of more

than one bit in the Index subfield, a value of more than

4 bits in the M and N subfields, etc.

INDI RECT ADDRESSING

An asterisk has preceded the VARIABLE field of a

non-memory reference instruction.

M REFERENCE TO MULTIPLE DEFINITION

A multipally defined symbol has been referenced in the

source statement.

o OPERATION CODE

An illegal mnemonic, or undefined mnemonic has been

encountered in the OPERATION field.

P PHASE

A relocatable expression is not permitted, or an expres

sion has an element that has not been previously

defined.

R RELOCATABLE

An expression has been encountered with an illegal

combination of relocatable and/or external elements.

S SYMBOL

An illegal character has been encountered in the LOCA

TION field; or a symbol-definition has been attempted

without starting the symbol with an alphabetic char

acter; or a symbol has been encountered in the VARI

ABLE field with too many characters (more than six);

or a symbol has been omitted in the LOCATION field

for a pseudo-operation requiring a symbol.

U UNDEFINED

A reference has been made to a symbol that is not

defined anywhere in the program.

V VARIABLE FIELD

An error has been encountered in the VAR I ABLE field

that cannot be classified more explicitly - this could be

a string of characters that has no syntactic meaning; or

nothing was entered in the VARIABLE field when an

entry is required.

X INDEX SUBFIELD

An index subfield was specified, but nothing was

entered; or an index subfield has been encountered for

an instruction that does not allow indexing.

Z NON-ZERO LEVEL REDUCTION

An expression has been encountered that does not have

matching pairs of parentheses; there must be exactly

the same number of left and right parentheses.

2-11

Memoranda

2-12

Chapter 3

This section contains a description of the pseudo

operations provided in the LEAP language. Examples using

the pseudo-operations are included when further clarifica

tion is required.

Preceding each pseudo-operation description is a figure

showing the format of the LOCATION, OPERATION, and

VARIABLE fields.

LOCATION OPERATION VARIABLE

The above figure illustrates the format; the fields cor

respond to the fields defined in Section 2.

Except for the TITLE and PR I NT psuedo-operations,

the COMMENTS field always starts with the termination of

the VAR IABLE field (the first space encountered that is

not part of text data). To conserve space and the reader's

time, the COMMENTS field is not shown with each of the

pseudo-operati ons.

If the word "normal" appears in the LOCATION field

of the format figure preceding the pseudo-operation discus

sion, it means that entry of a symbol in the LOCATION

field is optional. If a symbol is entered in the LOCATION

field, its value is assigned in the normal manner.

If the word "symbol" appears in the LOCATION field

of the format figure preceding the pseudo-operation discus

sion, it means that there must be a symbol entered in the

LOCATION field. If no symbol is· encountered, the error

code "S" is printed on the listing.

ASSEMBLY CONTROLLING PSEUDO-OPERATIONS

The following paragraphs describe those pseudo

operations provided as part of the LEAP language that

allow the programmer to control the format of the object

LEAP
Pseudo
Operations

code produced. In addition, pseudo-operations are provided

for conditional assembling of source lines and setting the

value of the LOCATION counter. A single pseudo

operation is provided for defining the end of the source

program.

The pseudo-operations described in this section are:

BOOT - BOOTSTRAP FORMAT

DUP - DUPLICATE NEXT SOURCE LINE

END - END OF SOURCE PROGRAM

ORG - SET PROGRAM ORIGIN

SKIPF - SKIP IF FALSE

SKIPT - SKIP IF TRUE

BOOT - BOOTSTRAP FORMAT

LOCATION OPERATION

normal BOOT

VARIABLE

ignored

This pseudo-operation specifies to LEAP that the

format of the object code produced should be the format

recognized by the bootstrap loader and that the mode of

assembly should be absolute for the entire assembly.

There are several reasons why a programmer uses this

option. Among these are the following:

1. The programmer is in complete control of program and

da~a storage in memory.

2. All base page linkages can be assigned by the pro

grammer.

3. The Bootstrap Loader program can be used to load

memory rather than the much larger Extended Loader.

4. This also saves the added step of using the Extended

Loader through its GENBOOT option to generate

bootstrap object code. 3-1

The BOOT pseudo-operation causes the object program

to be completely absolute; no memory-reference instruc

tions may make reference to relocatable or external

elements, or elements either outside the page in which the

instruction is located or the base page. If a violation of

these rules occurs, the error code "B" will be printed on the

listing with the source line in which the offending element

is encountered. When used, the BOOT pseudo-operation

must be the first source statement to be read by LEAP or it

will be considered an illegal command to LEAP and the

error code "B" will be printed on the listing with the source

line. See Section 5 for a description of the bootstrap
format.

A summary of illegal pseudo-operations when assem

bling with the BOOT pseudo-operation are as follows:

1. ORG when the expression is relocatable;

2. EXTRN

3. ENTRY

4. CLEAR

5. COMN

6. DS when the expression is relocatable;

7. EQUR

Each of these pseudo-operations requires either relo

catable items or special type codes. Since bootstrap format

requires absolute assembly and has no provision for reloca

tion, each of these will have the "B" error code printed on

the listing with the source line in which they appear.

DUP-Duplicate the Next Source Line

LOCATION OPERATION VARIABLE

normal DUP expression

This pseudo-operation gives the programmer the capa

bility to specify to LEAP that the next source statement

should be duplicated the number of times specified by the

expression in the VARIABLE field.

The expression in the VARIABLE field must be abso

lute and if any symbol appears in the expression, the

symbol must have been previously defined (no forward

reference); violation of this rule causes the error code "P"

to be printed on the listing.

If the source statement that follows the DUP pseudo

operation causes object code to be generated, the LOCA

TION counter will be increased the appropriate amount for

3-2 each duplication. If the asterisk is used as an element in the

expression, the value of the LOCATION counter for each

duplication.

The expression must equal some finite value n. The

source statement then appears n times, not n+1 times. An

example of this pseudo-operation is found in Section 3.

When the expression equals zero, the following source line

is not assembled.

END - End of Source Program

LOCATION OPERATION VARIABLE

normal END expression

This pseudo-operation gives the programmer the capa

bility to specify to LEAP that the end of the source pro

gram is reached and that the value of the expression in the

VARIABLE field defines the location of the first instruc

tion to be executed at run time. THERE MUST BE ONLY

ONE END PSEUDO-OPERATION IN A SOURCE

PROGRAM.

When LEAP encounters the END pseudo-operation, the

following action takes place:

PASS 1

The Location Counter used for value and mode assign

ment is dependent on the mode of assembly at the time the

END pseudo-operation is encountered. If LEAP is proces

sing absolute statements, the mode and value assignment is

absolute; if LEAP is processing relocatable statements, the

mode and value is relocatable.

1. The literal table is examined. For each literal found,

LEAP assigns the value and mode of the LOCATION

counter for reference during pass 2. The LOCATION

counter is incremented by one for each literal; thus, the

val ue assigned for later reference is actually the locati on

of the literal.

2. LEAP now prints a message signifying the completion

of Pass 1 on the system's tele-printer, and waits for

operator action before continuing.

PASS 2

1. A listing of the literals and their values (if any exist) is

printed.

2. The literals are output in the proper object code

format.

3. A listing of all symbols and their values (in alphabetic

order) is printed if the LSTSY pseudo-operation has

been encountered.

4. The expression in the VARIABLE field is evaluated. If

nothing is entered in the VARIABLE field, LEAP out

puts the END/JUMP object code and makes the address

of the jump equal to absolute zero. If an expression is

entered, the resultant value is the address of the jump.

5. An end-of-assembly message is typed on the systems

teleprinter.

ORG - Set Program Origin

LOCATION OPERATION VARIABLE

normal ORG expression

This pseudo-operation gives the programmer the capa

bility to specify to LEAP that the LOCATION counter

should be set to the value of the expression in the VAR 1-

ABLE field. The LOCATION counter may be set absolute

or relocatable depending on whether the expression in the

VARIABLE field is absolute or relocatable.

When LEAP encounters the ORG pseudo-operation, the

expression in the VARIABLE field is evaluated and the

LOCA TI ON counter is set to the val ue and mode of the

expression.

When LEAP is assembling bootstrap formatted object

code, the expression in the VARIABLE field must not be

relocatable. If the expression is relocatable, the error code

"B" is printed on the listing with the source statement.

SKIPF - Skip If False

LOCATION OPERATION VARIABLE

normal SKIPF first expression,

second expression,

The pseudo-operation gives the programmer the capa

bility to specify to LEAP that a portion of the program

should be conditionally excluded from the assembly

process, dependent on the first expression being false.

Both of the expressions in the VARIABLE field must

be absolute. Any symbols used in the expressions must be

previously defined. If either (or both) of these conditions is

not met, the error code "P" is printed on the listing and the

value of the first expression is set to zero (false).

When LEAP encounters a SKIPF pseudo-operation, it

evaluates the first expression in the VARIABLE field. If the

value of the expression is not zero (true), the remainder of

the line is ignored and LEAP proceeds to the next source

line in the normal manner. If the value of the first expres

sion is zero (false). LEAP evaluates the second expression.

The resultant value is the number of subsequent source

lines skipped. If the LIST pseudo-operation is in effect, the

skipped source lines are listed.

In the example below, the programmer specifies that

the 2 lines following the SKIPF should not be included in

the program, if the value of the symbol, DEBUG, is zero

(false). If the value of DEBUG is not zero (true), the 2 lines

should be included.

If the programmer chose not to define DEBUG, it

would be a phase error (error code "P"). forcing the value

of the first expression to be zero, and the next 2 lines

would be skipped.

COMMENTS
40 55

3-3

3-4

SKIPT - Skip If True

LOCATION OPERATION VARIABLE

normal SKIPT first expression,

second expression

The pseudo-operation gives the programmer the capa

bility to specify to LEAP that a portion of his program

should conditionally be excluded from the assembly pro

cess, dependent on the first expression being true.

Both of the expressions in the VARIABLE field must

be absolute. Any symbols used in the expressions must have

been previously defined. If either (or both) of these condi

tions is not met, the error code "P'. is printed on the listing

and the value of the first expression is set to zero (false).

When LEAP encounters a SKIPT pseudo-operation, it

evaluates the first expression in the VARIABLE field. If the

value of the expression is zero (false), the remainder of the

line is ignored and LEAP proceeds to the next source line in

the normal manner. If the value of the first expression is

not zero (true), LEAP evaluates the second expression. The

resultant value is the number of subsequent source lines

skipped. If the LIST pseudo-operation is in effect, the

skipped source lines are listed.

This coding form example illustrates:

1. use of SKIPT and SKIPF

2. program being modified at assembly time, dependent

on the parameter, ARG, and

3. program being modified at execution time, dependent

on the same parameter, ARG.

The following discussion explains each line of the

example. Assume that ARG is defined earlier in the pro

gram and that it has only four values: 0,1,2, or 3.

SKIPT ARG, 2*ARG

If ARG=O, the next, and subsequent lines are assembled

in the normal manner. If ARG=l, 2* ARG lines are skipped

(2) and assembling resumes at A 102. If ARG=2, 4 lines are

skipped and assembling resumes at A 104. If ARG=3, 6 lines

are skipped and assembling resumes at A 105+1.

SKIPF ARG-3,9

If ARG=3, none of the I ines A 100 thru A 105 are

assembled; therefore, there is no clear loop and all lines

down to, but not including, DONE are skipped (if

3-ARG=0, 9 lines are skipped). If ARG=3, normal

assembling resumes with the next line.

LDI (3-ARG)*2

The value loaded into the A-register (immediate) is

dependent on the value of ARG. If ARG=O, the value

loaded is 6,(3-0)*2=6 with 6 the number of locations to be

cleared (if ARG=O, none of the lines Al00 thru Al05 are

skipped). If ARG=l, the value loaded is 4; if ARG=2, the

value is 2. If ARG=3, this instruction or the next 8 instruc

tions are not included in the program (the SKIPF would

have skipped).

TWA

This instruction forms the negative of the count for the

loop counter.

STACOUNT

Initializes the loop counter

LDX= Al05

This instruction initializes the index register to point to

the first location to be cleared.

CLA

Clears the A-register for storing into the locations to be

cleared.

LOOP STA 0,1

Clears the location pointed to by the index register

DNX 1

Decrements the index register by 1. Each time through

the loop, the index register points to the next location to

be cleared.

INC COUNT

Increments the loop counter by 1, making it less

negative.

JMP LOOP

When the loop counter reaches 0, this instruction is

skipped and execution resumes at DONE. Otherwise, the

computer will go back to LOOP for its next instruction.

DATA GENERATING PSEUDO-OPERATIONS

The pseudo-operations described in this section are:

DC - DATA CONSTANT

PTR - ADDRESS POINTER

TXT - CHARACTER STRING

Because the syntax for expressions in the LEAP lan

guage is not ambiguous, only two pseudo-operations (DC

and TXT) are required for generating data values within a

program. It should be noted that data of different types

(decimal, hexadecimal. USASCII. address) can be generated

from one source line; it is not necessary to have a different

DC statement for each of the different types. Up to 7 sub

fields per source line can be written. The maximum number

or words reserved with one DC statement is 28.

It is sometimes desirable to have what may appear to be

superfluous operations; i.e., two different operations may

be used to generate the same result. This is the case with

the DC and PTR pseudo-operations. By using the DC

pseudo-operation, it is possible to duplicate any of the

capabilities provided with the PTR pseudo-operation. The

reason for having the PTR pseudo-operation is to provide a

convenient documentation aid. As a courtesy to others who

may have to understand a program, it is recommended that

the PTR pseudo-operation be used whenever an address or

indirect address constant is used. This will make it easy to

quickly differentiate between actual data and pointers to

memory locations (both of which may be data, but the

intended functions are not the same).

DC - Data Constant

LOCATION OPERATION VARIABLE

normal DC LKJ exp 1. exp 2 expn

This pseudo-operation gives the programmer the capa

bility to have LEAP convert certain types of data and

expressions into the hexadecimal code used by the MAC

16.

If there is a symbol in the LOCATION field, the value

and mode of the symbol will be the value and mode of the

LOCATION counter at the ti me the symbol is encountered.

The optional OPERATION sub-field (,K) is the field

size (in words) that will be generated for each value and

may be an evaluative absolute expression (no forward or 3-5

3-6

external references) that results in an integer inthe range

1~K:S4. If K is not in the range 1::SX~4, the error code

"0" will be printed on the listing on the line of the source

statement and K will be assumed to be 1.

The LOCATION counter will be incremented by the

value of K for each expression in the VARIABLE field of

the DC pseudo-operation.

The expressions in the VARIABLE field must follow

the rules described in Section 2 - Expressions. Any legal

expression may be written in the VARIABLE field. If two

or more expressions are written, there must be a comma (.)

between the expressions. Up to 7 expressions can be

written in the VARIABLE field.

The DC pseudo-operation generates each value in the

list into a field whose size is K words (if K is specified) or

one word (if K is not specified).

When the field size to be generated for each value is one

word, the expressions in the value list must be evaluated as

one of the following:

1. Single precision fixed-point decimal data.

2. Hexadecimal values of from one to four hexadecimal

digits. If fewer than four hexadecimal digits are written,

the digits are right justified in a data word with leading

hexadecimal zeros instead. If more than four digits are

written, the last four are entered in a data word and the

remaining digits are truncated.

0001 * EXAMPLE OF DC PSEUDO-OPERATION
0000 R 0218 0002 EXl DC 536,-22,1,$12345,'SD','S'
0001 R FFEA
0002 R 0001

F 0003 R 231&5
0004 R D3C4
0005 R 00D3
0006 R 0000 0003 EX2 DC,2 536,-22,1,$12345, 'LEC'
0007 R 0218
0008 R FFFF
0009 R FFEA
OOOA R 0000
OOOB R 0001
OOOC R 0001
DODD R 2345

C OOOE R 0000
OOOF R C5C3

E 0010 R 0042 0004 EX3 DC $42R
0010 0005 START EQUR *-1

E 0011 R 0000 0006 EX4 DC" 2 " START,,, 3.14B5, 3.14
0012 R 0000
0013 R 0000
0014 R 0010

E 0015 R 0000
0016 R 0000
0017 R 0000
0018 R OC8F
0019 R 4132
001A R 3D70

0000 0007 END
*1
OK

,

1

Example:

Value

$ABC

$12345

Dataword

OABC

2345

3. USASCII text of one or two characters. A 2-character

string fills a word. A single character is placed in the

right byte of a word and zeros are placed in the left

byte. If a character string contains more than two

characters, an error is noted and the last two characters

are entered in the data word.

4. A symbol. The value of the symbol becomes the data
entry.

When K=2, double precision fixed point data; single

precision floating point data; hexadecimal values of up to

PROGRAMMER

PROGRAM

LOCATION OPERATION VARIABLE
123456 7 8 9 10 1112 13 14 15 20 25

* J: 'tl IA ~ PlE ~ F io c Ips E U io 9J- QJ PE
E)(It "c 1.5 3 " -z 2 , 1 '9$ 1 23
E)(2 D C,2 l!i S ~, -2 f, 1, $1 tl3
ie ~ 3 DC $f4 2~
S h" ~ .~ rr E ~U~ i-l
IE)(~ D~ ,'l ,5 iTlA I~IT , , '3. '14 Ie l!i

E ~Ic

I I I

tt

eight digits and character strings of up to four characters

may be used.

When K=4, double precision floating point data; hexa

decimal values of up to sixteen digits and character strings

of up to eight characters are allowed.

Examples of the DC pseudo-operation follow.

Note that in the example listing, there is an error code

"c" to the left of each incorrectly converted line. In Ex. 1,

$ 12345 is incorrect because it takes more than a single

word to convert it. In Ex. 3, $42R is incorrect because 'R'

is not a legitimate hexadecimal character.

I DATE

132
COMMENTS

35 40 45 50 55

1RWI ~ N H-i4 ' S C't!) IS' 1

f4~ tl' L'E c' l
T
I

,3 .11 ~
I

r
ct I I I

I I I
I
I
I
I I
T
I
I
T
I
1
I
T

I
T

I
3-7

PTR - Address Pointer

LOCATION OPERATION VARIABLE

normal PTR exp

This pseudo-operation gives the programmer the capa

bility to generate a single word of data. Although there is

no restriction to the type of single-word data that can be

generated, it is recommended that the use of the PTR

pseudo-operation be limited to generating address or

indirect address words.

TXT - CHARACTER String

LOCATION OPERATION VARIABLE

normal TXT, MM Character String

This pseudo-operation enables the user to assemble a

character string for use as data.

The character string is a USASCII text string as

described in Section 2. The character string is assembled in

binary-coded form, two characters per word. A blank is

inserted as the second character of the last word if the

number of characters is odd. The string can contain up to

58 ASCII characters per source statement and starts after

one blank character following MM.

Example of TXT pseudo-operation:

TXT, 11 VALUE OF XX

Generates 6 words as follows:

V A

L U

E

0 F

X

X

The pseudo-operation mnemonic (TXT), the subfield

delimiter (comma), and the character count (MM) must be

wholly contained within the operation field. Blanks within

this field result in a misinterpretation of the statement and

3-8 improper object code is generated.

LISTING CONTROLLING PSEUDO-OPERATIONS

The following paragraphs describe those pseudo

operations provided in the LEAP language to give the pro

grammer control over the documentation of a program.

None of the pseudo-operations in this section have any

effect on the object code produced by LEAP. The pseudo

operations described in this section are:

EJECT - Skip to the top of the next page*

LIST - List during Pass 2

NLiST - Don't list during Pass 2

SPACE - Space N lines before resuming listing*

TITLE - Heading to be printed at top of page*

LSTSY - List symbol table in alphabetical order

*These pseudo-operations are not listed unless the pseudo

operation is stated.

EJECT - Skip To The Top Of The Next Page

LOCATION OPERATION VARIABLE

normal EJECT ignored

This pseudo-operation gives the programmer the capa

bility to specify to LEAP that a new page of printed output

should be started before resuming the program listing.

When LEAP encounters an EJECT pseudo-operation,

the following action takes place:

1. The paper in the listing output device is spaced to the

start of the next page.

2. The heading (if any) and page number are printed at the

top of the page.

3. The paper is spaced down four lines.

4. The listing resumes.

LIST - List During Pass 2

LOCATION OPERATION VARIABLE

normal LIST ignored

This pseudo-operation gives the programmer the capa

bility to specify to LEAP that the program listing should be

listed on the listing device during pass 2. The LIST pseudo

operation is printed on the listing.

When the LIST pseudo-operation is in effect, all

skipped codes are listed (see SKIPF and SKIPT).

The program listing will continue to be produced until

the NLiST pseudo-operation is encountered. If neither the

LIST nor NLiST pseudo-operations are encountered, LEAP

lists the program on the listing device (see Appendix C).

NLiST - Don't List During Pass 2

LOCATION OPERATION VARIABLE

normal NLiST ignored

This pseudo-operation gives the programmer the capa

bility to specify to LEAP that the program listing should

not be listed on the listing device (during pass 2). The

NLiST pseudo-operation is printed on the listing.

The program listing will continue to be inhibited until a

LIST pseudo-operation is encountered.

SPACE - Space n Lines Before Resuming Listing

LOCATION OPERATION VARIABLE

normal SPACE expression

This pseudo-operation gives the programmer the capa

bility to specify to LEAP that the number of lines specified

by the expression in the VARIABLE field should be spaced

up before resuming the program listing. The SPACE

pseudo-operation is not printed on the listing unless the

LIST pseudo-operation is in effect.

The expression in the VARIABLE field must be abso

lute. If the expression is not absolute, the error code "E" is

printed on the listing, along with the SPACE

pseudo-operation.

If the listing has been inhibited (NLISTI. the SPACE

pseudo-operation has no effect.

If the value of the expression in the VARIABLE field is

large enough to cause spacing beyond the bottom of the

current page, spacing is terminated, the action described for

the EJECT pseudo-operation is taken, and listing resumes in

the normal manner.

TITLE - Heading to be Printed at top of Page

LOCATION OPERATION VARIABLE

normal TITLE 'character string'

This pseudo-operation gives the programmer the capa

bil ity to specify a heading to be printed on the program

listing. The TITLE pseudo-operation is not printed on the

listing unless the LIST pseudo-operation is in effect.

When LEAP encounters a TITLE pseudo-operation, the

following action takes place:

1. All of the characters in the character string are placed in

the heading buffer.

2. The action described for the EJECT pseudo-operation

takes place.

The contents of the heading buffer continues to be

printed on each page until another TITLE pseudo-operation

is encountered.

If printing is inhibited (NLIST pseudo-operation), print

ing does not occur, but the characters in the character

string is still placed in the heading buffer.

If no TITLE pseudo-operation is encountered in the

source program, the contents of the heading buffer

encompass all spaces.

LSTSY - List Symbol Table

LOCATION OPERATION VARIABLE

normal LSTSY ignored

This pseudo-operation gives the programmer the capa

bility to specify to LEAP that the assembly symbol table

should be listed on the listing device (after pass 2) in alpha

betical order. The LSTSY pseudo-operation is printed on

the listing.

When LEAP encounters a LSTSY pseudo-operation, the

following action takes place:

1. The line in which the LSTSY pseudo-operation appears

is printed on the listing (subject to NLiST and LIST

pseudo-operations).

3-9

3-10

2. An internal flag is set to denote that the LSTSY

pseudo-operation is encountered.

3. When the END pseudo-operation is encountered, the

Symbol (name or label) table is printed in alphabetical

order along with the value of each of the symbols.

EXTERNAL REFERENCE PSEUDO-OPERATIONS

It is desirable to segment programs to decrease the size

of source programs. When this is done, it is usually neces

sary to reference elements that are in another segment from

the one being assembled. The pseudo-operations described

in this section make it possible for the programmer to con

veniently do this.

There are two pseudo-operations provided in the LEAP

language for external reference and definition. If either (or

both) of these pseudo-operations are used in a source pro

gram, the Extended Loader must be used to load the object

code produced by the assembly process. The two

pseudo-operations are:

EXTRN - EXTERNAL SYMBOL (DEFINED OUT

SIDE THIS PROGRAM) REFERENCE

ENTRY - EXTERNAL SYMBOL DEFINITION

EXTRN - External Symbol

LOCATION OPERATION VARIABLE

normal EXTRN symbol, symbol,

•.. ,symbol

This pseudo-operation gives the programmer the capa

bility to specify to LEAP that the symbol (s) listed in the

VARIABLE field are external symbols (not defined within

the program). Programs which reference external symbols

must be loaded by the Extended Loader.

There must be at least one symbol in the VARIABLE

field; there can be as many as 7 symbols (separated with

commas) in the VARIABLE field. If no symbol is

encountered in the VARIABLE field, the error code "V" is

printed on the listing.

The most common use for the EXTRN pseudo

operation is to specify the names of subroutines referenced

within a program, but are assembled separately. The

EXTRN pseudo-operation causes the proper codes to be

produced in the object code so that the Extended Loader is

able to complete linkages to subroutines.

Although the use of the EXTRN pseudo-operation is

primarily associated with subroutine reference, it is not

restricted to this. It is often desirable to reference an ele

ment or group of elements (array) that is external to the

program. This can also be done by using the EXTRN

pseudo-operati on.

Symbols in the VARIABLE field of an EXTRN state

ment may not appear as statement names in the same

program as the EXTRN statement itself. These will be

flagged with an error code E. The statement with the name

which appears in the EXTRN statement VARIABLE field is

flagged with an error code S.

ENTRY - External Symbol Definition

LOCATION OPERATION VARIABLE

normal ENTRY symbol, symbol,

...•. ,symbol

This pseudo-operation gives the programmer the capa

bility to specify to LEAP that the symbols appearing in the

VARIABLE field may be referenced externally (by other

programs).

There must be at least one symbol and, there can be as

many as 7 symbols (separated with commas) in the

VARIABLE field. If no symbol appears in the VARIABLE

field, the error code "V" is printed on the listing.

The example below is a subroutine that refers to

another subroutine; therefore, both the ENTRY and

EXTRN pseudo-operations are used.

The subroutine is referenced externally as COSINE.

Since the subroutine is "calling" another subroutine which

PROGRAMMER

PROGRAM

LOCATION OPERATION VARIABLE
123456 7 8 9 10 11 12 13 i4lS 20 25 , _I •• 1. NI,J\. L Ie tl~IN III Lie lCiAll t: tC 1'1

*~ JR.~
eJ C.la! isiI IN I

-' -
~ 1=: , e~1 - ! T--.

: Slrl Tf "liP
I JM :! ~I N~ i

,

L
, ,

L!D~! liE MP I
I I J1M~1 I I Ie I I

t-- - _.'
I ellh" ~'~ ~I Me ! I -

TE M/P ~ i , I
f- 1 ! E)N]ol I J ,

I I I; I i I It i J. .L1 . ..! ; I I, ' .L_L_-,_ ,_ '-...i....LJ-1.

STORAGE ALLOCATING PSEUDO-OPERATIONS

When it is necessary to reserve an area of one or more

words for temporary or calculated values, LEAP provides

the capability of specifying that area (of any size) with just

one source statement. This prevents forcing the pro

grammer to write a line of code for each word that is to be

reserved. Three pseudo-operations are described in the

following paragraphs:

CLEAR - CLEAR AND RESERVE AN AREA

COMN - RESERVE AN AREA IN COMMON

OS - RESERVE A DATA STORAGE AREA

CLEAR - Clear and Reserve an Area

LOCATION OPERATION VARIABLE

normal CLEAR expression

This pseudo-operation gives the programmer the capa

bility to specify to LEAP that an area of memory should be

reserved and cleared (set to zeros) at load ti me. The

CLEAR pseudo-operation is basically the same as the OS

1

is external, the EXTRN pseudo-operation is used to define

the external subroutine. If the EXTRN pseudo-operation is

excluded, the reference to SINE would have the error code

"U" printed on the listing (the symbol would have been

undefined).

L2
COMMENTS

35 40 45 !)O 55

I L I I --
! ! . ,...-1-1 ill +-l+ !
! !

,...~

I I

,

I

I-I i !

I I

I
I
I I
I
I i _. -~

pseudo-operation, except that the reserved area is cleared

(the OS pseudo-operation does not clear the reserved area).

If a symbol is encountered in the LOCATION field, the

value of the symbol will be the location of the first word of

the area to be reserved and cleared. References to the other

words in the area must be relative to the first word.

The value of the expression in the VARIABLE field is

the number of words to be reserved and cleared. The value

of the expression must be absolute, and any symbols used

in the expression must have been previously defined (no

forward reference). If the value of the expression is not

absolute, or if a symbol is used that has not been previously

defined, the error code "P" will be printed on the listing

with the line. Also, if nothing is entered for the expression,

the error code "V" will be printed.

When LEAP encounters a CLEAR pseudo-operation,

the following actions take place:

1. If there is a symbol in the LOCATION field, the symbol

will be assigned the mode and value of the LOCATION

counter.

2. The expression in the VARIABLE field will be

evaluated.

3. The value of the expression in the VARIABLE field will

be added to the LOCATION counter. 3-11

3-12

4. Object code is produced to specify to the Extended

Loader the number of words that should be cleared at

load time.

COMN - R,serve an Area in COMMON

LOCATION OPERATION VARIABLE

normal COMN expression

This pseudo-operation gives the programmer the capa

bility to specify to LEAP that an area of memory should be

reserved in the COMMON area.

If a symbol is encountered in the LOCATION field, the

value of the symbol will be the location of the

(numerically) first word of the area to be reserved.

References to the other words in the area must be defined

symbolically.

The value of the expression in the VARIABlE field is

the number of words to be reserved. The value of the

expression must be absolute, and any symbols used in the

expression must have been previously defined (no forward

reference). If the value of the expression is not absolute, or

if a symbol is used that has not been previously defined, the

error code "P" will be printed on the listing with the line.

Also, if nothing is entered for the expression, the error code

"V" will be. printed.

When LEAP encounters a COMN pseudo-operation, the

following action takes place:

1. If there is a symbol in the LOCATION field, it will be

assigned the current value of the COMMON counter

(the COMMON counter is initialized to zero at the start

of an assembly).

2. The expression in the VARIABLE field will be

evaluated and the resultant value will be added to the

COMMON counter.

The Extended Loader assigns the external location of

COMMON in memory at load time. The value assigned to

the symbol in the LOCATION field of a COMN pseudo

operation is actually the value of the offset from the start

of COMMON.

os - Reserve Data Storage Area

LOCATION OPERATION VARIABLE

normal OS[,KJ expression

This pseudo-operation gives the programmer the capa

bility to specify to LEAP that an area of memory should be

reserved at load time. The OS pseudo-operation is the same

as the CLEAR pseudo-operation, except that the reserved

area is not cleared.

If a symbol is encountered in the LOCATION field, the

value of the symbol will be the location of the first word of

the area to be reserved. References to the other words in

the area must be relative to the first word.

The optional OPERATION sub-field LKJ is the field

size (in words) that will be generated for the expression in

the VARIABLE field and may be a evaluatable absolute

expression (no forward or external references) that results

in an integer in the range 1:::;K~4. If K is not specified, it

will be assumed as 1 (default condition). If K is not within

the limits of from 1 to 4, the error code 0 will be printed

on the listil'lg on the line with the source statement and K

will be assumed to be 1.

The value of the expression in the VARIABLE field is

the number of fields to be reserved. The value of the

expression must be absolute, and any symbols used in the

expression must have been previously defined (no forward

reference). If the value of the expression is not absolute, or

if a symbol is used that has not been previously defined, the

error code "P" will be printed on the listing with the line.

Also, if nothing is entered for the expression, the error code

"P" will be printed.

When LEAP encounters a OS pseudo-operation, the

following actions take place:

1. If there is a symbol in the LOCATI ON field, the symbol

will be assigned the mode and value of the LOCATION

counter.

2. The value of K will be recorded.

3. The expression in the VARIABLE field will be evalu

ated.

4. The value of the expression in the VARIABLE field will

be multiplied by K and added to the LOCATION

counter.

In this example, the following action takes place:

1. Initial values:

A) LOCATION counter set to zero

B) COMMON counter set to zero

C) relocatable mode set

D) the object is defined as extended format.

2. The first line defines E as relocatable 0 (default condi

tion is relocatable)

3. The second line sets the LOCATION counter to 07DO

(hex), absolute

4. The symbol A is assigned the absolute mode with a

value of 07DO (hex)

5. The LOCATION counter is increased to 0834 (hex) and

object code is produced to tell the extended loader to

clear from 07DO to 0833 (hex)

6. The symbol B is assigned the absolute mode with a

value of 0834 (hex)

7. The LOCATION counter is increased to 0898 (hex)

8. The symbol C is assigned the absolute mode with a

value of 0897 (hex)

9. The LOCATION counter is set to relocatable 0

10. The symbol D is assigned the relocatable mode with a

value of 0000

11. The LOCATION counter is increased to 0032 (hex)

12. The symbol TEMPl is assigned the value of the

COMMON counter (0000)

13. The COMMON counter is increased to 0001 (hex)

14. The symbol TEMP2 is assigned the value of the

COMMON counter (0001)

15. The COMMON counter is increased to OOOB (hex)

16. The symbol TEMP3 is assigned the value of the

COMMON counter (OOOB)

··1
i

" .
COP",1rv1fNTS

SYMBOL DEFINING PSEUDO-OPERATIONS

The pseudo-operations described in this section make it

possible for the programmer to assign values (and mode) to

symbols without necessarily relying on the value of the

LOCATION counter. The pseudo-operations discussed are:

EQU - SYMBOL EQUALS VALUE AND MODE OF

EXPRESSION

EQUR - SYMBOL EQUALS VALUE OF EXPRESSION,

RELOCATABLE MODE

REDEF - REDEFINE SYMBOL

eau - Symbol Equals Value and Type of Expression

LOCATION OPERATION VARIABLE

symbol EQU expression

This pseudo-operation gives the programmer the capa

bility to specify to LEAP that the symbol appearing in the

LOCATION field is to be assigned the value and mode of

the expression in the VARIABLE field.

If a symbol is not entered in the LOCATION field, the

error code "S" is printed on 'the listing. If no expression is

entered (left blank), the error code "V" is printed on the

listing. Any symbols used in the VARIABLE field must be

previously defined; if not, the error code "P" wi" be

printed on the listing. 3-13

3-14

EQUR - Symbol Equals Value of Expression, Relocatable

Mode

LOCATION OPERATION VARIABLE

symbol EOUR expression

This pseudo-operation gives the programmer the capa

bility to specify to LEAP that the symbol appearing in the

LOCATION field is to be assigned the value of the expres

sion in the VARIABLE field, but that the mode assignment

is relocatable.

If a symbol is not entered inthe LOCATION field, the

error code "S" is printed on the listing. If no expression is

entered (left blank), the error code "V" is printed on the

listing. Any symbols used in the VARIABLE field must be

previously defined; if not, the error code "p" will be

printed on the listing.

REDEF - Redefine Symbol

LOCATION OPERATION VARIABLE

normal REDEF Symbol,

expression

The REDEF pseudo-operation, like EOU, enables the

user to define a symbol by assigning it the value and mode

of the expression in VARIABLE field.

The REDEF pseudo-operation differs from the EOU

pseudo-operation in that any symbol defined by a REDEF

is redefined later by means of a subsequent REDEF.

If a symbol defined via a REDEF pseudo-operation is

redefined but the user writes an EOU instead of a new

REDEF pseudo-operation, LEAP prints an "M" error code

and retains the earlier definition.

If symbol is not entered in the VAR IABLE field, the

error code "S" is printed on the listing. If no expression is

entered (left blank), the error code "V" is printed on the

listing. Any symbols used in the variable field must be

previously defined; if not, the error code "P" will be

printed on the listing.

MISCELLANEOUS PSEUDO-OPERATIONS

The pseudo-operations discussed in the section are:

SETB - SET THE LOADING B FLIP-FLOP

RESB - RESET THE LOADING B FLIP-FLOP

PRINT - PRINT DURING PASS 1

SETB - Set the Loading B Flip-Flop

LOCATION OPERATION VARIABLE

normal SETB ignored

The SETB pseudo-operation enables the programmer to

specify to LEAP that the status of the B fl i p-flop is a

"one".

1. SETB generates type code 10 (see Section 5), which is a •

directive to the Extended Loader indicating that auto

matic depaging should be through the fixed base page

(location 512W·1 02310).

2. If LEAP is assembling object code in bootstrap format,

SETB is used to specify to LEAP that the correct base

page of the program is page 1 (locations

51210-102310)' Any memory reference instruction

must reference a location either in the local page or to

page one. Otherwise, the error code "B" appears on the

listed source line.

If neither SETB nor RESB appears at the beginning of

the program, LEAP assumes that the B flip-flop is a "1"

(initial or default condition).

The extended loader's B flip-flop can also be set via the

SEX machine instruction. This instruction acts as a pseudo

operati on also, and generates a type code 10 on the object •

tape or control error detection.

RESB - Reset the Loading B Flip-Flop

LOCATION OPERATION VARIABLE

normal RESB ignored

The RESB instruction enables the programmer to

specify to LEAP that the status of the B flip-flop is a

• 1. RESB generates type code 11 (see Section 5) which is a

directive to the Extended Loader indicating that auto

matic depaging should be through the floating base page

(refer to MAC 16 Programmer's Manual).

2. If LEAP is assembling object code in bootstrap format,

RESB is used to specify to LEAP that the correct base

page of the program is relative to the current LOCA

TION Counter value (refer to page control in the MAC

16 Programmer's Manual). Any memory reference

instruction must reference a location either in the local

page or to the correct floating base page. Otherwise, the

error code "B" will appear on the listed source line. If

neither SETB nor RESB appear at the beginning of the

program, LEAP will assume that the B flip-flop is a "1"

(initial or default condition).

The extended loader's B flip-flop can also be reset via

the REX machine instruction. This instruction acts as a

• pseudo-operation also, and it generates a type code 11 on

the object tape.

PRINT - PRINT During Pass 1

LOCATION OPERATION VARIABLE

normal PRINT 'character string'

This pseudo-operation gives the programmer the capa

bility to have the remarks specified by the USACII

character string printed on the systems teleprinter during

pass 1. No object code is generated by the PR I NT

pseudo-operation.

The characters in the character string of the source line

are printed on the teleprinter as they are; no scan takes

place. Assembling continues with the next source line in the

normal manner.

MACRO Definition

A macro is a group of one or more statements inserted

whenever a corresponding macro reference or call occurs.

Macros are, in a sense, analogous to subroutines which can

be called by a reference or calling statement. Like a sub

routine, a macro has a name by which it is called. Macros

are generally used as an aid for programming in-line

standard functions in which the sequence of operations

(instructions) does not vary, but the expressions in the

VARIABLE fields (parameters) do. This is illustrated in

Example 1 which defines a double precision, fixed point

add. (The contents of location 0 and 0+1 are added to the

contents of location E and E+1. The result is stored in

locations F and F+1. HALT is the location of the overflow

error routine.)

A macro definition must precede its first calling state

ment. A macro is defined when LEAP encounters the

special character # in the first column of a location field.

This is the macro header. All statements within the macro

definition are called model statements and, except for the

last statement are terminated with the special continuation

character (;). The collection of model statements for a

macro comprise the "macro skeleton". The last statement

signals the end of the macro skeleton (by failing to have the

continuation character).

Parameters

The parameters of a macro are the operands of the

reference or calling statement. Within a macro definition,

the parameters are represented by the special character

pound sign (#) followed by either a number or an asterisk

followed by a number e.g. #2 or #*2. Since macros are posi

tional rather than key-word, #1 refers to the first parameter

on the reference statement, #2 refers to the second param

eter on the reference statement, etc. #* 1 refers to the

indirect attribute associated with the first parameter on the

reference statement, #*2 refers to the indirect attribute

associated with the second parameter on the reference

statement, etc. In a model statement, a reference to a

parameter may be written anywhere an item of an expres

sion can be written. However, parameter references are

meaningful only within the VARIABLE or OPERAND field

of the model statement.

The values of the parameters will normally be different

each time the macro is called or referenced. Macro defini

tions and references need not agree in number of param

eters. However, parameters not defined on the reference

line will have the value zero. The error code "A" will

appear on the listing if no parameters appear on the

reference line.

A macro is referenced or called by writing the name of

the macro in the OPERATION field of a statement. The

VARIABLE field of the calling statement will contain the 3-15

3-16

parameters to the macro. If more than one parameter is to

be supplied to the macro, the parameters are written one

after the other, separated by commas. The last parameter is

not followed with a comma. The maximum number of

parameters capable of being passed to the macro is seven.

Parameter substitution is positional rather than key

word, i.e., the first parameter is equated to (#1) in the

macro expansion, the second parameter is equated to ';;2',
etc. Other symbols besides those used as parameters in

macro calls may also be included in macro definitions. In

addition, the reserved symbols C,V,R,S,B, and H may be

used in a macro as in example 1, where C and V are used.

VARIABLE

In this example, argument substitutions are made. When

the macro name DADD is encountered in the OPERATION

field, the object code corresponding to the following source

lines is inserted in its place:

REX C,V

LDA D+ 1

ADD E+1

STA

LDA

ADC

ADD

STA

SNV

JMP

F+1

D

E

F

HALT

If the following code had been written, using the above macro definition:

The JMP' *+2 instruction would cause a jump to the

second word of the macro definition, not the source line

following the DADO operation. For this reason, it is recom

mended that relative notation not be used preceding macro

calls, especially, if the programmer has macro definitions

thilt generate more than one instruction.

This macro uses SKIPT and SKIPF. When the MOVE

macro is called by:

MOVE 1, ALPHA, BETA

the following coding is generated:

LOA ALPHA

STA BETA

When the MOVE MACRO IS CALLED BY;

MOVE 5, ALPHA, BETA

the following coding is generated:

LOX =5

LOA

STA

DNX

JMP

ALPHA,l

BETA,l

* -3

~·····l'-~"::-::.-~-:-·=··-:·--~ '- .. ,. ---"'-"'"' --_._ ..• __ ., ... _._-_._ _-..... ---
~ 1. d(~;A T!~)f\~.. V . .6.R !ABLE
~ J ,!;

~,..~ .. { '""'"')

il'i :
tw.! r~!
~ ,

~~
:Jj
~
~.

~;'! ; r' '-'-;'-1--1--

;#:~:0~i I
,'·~I ~ ~ t---F
~ l ~ ;
;
.'- .'

3-17

3-18

Example 3 illustrates a technique of microcoding the

MAC 16 through LEAP. When LEAP encounters "TAL14"

in the OPE RATION field of a source line, it generates

object code of type 1 (see Section 5) consisting of 0589.

PROGRAMMER

PROGRAM

LOCATiON VARIABLE

This particular instruction could have been generated by

"TAL9". The purpose of generating the new operation

code is for ease in documentation. This particular

instruction will logically OR the contents of the A register

into register L 1 and L4.

DATE

COMMENE
35 40 45

Chapter 4

This section contains information on the assembly

process performed by LEAP when the mnemon ic for a

MAC 16 instruction is encountered in the OPERATION

field. The process performed by LEAP varies with the type

of instruction encountered. The six classifications of MAC

16 instructions are:

CLASS 0: 16 BIT, UNMODIFIED

No entry is allowed in the VARIABLE field on this

class of instructions. If any entry is encountered, the error

code "v" is printed on the listing. The following instruc

tions are in Class 0:

ABA - Absolute Value of A

ADC - Add Carry to A

CLA - Clear A

HL T - Halt

JMA - Jump Direct Thru A

LSB - Load A (0-5) with status of C,V,R,S,B and H

NOP - No Operation

ONA - One's Complement of A

SSB - Store A 0-5 into status bits C,V,R ,S,B and H

TLA - Transfer Level to A

TSA - Transfer Switches to A

TWA - Two's Complement of A

XXA - Exchange I ndex and A

MPY - Multiply A

DIV - Divide A

CLASS 1: MEMORY REFERENCE

This class of instructions is the only class that allows

indirect addressing and indexing. The first subfield in the

VARIABLE field is evaluated and a 16-bit address is pro

duced, if in the extended format; if in the bootstrap for

mat, the address is checked for reference outside the

Assembling
MAC 16
Instructions

current page or the base page. I n the bootstrap format, any

reference outside the current page causes the error code

"B" to be printed on the listing.

The address subfield is terminated with either a blank

character or a comma (,). If a comma is encountered, the

next subfield is evaluated for indexing. The value of the

index subfield is treated modulo 1. If nothing is entered in

the address subfield, the error code "A" is printed on the

listing.

The following instructions are in Class 1:

ADD - Add Memory to A

ANA - AND memory with A

CAA - Compare A with Memory Arithmetically

INC - Increment Memory and Skip if Zero

JMM - Jump and Mark

JMP - Jump

JRL - Jump and Reset Level

LDA - Load A from Memory

LDX - Load I ndex from Memory

ORA - OR from Memory to A

ST A - Store A in Memory

STL - Store Left Byte of A in Memory

STR - Store Right Byte of A in Memory

STX - Store I ndex in Memory

SUB - Subtract Memory from A

CLASS 2: I/O INSTRUCTIONS

This class of instructions requires a subfield for both

the M and N fields. If either the M or N subfield is omitted,

the error code "v" will be printed on the listing. Values in

either subfield are evaluated modulo 16. If either of the

values is too large (more than 4 bits), the error code "F" is

printed on the listing. The M subfield is equivalent to the

address subfield of a memory reference instruction, and the

N subfield is equivalent to the index subfield. 4-1

The following instructions are in Class 2:

EAI - External Address In

ECO - External Command Out

EDI - External Data In

EDO - External Data Out

ESI - External Status In

CLASS 3: SKIP INSTRUCTIONS

This class requires an entry in the VARIABLE field. If

nothing is encountered. the error code "V" is printed on

the listing. The VARIABLE field is evaluated in the follow

ing manner:

1. If the value in the VARIABLE field is in the range of 0

to 15 inclusive and the mode is absolute, the value is

inserted directly into the N field of the instruction.

2. If the value in the VARIABLE field is greater than 15

or the mode is relocatable, it is assumed to be a mem

ory address. LEAP computes the N value required to

skip to the specified memory location (forward only).

If the resulting value is larger than 4 bits, the error code

"F" is printed on the listing; the value is truncated to 4

bits and inserted into the instruction's N field.

The following instructions are in Class 3:

SAG - Skip if A is Greater than Zero

SAN - Skip if A is Negative

SAZ - Skip if A is Zero

SKN - Skip if A is Normalized

SKP - Skip Unconditional

S KX - Skip if I ndex is Zero

SLZ - Skip if Least-Significant Bit of A is Zero

SNB - Skip if Base Page Control is Zero

SNC - Skip if C is Zero

SNH - Skip in Interrupt Not Inhibited

SNV - Skip if V is Zero

SNR - Skip if R is Zero

SNS - Skip if S is Zero

CLASS 4: N FI ELD

This class requires an entry in the VARIABLE field. If

nothing is encountered, the error code "V" is printed on

the listing. The VARIABLE field is evaluated modulo 16; if

the value is greater than 15 (more than 4 bits), the error

code "F" is printed on the listing. The following instruc

tions are in Class 4:

ALI - Arithmetic Left Shift & Insert

4-2 ALS - Arithmetic Left Shift

ARI - Arithmetic Right Shift & Insert

ARS - Arithmetic Right Shift

DNX - Decrement Index and Skip on Zero

INX - Increment Index and Skip on Zero

JIX - Jump Indirect Thru Index

JMX - Jump Direct Thru Index

LAX - Load A Direct from Memory Location Specified by

Index

LI X - Load A I ndirect from Memory Location Specified

by Index

LLC - Logical Left Shift, Closed

LLI - Logical Left Shift & Insert

LLN - Logical Left Shift, No Change to C

LLO - Logical Left Shift, Open

LRC - Logical Right Shift, Closed

LR I - Logical Right Shift & Insert

LRN - Logical Right Shift, No Change to C

LRO - Logical Right Shift, Open

SAX - Store A in Location Specified by Index

SIX - Store A Indirect thru Location Specified by Index

TAL - Transfer A to L Register

CLASS 5: IMMEDIATES

This class of instructions requires an entry in the

VARIABLE field. If nothing is encountered, the error code

"V" is printed on the listing. The VARIABLE field is

evaluated modulo 256; if the value is greater than 255

(more than 8 bits), the error code "F" is printed on the

listing.

The following instructions are in Class 5:

ADI - Add I mmediate to A

LDI - Load A Immediate

SBI - Subtract Immediate from A

CLASS 6: STATUS MODIFIERS

This class of instructions requires an entry in the VAR 1-

ABLE field. If nothing is encountered, the error code "V"

is printed on the listing. The VARIABLE field is evaluated

modulo 64; if the value is greater than 63 (more than 6

bits), the error code "F" is printed on the listing.

The following instructions are in Class 6:

SEX - Set Sense Indicator

REX - Reset Sense Indicator

For these instructions, the indicators may be repre

sented by any combination of the reserved symbols

C,V,R,S,B and H. When writing the indicators on a coding

sheet, they are separated by commas (,).

Chapter 5

SOURCE PROGRAM PREPARATION

If cards are not used for the source program, prepare a

paper tape according to the following instructions:

Preamble-Start-Of-File

The preamble character ($81) must be used. It is

formed (on TTY) by simultaneously depressing the CTRL

and A keys.

Card Images

Each image is ended by a carriage-return, line-feed. (See

page 2-1.)

End-Of-File

Each program must be terminated by an END record

generated by typing the symbol END preceded by one or

more spaces and followed by a RETURN and LINE FEED.

ASSEMBLY LISTING FORMAT

This section describes the format of the program listing

that is part of the LEAP output during pass 2. The format

is discussed in terms of a line printer record with 108

character-positions, plus a carriage control character. LEAP

prosents a 56-word image to the listing output routine. It" is

leil to the output routine to format the image for the

appropriate device; if the output device is the systems tele

printer the teleprinter output routine truncates the image

to a 72-character image, plus the carriage-control character.

Input/Output

Page Format

This listing is printed on continuous form paper. If the

teleprinter is being used, the output routine keeps a line

count so that spacing is in 11 inch increments. The follow

ing are the specifications for the page format. There are a

total of 66 lines on an l1-inch page (6 lines per inch).

LINES CONTENTS

1-6 Blank

7

8-11

12-60

61-66

Page Heading (generated by TITLE pseudo-op)

Blank

Listing (line formats described below).

Blank

Line Format

The first word of the 109-character image contains a

single character (in USASCII code) which is used by the

output routine for controlling the spacing of paper in the

listing device. The characters have the following meanings

(USASII Standard).

CHARACTER MEANING

blank

o

+

single space before printing.

double space before printing.

advance to next page, then print.

no space (the default condition).

The remaining 54 words of the 55-word image contains

the 108 characters to be printed. The characters are packed

two per word and are in USASCII code.

The following lists the format of the listing line.

PRINT

POSITIONS CONTENTS

1-4

5

Error codes (maximum of four), if less than

four, the codes are left-justified in the field.

Blank

5-1

•

5-2

PRINT

POSITIONS CONTENTS

6-9 Four hexadecimal digits, reserved for

printing the contents of the Location Counter.

Type 2 - Memory Reference Instruction

PRINT

POSITIONS CONTENTS

13 The hexadecimal operation code.

The Location Counter is not printed on 14 A hexadecimal digit representing the

status of X, I, and P bits. comments lines, all-blank lines, or the Type 6&7

value codes (see below). 15 Blank

10

11

Blank 16-19 The 4 hexadecimal digits representing the

16-bit address value of the instruction.

12

13-19

20-23

24-27

28

29-108

One alphabetic character that depends on the

mode of the operand:

A - absolute

R - relocatable

E - external

C- common

Blank

The object code; there are five different

formats within this field, depending on the

value code (see below).

Blank

A decimal number that is the identification

of the source line assigned by LEAP. LEAP

increases the line number by one for each

source statement encountered. The first

statement is 0001, the second is 0002, etc.

This number is used for reference when

performing a source program edit with the

EDIT program.

Blank

The 80-character source statement.

Value Formats (Positions 13-21)

The format of the value is dependent on the type of the

value. The following are the various type codes and the

format associated with the code (Appendices B & C give the

type codes for all operations).

Type 1 - 16-bit value

PRINT

POSITIONS CONTENTS

13-16

17-19

Four hexadecimal digits, representing the

16-bit value.

Blank

Type 3 - Input/Output Instructions

PRINT

POSITIONS CONTENTS

13-14

15

16

17

18

The two hexadecimal digits representing the

operation code.

Blank

The hexadecimal digit representing the

M field

Blank

The hexadecimal digit representing the

N field

Type 4 - Instructions With N Field

PRINT

POSITIONS CONTENTS

13-15 The three hexadecimal digits representing the

operation code.

16

17

Blank

The hexadecimal digit representing the

N field

Type 5 - Immediate Instructions

PRINT

POSITIONS CONTENTS

13-14 The two hexadecimal digits representing the

operation code.

15 Blank

16-17 The two hexadecimal digits representing the

immediate value.

Type 6 - No Value

PRINT

POSITIONS CONTENTS

5-21 Blank

Type 7 - No Location

PRINT

POSITIONS CONTENTS

13-16 Four hexadecimal digits.

OBJECT CODE

In the discussion that follows, no reference is made to a

specific input/output medium. The output device used for

producing object code during assembly is of no real concern

to LEAP. Section 5 discusses the method used by LEAP to

interface with the outside world. The object code is given

to the appropriate output routine in a standard format; it is

the responsibil ity of the output routine to prepare the code

for the device being driven by the routine. In the same way,

the input routine for the loader presents the object code to

the loader in a standard format. This section is concerned

only with the standard format of the object code.

Two object code formats are produced by LEAP: the

bootstrap format and the extended format.

Bootstrap Format

The bootstrap format is absolute and has no capability

for automatic de-paging. The Bootstrap Loader is normally

used for loading this format. The format of the information

produced is (all words are 16-bit words):

First Word

The first word is the 16-bit starting address for loading

the record that follows.

Second Word

The second word is in two forms:

If the sign bit (bit 0) is a one, the remainder of the

word is ignored and the first word is taken as the starting

location for the program. T he Bootstrap Loader transfers

control to this location and execution continues from

there.

If the sign bit (bit 0) is a zero, the remaining 15 bits

give the count of the number of words in the record. The

count does not include the first word, second word, or

checksum word.

Program

The second word is followed by the number of words

specified by the second word.

Checksum

The checksum word follows every record.

Extended Format

The extended format is loaded only by the Extended

Loader. If external references are made, the Extended

Loader is used to handle all external references and

definitions.

The object code produced in the extended format is a

series of byte-strings of variable length. The first byte of

every string is the type code that gives information about

the remainder of the string.

The following is a discussion of the hexadecimal type I
codes produced by LEAP and recognized by the Extended

Loader:

Type Code 3: 16-Bit COMMON Reference String:

3,N,WORD 1,WORD2,··WORDN
N = The number of 16-bit words in the string

(1:5N?:255) WORD 1 through WORD N are the 16-bit

words to be stored. Prior to storing, the relocation factor is

added to the words. The LOCATION counter is increased

by one for each word stored.

Type Code 2: 16-Bit Value, Positive Relocation String:

2,N,WORD 1, WORD 2, ... , WORD N

N = The number of 16-bit words in the string (1:5 N?:255)

WORD 1 through WORD N are the 16-bit words to be

stored. Prior to storing, the relocation factor is added to the

words. The LOCATION counter is increased by one for

each word stored.

Type Code 3: 16-Bit COMMON Reference String:

3, N, WORD 1, WORD2, •.•••••• WORDN •

WORD = The 16-bit number representing offset from

the start of COMMON.

Type Code 4: 16-Bit, External Reference String:

4,N,BYTE 1, BYTE 2, ... , BYTE N,

N = The number of 8-bit bytes used for the external

name (0:5N?:6) If N = 0, the reference is to unlabelled

COMMON and no name follows.
5-3

5-4

BYTE 1 through BYTE N are the 8-bit character codes

used for the external name.

Type Code 5: 24-bit Value, Absolute String:

5, OP, WORD

OP is the 4-bit operation code, 3 bits for index,

indirect, and page; the least-significant bit is 0 (making a

total of 8 bits).

Type Code 6: 24-bit Value, Positive Relocation String:

6, OP, WORD

OP is the 4-bit operation code, 3 bits for index,

indirect, and page; the least-significant bit is 0 (making a

total of 8 bits).

WaR D will be added to the relocation factor; the

resultant value will be depaged.

Type Code 7: 24-Bit COMMON Reference String:

7, OP, WORD

OP includes the 4-bit operation code and 3 bits for

index, indirect, and page; the least-significant bit is 0 (mak

ing a total of 8 bits).

WORD = the 24-bit offset from the start of COMMON.

Type Code 8: 24-Bit Value, External Reference String:

8, N, BYTE 1, BYTE 2, ... , BYTE N, OP

N = The number of 8-bit bytes used for the external

name (0:::N:::6) If N = 0, the reference is to unlabelled

COMMON and no name follows.

BYTE 1 through BYTE N are the B-bit character codes

for the external name.

OP is the 4-bit operation code, 3 bits for index,

indirect, and page; the least-significant bit is 0 (making a

total of 8 bits).

Type Code 9: END, Absolute String: 9, WORD

WORD is the location to which control will be trans

ferred by the Extended Loader (the starting location of the

program just loaded).

I Type Code A:

A,wORD

End, Positive Relocation String:

WORD is added to the relocation factor. The resulting

value is the location to which control will be transferred by

the Extended Loader (the starting location of the program

just loaded).

Type Code B: End, External Value String:

B,N,BYTE 1 ,BYTE 2 ,BYTE N

N = The number of 8-bit bytes used for the external

name (1 SN:::6).

BYTE 1 through BYTE N are the 8-bit character codes

for the external name.

Type Code C: Size of COMMON String:

C,wORD

WORD = The 16-bit number representing the number

of locations in COMMON which this program requires.

Type Code D: Set Absolute Counter String:

D,WORD

WORD is the 16-bit value that will be stored in the

Extended Loader's absolute LOCATION counter.

This type code also forces the Extended Loader to use

the absolute LOCATION counter for storing values.

I

I

I

Type Code E: Set Relocatable Counter String: I
E.wORD

WaR D is a 16-bit value that will be added to the reloca

tion factor and then stored in the Extended Loader's

relocatable LOCATION counter.

This type code also forces the Extended Loader to use

the relocatable LOCA TI ON counter for storing values.

Type Code F: Clear String:

F,WORD

WORD is the number of locations to be cleared, starting

with the current value of the LOCATION counter. The

16-bit value of WORD is also added to the LOCATION

counter.

I

Type Code 10: SEB String: I
10

This type code forces the Extended Loader to depage

only through page 1.

Type Code 11: REB String:

11

This type code allows the Extended Loader to depage

through the page associated with the LOCATION counter

(0 thru 8K, use page 1; 8K thru 16K, use page 2, etc.).

I

I
Type Code 12: CHECKSUM STRING:

12 WORD

WORD is the CHECKSUM of all words encountered

since the last CHECKSUM.

I Type Code 13: Program Size String:

13 WORD

WaR D is the number of locations used by the program

(not counting depaging).

I Type Code 14: Absolute External Definition String:

14, N, BYTE 1, BYTE 2, ... , BYTE N, WORD

N = The number of 8-bit bytes used for the name (1 N

6). BYTE 1 through BYTE N are the 8-bit character codes

for the name. WORD is the value (absolute location) of the

name.

Type Code 15: Relocatable External Definition String:

15, N, BYTE 1, BYTE 2, ... , BYTE N, WORD

N = the number of 8-bit bytes used for the name (1 N

6). BYTE 1 through BYTE N are the 8-bit character codes

for the name. Word is the value (relocatable) of the name.

Checksum

The following is the method to be used for forming the

checksum (either for the bootstrap format or extended

format) :

(Initial value of SUM is zero)

LOAD SUM

ADD BYTE

STORE SUM

The checksum will be computed for every byte in the

buffer except the checksum itself (includes the type code

for the checksum).

I

5-5

Memoranda

Appendix A USASCII
Character
Set And
Hexadecimal
Codes

HEX CHARACTER HEX CHARACTER

AO space C3 C
A1 C4 D
A2 C5 E
A3 # C6 F
A4 $ C7 G

A5 % C8 H
A6 & C9
A7 ' (apostrophe) CA J

A8 (CB K

A9) CC L
AA * CD M

AB + CE N
AC , (comma) CF 0
AD DO P
AE . (period) D1 Q

AF / D2 R
BO 0 D3 S
B1 1 D4 T
B2 2 D5 U

B3 3 D6 V

B4 4 D7 W

B5 5 D8 X
B6 6 D9 Y

B7 7 DA Z

B8 8 DB left bracket
B9 9 DC back slash
BA DD right bracket
BB DE up arrow
BC less than DF left arrow
BD SPECIALS
BE greater than HEX CONTROL
BF ? 81 beginning of tape
CO @ 87 bell
C1 A 8A line feed
C2 B 8D carriage retu rn

A-1

Memoranda

A-2

Appendix B

MNEMONIC FUNCTION

ABA Absolute Value of A

ADC Add Carry to A

ADD Add Memory to A

ADI Add I mmediate to A

ALI Arithmetic Left Shift & Insert

ALS Arithmetic Left Shift

ANA AN 0 Memory with A

AFil Arithmetic Right Shift & Insert

ARS Arithmetic Right Shift

CA/\ Compare A with Memory Arithmetically

CLA Clear A

DNX Decrement Index and Skip on Zero

EAI External Address In

ECO External Command Out

EDI External Data In

EDO External Data Out

ESI External Status In

HL I Halt

INC Increment Memory and Skip on Zero

INX Increment Index and Skip on Zero

JIX Jump Indirect thru Index

JMA Jump Direct thru A

JMM Jump and Mark

JMP Jump

JMX Jump Direct thru Index

JRL Jump and Reset Level

LAX Load A Direct from Memory Location

Specified by Index

LOA Load A from Memory

LDI Load A Immediate

LOX Load I ndex from Memory

MAC 16
Machine
Operations

LlSTI NG ASSEMBLY HEXADECIMAL

TYPE CLASS CODE

0 014X

0 01CX

2 1 8000

5 5 08MN

4 4 OC5N

4 4 OC4N

2 BOOO

4 4 OCDN

4 4 OCCN

2 1 FOOO

0 054X

4 4 024N

0 1 06CX

3 2 OFMN

3 2 OAMN

3 2 OBMN

3 2 OEMN

1 0 OOXX

2 1 EOOO

4 4 020N

4 4 03CN

1 0 0470

2 4000

2 1 5000

4 4 07CN

2 1000

4 4 070N

2 0000

5 5 ODMN

2 COOO

OPERATING

TIME IN Jls

2

2

2

2

2-5

2-5

2

2-5

2-5

3

1

3

3

3

3

3

3

1

3

3

4

2

3

2

3

2

3

2

1

3

B-1

LISTING ASSEMBLY HEXADECIMAL OPERATING

MNEMONIC FUNCTION TYPE CLASS CODE TIME IlS

L1X Load A Indirect thru Memory Location 4 4 030N 4

Specified by Index

LLC Logical Left Shift, Closed 4 4 03CN 2-5

LLI Logical Left Shift & Insert 4 4 OC2N 2-5

LLN Logical Left Shift, No Change to C 4 4 OCON 2-5

LLO Logical Left Shift, Open 4 4 OC1N 2-5

LRC Logical Right Shift, Closed 4 4 OCBN 2-5

LRI Logical Right Shift & Insert 4 4 OCAN 2-5

LRN Logical Right Shift, No Change to C 4 4 OC8N 2-5

LRO Logical Right Shift, Open 4 4 OC9N 2-5

LSB Load A()'5 with status of C,V,R,S,B, and H 0 056X 1

NOP No Operation 0 0480 2

ONA One's Complement of A 0 018X 2

ORA OR from Memory to A 2 AOOO 2

REX Reset Sense Indicator X 0 05CN-05FN

SAG Skip if A is Greater than Zero 4 3 04DN 2

SAN Skip if A is Negative 4 3 04BN 2

SAX Store A in Location Specified by Index 4 4 074N 3

SAZ Skip if A is Zero 4 3 04AN 2

SBI Subtract I mmediate from A 5 5 09MN 2

SEX Set Sense I ndicator X 1 0 050N-053N 1

SIX Store A Indirect thru Location Specified 4 4 034N 4

by Index

SKN Skip if A is Normalized 4 3 049N 2

SKP Skip Unconditional 4 3 048N 2

SKX Skip if Index is Zero 4 3 02CN 3

SLZ Skip if Least-Significant Bit of A is Zero 4 3 04CN 2

SNB Skip if Base Page Control is Zero 4 3 044N 2

SNC Skip if C is Zero 4 3 040N 2

SNH Skip on I nterrupt not Inhibited 4 3 045N 2

SNV Skip if V is Zero 4 3 041N 2

SNR Skip if R is Zero 4 3 042N 2

SNS Skip if S is Zero 4 3 043N 2

SSB Store A()'5 into status bits C,V,R,S,B, 0 057X

and H

STA Store A in Memory 2 6000 2

STL Store Left Byte of A in Memory 2 3000 2

STR Store Right Byte of A in Memory 2 7000 2

STX Store I ndex in Memory 2 2000 3

SUB Subtract Memory from A 2 9000 2

TAL Transfer A to L Register 4 4 058N

TLA Transfer Level to A 0 046X 2

TSA Transfer Switches to A 0 05AX

TWA Two's Complement of A 0 01 OX 2

B-2 XXA Exchange I ndex and A 0 060X 3

Appendix C Leap Pseudo
Operations

PSEUDO-OPERATION (LISTING TYPE)

BOOT

CLEAR

COMN

DC

DS

DUP

EJECT

END

ENTRY

EOU

EOUR

EXTRN

LIST

LSTSY

NLiST

ORG

PRINT

PTR

REDEF

RESB

SETB

SKIPF·

SKIPT

SPACE

TXT

TITLE

BOOTSTRAP FORMAT (6)

CLEAR AND RESERVE IN AREA (1)

RESERVE AN AREA IN COMMON (1)

DATA CONSTANT (1)

RESERVE DATA STORAGE AREA (1)

DUPLICATE THE NEXT SOURCE LINE (6)

SKIP TO THE TOP OF THE NEXT PAGE (NOT LlSTED)*

END OF SOURCE PROGRAM (1)

EXTERNAL SYMBOL DEFINITION (1)

SYMBOL EQUALS VALUE AND TYPE OF EXPRESSION (7)

SYMBOL EQUALS VALUE OF EXPRESSION, RELOCATABLE (7)

EXTERNALSYMBOL(W

LIST DURING PASS 2 (6)

LIST SYMBOL TABLE (6)

DON'T LIST DURING PASS 2 (6)

SET PROGRAM ORIGIN (7)

PRINT DURING PASS 1 (6)

ADDRESS POINTER (1)

REDEFINE SYMBOL (1)

RESET LOADER B FLIP-FLOP (6)

SET LOADER B FLIP-FLOP (6)

SKIP IF FALSE (7)**

SKIP IF TRUE (7)**

SPACE N LINES BEFORE RESUMING LISTING (NOT LlSTED)*

CHARACTER STRING (1)

SUB-HEADING TO BE PRINTED AT TOP OF PAGE (NOT L1STED)·*

*Not listed when LIST pseudo-operation is not stated.

**When LIST pseudo-operation is not stated and condition causes coding to be skipped, neither the SKI PT (SKI PF) nor the

skipped coding are listed. To list, use the LIST pseudo-operation.

C-l

Memoranda

."

C-2

I-
CI) -..c -c

D-
E ::)
CI) c:::

~ en C
w ci':E

Lockheed Electronics Company

Dat. Products Division

6201 East Randolph Street

Los Angeles, California, U.S.A. 90022

(213) 722-6810 TWX 910·580·3623

A division of Lockheed Aircraft Corporation

• I

