iSBC 012B TECHNICAL MANUAL

112748

Revision A

April 1982

Copyright ${ }^{\circledR} 1982$ Intel Corporation ${ }^{\circledR}$

INTEL CORPORATION
Memory Systems Operation
3065 Bowers Avenue
Santa Clara, California 95051

Additional copies of this manual or other Intel literature may be obtained from:

```
Literature Department
Intel Corporation
3065 Bowers Avenue
Santa Clara, CA 95051
```

The information in this document is subject to change without notice.
Intel Corporation makes no warranty of any kind with regard to this material, including, but not limited to, the implied warranties of merchantability and fitness for a particular purpose. Intel Corporation assumes no responsibility for any errors that may appear in this document. Intel Corporation makes no commitment to update nor to keep current the information contained in this document.

Intel Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in an Intel product. No other circuit patent licenses are implied.

Intel software products are copyrighted by and shall remain the property of Intel Corporation. Use, duplication or disclosure is subject to restrictions stated in Intel's software license, or as defined in ASPR 7-104.9(a)(9).

No part of this document may be copied or reproduced in any form or by any means without the prior written consent of Intel Corporation.

The following are trademarks of Intel Corporation and its affiliates and may be used only to identify Intel products:

B. ${ }^{\text {P }}$	Inte	is BX	Mutichannel
(RED)1T	$\underline{\ln } \mathrm{c}_{\mathrm{e}} 1$	Library Manager	Mulcmadule
i	Intelevision	MCS	Plug A-Bubble
CCE	Intellec	Megachassis	PROMPT
iCS	iOSP	Micromainframe	RMX/80
im	iRMX	Micromap	System 2000
iMMX	iSBC	Multibus	UP1
Insite			

TABLE OF CONTENTS

HEADING TITLE PAGE
SECTION 1. GENERAL DESCRIPTION
1.1 INTRODUCTION $1-1$
1.2 HARDWARE CHARACTERISTICS $1-1$
1.3 OPERATION 1-1
1.4 SPECIFICATIONS 1-2
SECTION 2. INSTALLATION
2.1 INTRODUCTION 2-1
2.2 SAFETY PRACTICES. 2-1
2.3 UNPACKING AND INSPECTION 2-2
2.4 TEST EQUIPMENT AND SPECIAL TOOLS 2-2
2.5 POWER REQUIREMENTS 2-2
2.6
COOLING REQUIREMENTS 2-4
2.7 INTERFACE SPECIFICATIONS 2-4
2.8
JUMPER CONFIGURATIONS 2-4
2.9
ADDRESS RANGE SELECTION 2-12
2.10
iSBC 012B INSTALLATION PROCEDURE 2-13
SECTION 3. OPERATION
3.1 INTRODUCTION. 3-1
3.2 OPERATING PRINCIPLES 3-1
3.3 INPUT/OUTPUT SIGNAL DESCRIPTION 3-1
3.4 STANDARD OPERATING MODES 3-4
3.4 .1 Transfer Types 3-4
3.4.2 Write Mode 3-5
3.4 .3 Read Mode 3-7
3.4 .4 Refresh Mode 3-9

TABLE OF CONTENTS (Continued)

SECTION 3. OPERATION (Continued)

3.5 SPECIAL OPERATING FEATURES 3-10
3.5.1 Parity Generation and Checking 3-10
3.5.2
Powerfail Memory Protection 3-10
SECTION 4. THEORY OF OPERATION
4.1 INTRODUCTION. 4-1
4.2 STANDARD LOGIC SYMBOLS 4-1
4.2.1Electrical Criteria4-1
4.2.2Logical Criteria4-2
4.3 iSBC 012B IC DEVICE DESCRIPTION 4-3
4.4 OVERVIEW OF iSBC 012B CIRCUITRY 4-14
4.5 DESCRIPTION OF CIRCUITRY BLOCKS 4-18
4.5.14.5 .24.5 .34.5.44.5.5
SECTION 5. MAINTENANCE
5.1 INTRODUCTION. 5-1
5.2 PREVENTIVE MAINTENANCE 5-1
5.3 TROUBLESHOOTING. 5-1
5.4 ISOLATING A FAILING MEMORY CHIP 5-2
5.5 SERVICE AND REPAIR 5-3

TABLE OF CONTENTS (Continued)
HEADING TITLE PAGE
SECTION 6. ENGINEERING DRAWINGS
6.1 INTRODUCTION 6-1
6.2 ASSEMBLY DRAWING, PARTS LIST AND SCHEMATIC DIAGRAM 6-1
APPENDIX A. FILING A FREIGHT CLAIM A-1
APPENDIX B. SERVICE INFORMATION
B. 1 INTRODUCTION. B-I
B. 2 SERVICE AND REPAIR ASSISTANCE. B-1
READER COMMENT CARD Located Inside Back Cover
LIST OF ILLUSTRATIONS
FIGURE
TITLE
PAGE
2-1 P1 and P2 Multibus Connectors 2-4
3-1 Write Cycle Timing 3-6
3-2 Read Cycle Timing 3-8
4-1 iSBC 012B Overall Block Diagram 4-17/18
4-2 Memory Address Line Groups 4-21
4-3 4-Megabyte Memory Segments. 4-22
4-4 R-S Flip-Flop in Memor y Cycle Control Circuitry 4-28
4-5 Approximate Memory Cycle Timing 4-29
4-6 Simplified Block Diagram of Memory/Refresh Control Circuitry 4-32
4-7 Memory Chip Layout on iSBC 012B Board, Showing Rows 0-3 and the Low and High Banks 4-38
4-8 Memory Area Shown as a Block with Input and Output Signals 4-38
5-1 Row/Bank Diagram for Bad Chip Determination 5-3

LIST OF TABLES

TABLE TITLE PAGE
1-1 iSBC 012B Specifications 1-2
2-1 Test Equipment 2-3
2-2 Field Engineering Tool Kit 2-3
2-3 iSBC 012B Power Requirements 2-3
2-4 Pl Connector Pin Assignments 2-5
2-5 P2 Connector Pin Assignments 2-7
2-6 Jumper Configurations 2-8
3-1 Input/Output Signals on the PI Connector 3-2
3-2 Input/Output Signals on the P2 Connector 3-4
3-3 Description of Transfer Types 3-5
4-1 Ena ble and Inhibit Functions. 4-3
4-2 Truth Tables and Logic Symbols for IC Devices Used in the iSBC 012B Memory Board 4-4
4-3 Control Signals and Data Transfer Types 4-25
5-1 Preventive Maintenance Activities 5-1

SECTION 1

GENERAL DESCRIPTION

1.1 INTRODUCTION

The iSBC 012B is a 512 K byte Multibus-compatible MOS dynamic RAM memory board. On-board parity generation enhances reliability, while circuitry to support battery backup is provided as protection against power failure.

1.2 HARDWARE CHARACTERISTICS

The iSBC 012B memory board consists of a single printed circuit board with the following functional circuit blocks:

1. Address Circuitry
2. Data Circuitry
3. Parity Circuitry
4. Memory/Refresh Cycle Circuitry
5. Address Strobe Circuitry
6. Acknowledge Circuitry
7. Memory Protection Circuitry
8. Memory Area.

These blocks are described in detail in Section 4, Theory of Operation.

1.3 OPERATION

The iSBC 012B operates in three modes: write, read and refresh. Write and read operations are initiated by the user, whereas refresh cycles are initiated automatically by an on-board pulse generator, or optionally by an off-board pulse generator, and are completely transparent to the user.

An on-board parity generator/checker generates and stores a parity bit for each byte that is written and checks the byte against this parity bit when the byte is read out of memory. If an error is found, parity-related data may be read from the parity error I/O port.

Access to the iSBC 012B is via the Multibus lines.

1.4 SPECFICATIONS

iSBC 012B specifications are summarized below:

Table 1-1. iSBC 012B Specifications

Item	Description
STORAGE CAPACITY	
	512 K bytes (256 K words)
BYTE SIZE	8 bits
WORD LENGTH	2 bytes
ACCESS TIME	350ns
MEMORY CYCLE TIME	550 ns
REFRESH CYCLE TIME	550 ns
OPERATING MODES	Write, read, refresh (transparent to user)
INTERFACE	All data, address, and control lines are TTLcompatible and meet Intel Multibus specifications.
	Logic Level:
	Input: Logic " $1 "$ 2.0 V to 5.0 V Logic "0" 0.0 V to 0.8 V

Table 1-1. iSBC 012B Specifications (Continued)

ITEM	DESCRIPTION
POWERFAIL PROTECTION	On-board circuitry to support battery backup
POWER	Voltage: +5.0 volts $\pm 5 \%$
	Operating current: 5 Amps max.
	Stand by current: 3.5 Amps max.
	Power down current: 1.2 Amps max.
BOARD DIMENSIONS	Length: 6.75 in . Width: $\quad 12.0 \mathrm{in}$. Height: 0.5 in .
ENVIRONMENTAL SPECIFICATIONS	Operating temperature $0 \text { to } 55^{\circ} \mathrm{C}$ Non-operating temperature -40 to $75{ }^{\circ} \mathrm{C}$
	Relative humidity 10% to 90% without condensation
	Shock/vibration Able to withstand class " B " tests per Intel Environmental Specification 9400008 Rev C
	Altitude Up to $15,000 \mathrm{ft}$. in operation

SECTION 2

INSTALLATION

2.1 INTRODUCTION

This section contains instructions for installing the iSBC 012B memory board.

2.2 SAFETY PRACTICES

WARNING

Proper concern for the safety of all personnel is vital when installing equipment. The following safety practices should always be observed.

1. Remove all power from the system before installation begins. Remove the $A C$ power plug from the AC receptacle. This is particularly important if modules or components are to be removed.
2. Tag all facility circuit breakers associated with the system with WARNING tags to prevent an inadvertent turn-on of power during installation.
3. Even if power is off, dangerous voltages may still be present. Always discharge capacitors before working on DC power supplies.
4. When it is necessary to work on a system with the power on, never work alone. Two people must always be present when work is being done within a unit, or on an interconnecting cable, if power is applied.
5. Test equipment and certain tools, such as electric drills and wirewrap tools, should always be grounded before use. Follow the instructions in the instruction manuals. Do not defeat the third wire safety ground.
6. Keep benches and working areas clear of unnec essary articles.
7. Make sure that fire extinguishers of the CO_{2} type for electrical fires are readily available.

Throughout this manual, possible threats to personal safety will be prefixed as follows:

WARNING

Similarly, threats to equipment safety will be prefixed as follows:

CAUTION

2.3 UNPACKING AND INSPECTION

Check all parts received against the shipping list. Remove all packing material from the iSBC 012B memory board. Then check for physical damage, such as broken capacitors or resistors, broken wires, cut traces, loose components, and bent pins. Certain damage, such as a cracked printed board or a failing integrated circuit, may not be detected until power is applied and tests are conducted on the unit. In case of shipping damage, refer to Appendix A for procedures to file a freight claim, and to Appendix B for procedures to return a damaged unit.

2.4 TEST EQUIPMENT AND SPECIAL TOOLS

The test equipment required for checkout and trouble analysis of the iSBC 012B memory board is listed in Table 2-1. A recommended field engineering tool kit is listed in Table 2-2.

2.5 POWER REQUIREMENTS

The power requirements for an iSBC 012B memory board are shown below in Table 2-3.

Table 2-1. Test Equipment

Equipment	Description	Use
Digital voltmeter	0.1 volt accuracy	Measurement of vol tage.

Table 2-2. Field Engineering Tool Kit

Item	Description
1	Slotted-head screwdriver set
2	Phillips-head screwdriver set
3	Socket wrench set
4	Needle-nose pliers
5	Soldering iron
6	Desoldering tool (solder sucker)
7	Solder, resin core
8	Integrated circuit test clips

Table 2-3. iSBC 012B Power Requirements

Operation	Power (Max.)
Continuous Memory Cycles	+5VDC $\times 5.0 \mathrm{amps}=25.0$ wa.tts (max.)
Stand by - Refresh Cycles Only	+5VDC $\times 3.5 \mathrm{amps}=17.5$ watts (max.)
Battery Backup	+5VDC $\times 1.2 \mathrm{amps}=6.0$ watts (max.)

2.6 COOLING REQUIREMENTS

The iSBC 012B memory board temperature must be maintained between 0 to $55^{\circ} \mathrm{C}$.

2.7 INTERFACE SPECIFICATIONS

The edge connectors P1 and P2 (shown in Figure 2-1) provide the interface to the Multibus system. P1 connector assignments are listed in Table 2-4; the P2 assignments are listed in Table 2-5.

2.8 JUMPER CONFIGURATIONS

Table 2-6 lists the possible jumper connections and describes the function of each.

Figure 2-1. P1 and P2 Multibus Connectors

NOTE
This figure shows the P1 and P2 Multibus connectors. The odd pins are on the component side, the even pins on the solder side.

Table 2-4. Pl Connector Pin Assignments

	COMPONENT SIDE			SOLDER SIDE		
	Pin	Mnemonic	Description	Pin	Mnemonic	Description
Power Supplies	$\begin{array}{r} 1 \\ 3 \\ 5 \\ 7 \\ 9 \\ 11 \end{array}$	$\begin{aligned} & \text { GND } \\ & +5 \mathrm{~V} \\ & +5 \mathrm{~V} \end{aligned}$ Not Used Not Used GND	$\begin{aligned} & \text { Ground } \\ & +5 \mathrm{VDC} \\ & +5 \mathrm{VDC} \end{aligned}$ Ground	$\begin{array}{r} 2 \\ 4 \\ 6 \\ 8 \\ 10 \\ 12 \end{array}$	$\begin{aligned} & \text { GND } \\ & +5 \mathrm{~V} \\ & +5 \mathrm{~V} \end{aligned}$ Not Used Not Used GND	$\begin{aligned} & \text { Ground } \\ & +5 \mathrm{VDC} \\ & +5 \mathrm{VDC} \end{aligned}$ Ground
Bus Controls	$\begin{aligned} & 13 \\ & 15 \\ & 17 \\ & 19 \\ & 21 \\ & 23 \end{aligned}$	Not Used Not Used Not Used MRDC/ IORC/ XACK/	Memory Read Command I/O Read Command Transfer Acknowledge	$\begin{aligned} & 14 \\ & 16 \\ & 18 \\ & 20 \\ & 22 \\ & 24 \end{aligned}$	INIT/ Not Used Not Used MWTC/ IOWC/ INH1/	Initialize Memory Write Command I/O Write Command Inhibit 1 Disable RAM
Bus Controls and Address	$\begin{aligned} & 25 \\ & 27 \\ & 29 \\ & 31 \\ & 33 \end{aligned}$	Not Used BHEN/ Not Used Not Used Not Used	Byte High Ena ble	$\begin{aligned} & 26 \\ & 28 \\ & 30 \\ & 32 \\ & 34 \end{aligned}$	$\begin{aligned} & \text { Not Used } \\ & \text { AD10// } \\ & \text { AD } 11 / \\ & \text { AD12/ } \\ & \text { AD13/ } \end{aligned}$	Address Bus
Interrupts	$\begin{aligned} & 35 \\ & 37 \\ & 39 \\ & 41 \end{aligned}$	INT6/ INT4/ INT2/ INTO/	Parallel Interrupt Requests	$\begin{aligned} & 36 \\ & 38 \\ & 40 \\ & 42 \end{aligned}$	INT7/ INT5/ INT3/ INTI/	Parallel Interrupt Requests
Address	$\begin{aligned} & 43 \\ & 45 \\ & 47 \\ & 49 \\ & 51 \\ & 53 \\ & 55 \\ & 57 \end{aligned}$	ADRE/ ADRC/ ADRA/ ADR8/ ADR6/ ADR4/ ADR2/ ADR0/	Address Bus	$\begin{aligned} & 44 \\ & 46 \\ & 48 \\ & 50 \\ & 52 \\ & 54 \\ & 56 \\ & 58 \end{aligned}$	ADRF/ ADRD/ ADRB/ ADR9/ ADR7/ ADR5/ ADR 3/ ADR 1/	Address Bus

Table 2-4. Pl Connector Pin Assignments (Continued)

	COMPONENT SIDE			SOLDER SIDE		
	Pin	Mnemonic	Description	Pin	Mnemonic	Description
Data	$\begin{aligned} & 59 \\ & 61 \\ & 63 \\ & 65 \\ & 67 \\ & 69 \\ & 71 \\ & 73 \end{aligned}$	DATE/ DATC/ DATA/ DAT8/ DAT6/ DAT4/ DAT2/ DATO/	Data Bus	$\begin{aligned} & 60 \\ & 62 \\ & 64 \\ & 66 \\ & 68 \\ & 70 \\ & 72 \\ & 74 \end{aligned}$	DATF/ DATD/ DATB/ DAT9/ DAT7/ DAT5/ DAT3/ DATI/	Data Bus
Power Supplies	$\begin{aligned} & 75 \\ & 77 \\ & 79 \\ & 81 \\ & 83 \\ & 85 \end{aligned}$	GND Not Used Not Used $+5 \mathrm{~V}$ $+5 \mathrm{~V}$ GND	Ground $\begin{aligned} & +5 \mathrm{VDC} \\ & +5 \mathrm{VDC} \end{aligned}$ Ground	$\begin{aligned} & 76 \\ & 78 \\ & 80 \\ & 82 \\ & 84 \\ & 86 \end{aligned}$	GND Not Used Not Used $\begin{aligned} & +5 \mathrm{~V} \\ & +5 \mathrm{~V} \\ & \text { GND } \end{aligned}$	Ground $+5 \mathrm{VDC}$ +5VDC Ground

Table 2-5. P2 Connector Pin Assignments

COMPONENT SIDE			SOLDER SIDE		
Pin	Mnemonic	Description	Pin	Mnemonic	Description
1	GND	Ground	2	GND	Ground
3	5VB	+5V Battery	4	5VB	+5V Battery
5	Not Used		6	Not Used	
7	Not Used		8	Not Used	
9	ONBRD	On Board Parity	10	ONBRDREF	On Board Refresh
11	Not Used		12	Not Used	
13	Not Used		14	Not Used	
15	Not Used		16	Not Used	
17	Not Used		18	Not Used	
19	Not Used		20	MPRO/	Memory Protect
21	GND	Ground	22	GND	Ground
23	Not Used		24	Not Used	
25	Not Used		26	Not Used	
27	PAR1/	Parity 1	28	Not Used	
29	PAR2/	Parity 2	30	Not Used	
31	Not Used		32	Not Used	
33	Not Used		34	Not Used	
35	Not Used		36	Not Used	
37	Not Used		38	Not Used	
39	Not Used		40	OFBRDRQ	Off Board Request
41	Not Used		42	Not Used	
43	Not Used		44	Not Used	
45	Not Used		46	Not Used	
47	Not Used		48	Not Used	
49	Not Used		50	Not Used	
51	Not Used				
53	Not Used		54	Not Used	
55	AD16/	Address Bus	56	AD17/	Address Bus
57 59	AD14/ Not Used	Address Bus	58 60	AD15/ Not Used	Address Bus

Table 2-6. Jumper Configurations
'X' If Connected

Power Jumpers		
Jumper	Standard Configuration	Function
E1, E3 E2, E3 E4, E5 E5, E6	X X	For battery backup of the memory chips. If battery backup of the memory chips is not required. For battery backup of selected board logic. If battery backup of selected board logic is not required.
Parity Flag Register Jumpers		
NOTE W 1-14 below are used in conjunction with AD00AD03, AD06, and AD08-AD0F for I/O selection. AD04, AD05, and AD07 do not involve jumpers and must always be H for I/O selection.		
W1	X	If $W 1$ is jumpered, then $A D O 0$ must be L for I/O selection.
W 2	x	If $W 2$ is jumpered, then ADOl must be L for I/O selection.
W3	x	If W3 is jumpered, then ADO2 must be L for I/O selection.
W4	x	If W 4 is jumpered, then ADO 13 must be L for I/O selection.
W 5		If $W 5$ is jumpered, then $W 6$ should not be jumpered and AD06 must be H for I/O selection.
W6	x	If W6 is jumpered, then $W 5$ should not be jumpered and AD06 must be L for I/O selection.
W7A	x	If W7A is jumpered, then AD08 must be L for I/O selection.

Table 2-6. Jumper Configurations (Continued)

Parity Flag Register Jumpers (Continued)		
Jumper	Standard Configuration	Function
W7B		If W7B is jumpered, then AD08 has no effect on I/O selection.
W8A	X	If W8 is jumpered, then AD09 must be L for I/O selection.
W8B		If $W 8 B$ is jumpered, then $A D 09$ has no effect on I/O selection.
W9A	X	If W9A is jumpered, then AD0A must be L for I/O selection.
W9B		If $W 9 B$ is jumpered, then $A D 0 A$ has no effect on I/O selection.
W10A	X	If WIOA is jumpered, then ADOB must be L for I/O selection.
W10B		If $W 10 B$ is jumpered, then $A D 0 B$ has no effect on I/O selection.
W11A	X	If W11A is jumpered, then ADOC must be L for I/O selection.
W11B		If W11B is jumpered, then ADOC has no effect on I/O selection.
W12A	X	If W12A is jumpered, then ADOD must be L for I/O selection.
W12B		If W12B is jumpered, then AD0D has no effect on I/O selection.
W13A	X	If W13A is jumpered, then ADOE must be L for I/O selection.
W13B		If W13B is jumpered, then ADOE has no effect on I/O selection.
W14 A	X	If W 14 A is jumpered, then AD 0 F must be L for I/O selection.
W14B		If W14B is jumpered, then AD0F has no effect on I/O selection.

Table 2-6. Jumper Configurations (Continued)

Memory Address Select Jumpers		
Jumper	Standard Configuration	Function
NOTE If bits 15-22 of the lower boundry (corresponding to address bits ADOE-15) are $\mathrm{b}_{15} \mathrm{~b}_{14} \mathrm{~b}_{13} \mathrm{~b}_{12}$ $b_{11} b_{10} b_{0 F} b_{0 E}$, then jumpers W $25-32$ should be set as follows:		
W25 W26 W27 W28 W29 W30 W31 W 32	$\begin{aligned} & \mathrm{X} \\ & \mathrm{X} \end{aligned}$	If bOE is L, connect $W 25$. If bof is L, connect W26. If b_{10} is L, connect W27. If b_{11} is L , connect W28. If b_{12} is L, connect $W 29$. If b_{13} is L, connect $W 30$. If b_{14} is L, connect W31. If b_{15} is L , connect $W 32$.
NOTE If bits $15-22$ of the upper boundry (corresponding to address bits ADOE-15) are $\mathrm{b}_{15} \quad \mathrm{~b}_{14} \quad \mathrm{~b}_{13} \quad \mathrm{~b}_{12}$ $\mathrm{b}_{11} \mathrm{~b}_{10} \mathrm{~b}_{0} \mathrm{~F} \mathrm{~b}_{0} \mathrm{E}$, the jumpers W17-24 should be set as follows:		
W17 W18 W19 W20	$\begin{aligned} & X \\ & X \\ & X \\ & X \end{aligned}$	If bOE is L, connect $W 17$. If $\mathrm{b}_{\mathrm{O}} \mathrm{F}$ is L , connect $W 18$. If b_{10} is L, connect W19. If b_{11} is L, connect $W 20$.
W21 W22 W23 W24	$\begin{aligned} & \mathrm{X} \\ & \mathrm{x} \\ & \mathrm{X} \end{aligned}$	If b_{12} is L, connect $W 21$. If B_{13} is L , connect $W 22$. If b_{14} is L , connect W23. If b_{15} is L , connect $W 24$.
W33 \& W 34		Together, these determine the memory segment for the board.

Table 2-6. Jumper Configurations (Continued)

Memory Address Select Jumpers (Continued)		
Jumper	Standard Configuration	Function
		The following table shows the relationship between these jumpers and the memory segment. Segment 1 consists of memory locations 0 to $4 \mathrm{M}-1$; segment 2 consists of locations 4 M to $8 \mathrm{M}-1$; segment 3 consists of locations 8 M to $12-1$; and segment 4 consists of locations 12 M to $16 \mathrm{M}-1$.
Interrupt Jumpers		
W35		If a parity error is to cause INT7/ to go active, connect W35.
W36		If a parity error is to cause INT6/ to go active, connect W36.
W 37		If a parity error is to cause $\operatorname{INT} 5 /$ to go active, connect W37.
W38		If a parity error is to cause INT4/ to go active, connect W38.
W 39		If a parity error is to cause $\operatorname{INT} 3$ / to go active, connect W39.
W40		If a parity error is to cause $\operatorname{INT} 2 /$ to go active, connect W40.
W41		If a parity error is to cause INT1/ to go active, connect W41.
W42		If a parity error is to cause INT0/ to go active, connect W42.

Table 2-6. Jumper Configurations (Continued)

Memory Address Select Jumpers (Continued)		
Jumper	Standard Configuration	Function
Refresh Jumpers		
W44		For refresh requests to be generated offboard and placed on OFBRDRQ, W44 may be connected and ONBRDREF set false. Or, as an alternative to this approach, W45 may be jumpered (see below).
W45		For refresh requests to be generated offboard and placed on OFBRDRQ, W45 may be jumpered (the state of ONBRDREF does not matter in this case).
W46		If refresh requests are to be generated offboard, they should be brought in on this line (and either W44 or W45 should be connected as described above).

2.9 ADDRESS RANGE SELECTION

The standard configuration of jumpers for the iSBC 012B board sets the address range for board selection at 16 K to $16 \mathrm{~K}+512 \mathrm{~K}-1$. For other ranges, jumpers W17-32 must be set appropriately. (See Section 2.8, Jumper Configurations.) For example, if board selection for the iSBC 012 B board is desired for the range 32 K to $32 \mathrm{~K}+512 \mathrm{~K}-1$, then W17-32 must be configured as follows:

Jumper	'X' (if connected)
W17	
W18	X
W19	X
W 20	X
W21	X
W22	
W23	X
W24	X
W25	X
W26	
W27	X
W28	X
W29	X
W30	X
W31	X
W 32	X

2.10 iSBC 012B INSTALLATION PROCEDURE

NOTE

The iSBC 012B memory board can be installed in any Multibus-compatible form factor with a Multibus-compatible configuration of pinouts.

1. Turn off the main AC power.
2. Connect jumpers for the desired jumper configuration (see Section 2.8, Jumper Configurations) and set the jumpers for the desired range of board selection (see Section 2.9, Address Range Selection).
3. Install the board in any desired slot. (If the P 2 connector is used, make sure that there is a P2 connector installed in the backplane and that the P2 edge connector on the iSBC 012B memory board mates with it properly.)
4. Power up the system.

SECTION 3

OPERATION

3.1 INTRODUCTION

This section describes the operation of the iSBC 012B memory board. It includes a discussion of:

1. Operating Principles
2. Input/Output Signals
3. Standard Operating Modes
4. Special Operating Features

3.2 OPERATING PRINCIPLES

The iSBC 012B is a semiconductor memory requiring no manual operation other than the setting of jumpers. All operating sequences are controlled by externally supplied control signals and internally generated response signals that conform to Multibus specifications. These signals are described in Section 3.3. Memory operations are described in Section 3.4.

3.3 INPUT/OUTPUT SIGNAL DESCRIPTION

Table 3-1 below describes the input/output signals on the PI connector; Table 3-2 describes the input/output signals on the P2 connector.

Table 3-1. Input/Output Signals on the P1 Connector

Signal Mnemonic	Functional Description
ADR0/-ADRF/ and ADR 10/-ADR $17 /$ (Note: ADR14/-ADR17 are on the P 2 connector)	Address: In the case of the iSBC 012B memory board, these address bits are used to specify the address of a memory location (with a memory read or write command) or the address of the Parity Flag Register I/O port (with an I/O read or write command). When these addresses specify a memory location, ADR0/ (AD00), in conjunction with BHEN/, determines the type of transfer (see Table 4-3); ADR1/-ADR10/ (AD01AD10) are used for row and column addresses to the memory chips (see Section 4.4.1.A, Address Routing Circuitry, for a detailed discussion of routing for particular chip types); for the iSBC 056B, ADR11/(AD11) is used for row selection among the two rows of memory chips, while for the iSBC 012B, ADR11/ and ADR12/ (AD11 and AD12) are used for row selection among the four rows of memory chips; ADRE/-ADR15/ (ADOE-AD15) are compared for board range selection; and ADR16/ and ADR17/ (AD16 and AD17) determine the 4 -megabyte segment selection. In the case of the Parity Flag Register I/O port, only address bits ADR0/-ADRF/ (AD00-ADOF) are used.
BHEN/	Byte High Enable: In conjunction with ADR0/ (AD00), determines the type of transfer (see Table 4-3).
DAT0/-DATF/	Data: These 16 bidirectional lines transmit and receive data to/from the addressed memory location or I/O port.
INH1/	Inhibit RAM: When active (low), this signal inhibits memory cycles.
INIT/	Initialize: Resets the system to a known internal state sets CI/ false, clears the parity error I/O port, and clears interrupts.
INT0/-INT7/	Interrupt Request: These eight interrupt lines transmit interrupt requests to the appropriate interrupt handler. INT0/ has the highest priority.

Table 3-1. Input/Output Signals on the P1 Connector (Continued)

Signal Mnemonic	Functional Description
IORC/	I/O Read Command: Indicates that the address of an I/O port is on the Multibus address lines and that the output of that port is to be read (placed) onto the Multibus data lines. I/O Write Command: Indicates that the address of an I/O port is on the Multibus address lines and that the contents of the Multibus data lines are to be accepted by the addressed port.
MRDC/	Memory Read Command: Indicates that the address of a memory location is on the Multibus address lines and that the contents of that location are to be read (placed) on the Multibus data lines.
MWTC/Memory Write Command: Indicates that the address of a memory location is on the Multibus address lines and that the contents of the Multibus data lines are to be written into that location.	
Transfer Acknowledge: Indicates that the addressed	
memory location or I/O port has completed the specified	
read or write operation; that is, data has been placed	
onto or accepted from the Multibus data lines.	

Table 3-2. Input/Output Signals on the P2 Connector

Signal Mnemonic	Functional Description
ADR14/-ADR17	Address: See Table 3-1, ADR0/-ADRF/ and ADR10/ADR13.
MPR0/	Memory Protect: This externally generated signal is used to inhibit memory cycles during battery backup operation.
OFBRDRQ	Off-Board Request:
	Note: The following applies only if W46 is jumpered. If W46 is not jumpered, then refresh requests are always generated on board. In the latter case, W45 must be installed or W44 installed and ONBRDREF held low.
	When this signal goes true, it clocks (initiates) a refresh request.
ONBRDREF	On-Board Refresh:
	Note: The following applies only if W44 is jumpered.
	When true, indicates that the pulse for the refresh cycle will be generated on board by the parity pulse generator $(2 \mathrm{~N})$. When false, indicates that the pulse for the refresh cycle must be generated off the board by some other generator. In the latter case, W46 will also be jumpered and the off-board pulse will be brought in on OFBRDRQ.

3.4 STANDARD OPERATING MODES

Standard operating modes are write, read, and refresh. In write and read modes, various transfer types are possible. Transfer types and write, read, and refresh modes are discussed below.

3.4.1 Transfer Types

Address bit ADR0/ (AD00) and BHEN/ determine the transfer type. Table 3-3 below describes the type of transfer for the various combinations of AD00 and BHEN/.

Table 3-3. Description of Transfer Types

BHEN/	AD00	Description of Transfer (Read or Write)
F	F	DAT0/-DAT7/ to/from the low memory bank
F	T	DAT0/-DAT7/ to/from the high memory bank T
F	DAT0/-DAT7/ to/from the low memory bank; DAT8/-DATF/ to/from the high memory bank	
T	T	DAT8/DATF/ to/from the high memory bank

3.4.2 Write Mode

A write cycle is initiated when MWTC/ is asserted true, assuming that BMPRO is false (memory is not protected) and BDSEL/ is true (the board is selected).

The following signals then go true: CI (initiating the internal timing for the cycle), CI/ (holding off refresh cycles), XACK/ (an acknowledge), WEL/ and/or WEH/ (write enable signals to the memory chips, depending on the transfer type - WEL/ if the transfer is to the low bank and WEH if the transfer is to the high bank, or both true if the transfer involves both banks), RASn (the row address strobe for the row \mathbf{n} determined from AD11 and HALF/FULL), and R/信 (causing the memory chip row address on the address lines to be placed on MA0-MA7 and then to be strobed into the selected row of memory chips).

At approximately $40 \mathrm{~ns}, \mathrm{R} / \overline{\mathrm{C}}$ goes false (L), causing the column addresses on the address lines to be placed on MA0-MA7. At approximately 80ns, CAS0/-CAS1/ go true and the column addresses on MA0-MA7 are strobed into the memory chips. Data on the data lines is then written into the selected row and bank(s) of memory chips.

Parity bits (LPAR/ and HPAR/) are generated from the incoming data and are strobed into memory with the data as described above. Optionally (for test purposes), off-board parity bits (PAR1/ and PAR2/ on the P2 connector) may be strobed into memory in the same way (if so, W43, W47 and W48 must be jumpered and ONBRD must be set false).

See Figure 3-1 for write cycle timing signals.

530-002A

Parameter	Minimum (NSEC)	Maximum (NSEC)	Description	Remarks
${ }^{\text {t }} \mathrm{AH}$	50		Address hold time	
${ }^{t}$ AS	50		Address setup to command	From data to command
${ }^{\mathrm{t}} \mathrm{CMD}$	375		Command width	
${ }^{\mathrm{t}} \mathrm{CS}$	175		Command separation	
${ }^{\text {t }}$ DHW	0		Write data hold time	
${ }^{\text {t }}$ DS	50		Write data setup to command	Normal write
${ }^{\text {t }}$ RD	550		Refresh delay time	
${ }^{*}{ }^{\text {X }}$ (${ }^{\text {aCK }}$		350	Command to transfer acknowledge time	
${ }^{\text {t }}$ XAH		65	Acknowledge turnoff delay	

*When an asynchronous refresh cycle occurs, t_{RD} is added to this parameter.

Figure 3-1. Write Cycle Timing

3.4.3 Read Mode

A read cycle is initiated when MRDC/ is asserted true, assuming BMPRO is false (memory is not protected) and BDSEL/ is true (the board is selected).

The following signals then go true: CI (initiating the internal timing for the cycle), $\mathrm{CI} /$ (holding off refresh cycles), XACK/ (an acknowledge), RASn (the row address strobe for the row n determined from AD11 and HALF/FULL), and R/C (causing the memory chip row address on the address lines to be placed on MAO-MA7 and then to be stro bed into the selected row of memory chips).

At approximately $40 \mathrm{~ns}, \mathrm{R} / \overline{\mathrm{C}}$ goes false (L), causing the column addresses on the address lines to be placed on MA0-MA7. At approximately 80 ns , CAS0/-CAS1/ go true and the column addresses on MA0-MA7 are strobed into the memory chips.

At approximately 280 ns , LATCH/ goes true and the data from the selected row of memory chips is latched at 2 R and 2 U (octal D-type latches at the outputs of the memory chips). Depending on the type of transfer, the data then becomes available on the Multibus data lines DAT0/-DAT7/ or DAT8/-DATF/ or both (RDSEL/ and RDATOE/ enable/disable the output from the latches and LOE/ and HOE/ enable/disable the data onto the Multibus according to the type of transfer).

The parity bits (LPARO/ and HPAR0/) are enabled onto the output lines of the memory chips in the same way, but are not latched with the data but rather routed to the parity generators/checkers along with the data to determine if there are parity errors. The parity error flags, LERR and HERR, are then routed to the parity error I/O port, along with ADII and HALF/FULL (which determine the row of chips), and are latched there at approximately 320 ns . If any of the interrupt lines have been jumpered (W35-W42) and a parity error occurs, an interrupt will be issued and the processor may read the parity-related data by issuing an I/O read command, which ena bles the data onto the Multibus data lines DAT0/-3/. (Note: The interrupt should then be cleared by issuing an I/O write command to the parity error I/O port.)

See Figure 3-2 for read cycle timing signals.

Parameter	Minimum (NSEC)	Maximum (NSEC)	Description	Remarks
${ }^{t} A C C$		350	Access time to read data	
${ }^{\text {t }}$ DHR	0		Read data hold time	
${ }^{\text {t }}$ D	0	50	Inhibit delay	
${ }^{\text {t }} \mathrm{H}$	150		Inhibit hold time command	
${ }^{\text {t }}$ IPW	100		Inhibit pulse width	
${ }^{\text {tis }}$	0		Inhibit setup to command	
${ }^{\text {t }} \mathrm{RD}$		550	Refresh delay time	
* ${ }^{\text {X }}$ (${ }^{\text {aCK }}$		350	Command to transfer acknowledge time	
${ }^{\text {t }}$ XAH		65	Acknowledge turnoff delay	

*When an asynchronous refresh cycle occurs, ${ }^{\mathrm{t}} \mathrm{RD}$ is added to this parameter.

Figure 3-2. Read Cycle Timing

3.4.4 Refresh Mode

The iSBC 012B memory board uses dynamic RAM memory chips which have a retention period of 2 milliseconds. Therefore each location must be refreshed every 2 milliseconds. This is accomplished by refreshing an entire row of locations every 15.6 microseconds.

Refreshes are normally initiated by the on-board pulse generator (2N), which generates a pulse every 15.6 milliseconds. This pulse is the signal ONBRDRQ.

When ONBRDRQ goes true, COUNT and REFREQ/ go true. COUNT causes the counter (5AA) for the row addresses generated for refresh cycles to increment; REFREQ/ inhibits read or write cycles.

Approximately 20 ns after the pulse, REFADR/ goes true. This enables the row address generated for the refresh cycle onto MA0-MA7. At the same time that REFADR/ goes true, AEN/ goes false. This keeps the memory row and column addresses off MA0-MA7.

Approximately 50 ns after the pulse, REF/ goes true, initiating the timing for the cycle and causing RASO/-RAS3/ to go true. The row addresses are then strobed into the four rows of memory chips. This initiates a " $\overline{R A S}$-only" refresh cycle for every memory chip on the board.

Approximately 220 ns after REF/ goes true (approximately 270ns after the refresh pulse), CLRREF/ goes true, causing REFREQ/ to go false. Approximately 50ns later (approximately 320ns after the pulse), REF/ goes false.

Normally the refresh pulse is generated on board. There is optional facility (for test purposes) for generating pulses off board. For generating off-board refresh requests, either (1) W44 should be connected and ONBRDREF (P2-10) should be set false, or (2) W45 should be connected. In either case (1 or 2), the off-board request should be brought in on OFBRDRQ (P2-40).

3.5 SPECIAL OPERATING FEATURES

3.5.1 Parity Generation and Checking

On-board parity is generated for each byte written to memory. When a byte is read from memory, the parity bit, stored with the data in the associated bank, is checked against the data, and an error flag is used to reflect any discrepancy. An optional feature (for test purposes) allows parity bits to be brought in from off the board.

For more detail, read Section 3.4.2 (Write Mode) and Section 3.4.3 (Read Mode).

3.5.2 Powerfail Memory Protection

The memory protection circuitry is designed to prevent memory cycles from occurring during battery backup in periods of uncertain power. This is an optional feature.

Memory protection is initiated off board when MPRO/ is asserted true (MPRO/ is on the optional P2 connector). When MPRO/ goes true, BMPRO goes true when CLRREF/ goes true (this may be during a memory cycle or a refresh cycle). BMPRO then inhibits memory cycles until MPRO/ goes false and, at the end of a refresh cycle, CLRREF/ goes false.

SECTION 4

THEORY OF OPERATION

4.1 INTRODUCTION

This section contains the theory of operation for the iSBC 012B memory board. It includes:

1. A description of standard logic symbols
2. Pin assignments and truth tables for the IC devices used on the board
3. An overall description of the iSBC 012B circuitry, along with a diagram of the major blocks of circuitry on the board
4. A detailed description of the major blocks of circuitry.

4.2 STANDARD LOGIC SYMBOLS

4.2.1 Electrical Criteria

A circle (bubble) at the input or output of a gate indicates a low-going signal, or one which is active when low. The absence of a circle indicates a high-going signal, or one which is active when high.

The logic symbols are generally drawn in such a way that the inputs required to produce a given output are explicit. Looking at Insert (a) below, the desired output at $\mathrm{X} /$ is a low-going signal. $\mathrm{A} /$ and $\mathrm{B} /$ must both be low to produce this output. An alternative way of showing this relationship is given in Insert (b). The truth table for each symbol is the same, as shown in Insert (c).

Insert (a)

Insert (c)	A	B	X
	L	L	L
	L	H	H
	H	L	H
	H	H	H

In the first case (Insert a), a low-going output is expected, and two low inputs are required to produce it. In the second case (Insert b), a high-going output is expected, and either one of two high-going inputs will produce it.

When edge-sensitive devices are shown, a circle on the clock, or other triggering input, indicates a negative-going edge that can be the leading edge of a negative pulse or the trailing edge of a positive pulse. If no circle is shown on the clock input, then the device is a positive-edge-triggered device, triggered by the leading edge of a positive pulse or the trailing edge of a negative pulse.

4.2.2 Logical Criteria

A slash following a signal name (WRITE/) signifies a negative logic or a low true signal. Looking at Insert (d), three high inputs are required to enable this gate. Input $\mathrm{C} /$, which is an active low signal, inhibits the output when it is active and enables the output when it is inactive.

Insert (d)

No slash following a signal name (BSEL) indicates a signal which is active when high. Insert (e) shows how the inverse of $\mathrm{C} /, \mathrm{C}$ (active high) is used to enable an output.

When the signal matches the input (i.e., slash to circle, no slash to no circle), an enable function may be assumed. When the signal does not match the input (i.e., no slash to circle, slash to no circle), an inhibit function may be assumed. The four possible combinations are summarized in Table 4-1.

Table 4-1. Enable and Inhibit Functions

Electrical Properties		
	No Circle	Circle
SIGNAL	Positive true logic, logical assertion (ena ble)	Negative true logic, logical negation (inhibit)
SIGNAL/	Positive true logic, logical negation (inhibit)	Negative true logic, logical assertion (ena ble)

4.3 iSBC 012B IC DEVICE DESCRIPTION

Table 4-2 provides truth ta bles, logic symbols, and occasionally block diagrams for integrated circuit (IC) devices used on the iSBC 012 B board. (The IC devices are shown as rectangles.)

Table 4-2. Truth Tables and Logic Symbols for IC Devices Used in the iSBC 012B Memory Board

74S00 Quad 2-Input Positive-NAND Gates

Positive Logic

$$
Y=\overline{\mathrm{AB}}
$$

74S02 Quad 2-Input Positive-NOR Gates

Positive Logic
$Y=\overline{A+B}$

74S04 Hex Inverters

$$
\frac{\text { Positive Logic }}{Y=\bar{A}}
$$

Table 4-2. Truth Tables and Logic Symbols for IC Devices Used in the iSBC 012B Memory Board (Continued)

74S08 Quad 2-Input Positive-AND Gates

Positive Logic

$Y=A B$

74S10 Triple 3-Input Positive-NAND Gates

Positive Logic

$\mathrm{Y}=\overline{\mathrm{ABC}}$

74S20 Dual 4-Input Positive-NAND Gates

Positive Logic $Y=\overline{A B C D}$

Table 4-2. Truth Tables and Logic Symbols for IC Devices Used in the iSBC 012B Memory Board (Continued)

74S32 Quad 2-Input Positive-OR Gates

Positive Logic

$$
Y=A+B
$$

74S37 Quad 2-Input Positive-NAND Buffers

Positive Logic

$$
Y=\overline{\mathrm{AB}}
$$

74 S38 Quad 2-Input Positive-NAND Buffers with Open-Collector Outputs

Positive Logic

$$
\mathrm{Y}=\overline{\mathrm{AB}}
$$

iSBC 012B Technical Manual

Table 4-2. Truth Tables and Logic Symbols for IC Devices Used in the iSBC 012B Memory Board (Continued)

74S51 Dual 2-Wide 2-Input AND-OR-INVERT Gates

Positive Logic
$Y=\overline{A B+C D}$

74S64 4-2-3-2 Input AND-OR-INVERT Gates

Positive Logic

$Y=\overline{A B C D+E F+G H I+J K}$

74S74, 74LS74 Dual D-Type Positive-Edge-Triggered Flip-Flops with Preset and Clear

INPUTS			OUTPUTS		
PRESET	CLEAR	CLOCK	D	O	$\overline{\text { O}}$
L	H	X	X	H	L
H	L	X	X	L	H
L	L	X	X	H	H
H	H	C	H	H	L
H	H	C	L	L	H
H	H	L	X	a_{0}	a_{0}

Table 4-2. Truth Tables and Logic Symbols for IC Devices Used in the iSBC 012B Memory Board (Continued)

74S85 4-Bit Magnitude Comparators

COMPARING INPUTS				CASCADING INPUTS:			OUTPUTS		
A3, B3	A2. $\mathrm{B2}$	A $1,{ }^{\text {B }}$	A0. 80	A B	A. B	$A=B$	A 8	A. B	$A=B$
A3 - B3	\times	x	\times	\times	x	\times	H	L	L
A3. B3	\times	x	\times	x	x	x	L	H	L
A3-B3	A2 B2	x	x	x	x	x	H	L	L
A3 B3	A2 - B_{2}	\times	x	x	x	x	L	H	1.
A3 - $\mathrm{B}^{\text {a }}$	A2-B2	A $1 \cdot 81$	x	x	x	x	H	\llcorner	L
A3 - B3	A2 : B_{2}	A1. Bi	\times	x	x	x	L	H	L
A3 B3	$A 2=B 2$	A1. B1	AO B0	x	\times	x	H	L	L
A3-B3	$A 2=B 2$	$A 1=B 1$	AO. BO	\times	x	\times	L	H	L
A3 83	A2 - B_{2}	AI-Bt	AO - Bo	H	L	L	H	L	L
$A 3=B 3$	A2 - B2	$A t-B t$	AO - $\mathrm{BO}^{\text {a }}$	L.	H	L	L	H	L
$A 3=B 3$	A2-B2	AI $=B 1$	$A O=B 0$	L	L	H	L	L	H
A3 B3	A2 $\quad 12$	A1 Bi	AO Bo	\times	\times	H	L	\downarrow	H
$A 3=B 3$	A2-B2	$A 1=B 1$	AO BO	H	H	L	L	L	\llcorner
$A 3=B 3$	A2 $\quad \mathrm{B2}$	$A 1$ B1	AO B0	L	L	L	H	H	L

74 S86 Quad 2-Input Exclusive-OR Gates

Positive Logic

$$
Y=A+B=\overline{A B}+A \bar{B}
$$

74LS112 Dual J-K Negative-Edge-Triggered Flip-Flops with Preset and Clear

INPUTS					OUTPUTS
PRESET	CLEAR	CLOCK	J	K	O $\overline{\mathbf{0}}$
L	H	X	x	X	H L
H	L	x	x	x	L H
L	L	x	X	\times	$\mathrm{H}^{*} \mathrm{H}^{*}$
H	H	1	L	1.	$\mathrm{O}_{0} \quad \overline{\mathrm{a}}_{0}$
H	H	\downarrow	H	L	H L
H	H	\downarrow	L	H	L H
H	H	1	H	H	TOGGLE
H	H	H	\times	X	$\mathrm{O}_{0} \quad \overline{\mathrm{a}}_{0}$

Table 4-2. Truth Tables and Logic Symbols for IC Devices Used in the iSBC 012B Memory Board (Continued)

74S132 Quad 2-Input Positive-NAND Schmitt Triggers

Positive Logic

$$
\mathrm{Y}=\overline{\mathrm{AB}}
$$

74S133 13-Input Positive-NAND Gates

Positive Logic

$Y=\overline{\mathrm{ABCDEFGHIJLKM}}$

Table 4-2. Truth Tables and Logic Symbols for IC Devices Used in the iSBC 012B Memory Board (Continued)

Table 4-2. Truth Tables and Logic Symbols for IC Devices Used in the iSBC 012B Memory Board (Continued)

74S240, 74LS240 Octal Buffers/Line Drivers/Line Receivers, Inverted 3-State Outputs

74S241, 74LS241 Octal Buffers/Line Drivers/Line Receivers, Non-Inverted 3-State Outputs

74LS245 Octal Bus Transceivers

Table 4-2. Truth Tables and Logic Symbols for IC Devices Used in the iSBC 012B Memory Board (Continued)

74S280 9-Bit Odd/Even Parity Generators/Checkers, N-Bit Cascadeable

NUMBER OF INPUTSA	OUTPUTS	
THRUI THAT ARE HIGH	LEVEN V ODD	
$0,2,4,6,8$	H	L
$1,3,5,7,9$	L	H

$H=$ high level, L = low level

74 S373 Octal D-Type Latches

OUTPUT	ENABLE	D	OUTPUT
CONTROL	G	O	H
L	H	H	H
L	H	L	L
L	L	X	O_{0}
H	X	X	Z

74LS393 Dual 4-Bit Binary Counters

COUNT	OUTPUT			
	O_{D}	${ }^{\circ} \mathrm{C}$	O_{8}	$\mathbf{a}_{\mathbf{A}}$
0	L	L	L	L
1	L	L	L	H
2	L	L	H	L
3	L	L	H	H
4	L	H	L.	L
5	L	H	L.	H
6	L	H	H	L
7	L	H	H	H
8	H	L	L.	1
9	H	L	L.	H
10	H	L	H	L
11	H	L	H	H
12	H	H	L	L
13	H	H	L.	H
14	H	H	H	L
15	H	H	H	H

Table 4-2. Truth Tables and Logic Symbols for IC Devices Used in the iSBC 012B Memory Board (Continued)

4.4 OVERVIEW OF iSBC 012B CIRCUITRY

The iSBC 012B memory is a random access memory board. The iSBC 012B has four rows of 64 K memory chips, yielding a capacity of 512 K bytes of memory per board.

The iSBC 012B operates in three modes: write, read, and refresh. Refresh operations are handled internally by refresh circuitry on the board and are completely transparent to the user.

The iSBC 012B operates with either 8-bit data bytes (with an additional bit for parity) or 2-byte data "words" (with two additional bits for parity):
(1) data byte: 8 bits
(2) data word: 2 (8-bit) data bytes.

The iSBC 012B requires a minimum of nineteen address lines to take advantage of its 512 K bytes of memory space.

In each of the above cases, up to 24 address lines may be used, with address lines 15-22 affecting board selection and lines 23-24 affecting bank selection (see Section 4.5.1).

In order to detect and flag data errors, the iSBC 012B contains parity circuitry along with interrupt capability. From each incoming data byte, a parity bit is generated and stored with the data. During a read operation, the parity bit is read out with the data and the data is checked against the parity bit. By jumper selection, an interrupt may be issued when a parity error occurs and data related to the parity error may be read from the data lines.

The iSBC 012B also contains memory protection circuitry that, during battery backup following power failure, inhibits write and read cycles, but allows refresh cycles to continue.

The iSBC 012B consists of the following circuit blocks:
2. Data Circuitry
A. Transfer and Swapping Circuitry
B. Control Signal Generation Circuitry
3. Parity Circuitry
A. Parity Generation and Parity Data Flow Circuitry
B. Parity Error I/O Port and Interrupt Circuitry
4. Memory/Refresh Cycle Circuitry
A. Memory Cycle Control Circuitry
B. Refresh Cycle Control Circuitry
C. Cycle Timing and Delay Circuitry
5. Address Stro be Circuitry
A. RAS Circuitry
B. CAS Circuitry
6. Acknow ledge Circuitry
7. Memory Protection Circuitry
8. Memory Area

Figure 4-1 shows these blocks in block diagram form along with the signals that are passed between them.
iSBC 012B Technical Manual 112748

This page intentionally left blank

530-005A
Figure 4-1. iSBC 012B Overall Block Diagram

4.5 DESCRIPTION OF CIRCUITRY BLOCKS

The following sections describe the major blocks of circuitry on the iSBC 012B board.

4.5.1 Address Circuitry

Reference: Schematic No. 112640, Sheet 6

1. Address Routing Circuitry

During a memory cycle, various subsets of the address lines ADR00/-ADR 17/ are inverted and routed to the board circuitry.

ADR00/ is inverted and sent as AD00 to the Data Control Signal Generation Circuitry (see Section 4.5.2.2) to determine along with BHEN/ the type of transfer.

ADR1/-ADR10/ are inverted and sent as MA0-MA7 to the Memory Area (see Section 4.5.8). This is done in two groups, with the first group going as the row address to the selected memory chips and the second group going as the column address.

Row Addresses
ADR $1 /$
ADR2/
ADR 3/
ADR4/
ADR $5 /$
ADR6/
ADR7/
ADRF/

Column Addresses

ADR9/
ADRA/
ADRB/
ADRC/
ADRD/
ADRE/
ADR8/
ADR 10/

Timing control for placing row and, alternately, column addresses on the memory address lines (MA0-MA7) is handled by the R / \bar{C} (Row/Not Column) signal, which is generated by the Cycle Timing and Delay Circuitry (see Section 4.5.4.3). This signal causes row and column addresses to be placed on the memory address lines (MA0-MA7) at the appropriate time for strobing them into memory.

AD04, AD05, and AD07 must be low for I/O selection, while AD06 can be high or low, depending on jumper selection. If W5 is connected, then AD06 must be high for selection; if W6 is connected, then AD06 must be low for selection.

AD08-AD0F depend on jumper selection. If any one of W7A-W14A (say W12A) is connected, then its associated address line (ADOD) must be low. If any one of W7A-W14A is not connected, then its associated address line is irrelevant to I/O selection.

3. Board Selection Circuitry

Reference: Schematic No. 112640, Sheet 7

ADOE-AD17 (ADRE/-ADR17/ inverted) are used for determining board selection (BDSEL/). Jumpers W25-32 allow the user to set a lower boundary, and jumpers W17-24 allow the user to set an upper boundary. These set upper and lower boundaries for address lines ADOE-AD15; that is, for board selection, the value on these address lines must lie between the lower and upper boundaries. In addition, for board selection two other address bits, AD16 and AD17, must be set to correspond to two jumper selections, W33 and W34. If either W33A or W33A is connected, then the value on the corresponding address line must be low. If either $W 33 B$ or $W 34 B$ is connected, then the value on the corresponding address line must be high.

Looking at the entire set of address lines in terms of the groups shown in Figure 4-2, it can be seen that Group (1) selects up to 16 K memory locations; that Group (2) must lie between the lower bound and upper bound specified by the two sets of jumpers (W25-32 and W17-24); that the two address bits in Group (4)must be opposite of the inputs to the exclusive OR GATES (3AD) resulting from jumper selections W33A-W34B; and that Group (3)determines whether the board is selected or not.

Looking at this in terms of address ranges or memory space, it can be seen that the upper and lower bounds are 16 K multiples, whose values range from $1 \cdot 16 \mathrm{~K}$ up to $256 \cdot 16 \mathrm{~K}=4 \mathrm{M}$. The two additional bits that determine board selection, AD16 and AD17, can be viewed as determining which 4 M segment of the memory space a board lies in (see Figure 4-3). (Note: A board is restricted to one of four memory segments by the jumper selection for W33 and W34.)

Figure 4-3. 4-Megabyte Memory Segments

ADRI/ and ADR11/ (inverted) are used to select which row of memory chips is being addressed in a read or write operation. This is accomplished via the Row Address Circuitry (see Section 4.5.5.1). These signals are also routed to the Parity Error I/O Port and Interrupt Circuitry (see Section 4.5.3.2), where they are available to be read on the data lines if a parity error interrupt occurs.

ADRE/-ADR17/ are inverted and routed to the Board Selection Circuitry (see Section 4.5.1.3) and are thereby used to determine whether the board is selected or not.

During a refresh cycle, REFADR/ is true and AEN/ is false, thus making the output of 5AA the effective input to 3AA and 4AA, where the output of 5AA is the set of row addresses for the refresh cycle. (5AA is a binary counter clocked by COUNT, which is generated by the Refresh Cycle Control Circuitry (see Section 4.5.4.2) for the purpose of clocking this counter. The output of 5AA is inverted at 3AA and 4AA and placed on the memory address lines MA0-MA7 as row addresses for the refresh cycle.

For I/O Selection, ADR0/-ADRF/ are inverted at $1 A B$ and $1 A C$ and sent to the I/O Selection Circuitry (see Section 4.5.1.2).

2. 1/O Selection Circuitry

Reference: Schematic No. 112640, Sheet 7

I/O selection (IOSEL true) provides access to the data port that contains parity error information (see Parity Error I/O Port and Interrupt Circuitry, Section 4.5.3.2). IOSEL is true depending on the contents of ADOO-ADOF (ADRO/-ADRF/ inverted) and the configuration of various jumpers.

AD00-AD03 can be (individually) either high or low for I/O selection (IOSEL true), depending on the state of jumpers W1-W4. If one of these jumpers (say W_{2}) is connected, then its corresponding address line (ADO1) needs to be low for I/O selection. Correspondingly, if a jumper is not connected, then its associated address line needs to be high for selection.

LOE/ enables/disables passage to/from DAT0/-DAT7/ (via 1S); HOE/ enables/ disables passage to/from DAT8/-DATF/ (via IU); SWE/ enables/disables swapping of data between the lines connected to DAT0/-DAT7/ and the lines connected to the high (odd) bank.

WEL/ and WEH/ are set as shown for write operations to enable the memory chips for a write operation. WEL/ true enables the low (even) bank; WEH/ true ena bles the high (odd) bank.

RDSEL/ is true for a read operation (MEMR or MRDC/ is true, INHI/ is false, and BDSEL is true). RDATOE/ is true whenever RDSEL/ is true unless BHEN/ is false and ADOO is true.

RDSEL/ has two functions in terms of data transfers: It determines the direction of the flow of data at $1 S$ and $I U$ (from the board to the Multibus if RDSEL/ is true; in the opposite direction if RDSEL/ is false). At $2 U$ it enables the data from the high (odd) bank onto lines BDAT8/-BDATF/. (This means that for a read operation data from the high bank is always passed onto these lines, since for a read operation both banks are always read.)

RDATOE/ enables/disables passage of data from the low bank to lines BDAT0/BDAT7/. During a read operation, data is allowed to pass unless BHEN/ is false and AD00 is true - the transfer is between DAT0/-DAT7/ and the high bank. In the latter case, data from the high bank is swapped from lines BDAT8/-BDATF/ to BDAT0/-BDAT7/, and in this case it is necessary to keep data from the low bank off lines BDAT0/-BDAT7/, which is the function performed by 2R when RDATOE/ is false.

LATCH/ (the Enable inputs to 2 R and 2U) is used to latch the data from the memory chips approximately 300ns af ter MRDC/ becomes valid.

Figure 4-2. Memory Address Line Groups

The Control Signal Generation Circuitry generates three other signals:

RDSEL
 LWE
 HWE

RDSEL is RDSEL/ inverted. This signal is routed to the Cycle Timing and Delay Circuitry (see Section 4.5.4.3). LWE and HWE are a function of BHEN/ and AD00. The relationship is as follows:

BHEN/	AD00	LWE	HWE
F	F	T	F
F	T	F	T
T	F	T	T
T	T	F	T

These two signals (LWE and HWE) are routed to the Parity Error I/O Port and Interrupt Circuitry (see Section 4.5.3.2).

4.5.3 Parity Circuitry

The parity circuitry is contained in two blocks: (1) Parity Generation and Parity Data Flow Circuitry and (2) Parity Error I/O Port and Interrupt Circuitry. Each is discussed below.

1. Parity Generation and Parity Data Flow Circuitry

Reference: Schematic No. 112640, Sheet 5

During a write operation, parity is normally generated and stored as follows: Data comes in over DAT0/-DAT7/ or DAT8/-DATF/ or both. It is then routed to 1P or IV or both (9-bit Parity Generators/Checkers). The Parity Generator(s)/Checker(s) then generate odd parity bit(s) \sum_{0}. For normal operation of the board, W43 is not connected, so that the signal ONBRD is pulled high. The result is that the parity bit(s) generated by the Parity Generator(s)/Checker(s) is (are) inverted and placed on LPAR/ and/or HPAR/ and strobed into the memory chips along with the corresponding data.

4.5.2 Data Circuitry

1. Transfer and Swapping Circuitry

Reference: Schematic No. 112640, Sheets 3 and 5

Data transfers are between the following and may be in either direction:

1) Multibus data lines DAT0/-DAT7/, or DAT8/-DATF/, or both DAT0/DATF/ and DAT8/-DATF/.
2) a low (or even) bank of memory chips or a high (or odd) bank of memory chips or both a low (even) and a high (odd) bank.
$1 \mathrm{~S}, 1 \mathrm{U}, 1 \mathrm{~T}, 2 \mathrm{R}$, and 2 U (in conjunction with the control signals RDSEL/, WEL/, WEH/, LOE/, HOE/, SWE/, RDATOE/, and LATCH/) control the passage of data to and from these points. IS, IU, and IT are octal bus transceivers with inputs for determining the direction of a transfer and inputs for enabling/disabling the device. $1 T$ is used for the purpose of swapping data in the case that data intended for the high (odd) bank is transferred over DAT0/-DAT7/, or data intended for DAT0/-DAT7/is transferred from the high (odd) bank.

2. Control Signal Generation Circuitry

Reference: Schematic 112640, Sheets 3, 4, and 5

The control signals used by the Transfer and Swapping Circuitry are the following:

```
LOE/
HOE/
SWE/
WEL/
WEH/
RDSEL/
RDATOE/
LATCH/
```

With the exception of LATCH/, which is generated by the Cycle Timing and Delay Circuitry (see Section 4.5.4.3), these signals are generated as a function of BHEN/ and AD00. Table 4-3 shows the relationship between BHEN/ and AD00 and these signals.

4.5.4 Memory/Refresh Cycle Circuitry

The Cycle Timing and Delay Circuitry, which generates various time-related control signals for memory and refresh cycles, is activated by the Memory Cycle Control Circuitry and the Refresh Cycle Control Circuitry. Each of these three blocks is discussed below.

1. Memory Cycle Control Circuitry

Reference: Schematic No. 112640, Sheet 2

When CI goes true and is latched, a memory cycle begins. This occurs when MRDC/ or MWTC/ goes true and

BDSEL is true (BMPRO is false and BDSEL/ is true),
REFREQ/ is false, and
BUSY/ is false (explained in Section 4.5.4.3).

NOTE

Input 10 to 4A (the wired AND of outputs 6 and 8 of the NAND-gate 3C) is effectively the SET input to an R-S flip-flop; input 2 to 3 A is effectively the RESET input to the same flip-flop (see Figure 4-4).

530-007

Figure 4-4. R-S Flip-Flop in Memory Cycle Control Circuitry

Table 4-3. Control Signals and Data Transfer Types

BHEN/	AD00	Both Read and Write			$\begin{gathered} \text { Write Only } \\ \text { (MWTC/ True) } \\ \hline \end{gathered}$		$\begin{gathered} \text { Read Only } \\ \text { (MRDC/ True) } \\ \hline \end{gathered}$		Description of Transfer (Read or Write)
		LOE/	HOE/	SWE/	WEL/	WEH/	RDSEL/	RDATOE/	
F	F	T	F	F	T	F	T	T	DAT0/-DAT7/ to/from low (even) bank
F	T	T	F	T	F	T	T	F	DAT0/-DAT7/ to/from high (odd) bank
T	F	T	T	F	T	T	T	T	DAT0/-DAT7/ to/from low (even) bank and DAT8/-DATF/ to/from high (odd) bank
T	T	F	T	F	F	T	T	T	DAT8/-DATF/ to/from high (odd) bank

Phase 1: SET goes low, CI goes high, SET goes immediately high again.
Phase 2: RESET goes low, causing CI to go low (inactive).
Phase 3: SET is held high during this period (to end of cycle).
Phase 4: Cycle ends.

In addition to initiating a memory cycle, as previously mentioned, CI has one other function. It is routed to the RAS circuitry, where in conjunction with AD11 and HALF/FULL, it activates one of RAS0/-RAS3/. (AD11 and HALF/FULL select the particular row to be activated).

2. Refresh Cycle Control Circuitry

Reference: Schematic No. 112640, Sheet 8

The Refresh Cycle Control Circuitry generates five signals. They are:

COUNT
REFREQ/
REF/
REFADR/
AEN/

These signals are generated as follows:

If W44 is connected and ONBRDREF (P2-10) is false, or alternatively if W45 is connected, the refresh cycle pulse is generated from off the board and sent over OFBRDRQ (P2-40). (In this case, W46 must also be connected.) If W44 is connected and ONBRDREF is true, or if neither W44 nor W45 is connected, then the refresh pulse is generated on-board by 2 N . This pulse is then sent to the J-K negative-edge-triggered flip-flop 2 H , which generates COUNT, which clocks the cascaded 4-bit binary counter 5AA, and REFREQ/ (the inversion of COUNT), which is routed to the Memory Cycle Control Circuitry for the purpose of holding off memory cycles during a refresh cycle. These two signals are generated without delay at the time of the refresh pulse.

REF/, REFADR/, and AEN/ are generated from the delay circuitry 2L. COUNT is routed to the delay circuitry, and if CI/ and CLRREF/ are both false, a low

During a read operation, the parity bits are read out of memory as LPARO/ and HPARO/, (re)inverted at IY, and fed back into the Parity Generators/Checkers. If an error is detected, LERR or HERR or both will be high. LERR and HEFR are both routed to the Parity Error I/O Port and Interrupt Circuitry (see the next section).

2. Parity Error I/O Port and Interrupt Circuitry

Reference: Schematic No. 112640, Sheet 8

With one of the jumpers W35-42 connected, an interrupt will occur upon a parity error, and data related to the error becomes available to the user. Here is how this works:

Suppose there is a parity error in data read from the low bank or the high bank or both. Then LERR or HERR or both will be high. Suppose, for example, the error is in the high bank. Then HERR will be high. HWE will also be high, since HWE is high whenever a transfer occurs to/from the high bank. This will produce a high input to the quad D-type flip-flops IM (ID input on pin 4).

This value will be clocked and latched when ERRLTCH (see Cycle Timing and Delay Circuitry, Section 4.5.4.3) goes true (approximately 320 ns after the beginning of the read cycle), and the result will be a high output from the OR gate at 3B. This will in turn cause an interrupt to occur and will also result in disabling the clocking of the quad D-type flip-flops at 1 M until after it is cleared.

At the point that the interrupt occurs, parity-related da.ta (LERR if LWE is true, HERR if HWE is true, ADII and HALF/FULL) is available on the Q output lines from the quad flip-flops, and this data may be read by placing the addresses for the $1 / O$ port on the address lines and setting IORC/ true. This will enable the passage of data from the inputs of line drivers at 1 N onto the Multibus data lines DAT0/, DAT1/, DAT2/, and DAT3/. The data will remain latched at 1M (the quad flip-flops) until it is cleared, which must be done to avoid an interrupt occurring in the next cycle. Clearing the interrupt is done by placing addresses for the I/O port on the address lines and setting IOWC/ true. This clears the data from the "port" and allows ERRLTCH to function again as a clock to the quad flip-flops IM. Note that INIT/ true also clears the I/O port.

Figure 4-6. Simplified Block Diagram of Memory/Refresh Control Circuitry

NOTE

BUSY/ is a function of two signals: CI from the Memory Cycle Control Circuitry, and the 60 ns delay signal from delay circuit IE (a total delay of approximately 160 ns from the beginning of the cycle).

RESET, mentioned previously in the section on the Memory Cycle Control Circuitry, is the AND (an OR drawn on the schematic at 3 B as an AND with negative logic) of two signals: the 60 ns and 160 ns delay signals from delay circuit IE (approximate total delay of these signals is, respectively, 160 ns and 260ns).

Before a cycle is begun, SET and RESET are high. When a cycle is initiated, SET goes low, which causes CI to go high and to be latched. C1/ is asserted which, through a series of SO8 gates (3D), disables the NAND gate (3C) that generates SET. This is done to keep SET high until the end of the current cycle, since a new cycle could begin when RESET goes high (at approximately 480 ns) if CYCLE (MEMR or MEMW) is still active. (That is, since RESET is high at 480 ns , if SET were allowed to be low at this time, Cl would go high (true), initiating a new cycle, which is not desired.) The following diagram (Figure 4-5) shows the approximate timing of RESET, SET, CI, and CYCLE.

NOTE
The timing for RESET is explained in Cycle Timing and Delay Circuitry, Section 4.5.4.3.

530-008

Figure 4-5. Approximate Memory Cycle Timing

NOTE

CI true, along with AD11 and HALF/FULL (AD12), activates the RAS Circuitry for a memory cycle (see Section 4.5.5.1).

4.5.5 Address Strobe Circuitry

The Address Strobe Circuitry consists of the RAS (Row Address Strobe) Circuitry and the CAS (Column Address Strobe) Circuitry. Each is discussed below.

1. RAS Circuitry

The inputs to the RAS Circuitry, as shown in Figure 4-1, are AD0F, AD10, CI, and REF/. The outputs are RASO/-RAS3/.

The RAS Circuitry may be activated either for a memory cycle with inputs CI from the Memory Cycle Control Circuitry (Section 4.5.4.1) and AD11 and HALF/FULL. (AD12) from the Address Routing Circuitry (Section 4.5.1.1), or it may be activated for a refresh cycle with input REF/ from the Refresh Cycle Control Circuitry (Section 4.5.4.2).
a. For a memory cycle, CI is asserted true when MRDC/ or MWTC/ is asserted true. CI remains true until RESET goes low. With CI true, ADII and HALF/FULL (ADI2) determine which signal, RAS0/-RAS3/, will be asserted true. (AD11 and HALF/FULL (AD12) are the A and B inputs, respectively, to the Dual 2-4 Line Decoders/Multiplexers 4B.) With CI true, the following table shows the relationship between AD11, HALF/FULL (AD12) and RAS0/RAS3/.

ADI1 HALF/
FUDL2)

L	L	L	H	H	H
L	H	H	L	H	H
H	L	H	H	L	H
H	H	H	H	H	L

signal is sent to the delay circuitry 2L. COUNT (and REFREQ/, which is the inversion of COUNT) is maintained true (high) until CLRREF/ goes true (CLRREF/ is generated by the Cycle Timing and Delay Circuitry), which clears the previously mentioned flip-flop and sets COUNT (and REFREQ/) false. When COUNT (REFREQ) goes false, the input to the delay circuitry then goes high. REF/ goes true 70ns after COUNT (REFREQ/) goes true, and REFADR/ goes true and AEN/ goes false 40ns after COUNT (REFREQ/) goes true.

REF/ is routed to the Cycle Timing and Delay Circuitry, where it initiates the refresh cycle. When CLRREF/ goes true (220 ns after REF/ goes true), the J-K flip-flop (2H) is cleared, making COUNT (REFREQ/) go false. 40ns later, REFADR/ goes false and AEN/ goes true, and 70ns later, REF/ goes false.

In addition to being routed to the Cycle Timing and Delay Circuitry, REF/ is also routed to the RAS Circuitry (Section 4.5.5.1). There, when it is true (low), REF/ causes RASO/-RAS3/ to be all true. Both REFADR/ and AEN/ go to the Address Routing Circuitry (Section 4.5.1.1), where REFADR/, when true, enables the refresh address from the cascaded 4-bit binary counter 5AA onto the memory chip address lines (MAO-MA7) and AEN/, when true, enables the memory cycle row or column addresses onto the memory chip address lines (MAO-MA7).

3. Cycle Timing and Delay Circuitry

Reference: Schematic No. 112640, Sheets 2 and 4

Figure $4-6$ is a simplified block diagram of the Memory Cycle Control Circuitry, the Refresh Cycle Control Circuitry, and the Cycle Timing and Delay Circuitry.

XACK/ is set up to go true for two events - a memory cycle or an I/O command. (I/O commands are issued here either to read parity error data or to clear it).

In the case of a memory cycle, acknowledges work as follows: EXTDCY goes true for the memory cycle, while IOCMD/ and BINH/ are both false. This enables the outputs 8 and 6 of the buffer gates 5A.

NOTE
Depending on to which part of the delay circuitry E. 10 is jumpered (the part where the delay signal is active low or the part where it is active high), El2 will be connected to E13 or E11. (If E10 is connected to the active low part, E12 and E13 will be connected; if E. 10 is connected to the active high part, E12 and Ell will be connected).

When TXACK goes active (high or low), it will clock the flip-flop 5B, causing the output $\overline{\mathrm{Q}}$ to go low and $\mathrm{XACK} /$ to go true.

In the case of an I/O command, the Acknowledge Circuitry works as follows: IOCMD/ goes true (IOSEL and IOWC/ or IORC/ go true), enabling outputs 11 and 3 of the buffer gates 5A. At the same time, XACK/ goes true with IOCMD/ true.

XACK / is false for refresh cycles (that is, refresh cycles are not acknowledged). The logic is as follows: During a refresh cycle, CYCLE is false, clearing the flip-flop 5B and setting \bar{Q} high. If the buffer gates $5 A$ are enabled, then XACK/ is set false; if 5A are disabled, then a high-impedance state is the result, and again XACK/ is not true.

A cycle may be initiated either by the Memory Cycle Control Circuitry when MRDC/ or MWTC/ is asserted true, or by the Refresh Cycle Control Circuitry when a refresh pulse is generated and REF/ goes true.

In the case of a memory cycle, when MRDC/ or MWTC/ goes true, CI goes true and a cycle begins. CI then goes false when RESET goes low and the input to delay circuit 2E goes high.

In the case of a refresh cycle, a refresh is initiated, as previously stated, by a refresh pulse, which causes REF/ to go true after a delay determined by jumper E19. REF/ stays true until CLRREF/ goes true and causes REF/, after the same period of delay (that determined by E19), to go false.

LATCH/ is used for latching output data from the memory chips (2R or 2 U or both).

ERRLTCH causes the parity related data (LERR, HERR, ADOF, ADIO) to be clocked into and latched at the Parity Flag Register I/O Port (IM).

NOTE

ERRLTCH will go true only if RDSEL is true.

LATCH/ and ERRLTCH are both cleared when CYCLE (OR of MRDC/ inverted and MWTC/ inverted) goes false.

For a memory cycle, the signal on the line from the E17 jumper connection, which will be referred to as TCAS/, goes to the CAS Circuitry (Section 4.5.5.2), causing CASO/ and CASI/ to both go true when the drivers at 2D have been enabled (which occurs when CI/ goes true and REFADR/ is false).

HIGH BANK (LEFT SIDE) LOW BANK (RIGHT SIDE)																		
ROW 0	6 2	6 \mathbf{Y}	6 \times	6 \mathbf{w}	V	6 0	6	(6	6 R	6	6 \mathbf{N}	6 M	- 6	K	6	6 \mathbf{H}	6	E
ROW 1	5 \mathbf{z}	5 Y	5 \times	5 \mathbf{w}	5 \mathbf{v}	5 \mathbf{u}	5	5 \mathbf{s}	(5	5	5 \mathbf{N}	5 \mathbf{M}	5	5 K	5 J	5 \mathbf{H}	5	E
ROW 2	4 \mathbf{z}	4 Y	4 \times	W	4	4 4	4	4 S	4	4	4 N	4	4	4 K	4 J	4 H	F	4
ROW 3	3 \mathbf{z}	3 \mathbf{Y}	3 \times	3 \mathbf{w}	3 v	3 \mathbf{u}	3	3 \mathbf{S}	3 \mathbf{R}	3 \mathbf{P}	3 \mathbf{N}	3 \mathbf{M}	3	3 \mathbf{K}	3	3 \mathbf{H}	3	3

530-010

Figure 4-7. Memory Chip Layout on iSBC 012B Board, Showing, Rows 0-3 and the Low and High Banks

Viewed as a single block, Figure $4-8$ shows the input and output signals to/from the Memory Area.

530-011

Figure 4-8. Memory Area Shown as a Block With Input and Output Signals

$$
4-38
$$

NOTE

HALF/FULL is jumpered to ADI2 at manufacture time.
b. For a refresh cycle, REF/ true disables the driver 2D, making one of each set of the two inputs to the positive-NAND buffers 4D high. REF/ true also causes the outputs from all four positive-NAND gates 4 C (shown on the schematic as OR gates with negative inputs) to be high. Thus RASO/-RAS3/ go true with REF/ and are turned off when REF/ goes false.

2. CAS Circuitry

There are three inputs to the CAS Circuitry: TCAS/ (see Section 4.5.4.3), CI/, and REFADR/. There are two outputs: CASO/ and CASI/. The latter are activated simultaneously.

TCAS/ comes from the Cycle Timing and Delay Circuitry and is driven onto CASO/ and CASI/ by the line drivers at 2D when these drivers are enabled. These drivers are enabled when CI/ is true and REFADR/ is false, i.e., for a memory cycle; they are disabled when CI/ is false and REFADR/ is true, i.e., for a refresh cycle.

4.5.6 Acknowledge Circuitry

Reference: Schematic No. 112640, Sheet 2

As shown in Figure 4-1, the inputs to the Acknowledge Circuitry are the following:

```
EXTDY
IOCMD/
BINH/
CYCLE
TXACK - signal on line from E10 (not named on schematic)
```

The output of the Acknowledge Circuitry is the one signal XACK/, the standard Multibus acknow ledge signal.

4.5.7 Memory Protection Circuitry

Reference: Schematic No. 112640, Sheets 2 and 4

The Memory Protection Circuitry is designed to prevent memory cycles during battery backup in periods of uncertain power.

The Memory Protection Circuitry has two inputs, MPRO/ and CLRREF/, and one output, BMPRO.

MPRO/ is the memory protection signal from the Multibus. CLRREF/ is the "clear refresh" signal from the Cycle Timing and Delay Circuitry (Section 4.5.4.3).

BMPRO, the output, is routed to IY (the positive NOR gate shown as an AND-type gate), where it, in conjunction with BDSEL/, creates BDSEL. BDSEL is true only if

BMPRO is false, and
BDSEL/ is true.

BDSEL goes to the Memory Cycle Control Circuitry, allowing new cycles to begin if true, preventing them when false. The logic works as follows: Suppose MPRO/ goes true. If a cycle (memory or refresh) is in progress, BMPRO goes true at the end of CLRREF/ (when CLRREF/ goes false again). If no cycle is in progress, then BMPRO goes true when CLRREF/ goes false at the end of the next cycle (which may be either a memory or a refresh cycle, depending on which occurs first). BMPRO then inhibits memory cycles until MPRO/ goes false and, at the end of a refresh cycle, CLRREF/ goes false.

4.5.8 Memory Area

Reference: Schematic No. 112640, Sheet 3

The Memory Area consists of either 2 rows (0 and 1) of 18 RAM chips (iSBC 056B) or 4 rows (0-3) of 18 RAM chips (iSBC 012B). (See Figure 4-7.)
2. Make sure the board is properly seated in the chassis. (If the optional P2 connector is used, make sure that it, as well as the PI connector, seats properly.
3. Look for obvious causes of failure, such as faulty connectors, loose wires, etc.
4. Check the inputs to the board. The I/O connections are listed in Table 2-4 for the P1 connector and in Table 2-5 for the P2 connector. (Check that waveforms and timing are correct.)
5. Check that jumper connections and switch settings are properly set. (See Section 2.8 for jumper connections and Section 2.9 for switch settings.)
6. Check for a failing memory chip as described in the next section (Section 5.4).

5.4 ISOLATING A FAILING MEMORY CHIP

Suppose a parity error occurs. By reading the parity error I/O port, it is possible to determine the row and the bank in which the error lies.

If DAT0/ is high, the error is in the low bank; if DAT1/ is high, the error is in the high bank. DAT2/ is AD11 and DAT3/ is HALF/FULL (AD12). The row in which the error lies can be determined from the following table.

AD11	HALF/ FULL (AD12)	Row (0-3)
L	L	0
H	L	1
L	H	2
H	H	3

MA0-MA7 are the address inputs (A0-A7) for the memory chips.

RASO/-RAS3/ are the row address strobe inputs (RAS/), respectively, for the chips in "rows" 0-3 as shown in Figure 4-7.

CASO/ is the column address strobe inputs (CAS/) for the chips in "rows" 0 and 1 as shown in Figure 4-7; CASI/ is the column address strobe inputs for the chips in "rows" 2 and 3.

WEL/ is the write ena ble input (WE/) for the chips in the low bank as shown in Figure 4-7; WEH/ is the write enable input for the chips in the high bank as shown in Figure 4-7.

BDAT0/-BDAT7/ are the data inputs (DIN) for, respectively, chips E, F, H, J, K, L, M, and N in the low bank; LPAR (the parity bit for BDAT0/-BDAT7/) is the data input (DIN) for chip P in the low bank. BDAT8/-BDATF/ are the data inputs (DIN) for, respectively, chips $\mathrm{R}, \mathrm{S}, \mathrm{T}, \mathrm{U}, \mathrm{V}, \mathrm{W}, \mathrm{X}$, and Y in the high bank; HPAR (the parity bit for BDAT8/-BDATF/) is the data input (DIN) for chip Z in the high bank.

RDATO/-RDATF/ are the data outputs (DOUT) from, respectively, chips E, F, H, J, $\mathrm{K}, \mathrm{L}, \mathrm{M}$, and N in the low bank; LPARO/ (the stored parity bit for RDAT0/-RDATF/) is the data output (DOUT) from the chip P in the low bank. RDAT8/-RDATF/ are the data outputs (DOUT) from, respectively, chips R, S, T, U, V, W, X, and Y in the high bank; HPARO/ (the stored parity bit for RDAT8/-RDATF/) is the data output (DOUT) from chip Z in the high bank.

NOTE

RAS0-RAS3 are wired, respectively, to 'rows' 0-3, and therefore activate these rows.

CASO/ and CASI/ are activated simultaneously because of the nature of the CAS circuitry (see Section 4.5.5.2). CASO/ is wired to 'rows' D and 1; CASI/ is wired to 'rows' 2 and 3. Therefore, all four 'rows' are activated simultaneously.

SECTION 5

MAINTENANCE

5.1 INTRODUCTION

This section contains information related to preventive maintenance, troubleshooting, and service and repair.

Recommended maintenance is listed in Tables 2-1 and 2-2 in Section 2.

5.2 PREVENTIVE MAINTENANCE

Table 5-1 lists the preventive maintenance activities that should be routinely performed to ensure satisfactory operation of the iSBC 012B memory board.

Table 5-1. Preventive Maintenance Activities

Item	Maintenance Frequency	Action
System power supply voltages	Every 90 days	Adjust the system power supply voltages to comply with the values specified in Section 2.5.
Cooling system air filters	Every two to four weeks	Clean as required.

5.3 TROUBLESHOOTING

If a problem arises, the following general procedure should be performed.

1. Check the power supplies, making sure they comply with the specifications of Section 2.5.

SECTION 6

ENGINEERING DOCUMENTS

6.1 INTRODUCTION

This section contains an assembly drawing, a parts list and a schematic diagram for the iSBC 012B memory board.

Drawing Number	$\underline{\text { Description }}$
112642	Assembly Drawing
112739	Parts List
112642	Parts List
112640	Schematic Diagram

6.1 ASSEMBLY DRAWING, PARTS LIST AND SCHEMATIC DIAGRAM

See following pages.
4. Inspection will usually be made within several days. The inspector will usually be from an agency which specifically handles inspections for the carrier. The inspector will try to ascertain two points: a) a description and the degree of damage; and b) who was responsible for damage, that is, whether it is shipper's or carrier's negligence. It will also be necessary to have someone present at the time of inspection who is aware of the damages. After the inspection is made, a copy of the report will be given to the consignee. The claim can then be filed with the insurance company.
5. Claim forms can be obtained from the inspector or from the carrier. Upon completion of the claim form, submit the following documents to the carrier for disposition:
a. Copy of the claim form
b. Copy of the inspection report
c. Copy of the original invoice
d. Copy of the packing slip
e. Copy of the freight bill
f. Copy of the repair cost estimate
g. Any other information which might be helpful, such as photographs.

NOTE

It is the responsibility of the party which had legal ownership of the freight during transportation to file the claim.

APPENDIX A

FILING A FREIGHT CLAIM

The following procedures are required to obtain a quick and precise settlement of a freight claim with any carrier.

1. Notify Intel Corporation, Memory Systems Operation, Marketing, of the damage in order to begin claim procedures with Intel's insurance company.
2. List any discrepancies on both consignee's and carrier's copy of the freight bill (such as missing packages, damages to the container, or anything seeming out of the ordinary). Many freight claims are denied because the freight bill is signed off as being clear of any damages. Initial the carrier's copy and have the carrier initial the consignee's copy.
3. If any damage is found:
a. Save the container.
b. Hold the damaged articles until an inspection has been made by an authorized agent.
c. Do not move or transport articles from the immediate area.
d. Notify the carrier of damage and request an inspection.
e. Photograph the damage, if possible.
f. Obtain copies of:
1) Freight Bill
2) Invoice
3) Packing List

Use the following numbers for contacting the Intel Product Service Hotline:

TELEPHONE:

All U.S. locations, except Alaska, Arizona, \& Hawaii:

(800) 528-0595

All other locations:
(602) 869-4600

TWX NUMBER:

910-951-1330

Always contact the Product Service Hotline before returning a product to Intel for repair. You will be given a repair authorization number, shipping instructions, and other important information which will help Intel provide you with fast, efficient service. If you are returning the product because of damage sustained during shipment or if the product is out of warranty, a purchase order is required before Intel can initiate the repair.

In preparing the product for shipment to the Repair Center, use the original factory packing material, if possible. If this material is not available, wrap the product in a cushioning material such as Air Cap TH 240, manufactured by the Sealed Air Corporation, Hawthorne, N.J. Then enclose in a heavy duty corrugated shipping carton, and label "FRAGILE" to ensure careful handling. Ship only to the address specified by Product Service Hotline personnel.

NOTES: UNLESS OTHERWISE SPECIFIED

1. THIS DOCLMENT AND SIIB-ASSY DRAWING ARE TRACKING DOCUMENTS.

