
liODEL:

ROWS:

COLUMNS:

ELEMENTS:

UNIQUE ELEMENTS

STARTING BAS IS

00 OPTIMIZATION TIME
-.J

CPU SECONDS

ELAPSED TIME, IIM:SS

ELAPSED TIME DIFFERENCE

,

PBRDSB/XIIP

~IIUJIG RBSOL~

IBM 3033

10 periods

254

475

1802

581

WHIZARD XMP

NO NO

3.4 N/A

00:53 01:00

7 seconds

BASE +13

25

20 periods

504

955

3622

1119

WHIZARD XMP

NO NO

8.3 N/A

01:57 04:45

2 min 48 sec

BASE +143

SESSION REPORT ---
i5SHARE§ ---

61 A216 75
SHARE NO. SESSION NO.

Considerations in Designing a GML Application
SESSION TITLE ATTENDANCE

Document_ CompQJl.i;t;lQlL _____ . _______ . __ Sharon Adler
---.-------~-

PROJECT SESSION CHAIRMAN

Boeing Computer Services, 7970 Gallows Ct, Vienna, VA 22180 (703) 827-4629
- - - ------.----.-.-----------------~------------..

SESSION CHAIRMAN'S COMPANY. ADDRESS, and PHONE NUMBER

Considerations in Designing a GML AppHeation

Truly Donovan

reM Corporation
555 Bailey Avenue

San Jose, California 95150

DOCUMENT COMPOSmON PROJECT

Session Number A216

BCG
INST.CODE

SHRM'::-730-1/81

00
C::>

2

Abstract:

This presentation focuses on the practical considerations in designing a major GML (Generalized
Markup Language) application to support a wide range of users producing a number of different
document types on a range of output devices. In addition to the near-term objective of producing
formatted documents in a cost-effective way, the design must address potential long-term uses of the
text that is being created today.

The speaker is a member of the team working on the design of IBM's internal GML application, and
will use that design as the basis for discussion.

Introduction

Starting in 1977, we formed an interdivisional committee, consisting primarily of publications personnel, to
undertake the design of a common Generalized Markup Language (GML) application for use throughout
the IBM internal publishing community - that is, the people who produce the user manuals and service
manuals that support our products. Although our focus was, and continues to be, on the needs of the pub
lishing arena, it was also apparent that our requirements represented a superset of many of the document
processing needs of the corporation in general, and that we were in fact addressing a broader User group on
a wider range of documents.

In 1977, however, manuals alone was a sufficient challenge.

The resulting design and implementation is kuown as "ISIL," for "Information Structure Identification Lan
guage," and that's how I will be referting to it from now on.

DFSIGN OBJECTlJ'ES

A COMMON SYSTEM:

DOCUMENT PORTABILITY
WIDE RANGE OF DOCUMENTS
BROAD USER BASE
USER PRODUCTIVITY
REDUCED TRAINING
REDUCED DEVELOPMENT INVESTMENT
LONG DOCUMENT LIFE

There was nothing at all exotic about our objectives. First and foremost, we needed a common system _
I'll return to the subject of commonality later.

Docuntent portability was itself a sufficient motivation to undertake this effort. The Jack of it had been a
major source of frustration and wasted resource.

3

The other objectives grew in importance as we came to realize just how much was possible with the direc
tion we had taken - that is to say, how much a good GML design was going to buy for us.

The documents we support cover everything from a half-page list of things to do to an 800-page complex
manual. Our users range from the casual and occasional to the full-time publications production expert.

User productivity had to be considered as well, given the enormous volume we produce. And we have expe
rienced a quantum jump in productivity. Similarly, we have reduced the user training requirement in two
areas: ISIL is easier to learn and to use than anything we've had in the past, and because it is common,
users don't have to be retrained when they move to a new environment.

Of course a common system means a single development and maintenance effort, and the benefits of that
are obvious.

Finally, we needed a system that would carry us forward into the future. Many of our documents have a life
expectancy - the time for which they are ac;tive and subject to revision - of perhaps ten years or more. (I
was impressed by that until I learned that aircraft maintenance manuals have a life expectancy of 25 years.)
Many of the books in my own organization have been through at least two "conversions" from one text
processing system to another. I don't have to tell you how unsatisfactory an activity that is.

Let's return for a moment to the subject of commonality. If everyone used, say, native SCRIPT/VS format
ting controls, that could be said to be a "common system." But that level of commonality is totally inade
quate to our needs.

A "COMMON" SYSTEM

COMMON SOURCE FILE MARKUP

INDEPENDENT OF SPECIFIC FORMATTING CONTROLS

READABLE AND READILY UNDERSTANDABLE

NOT NECESSARILY A COMMON OUTPUT APPEARANCE

We needed a common source file markup, but one that was independent of specific formatting contruls.
Specific formatting controls are just barely portable within a single organizational entity, and then only if
you dictate strict markup protocols. They become distinctly unportable when you pIng in a new output
device, or just change your mind about how things should look on the output page on the old device.

Furthermore, portability does not mean simply the ability to process the document with some reasonable
output result. It also means that someone else can read the source files and readily understand the markup
(our source files pass through many hands in the course of their life). A string of formatting controls does
not pass this test.

w
w

4

Understand that we were not particularly motivated by the desire to achieve a single output appearance
across all documents. That is, of course, an objective that is readily met with a GML implementation. We
were motivated instead to achieve multiple output appearances from a common markup. This requires a lit
tle more sophistication in your GML implementation.

In fact, in the six years since we began our work, the need to support dramatically different output appear
ances has grown substan~y.

Document Types

ISIL currently supports five document types:

ISIL DOCUMENT TYPEY

general documents (GDOC)

user manuals (USERDOC)

maintenance library part-number-controlled documents
(MLPNDOC)

maintenance library form-number-controlled documents
(MLFNDOC)

standards documents (STDDOC)

general documents (GDOC)
This is as defined by the Document Composition Facility (DCF) starter set. Although
many of the tags we've added could be considered of a "general document" nature, we
decided as a practical matter to limit the definition to the starter set.

The implementation does not police this definition, however. That is, a document defined
as a GDOC (general document) can contain tags that are outside the general document
definition, and ISIL processes them correctly without a murmur. We're not too concerned
about this, because it is a trivial matter to convert a GDOC to a USERDOC, and we don't
currently see any exposure in tolerating USERDOC tags in a GDOC. If we ever had to, we
could police the definition and force the conversion.

nser manua1s (USERDOC)
This is the c1assification for user manuals for both hardware and software. It is the ISIL
default document type. A document that does not otherwise declare itself is treated as a
USERDOC.

5

It is also, in a sense, the ISIL "general document" or perhaps even "universal document."
That is, users who are producing documents of a type that we do not explicitly support -
for example, programming functional specifications - use the USERDOC definition.

maintenance library part-numher-controUed documents (MLPNDOC)
This is one of two document types recognized for maintenance library mannals.

maintenance library form-numher-controUed documents (MLFNDOC)
This is the other document type recognized for maintenance libfB'"Y manuals.

standards documents (STDDOC)
Standards documents do not represent a very large volume, as compared to some of the
other things we do, but they are created at many differen! locations and require a common
output appearance. This was a natural for "ISILization." Adding this document type
involved creating ouly two new tags that are unique to the document type; they are format
ted differently from USERDOCs, but use the same "core" tag vocabulary.

With respect to those document types that we do not explicitly support, when the formatting requirement
differs at all from what ISIL normally produces for USERDOCs, the primary area of difference is the treat
ment of running headings and footings.

Design Considerations

I'm going to discuss some general design considerations, in these areas:

GENERAL DEYIGN CONSIDERATIONS

HOW MANY TAGS?

HOW MANY ATTRIBUTES?

GENERIC OR SPECIAUZED?

END TAGS?

CONSISTENCY

I will follow that with a discussion of a few of the specific design problems and how we dealt with them.

How Mmry Tags is Too Mony TtItp?

Having posed the question "how many tags is too many tags?," I don't propose to answer it.

~

l..:>
o

6

HOW MANY TAGS IS TOO MANI7

MANY 1HAN
TOO IS BETTER TOO FEW.

I will observe tbat if we're going to err, I would much prefer to err on tbe side of too many tags. When you
don't have a tag for what your user wants to do, tbe user will "corrupt" tbe markup by using tags as format
ting controls to get tbe desired formatting effect. That kind of corruption compromises your text base -
not significant for documents witb a short life expectancy, but very significant for documents witb a long
life.

We were a little slow in making available our tags for programming syntax markUp (keywords and vari
ables), and so our users used high1igbted pbrase tags instead. The formatting effect on tbe device in use at
tbe time, tbe 3800 Modell, was identical. The formatting on tbe devices in use today is radically different.
Understand tbat we have tbousands upon tbousands of instances of programming syntax - and none of
tbat markup would be valid today if we had let tbe use of high1igbted phrase tags continue.

What intrigued me about this experience was how willingly, even eagerly, tbe publishing people in my own
organization went into tbe tben existing markup and corrected it. This was tbe first real evidence -
observed many times since - tbat tbey were committed to ensuring tbe long-term validity of tbose source
files. Of course, these are tbe same people who had done tbe text conversions I mentioned earlier, so tbey
well understood tbe painful implications of short-term markup expediency.

Still anotber example of tbe "too few tags" syndrome was tbat our users originally were using tbe example
(XMP) tag as an escape into unformatted text. We knew tbat in tbe futore we would be setting examples in
a monospace font in an otberwise proportionally-spaced document. We introduced tbe LINES tag as tbe
general tag for unformarted text, and reserved tbe XMP tag for true examples of programming input and
output.

In a similar vein, we had some initial resistance among writers to tbe use of tbe quote tag; again because we
were using tbe 3800 Modell, tbe net effect of tbe quote tag was tbe same as hitting tbe quote key on tbe
keyboard. But keyboard quotation marks are anotber form of corruption of tbe markup when you consider
devices tbat discriminate between open and close quotation marks.

The real question is "how many tags does an individual user have to deal witb, and in what context?"

Tag Counts in ISIL

The last time I made an analysis, we had 206 tags in tbe ISIL vocabulary. But to understand our troe status,
a little more deptb of analysis is required.

7

TAG POPULATION IN ISlL

206 TOTAL

181 USERDOC VOCABULARY

43 ONE PER DOCUMENT

138 REPEATING

125 GENERAL USERS (USERDOC SUBSET)

35 BASIC ISIL

14 ONE PER DOCUMENT

21 REPEATING

There's a small number (about 6) of tbese tags that I consider to be gratuitous. Some of tbese were added
to tbe language to get around a particular implementation restriction; tbe restriction has gone away, but tbe
tags won't.

USERDOCs have a total voCabulary of 181 tags. Of tbose 181 tags, 43 are one-per-book tags (for exam
ple, tbe title page tag), if at all. That leaves'!" witb 138 tags for tbe "body" of tbe book.

We are producing a "general user's guide," as compared to our "publications production guide," tbat docu
ments a subset of tbe user document tags. This eliminates anotber 50-odd tags tbat ate of interest only to
publications people.

Our Basic ISIL for Simple Document. book, which we offer for new and occasional users, documents 35
tags, of which 14 are one-per-document (if at all). The tag set tbat represents tbe bulk of tbe markup for
tbe casual user numbers 21. This 21 covers paragraphs, headings, general fists, highlighting, examples, and
lines - adequate for tbe casnal user, and a good starting point for tbe user who will eventnally move up.

Still, returning to tbe 181 tags tbat can occur in USERDOCs, it's a lot. However, many of tbose tags exist in
a very limited context. For example, oUr tags for messages and codes fists represent almost 10% of tbat
total vocabulary. They are relevant only to someone who is doing such a fist. As you are well aware, tbose
fists can run to several hundred pages for a single product. When you are doing such a fist, tbe tags take a
short time (a marter of minutes) to "learn," but save an enormous amount of time in creating tbe fist.

Anotber instance of this is our question-and-answer tags for independent study manuals. As tags go, tbese
are relatively complex to learn and apply. But tbe number of users who actually do questions and answers is
small and tbese users are specialists in tbe creation of such materiaIs. In any case, tbe tags are not more
complex tban tbe problem dictates.

LO
P

8

The motivations of your users, then, is a major factor in the "too many tags" debate.

While the potential certainly exists for there to be too many tags for even the proficient user to cope with
effectively, I'm not concerned that we've reached that threshold, or even that we will, for this reason:

The vocabulary of "common" tags - tags used by general users - is no longer growing at a runaway rate;
we already have much of what we need. Thus, the bulk of what we will be adding in the future are those,
like the question-and-answer tags, intended for use by specialists.

Furthermore, OUf user documentation is designed so that a using organization can select from a "menu"
those specialist tags that they want included in their local edition of the user's guide. Documentation subsets
are an effective screen against perceived complexity.

How Many Attributes is Too Many Attributes?

Another area in which usability can be profoundly affected is the number of attributes on a particular tag. I
feel that, from a usability standpoint, this question is a far more serious consideration than the general ques
tion of how many tags you have; users are less comfortable with attributes than with tags. How many is too
many is dependent on the nature of the tag. On the paragraph tag, one is too many (or at least one that a
user has to consider very often).

A1TRIBUTE POPULATION IN ISIL

206 TAGS:

107 NO ATTRIBUTES

99 ATTRIBUTES

109 UNIQUE ATTRIBUTES

278 ATTRIBUTE OCCURRENCES

ID OCCURS 34 TIMES

REFID OCCURS 27 TIMES

... BUT ONLY 5 ATTRIBUTES IN "BASIC ISIL"

Of our 206 tags, 107 have no attributes at all. On the other hand, we have 109 unique attributes that can
occur one or more times on the remaining 99 tags, for a total of 278 attribute occurrences in the language.
Most tags that do have attributes have one or two.

9

We have six attributes on our figure tag, and if that is not already the limit for that tag, it is close enough.
One of them, DEPTH, generates white space for artwork; we now have an ARTWORK tag with its own
DEPTH attribute. Had we had that all along, we would not have needed DEPTH on the FIG tag, and
would have only one way to specify depth for artwork, which is generally preferable. Likewise, the LABEL
attribute on the figure tag, which allows for printing an art label in the middle of the space generated by the
DEPTH attribute, would not be needed on the FIG tag.

That would get our attributes on the figure tag itself down to four (ID, PLACE, WIDTH, FRAME), which
seems about right. They are all reasonable variables to deal with on a figure.

As it happens, the defaults on the FIG tag attributes are not optimum for our use; we inherit them from the
starter set, and keep them that way for consistency with the starter set. Left to our own devices, we would
almost certainly default the PLACE attribute to INLINE rather than float TOP. Novice users are always
dismayed the first time they forget to specify the PLACE attribute and their figure takes off on its own.

At the far end of the spectrum, consider our document profile (DOCPROF) tag, which specifies numerous
"style" options for the format of the output document. This tag has 19 attributes - too many by any
standard - and it will almost certainly grow. However, this is a fill-in-the-blanks tag that occurs once per
book, if at all; everything on it defaults to "normal" processing. We simply don't expect our users to
"know" the tag; they only need to know that it exists, the kinds of things it controls, and how to call up the
skeleton when they want it. Our general users, as compared to our publications people, don't even need to
know it exists, and we don't tell them.

Our table tags are another instance where there is a lot to remember (both tags and attributes) for the new
user, and the markup is somewhat finicky. One of our more enterprising users created a "table tag genera
tor" with an XEDIT macro. This gives you a a fill-in-the-blanks screen and then goes off and generates the
tags. Even our experienced users find this a time-saver.

The area in which we've experienced the longest learning curve is indexing. Not coincidentally, indexing is
functionally quite rich, and that function is exercised through attributes.

A1TRIBUTE OCCURRENCES
INDEXING TAGS

11 12 13 IHI IH2 IH3 IREF

ID= X X X X X X
REFID= X X X X X
CIX= X X
PG= X X X X
PRINT= X X X
SEEID= X X X
SEE= X X X

c.D
N

10

Over and above the starter set, we've added one attribute (for cross indexing) on the primary entry tags, and
we've extended the list of tags on which you can use the REFID attribute. This eliminated one seemingly
arbitrary restriction that had been a source of confusion. (It wasn't really arhitrary. When we designed the
starter set tags, we couldn't think of a valid use for it. Now we can.) The indexing tags vary between three
and five attributes apiece, the attributes being selected from a total of seven. Our users have trouble keep
ing track of which attributes go with which tags.

Our users have problems conceptually with the uses of ID and REFID on the indexing tags; a single indexing
tag can have both attributes, and this compounds the confusion. What I've observed with ID /REFID on the
indexing tags is that users tend to overkill, using many more of these attributes than the application requires.

This is not t~ suggest that they can't or don't learn it - it just takes a little longer than most of the other
areas.

While we're on the subject of indexing, I might mention that our cross-indexing attribute (CIX), which
allows our users to associate subordinate entries with multiple primaries, is the one case so far in our lan
guage where we allow multiple occurrences of an attribute on a single tag. Thia is how it looks:

MULTIPLE OCCURRENCES OF THE ClX A1TRIBUTE

:IHI
CIX='starting a session'
CIX='session, starting a'
CIX='initiaIizing a session'.
logon procedure
:I2.entering your userid
:I2.entering your password

initializing a session
entering your password 5
entering your userid 4

logon procedure
entering your password 5
entering your userid 4

session, starting a
entering your password 5
entering your userid 4

starting a session
entering your password 5
entering your userid 4

11

As it happens, the DCF control word (.GS EXATI) that executes attributes will execute as many occur
rences of an attribute as you give it, so nothing special had to be done to implement this. In the case of
CIX, the practical limit is the number of things you can put in the indexing buffer before it breaks.

Our message list and code list tags are two more with a large number of attributes, but they represent a spe
cial case, which I'll talk about in more detail later.

The ID Attribute

The ID attribute is in a category all by itself. The potential exists to put an ID attribute on every tag in a
document; that is, every document element could have its own unique identifier, notwithstanding the fact
that we ouly bother to process selected ones. We currently recognize the ID attribute on 34 tags.

For example, we use an ID attribute on the XMP tag for purposes of tracking examples to verify them; the
ID is related to a particular test case. We can optionally print the ID with the example, but in any case we
can use the cross-reference listing to locate the example in the document. Thia is just a trivial instance of
what might be termed "utility functions" of GML that aren't necessarily manifest in the formatted docu
ment.

Generic Tap V_ SpeciJlliz.etJ Tap

Another source of considerable debate is generic tags versus specialized tags - we have many instances of
both types. For purposes of definition, a generic tag is one that is pUrely structural, with no implications
about its content. For example, HI (beading level 1) is a generic tag. A specialized tag is one that reflects
the content. For example, in ISIL the PREFACE tag is a specialized tag that also has the properties of a
level 1 heading.

GENERIC AND SPEClALlZED TAGS

:H1.PREFACE

:PREFACE.

:H1.WRITER'S LAMENT

:PREFACE.WRITER'S LAMENT

The preface in ffiM manuals is supposed to contain information about the structure and usage of the book.
As such, it is a valid entity that one might want to "operate on" in some application. In the two cases above
the line, one could identify the preface from either instance - although as a general rule, we would want to
identify an element from an analysis of the tag alone, and not from an analysis of the tag and its content.

<.D
VJ

12

However, we do not require that a preface actually be titled "preface" - text supplied with the tag over
rides the generated text. (We have a number of tags, similar in nature to PREFACE, that have this proper
ty.) Thus, in the cases below the line, only the second would be identifiable as the preface. Any application
that went looking for prefaces would fail to find the first one.

No one argues that all tags should be either generic or specialized, but we do examine the issue frequently
when defining the language for an individual document element.

WHEN TO GO "SPECL4IJZED"

USER PRODUCTIVITY

FLEXIBILITY

OTHER USES

RETRIEVAL, SELECTIVE PROCESSING

FUTURE DEVICES

SEARCH ARGUMENTS

TRANSLATION

ETC.

The decision points are basically these:

1. User productivity. Specialized tags (as opposed to generic tags with content) are faster to enter. Our
messages and codes lists tags have about 10 specialized tags for the subheadings we use repeatedly in
these lists - Explanation, User Response, System Action, etc. They represent an enormous saving in
just plain keystrokes.

2. Flexibility. Specialized tags allow you to alter the formatting style for document elements more selec
tively. For example, we have a generic tag, QUALIF, for handling certain kinds of qualification within a
document. We also have an IBMX tag, for IBM extensions to standard languages, that represents a spe
cialized case of the QUALIF tag. While we currently handle both of them the same way, the distinction
was made so that we could in the future handle them differently, without the need to analyze the tag
content.

3. Other applications of the text. We attempt to anticipate other uses of our text and build into our lan
guage mechanisms that will facilitate those uses.

13

Among these other uses are future retrieval and selective processing applications. We can envision
wanting to extract from a massive message list only those messages for which a "system programmer
response" is indicated; the fact of a "system programmer response" tag enables that.

Some of our "future" applications are more mundane. For example, when ISIL was born, we supported
only monospace devices that did not discriminate between open quotes and close quotes. But we knew
that some day we would be dealing with devices that made that discrimination. So we invented the
quote tag at the outset, telling people that it was an investment in the future.

Similarly, our "highlighted phrase 1" tag produce. the same formatting effect as our "title citation" tag.
But title citations are useful search arguments in a source fHe, when you want to verify that your title
citations are current (which we have to do a lot).

Specialized tags are also a modest aid to translation; they cue the translator as to what's going on.
Where they generate text, the translation need only be done once.

The End T~ Debote

One topic that we work over from time to time is the whole subject of end tags. This is largely a theological
debate, as our direction is well established and we aren't going to change. It goes like this:

THE END TAG DEBATE

GIVEN THAT WE HAVE MANY TAGS THAT REQUIRE AN
END TAG, SHOULD WE NOT ALSO ALLOW ALL OTHER
TAGS TO HAVE OPTIONAL END TAGS?

Our intuitive feeling is that we should, although we don't. The debate stems from such general questions as
"what is the scope of a paragraph?" Clearly, another paragraph at the same level (that is, not a paragraph
in a subordinate list) ends the current paragraph, as does a heading. But we treat any lists, examples, or
inline figures as being part of (subordinate to) the preceding paragraph (that is, to the extent that we recog
nize the problem at all), and this is not necessarily the case. As a practical matter, in our current applica
tions, it's a not a real consideration. But if you anticipate an application that operates on paragraphs as an
entity, then the scope of a paragraph becomes a concern. A paragraph end tag would etiminate any doubts
- although it could complicate matters for the material following the paragraph.

But even if we offered these optional end tags, few if any users would actually put them in, so you could not
build a future application against the current text base on the assumption that they were there.

Incidentally, we consider our paragraph continuation tag to be unnecessary from a GML standpoint, but we
have yet to alter the implementation so that it always works properly without it.

The end tag debate also reveals an anomaly about our heading tags. The heading tags do two things: they
define a portion of the document at a structural level, ended by the oCcurrence of another heading at the

w
~

14

same or higher level; and they define the text of the heading at that level. If we were to introduce an end
tag for the text of the heading (and we have applications where that would be useful), what are the impli
cations of having "ended" that document element?

I said these debates were theological; I offer them ouly as examples of how we can spend so much time
designing our language.

ComistencJl

Consistency is as important as any other consideration in the design of a GML application. We attempt to
be highly disciplined in examining this aspect of proposed new language; sometimes we've even sacrificed
some minor elegance to the need to be consistent.

SOME ISIL INCONSISTENCIFS

SOME WE DIDN'T FIX:

DEPTH ATTRIBUTE

BGURECAYTIONANDTABLECAYTION

ONE WE DID FIX:

CONDmONAL AND UNCONDmONAL MULTIPART BG
URES

We are guilty, however, of some inconsistencies. They've been around so long now, and there is such a
heavy investment in the existing markup, that we'U prohably live with them forever.

For example, we have two different meanings for the DEPTH attribute, depending on which tags it occurs
on. This was a flat-out mistake.

As another example, captions on figures have their own BGCAP tag, whereas the caption on a table is an
attribute of the table tag. This came about as a result of our stealing our table tags from another internal
implementation. We don't always look a stolen horse in the teeth.

Of course, it could just as readily be argued that the figure caption should also be treated as an attribute.
would be inclined to that view myself, except that users find tags less intimidating than attributes, aod we
already have six attributes on our figure tag. In any case, the figure tag dates hack to release I, when multi
line markup was not supported; it aimply wasn't feasible to specify the caption as an attribute at that time.

Both of these inconsistencies were introduced very early in the life of ISIL; they would not happen now,
because we are much more disciplined in our design activity.

15

This is not to suggest that we've tolerated every inconsistency that has been introduced. We had a
horrendous inconsistency in how we treated multipart figures, depending on whether they were uncondi
tional (the figure is always to break at a specified point) or conditional (the figure is to break at a specified
point if there is insufficient room on the page for the next segment). The two different approaches came
about by way of historical accident; we didn't set out to make them different.

In any case, once the implementer advised us that he had figured out how to converge them into a single
approach, we made that change. We continue to support the markup for the old way, but with warning mes
sages that the markup is obsolete and should be changed. (In the early days of ISIL, we changed the lan
guage a number of times; wherever possible, we continued to support the old markup with a warning
message. We found that most people actnaIly did update the markup.)

If we had waited until we reached our current level of sophistication before going into production with ISIL,
we would undoubtedly have eliminated most, if not all, of our inconsistencies. But if we had waited, we
never would have reached our current level of sophistication. We learned by doing, and many of the things
we did can't reasonably be undone. Jost guessing, because I'd be hard-pressed to count even my own
organization, there must be several million active pages marked up in ISIL today; that's an investment we
don't toy with lightly.

Some Specific Problems

I'm going to talk about a couple of the specific problems we've dealt with in the design, just by way of illus
trating some of the problems you might encounter.

SOME SPECmC PROBLEMS

MESSAGES AND CODES LISTS SUBHEADINGS
QUESTION AND ANSWER TAGS
THE DOCUMENT PROBLE TAG

Mt!SSIIfI£J and Codes Lists Subheadings

At first blush, you wouldn't think (or at least we didn't think) that messages and codes lists could be all that
exciting. As it happens, I find myself cal1ing upon them repeatedly to illustrate various points about ISIL.
Anyway, they presented us with one of our knotriest design problems to date.

From the very early days of ISIL, we've had tags for the subheadings we use in these lists: XPL (explana
tion), URESP (user response), SYSACT (system action), aod so forth. We started with about six of these,
and the list has now grown to about ten, each an equally legitimate distinct entity. There may be one or two
more stiD lurking in the woodwork; they will surface eventually and we will accept them.

That wasn't the problem.

~

w
U1

XPL

URESP

SPRESP

16

MESSAGE liST SUBHEADING PROBI.EM

Explanation
Cause
Reason

User Response
Recovery
What to Do

System Programmer Response
Administrator Action

The problem came about when we got a request for a "CAUSE" tag and a "REASON" tag, because some
books require different generated subheading text. It didn't take us very long to determine that, from a
GML view, these were already covered by our XPL (explanation) tag. Similarly, people wanted to use
"recovery" rather than "user response," and so OD.

To control it at the level of an individual installation was a trivial matter - the local profile could be
changed, and wouldn't even require an fSIT.. committee review. But it had to be controllable at at least the
level of an individual book, and potentially at the level of an individual list.

We toyed for a long time with the idea of creating a generic "message list subheading" tag, where the con
tent would determine the text. This was unacceptable for two reasons:

1. It involved too many keystrokes; users with reasonable, although different, requirements should not
have to pay a productivity penalty.

2. It would be at the loss of the identity of this document element as the explanation of this message.
We're all convinced that some day we will have an application that exploits this information.

We could not allow the residual text to override the generated text, as we do with the preface tag, again
because of the keystrokes, and also because it would be incompatible with existing markup, as these tags are
all implied paragraphs.

17

MESSAGE UST SUBHEADING SOLUTION

:MSGL
XPL='REASON'
URESP='RECOVERY'
SPRESP='ADMINISTRATOR ACTION'.

:XPL.

:URESP

:SPRESP

Our solution was to create, for each of these tags, a corresponding attribute on the message list tag itself,
wherein the user could specify the override text. We make the user responsible for ensuring that the validity
of the GML type is maintained.

This results, of course, in an enormous number of attributes on these list tags. But these attributes are all of
a single class and parallel a known tag vocabulary, so the user has to learn ouly one concept to apply them
all.

Incidentally, we've since come up with another application for this same type of attribute - again, overrid
ing the text generated by subordinate tags.

QlII!Stion tmd AIISIIIN Tags

Another of our big debates came the day that the people who prepare tutorial and independent study materi
als requested question-and-answer "list" tags. The argument focused on the "Iistness" of the entity. In
practice, there were a number of different ways of treating the numbering of these things, aud the proposed
language was attempting to accommodate all of these variations.

l>.!
(:n

18

QUESTION AND ANSWER PROBLEM

WHEN IS AN ENUMERATED LIST NOT A LIST?

WHEN THE ENUMERATION OF ITEMS IS INCIDENTAL,

We finally concluded that the fact that these items were numbered in the output document was totally inci
dental- just as the numbering of headings does not make of them a list. It's merely a retrieval device. Our
ultimate solution here was to decide that the markup would not treat them as lists, and that the implementa
tion would handle two "standard" numbering approaches (based on the page numbering scheme used in the
book, of which we support two). Local installations could implement local variations, if need be.

THE LESSON OF QUESTIONS AND ANSWERS

IT IS NECESSARY TO

MEET USER REQUIREMENTS

PRODUCE A REASONABLE OUTPUT RESULT

IT IS NOT NECESSARY TO

SUPPORT EVERYTHING THAT ANYONE MIGHT EVER
HAVE DONE IN THE PAST

The lesson here is one we've had to relearn a couple of times:

It is necessary to meet rational user requirements, and it is necessary to produce an output result that
is generally accepted as reasonable. It is not necessary to support every way that anyone might ever
have done things in the past (especially when there haven't been a lot of constraints on how things
were done in the past). That's a trap.

We have no rules against local modifications to the formatting; our rules deal with the integrity of the source
file.

19

TIll! Document Profile Tag

Over the life of ISIL, we had externalized a number of "style" variables, either as runtime options, which are
error-prone, or by documenting internal symbols and telling people how to reset them to new values. On the
table were many more, and we could see ourselves getting locked into carrying these symbol names in
perpetuity, The symbols lacked a certain user-friendliness as well, as they were full of @ characters and #
characters, which are not particularly mnemonic for most of us.

Now style is not really something that you want to vary every time you format a document; it's generally
fixed for at least some period in the life of the document. We needed - given the range of uses we support
_ some reasonable way to allow user access to these legitimate style variables. Our solution was the docu
ment profile tag, DOCPROF. This is the tag with far too many attributes that I mentioned earlier.

Here's what's currently on the DOCPROF tag; we fully expect it to grow:

This attribute ...
BODYHDl=
CAPLOC=
DIALOG=
FBC=
HDIPREF=
HEADNUM=

THE DOCUMENT PROFILE TAG

:DOCPROF BODYHDl=
CAPLOC=
DIALOG=
FBC=
HDIPREF=
HEADNUM=
HYPHEN=
JUSTIFY=
LAYOUT=
LDRDOTS=
MCINDENT=
MCSPACE=
PTOC=
PUNCT=
RHRFRULE=
STYLE=
TIPAGE=
TOC=
XREFPAGE=

establishes ...
what is generated for HIs in the body of the document.
placement of figure and table captions.
formatting style of user-system dialogs.
serial page numbering or by chapter.
style of cross references to HIs.
automatic numbering for headings.

CoL)

"

HYPHEN_
JUSTIFY=
LAYOUT=
LDRDOTS
MClNDENT
MCSPACE=
PTOC.
PUNCf=
RHRFRULE=
STYLE.
TIPAGE
TOC=
XREFPAGE=

hyphenation.
justification.

20

the basic column layout of the document.
leader dots in the table of contents and figure list.
indention for text in messages and codes lists.
spacing between messages/codes in messages and codes lists.
levels of headings for partial tables of contents.
punctuation. placement with respect to closing quotation marks.
rules on running headings and footings.
named document style.
the basic layout of the title page.
levels of headings for table of contents.
use of page numhen in cross references.

The OOCPROF tag falls into a category known as "coexistent structures." That is, rather than descnbing
the structure of the source document, it descnbes the structure of the output document.

Futures

There are two kinds of future considerations for ISIL/GMI. - future applications of the information base,
and future directions for ISIL itaelf.

FUTUlll!S

FUTURE APPliCATIONS OF THE TEXT

FUTURE DIRECTION FOR ISIL/GMI.

I'm not going to spend much time on the subject of future applications of the text "data base." By "data
base" here I mean a set (a very large set) of consistently marked-up source meso You can speculate as weD
as I can as to the uses we might make of it.

Information retrieval applications come to mind inunediately - something that simply wasn't feasible before
because of the infinite variety of the source documents. Another potential application is the distribution of
publications in machine-readable form. You most understand, however, that graphics is a rapidly growing
element in our information "data base," and the ISIL solution applies only to text. Both of these applica
tions require that the graphics problems find some solutions - including, but not Hmited to, the widespread
availability in the field of devices that can adequately display or print the graphic content.

The future of ISIL/GMI. itself is also potentially rich. For instance, color separation is a major item on our
current wish list, and some of our language definition reflects our expectation that some day we wiD get it.
Of course, automated cDIor separation requires some new support in the underlying processor. But even
without this support, we can still produce a "color guide" version of the document that shows where the

21

color separation should occur in the rmal version of the document, making it easier to prepare the final ver
sion manually.

One of my futuristic fantasies has to do with programming aYDtax presentation. Where today we hard-code
brackets and braces (or even worse, paste them on), I hope one day to have a rigorous GMI. markup for
programming syntax. Then a ""phisticated implementation .could format it with the traditional brackets and
braces or in some of the alternative presentation styles we play with from time to time.

If you then have the language designers do their original language aYDtax specification using the GMI., you
eliminate the potential for introducing error or ambiguity when you translate the language designer's specifi
cation format to the presentation style you're using in the user's guide.

Further, I'd like markup that relates the elements of the syntax to the discussion of them. One potential
here is to create help panels in a hjerarchicaI presentation, derived from Hnear material.

The chaDenge here is not particularly in desigDing the GMI. itaelf. We liave a pretty good idea of what it
would have to look like. But the "sophisticated implementation" is beyond our current capabilities.

A rigorous GMI. markup for programming aYDtax also enables other processing applications, such as evalu
ating programming language complexity from an analysis of the syntax.

I'm sure that other users of ISIL who don't do zillions of programming aYDtax presentations, but do s0me

thing else, would come up with equally exotic futures.

