
il J ~ 5 ~ Field Engineering EducatiDn
Student Self-Study Course

Introductory Programming
Book 2 - Program Control and Execution

Preface

This is Book 2 of the System/360 Introductory
Programming Student Self-Study Course.

Course Contents
Book 1: Introduction R23-2933

• Book 2: Program Control
and Execution R23-2950

Book 3: Fixed Point Binary
Operations R23-2957

Book 4: Branching, Logical
and Decimal
Operations R23-2958

Book 5: Input/Output
Operations R23-2959

Prerequisites
• Systems experience (1400 series with

tapes, 7000 series with tapes) or a basic
computer concepts course.

• Book 1 of this Introductory Programming
course.

Instructions to the student and advisor
• This course is to be used by the student

in accordance with the procedure in the
Instructions to the Student section in
Book 1 of this course.

• The course is to be administered in
accordance with the procedure in the
System/360 Introductory Programming
Administrator Guide, Form #R23-2972.

This edition, R23-2950-1 is a minor revision of
the preceding edition, but it does not obsolete
R23-2950-0. Numerous changes of a minor
nature have been made throughout the manual.

Issued to:

Branch Office: ________ No: _______ _

Department:

Address: ___________________ _

If this manual is mislaid, please return it to the above address.

Copies of this and other IBM publications can be obtained through IBM
Branch Offices. Address comments concerning the content of this publication
to: IBM, FE Education Planning, Dept. 911, Poughkeepsie, N. Y., 12602

© by International Business Machines Corporation 1964, 1 965

How to use this book

There are four sections to this text. At the beginning of each section,
there is a list of Learning Objectives. These are items that you will be
expected to learn as a result of studying that particular section. At the
end of each section (or subsection) is a list of Review Questions so that
you can evaluate your progress. You will go through this book in a serial
fashion. That is, you will not be expected to skip or branch around. The
answer to each frame is in the next frame. You may find it helpful to use
a standard IBM card to cover the answers as you read the frames.

Periodically, as you go through this book, you will be directed to study
areas of the System/360 Principles of Operation manual. This will help
you to become familiar with the manual so that it may be used as
reference material at a later date.

THE CONTENTS OF THIS BOOK

This book deals mainly with instruction formats and the Program Status
Word.

SECTION I Instruction Formats

SECTION II Instruction Sequencing and Branching

SECTION III Interrupts

SECTION IV Storage Protection

ALPHABETICAL INDEX

i

ii Instruction Formats

Systein/360 Program Control and Executioll

• Section I: Instruction Formats
Section II: Instruction Sequencing and Branching
Section III: Interrupts
Section IV: Storage Protection

SECTION I LEARNING OBJECTIVES

At the end of this section, you should be able to:

1. State that instructions:
a. can be one, two, or three halfwords in lEmgth.
b. must reside in main storage on halfword boundaries.

2. State that the first byte of every instruction is the Op code.

:~. Convert hexadecimal Op codes to actual machine language.

4. Describe how the Op code states:
u. Instruction Length
b. Format
c. Specific Instruction

!). Describe how the instruction specifies the address of a general
register.

(). Describe how an effective main storage address is generated using
a displacement field and a base address located in a general register.

7. Describe how programs can be relocated by updating the base
register contents.

H. Describe how an effective address may be further indexed with an
index factor in a general register.

9. Given an Op code, determine the location of 1st and 2nd operands.

10. Stlte that, with the exception of store-type operations. the result is
located in the first operand.

11. Describe the five instruction formats.

Instruction Formats

Let's learn about the instruction formats of the System/360. As you know.
instructions specify the operation to be done and the location of data. Data
may be located either in main storage or in general registers or a combi
nation of the two. Main storage is addressed with a 24-bit binary address
while the general registers are addressed with a 4-bit binary address. As
a result, instructions will be of different lengths depending on the location
of data. System/360 instructions may be one, two, or three halfwords in
length.

--------------------------------------- -------- ~--

halfwords

one halfword

three

two half words

Instruction Length
three halfwords
one halfword
two halfwords

halfwords
specification

System/360 instructi~ns are one, two, or three
depending on the location of data.

in length

When both operands or data are in general registers, only eight binary
bits are needed for addresses. As a result, the System/360 can use the
shortest instruction which is in length.

When both operands are in main storage, a total of 48 bits are needed for
the addresses. Accordingly, the System/360 uses its longest instruction
which is halfwords in length.

When only one of the operands is in main storage, a shorter instruction
can be used. However, one halfword cannot contain a 24-bit binary
address; therefore, the System/360 also uses instructions which are

in length.

For the following processing concepts, fill in the necessary System/360
instruction length.

Concept
Storage to Storage
Register to Register
Storage to Register

Instruction Length

Since instructions are a mUltiple of halfwords in length, they are
considered as fixed length information as far as storage boundaries are
concerned.

Instructions are a multiple of in length. As a result,
instruction addresses must be divisible by two or a
exception will occur.

If the address of an instruction has a low-order 1 bit, a
exception will occur.

Instruction Formats 1

specification

Op code

byte

2 lnstruction Formats

OP CODE

In discussing data formats earlier, you had been told that the Op code
portion of the instruction would specify whether the data was binary or
decimal in nature. We are now at the point where we should find out all
about the Op code.

REGISTER TO

I - I~ REGISTER INSTRUCTION
OP CODE . ADDRESSES.

I

STORAGE

I ~ TID REGISTER
STORAGE
TO STORAGE
INSTRUCTION OP CODE ADDRESSES . INSTRUCTION

~_O_P_C_O_D_E __ ~ ___________________ A_D_D_R_E_S_S_E_S_: ____ • ________________ I ~
~BYTE Jo I'" BYTE~BYTE)0 I'" SYTE-+-BYTE -+-SYTE ~
~ HALFWORD)' I .. HALFWORD)10-100(HALFWORD--+i

Shown above are the three instruction lengths whi.ch are used depending on
the location of data. One thing to notice is that the 1st or high-order byte
of each instruction contains the

All instructions have an Op code which is contained in the high-order

Op codes in the System/360 give specific information:

1. The Op code specifies the operation such as add, subtract, or
branch.

2. The Op code specifies whether the data is variable or fixed in
length.

3. The Op code specifies whether the data is in binary or decimal
format.

4. The Op code specifies whether the operands are in main storage or
general registers. The Op code, however, does not give the
address of data. It only says the data is in main storage or in
general registers.

5. The Op code specifies the length of the instruction of which it is
a part.

0, 1

one halfword

three halfwords

two halfwords

As you can see, there is much information in the eight bits which make up
the Op code. So let's break down the Op code byte and see how it gives us
this information.

0----------- 7

I I I I I ~ ~ THE OP CODE

-.-
~ LOCATION OF DATA AND LENGTH OF INSTRUCTION

Bits 0 and 1 of the Op code specify whether data is in main ston~.ge or in
the general registers. Since the instruction length depends on the location
of the data, the instruction length would also be specified by bits and

of the Op code.

There are four possible combinations of bits 0 and 1 of the Op code: 00,
01, 10, 11.

If both bits are zero (00), both operands are in general registers and the
instruction is in length.

If both bits are one (11), both operands are in main storage and the
instruction is in length.

If bits 0 and 1 of the Op code are either 01 or 10, only one of the operands
may be in main storage and the instruction is
length.

in

For the following Op codes, fill in the instruction length:

Op Codes Instruction Length

a. 0 1 0 0 0 1 1 1
b. 0 0 0 1 1 0 1 0
c. 1 1 1 1 100 0
d. 1 0 0 1 1 1 0 0

Instruction Form.ats 3

two halfwords
one halfword
three halfwords
two halfwords

different

0, 1
2, 3

0, 1

2, 3

-----_ .. ----.

4 I nstruction Formats

You have just learned how bits ° and 1 of the Op code specify the location
of operands and the length of instruction. Now, let's look at bits 2 and 3.
We won't be concerned with the actual coding of the bits, but rather, their
purpose.

o 7

I I I I I I I I ~ OP CODE

-.-
~VARIABLE (DECIMAL) OR FIXED LENGTH (BINARY) DATA

As can be seen above, bits 2 and 3 of the Op code are used to specify the
type of data. In the case of fixed length data, bits 2 and 3 of the Op code
would further specify whether the operands were halfwords or fullwords.

In an instruction that is used with fixed length (binary) operations, bits 2
and 3 of the Op code would be (the same/different) for
halfword and fullword operands.

Instruction length is specified by bits __ and __ of the Op code, while
the type of data is specified by bits __ and __ "

The last thing the Op code must indicate is the specific task to be performed
such as add or subtract. This is done by bits 4 - 7 of the Op code as
shown below. The actual meaning of the various bit combinations (add,
subtract, etc.) will be covered later.

o 7

I I I I I I I I I? ~ OP CODE

-.--...-~

L
' ~WHAT TO DO WITH THE DATA

~WHAT KIND OF DATA

GENERAL LOCATION OF DATA

The fact that both operands are in general registers would be indicated
by bits and __ of an instruction's Op code.

The fact that an operand is either a halfword or full word is indicated by
bits __ and __ of an instruction's Op code.

The fact that the two operands are to be added together is indicated by
bits through of the Op code.

4, 7

Hex

SA
4A
FA
18
58
94

sixteen
0, If)

word
index

Actual 0}2 Code

o 1 0 1 101 0
o 100 1 010
1 1 1 1 1 0 1 0
000 1 100 0
010 1 100 0
10010100

Quite often the Op code byte is referred to with two hexadecimal digHs
rather than eight binary bits. Given the hexadecimal Op codes below,
write the Op code as eight binary bits and indicate the length of the
instruction.

Hex Op Code

5A
4A
FA
18
58
94

Actual Op Code

Length in Halfwords

Two Halfwords
Two Halfwords
Three Halfwords
One Halfword
Two Halfwo rds
Two Halfwo rds

OPERAND ADDRESSING

Length in Halfwords

At this point, you should have a good idea of how the Op code of an
instruction specifies its length, the type of data, and what to do with the
data. Before taking a further look at instruction format. let's examine
how to address main storage and the general registers. We'll take a look
at general register addressing first because of its simplicity. But first
answer the following review questions.

For use as accumulators when working with fixed length binary operands,
the programmer has available general registers. They are
numbered __ through __ .

Each general register is one in length.

Besides being used as accumulators, the general registers can also be
used as base registers and i registers.

As you learned when you were first introduced to the general registers,
they are addressed by a 4-bit binary address. The address of general
register 7 is

Instruction Formats 5

0111

one halfword

Op code

addresses

1st operand
register -±-

2nd operand
register _3_

6 Instruction Formats

When both operands are in general registers, the instruction is
in length.

The first byte of an instruction is the __

When an instruction is one halfword in length, the 2nd byte will contain the
a of the two general registers.

Given the following instruction, state the number of the general registers
involved.

1000 1 1010 0 10 000 1 ,1
--...----.,- --..---...---

I 1 lREGISTER CONTAINING 2ND
OPERAND ADDRESS = # __

ADD

REG. TO REG.
FULLWORD

REGISTER CONTAINING 1 ST

OPERAND ADDRESS = # __ _

Main storage addressing is a little more difficult. To use a 24-bit address
in the instruction for each operand would consume storage space that could
be used for other purposes. In the smaller models of System/360 (such as
the model 30 with approximately 8K stor~ge), the amount of main storage
space is definitely limited. One solution would be to use 24-bit addresses
on the larger models such as model 70 and to use shorter addresses on the
smaller models. This would mean that programs used on the various
System/360 models would no longer be compatible because of the different
length addresses. So we must look for another solution that will reduce
the length of the instructions and still maintain complete compatibility.

There are other features desirable in main storage addressing besides a
simple reduction in the length of instructions.

It is also desirable that any time the program is loaded into the computer,
the program can be put in a different area of main storage. We would like
to do this without having to change the addresses in each instruction. This
is known as program relocation, which is a valuable tool in IBM's latest
programming systems.

Besides the features of program relocation and shorter instructions, it is
also desirable to be able to index instructions.

base address

2048
6144
base

To see how main storage is addressed in the System/360, we must make
some assumptions.

The first assumption is that System/360 programs will be written in
sections. Each section will be 4096 bytes in length. Of course, programs
that are less than 4096 bytes can be written as one section. The beginning
of each section is called the Base Address for that section.

Consider the case of a program that required 12,000 bytes. By sectioning
it into 4096 byte groups, we would have three sections of our program
with a base address for each. The program can start anywhere. In the
example shown below, the program starts at byte location 2048.

\ I SECT~ON 1 I SECTION 2 SECTION 3 IJ

LOCATION
2048

BASE
ADDRESSES

SECTIONALIZED PROGRAM IN MAIN STORAGE

t
LOCATION

14,047

As can be seen in the above example, our 12,000 byte program starts at
location 2048 and runs through location 14,047. We have divided the
program into three sections. The first two sections are 4096 bytes each,
while the remainder of the program (the last 3808 bytes) is in section 3.

The 1st location of each section of a program is called its

In the preceding example, the base address of the 1st section is location
The 1st section is 4096 bytes long. As a result, the base

address of the 2nd section is location Location 10, 240 is the
address of the 3rd section.

Now that the program has been sectionalized and base addresses are
known, how can this help in addressing main storage?

Since each section is a maximum of 4096 bytes long, any byte in a section
can be located by adding to the Base Address a number in the range of
o to 4095. This number is called its Displacement. That is, each byte
is displaced from the base address by 0 to 4095 places.

O
DISPLACEMENT FROM BASE ADDRESS

--------------------------------~I ~4095

~I--------S-E-C-T-I-O-N-O-F--P-R-O-G-R-A-M---------J) ~
l BASE ADDRESS

Instruction Formats 7

1122

3026

zero

displacement
base address

12,288; 16,384

has not; The last byte
of section 1 is still
displaced from its
base address by 4095.

base addresses
displacements

24

Assuming a base address of 2048, the displacemen(for location 3170 is

Assuming a base address of 6144, the displacement for location 9170 is

Assuming a base address of 6144, the displacement for location 6144 is

Any byte in a program can be located by adding its to its

Supposing that the program that we've been using as an example was moved
so that it started at location 8192.

~ I
l

SECTION 1 SECTION 2

LOCATION 8192

SECTION 3 ==rJ

The base address for Section 1 is now 8192. The base addresses for
Section 2 and 3 are now and

The displacement for each byte in the program
changed.

(has/has not)

The preceding frames demonstrate the ease with which a System/360
program can be relocated. To relocate a System/360 program, the

are c hanged while the remain
the same.

As you know, main storage addresses are 24 bits long. This allows for
compatibility throughout the range of System/360 as well as for addressing
up to 16 million bytes. Since a program can start anywhere in main
storage, this means that the base addresses for the program must be

hits long.

The displacement range for any particular base address is 0 to 4095. To
express this range will require __ binary bits. (You can answer this
by using the table in the Appendix of the IBM System/360 Principles of
Operation manual. Convert 4095 to hexadecimal and then to binary.)

40~)5 (Decimal) ::: FFF (Hex) ::: 1 1 1 1 1 1 1 1 1 1 1 1 (Binary)

8 J nstruction Formats

12
24

displacement
base address

Any byte in main storage can be located by adding a bit displacement
to a bit base address.

The use of a base address and a displacement certainly make it easy to
relocate a program each time it is loaded into the computer. However,
we also wanted a shorter instruction. To put both the base address and
displacement in the instruction would make the instruction longer. It
would also mean that each instruction would have to be changed (base
address) every time the program is relocated. The manner in which the
System/360 handles this is to carry the base address in one of the General_
Registers. When a general register contains a 24-bit base address, it is
referred to as a Base Register. The address of the base register and the
12-bit displacement are carried in the instruction.

To obtain a main storage address, the 12-bit
the instruction is added to the 24-bit
register.

carried in
in the base

Let's take a look at a typical instruction used to add one operand in main
storage to another operand in main storage.

When"both of the operands are in main storage, the instruction is
__ (1/2/3) halfword(s) in length.

To add a main storage operand to another main storage operand, several
items are necessary. They are:

1. 8 bit Op Code
2. 8 bit Length Code
3. 4 bit 1st Operands Base Register Address
4. 12 bit 1st Operands Displacement
5. 4 bit 2nd Operands Base Register Address
6. 12 bit 2nd Operands I?isplacement

The instruction format for this type operation would look like this:

0 7 8 1 1 12 1516 1920 3132 3536 47

I I !
OP t : BASE t :8ASE t CODE REGISTER REGISTER

ADDRESS ADDRESS
LENGTH DISPLACEMENT I DISPLACEMENT:

I

CODE

1ST OPERAND 2ND OPERAND

Bits 8 - 15 of this instruction are used for specifying the length of the
data field. We will ignore it for the present and cover it latcr.

Instruction Formats 9

displacement
base register

11

2166

24

24

The location of either main storage operand would he determined by adding
its in the instruction to the contents of the

specified by the instruction,

If bits 16 - 19 of the instruction contained 1011, the base address of the
1st operand is in general register __ '

If general register 11 contains the value of 2048, and the 1st operand
displacement field in the instruction has the value 118, the effective storage
address of the 1st operand would be

The base address of 2048 in the previous problem is a bit binary
address and appears in bits 8 - 31 of general register 11.

Only the low-order __ bits of the base ~egister are used in generating
an effective storage address.

Given a displacement of 1 0 0 1 1 0 1 1 0 0 1 0 and base register 11 whose
contents are shown below, the effective storage binary address would be

o 31

I 0 0 0 0: 0 0 0 0:0 1 0 0: 1 0 0 0: 1 0 0 1: 0 0 1 1: 0 1 1 0: 1 1 1 1

GENERAL REGISTER 11

010010001001110100100001

10 Instruction Formats

If you missed the above, check your arithmetic. Remember that you were
attempting to add the 12 binary bit displacement to the low-Order 24 binary
bits of the base register.

The address generated by adding the displacement and base address is used
for addressing main storage. The original instruction and the base
register remain unchanged.

If the displacement value is 1022 and the base register contains 2048, the
effective storage address would be . After generating the address ~
the base register will contain and the instruction will have a
dis plac ement field of

3070
2048
1022

1022; Because register
o was specified as the
base register, a base
address of 0 is used.

The contents of reg
ister 0 is ignored.

2,500

instructions
general

base address

Only general registers 1 - 15 can be used as base registers. If general
register 0 is specified as the base register, the base address is assumed
to be zero, regardless of the contents of register O.

I NSTRUCT I ON

o 1022

t
BASE DISPL.ACEMENT

REGISTER

~~CONTENTS OF REG 0

Given the above address portion in the instruction and the contents of
register 0, the effective storage address would be

]

In order to insure that you understand main storage addressing, let's look
at a simple, typical application.

A certain small job requires 2,500 bytes of storage. These 2,500 bytes
will contain the instructions, data read in area, constants, work area and
data output area. In other words, everything that pertains to this job] s
contained in the bytes.

The program used to do this job consists of 500 instructions.

Program I
Instruction # 1
Instruction #2

InstruJtion #500

It is decided to use main storage bytes 5000 through 7500 for the joh.
One of the program's first few i will load the number
5000 into a register.

5000 is the b --- and is put in general register # 1. a

All instructions in this program will be the same in the following areas:

~-1ST OPERAND~I~2ND OPERAND~I

OP L.ENGTH BASE: DISPL.ACEMENT BASE : DISPL.ACEMENT
CODE CODE REG I REG I

I I

GENERAL REGISTER 1
WILL BE SPECIFIED AS THE
BASE ADDRESS FOR ALL OPERANDS

x x x x

/
AL.L DISPLACEMENTS
WILL BE SOMEWHERE
BETWEEN 0 AND 2, 500

Instruction Formats 11

one

beginning

two

second

index
general registers

12 Instruction Formats

For the job in the preceding example, how many different base addresses
were required?

The base address was loaded into a general register at the _____ _
(beginning/end) of the program.

If the application would have required 8,000 bytes of storage, ___ base
addresses would have been needed.

The second base address would probably be used for the _s ____ half of
the program.

Let's summarize what you have learned so far about main storage
addressing:

1. Storage addresses are generated by adding a displacement value
to a base address.

2. The instruction contains the displacement value as well as the
address of the general register containing the base address.

3. The general register that contains the base address is called the
base register.

4. Only registers 1 - 15 can be used as base registers.

5. If register 0 is specified as the base register, its contents are
ignored. Instead, a base address of 0 is used.

6. The generation of storage addresses does not c bange the instruction
or the base register contents.

All storage addresses are generated by using base and displacement. In
some instructions, however, a 3rd base factor 1.s used. The 3rd factor
is called the Index value. It is also contained in a general register.

The purpose of the index factor (indexed prograln) is to reduce the number
of instructions in a program. This will be illustrated in just a moment.

A 3rd factor whic h is sometimes used in addressing main storage is
called the value. The index value is held in one of the ----

Just like the base value, the index value can only be in general registers
__ through __ "

1, 15

zero

1, 15

Just like the base value, if register 0 is specified, its contents are ignored
and the index value is assumed to be

Only registers __ through __ can be used as index registers and their
contents remain unchanged by the address generation.

In those instructions that include an indexing factor, the address portion
looks like this:

1ST OPERAND

I t BASE
REG
ADDRESS

INDEX
REG
ADDRESS

12 BITS I)
t DISPLACEMENT

The effective storage address would be generated by adding:

Displacement + Contents of Base Register + Contents of Index Register

The following illustration shows part of a theoretical program flowchart.

COMPUTE AND PRINT
1 O%OF THE AMOUNT
OF EACH OF THE
FOLLOWING FIELDS:
6100, 6150, 6200,
6250, 6300, 6350

Instruction Formats 13

instruction

14 Instruction Formats

Let's see how the preceding program function would be accomplished with
and without indexing.

WITHOUT INDEXING WITH INDEXING

----.--.,.------.J~

INCREASE
INDEX

REG BY 50

THE XXXX
LOCATION
ADDRESS IS
DEVELOPED
BY ADDING:

PISP~CEMENT
\..01 00 BAS~
REG 6000)
JNDEX)REG
\..OOXX

The index factor is used where a number of similar instructions can be
replaced by sme i that has its operand address modified.

Given an address portion of 6 7 1012
1ST OPERAND

Reg 6 contents
Reg 7 contents

and the register contents shown, indicate the following:

(a) the effective storage address
(b) address portion of instruction after address generation
(c) base register contents after address generation
(d) index register contents after address generation

a. 9084
b. 1617 11012 1
c. 6024
d. 2048

register-to-register
one halfword

Op code
00

RR

R2

FORMA T TYPES

At this point, let's take a look at different types of instruction formats of the
System/360. As you know, the instructions are of three lengths: one,
two, or three halfwords depending on the location of the operands.

A one halfword instruction is used when both operands are in general
registers. What is required is:

1. An 8-bit Op code.
2. A 4-bit register address for 1st operand.
3. A 4-bit register address for 2nd operand.

Instructions that involve register-to-register operations are considered
to be of the R R format.

RR FORMAT

OP CODE R1 R2

An R R type instruction involves a _____ -to- ____ _ operation
and~ in length.

The first byte of every instruction is the __ Bits 0 and 1 of
the Op code ind,icate the length of the instruction and the location of the
operands. For the R R format, bits 0 and 1 will be __

The addresses of the two general registers are given in the 2nd byte of the
format.

The 2nd byte of the R R format is divided into two fields: R1 and R2. The
R1 field gives the register address of the first operand while the
field is the address of the 2nd operand.

The numbers in the address fields of the R R formats (and all other
formats) indicate whether the operand is the 1st or 2nd (and is in some
cases, the 3rd) operand.

RR FORMAT

OP CODE Rl R2

For most operations, the results replace the ___ (1st/2nd) operand.

Instruction Formats 15

1st

4

RX
R1

index

RX
01

X2
B2

OP CODE R1 X2

16 Instruction Formats

For the given instruction, the contents of registers 4 and 5 are added
together and the sum goes into register

OP R1 R2

ADD 5

Instructions, which are two halfwords in length, ITlay have three different
formats. As you recall, if bits 0 and 1 of the Op code are either 01 or 10,
the instruction is two halfwords in length. Furthermore, if bits 0 and 1 of
the Op code are 01, it indicates a specific format known as the .!! X format.

OP CODE

: GEN
; REG

RX FORMAT

1 , I

: INDEX: BASE:
: REG: REG :
I ! I

02 I
DISPLACEMENT!

I
I

The __ format is used for storage-to-register operations. The
register address is specified by the __ field.

In the RX format, the effective address is generated by adding the contents
of the base register and the register and displacement.

When the effective storage address includes an indexing factor, the
instruction is said to be the __ __ format and has in bits 0 and 1
of the Op code.

In the RX format, the index register is specified by the field while
the base register is specified by the field.

Fill in the correct names for the fields of the RX format.

B2 02

ADD 3 7 1024

For the above RX type instruction, the storage address is generated by
adding the contents of registers __ and __ and the displacement value
of

7, 4
1024

3

3

RR

~O_P __ C_O_D_E __ ~_R_'~~

00

RX

OP CODE R1

01

RS
base register
dis plac ement

X2

In the preceding instruction, the storage operand is added to the contents
of register __ and the sum is placed in register __ .

Register-to-Register operations use the ____ format.

Label the fields in the RR format.

The RR format is identified by a __ in bits 0 and 1 of the Op code_

Storage-to-register operations, where the storage address includes an
indexing factor, use the ____ format.

Label the fields in the RX format.

B2 02

The RX format is identified by a __ in bits 0 and 1 of the Op code.

Storage-to-register instructions in which the storage address does not
include an indexing factor are called the R § format. The 4 bits normally
used for the X2 field are used for a 3rd operand.

RS FORMAT I OP CODE I R 1 I R3 I B2 I 02

In the __ __ format, the effective address of the 2nd operand is
obtained by adding the contents of the to the

In the RS format, the 1st operand is specified by the
third operand is specified by the __ field.

field while the

Instruction Formats 17

R1
R3

fOP CODE R'

0100; This is because
register 0 is specified
as the base register
and its contents are
ignored.

4, 7

0115; Each storage
address represents
a byte of data.

does not

RS

18 Instruction Formats

Label the fields of the RS format.

02 .~

The RS format is identified by a 10 in bits 0 and 1 of the Op code. The R3
field in the RS format specified the general register used for the 3rd
operand. In some RS instructions, the R3 field is ignored. An example of
an instruction which uses the R3 field is an instruction called Load Multiple.
In the load multiple instruction, the data in main storage is loaded (or
placed) into the general registers. Loading begins with the register
specified by the R1 field and continues consecutively until the register
specified by the R3 field has been loaded.

For example:

o o 1 0 0

In the preceding example, the effective storage address is

In the preceding example, registers __ through __ will be loaded with
the data in main storage.

Since each register can hold one fullword, register 4 - 7 will be loaded
with the data in storage location 0100 through

In the RS format, the effective storage address
include an indexing factor.

A 10 in bits 0 and 1 of the Op code identifies the

Label the fields of the RS format

---- (does/ does not)

format.

OP CODE

S I
instructicn

1st
does not

byte

storage

OP CODE

R1 R3

12

82 02

There is another instruction format that is two halfwords in length. It is
called the S I Format. This format is used when one operand is in main
storage and the other operand (called the immediate operand) is carried
in the instruction itself.

SI FORMAT 8YTE I OP CODE I 12 81 01

In the __ __ Format, one operand is in main storage while the
immediate operand is in the

In the SI format, the storage operand is the ___ (1st/2nd) operand. Its
effective address (does/does not) include an indexing factor.

In the SI format, the immediate operand is fixed in length and is one
long.

Since the results of instruction execution usually replace the 1st operand,
an SI format instruction would change the operand in
(storage/the instruction).

Label the fields of the SI format.

81 01

An example of an SI format is an instruction called "Move Immediate. "
This instruction will move the immediate operand (12) in the instruction
to the storage location.

OP CODE]2 81 01

xx o 1 000

In the above instruction, the contents of the
storage location

field will be placed in

Instruction Formats 19

12
1000

RS

1 R R

2 .!:!..~

3 R 5

I OP CODE Rt

FOOE Rt

FOOE R1

The SI format is identified by a 10 in bits 0 and 1 of the Op code, just like
the format.

Since bits 0 and 1 of the Op code are the same for both the RS and SI
formats, the remaining bits of the Op code 4 - 7 would have to tell the
computer whether it is the RS or SI format.

So far you have learned four instruction formats. Fill in their names and
their blocks.

2

3

4 --------......-~

R2

X2 B2 02

R3 B2 02

4 5 I
OP CODE 12 Bt ot

RR
SI
RX

Which format does not involve a storage operand?

Which format does not involve a general register operand?

Which forma.t includes an indexing factor when addressing main stora.ge?

Did any of these formats include an operand length field?

In the four previous formats, the operands were of fixed length. Now let's
take a look at the instruction format for variable length operations.

no As you should recall, variable length operation involves the
to- concept.

20 Instruction Formats

s torage- to- storage

S S

three

11

is not

SS

OP CODE L

Variable length operation uses a storage-to-storage concept. The
instruction format is called the SS Format and looks like this:

OP CODE L

LENGTH
CODE

B1 01

LOCATION OF
1ST OPERAND

B2 02

LOCATION OF
2ND OPERAND

The format, because it must address two storage operands,
is - -(one/two/three) halfwords in length.

Because both operands are in storage and the instruction is three
halfwords in length, the SS format is identified when bits 0 and 1 of
the Op code contain __ .

In the SS format, an indexing factor
the generation of storage addresses.

---- (is/is not) included in

The length code for the variable length storage operands is in the
2nd byte of the __ __ format.

Label the fields of the SS format.

B1 01 I 62 02

The 2nd byte of the SS format is the length code which consists of
8 binary bits.

The maximum value that can be expressed with 8 binary bits is

... IAI(It------TOTAL = 255------l~~1

Since all operands are at least 1 byte long, the length code is used
to tell how many additional bytes are needed. For instance, a length
code of 15 would tell us that the operand is 16 bytes long.

A length code of 33 would indicate an operand length of __ bytes.

Instruction Formats 21

34

zero

256

3

16; The length of
variable length fields
is one more than the
length code.

11
8

2005
1008

22 Instruction Formats

If an operand is 1 byte long, the length code would be

The maximum operand length that can be expressed by an 8-bit length code
is bytes.

An operand that is a word in length would have a length code of

80 far, we have been treating the length code as one 8-bit binary number.
However, we are dealing with two operands. Do they both have to be of
the same length? The answer is no. It depends on the particular operation.
If we are concerned with moving a data field from one area of storage to
another, we only need one length code. If, however, we are adding one
storage field to another, then we need to know the length of both operands.
For arithmetic-type 88 operations, the length code is split in two:

82 02

LENGTH I L LENGTH
OF ~ OF
1ST 2ND
OPERAND OPERAND

With the length code split into two 4-bit fields, the maximum length of
arithmetic variable length operands is __ bytes.

Given the following binary length code: l' 0 1 0 0 1 1 1

The 1st operand is __ bytes long.
The 2nd operand is __ bytes long.

Given the following 88-type add instruction

ADD 1001 2001

This instruction would cause bytes 2001 through
1001 through

to be added to

At this point, you have learned the five instruction formats. List them.
1.
2.
3.
4.
5.

1. R R
2. RX
3. R S
4. S I
5. S S

RR 1,00 register
RX 2,01 register
RS 2,10 register
SI 2,10 storage
SS 3,11 storage

For the given instruction formats, specify

a.
b.

instruction length in halfwords .
bits ° and 1 of the Op code.

c. location of 1st operand, such as storage or register.

RR
RX
RS
SI
SS

a. b. c.

Go to the IBM System/360 Principles of Operation manual and briefly
study the following areas of the System Structure section:

Program Execution
Instruction Format
Address Generation

Instruction Formats 23

REVIEW QUESTIONS ON INSTRUCTION FORMATS

• Try to answer the questions without referring to the material. However,

24 Instruction Formats

if you do require aid, refer to this book and/or the System/360 Principles
of Operation manual and consider reviewing the area where aid is required.

1. Instructions are a multiple of in length.

2. Instruction addresses must be divisible by or a
exception will occur.

3. The first byte of every instruction is the

4. For the following Op codes expressed hexadecimally, indicate the
binary bit structure of the Op code and its length in halfwords.

Hex Binary Length

a. 1A
b. 56
c. 9C
d. FD

5. All effective storage addresses are generated by adding the
instruction's 12-bit to a 24--bit
in one of the general registers.

6. Some effective storage addresses are generated by also including
an factor in one of the general reg'isters.

7. Address g'eneration (does/does not) change the contents
of the general registers or the instruction in storage.

8. A progralll can be relocated in storage by changing the contents of
the

9. The displacement has a range of 0 to ____ bytes.

10. Only general registers __ through __ can be used as base or
index registers.

11. What happens if register 0 is specified as a base or index register?

12. Label the fields of the following formats:

RR
~------~----~--~

RX

RS

SI

13. For most operations, the results replace the ___ (1st/2nd)
operand.

14. Given the following RR type instruction:

I ADD I 7 I 4

The res ult of the addition will replace the contents of register

15. In the 81 format, the 2nd operand is located in the
and is one long.

16. Only the _
generation.

format uses an index register for address

17. Only the __ __ format involves variable length data.

18. What is the relationship between the number in the length code of
the 88 format and the number of bytes in the data field.

Instruction Formats 25

26 Instruction Formats

ANSWERS TO REVIEW QUESTIONS

halfwords

two, specification

Op code

1.

2.

3.

4. Hex Binary

a. 1A 000 1 1 0 1 0
h. 56 010 1 o 1 1 0
c. 9C 100 1 1 100
d. FD 1 1 1 1 1 1 0 1

5. displacement, base address

6. index

7. does not

8. base registers

9. 4095

10. 1, 15

Length

1
2
2
3

11. The contents of register 0 are ignored and a. value of zero is used
for the base or index factor.

12.

RR r-o: CODE Rl R2

RX I OP- COD~- Rl X2 82 02 :=J
RS I OP CODE Rl R3 82 02 :=J
SI I OP CODE 12 81 01 ~
SS OP CODE L1 L2 81 01 I 82 02 l

13. 1st

14. . 7

15. instruction, byte

16. RX

17. SS

18. The number of bytes in the data field is one greater than the number
in the length code.

Instruction Formats 27

System/3S0 Program Control and Execution

Section I: Instruction Formats
• Section II: Instruction Sequencing and Branching

Section III: Interrupts
Section IV: Storage Protection

SECTION II LEARNING OBJECTIVES

At the end of this section, you should be able to:

Heferring to the program status word:

1. Describe how the PSW affects the sequential nature of
instruction fetching.

2. Describe how branching affects the address portion of the
PSW.

:3. Show how the CPU status is indicated by the condition code
in the PSW.

4. Describe the "branch on condition" instruction.

28 Instruction Sequencing and Branching

instruction

program

main storage

control

Instruction Sequencing and Branching

In the System/360, there is a doubleword which is used to indicate the
status of the program as well as to control the program. This .doubleword
is called the Program Status Word or PSW for short. The PSW, which is
being used with the program, is not kept in either main storage or the
general registers. It is part of the internal machine circuitry and as such
is not easily changed. You will learn more about the PSW after you answ('r
a few questions concerning stored program concepts.

Coded information which causes a computer to perform a specific task
(such as add or subtract) is called an

A series of instructions used to solve a problem on a computer is called
a

A program is sometimes referred to as a stored program because of the
fact that it is kept in when it is executed.

The instructions of the stored program are read out of main storage one
at a time. The instruction is then decoded in the section of
the CPU (Central Processing Unit).

After being decoded in the control section of the CPU, the instruction is
then executed in the section of the CPU.

--------------------------------------- --~-----~-~ -~ -

AL U (Arithmetic and
Logic Unit)

I Time

E Time (or Execution
Time)

I
E

For every instruction, there are two periods of time. The time during
which the instruction is read out or "fetched" from main storage is known
as

The operation specified by the instruction is performed during _______ .

Instructions have two periods of time associated with them:
time.

time and

In the System/360, there is no clear division between I time and E time.
That is, before the instruction has been completely read out and analyzed
by the control section, some part of the execution may have already been
started. But for all practical purposes, we can think of I time as heing
separate from E time.

Data is the name generally given to information read out of main storage
during __ time.

Instruction Sequencing and Branching 29

E

I

E

instruc ti ons
data

sequential

branch

branching

Op code
address or operand

Instructions are information read out of main storage during time.

An instruction may be treated as data and changed if it is read out during
time.

Information in main storage is treated as either or
depending on when the information is read out of main storage.

The instructions of a stored program are generally read out and executed
in a (random/ sequential) manner.

The sequential manner of instruction fetching and execution can be changed
by instructions known as instructions.

When the next instruction is read out of a non-sequential location in main
storage, we say that occurs.

Instructions are generally thought of as having two parts. One part of the
instruction is used to tell the computer what to do (such as to add or
branch). This portion of the instruction that tells the computer what to do
is known as the

The other portion of the instruction generally tells the computer where
the data is located. For this reason, it is someti.mes called the

porti.on.

Much of the remainder of this book is devoted to the Program Status
Word. You may find that the total or over-all function of the PSW
is difficult to keep in mind. This is because the PSW has such a large
number of detailed functions. As you study the PSW, do the following:

1. Remember that many of the detailed functions of the PSW are not
meant to be completely memorized and are, therefore, listed as
reference in the Principles of Operation manual.

2. Do not hesitate to go back and review or refer to the Principles of
Operation manual to help you keep an over-·all view of the PSW.

30 Instrltctiml ScqucnCillf!, and Branchi,ng

8

0, 63

instruction address

PSW - INSTRUCTION ADDRESS

The address portion of an instruction may sometimes contain other infor
mation besides data addresses. In a branch instruction, it would give the
address of the next instruction to be executed. In some instructions, the
data to be operated on may be contained in the address portion. Later on
when you study the instructions of the System/360, you will learn what is
contained in the address portion of each instruction. Let's continue now
with. the study of the System/360 and its Program Status Word (PSW).

As mentioned earlier, the PSW indicates the status of the program being
executed by the System/360. The program status word would include
status information such as:

1. The location of the next instruction.
2. Whether an arithmetic operation has resulted in a positive or

negative answer. Possibly, the operation ended with a zero
balance or an overflow.

Information such as indicated above, as well as other information, is
contained in the program status word.

--_._--_.

The PSW is a doubleword and contains bytes of information.

~0~==.63
] PROGRAM STATUS WORD

Like all double words , the bits of the PS\V are numbered
from left to right.

through

For right now, let's examine only one portion of the PSW and identify its

contents.
o 39 40 !i3

I
I
I

INSTRUC;ION ADDRES~J

Bit positions 40 - 63 of the PS\V are called the
portion.

The location of the next instruction to be fetched from main storage is
indicated by bits 40 - 63 of the PSW. These bits are the
_____ portion of the PSW.

Instruction Sequencin f!, and Branchinf!, 31

instruction address

PSW
instruction

PSW

PSW
instruction address

"current"

"current" PSW

I

As you learned earlier, main storage is accessed: by binary address.
As such, bits 40 - 63 of the ___ would contain the 24-bit binary
address of the next sequential

The instruction address of the next sequential instruction is contained in
a doubleword called the

,
;111(~: , , ,

I
o ,. C ==================j

J
Fill in the blanks.

The PSW is a doubleword which reflects the status and controls the
program "currently" being executed. For this reason, it is often
referred to as the "current" PSW.

The address of the next sequential instruction is eO'ntained in the
instruction address portion of the " " PSW.

The status of the program being executed is contained in the " _____ 1I

Before examining more of the "current" PSW, you may be wondering
where this doubleword is kept. For one thing, the "current" PSW does
not use any of the 16 general registers or addressable locations in main
storage. It is therefore kept in some internal area of the System/360
that is not addressable by the program. It may be a conventional
doubleword register or it may be kept in the same "local store" used by
the general registers in some models of System/360. In other words, it
all depends on which particular model of System/360 we are discussing.
The "current" PSW may actually be kept in a nunlber of smaller registers.
For all practical purposes, the "current" PSW is considered as one
doubleword of information.

----The "current" PSW
the general registers.

(is/is not) kept in lmain storage or any of

is not The address of the next sequential instruction is kept in the " _____ "

32 Instruction Sequencing and Branching

"current" PSW

1002; Each storage
address refers to a
single byte.

1002
instruction

"current" PSW
1006

2

0, 1
Op code

6

The instruction address portion of the "current" PSW is automatically
updated for each instruction that is fetched and executed. That is, if an
RR type instruction is fetched from location 1000, the instruction address
portion of the "current" PSW must be updated.

Since an RR type instruction is one halfword (2 bytes) in length, the
location of the next sequential instruction would be ____ .

After the RR type instruction at location 1000 has been executed, the
instruction address portion of the PSW which now contains will be
used to fetch the next

If the instruction at location 1002 is the RX type, the instruction address
portion of the " " __ __ __ will then be changed to __ _

Since instruction length is always a multiple of halfwords, the instruction
address portion of the "current" PSW is always updated by some multiple
of _ (1/2/3).

The instruction address in the "current" PSW is increased by 2, 4, or 6
depending on bits __ and __ of the current instruction's _____ _

If bits 0 and 1 of the current instruction's Op code contain 11, the
instruction address in the "current" PSW will be increased by __ .

You should be familiar with the use of flowcharts in writing a program.
Decision blocks in a program are represented by this symbol:

The use of this symbol in a program represents a decision as to what to
do next. Should the program continue with its present sequence of
instructions or should it "branch out" to another sequence of instruction?
Sometimes a decision block represents leaving a sequence of instructions.
In this case, the program is trying to decide which of two or more new
sequences to "branch to. "

Instruction Sequencing and Branching 33

1004

"current"
2000

40, 63

condition code
34, 35

As you know, the instruction address portion of the "current" PSW is used
to fetch the next sequential instruction. What then happens to the
instruction address portion of the "current" PSW when a "branch" is
taken?

Whenever a branch is executed, the contents of the instruction address
portion of the "current" PSW is replaced by the address of the instruction
being branc hed to.

For example:

If an RX instruction at location 1000 is fetched, the instruction address
portion of the "current" PSW would normally be changed to

If, however, the instruction at 1000 says to branch to location 2000, the
instruction address portion of the " " PSW is changed to

In the preceding example, bits 40 - 63 (the instruction address) of the
"current" PSW might actually be first updated to 1004 and then changed
to 2000. This will depend on the particular branch-type instruction and
the model of the System/360. However, at the tiIne the system decides
that it will branch, the address of the "branch to" location is placed in
bits __ through __ (instruction address portion) of the "current" PSW.

PSW - CONDITION CODE

At this point, you should clearly understand the function of the instruction
address portion of the "current" PSW. It is used to fetch instructions
from main storage and to indicate the current location in the program.

o 3334 35 40

I NSTRUCT I ON
ADDRESS

lCONDITION CODE

As illustrated above, there is another field in the PSW and it is called
the . It is located in bits and of the
"current" PSW.

Bits 34 and 35 of the "current" PSW are used to reflect the status
of the CPU. These bits are known as the

63

34 Instruction Sequencing and Branching

condi tion code

four

1. 00
2. 01
3. 10
4. 11

condition code

zero

negative number

The question that now arises is: "How does the condition code reflect the
status of the central processing unit?" First of all, since the condition
code has two binary bits, it can have four possible bit combinations:

1) 00
2) 01
3) 10
4) 11

The condition code is set to one of its
an instruction has been executed.

possible combinations after

List the four possible settings for the condition code.

1. 2. 3. 4.

After the instruction is executed, one of four possible settings is placed
in the portion of the "current PSW. "

I don't want to mislead you. Not all instructions affect the condition code.
Later, when you learn the instructions, one of the items you should be
interested in is each instruction's effect on the condition code. At this
point let's take a good look at the condition code and see how it is used.

One of the uses of the condition code is to indicate the result of arithmetic
operations such as add or subtract. There are 4 possible results of an
algebraic add or subtract. The result could be a 1) positive number,
2) negative number, 3) zero balance or, 4) an overflow. The condition
code reflects these results with these settings:

Arithmetic Result

zero balance
< zero (or negative)
> zero (or positive)

overflow

Condition Code

00
01
10
11

A zero (00) condition code after algebraic addition indicates a
result.

Let's assume that at the end of an add operation the condition code is
set to Ol. This indicates that the algebraic addition resulted in a

(zero balance/ negative number).

If the condition code is set to 10, the algebraic addition resulted in a
(zero balance/ positive number).

Instruction Sequencing and Branchinf!.. 35

positive number

11

Besides a zero, negative or positive result, an overflow is also possible
with algebraic addition. This is indicated with a condition code setting of

If algebraic addition results in a negative number, the condition code is
set to ---

01

a. 00
b. 01
c. 10
d. 11

a. 11
b. 00
c. 10
d. 01

Indicate the condition code setting for the following results.

Algebraic Result Condition Code

zero a.
<zero or negative b.
>zero or positive c.

overflow d.

The condition code is set at the end of algebraic add or subtract operations
(either decimal or binary). The condition code in the PSW will retain this
setting until the end of the next instruction that can change the condition
code. Remember now that not all instructions affect the condition code.

Indicate the condition code setting for the following algebraic results.

Result

overflow
zero
positive
negative

Condition Code

a.
b.
c.
d.

Notice that you have learned how the condition code indicates the results
of algebraic addition. By algebraic addition, we mean the addition or
subtraction of signed numbers. Another use of the condition code is to
indicate the result of a compare operation. A compare operation consists
of comparing the 1st operand to the 2nd operand. The condition code is
set to indicate the result. Neither operand is changed. The condition
code is set and indicates whether the 1st operand is equal to, less than,
or greater than the 2nd operand as follows:

Comparison

equal
low
high

Condition Code

00
01
10

Notice that a condition code setting of 11 is not possible after a compare
operation.

Besides indicating the results of algebraic addition, the condition code is
also used to indicate the result of a operation.

36 Instruction Sequencing and Branching

compare

d; Not all instructions
affect the condition
code.

equal

1st
2nd

1st
2nd

high

Which one of the following is always true:

a. A condition code of 00 indicates a/zero result.
b. A condition code of 00 indicates an equal comparison.
c. A condition code of 00 depends on the instruction just executed.
d. A condition code of 00 depends on the last instruction that could

possibly change the condition code.

If the instruction just executed were a compare operation, a condition ('ode
setting of 00 would indicate that the 1st and 2nd operands were

After a compare operation, the condition code indicates whether the
(1st/2nd) operand is equal to, lower than, or higher than the

__ (1st/2nd) operand.

After a compare operation, a condition code of 01 would indicate that the
____ (1st/2nd) operand was low compared to __ (1st/2nd) operand.

After a compare operation, a condition code of 10 would indicate that th(~
1st operand was (low/high) compared to the 2nd operand.

Indicate the condition code for the following comparisons.

Comparison Condition Code

a. 1st and 2nd operands are equal
b. 1st operand is low
c. 1st operand is high

--- -------------

a. 00
b. 01
c. 10

a. zero equal
b. negative low
c. positive high
d. overflow not

possible

Indicate the meaning of the following condition codes for algebraic and
compare operations.

Condition Code Algebraic Result Comparison Result

a. 00
b. 01
c. 10
d. 11

You should now have a good idea of how the condition code in bits :34 and
:35 of the PSW indicates the status of the cent.ral proceSSing uni t. The
condition code is used to indicate more than just the result of an ulgebraic:
or comparison operation. You will learn these other possible indications
as you learn the individual instructions of System/:360.

Instruction Sequencin[!, and Branchinf!. 37

PSW
instruction

"branch on condition"
instruction

Rl

mask

The next question which you may have is: "Now that I know how the
condition code indicates CPU status, how can the <condition code be used
to control the program?"

One of the instructions of the System/360 is an instruction called "branch
on condition." This instruction causes the system to examine the condition
code and branch if its setting matches that of a code in the "branch on
condition" instruction.

The condition code in the ______ can be tested by means of an

The instruction that tests the condition code is called " ___ _
." This "branch on condition" instruction will cause a branch ------

if the condition code matches a coded field in the

The "branch on condition" instruction can be either of the RR or the RX
format. In either case, the Rl field is coded so that the condition code
can be tested.

OP CODES
IN

HEXADEC I MAL
R1

47

I BRANCH ON I MASKI
CONDITION FIELD

R2 BRA.NCH TO LOCATION IS IN
GENERAL REGISTER SPECIFIED
BYR2 FIELD.

02

I EFFECTI VE ADDRESS
IS BI~ANCH TO LOCATION.

In the "branc h on condition" instruction, the condition code in the PSW is
tested against the _R__ field in the instruction.

The Rl field in the "branch on condition" instruction is sometimes
referred to as the "mask" field. The condition <code is tested by being
matched against the Rl or field.

As you know, the condition code can mean many things. For instance, it
could indicate a low or equal compare, a negative arithmetic result, an
overflow and so forth. However, it can have only one setting (00, 01, 10,
11) at anyone time. This setting can represent only one thing depending
on the last instruction that affected the condition code.

Circle one of the following answers:

At anyone time, a condition code setting of 00 can represent:
a. Both an equal compare and an arithmetic result of zero.
b. Either an equal compare or an arithmetic result of zero.
c. Never an equal compare or an arithmetic result of zero.

38 Instruction Sequencing and Branching

b

"branch on condition"

2nd
R2

2nd
base address
index address
displacement

mask
condition code

mask or R1

four

00

The instruction that tests the condition code is lmown as " ----
"

The "branch on condition" instruction can be in either RR or the RX format.
In the RR format, the "branch to" address is in the register specified by
the (1st/2nd) operand of the instruction which is the R field.

In the RX format, the "branch to" address is in the
operand of the instruction and consists of _b __ _

and d -------

In either the RR or RXformat, the R1 field, also called the
field, is tested against the PSW's

(1st/2nd)

Bit positions 8 - 11 of a "branch on condition" instruction are called the
field.

The four bits of the mask field are tested against the
settings of the PSW's condition code.

possible

The mask field is tested against the condition code according to the
following chart:

Mask Field

1000
0100
0010
0001

Condition Code

00
01
10
11

As you can see from the above, any of the possible PSW condition code
settings can be tested by setting the appropriate bit of the instruction IS

mask field.

If bits 8 - 11 of a "branch on condition" instruction contain 1000. a branch
will occur only if the PSW condition code has a setting of __

If the condition code were 01 and the mask field were 0010, a branch
occur.

Instruction Sequencing and Branching 39

would not

1

none

0000
all or any

branch

Sometimes the four possible settings of the PSW condition code are
referred to by hexadecimal digits.

Condition Code

00
01
10
11

Heferred To As

o
1
2
:3

The bits of the "branch on condition" mask field correspond to the
condition code settings in a left-to-right fashion.

8--11

)1' 1 1 1 I \MASK FIELD

t + t +
o 1 2 3 CONDITION CODE

To test for a specific condition code setting, the corresponding bit of the
mask field must contain a (0/1).

If the mask field contained 0000, __ _ (all/none) of the possible
condition code settings will be tested.

A branch would never occur if the instruction's mlask field contains
If the mask field contains 1111, ___ of the possible condition code
setting's will be tested.

Since the condition code will always contain one of its four possible
settings, a "branch on condition" instruction mask field of 1111 will
always result in a

SUMMAHY:

With its 4-bit mask field, the "branch on condition" instruction has many
uses:

a. It can be used as a no-Op instruction, by having a mask field of 0000.
b. It can test for a specific result (such as an equal compare) by setting
~ of the bits of the mask field (1000).

c. It can test for a multiple result (such as an equal or low compare)
by setting two or more bits of the mask field (1100).

d. It can be used as an unconditional branch by having a mask field
of 111l.

Go to the IBJ.\tl System/:360 Principles of Operation manual and briefly
study the following areas of the System Structure section.

Sequential Instruction Execution
Branching
Program Status Word

40 Instruction Sequencinf!, and Branching

REVIEW QUESTIONS ON INSTRUCTION SEQUENCING AND BRANCHING

• Try to answer the questions without referring to the material. However,
if you do require aid, refer to this book and/or the System/360 Principles
of Operation manual and consider reviewing the area where aid is required.

1. PSW is short for

2. The PSW is __ bits long.

3. The address of the next instruction to be fetched is contained in bits
__ through __ of the PSW.

4. After an instruction has been fetched (read out), the instruction
address portion of the PSW is usually incremented by __ , __ or

5. The amount to increase the instruction address in the PSW is
determined by bits __ and __ of the instruction's _____ .

6. The PSW which is being used to fetch instructions is sometimes
referred to as the " " PSW.

7. This PSW is located in
(main storage/a general register/some type of internal register or
storage area).

8. Branching is accomplished by replacing the
in the PSW with the "branch to"

9. The condition code is in bits and

10. The condition code has __ possible settings.

11. The condition code in the PSW is changed by
instructions that are executed.

of the PSW.

(all/some)

12. Indicate the condition code setting after the following results:

Algebraic Add

zero
<zero
>zero

overflow

Compare

Equal
Low
High

C ondi ti on Code

13. Following an algebraic add instruction, the following "branch on
condition" instruction would test for what result?

BRANCH ON CONDITION

07

Instruction Sequencing and Branching 41

14. Following a compare instruction, the following instruction would
test for what result?

15.

BRANCH ON CONDITION

~ __ O_7 __ • __ ~I __ c __ ~1 __ 8 __ ~I~.~----IN HEX

The following instruction would
in a branch.

BRANCH ON CONDITION

07 I F I 7 1 '4(!------IN HEX

(always/never) result

16. If the following instruction resulted in a branch, the instruction
address in the PSW would be replaced by bits __ through __
of

17. If the following instruction resulted in a branch, the instruction
address in the PSW would be replaced by

BRANCH ON CONDITION I 8 I 4 I 7 '''-1---0- 0 - 0- I ~IN HEX

42 Instrztction Sequencinr, and Branchinr,

ANSWERS TO REVIEW QUESTIONS

1. Program status Word

2. 64

3. 40, 63

4. 2, 4, 6

5. 0, 1, Op code

6. "current"

7. some type of internal register or storage area

8. instruction address, address (location)

9. 34, 35

10. 4

11. some

12. Condition Code

00
01
10
11

13. < zero

14. equal or low

15. always

16. 8, 31, general register 5

17. The effective address generated by adding the contents of register 4
and register 7 and a displacement factor of O.

Instruction Sequencing and Branching 43

44 Interrupts

System/360 Program Control and Execution

Section I:
Section II:

• Section In:
Section IV:

SECTION III

Instruction Formats
Instruction Sequencing and Branching
Interrupts
Storage Protection

LEARNING OBJECTIVES

At the end of this section, you should be able to:

1. Relate the handling of interrupts to a supe rvisor or control program.

20 Describe how an interrupt affects the current PSW.

3. Define: Current, Old, New PSW's.

4. State the five (G) classes of interrupts.

5. Describe how the old PSW shows the cause of the interrupt.

6. Describe how the current PSW allows or masks interrupts.

7. State which interrupts cannot be masked.

80 Relate the problem state bit and the wait state bit to interrupts.

Interrupts

A program has previously been defined as a sequence of instructions
designed to solve a problem. A problem typical of those solved by a
stored program is a payroll application. A. payroll problem would consist
of (1) getting an employee's record, (2) calculating gross and net pay,
and (3) putting the results out in the form of a pay check. The payroll
problem would get the next employee's record and repeat the process. This
sequence of instructions would continue until all employee's records had
been processed. Admittedly, this is a gross simplification of a payroll
problem. However, most programs can be broken down into the three
operations of (1) ~ record, (2) process record, and (3) .2.!:!.!.. record in
output file. These problem solving programs are sometimes referred to
as Problem Programs.

t t
GET

~
PROCESS

t
PUT

I

TYPICAL PROBLEM PROGRAM

Another example of a Problem Program is an assembly program. Here the
problem is different, but the three operations are basically the same. The
problem consists of (1) getting a symbolic (source language) statement,
(2) processing it by translating the statement into machine language and
(3) putting the results in the output file (object program).

Interrupts 45

46 Interrupts

READ IN BY
PROBLEM
PROGRAM

+
DATA

PROBLEM
PROGRAM

CONTROL
~ PROGRAM

I MAIN STORAGE

READ IN MANUALLY
BY OPERATOR

I
CONTROL
PROGRAM

PIROBLEM
PROG A

READ IN BY
CONTROL PROGRAM

~~

During the past years, data processing machines have been developed with
faster and faster internal processing speeds. As a result, the execution
times for these problem programs have been continually reduced with no
corresponding reduction in the time it took for an operator to load in the
next problem program and manually set up its input data. In some data
processing installations, the average !'set up" time was about equal to the
average "execution" time. In other words, the data processing systenl
was idle about half the time while the operator was "setting up" for th('
next problem program. Clearly this was an inefficient way to control an
installation. In an attempt to reduce this idle time and keep the system.
running, installations began to use stored programs to control the
execution of problem programs. These programs in turn were called
Control Programs. Other names used were "monitors" or "supervisors. "
These Control Programs were at first written only for the requirements
of a particular installation. Later, as the similarities between control
programs became obvious, IBM began to supply generalized control
programs which could then be tailored to the requirements of each instal
lation. The simplest type of control program would be used to supervise
the loading of problem programs. It would operate like this:

1. An input tape would be prepared containing the problem prograll1S
and their associated data.

2. The operator would load the control program into main storage.

3. The control program would load in the 1st problem program and
then pass control (via a branch) to the problem program.

4. The problem program would read in its data and perform its
assigned task.

5. When the problem program is finished, it would not issue a halt
instruction. Instead it would pass control (by branching) back to
the control program.

6. The control program would then load in the next problem program
and pass control to it.

7. This operation would continue until all problem programs had been
executed.

Notice several things about the use of a control program in the preceding
example:

1. The system never halted between jobs.

2. The control program remained in main storage as the problem
programs were executed.

3. The control program served only as a linkage between jobs. Its
only function was to bring in a new problem program as each job
was finished.

Interrupts 47

48 Interrupts

What you have read is just one example of the use of a control program.
Its functions were limited. As such the entire control program could be
left in main storage. Other functions can be included as part of a control
program. One such function is the initiation of input-output operations.
The problem program is mainly interested in proeessing data. The
actual read and write operations necessary to transfer data between
the input-output devices and main storage can be handled by the control
program. Each I/O operation that is to be handled by the control
program may consist of many instructions. Besides telling the I/O
device to start, the instructions check for error conditions, I/O device
status, etc.

PROBLE M PROGRAM CONTROL PROGRAM

~ :------: ~ ~ --~ -_ -_ -_ -_-_ -_ ---.s :~~~D I
PROCESS

'----r---' - - ~ ~ : ~ -- -- -. ~ -- -- -- "----- ..•. f;!;J
BRANCH

In this function of a control program, control will pass back and forth
between the problem and control programs durinK the execution of the
problem program.

The preceding example differs from the original example of using the
control program just to load in new problem programs. In that example,
the only time the control program was in control was between jobs. In
our new example, the control program will do the following:

Read in new problem programs when necessary (same as
preceding example).

Also, it will start the necessary I/O units for handling I/O data
during the execution of the problem program.

So in the control program concept, there are always two programs in
main storage: the control program and a problem program.

CONTROL

PROGRAM

PROBLEM

PROGRAM

MAIN STORAGE

In the simplest utilization of the control program, it was used only to
bring in the next problem program. The problem programs handled
their own input-output operations.

INPUT
DATA

OUTPUT
DATA

- - - - -

RD PROG. A RD PROG. B

MAIN STORAGE

CONTROL

PROGRAM

PROBLEM

PROGRAM

RD PROG. C

CONTROL PROG.-Joo-$~ --- t
PROBLEM PROG.------~~~t--~~~ t~ ____ t

PROG. A EXECUTED PROG. B EXECUTED

Interrupts 49

problem
I/O

50 Interrupts

In its expanded function the control program would not only read in the
problem programs but would also handle the input-output data operation
during the execution of the problem program. The problem program would
transfer control to the control program whenever an input-output operation
was necessary.

MAIN STORAGE

CONTROL

READ
PROGRAM

PROBLEM

PROGRAM

PROGRAM TAPE OUTPUT DATA

l
yo FOR PHO~G. A DATAl

CONTROL PROG. RD PROG. A t
-~~

PROBLEM PROG._~ ~_t ~ ____ t, ~_t ~
EXECUTE PROGRAM A

The preceding sequence chart shows that the control program will not only
read in the programs, it will also be used during the execu-
tion of the problem program to handle the ___ operation for data.

The control program can be given other functions as well. In fact, some
control programs have reached a very high degree of sophistication. Of
course, the more functions that a control program has, the more main
storage space it requires. This problem is somewhat solved by placing
those sections of the control program that have infrequent usage on a
high speed fast access I/O device such as a disk storage unit. Only
those sections that are necessary to supervise the running of problem
programs arc kept in main storage. The portion of the control program
that remains in main storage is known as the program.

supervisor

main storage
supervisor

In review then, control programs have come into general acceptance
because of the need to reduce machine idle time and manual intervention
and to increase the over-all efficiency of a data processing installation.

As the size of control programs increased to meet the demands of more
and more efficiency, it became necessary to keep most of the control
programs on a high speed I/O device. Preferably, it would be a direct
access device such as a drum or a disk storage unit. The portion of the
control program that was kept in m s was called
the The supervisor would call in the other sections
of the control program when necessary.

Let's continue on now and learn how a System/360 is controlled. As you go
through these pages, you will see more clearly how the design of System/360
is such as to facilitate the use of a control program. In fact, the
System/360 needs some type of a control program in order to run. The se
control programs may be written by IBM or by the user. The smaller
models of System/360 with limited main storage space may use a control
program with a minimum number of functions. Nevertheless, it will
be a control program! For the purposes of our discussion, the part of
a control program that resides in main storage is called the supervisor.
The remainder of the control program will be assumed to be on a high
speed I/O unit.

In the previous section of this text, you learned how the instruction
address portion of the "current" Program Status Word (PSW) was used to
sequentially fetch instructions. You saw that the sequence of instruction
being executed could be changed by "branching." Branch instructions
in the System/360 cause the instruction address portion of the PSW to be
replaced by the address of the "branch to" location.

INTERRUPT ACTION

In this section, you will be learning how the System/360 can change the
sequence of instruction execution without the use of a branch instruction.
This method is called an Interrupt.·

The System/360 was designed to be used with a control program. One of
the reasons why a control program is used at all is to eliminate machine
idle time. Realizing this, the designers or architects of System/360
did not design a halt instruction. A problem program on a System/360
cannot issue a halt instruction when it is finished because there is no
halt code. When finished, the problem program must pass control back
to the supervisor. The supervisor is that portion of the control program
that resides in main storage.

Interrupts 51

c; Effects some type
of branch to the super
visor. (The function
of the supervisor is
then to bring in the
next problem program.)

d; Causes an auto
matic branch to the
supervisor.

Which of the following is most correct?

When a problem program is done on the System/3EiO, the problem program:

a. Reads in the next problem program.
b. Issues a halt instruction.
c. Effects some type of branch to the supervisor.
d. Reads in the control program.

There is another way the "architects" of System/:360 have attempted to
reduce idle time besides not having a halt instruction. Normally, in past
computers, a machine or program check would cause an error stop but
not in System/360! A machine check (such as an even number of bits in a
byte) or a program check (such as locating a halfword operand on an odd
byte address) in the System/360 cause an automatic branch to the super
vi sor instead of stopping the machine.

Which of the following is most correct:

A machine check on the System/360:

a. Is taken care of by the problem program.
b. Is impossible.
c. Causes an automatic branch to the supervisor which then issues a

halt instruction.
d. Causes an automatic branch to the supervisor.

As you have just learned, a machine check on System/360 causes an
automatic branch to the supervisor. This is the usual manner of
System/360 operation. However, as an aid to the Customer Engineer,
there :.ire two additional items concerning a machine check:

1. Thcre is a switch on the system control panel which can allow a stop
when a machine check occurs.

2. There is a bit (position 13) in the PSW which when set to 0 will cause
machine checks to be ignored. That is, there will be no automatic
branch to the supervisor.

----- ._-._-_._- ----------~---.. -.--------

Which of the following is/are true?

a.
b.
c.
d.
e.

A machine check can cause an automatic branch to the supervisor.
A machine check can cause an error stop.
A machine check can be ignored.
All of the above.
None of the above.

---_._-------_.- -----~------.--------------~.----.-----~-

52 Interrupts

d; It is true that a machine check can:
1. Cause an automatic branch to the supervisor. This is the usual method of operation.
2. Cause an error stop. This is under control of a switch on the system control panel.
3. Be ignored. If bit position 13 of the PSW is set to zero, machine checks are ignored

and no automatic branches to the supervisor will occur. Note; The machine check is
remembered. When bit position 13 of the PSW is set back to 1, the automatic branch \\ill
occur.

So far we have discussed the use of a control program to bring in new
problem programs when the old ones are finished. Since there is no halt
instruction in System/360, a problem program when finished must be able
to somehow "branch" into the supervisor (that portion of the control
program which resides in main storage). We also saw that when a
machine or program check occurs, an automatic "branch" to the super
visor usually occurs.

These automatic branches into the supervisor are called Interrupts. That
is, the current sequence of instructions is interrupted and an automatic
branch is taken to a new sequence of instructions.

Usually when a machine check occurs, an automatic branch is taken into
the supervisor. This automatic branch is called an

--_._-_._--

interrupt

machine
prog~am

interrupt

Interrupts can be caused by m ___ _ checks and p_______ che(~ks.

When a problem program is finished, it signals the supervisor via an

An interrupt is quite similar to a branch. However, it does much more
than a simple branch instruction. A branch instruction only replaced the
instruction address portion of the "current" PSW 0

BRANCHING FUNCTION

INSTRUCTION BRANCH D2 -I
------------~~-----------I

EFFECTIVE ADDRESS

PSW t
40 -------- 63 r------------------------.I-- INSTRUCTION--'

ADDRESS

~--~

Interrupts 53

instruction address
"current"
"current"

"old"

"new"

54 Interrupts

An interrupt replaces the entire "current" PSW. It does this by (1)
placing the "old" PSW in main storage and then (2) fetching a "new" PSW
from main storage o

INTERRUPT FUNCTION

r-------~ I
OLD psw -'

CURRENT psw

NEW psw

MAIN STORAGE

A branch instruction replaces only the portion
of the " " PSW. The" " PSW is the one which is ---------- ------------
being used to control the program.

An interrupt replaces the entire "current" PSW. It does this by storing
it as the " ____ " PSW and bringing out a "new" PSW.

The " " PSW is now controlling the program and is therefore the
new "current" PSW.

The "current" PSW that was controlling the program prior to the interrupt
has been stored in main storage. It is, therefore, referred to as the
" " PSW.

"old"

L "old"
2. IIcurrent"
3. "new"

"old'!

"old"

"new"

Actually, "old" and "new" PSWs reside only in main storage. There is
only one "current" or controlling PSW and it does not reside in main
storage but in the control section of CPU. When an interrupt occurs,
the "current" PSW is automatically placed in main storage where it is
called the "old" PSW, and a "new" PSW is automatically brought out of
main storage and becomes the "current" PSW.

PSW

2

PSW

3 IN THE CONTROL SECTION

PSW

MAIN STORAGE

Fill in the blanks above.

When an interrupt occurs, the "current" PSW is placed in main storage
in the location reserved for the " " PSW.

The location of the last instruction executed prior to an interrupt can be
determined by exam ining the " ____ " PSW.

The new sequence of instructions will be under control of the PSW
brought out from the main storage location reserved for a "
PSW Q

"

Assuming that the instruction address portion of a "new" PSW contains
1096, the 1st instruction after an interrupt \\'ould be at location _____ ~

Interrupts 55

1096

interrupt
0040
0104

56 Interrupts

By now you should have the idea that these "new" and "old" PSWs are
in fixed doubleword locations in main storage. Just what are these
locations? The answer will depend on just what class of interrupt it is.
There are five distinct classes of interrupts:

1. External Can be caused by pressing an interrupt key
on the operator's console.

2. Supervisor Caused by an instruction known as
"supervisor call. "

3. Program Caused by a program check.

4. Machine Caused by a machine check.

5. I/O Can be caused by the end of an I/O opera-
tion.

Each of the five classes of interrupts has its own distinct locations for
"new" and "old" PSWs as follows:

Interrupt "Old" PSW "New" PSW

External 0024 0088
Supervisor 0032 0096
Program 0040 0104
Machine 0048 0112
I/O 0056 0120

As you can see from the above chart, a machine eheck will cause the
"current" PSW to be placed in location 0048 and a "new" PSW will be
brought out from location 0112. Notice that these locations are all
divisible by eight since they contain doublewords.

A program check causes an i This program check interrupt
will cause the "current" PSW to be placed in location and a
"new" PSW to be brought out from location ____ •

The handling of program check interrupts, like all interrupts, is taken
care of by the program.

supervisor

supervisor

"old"
"new"

b; Accomplished
automa tically by the
"hardware" (internal
circuitry) of System/
360.

five
old and new (in
either order)

"new"

The portion of the control program that resides in main storage and
handles all interrupts is called the program.

When a program check occurs, the PSW is stored in the main storage
location reserved for progralTI interrupts and becomes the " ,I
(old/new) PSW. A " " (old/new) PSW is then brought out from
its reserved location iIi main storage.

Although an interrupt may be initiated by an instruction (such as the
instruction "supervisor call" initiating a supervisor interrupt), the
actual storing and loading of the PSW is done automatically by the
internal circuitry of the System/360.

The storing of the "old" PSW and the loading of the "new" PSW is:

a. Taken care of by machine instructions in the supervisor prograrn.
b. Accomplished automatically by the "hardware" (Internal circuitry)

of System/360.
c. Taken care of by machine instructions in the problem program.

Circle one of the above.

There are classes of interrupts. Each class has its own fixed
doubleword locations in main storage for a" "and" " PSW.

An entry into the correct routine in the supervisor program will be
caused by the instruction address portion of the " " (old/new)
PSW.

The particular routine that will be used in the supervisor program is
determined by the class of the

-------------------------------------- ----~"-~-"~-- -~ --

interrupt The location of the first instruction to be executed after the interrupt
is contained in the " ____ "

"new" The location of the last instruction executed prior to the interrupt can
PSW be determined from the " ____ "

Tnterrupts 57

"old"
PSW

3994

58 Interrupts

As you will recall from our earlier discussion of the PSW, the instruction
address portion of the "current" PSW is used to read out an instruction.
Once the instruction has been read out, the instruction address portion of
the PSW is updated so as to point to the next instruction. Interrupts can
only occur after an instruction is finished. Therefore, the instruction
address portion of the "old" PSW will not contain the address of the last
instruction executed. Instead it will contain the address of the next
instruction that would have been executed if the interrupt hadn't occurred.
In order to get the location of the last instruction executed, the instruc-
tion address portion of the "old" PSW must be decremented by the super
visor program. The supervisor must then know the length of the last
instruction executed. This is taken care of by an instruction length code (ILC)
in the PSW. The instruction length code is contained in bits 32 and 33 of
the PSW.

r
1516 40

INSTRUCTION
ADDRESS

63

35 - CONDITION CODE l LBITS 34,

-..- BITS 32, 33 - INSTRUCTION LENGTH
CODE

Bits 32 and 33 (ILC) of the PSW will be set to 1, 2, or 3 depending on the
length of the instruction.

PSW Bits 32 and 33
01
10
11

Instruction Length
1 Halfword
2 Halfwords
3 Halfwords

If the instruction address portion of the "old!! PSW contains 4000 and its
instruction length code contains 3, the last instruction executed prior to
the interrupt is located at

If the last instruction executed prior to the interrupt was of the RX format,
the instruction length code of the "old!! PSW will contain

The length in halfwords of the last instruction executed prior to the
interrupt is contained in the ILC (
of the !!~ ___ Il (old/new) PSW.

10
instruction length

code
"old"

Interruption Code

You have just seen how the instruetion length code in the "old" PSW would
indicate the length of the last executed instruction in the interrupted
program. There are five classes of interrupts. Each of these interrupt
handling routines would handle the interrupts in a different way. Not all
of them would be interested in the last instruction executed. In the case
of program, machine or supervisor interrupts, it is an instruction in the
problem program that caused the interrupt. In the case of external and
I/O interrupts, the problem program did not cause the interrupts. As a
result, the supervisor is not concerned about what instruction was ~ast
ex~cuted in the problem program. It would only want to be able to return
to the next instruction.

Another field in the PSW that may be of value to the supervisor is the
Interruption Code. It appears in bits 16 - 31 of the PSW.

o

Fill in the blanks above.

j' INSTRUCTION
ADDRESS

I L CONDITION CODE

L,NSTRUCT,ON LENGTH CODE

When an interrupt occurs, the "current" PSW is stored in one of five
locations reserved for the "old" PSWo It is at this time that the
interruption code of the PSW is set.

THIS IS ALL DONE
AUTOMATICALLY
BY MACHINE
CIRCUITRY AND
DOES NOT
REQUIRE INSTRUCTIONS

INTERRUPT
OCCURS

t
SET INSTRUCTION
LENGTH CODE AND
INTERRUPTION CODE

t
STORE PSW

IN
OLD PSW LOCAT ION

t
FETCH

NEW PSW

63 - J

Interrupts 59

Bits 16 - 31 of the "old" PSW will contain the code. The
supervisor program, by examining bits 16 - 31 of the "old" PSW, can
determine the

interruption The interruption code of the "current" PSW is not set until an
interruption code occurs.

interrupt

"old"

interruption code

---------------------"---"-"'"----------

The interruption code in the "old" PSW gives the supervisor the specific
reason for the interrupt. The five classes of interrupts tell the supervisor
only the general reason for the interrupt. For instance, the fact that the
"new" PSW was brought out of location 0104 will tell the supervisor that
the interrupt was caused by a program check. The supervisor still needs
to know what type of program c heck occurred. This is the function of the
interruption code in the PSW. By examining the interruption code in bits
16 - 31 of the "old" PSW, the program check routine in the supervisor
program can tell specifically whether it was a specification, addressing
or some other type of exception. In the case of I/O interrupts, the
interruption code will tell the supervisor what channel and I/O unit are
causing the I/O interrupt.

Go to the IBM System/360 Principles of Operation nlanual and briefly
study the Interruption Action chart in the Appendix or the Interruptions
section. Use this chart as reference when reading the following frames.

'1'0 determine the specific reason for a program interrupt, the supervisor
program would have to examine bits 16 - 31 of the " " (old/new)
PSW.

Bits 16 - 31 of the PSW are called the

When a program interrupt is caused by a fixed point overflow, the
interruption code of the "old" PSW will contain
(Refer to the Interruption Action chart in the Principles of Operation man
ual.)

0000000000001000; For brevity's sake, the interruption code would be represented as 4 hexadecimal
digits:

60 Interrupts

Binary
0000000000001000

Hexadec imal
-------l~~ 0008

Fill in the names of the indicated portions of the PSW.
16 31 36 40 63

-J CODE L ADDRESS

2 _____ _

CODE

------------------------------------ ---~--.---.-... --.--

1.
2.

3.
4.

Interruption Code
Instruction Length
Code
Condition Code
Instruction
Address

Since there are five "old" PSWs in main storage, how does the supervisor
know which one to use? The answer is, of course, that the class of
interrupt which occurs determines the ~ of "new" PSW that is fetched.
The "new" PSW will cause an entry into the proper routine in the super
visor program. The routine in turn will use the "old" PSW that corres
ponds to the particular class of interrupt. For instance, the program
check routine in the supervisor will use the "old" PSW at location 0040 while
the supervisor call routine will use the "old" PSW at location 0032.

Interrupt "Old" PSW "New" PSW

External 0024 0088
Supervisor 0032 0096
Program 0040 0104
Machine 0048 0112
I/O 0056 0120

Notice that the "old" and "new" PSW locations are shown on the
Interruption Action chart in the Principles of Operation manual.

In the case of an interrupt caused by a machine check, the PSW that was
controlling the program prior to the interrupt is stored automatically in
location Then the doubleword at location is brought
out and becomes the controlling ("current") PSW.

Interrupts 61

0048
0112

machine
0048

0040
0104

program
0040

0032
"old" PSW
"new" PSW

"supervisor call"

"supervisor call"

0024
"old"
"new"

62 Interrupts

This PSW at 0112 will direct the system to that area of the supervisor
program that handles checks. The machine check handling
routine of the supervisor is written so that the doubleword at location

will be processed as the "old" PSW.

In the case of an interrupt caused by a program c heck, the PSW that was
controlling the program prior to the interrupt is stored automatically
in location ___ Then the doubleword at location is brought
out a.nd becomes the controlling PSW.

-----.---------

This PSW at 0104: will direct the system to that area of the supervisor
that handles checks. The program check handling routine
of the supervisor is written so that the doubleword at location
will be processed as the "old" PSW.

In the case of an interrupt caused by the instruction "supervisor call, "
the "current" PSW (prior to the interrupt) is stored in location
where it is referred to as ,," Then the doubleword at ---
location 0096, referred to as the " " is brought out
and becomes the controlling or "current" PSW.

This "new" PSW will direct the system to that portion of the supervisor
program which handles "supervisor calls. "

One way a problem program could notify the supervisor program that the
program is finished is to issue a " ___ " instruction.

The last instruction of a problem program would probably be a " -----,
___ " instruction.

If the interrupt key on the operator's console is depressed, an external
interrupt will occur. In this case, the "current" PSW will be automatically
stored at location where it is known as the " " PSW.

On an external interrupt, the doubleword at location 0088, known as the
___ " PSW, is brought out and becomes the new "current" PSW.

An interrupt may also be caused by the end of an I/O operation. An I/O
interrupt causes the PSW to be stored at location where it is
called the " " PSW. Then the " " PSW at location 0120
is brought out and becomes the "current" PSW.

This PSW will direct the system to that section of the supervisor program
that handle s I/O

0056
"old"
"new"
interrupts

problem
supervisor

b

You will learn more about I/O interrupts when you study I/O programming.
For now, it is sufficient to realize that I/O interrupts generally occur at
the ~nd of an I/O operation. Most I/O operations are overlapped with
processing. The I/O interrupt is an efficient way of signaling the
supervisor that the I/O operation is finished.

PROBLEM PROG. ___ ----

SUPERVISOR PROG.~ __ ~-::,:J t ! t
I/O UNIT _____ /:. ____ J _____ ~

SUPER~ / t SUPERVISOR
CALL HANDLES
INTERRUPT I/O INTERRUPT

SUPERVISOR
STARTS I/O
OPERATION

I/O OPER
ATION
OVERLAPPED
WITH
PROCESSING

At the end of the I/O operation, the I/O interrupt would cause the PSW
used in the processing of the p program to be stored in
location 0056.

The doubleword at location 0120 would be brought out of main storage and
used as the PSW to control the processing of the I/O interrupt routine in
the program.

After the end of the I/O interrupt routine in the supervisor, it is desirable
to return back to processing the problem program. Which of the following
sounds as if it were the better method?

a. The supervisor should issue a branch instruction back to the
problem program.

b. The supervisor should load the "old" PSW in location 0056 back
as the controlling PSW.

To simply branch back to the problem program would not be desirable.
A branch instruction only affects the instruction address portion of the
PSW. Other parts of the PSW are also important in controlling the
processing of a program. For one thing, the condition code setting in
the controlling PSW for the I/O interrupt routine would not necessarily
be the same as it was before the I/O interrupt occurred. It would be best
to be able to give control back to the problem program with the same PSW
that the problem program was using when the I/O interrupt occurred.
This can be done in the System/360 with an instruction known as "Load
PSW. II This instruction can be used by the supervisor to load the "old"
PSW back into the system's control section. This would necessarily be
the last instruction in the supervisor's interrupt handling routine. This
return to the problem program by replacing the PSW is done by means of
an instruction ("load PSW") and is not automatic as an interrupt was.

[nterrupts 63

64 Tnterrupts

OLD
PSW - Ii'

3 L I CURRENT PSW

or----N-EW-P-SW- ----.1 ~ 2

INSTRUCTION

f 1
11 f

~ J'" 1 I
1- - - 1 ,

PROBLEM
PROGRAM

1 ,

:J ::
, 11

" 11
, 1 ,

'2 INSTRUCTION

3

'~ INSTRUCTION
, 1

1 , SUPERVISOR , , PROGRAM
1 , (INTERRUPT
1 T HANDLIN)
T T ROUTINE
T'
T T

(
INSTRUCTION)
LOAD OLD PSW

As can be seen from the preceding figure, interrupt action is as follows:

(1) At the time of the interrupt, the "current" PSW which is controlling
the problem program is stored in the "old" PSW location. The
"old" PSW gives the reason for the interrupt. It also contains in
its instruction address portion the point at which we left the problem
program. This is done automatically by machine circuits.

(2) A "new" PSW is then brought out of storage and becomes the
"current" PSW. This "new" PSW points to the first instruction
of the interrupt handling routine which is part of the supervisor
program.

(3) After the interrupt has been taken care of, the last instruction of
the interrupt handling routine will be "load PSW." This \vill
cause the "old" PSW to once again become the "current" PSW
and we are back in the problem program.

OP CODE 12

The "load PSW" is of the SI format. Label the fields of the SI format.

I2 SI FORMAT

81 D1

In the "load PSW" instruction the 12 field is ignored.

LOAD PSW
OP CODE IN
HEX

IGNORED

CURRENT PSW

D1

DOU8LEWORD

MAIN STORAGE

The "load PSW" instruction can be used by a supervisor program
any time it wants to change the "current" PSW. One of its main uses
will be to return to the problem program by making the "old" PSW
become the "current" PSW after an I/O, "supervisor call, " or external
interrupt has been serviced. It could also be used to load the PSW
for new problem program after it had been read into the machine by the
supervisor program.

--- -----

Interrupts 65

0056: "old" PSW for
I/O interrupt

~CODE R1 R2

66 Interrupts

To return to a problem program after an I/O interrupt has been serviced.
the effective address generated by the B1 and D1 fields of a "load PSW"
instruction should be • (Refer to the Interrupt Action chart.)

The "supervisor call" interrupt as was previously explained is used by the
problem program to pass control to the supervisor program. There are
a number of reasons why the problem program mig~ht want to call the
supervisor program. Two of the major reasons are:

1. To tell the supervisor program that it (the problem program) is
done. The supervisor could then read in a new problem program
and load its PSW.

2. To request the supervisor program to start an I/O operation for the
problem program.

The "supervisor call" instruction is of the RR fornlat. Label the fields
of the RR format.

RR FORMAT

The "supervisor call" instruction causes a "supervisor call" interrupt.
The eight bits of the Rl and R2 fields are placed in the interruption code
of the "old" PSW.

OP CODE

OA R 1 R2 I
SUPERVISOR~
CALL IN HEX l f
OLD~I PSW ~ ___ ~ ______ ~ ________ ~

NEW-+-I PSW ~. ____________________ ~ LOCATION 0096

CURRENT
PSW

The "old" PSW will be the previous " " PSW with the exception of
its i code which will come from the "supervisor call"
instruction.

"current"
interruption

Since the bits of Rl and R2 field are stored as the interruption code, they
can be used as pre-arranged signals to tell the supervisor program the
reason for the interrupt. These "pre-arranged signals" would depend
on who (IBM or the user) wrote the supervisor program. For instance:

OA I 0 I 0 \--t---SUPERVISOR CALL INSTRUCTION

~
EVERYTHING RESULTS IN

IN HEX AN INTERRUPTION
CODE OF 00

This interruption code of 00 might be used to signal a supervisor
program that the problem program is finished.

Given the following "supervisor call" instruction (in hex), what binary
bit structure would be placed in the interruption code of the "old" PSW?

OA D I 0 I~SUPERVISOR CALL INSTRUCTION

0000000011010000-bits As you know by now, an interrupt is a type of "branch." It can occur at
16-31 of the "old" PSW any time in a program although never in the middle of an instruction.
in location 0032 Although you have been told that interrupts occur only at the end of an

instruction and never in the middle of one, this might be a little mislead
ing. It is definitely and absolutely true that the current instruction will
be completed before an 1/0, external, or" supervisor call" inte rrupt is
taken. In the case of program and machine interrupts (which indicate
programming and hardware errors), the interrupt still occurs at the
end of the instruction. However, in these two cases, the end may be
forced by suppressing the instruction's execution where a programming
error is detected during instruction fetch time or by terminating its
execution when a programming or machine error is detected during E
time. Refer to the Execution Column of the Interruption Action chart.

Interrupts 67

68 Interrupts

We can summarize the interrupt concept by saying that the interrupt or
"branch" is completed automatically by the internal circuitry or "hard
ware" of System/360. The "current" PSW is placed in a fixed location
in main storage and becomes the "old" PSW. The "'old" PSW basically
gives the specific reason for the interrupt and also provides a return
to the interrupted program. A "new" PSW is fetched from a fixed
location in main storage and becomes the "current" PSW. The "new"
PSW provides an entry into the correct routine in the supervisor program.

PSW J1
{

GIVES REASON FOR INTERRUPT,
/ PROVI DES RETURN TO PROBLEM

/' PROGRAM

S-----'-- ~ ~CONTROLS CURRENT
~ ~ PROGRAM

1L==3 ~Psw~~---+-. PROVIDES ENTRY INTO
SUPERVISOR PROGRAM

Fill in the blanks above.

1. "old"
2. "current"
3. "new"

INTERRUPT PREVENTION-MASKING

Sometimes it is not desirable to allow an interrupt. This is most
apparent when we consider an I/O interrupt because in the System/360
it is possible to have simultaneous I/O operations on two or more channels.
This will be explained in the f0llowing illustration.

LOCATION 0056

___ OL_D ps_w -------Ii'
_1.-

CURRENT PSW

"
"-

INSTRUCTION
t t , , , , - ~Tt
t, PROBLEM

t' PROGRAM , , , ,
t,
, t

LOCATION 0120 t
~-----'1~2

, ,2 INSTRUCTION

3

"-~------------------~

NEW PSW .

IF A 2ND I/O INTERRUPT WERE ALLOWED}
TO OCCUR HERE, THE CURRENT PSW
AT THIS POINT WOULD BE STORED AT /
LOCATION 0056. THIS WOULD CAUSE ./
THE OLD PpW FROM THE PRo..BLEM
PROGRAM ~ALREADY IN 0056) TO BE
DESTROYED.

" I NSTRUCT I ON , ,
t' t,

7f' ,
/ "

/ "
/ " , ,

SUPERVISOR
,PROBLEM
~ INTERRUPT
HANDLIN~
ROUTINE)

(
INSTRUCT I ON)
LOAD OLD PSW

As can be seen from the preceding figure, interrupt action is as follows:

(1) When one I/O operation is completed, an I/O interrupt will usually
occur. The "current" PSW will be stored to give the supervisor
program the reason (which I/O unit) for the interrupt. This "old"
PSW also gives the supervisor program a way in which to return
to the interrupted problem program.

(2) A "new" PSW is then brought out of storage and becomes the
"current" PSW. This "new" PSW points to the first instruction
of the I/O interrupt handling routine.

(3) A 2nd I/O interrupt caused by the completion of operation of
another I/O channel will result in a loss of the "old" PSW.

Interrupts 69

1. system mask
2. machine check

mask
3. program mask

70 Interrupts

How can the supervisor program prevent this 2nd and undesirable I/O
interrupt until it has processed the first one? It does this by proper usage
of "Mask" bits in the PSW.

0 7 13. 16 313233343536 394'0 63

I I II I
INTERRUPTION

CODE

t ~
SYSTEM MACHINE

MASK CHECK MASK

As can be seen above:

1.
2.
3.

Bits 0 - 7 are known as the
Bit 13 is the
Bits 36 - 39 are known as the

SYSTEM MASK

I ~ I ~ I I
INSTRUCTION

ADDRESS

t
PROGRAM

MASK

bits.
hit.

bits.

When these mask bits are set to~, the corresponding interrupts are
masked or prevented. Let's first consider the system mask bits. These
8 bits can be used selectively or collectively to mask all I/O and external
interrupts as follows:

PSW Bits 0 - 7 System Mask

0 Multiplexor Channel
1 Selector Channel 1
2 Selector Channel 2
3 Selector Channel 3
4 Selector Channel 4
5 Selector Channel 5
6 Selector Channel 6
7 External

To prevent (mask) all I/O and external interrupts, hits 0 - 7 of the
"current" PSW must contain _ (zeroes/ones).

I

zeroes

a and d

b

b

system mask
1. I/O
2. external

system
zeroes

A system mask of all zeroes would mask: (Circle one or more.)

a. All external interrupts
b. All program interrupts
c. All supervisor call interrupts
d. All I/O interrupts
e. All machine inte rrupts

Notice that there is only one I/O interrupt. However, each of the
six selector channels and the multiplexor channel can be selectively
prevented from causing the I/O interrupt.

Use the "mask bits" column of the Interruption Action chart as reference
for the following frames.

A system mask of 00111110 would mask (prevent): (Circle one of the
following.)

a. All I/O and external interrupts
b. Some I/O and all external interrupts
c. Some I/O and some external interrupts
d. All I/O and some external interrupts

A system mask of 10000001 would prevent I/O interrupts by:

a. Multiplexor channel only
b. All selector channels
c. Multiplexor and selector channels

Bits 0 - 7 of the PSW are known as the

The system mask can be used to prevent these two classes of interrupts:
1. 2. __________ _

To prevent all I/O and external interrupts, the mask
must contain all (zeroes/one).

Although there is only one I/O interrupt, each of the
can be selectively masked so that they will not cause the interrupt.

Interrupts 71

channels

"current"

"old"

72 Interrupts

The system mask that determines whether or not to mask I/O and external
interrupts is in the " " (old/current/new) PSW.

In case of an I/O interrupt, the channel causing the interrupt will be
contained in the interruption code of the " " (old/current/new) PSW.

To prevent a second I/O interrupt before a first one has been completely
processed, the system mask of the "new" PSW should contain zeroes.
o 7 OLD psw I ... F_F--'-' ________Ili-----nn ... FROM PROBLEM PROGRAM

t .--o-r--1 -------,

SYSTEM MASK IN~kF ! CURRENT PSW J ::: PSW 1---"-----t----.J
100 I -=.=J~-----n--- ... TO SUPERVISOR PROGRAM

One more point that should be made concerning the system mask. When
it contains zeroes, I/O and external interrupts are prevented. However,
any I/O and external'interrupts will remain pending. As soon as the
system mask is set to l' s , another interrupt will be taken.

The last instruction in the I/O interrupt routine of the supervisor program
would be "load PSW." The "old" PSW in main storage would be brought
out and placed back in action as the "current" PSW. Once this is done I/O
interrupts can once more occur. This is because the system mask of the
problem prograp1 's PSW would probably contain all 1 's (FF). Of course,
a system mask of all l' s would allow not only I /0 interrupts but also
external interrupts.

will
will

MACHINE CHECK MASK

INTERRUPTION
CODE

INSTRUCTION ~
ADDRESS

There are five classes of interrupts. I/O and external interrupts can be
masked by means of the System Mask in bits 0 - 7 of the PSW. A third
class of interrupt can be masked by means of bit 13 of the PSW. If
this bit contains a zero, machine checks will be ignored and no machine
interrupt will occur. Of course, this is not the usual state of the
machine check mask bit. It is usually set to 1, so that machine checks
will cause an interrupt. Remember also that a switch on the CE section
of the system control panel can be used to cause an error stop rather
than have an interrupt. The usual mode of operation is to have this switch
off and PSW bit 13 set to 1. This means that when a machine check
(such as even parity) occurs, an error stop does not occur. Instead a
machine interrupt occurs.

When PSW bit 13 is set to 1, a machine check (will/will not)
cause an interrupt. The bit is usually set so that an interrupt
(will/will not) occur whenever a machine check is encountered.--"--

When PSW bit 13 is set to zero, a machine check will cause: (Circle
one of the following.)

a. An error stop
b. An interrupt
c. None of the above

c; The machine check mask bit only determines whether a machine check causes an interrupt or
is ignored. If PSW bit 13 is zero, machine checks are ignored and the System/360 continues
merrily on its way. Obviously, this mask bit is rarely set to zero.

Which of the following will cause an error stop when a machine check
happens?

a. PSW bit 13 set to 1
b. PSW bit 13 set to zero
c. Switch on CE control panel is on
d. Switch on CE control panel is off

Interrupts 73

"log out"

0128

74 Interrupts

In summary then, there are three possible courses of action when a machine
check occurs:

1. It will cause machine interrupt; the PSW is stored in location 0048
and a "new" PSW is fetched from location 0112.

2. It will cause an error halt.

3. It will be ignored if PSW bit 13 is zero.

There is one other item of information concerning rnachine checks. It is
called "log out." Unless the machine check is being ignored, information
concerning the status of internal circuitry is auto:matically placed in storage
starting at machine location 0128. This "log outll' occurs prior to the
machine interrupt or error stop.

The automatic storing of status information at location 0128 when a
machine check occurs is known as " " ------

"Log out" consists of storing information concerning the status of the
machine when the error occurred. This "log out" begins at location ___ •

Just how much information is contained in a "log out" and what it means will
depend on the particular model of System/360. Until you learn one of the
models of System/360, "log out" doesn't mean much. However, "log out"
always occurs prior to a machine interrupt and places information in
storage starting at location 0128. The size of this "log out" area may
vary from a couple of bytes to as much as almost 200 bytes, depending
on the model of System/360. This information reflects the status of the
machine's inte rnal circuitry. As such it is mean:ingful only to someone
who has a knowledge of the machine's internal circuitry.

PROGRAM MASK

Program checks (such as a speCification exception) also can cause an
interrupt. While machine checks cause machine interrupts, program checks
will cause a program interrupt. On a program interrupt, the PSW is stored
in location 0040 and a "new" PSW is fetched from location 0104. It might be
interesting at this time to note for what it's worth that the location of any
"new" PSW is 64 higher than that of its corresponding "old" PSW.

Class of Interr!!J2!
External
Supervisor Call
Program
Machine
I/O

"Old" PSW
0024
0032
0040
0048
0056

"New" PSW
+H4= 0088
+H4= 0096
+G4= 0104
+H4= 0112
+G4= 0120

36, 39

MACHINE
CHECK MASK

INTERRUPTION
CODE

PROGRAM
MASK

INSTRUCTION
ADDRESS

We have already seen that I/O, External, and Machine interrupts can be
masked. Program interrupts can also be masked by use of bits
through __ of the PSW.

63

There are 15 possible exceptions which can cause a program check. Go
to the Interruption Action chart and briefly review the 15 exceptions.

Four of these exceptions may on occasion not be considered as prograln
checks. These four exceptions are:

1. Fixed Point Overflow
2.
3.
4.

Decimal Overflow

Exponent underflOW} ----l~
Significance

.. Concerned with
Floating Point

When one of the general registers is being used as a counter in a program,
it may be desirable to test the counter for an overflow. In such cases, an
overflow should not be treated as a program check. As a result the program
mask in the PSW is available to the programmer to mask program check
interrupts caused by the four exceptions mentioned earlier. Use the
Mask Bits Column of the Interruption Action chart and fill in the blanks
in the illustration.

36 37 38 39

S I 0 I 0 I 0 I 0 I) PROGRAM MASK OF psw

~L=-
36 - Fixed Point Overflow
37 - Decimal Overflow
38 - Exponent Underflow
39 - Signific anc e

Interrupts 75

1.
2.
3.
4.

0

All other programming exceptions (such as specification) are always treated
as programming errors and will always cause a program interrupt.

What four programming exceptions can be masked by bits 36 - 39 of the
PSW?

l.
2.
3.
4.

.._-------_.------

Fixed Point overflow}
Decimal Overflow
Exponent Underflow
Significance

You learned these when you studied Data
Formats.
These are part of Floating Point which is
not an objective of this course.

Label the indicated fields of the PSW.

o 13 16 31 32 3334 35 36 39 4() 63

II I I I I I
-J

7 16 63 I SYSTEM INTERRUPTION INSTRUCTION

MAS~ CODE ADDRESS

MACHINE_J I NSTRUCTI 0:.1 I l PROGRAM

CHECK LENGTH MASK

~SK CODE

CONDITION

CODE

76 Interrupts

It is also important to know which classes of interrupts cannot be
masked. They are the "supervisor call" interrupt and program interrupts
caused by all but the four programming exceptions indicated in bits
36 - 39 of the PSW.

At this point you have covered nlOst of the PSW and can relate it to the
control of the program and the System/360 interruption system. Let's
finish up this PSW!

ASC II MODE

I \
\

\
\

\
\

12 13 14 15

ASC II ...
MODE~ l MACHINE

CHECK
MASK

PSW

Of bits 12 - 15, you are already familiar with bit 13. It is the _m ___ _
c mask bit. Bit 12 is the mode bit. ASCII is a
computer code adopted by the American Standards Association. It
differs from binary coded decimal mainly in the way it represents its
zone bits. If bit 12 of the PSW contains aI, the ASCII code will be
internally generated rather than the extended BCD code.

Example:

The number 1 in EBCDIC looks like this:

11110001
Zone ~-.--J ~ Numerics

The number 1 in ASCII looks like this:

Zone t-----' '-------! .. ~ Numer ic s

------------------------------------_.- -- -_.

Interrupts 77

machine check
ASC II

78 Interrupts

When processing data with the instructions of the decimal feature, the
following are the standard signs generated:

Plus

Minus

1100 }

1101
EBCDIC

If bit 12 of the PSW contains a 1, the signs that will be generated when using
the decimal feature are:

Plus

Minus

1010 }

1011
ASCII

The remainder of the packed fields used by the decimal feature are the same.

For instance, a +107 would look like this:
D D Ct S

If PSW bit 12 is 0 -10 o 0 1: 0 o 0 01 0 1 1 ';1 1 0 01 EBCDIC

D D D S

If PSW bit 12 is 1 -10 o 0 <0 o 0 £'1 1> 0 1 01 ASCII

---.-. __ ._----

When a packed field is converted back to the unpacked format by the "unpack"
instruction, the zone bits that are inserted will depend on the ASCII mode bit
in the PSW.
For instance:

PAC KE D I 0 0 0 1: 0 0 0 0 I 0 1 1 1: 1 1 ~
+107 IN

EBCDIC t ~ -----------------=----
UNPACKED I ~_' ____ ' __ 1~:_0 __ 0 __ 0 __ '_1~1 __ 1 ____ '~:0 __ 0 __ 1,_)_0~1_' __ ' __ 0 __ 0~:_0 __ ' __ 1 __ '~

~
ZONES INSERTED IF PSW BIT 12 IS 0

PACKED I 0 o 0 1 : 0 0 0 010 1 1 < 1 0 ~
+107 IN ~ ~ ----------ASCII

UNPACKED 10 '~O<OO o 0 l' o 1 0:0 1 1 1

ZONES INSERTED IF PSW 12 IS 1.

Most System/360 I/O devices which are code sensitive such as punches
or printers use the Extended BCD Interchange Code (EBCDIC) rather
than the extended ASCII code. As a result it would be expected that
in most cases bit 12 of the PSW would be (zer%ne).

WAIT BIT

--- --- -----

zero

one
interrupt
PSW

12 13 14 15

MACHINE
CHECK
MASK

Bit position 14 of the PSW is called the wait bit. If this bit is zero,
instructions are fetched and executed in the normal manner. Once
an instruction is executed, the next instruction is fetched under
control of the instruction address portion of the PSW. If the wait bit
contains a -.!...t instructions are no longer fetched and executed. Instead
the System/360 will wait until an interrupt occurs and changes the RSW;
Of course, the "new" PSW would contain a zero in bit position 14.

If bit 14 of the PSW contains a (zer%ne) the CPU will wait
until an i occurs and changes the ______ '

Only the I/O and external interrupts can change the status of the CPU
from a wait state to a running. state. Machine, program and "super
visor call" interrupts can occur only when the CPU is in a running
state and processing instructions.

If bit 14 of the PSW contains aI, the CPU will wait until either an
or an interrupt occurs.

Interrupts 79

I/O
external

program
supervisor

privileged
"old"

80 Interrupts

PROBLEM STATE BIT

We have previously discussed the use of a supervisor program to
control a computer installation. Also we discussed the use of a super
visor program to handle the input and output requirements of a problem
program. We have also discussed several features of the System/360
which necessitate the use of some type of a supervisor. These features
included:

1. The lack of a halt instruction.

2. No stopping of the machine when a program or machine check was
encountered.

Another feature of the System/360 which necessitates the use of a control
program or supervisor is this:

There are certa-in instructions in the System/360 which are legal only
when the supervisor program fetches them! If the problem program should
attempt to execute one of these instructions a ~ra.!!!. check would occur.
These instructions are called privileged operations.

If the problem program should attempt to execute a privileged instruction,
a interrupt would occur. The program interrupt is handled
by the program.

The fact that the problem program attempted to execute a
instruction is indicated to the supervisor program by the interruption code
in the" " (old/new) PSW.

Those instructions that may be executed by the supervisor program but
not by the problem program are called operations.

privileged Two questions now arise:

1. How does the machine know whether the supervisor or the problem
program is being executed?

2. What instructions are considered as privileged instructions?

To answer the first question, let's take a look at bit 15 of the PSW.

12 13 14 15

MACHINE
CHECK
MASK

The machine assumes that the problem program is being executed if there
is a .! in bit 15 of the PSW. This bit is called the bit.

If PSW bit 15 contains a -.h the fetching of a privileged instruction would
cause a interrupt.

--- -- .-

problem state
program

zero

zero

one

The machine assumes that the supervisor program is being executed if
PSW bit 15 contains a (zer%ne).

We would expect that bit 15 of the five "new" PSWs in main storage would
contain a (zer%ne).

We would expect that bit 15 of any of the "old" PSWs in main storage would
contain a (zer%ne).

The "old" PSWs would contain a 1 because they indicate where we left the
problem program while a "new" PSW indicates where we are entering the
supervisor program.

Label the indicated bits of the PSW.
12 13 14 15

~ I I I I I)

~========= ~ 0 __________ _

PSW

Interrupts 81

a. ASCII Mode
b. Machine Check

Mask
c. Wait State
d. Problem State

82 Interrupts

What instructions are considered privileged? We do not intend at this
time to list all privileged instructions. However, you should be aware of
some instructions that should be considered privileged. First of all,
it would be expected that the supervisor program should be able to
change any part of the PSW any time it wanted to. However, there are
only certain parts of the PSW that should be changed by the problem
program. Let's take a look at the fields of the PSW.

Bits

0-7

8-11

12-15
16-31
32-33
34-35
36-39

40-63

Field

System Mask

(We'll examine this
field later)
(AMWP)
Interruption Code
Instruction Length
Condition Code
Program Mask

Instruction Address

C]'~nged By

An instruction called
"Set System Mask"

An Interrupt
An Inte rrupt
l\!lany Instructions
An Instruction called

"Set Program Mask"
Execution of Program

From the above we can see that some of the PSW fields can be changed by
a special instruction. The other fields can be changed only by changing
the entire PSW. Basically, there are two ways of changing the entire PSW.
One is by way of an interrupt. The other is by way of the instructi0n
"load PSW." It would not be desirable to allow the problem programmer
to use the "load PSW" instruction since this instruction changes all parts
of the PSW. You would not want the problem programmer to have this much
control over the machine. Only the supervisor program should retain this
control. As a result, the "load PSW" is a privileged instruction. It can
only be used by the supervisor program (indicated by bit 15 of the PSW).
The supervisor program could use the "load PSW" to change any part of
the PSW. It would also use this instruction to return to the problem
program after an interrupt had been serviced.

PROBLEM LOAD psw SUPERVISOR

PROGRAM PROGRAM

program mask;
Actually the "Set
Program Mask"
ins truction change s
bits 34-39 of the
PSW. This means
that the condition code
is also changed.

The problem program would enter the supervisor program by way of an
interrupt. This interrupt would normally be a result of the instruction
"supervisor call. "

PROBLEM SUPERVISOR

PROGRAM
SUPERVISOR PR0GRAM

CALL
INTERRUPT

Notice that a branch instruction is not used in either example above. This
is because a branch instruction cannot change the problem state bit
(bit 15) in the PSW.

The supervisor program can change the state of the machine any time it
wants to by use of the "load PSW" instruction. The problem program
cannot use the "load PSW" instruction because it is a privileged
operation. The problem program can only use the "supervisor call"
instruction to go from the problem state to the supervisor state (PSW
bit 15). Of course, this assumes that the "new" PSW in location 0096
(for "supervisor call" interrupts) has a zero in bit 15.

SET SYSTEM MASK - SET PROGRAM MASK

Besides the "load PSW" instruction, there are two other instructions
which can change the PSW. They are "Set System Mask" and "Set
Program Mask. If The "Set Program Mask" is not a privileged
instructiono As such, the problem programmer can use it to change
the Program Mask portion of the PSWo

Whereas the "load PSW" changes the entire PSW, the "Set Program
Mask" changes the portion of the PSW.

The "Set System Mask" instruction is a privileged instruction. This is
because the system mask affects I/O interrupts. In the System/360,
it ,was the intention of the designers to have the supervisor handle all
I/O operations. For this reason, the "Set System Mask" instruction
and the four I/O instructions are privileged operations.

Interrupts 83

d and e

a, c, d; The instruc
tion "Set Program
Mask" may be issued
by both supervisor
and problem
programs.

Which of the following instructions are valid when the machine is in the
problem state (PSW bit 15 is I)? (Circle one or rnore.)

a. Set System :Mask
b. Load PSW
c. Start I/O (one of the 4 I/O instructions)
d. Set Program Mask
e. Supervisor Call

Which of the following instructions may be issued only by the supervisor
program (PSW bit 15 is O)?

a. Load PSW
b. Set Program Mask
c. Set System :Mask
d. Start I/O
e. All of the above

Let's take a look at the "Set System Mask" and "Set Program Mask"
instructions.

The "Set Systeln Mask" instruction is of the SI format. Label the fields
of the SI format.

51 FORMAT

~C_O_D_E __ ~ __ 1._2 _____ ~_B_' ___ ~ _____ D_' ___ ~

84 Interrupts

This "Set System Mask" instruction is similar to "load PSW"
instruction in that the I2 field is ignored.

80 01

SET SJSTEM MASKl BYTE THAT
OP CODE IN HEX WILL REPLACE THE SYSTEM MASK

IN THE CURRENT PSW.
IGNORED

80 B1 I 01

CURRENT PSW MAIN STORAGE

Given the following "Set System Mask" instruction (in hex), what bina~
bit structure will be placed in bits 0 - 7 of the "current" PSW 0

SET SYSTEM MASK

80 00 0 002

0 7

I SYSTEM

I ? 0000 00 MASK
0001 FF

t 0002 FO
0003 OF

BINARY BIT = 0004 AA
STRUCTURE

MAIN STORAGE

Interrupts 85

1111i>000

86 Interrupts

The "Set Program Mask" instruction is of the RR format.

t
SET
PROGRAM
MASK

Example:

t ~ IGNORED

BITS 2-7 OF THIS REGISTER REPLACES
THE C9NDITION COQE AND PROGRAM
MASK ~B ITS 34-39) OF THE CURRENT PSW.

INSTRUCTIONr-~ ____ 0_4 ____ ~ __ 7 __ ~_5 __ ~

REG 5 F F F F F F F F

REG 7 o F 0 F 0 F 0 F

-..-

I
001111

t
~
34 39

INSTRUCTION
ADDRESS

As can be seen in the above example, reg 5 was ignored. Bits 2 to 7
(001111) of reg 7 were placed in hits 34 to 39 of the PSW. This action
replaced the condition code and program mask. With a program mask
of all ones, any fixed point and decimal overflows would be treated as
errors and a program interrupt would occur.

Given the following "Set Program Mask!' instruction, indicate the binary
bit structure of bits 32 to 39 of the "current" PSW after the instruction is
executed.

INSTRUCTION 04

IN HEX REG 7

REG 5

FOFOFOFO]

OFOFOFOF]

BITS 32-39 OF PSW BEFORE 10 1 0 1 0 1 0 1

32 39

BITS 32-39 OF PSW AFTER

01110000; Bits 32 and
33 are the instruction
length code.

With a program mask of all zeroes, a fixed point or decimal overflow will
not be treated as a programming error and no program interrupt will
occur. However, the overflow will set the condition code to a binary 11
("hex" 3). Now the problem programmer can use the "branch on
condition" instruction to test for an overflow.

Indicate the binary bit structure in the Rl field of the following "branch
on condition" instruction that would be necessary to test for an
overflow. Refer back to the Condition Code area of the Instruction
Sequencing and Branching section of this book for review if necessary.

07 R1 R2

0001; The Rl field of the "branch on condition" instruction is laid out left to right to test for
condition code settings of 0, 1, 2, or 3.

07 1111 1 R2

00 ZERO-Jj I
01 NEGATIVE ~
10 POSITIVE

11 OVt;RFLOW

Go to the IBM System/360 Principles of Operation manual and briefly
study the following areas.

In the System Structure section, study:

Interruption
Input/Output Interruption
Program Interruption
Supervisor Call Interruption
External Interruption
Machine Check Interruption
Priority of Interruptions
Program State s

In the Appendix, study:

Permanent Storage Assignment chart
Condition Code Setting chart
Privileged Operation chart

Interrupts 87

88 Interrupts

REVIEW QUESTIONS ON INTERRUP1S

• Try to answer the questions without referring back into this book.

Do use the System/360 Principles of Operation manual. Consider
reviewing any area where aid from this book was required.

1. List the five classes of interrupts

a.
b.
c.
d.
e.

2. Define:

a. "Current" PSW

b. "Old" PSW

c. "New" PSW

3. The area of main storage reserved for "old" PSWs is from 0024 to

----_.

4. The area of main storage reserved for "new" PSWs is from
to 0127.

5. The area of main storage reserved for machine check "log outs"
starts at _'__ __ _

6. Label the fields of the PSW.

7. Which interrupts cannot be masked?

8. To prevent an interrupt, a mask bit must be ___ (0/1).

9. How can a system/360 be taken out of a wait state?

--

63

10. What can switch the system from a problem state to a supervisor
state?

11. What is placed in the interruption code on an I/O interrupt?

12. What is placed in the PSW interruption code on a supervisor call
interrupt?

13. Show what is placed in the instruction length code when an RX type
instruction was the last instruction executed prior to an I/O
interrupt.

14. In the problem state
a _____ _

instructions cannot be used or
will occur.

15. After handling an I/O interrupt, how does the machine return to
the interrupted program?

16. What is the difference between a "break-in" and an I/O interrupt?

17. Which of the following instructions may not be given by a problem
program? (Circle one or more.)

a. Set system mask
b. Set program mask
c. Load PSW
d. Supervisor call
e. Any I/O instruction

18. The "Set System Mask" instruction causes the system mask to be
replaced by

Interrupts 89

90 Interrupts

19. The "Set Program Mask" instruction replaces the
with

20. The "load PSW" instruction replaces: (Circle the most correct
answer)

a. The "current" PSW with an "old" PSW.
b. The "current" PSW with the contents of a general register.
c. A "new" PSW with a doubleword from m.ain storage.
d. The "current" PSW with a doubleword from main storage.

and

ANSWERS TO REVIEW QUESTIONS

1.

2.

a.
b.

External
Supervisor Call

c. Program
d. Machine
e. I/O

a. "Current" PSW is the doubleword being used by CPU to
control the execution of a sequence of instructions. There is
only one "current" PSW.

b. "Old" PSW is the doubleword placed in main storage as a
result of an interrupt. Prior to the interrupt it was the
"current" PSW. There are five locations reserved in main
storage, one for each class of interrupt.

c. "New" PSW is the doubleword fetched from main storage as a
result of an interrupt. It then becomes the "current" PSW.
Bits 40 - 63 of this doubleword would switch the machine to a
new sequence of instructions.

3. 0063; There are 5 "old" PSWs of 8 bytes each. Each main storage
address refers to an individual byte.

4. 0088

5. 0128; It uses the area of main storage just above the area for "new"
PSWs.

6.
INTERRUPTION

CODE

31

INSTRUCTION
ADDRESS

7. Supervisor call interrupts and those program interrupts not caused
by:
a. fixed point overflow
b. decimal overflow
c. exponent underflow
d. significance

8. 0

9. Only by an I/O or external interrupt.

Interrupts 91

63

92 Interrupts

10. Any interrupt

11. The address of the channel and I/O unit.

12. The 8 bits in the HI and R2 field of the "supervisor call"
instruction.

13.

14.

15.

16.

privileged, program interrupt

By issuing a "load PSW" instruction addressing the doubleword
at location 056 (the "old" PSW for an I/O interrupt).

A "Break-In" is a request by an I/O channel to use the main
storage unit to put data in (read) or take data out (write). It
can occur at any time. In some models of System/360, the I/O
channels and CPU shared cO!llmon circuitry and a "Break-In"
m.ight involve temporarily delaying the CPU from executing an
instruction.

An I/O interrupt occurs after CPU has executed an instruction and
before it executes the next one. The I/O interrupt has nothing
to do with requesting data. Basically, the I/O interrupt is a
signal to the program that a channel has finished transferring
a record to or from an I/O unit. It could also mean that an
operation that did not involve a data transfer over the channel

(such as rewinding a tape unit) has ended.

17. a,c,e

18. A byte from main storage

lOp CODE 12 01

SET SYSTEM ~ __________________ ~I~======~~:~, I BYTE
MASK

0 t,
I MAl N STORAGE

psw

19. Condition code and program mask with bits 2 - 7 of the register
addressed by the R1 field.

I OP CODE

SET PROGRAM
MASK

R1 R2
2 7

fL.· --------------1 GENERAL REGISTER I
34 f 39

PSW I I
20. d; Although the "load PSW" instruction is used to return to an

interrupted program by loading the "old" PSW, this "old" PSW
has to be addressed from main storage just like any other double
word.

I OP CODE 12 81 01

LOAD psw

PSW

Interrupts 93

94 Storage Protection

System/360 Program Control and Execution

Section I:
Section II:
Section Ill:

• Section IV:

Instruction Formats
Instruction Sequencing and Branching
Interrupts
Storage Protection

SECTION IV LEARNING OBJECTIVES

At the end of this section you should be able to:

1. Define a storage key and state how it may be changed.

2. Define a protection key and state how it may be changed.

3. Given a storage and a protection key, deternline whether a
protection violation would occur.

4. Describe what effect a protection violation would have on the PSW.

storage protection

Storage Protection

It is the PSW that determines whether the system is operating in the
supervisor or in the problem state. Bit 15 of the PSWs used by the
supervisor program should contain a 0, while bit 15 of the PSWs used
by the problem program should contain a 1. To keep the problem
program from asserting too much control on the operation of a System/360
the system was designed so that a program that is operating in the problem
state cannot easily change the PSW. It is for this reason that the "load
PSW" and "set system mask" instructions are privileged operations.

The problem programmer may not be able to change the "current" PSW
easily because of the concept of privileged instructions. However, what
is to prevent the problem programmer from modifying the "new" PSW s
which are in main storage? After all, any information in main
storage can be treated as data and modified. The five "new" PSWs in
storage locations 0088-0127 are no different in this respect. In
fact, we would want the supervisor program to be able to modify this
area of storage. However, we would not want the problem program to
be able to modify this same area. It is undesirable to have any
part of the supervisor program changeable by the problem program.
What is needed here is some means by which the supervisor program
can change any area of main storage while the problem program can
only change its own assigned area. This concept is known as Storage
Protection. The System/360 has available a tamper-proof storage
protection feature. It is optional on models 30, 40 and is standard
equipment on models 50,70.

The feature which prevents one program (such as the problem program)
from modifying another program (such as the supervisor program) is
known as

To implement the storage protection feature, each main storage block
of 2048 bytes has a key associated with it. This key is four bits
long and may contain any number from 0 to 15. These numbers are
referred to as Storage Keys. For instance, the 8K storage unit below
has a key for each block of 2048 bytes of 8K main storage.

6144 - 8191

4096 - 6143 2
~-----=::::::::=- STORAGE KEYS

2048 - 4095

0- 2047

Each block of 2048 bytes in the above example has a different

Storage Protection 95

storage key

2048
8

storage protection

protection key

is not

96 Storage Protection

There is a storage key for each main storage block of ___ bytes.

A 16K (actually 16,384) main storage unit would need storage keys.

The hardware necessary for the storage keys is part of the
feature. The keys are stored in special hardware and do not ------

use any of the 2048 bytes with which they are associated.

Besides the storage key associated with each block of 2048 bytes, there is
a protection key in the "current" PSW.

,
, , , ,

f PRO~~;,TIO:j
8 11

THE psw

INTERRUPTION
CODE

Bits 8 - 11 of the PSW contain the

I NSTRUCT I ON
ADDRESS

63

Any time the main storage unit takes a store cycle, the storage protection
feature is in operation. A store cycle is one in which the information
brought out of main storage is not regenerated. Instead new information is
placed back into main storage.

The fetching of an instruction during I time _____ (is/is not) an
example of store cycle.

The operation of the storage protection feature is as follows:

1. On every store cycle, the protection key in the "current" PSW is
compared with the storage key associated with that block of main
storage.

2. A protection exception will result in a program interrupt if:
a. The two keys are not identical and the protection key does

not contain zero.

PSW
program

zero

will not; As long
as the PSWs
protection key is
zero, the store
cycle is allowed.

will

program interrupt

interruption code

If the protection key in the "current" contains a six and
a store cycle is attempted in an area whose storage key is five, a

interrupt will occur.

A program interrupt will not occur if the protection key in the PSW
contains a

If the key in the PSW is zero and the storage key is six, a program
interrupt (will/will not) occur.

If the key in the PSW is six and the storage key is zero, a program
interrupt (will/will not) occur.

If the key in the PSW is six and a store cycle is attempted in an area
whose key is five, a will occur.

Whenever a program interrupt occurs, the interruption code placed
in the "old" PSW indicates the reason for the interrupt. When
storage protection is violated, a protection exception will be indicated.
Refer to the Interruption Action chart.

When the keys do not agree and a program interrupt occurs, a
protection exception will be indicated in the -=i~ _____ _ c ----
of the "old" PSW.

Assuming the PSW has a protection key of six, which of the following
2K blocks of main storage can be successfully stored into? ___ _

8K MAIN STORAGE

A

::~ ASSOCIATED STORAGE KEYS

I--_----"'-C __ -+--..;;...,I

D

B

-------"--

Storage Protection 97

A a·nd D; Blocks A
and D have a storage
key of six to match
the key in the PSW.

B; Block B has the
same key as the PSW.

Assuming a PSW key of five, which of the following 2K blocks can be
successfully stored into?

8K MAIN STORAGE

t--_--":"--_----i~6...1 ~ STORAGE KEYS

o

Assuming a PSW key of zero, which of the following 2K bytes can be
successfully stored into?
8K MAIN STORAGE

I--__ ; __ --I~~--'~ STORAGE KEYS

All of them; When the PSW has a protection key of zero, the "current" program can successfully
store data anywhere in main storage. A protection key of zero would probably be in a PSW used
by a supervisor program.

standard

2048

PSW

9 B Storage Protection

Let's review what you have learned so far concerning the storage pro
tection feature.

Storage protection is optional on models 30, 40, and is
models 50 and up.

on

There is a storage key for each main storage block of ____ bytes.

There is a protection key in bits 8 - 11 of the

Every time a store cycle is attempted, the associated storage key and
the PSW key are

The store cycle is taken if the two keys are
or if the protection key in the PSW is

(alike/different)

compared
alike
zero

program interrupt

"old"
supervisor

had not

"set storage key"

I OP CODE R1 R2

If the keys don't match and the protection key is not zero, the store
cycle is not taken. Instead the current instruction is terminated and
a occurs.

When the program interrupt occurs, a protection exception will be
indicated in the interruption code of the " ___ " PSW. This program
interrupt would be handled by a (supervisor/problem)
program.

The interruption code in the "old" PSW would indicate to the supervisor
program that a problem program was trying to store data in an area
of main storage that (had/had not) been assigned to it.

SET STORAGE KEY

The protection key in bits 8 through 11 of the PSW cannot be altered
except as a result of changing the entire PSW. The entire PSW is
changeable only by the "load PSW" instruction or by an interrupt.
However, the storage keys for each block of 2048 bytes can be
changed by an instruction known as "set storage key." This instruction
will set the storage key for one block of 2048 bytes.

To set the storage keys for each 2K block of a 16K main storage unit
would require 8 executions of the " "
instruction.

The "set storage key" instruction is of the RR format. Label the
fields of the RR format below 0

Storaf!,e Protection 99

00001000

4

The Op code of the "set storage key" instruction is a hex 08. Show the
binary bit structure of this Op code.

The desired storage key (0 through 15) is in bits 24 through 27 of the
general register specified by the R1 field. The remainder of the register
is ignored.

Given the following instruction (shown in hex), the desired storage key is
in bits 24 through 27 of general register

08 I 4 I 7

Given register 4 (as shown below in hex), the storage key of the 2048
byte block will be set to •

o 31

------_. __ ._-------------------

5: Only bits 24
through 27 are used.

1

Given the following, the storage key of a 2048 byte block will be set
to

INSTRUCTION 08 6
5 I~

REG 5 000 12340~:==========~ SHOWN IN HEX
REG 6 00043210004f

The question now arises: ''Which 2048 byte block will have its storage key
set?" This is determined by the address in the general register specified
by the R2 field.

08 3

SET STORAGE KEY __ ---1+ t
KEY IS IN THIS REGISTER --__

LTHIS REGISTER HAS THE
ADDR:ESS OF THE 2K BLOCK

----------_._------

100 Storage Protection

D

Given the following, the storage key of block __ (A/B/C/D) will be
set to --

A 6144 - 8191

B 4096 - 6143

C 2048 - 4095

D 0 - 2047

BK MAIN STORAGE

(ADDRESSES IN DECIMAl.)

INSTRUCTION

REG 3
REG 5

08

00000410
00000140

ABOVE CONTENTS IN HEX

1; In the previous problem, register 5 contains an address that indicates which block of storage
was to have its storage key set. Register 5 had a hex 140 in it. You should have been able to
convert this to decimal 320 by using the conversion table in the Principles of Operation manual.

a. Would be used.

Storage addresses are 24 bits in length and general registers are 32 bits
in length. As you learned when you studied base addresses and dis
placements, addresses use the low order of a general register (that is,
bits 8 through 31). Since we are concerned with blocks of 2048 bytes,
only bits 8 through 20 are necessary to determine which block should
have its storage key set. The low-order 11 bits of an address add up to
less than 2048.

THESE ARE THE BITS THAT
1r------------ ACTUALLY DETERMINE THE

o 7 B f 20 21 3 1 STORAGE BLOCK

I IGNORED I WHICH 2K BLOCK \0 - 2047

GENERAL REGISTER

The address in the register specified by the R2 field does not have to be
divisible by 2048 even though only bits 8 through 20 are needed. Any
address in the 2K block may be used as long as it has 4 low-order zero
bits (that is, divisible by 16).

Which of the following addressesomay be used to set the storage key for
addresses 2048 - 4095?

a.
b.
c.

000A60
000A61 ~ Addresses in Hex
001040~

b. Would cause a program interrupt because it does not have 4 low-order zeroes.
c. Would cause the storage key to set for block 4096 - 6143.

Storage Protection 101

Assume: 1. That the problem program takes 5,000 bytes and will begin
at location 2048.

2. That the supervisor is in locations 0000-2047 and has a
storage key of 15 and a protection key of O.

SUPERVI SOR PROGRAM PROBLEM PROGRAM

A STORAGE KEY OF
1 WAS CHOSEN FOR
THIS PROGRAM
PROBLEM. ACTUALLY
ANY KEY FROM 0 - 14
COULD HAVE BEEN
USED. 15 I S ALREADY
BE I NG USED BY THE
SUPERVISOR PROGRAM

102 Storage Protection

\: READ PROBLEM
PROGRAM

t
SET STORAGE

KEY OF 2048 -
4095 TO 1

I
SET STORAGE

KEY OF 4096 -
6143 TO 1

t
SET STORAGE

KEY OF 6144-
8191 TO 1

~
ASSEMBLE A

PSW IN
STORAGE TO BE

USED BY
PROBe PROG.

. ~
LOAD PSW
USING THE

ABOVE ASSEM-
BLED PSW

{ PROBLEM
PROGRAM

SUPERVISOR
PROGRAM {

PROBLEM
PROGRAM IS

READ INTO
LOCATION

2048 - 7047

I

I

I
I

I

ASSEMBLED
PSW WOULD

PROBABLY BE
LIKE THIS

I CONTROL
I PASSE S TO THE

I
PROBLEM

I PROGRAM
I
I

6144 - 8191

4096 - 6143

2048 - 4095

0- 2047

~

r---·----------- --- - ------,

1.

2.

3.

SYSTEM MASK OF ALL
ONES TO ALLOW INTERRUPTS.

PROTECTION KEY OF 1
TO MATCH THE STORAGE
IKEY ASSOCIATED WITH
TH I S PROGRAM •

AMPW FIELD 0 1 0 1

ALLOW ;:U:::~ROJLEM
MACHINE STATE STATE
INTERRUPT

4. IINSTRUCTION ADDRESS OF I

2048. : L ___ . _____________________ J

Explanation of the preceding illustration:
The "set storage key" instruction is a privileged operation. It may be
issued only when bit 15 of the PSW (problem state bit) is zero. Again,
it was'the intention of the "architects" of System/360 that the storage
keys would be assigned by the supervisor program. In a typical
supervisor-controlled operation, the supervisor would cause a
problem program to be read into main storage. The supervisor would set
the storage keys for the area of storage used by the problem program.
The supervisor would "assemble" the PSW to be used by the problem pro
gram. This "assembled" PSW would have a protection key that matched
the storage keys associated with the problem program. Now that its
function of loading a problem program into main storage and assigning
the keys for storage protection is done, the supervisor would pass
control to this problem program. It would do this by using the "load
PSW" instruction and specifying the "assembled" PSW.

NOTICE!

10 The protection key in the PSW used by the supervisor program js
zero. This allows the supervisor program to store data anywhere
in main storage.

2. The main storage area occupied by the supervisor program has a
storage key of 15. This means that unless a problem program has
a key in its PSW of 0 or 15, it wj1l not be able to store or change
information in the area being used by the supervisor program. This
would be unlikely since it is the supervisor program that will be
assigning storage and protection keys to the problem program.

As you saw in the preceding example, each block of 2048 bytes does not
need to have a different number set in its storage key. Each progranl
in main storage should, however, have a different storage key assigned to
protect one program from another. F or instance, in the example the
supervisor program took up one block of 2048 bytes which was assigned
a storage key of 15. This storage key would most likely be assigned by
the supervisor program just after it had been read into the system. The
problem program was then read into the machine (as a result of a section
of the supervisor program). This program took up 3 blocks of 2048 bytes.
Each block was assigned the same storage key (1) by the supervisor pro
gram. The PSW for the problem program was given a protection key that
matched its storage keys. This would allow the problem program to alter.
itself if necessary but would prevent it from altering another program.

Storage Protection 1 03

7

104 Storage Protection

So far, we have only discussed the concept of two programs in the com
puter: A supervisor program and problem prograln. For lack of a better
name, we can consider this as the concept of a supervisor-controlled
system. We have seen that much of the System/360 "hardware" is design-
ed to take advantage of this concept, such as:

1. No halt instruction.
2. Supervisor vs. Problem State (PSW bit 15).
3. Wait vs. Running State (PSW bit 14).
4. The complex interruption system.
5. No halt on a machine or program check.
6. Storage protection.

MULTI-PROGRAMMING

There is another concept known as multi-programrning. In this concept,
there are two or more problem programs in the machine. Of course,
just as in the supervisor-controlled concept, only one program is being
executed at anyone time.

PROBLEM
PROGRAM B

PROBLEM
PROGRAM A

SUPERVISOR
PROGRAM

----1~--.J

KEY 7
STORAGE

PSW PROTECTION KEY ·-1
PROBLEM PFWGRAM B ~

PROBLEM PIROG RAM A D
SUPERVISOH 8

In the above example, each problem program would have a different stor
age key. The protection keys used by each prograrn would also be differ
ent and would match their respective storage keys. Notice that the
supervisor's protection key would not match its storage key. Since the
supervisor's protection key (in its PSW) is zero, it does not have to
match.

A problem program with a storage key of 7 would probably use a PSW
with a protection key of

A supervisor program, regardless of its storage key, would probably use
a PSW with a protection key of __

o

6, 0 (in either
order)

a

mul ti -programming

16; 0-15 are the
possible storage
keys.

An area of storage with a storage key of 6 can only be altered by a
program with a protection key of __ or __ a

An area of storage with a storage key of 0 can be altered:
a. Only by a program with a protection key of zero.
b. By any program

(Circle one of the above.)

When there is more than one problem program in the computer, this
is known as

How many possible programs (including the supervisor) can be in the
System/360 and still be protected?

Besides the "set storage key" instruction, there is another instruction to
help a supervisor program assign storage keys. It is called "Insert Stor
age Key." This instruction does not change any storage keys. Its purpose
is to inspect or examine a storage key. The "insert storage key"
instruction is also of the RR format.

Storage Protection 105

106 Storage Protection

OP CODE R1 R2

09 I 4 3

INSERT STORAGE KEvJ J
THE STORAGE KEY
IS INSERTED INTO
THIS REGISTER.

LTHIS REGISTER HAS THE ADDRESS
OF THE :ZK BLOCK.

Notice that this instruction works just opposite to the "set storage key"
instruction. Here the storage key of the block addressed by the contents
of the register specified by the R2 field is inspected. This storage key
is then inserted into bits 24 through 27 of the register specified by the
R1 field. Bits 28 through 31 of this register are made zero and bits 0
through 23 remain unchanged.

Example:

MAIN STORAGE

2048 - 4095
09 I 4

o - 2047

BEFORE

AFTER

INSERT STORAGE KEY
3 INSTRUCTION

\ LOCATION

." 3840

..... ~

EOOFOOI
+ EOOFOO\

Notice the storage key (1) of block 2048 - 4095 was inserted into bits
24 through 27 of register 4 while bits 28 through 31 were made zero. The
remainder of the register was unchanged. The storage keys -themselves
were unchanged.

REG 6

Given the following, indicate the register contents after the instruction
is executed.

MAl N STORAGE

2048 - 4095

o - 2047

BEFORE

AFTER

REG 7

, ,
INSERT STORAGE KEY

'--_0_9 __L_6_...L.._7.......J. I NSTRUCT ION

/
I , , , , , , I ,

\ LOCATION
3840

I I I I I I I I I

Go to the IBM System/360 Principles of Operation manual and briefly
study the Protection Feature area of the System Structure section.

Storage Protection 107

REVIEW QUESTIONS ON STORAGE PROTECTION

• Try to answer the questions without referring to the material. However,
if you do require aid, refer to this book and/or the System/360

1 08 Storage Protection

Principles of Operation manual and consider reviewing the area where aid
is requiredo

1.
8K MAIN STORAGE

6144-8191 ~
----Io-~ These are referred to as

4096 - 6 t 43
t--------l--.... ~~ _____ keys.
2048 - 4 0 9_5----1 __ ~

o - 2047

2. PSW
8 11

II
This field is referred to as the

3. The keys in question 1 can only be changed by

4. Bits 8 through 11 of the PSW can only be changed by (1)
or (2)

;). Storage protection applies to:

6.

a. Store-type main storage cycles
b. Fetch-type main storage cycles
c. All nlain storage cycles
(Circle one of the above.)

MAIN STORAGE

__ A ____ ~.....,j

__ B ____ -i----.J

C

D

Assuming a PSW key of 2:
a. From which blocks may information be fetched?
b. In which block(s) may information be altered?

7.
MAIN STORAGE

A

B

c

D

Assuming a PSW key of 0:
a. From which blocks may information be read out of?

b. Into which blocks may information be written?

8.
MAIN STORAGE

A

B

c

D

If a program (assuming a PSW key of 3) attempts to store data in block C:

9.

a. The data will be stored and the program will continue.
b o The data will be stored and the program will be interrupted.
c. The data will not be stored and the program will continue.
d. The data will not be stored and the program will be inter-

rupted.

MAIN STORAGE

A 6144 -8191 SET STORAGE KEY 08 14 1
6]

B 4096 - 6143

C 2048 - 4095 REG 4 10 o 0 o 2 1 4~]
D o - 2047

10 0
0-0] REG 6 o 0 0 F

The (storage/protection) key of block __ (A/B/C/D)
will be set to --

Storage Protection 109

110 Storage Protection

10.
MAIN STORAGE

A 6 1 44 - ~:......:1:...::9:......:1--I-___ 9-,

B 4096 - 6 1 43 8
C 2048 - 4095 7
o 0 - 2,047 15

BEFORE

AFTER

____ 0_9 __ ~1_2_~

10
1
0

1
0

1
0 10lFIOIO I
t

I 1 I I I I I I I

1010\0\0\0\F \0\0 I
1-

I I I I I I I I I
Show the register contents after executing the "insert storage key"
instruction.

11. A violation of storage protection will result in a:

a. Machine interrupt with a protection violation indicated in the
interruption code of the "new" PSW.

b. Program interrupt with a protection violation indicated in the
interruption code of the "new" PSW 0

c. Program interrupt with a protection violation indicated in the
interruption code of the "old" PSW 0

d. Machine interrupt with a protection violation indicated in the
interruption code of the "old" PSW 0

ANSWERS TO REVIEW QUESTIONS

1. storage

2. protection key

3. "Set storage key" (a privileged instruction)

4. (1) A privileged instruction called "load PSW. "
(2) An interrupt which changes the entire PSW.

5. a. Store-type main storage cycles

6. a. All blocks; Storage protection does not apply to fetch-type
cycles.

b. Block C

7. a. All blocks
b. All blocks

Note: As long as the protection key is zero, the store cycle
is allowed and no interrupt occurs.

8. d

9. storage, C, 4

10.
REG,2 REG 3

11. c

Storage Protection 111

a. System Mask
b. Protection Key
c. AMWP
d. Interruption Code

112 Storage Protection

PSW REVIEW

At this point we have concluded our discussion of the storage protection
feature. We have also studied all fields of the program status word.
Let's see if you can label the fields of the PSW.

o 78 " 12 1516

I I
A. B. C. D.

a.
b.
c.
d.

e. Instruction Length Code
f. Condition Code
g. Program Mask
h. Instruction Address

31 32 3334 35 36

I I I
E. F. G.

e.
f.
g.
h.

3941)

H.

63

Do you need a review? If you think that you may require a review of areas of
this book, do the following:

Read the learning objectives at the beginning of each section.

You should review only those areas where you think that you
cannot do what the objective indicates.

Now that you have been exposed to the various fields of the program status
word and their functions, as well as the instructions that affect the PSW,
you are in a position to start programming a System/360. The next self
study text for this course will cover programming with fixed point arithme
tic.

Remember that the important facts concerning the material you just covered
in this text, are available for reference in the IBM System/360 Principles
of Operation manual.

Before proceeding to the next book of this System/360 Introductory Pro
gramming Course, do the following:

1. Fill out the Course Evaluation Sheet (located in the back
of this book).

2. Ask the person that is administering this course for the
Mid-Course Examination.

113

Alphabetical Index

Page
ASC Mode II .. 77
Format TY})es ... 15
Instruction Formats - Section I .. 1
Instruction Sequencing and Branching - Section II 29
Interrupt Action ... 51
Interrupt Prevention - Masking 69
Interrupts - Section III 45
Machine Check Mask 73
Multi-Programming 104
Op Code .. 2
Operand Addressing .. 5
PSW - Condition Code 34
PSW - Instruction Address 31
PSW - Review ... 112
Problem State Bit 80
Program Mask .. 74
Review Questions on Instruction Formats 24
Review Questions on Instruction Sequencing and Branching ... 41
Review Questions on Storage Protection 108
Review Questions on Interrupts 88
Set Storage Key ' 99
Set System Mask - Set Program Mask ... ' 83
Storage Protection - Section IV " 95
System Mask ... 70
Wait Bit " 79

114

Book 2 System/360 Program Control and Execution
Student Course Evaluation

You can make this course and all future courses more useful by answering the questions on
both sides of this sheet and Jiving us your comments.

Do you feel that you have an adequate understanding of the learning objectives that are listed
at the beginning of the following sections?

Section I: Instruction Formats Yes D No D
Section II: Instruction Sequencing

and Branching Yes 0 NoD
Section III: Interrupts Yes 0 No D
Section IV: Storage Protection Yes 0 No D

List any technical errors you found in this book.

Comments

Please complete the information block on the opposite side. Thank you for your cooperation.
For form R23-2950-1

fo'-

r
I
I
I
i

Field Engineering Education - Student Course Evaluation IBM
Student Name

I
Man Number

I
B/O Number Area Number

Student: Please review this evaluation with the person administering the course; then remove it from
the book and send to the FE Education Center via IBM mail.

• Were you given a copy of this text to write in and keep? YesDNoD

• How many hours per day were scheduled for this course?

• Were you interrupted during this time? YesDNoD

• How many hours were needed to complete this course?

• Did you require assistance during this course? . YesDNoD
(If your answer is yes. explain in the comments section)

• Indicate your understanding of the total course. ExcellentD Good [J Fair D Poor D

Reviewed by:

Reviewed by:

To be completed by course administrator

To be completed by FE Education Planning

IBM Corporation
FE Education Planning
Department 911
South Road
Poughkeepsie, N. Y. 12602

Date

Date

I

~
L,
,~

~~
g~

i
m

~ ,
i ,
i
~

~
j

I
~
t
j ,
~
~
i

: FOLD
I
f
I
f
I
I
I
I
I
I
I
~
I
I
I ,
I
I
I
I
I
I
I
I
f

FOLD

-I m
)
;0

J:
m
;0
m

R23-2950-1

International Business Machines Corporation
Field Engineering Division
112 East Post Road, White Plains, N. Y. 10601

C/'I
C-
c...
CD a
C/'I
CD
::;:;

o
c
c...

"<
()
o
~
CD

	0.001
	0.002
	0.01
	0.02
	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093
	094
	095
	096
	097
	098
	099
	100
	101
	102
	103
	104
	105
	106
	107
	108
	109
	110
	111
	112
	113
	114
	replyA
	replyB
	x_back

