
Systems Reference Library

IBM System/360
Disk and Tape Operating Systems
PL/I Programmer's Guide

File Number 8360-29
Order No. GC24-9005-6
DOS Release 25

This publication complements the Systems Reference
Library publication !BM_§lstem!160r_f~!!_§Y~~~~
Reference Manual, Order No. GC28-8202. Its purpose is
to-aia-the-programmer and to familiarize him with the
techniques of PL/I programming. This publication
therefore provides all information that is not part of
tne PL/I Subset Reference Manu~l but required by the
programmer to write programs in the PL/I Subset lan
guage and to have them compiled and executed in the
DOS/TOS environment.

The main topics covered in this publication are:

• The DOS/TOS environment

• PL/I data file organization

• storage requirements of PL/I programs and program
elements

• The overlay facility

• Listings produced for PL/I programs

• Restrictions to the -PLII Subset language

In some instances, the programmer may desire
detailed additional information on topics not directly
connected with PL/I. A list of all pertinent Systems
Reference Library publications is provided in the
I~~~~~£~ion section of this publication.

DOS
TOS

~UMMARY OF CHANGES

~he DOS system now provides for the
s~pport of private core-image libraries.
~ a DOS system supporting the batched
ob foreground and private core-image

libraries, the compiler and the linkage
~ditor may execute in a foreground or in
'the background partition.

A description of errors that may arise
due to multiple secondary entry pOints
or due to multiple CSECT names has been
added.

2~!~~~h_~~it!Q~ (April, 1971)

Tnis is a major revision of GC2~-9005-5.

When processing INDEXED files, the KEY
condition may arise in a number of cases.
It is described how the programmer may
identify specific situations at execution
time.

A brief description of hardware stops
caused by severe programming errors has
been included.

Also added was an appendix containing
progra~ming exa~ples together with ex~
planations.

cnanges to the text and to the illustrations as well as additions are
indicated by a vertical line to tne left of tne change or addition.

This edition applies to change level 3-9 of the DOS PL/I compiler (DOS
release 25) and change level 2-3 of the ros PL/I compiler (TOS release
1~) and to all subsequent levels until otherwise indicated in new
editions or Technical Newsletters_

Changes are continually made to the information herein; before using
this publication in connection with the operation of IBM systems,
consult the latest IBM system/360 SRL Newsletter, Order No. GN20-0360.
for the editions that are applicable and current.

This publication was prepared for production using an IBM computer to
update the text and to control the page and line format. Page
impressions for photo-offset printing were obtained from an IBM 1403
printer using a speci~l print chain.

Requests for copies of IBM publication should be made to your IBM
representative or to the IBM branch office serving your locality.

A form for reader's comments is provided at the back of this
publication. If the form has been removed, comments may be addressed to
IBM Laboratories, Programming Publications, 7030 Boeblingen/Germany,
P. O. Box 210.

c Copyright International Business Macnines Corporatio'l 196', 1.96E1,
1969. 1970, 1971

INTRODUCTION • • 5

RUNNING PROGRAMS UNDER DOS/TOS CONTROL •
The Disk and Tape Operating Systems

8
10
12 The Job Control Program • • • • • •

Job Control Statements • • • • • •
Compilation Under DOS/'IOS Control

The Linkage Editor Program • • • • _.
Linkage Editor Control Statements
Including Object Modules into the
Object Program • •
Sample Compilation • • • •

• • 12
• • 17
• • 18

18

• • 20
22

CAT~LOGING • • • • • • • • • • • 24
Cataloging into the Core-Image Library • 24
Cataloging into the Relocatable Library 24
Library Maintenance Runs • • • • 25
Special Considerations on TOS • • 26

DAT~ FILES • • • • • • • • •
File Organization-Schemes

Consecutive Files
Regional Files • •
Indexed Files

Disk Organization • • • • •
Record Types • • • •
Input/Output Processing

• • 27
• • 27

27
• • • • 27

29
33

• ••• 34
35

FILE L~BELS •••• • • • • 36
Processing of File Labels by PL/I 36
Job Control statements. .. • 36
Multi-File Volumes and Backwards Files • 39
Link-Editing And Labeled Files • • 40

Cataloging of Label Information • 41
Program - Label Communication • • • 41
Assignment of System Files to Disk • 42

LINKAGE CONVENTIONS • • • • 44
Register Conventions • • • 44
Calling 44
Saving • • • • • • • 44
Returning • • • • • • • • • • • 45
Correlation Between PL/I and Assembler
Modules • • • • • ••• 46
Checkpoint and Restart • 47

GENERAL PROGRAMMING INFORMATION 50
Statement Format · · 50
Program Segmentation · · · · · · 50
Program Expansion 50
Conversions . · · · 50
Use of UNSPEC · · 51
Computations With OVerlay · · 51
Blocking . . . · · · · · . · 51
Simulation of P-Format Items · 51
Simulation of Arrays of Structures · 51
Use of the DEFINED Attribute . . · · · · 52
Use of Based Variables with Structures • 52
Redefinition of Attributes · · · 53
Use of the 48-Character Set 53
Size Overflow · · · · · . · 53

Contents

Use of the DISPLAY Statement with the
REPLY Option • • • • • • • • • 53
Precision of Decimal Data 53
Changing the 'lab Control Table • • • • • 54
Improvement of Do-Loops • • • • • 54
Rounding on Output with E and F Format
Items • • • • • • • • • • • • • • • • • 54
Handling Blank Numeric Fields ••••• 54
Use of List-Directed and Edit-Directed
Data Transmission • • • • • • • • • • • 54
Use of Pictures With Stream-oriented
Data Transmission • • • •
PICTURE Specifications • • • •
ENDPAGE With Multiple-Line PUT

PROGRAM-CHECKOUT FACILITIES
Exhibit Changed ••••
Tracing • • • • • • • • • • •
The DYNDUMP Routine • • • •
Locating Execution-Time Errors

• 55
•• • 55

• 55

."t • 56
• 56

• • • • • 56
• 58

58

DATA STORAGE REQUIREMENTS • • • 60
Data Descriptors • • • • • • • • • • 60
Data Items • • • • • • • • • 60

Coded Arithmetic Data • 60
Numeric (Picture-Specified) Data • 62
String Data • • • • • • • • • • • • • 62
Label Data • • • • • • • • • •• • 63
Pointer Variables • • • • • • • 63

Data Storage Depending on Storage Class 63
Storage of External Data • • • • • • • • 63
Use of Constants in' the Source 'lext • • 64

DATA STORAGE MAPPING • • •
Storage Mapping Element Data
Storage Mapping -- Arrays
Storage Mapping -- Structures

• 65
• • • ,. 65

65
66

SUBROUTINE STORAGE REQUIREMENTS • 70
Conversion Subroutines • • • •• 70
Built-In Functions,
Pseudo-Variables, and Other Implied
Subroutine Calls • • • • • .. • • • • 70
Subroutines Called by I/O Statements • .. 71

I/O STORAGE REQUIREMENTS · · · · 72
File Declarations · · · · · · · · · 72

Buffers · · · · · · · · · · · · .. 72
DTF Table · .. · · · · · 72
DTF Appendage · · · 74
laCS Logic Module · · · · 76
Examples · · · 77

System Units · · · · 78
SYSPRINT · · · · · 78
SYSIN · · · · · · · · 78

PROGRAM OVERHEAD · · · · · · 79
static Storage Area · 79
Dynamic Storage Area · 80
Block Prologue · · · · · 81
PL/I Control Routine • · · · · · · · 82

83 SOURCE TEXT AND OBJECT PROGRAM •
Problem Analysis Example • .. • • • 83

File Description • • •
Data Assumptions ..
Other Assumptions

Storage Requirements

OVERLAY
Rules for Using Overlay
Overlay Example •• ...
Processing of Overlays by the, Linkage

.. .. 84
84

.. .. 84
84

85
.. .. 85

87

Editor • • • • • • • • • • • • • 87
PLII Procedures Contained in the
Relocatable Library

PROGRAM LISTINGS
Source Program Listing ..
Symbol Table Listing .. •
Cross-Reference Listing
offset Table Listing ; =

External Symbol Table Listing
Block Table Listing
Object code'Listing

.. 4 89

• .. 90
.. • 90
.... 90
• .. 91

91
91

.. .. 92
9,2

.. .. 92 Statement Offset Listing
Compile-Time Diagnostic Messages ..
Object-Time Diagnostic Messages

.. 92

APPENDIX A. COrrvERSION SUBROUTINES

APPENDIX B. POSSIBLE COMBINATIONS OF
DATA CONVERSIONS • • .. • • .. • • .. •

.. .. 92

• .. 95

APPENDIX C. BUILT-IN FUNCTIONS, PSEUDO
VARIABLES, AND OTHER IMPLIED
SUBROUTINE CALLS 96

APPENDIX D. 1/0 SUBROUTINES ... 100

APPENDIX E. FILE LABEL FORMATS .. • .i02

APPENDIX F. COMPILE-TIME DIAGNOSTIC
MESSAGES • •• 107

APPENDIX G. OBJECT-TIME DIAGNOSTIC
MESSAGES • • •

List of Message Codes

APPENDIX H. I/O STATEMENT FORMAT
ON-CONDITION CHECKLIST • • • • •

A~_H"
I.'UJ

.. 130

.130

.134

APPENDIX I. FILE ATTRIBUTES AND OPTIONS 135

APPENDIX J. DEFAULT ATTRIBUTES OF
CODED ARITHMETIC VARIABLES 136

APPENDIX K. RESTRICTIONS TO THE PL/I
SUBSET LANGUAGE ~137

APPENDIX Le PROGRAMMING EXAMPLES143
Conversion of Numbers in Character Form
Into Binary Numbers • 143
Storing and Retrieving Statistical Data 145
Creating and Retrieving a REGIONAL(l)
File.. 147
Creating and Updating a Sequential Disk
File ~.. • ••••••••••••• 150
The DO WHILE Statement .. • • • .. • .154
Using the Console for ComIT>unications •• 154

INDEX •• 156

This publication complements the Systems
Reference Library publication ~~_§y~~~~~
1&QL_R~~!_~~Q§et_g~f~f~g£~ Mag~!, Order
No. GC28-8202 (hereafter referred to as the
Subset Reference Manual). It provides all
information that is not part of the lan
guage specifications but required by the
programmer to write programs in the PL/I
Subset language and to have them compiled
and executed in the DOS/TOS environment.

This publication is divided into four
logical parts:

Part I - provides all information regard
ing the DOS/TOS environment, PL/
I data file organization includ
ing the ENVIRONMENT attribute,
linkage between PL/I and
Assembler modules, and PL/I pro
gramming in the DOS/TOS
environment.

Part II - provides all information regard
ing storage requirements of pro
grams written in the PL/I Subset
language, and a description of
the overlay facility.

Part III - describes all listings and diag
nostic messages produced for PL/
I programs running under DOS/TOS
control.

Part IV - Appendix. Some of the individu
al appendixes provide informa
tion taken out of the corres
ponding sections to improve the
readability, e.g., a list of all
available I/O subroutines. The
remaining appendixes furnish
additional reference information
the PL/I programmer might find
useful.

The last section of the Appendix lists
the implementation-dependent restrictions
to the PL/I Subset language as it is
described in the Subset Reference Manual.
The individual restrictions are listed in
alphabetical order4

To free the programmer of the necessity
of referring to other publications for
additional information, this publication is
made as self-supporting as possible by dup
licating some of the information given
elsewhere. However, should this publica
tion not give all the details the programm
er needs for solving his problem, these
details can be found in the pertinent SRL
publication.

In troduction

A list of all SRL publications the pro
grammer may have to refer to is given
below:

IBM System/360 Disk Operating System,
system Programmer's Guide,
Order No. GC24-5073

IBM System/360 Operating System, PL/I
Library Computational Subroutines.
Order No. GC28-6590

IBM System/360 Principles of Operation,
order No. GA22-6821

IBM System/360 Disk and Tape Operating Sys
tems, Concepts and Facilities,
Order No. GC24-5030

IBM System/360 Disk and Tape Operating Sys
tems, Utility Program SpecificationsJ

Order N0 4 GC24-3465

IBM System/360 Disk Operating System, Sys
tem Control and System Service Programs.
Order No. GC24-5036

IBM System/360 Tape Operating System" sys
tem Control and System Service Programs.
Order No. GC24-3431

IBM System/360 Disk Operating System,
Supervisor and Input/Output Macros,
Order No. GC24-5037

IBM System/360 Tape Operating System,
Supervisor and Input/Output Macros,
Order No. GC24-3432

IBM System/360 Disk Operating System, Data
Management concepts. Order No. GC24-3427

IBM System/360 Tape Operating System, Data
Management Concepts, Order No. GC24-3430

IBM System/360 Disk Operating System, PL/I
DASD Macros, Order No. GC24-5059

1. 16,384 (16K) bytes of core storage on
one of the compatible models of System/
360 (not Model 20. 44)~ The compiler
itself requires 10K. More than 10K are
required if SYSIPT, SYSLST, and/or SYS
PCH are DASD files. This is a system
generation option.

2. a. Either one IBM 2311 Disk Storage
Drive or one IBM 2314 or 2319
Direct Access Storage Facility or

Introduction 5

b. four IBM Magnetic Tape Drives of
the series 2400, 2420, or 3420. A
7-track tape may be used for SYSRE
S. The use of a 9-track tape for
SYSRES will improve the perfor
mance. The data conversion feature
is required for 7-track drives.
One additional tape drive is
__ ~1~_~~ ~~_ ~~~~~,~_~~~_~~
.l.C':1\A.L.L~\A .I..,",.L. "'""'VUIt"' ... L" ~ U.L.LU ~\J

operation.

3. One card read/punch or one card reader
and one card punch~

4. One printer.

5. One IBM 1052 Printer-Keyboard (required
for operator-to-system communication).

6. The optional supervisor feature Program
Interrupt (PC).

Note: Either one or both of the units
listed under items 3 and 4 may be replaced
by one additional magnetic tape drive per
replaced unit.

The speed of compilation is ~reatly
reduced if (1) the source program contains
more than 80 programmer-defined identi
fiers, and (2) a 16K system is used to com
pile a program greater than 16K.

For determination of the required work
file space refer to ~9f~f!le_g~9~if~~~n~§
in Appendix G of !~~_§~2~~~L1£Q_Qi§~
QE~f~t!ng_§y~~~~L_§Y2~~m_~en~f~~iQn_~nQ
~~!n~~n~n~~, Order No. GC24-5033.

~!g!~~m_g~g~!f~~~n~~_fgf_~xe£~~!Qn

rhe execution-time requirements depend on
the requirements of the system and the
object program.

6

Additional machine features required for
arithmetic, compare, and conversion are
listed in Figure 1.

Note: At EXEC time all IJKSnn transients must be available in the core-image
library.

The following units and features are
supported:

1. All of the units and features specified
for compilation. (Disk files are not
supported for tape-resident systems.)

2. All of the following devices:
IBM 2540*
IBM 1403
IBM 3211
IBM 1404 (for continuous forms only)
IBM 1442N1
IBM 1442N2
IBM 1443
IBM 2501
IBM 2520B1
IBM 2520B2
IBM 2520B3
IBM 1445
IBM 2321

*The Punch/Read Feed (PRF) special fea
ture is not implemented by PL/I.

3. Additional ma~n storage up to 16 mill
ion bytes.

r--------------------T--------T--------T--------T--------T--------T--------T--------~
IComparison of/With I Coded I I INumeric I I I I
IArithmetic with/And IFixed I Fixed I Coded I Fixed. INumeric I I I
I Convert To IDecimal I Binary I Float I Sterlingl Float I Bit I Char.. I
~--------------------+--------+--------+--------+--------+--------+--------+--------~
I From I I I I I I I I
~--------------------~ I I I I I I I
ICoded fixed decimal I D I O,F2 I D,F I D I D,F 1 D I NP I
~--------------------+--------+--------+--------+--------+--------+--------+--------~
IFixed binary I D,F2 I X I F I D~F2 I D,F I X I NP I
~--------------------+--------+--------+--------+--------+--------+--------+--------~
ICoded float t D,F I F I F I O,F I O,F I F I NP I
~--------------------+--------+--------+--------+-----~--+--------+--------+--------~
INumeric fixed and I D I D,F2 1 D,F I D I D,F I D I X1 I
I sterling 1 I I I I I I I
t--------------------+--------+--------+--------t-------~+--------+--------+--------~
INumeric float t D,F I O,F I D,F I D,F I D,F I D,F I X1 I
~--------------------+--------+--------+--------+--------+--------+--------+--------~
IBit 1 D I X I F I D I D,F I X I X I
~--------------------+--------+--------+--------+--------+--------+--------+--------~
I Character I NP I NP J NP I Np1 I Np1 I X 1 X I
~--------------------~--------~--------~--------~-----___ ~ ________ ~ ________ ~ ________ J

ID - Decimal feature required. I
IF - Floating-point feature required. Conversion only. I
INP - Not permitted. I
IX - No special features required. I

~---~
11 - Conversion only. I
12 - Floating-point feature only if scale factor not equal to zero. I l ___ J

Figure 1. ~dditional Machine Feature for Arithmetic, Comparison, or Conversion

Introduction 7

Running Programs Under DOS/TOS Control

This section describes the compilation and
execution of PL/I programs under control of
the Disk and Tape Operating Systems. The
pertinent terminology, control statements,
and their formats are discussed when
required.

It is convenient to refer to each stage of
program development by a particular name,
because just the term e~Qgra~ would be too
general and, therefore, confusing.

In program development, the programmer
writes sets of source statements that may
form a complete program or part thereof. A
card deck containing one external procedure
written in the PL/I Subset language is
referred to as a source module. A source
module is the unitthat-Is-processed during
a compilation. The compilation results in
one or two QQjec~_~QQ~!~~. The first
object module is produced by the PL/I com
piler for all of the file declarations, if
any, contained in the source module. The
second object module is produced for the
source module. Object modules can be
loaded by the DOS/TOS Linkage Editor pro
gram and then executed. An object module
consists of standard ESD (External Symbol
Dictionary>, TXT (Text>, RLD (Relocation
Dictionary) cards, and one END card.

To start the execution of a PL/I pro
gram, control must be transferred from the
Disk or Tape Operating System to the object
program. The external procedure to which
control is transferred from the Job Control
program must have the option MAIN.

Some parts of the object program may not
be required in storage throughout its

8

execution. External procedures that are
never active simultaneously may use the
same storage area to save storage. Each
part of the program that is in storage only
for a fraction of the execution time is
referred to as an Q~~!!~~. Using the MAIN
procedure as an overlay is not permitted~
Each overlay as well as that part of the
program that resides in storage throughout
the execution of the object program is
referred to as a 2!'!~~~. A phase consists
of one or more external procedures. For
detailed information refer to the sections

Some standard procedures such as PL/I
built-in functions or conversion subrou
tines have been incorporated into the relo
catable library as !!Q!~!y_~~Qrout!n~.
Only the code required for calling these
subroutines is compiled into the object
module. The library subroutines themselves
are incorporated into the appropriate
phases by the autolink feature of the DOS/
TOS Linkage Editor program.

Extra code is required to allow some
housekeeping during the execution of a PL/I
program. This code. which is referred to
as ove!he~9, may either be generated in
line in an objec~ module or incorporated
due to an explicit library subroutine call.

The relationship between the user's PL/I
mainline program, the PL/I control program,
and the DOS/TOS system is shown in Figure
2.

Note: The PL/I control program is a set of
lIbrary routines in the relocatable library
which are included into object programs at
linkage-edit time and perform certain con
trol functions at execution time.

SUPERVISOR

Intercepts Program Checks, Passes
Control to Pl/I Interrupt Handler

Pl/I Pl/I
MAINLINE CONTROL PROGRAM

. • Initialization Routine
Initialization (prologue) .. • GO TO Routine
GO TO Extemal Name - {Return is to Extemal Name}

• OPEN/CLOSE Routines
OPEN/CLOSE - (Call ~ Transients)

• SIGNAL Routine Handles .
r+" READ, WRITE, etc. Exceptional Conditions and

Issues Messages

END.(MAIN), STOP • STOP Routine Calls $
Transient for Automatic
Closing of Files and EOJ

- • Interrupt Handler Usually
Calls $ Transient
(Retum is Conditional)

~------------------
Miscellaneous Subroutines

~ Such as:
r.--------- ----------

~;; I/o Transmitters
~ $ Transient Area Conversion Routines

Built-in Functions (May Call $$B Transients)

Figure 2. PL/I Program Structure

Running Programs Under DOS/TOS control 9

The layout of main storage during execution
of a PL/I program is shown in Figure 3.

Lower Storage I ~ _______ Ha_rdw_a_re_A_re_a ______ --;1

1 Supeov;,., T ; ... , Are... ~

Upper StC1rage

l'
I

1..-

OTF-Appendages
OTFs and Buffers

PL/I User Program Procedures

lIOCS Modules

OTF for SYSPRINT

Logic Module for SYSPRINT

PL/I Control Program

P I libra L/ ry Subroutines

Overlay Progrt'm Area (Optional'

OSAs
(AilocGted oniy During Execution)

Figure 3. Object-Time Storage Layout

The Disk And Tape Operating Systems

y
I

...

I
I

The Disk and Tape operating Systems <DOS/
TOS) are a group of processing programs
with the control and service programs
required to maintain continuous operation.
They are self-contained systems and require
a minimum of operator intervention.

The processing programs consist of lan
guage translators and service programs.
The group of processing programs can be
expanded by adding user-written problem
programs.

The system control program -- the frame
work of DOS/TOS -- consists of three
components:

10

• the Supervisor program~

• the Job Control program, and

• the Initial Program Loader (IPL).

These components are used to load the
system and to prepare and control the
execution of all processing and problem
programs within the system.

The system service programs consist of
the Linkage Editor and the Librarian.
These programs are used to bring compiled
source programs into an executable format
and to maintain the libraries.

1:'; "",...,....0 II
.... ...L."'jlI""",.

tion of the
Systems.

sho~s a schematic representa~
n;~w ~~A ~~~O n~~...,...~~;~~ aJ" ...,..n. """""'"'" \.A..I:"'- v l;'..;... \A \,....&.. ... ,,'::1

To make full use of DOS/TOS, the user
should be familiar with ('1) the functions
of the individual system components and (2)
the interaction of these components. Users
of the overlay feature should be thoroughly
familiar with the DOS/TOS Linkage Editor
program. Users of the label-processing
facilities should be familiar with DOS/TOS
data management concepts. This section
briefly discusses those parts of the DOS/
TOS that are of interest to users of the
PL/I Subset language.

System Control
Programs

Initial
Program
Looder

Supervisor

Job
Control
Program

System Service
Programs

linkage
Editor

Program

____J

Processing
Programs

j..angyage
TranIlatQ{L

rAs~mbler l
I I
'Cobol I

·1 I
I Fortran I
I Pl/I I
1 ,

I RPG I L ______ J

I Service·Programs I
I r-;-:.==-_:--,

librarian

I ""UIUtC .. ' I

I Sort/Merge I
I Utilities I L ______ -1

I User-Written 1
Programs

Figure 4. Schematic Representation of the
Disk and Tape operating Systems

§Y~ig~_~QgtrQ!_r~Qg~~~~

The supervisor handles all hardware inter
rupts, causes I/O operations to be per
formed, and contains a fetch routine for
fetching program phases from the core-image
library. The Supervisor resides in storage
throughout the execution of all IBM
supplied and user-written programs.

The Job Control program provides job-to
job transition within DOS/TOS. It performs
its functions between job steps and doe"s
not reside in storage while a problem pro
gram is being executed.

The IPL is of no interest to the PL/I
programmeL' •

The Linkage Editor links all relocatable
object modules that are produced by the
language translators, i.e., it assigns
absolute addresses and resolves cross
references between different object modules
(external symbols). The output of the Lin
kage Editor can be either immediately
executed or incorporated into the core
image library.

The Librarian is a group of programs
used for maintaining the libraries and pro
viding printed and/or punched output from
these libraries.

The libraries are:

the system core-image library
the system relocatable library
the system source statement library
private core~image libraries
private relocatable libraries
private source-statement libraries

The core-image library contains object
program phases already processed by the
Linkage Editor. These programs are ready
for execution under control of the Supervi
sor. The core-image library contains, for
instance, the system control and service
programs themselves and the PL/I compiler.

A DOS system generation option provides
for the support of private core-image
libraries on the same type of direct access
device as the system residence volume. A
private core-image library has the same
format and function as the system core
image library on the system residence
volume. When searcning for a program to be
loaded, the system loader searches the
private core-image library first, if
assigned, and then the system core-image
library.

The relocatable library contains object
modules produced by the language transla
tors. Object modules may be preceded by
Linkage Editor control statements. The
individual modules contained in the relo
cat able library are used as input to the
Linkage Editor. Most of the built~in func
tions of PL/I as well as service routines
required for the execution of PL/I object
programs are contained in the relocatable
library.

The source statement library is not used
by the PLII compiler or during object pro
gram execution.

Mu!tiErosg~mm.!!!g:

DOS and TOS permit the switching of proces
sing bet~een one or t~o foreground programs
and one background program, in which case
all programs reside in storage simul
taneously. This method increases the total
throughput since some program may use the
CPU ~hile another program is waiting for
input/output. If more than one program
requires the CPU~ the foreground-l program
has the highest and the background program
the lo~est priority. The program(s) of
lower priority are dormant until the
program(s) of higher priority start(s)
waiting for a completion of input/output.

The storage areas - referred to as e~r
~!~!Q!!~ - assigned to each of the three
programs are defined at system generation
time and may be changed by the operator
between job steps.

In a DOS system ~hich supports the
batched-job foreground (MPS=BJF) and priv
ate core-image library options, the Linkage
Editor can execute in either foreground
partition (as well as the background parti
tion) provided a minimum of 10K of storage
is assigned to the partition. When execut
ing in a foreground partition, a private
core-image library must be assigned.

In a DOS multiprogramming environment
described above, the DOS PL/I compiler can
be executed in any partition in the follow
ing manner:

1. At system generation time, link edit
the PL/I compiler in the background
partition and place it in the system
core-image library.

2. Link edit the PL/I compiler in any
desired foreground partition and place
it in a private core-image library
assigned to that partition.

3. When executing the PL/I compiler in a
foreground partition, assign the appro
priate private core-image library.

Running Programs Under DOS/TOS Control 11

logical
Device Device Referred to
Address

SYSRDR input device from which job Controi statements are read. Not used by Pl/I compiler or object programs.

SYSIPT Input device from which the input for the Pl/I compiler is read. Can also be referred to by SYSIN.

SYSIN Input device combining the functions ci SYSRDR and SYSIPT.

SYSLST I Output device used by the PL/I compiler. The device used is the same as the PL/I standard output device for iisting
(SYSPRINn. (For Pi/I object-time messages refer to PROCEDUtE Statement in Appendix H.)

,..~,..ft"'ll Cord punching device used by the Pl/i compiler when a punched card object deck is specified. .;)J .;) .. ""n
SYSOUT Output device combining the functions cI SYSlST and SYSPCH. Cannot be assigned by an ASSGN statement.

SYSLNK
Input/output device used by the Linkage Editor and the Pl/I compiler when compiling and subsequent link-editing
is specified.

A private core-image library. If such a library is assigned, the output trom the Linkage Editor is placed here
SYSClB either permanently or temporarily. If s.uch a library is not assigned, output from the Linkage Editor goes to the

system core-image library.
- --"-

SYSLOG
Console typewriter used fer listing meuc;s: issued to the operator by the PL/I Co.T.pilei und the ubieet program.
SYSLOG is also used when a DISPLAY statement appears In the Pl/I program (For Pl/I object-time messages refer
to PROCEDURE Statement in Appendix j.)

Logical device addresses availoble to the programmer (programmer logical units as opposed to the remaining units,
which are also referred to as system logical units).SYsOO1, SYSOO2, and SYSOO3 are used as work file addresses by

SYSOOO the language processors and the linkage Editor. They may be used as work file or:output file ocIdresses, but the ,user
to must protect his input files from being destroyed by the compiler or linkage Editor in the case of a compile-and-

SYS222 execute or link-and-execute job. For this purpose, he should use the DISPLAY statement with the REPLY optian and
instruct the operator to mount the input file immediately before opening the file at execution time if-a sufficient
number of I/O units is not available.

Figure 5. Logical Device Addresses Used by the PL/I Programmer

DOS programs compiled by the DOS PL/I
compiler can be executed in a foreground
partition., provided the supervisor was
generated with the option MPS=BJF and a
minimum of 10K of storage is assigned to
the partition. PL/I object programs may
only be executed in batched-job mode.

Under TOS, the PL/I compiler and the
Linkage Editor exclusively work in the bac
kground partition. TOS programs compiled
by the PL/I compiler £~nnQ~ run as fore
ground programs.

The I/O devices used during compilation and
execution are referred to by logical device
addresses instead of by their physical
device addresses. Thus, the user may dis
regard the physical device assignments of
the system configuration he uses. Moreov
er, if a number of different system confi
gurations is used, recompilation of a
source program is required only if the
device types (1442, 2540, etc.) change.
The logical device addresses the PL/I pro
grammer should know are listed in F'igure 5.

Logical device addresses can be assigned
to physical devices

12

1. when building the system.

2. by the operator, or

3. by means of the ASSGN statement (see
the section Th~_~~~§~_~~at~~~).

If multi-programming is included in the
supervisor, independent sets of logical
device addresses are provided for the back~
ground area and both foreground areas.

The Job Control Program

The Job Control program permits processing
of hatched iobs in backqround mode. A iob
is the execution of a problem and consi~ts
of one or more j2Q~E~. A job step is a
single compilation of an external proce
dure, a Linkage Editor run, a Librarian
run, or the execution of an object program.

JOB CONTROL S~ATEMENTS

The execution of the Job Control program is
initiated by Job Control statements read
from SYSRDR. The general format of Job
Control statements is as follows:

1. Name
Job-Control statements are identified
by two slashes (II) in columns 1 and 2.
The second slash must be followed by
one or more blanks. Exceptions are:

a. The end-of-job statement contains
1& in columns 1 and 2.

b. The end-of-data-file statement con
tains 1* in columns 1 and 2.

c. The comments statement contains *
in column 1 and a blank in column
2.

2. Q2~;:~!=.!Q!!
The entry in the operation field of a
Job Control statement describes the
type of operation to be performed. It
must be followed by one or more blanks.

3 '. QEg!~!!Q
The operand may be blank or consist of
one or more entries separated by com
mas. Interspersed blanks are not per
mitted. The last entry must be fol
lowed by one or more blanks unless its
last character is in column 71.

U. Comments
comments are permitted anywhere after
the trailing blank of the operand
field.

The ~SSGN statement is used to assign a
logical device address to a physical
device. The format of the ASSGN statement
is ·as follows:

,X'ss'
II ~SSGN SYSxxx,device-address

,ALT

§!§~~~ is one of the logical devices listed
in Figure 5 (with the exception of SYSOUT,
which cannot be assigned by means of ASSGN
statements) • The syst.em permits programmer
logical units in the range from SYSOOO to
SYS222. The number of units actually per
mitted per partition in a specific instal
lation is defined at system generation time
and normally less than 223. SYSOOO to SYS-
004 are the minimum provided by the system.

The following restrictions should be
observed when re-assigning some of the log
ical units:

1. SYSRDR, SYSIPT, SYSIN, SYSLST, and SYS
PCH cannot be assigned to 2311 or 2314
DASD extents by ASSGN statements. In
case they are assigned to a 2311 or
2314 DASD extent either at system

generation time or by the operator, a
special version of the PL/I compiler
that needs a minimum of 12K of storage
for execution must have been cataloged
at system generation time.

2. SYSLNK must be assigned to the same
device type as SYSRES for DOS and to a
magnetic tape drive for TOS. Any re
assignments must be made before issuing
an OPTION statement that contains the
LINK or CATAL option.

3. SYSLOG should be assigned to a 1052
console typewriter. Assignment to a
printer is possible but degrades the
system functions and prevents the use
of the DISPLAY statement with the REPLY
option.

4. SYSCLB cannot be temporarily assigned
(II in columns 1 and 2). The permanent
assignment format must be used (ASSGN
in columns 1 through 5).

5. SYS001 to SYS003 must be assigned to
the same device type (either magnetic
tape drives, 2319. 2311, or 2314 DASD
extents) for the entire duration of a
compilation.

~gy!£~~~gg!~~~ permits three formats:

X'cuu' where c is the channel number and uu
the unit number in hexadecimal
notation.

UA Unassign. The job is canceled if a
file attached to this logical unit
is referred to by one of the 1/0
statements OPEN, CLOSE" GET, PUT"
READ, WRITE, or REWRITE.

IGN Indicates the logical unit to be
unassigned and that all program
references to the logical device are
to be ignored. All 1/0 commands
issued to the file are ignored. The
IGN option is not valid for SYSRDR,
SYSIPT, and SYSIN. For PL/I files,
the IGN-bit will be checked. And if
the IGN-bit is on, no OPEN-bit will
be set.

~:~~: is the device specification. It is
used for specifying mode settings for 7-
track and dual-density 9-track tapes. If
X'ss' is not specified, the system assumes
X'90' for 7-track tapes and X'CO' for 9-
track tapes. The possible specifications
for X'ss~ are listed in Figure 6.

Note: When creating a 7-track tape file,
the-data-conversion feature must be off.

Running Programs Under DOS/TOS Control 13

r----T-------T--------T---------T---------,
I I Bytes I I Trans- i I
I I per I I late I Convert I
I 55 I inch I Parity I Feature I Feature !
~--·--+-------+--------+---------+---------i
I 10 I 200 I odd I off on
I 20 (200 1 even I off off
I 28 I 200 even I on off
I 30 I 200 odd I off off
I 38 1 200 odd I on off

50 556 odd off on
60
68
70
78
90
AO
~8

BO

556
556
556
556
800
800
800
800

even
even
odd
odd
odd
even
even
odd

off
on
off
on
off
off
on
off

off
off
off
off
on
off
off
off

odd on B8 800 off
co 800 single=oensity 9=track
CO 1600 dual-density 9-track
C8 800 dual-density 9-track I ____ ~ _______ ~ ____________________________ J

Figure 6. Possible Specifications for
X'ss' in the ASSGN statement

811: indicates an alternate magnetic tape
unit that is used if the capacity of the
original unit is reached. The characteris
tics of the original and the alternate unit
must be the same. Multiple alternates may
be assigned to one logical unit.

No~~: All device assignments made with
~SSGN statements are reset E~~~~~n_jQE~ to
the configuration specified at system
generation time plus any modifications that
may have been made by the operator. (See
the section 1:n~_~Q~_§~~~~~~E.)

The execution of a job step is initiated by
the statement:

II EXEC name

~~~~ is the name of the first phase of the 
program to be fetched from the core-image 
library and to be executed. Therefore, 
execution of a PL/I compilation would be 
initiated by the statement 

II EXEC PL/I 

The name must be omitted if a program 
linked in the previous job step of the same 
job is to be executed immediately after the 
link operation. 

!h~_~Q~_§~~~~men~ 

Each job begins with the statement: 

/1 JOB job-name 

14 

Job-name is a user-defined name of 1 to 8 
characters. 

Note: The JOB statement cancels all pre
vIously issued OPTION and ASSGN statements. 

~ne LISTIO s~a~ement is usea ~o obtain a 
listing of the 1/0 assignments. The format 
of this statement is 

II LISTIO 

with one of the operands listed in Figure 
7. The listing is produced on SYSLST. The 
listing varies according to the operand. 
For magnetic tape units, physical units are 
listed with current device specification. 

r-------T---------------------------------, 
IOperandlCauses the Listing of I 
~-------+---------------------------------~ 
ISYS Ithe physical units assigned to I 
I lall system logical units. I 
~-------+---------------------------------~ 
IPROG Ithe physical units assigned to I 
I lall background programmer logicall 
I I units. I 
~-------+---------------------------------~ 
IALL Ithe physical units assigned to I 
I I all logical units. I 
~-------+---------------------------------~ 
ISYSxxx Ithe physical units assigned to I 
lithe specified logical unit. I 
t-------f---------------------------------i 
jUNITS jthe logical units assigned to alII 
I Iphysical units. I 
r-------+---------------------------------~ 
I DOWN lall physical units specified as I 
I I inoperati vee I 
r-------+---------------------------------~ 
IUA jaIl physical units not currently I 
I lassigned to a logical unit. I 
r-------+---------------------------------~ 
IX'cuu' Ithe logical units assigned to thel 
I Ispecified physical unit. I L _______ ~ _________________________________ J 

Figure 7. Operands of LISTIO statement and 
Corresponding Actions 

!~~-~!~-§~~~~~~~~ 

The MTC statement is used to control opera
tions on logical units assigned to magnetic 
tapes. The format of the MTC statement is 

1/ MTC op-code,SYSxxx[,nnl 

For further details refer to the section 
~~!~i~K!l~_YQ!um~_~~Q~~£~~~ds-K!!~. 



!h~_Q~!!Qtl_§~~te~~nt ment is read. 
st~te!!!§}~. ) 

(See the section The JOB 

The OPTION statement is used to specify 
options for the compilation of PL/I source 
programs. Its format is The options LINK and CATAL are canceled 

// OPTION option1[,option21 •••• 

If this statement is omitted, a set of 
standard options defined at system genera
tion time will apply. If more than one 
OPTION statement is issued in one job, all 
further OPTION statements change only those 
options that are respecified. All other 
options will remain unchanged. 

1. if severe or disastrous errors have 
been detected during a PL/I 
compilation. 

2. after a new EXEC statement has been 
executed. 

All options specified in the OPTION sta
·teroent are canceled when a new JOB state-

The options that may be used by the PL/I 
programmer are listed in Figure 8. 

Option Function 

LOG Causes all Job Control statements to be listed on SYSLST. 

NOLOG Suppresses the LOG option. 

DUMP Causes the contents of core storage and registers to be I isted on SYSLST in case of on abnormal termination of the job. 

NODUMP Suppresses the DUMP option. 

LINK 
Causes the compiled Pl/I program to be written on SYSLNK for later processing by the Linkage Editor. This option, if 
used, must precede all other Linkage Editor control statements, if any. 

NOLINK 
Suppresses the LINK option. The LINK option is also suppressed if a serious or disastrous error is detected during 
compilation of a Pl/I source program or if on EXEC statement with a blank operand field is read. 

CATAL 
Causes the LINK option to be set. In addition, it causes the cataloging of a phose or program into the core-image 
library after either a 1& or a II EXEC MAINT statement has been read. 

DECK Causes the Pl/I compiler to punch on object deck if no disastrous compile-time error has been_detected. 

NODECK Suppresses the DECK option. 

LIST Causes the Pl/I compiler to list the source program on SYSLST. 

NOLIST Suppresses the LIST option. 

L1STX Causes the Pl/I compiler to list the object program on SYSLST. 

NOLlSTX Suppresses the LlSTX option. 

SYM Causes the Pl/I to list the symbol table, the block table, the offset table, and the extemal symbol table on SYSLST. 

NOSYM Suppresses the SYM option. 

ERRS Causes the Pl/I compiler to list all detected errors on SYSLST. 

NOERRS Suppresses the ERRS option. 

XREF Causes the pl/i compiler to write a cross-reference listing on SYSLST. 

NOXREF Suppresses the XREF option. 

48C 
Informs the PL/I compiler that source programs are written in the 48-character set in EBCDIC notation. (No provision 
has been mode for BCDIC and ASCII character sets.) 

60C Informs the Pl/I compi ler that source programs are written in 60-character set in EBCDIC notation. 

MINSYS Causes the Linkage Editor to produce minimum-size modules for later runs on systems with a background program 
(rOS only) area smaller than 24K, when link-editing on systems with a larger background program area. 

Figure 8. Operands Used in the OPTION Statement 

Running Programs Under DOS/TOS Control 15 



The PAUSE statement can be used to stop 
batched-mode processing in order to save 
output files produced by a previously 
executed program. Its format is 

// PAUSE comments 

The comments are printed on SYSLOG (pro
vided SYSLOG has been assigned) to indicate 
the action to be taken by the operator. 

The RESET statement resets I/O assignments 
to the standard assignments. The standard 
assignments are those specified at system 
generation time plus any modifications made 
oy ~ne operator by means of an ASSGN com
mand (as opposed to using an ASSGN control 
statement) without the TEMP option. The 
format of the RESET statement is: 

// RESET 

with one of the operands SYS, PROG. ALL,. 
SYSxxx. The meaning of the individual 
operands is described below. 

SYS resets all system logical units to 
their standard assignments. 

EBQ§ resets all programmer logical units to 
their standard assignments. 

ALL resets all programmer and system logic
al-units to their standard assignments. 

SY§~!! resets the specified logical unit to 
its standard assignment. 

~h~_~~§!_§~~~~me~~ 

This statement (User Program Switch Indica
tors) allows the user to set program 
switches that can be tested much the same 
as sense switches or lights used on other 
machines. The UPSI statement has the fol
lowing format: 

// UPSI nnnnnnnn 

The operand consists of one to eight 
characters of 0, 1, or X. Positions con
taining 0 are set to o. positions contain
ing 1 are set to 1. Positions containing X 
remain unchanged. Unspecified rightmost 
positions are assumed to be X. 

Job Control clears the UPSI byte to 
zeros before reading control statements for 
·each job. When Job Control reads the UPSI 
statement, it sets or ignores the bits of 
the UPSI byte in the communication region. 
Left to right in the UPSI statement, the 
digits correspond to bits 0 through 7 in 
the UPSI byte. Any combination of the 

16 

eight bits may be tested by problem pro
grams at execution time. 

The DOS FLII compiler checks bit 0 of 
the UPSI byte; the other bits are ingored. 

If bit 0 is on (1) during compilation, 
Librarian and Linkage Editor statements are 
produced to permit to compile and catalog 
in one iob step into the relocatable 
library: Bit 0 should be off (0) if cata
loging into the relocatable library is not 
desired. For further details on cataloging 
refer to the section f~!:~129!.~g_into th§ 
B~!2£~!:~£1~_1i£f~fY· 

~h~_~gg~of~~~t~~fi!§_~~~!:§~§g!: 

The end-of-data-file statement (/* in 
columns 1 and 2) serves as a delimiter for 
the input read from SYSIPT.. Therefore, 
PL/I programs must be terminated by an end
of-data-file statement. This statement is 
also recognized on the programmer logical 
units that are assigned to a card reader. 
This causes the ENDFILE condition to be 
raised for a PL/I input file. 

~h~ EnQ~2!~~Q!2 Statem§g!: 

The end-of-job statement (/& in columns 1 
and 2) indicates that a job has been com
pleted. If this statement is omitted, the 
Job Contro.l program may skip the next job 
stacked on SYSRDR and/or SYSIPT. If SYSRDR 
and SYSIPT are different units, the end-of
job statement must appear on both. 

The Comments Statemen~ 

A special comments statement C* in column 1 
and blank in column 2, followed by the 
desired comments) is available for longer 
messages. The comments are printed on SYS
LOG" but no halt is caused by this 
statement. 

For all Job Control statements referring to 
disk and tape _file labels see the section 
Fil§_~~§l§· 

~h~_ggQf~§§_§!~!~en!: 

The PROCESS statement allows the programmer 
to specify compile-time options. More than 
one card may be used per external 
procedure. 

General format: 

* PROCESS option L,optionj ••• 

or 

+ PROCESS option [,option] ••• 



General rules: 

1. The cards have to precede the PL/I 
source program. They must, however. 
follow the // EXEC PL/I statement. 

2. The card has to start either with an 
asterisk or with a plus sign in column 
one, followed by one or more blanks. 
If the plus sign is used it is treated 
as an asterisk. The option list may 
not extend beyond column 71. 

3. The options in the PROCESS statement 
override job-control options or any 
other options encountered in previous 
PROCESS statements. 

The options that can appear in the 
operand field of a PROCESS card are: 

1. Options supported by Job Control: 

DECK 
NODECK 
LIST 
NOLIST 
LISTX 
NOLISTX 
SYM 

NOSYM 
ERRS 
NOERRS 
XREF 
NOXREF 
48C 
60C 

~ description of the above options is 
given in Figure 8 in the section ~h~ 
~Q~_~Qnt~Q!_~~Qg~~~. 

2. Options not supported by Job Control: 

a. OPT, NOOPT 

OPT 

NOOPT 

causes the optimization of 
compiled code. 

suppresses the OPT option. 

The default is OPT. 

Optimization implies the deletion 
of as much code as the compiler can 
diagnose as redundant. 

If the option OPT is used, sequen
tial assignment statements for the 
same variable (e.g., A=l; B=Xi ~=3; 
are optimized by deletion of the 
first assignment to A because there 
is no reference to A between the 
two assignments to A. 

If the contents of 'A' were 
required between the two assign
ments (e.g •• were used as control 
values in the event of an interrupt 
such as SIZE, CONVERSION, etc.) the 
assignment statement would have to 
be labeled because labeling a sta
tement resets the internal optimi
zation control. 

b. STMT, NOSTMT 

STMT causes statement numbers to 
be printed with object time 
diagnostics. 

NOSTMT suppresses the STMT option. 

The default is NOSTMT. 

NO!~: In a program consisting of 
several external procedures, STMT 
must always have been specified for 
the f!~§! external procedure that 
is stored on SYSLNK if the object
time diagnostic messages for any of 
the external procedures of the pro
gram are to include the numbers of 
the source statements causing 
errors. If, for example, STMT is 
specified only for the second 
external procedure stored on SYS
LNK, statement numbe~s are not 
printed for this procedure. In 
addition, STMT must also have been 
specified for the first external 
procedure. 

c. LISTO. NOLISTO 

LISTO causes the statement num
bers to be listed and the 
offset of the first byte 
used after these statements 
to be printed. 

NOLISTO suppresses the LISTO 
option. 

The default is NOLISTO. 

Note: LISTO overrides LISTX, i.e., 
if-r:ISTO and LISTXare specified" 
the LISTX option is ignored. 

COMPILATICN UNDER DOS/TOS CONTROL 

If a single PL/I source module is to be 
compiled under DOS/TOS control, the card 
sequence should be as follows: 

// JOB 
// OPTION 
// EXEC 

/* 
/& 

job-name 
DECK,LIST,NOSYM,60C see note 1 
PL/I 

PL/I source module 

see note 2 

Not~_!: This statement causes the PL/I 
compiler to punch an object module on SYS
PCH and to list the source program on SYS
LST. The listing of source module symbols 
is suppressed. The source program is writ
ten in the 60-character set. LOG, DUMP, 

Running Programs Under DOS/TOS Control 17 



LISTX, and ERRS are assumed to have been 
established as standard options at system 
generation time. 

~Q!~-~'!' l\nother /& card must be read from 
SYSIPT if SYSRDR and SYSIPT do not refer to 
the same input device. 

i---------------------------------------~-1 
I Deck on SYSRDR I 
~-----------------------------------------~ 

/ / JOB MYJOB I 
// 
// 

I 
\ 

* 

OPTION 
ASSGN 
PLEA.SE 
PAUSE 
EXEC 
EXEC 
EXEC 

DECK,48C 
SYSIPT,X'271',X'50' 
MOUNT REEL 4711 ON UNIT 
PROCEED 

271 \ 
// 
// 
// 
// 

PL/I 
PL/I 
PL/I 

\ 
\ 
\ 
\ 

/& ! 
~----=======--------------------~---------i 
I Records on SYSIPT I 
~-----------------------------------------1 
I First PL/I source module \ 
\/* I 
I Second PL/I source module I 
\/* I 
I Third PL/I source module i 
\/* I 
\/& I L, ___________________________ ....; _____________ J 

Figure 9. Coding for a Job Consisting of 
three PL/I Compilations 

ASSGN statements to change the assign
ment of logical device addresses for this 
job may be placed anywhere between the JOB 
and the EXEC statement. Assignments for 
SYSLNK must not be changed after OPTION 
LINK has been specified. 

Figure 9 shows the coding for a job con
sisting of three PL/I compilations. SYSRDR 
and SYSIPT are assumed to refer to dif
ferent input devices. SYSIPT is assumed to 
be a 7-track tape drive. 

Since a job step comprises only one 
single compilation, an EXEC statement as 
well as a /* statement is required for the 
compilation of each source module <external 
procedure). 

~~!rr_~~Q~~g~_!~g~!!~~~~~~_fo!_£Q~Eilat!Qg: 
In the Q~£~g~Q~gQ partition, ~it~Q~! system 
files on disk: 

10K plus supervisor area required 
for the compiLer version used 

In the background partition, ~it~ system 
files on disk: 

12K plus supervisor area required 
for the compiler version used 

In the fQ~~£Q~~Q partition, ~!~~Q£~ system 
files on disk: 

18 

i 

I 
I 

10K plus foreground save area required 
for the compiler version used 

In the foreground partition, with system 
files on disk: 

12K plus foreground save area required 
for the compiler version used 

The Linkage Editor Program 

The Linkage Editor program relocates the 
object modules produced by the PL/I compil
er into an absolute object program. 
Modules retrieved from the relccatable 
library may be incorporated into the object 
program during the Linkage Editor run. 
Programs written in A.ssembler language and 
assembled by means of the DOS/TOS Assembler 
may also be in~urporated. For details on 
the communication with programs written in 
Assembler language refer to the section 
!!!gJ5~~_fQ!!ve!!tion§. The object program 
produced by the Linkage Editor may either 
be executed by using the EXEC statement 
with a blank operand or be incorporated 
into the core-image library. 

If a Linkage Editor run is desired. the 
first Linkage Editor control statement and 
the first EXEC statement must be preceded 
by an OPTION statement with either the LINK 
or the CATAL option. 

In a TOS or DOS non-multiprogramming 
system. the Linkage Editor can run in the 
background partition only. In a DOS multi-

. programming system which also supports the 
private core-image library option~ the Lin
kage Editor can run in either foreground 
partition (as well as the background) pro
vided a minimum of 10K of main storage and 
a private core-image library is assigned. 

LINKAGE EDITOR CONTROL STATEMENTS 

The execution of the Linkage Editor program 
is initiated by Linkage Editor control sta
tements read from SYSRDR. The general for
mat of Linkage Editor control statements is 
similar to that of the Job Control state
ments, except that Linkage Editor control 
statements have a blank in column 1 instead 
of // in columns 1 and 2. 

The Linkage Editor program uses the fol
lowing four control statements: 

• the PHASE statement, 

• the INCLUDE stateroent, 

• the ENTRY statement, and 

• the ACTION statement. 



The exact format of these statements is 
given in those parts of this section where 
their application is described. 

This is an optional statement for directing 
the Linkage Editor. If ACTION statements 
are issued to the Linkage Editor~ they must 
precede all other input to the Linkage Edi
tor on SYSLNK. This can be ensured by 
placing the ACTION statement(s) immediately 
after the OPTION statement with the operand 
LINK or CATAL. The format of the ACTION 
statement is: 

ACTION operand 

The following operands are of interest 
to the PL/I user: 

BG 
F1 
F2 

NOMAP 

CANCEL 

The program is link-edited to 
execute in the specified 
partition. The start address of 
the approp~iate partition is 
assumed to be the end of the 
supervisor (for background) or the 
address of the specifi~d fore
ground partition allocated at link 
edit time. Only one of these 
operands may be specified for one 
link-edit step. Use of these 
operands allows the program to be 
link-.edited to execute in a parti
tion other than the one in which 
the link-edit function is taking 
place. 

In the absence of these operands 
the program is link-edited to 
execute in the partition in which 
link-editing is taking place. 
(These operands are not available 
in TOS). 

Suppresses listing of the Linkage 
Editor storage map on SYSLST. 
Diagnostics are written on SYSLOG. 

The job is canceled if any error 
is detected during link-editing. 

More than one ACTION statement may be 
issued for one link-editing step. 

If the program consists of more than one 
ppase or if the program is to be cataloged, 
each phase to be link-edited must be pre
ceded by a PHASE statement of the following 
format: 

PHASE phase-name, origin 

~g~~~=~~~~ is a symbol consisting of 1 to 8 
characters, the first of which must be 
alphabetic but should not be a $ sign. In 

case of multi-phase programs~ the phase
name must be longer than four characters 
and the first four characters must be 
identical for all phase names of that pro
gram. Different programs must differ in 
the first four characters of their phase 
name(s) in order to avoid incorrect storage 
allocation. <See the section ~~ocess!~g-2f 
QY~!:!~X§_2y~ge Li!!~~g~~Q!:!:or.) 

Q~igi!! indicates to the Linkage Editor the 
begin address of this specific phase. An 
asterisk may be used as an origin specifi
cation to indicate that this phase is to 
follow either 

the previous phase or the Supervisor at 
the next double-word boundary (for back
ground programs) or the start of the 
partition (for foreground programs). 

This simple format of the PEASE state
ment covers all normal applications in the 
background partition. For the format of 
the phase origin in overlay structures 
refer to the section Qve~l~Y. 

Three methods are available for link
editing foreground programs: 

1. Using the statement ACTION Fn. In this 
case, the same set of PHASE statements 
may be used as for background programs. 

2. Using the operand format F+address of 
the PHASE statement for the origin of 
the first (or only) phase. 
address is the absolute address of the 
foreground area in which the link
edited program is to be executed. It 
may be specified by a hexadecimal numb
er of four to six digits (X'hhhhhh') or 
by a decimal number of five to eight 
digits (dddddddd) or in the form nnnnK, 
where nnnn is two to four digits and K 
equals 1024. For example, an origin 
may be specified as F+X'8000' or F+ 
32768 or F+32K. 

Executing the link-edit function in the 
desired foreground partition. In this 
case, the same set of PHASE statements 
may be used as for background programs. 

For each method, a foreground save area 
is created at the specified address. The 
(first) phase starts at the first double
word boundary following this save area. 
The space allocated to a foreground program 
by the Linkage Editor plus sufficient space 
following the end of the program for dynam~ 
ic allocation of PL/I automatic storage 
must be allocated at execution time to the 
appropriate foreground partition. 

Programs compiled by the PL/I compiler 
and PL/I library routines are not 
self-relocating. 

Running Programs Under DOS/TOS Control 19 



~2E~: The autolink feature of the Linkage 
Editor is required to include routines from 
the relocatable library that are to be 
linked with the object modules compiled by 
the PL/I compiler. Therefore, the option 
NOAUTO of the PHASE or ACTION statement 
must never be used. 

INCLUDING OBJECT MODULES INTO THE OBJECT 

The appropriate object modules can be inco
rporated into the object program by: 

• compilation, 

• including object card decks, 

• including object modules from the relc
eatable library, or 

• using the autolink feature. 

To have the source moaUie compiled and the 
output written on SYSLNK, the card sequence 
must be as follows: 

II EXEC PLII 

PL/I source module 

1* 

If SYSRDR ano SYSIPT refer to different 
input devices l the PL/I source module and 
the 1* card must be read from SYSIPT. 

Processing by the Linkage Editor and 
execution is suppressed in case severe or 
disastrous programming errors are detected 
during compilation. 

Source modules written in Assembler lan
guage may be added in the same manner by 
using the statement II EXEC ASSEMBLY for 
calling the Assembler. For details on the 
communication with programs written in 
Assembler language refer to the section 
~!n~~g~_£QrrY~ntiQn~· 

!!!£1!!Qi!!g_Obj~ct_~~!d Dec~~ 

To include one or more object card decks 
into the object program, the required con
trol cards as well as the sequence in which 
they must be read from SYSIPT or SYSRDR, 
respectively, are shown in Figure 10. 

Note: The INCLUDE card, when used for this 
application, must have the following 
format: 

20 

INCLUDE preceded and followed by blanks 
only 

r---------------------------T-------------, 
I Cards I Read from I 
~---------------------------+-------------~ 
I INCLUDE I SYSRDR I 
i I I 
I one or more ob-I SYSIPT I 
I ject modules I I 
I I I 
!/* I SYSIPT I L ___________________________ ~ _____________ J 

Figure 10. Including Object Card Decks 

An INCLUDE statement must be read from SYS
RDR for each module to be incorporated into 
the object prog.ram from the relocatable 
library. When used for this application, 
the INCLUDE statement must have the format: 

INCLUDE module-name 

If some references to external names remain 
unresolved after all modules have been read 
in from SYSLNK, SYSIPT, andlor from the 
relocatable library, the autolink feature 
of the Linkage Editor searches the relocat
able library for module names identical to 
the unresolved names and includes the 
corresponding modules into the object 
program. 

Cataloging and including of relocatable 
modules may be performed by means of a 
private relocatable library. For DOS, the 
private relocatable library resides on an 
extra 1316 disk pack. The 2311 disk drive 
on which this pack is mounted has the log
ical device address SYSRLB. 

For including modules, the DOS Linkage 
Editor first searches the pack assigned to 
SYSRLB and, if the requested module is not 
found there or if SYSRLB is not assigned. 
it searches the relocatable library on the 
system residence pack. 

If SYSRLB is assigned. relocatable 
modules are cataloged into the private 
relocatable library. Otherwise, they are 
cataloged into the system residence pack. 

For creating private relocatable 
libraries refer to the SRL publicat~on IBM 
§y~~~~/3£QL_Q!~~_QE~!~~!n9_§Y~E~~L_sYsE~~ 
~2n~!Q1-~~9_§Y~E~~_§~rY!£~_EE2gE~~, Order 
No. GC24-5036. 

For private relocatable libraries under 
TOS see §E~£!g!_£2n§!9~!~E!2~§_2n_!2§. 



!h§_~~!g~_§~~~§~~~~ 

The card input to the Linkage Editor may be 
delimited by an ENTRY statement of the fol
lowing format: 

ENTRY [name] 

Na~§ is the external name of the entry 
point used. The entry point must be a pri
mary or secondary entry of the external 
procedure that has toe option MAIN. If the 
primary ent,ry point of the MAIN procedure 
is used, the name may be omitted. 

If no ENTRY statement is issued, ENTRY 
with a blank operand is assumed. 

~Q~~: If modules written in Assembler lan
guage are to be incorporated into the 
object program, the 'Assembler END statement 
should have a blank operand field in order 
to avoid 'confusion of entry points. 

For each file specified in the source pro
gram, the compiler generates a separate DTF 
table which includes the 'names of the I/O 
modules to be called. 

Sometimes different I/O modules have 
identical secondary entry names. For 
example, if a program uses ISAM files and 
ADDBUFF is specified for one of these files 
and INDEX~RE~ for another, then the secon
dary entry point IJHAARZZ occurs in modules 
IJHAARCZ and IJHAARZP, which are provided 
for these two files. In a case like this. 
the, linkage editor error message 21431 
<Content of statement in error) is 
generated during link-editing. Inspite of 
this error message, the program may execute 
correctly .. 

There is no way of determining before
hand whether or not a program with linkage 
error message 21431 will execute correctly. 
To make sure that the correct module is 
linked to the program, the following should 
be done: 

Message 21431 gives the multiple entry name 
in print positions 64 through 11 and the 
name of the module that was linked to the 
program in print positions 39 through 46. 
The linkage editor output listing repeats, 
in the LABEL column, the multiple secondary 
entry name and also lists the name of the 
other module in which this entry name 
occurs. 

In a new linkage-editor run, now, a 
supersetted I/O module must be specified 
for inclusion in the program. This super
setted module will contain the individual 
modules whose inclusion caused the error 

message 21431 to be generated. The name of 
the supersetted module is found as follows: 

Assume that two ISAM files have been 
specifi'ed, one with the ENVIRONMENT attri
bute ADDBUFFand another with the ENVIRON
MENT attribute INDEXAREA. In this example, 
the linkage editor generates message 21431 
with the multiple secondary name IJHAARZZ 
printed in positions 64 through 11 and tne 
name of the I/O module in which this secon
dary entry name occurs (IJHAARZP. which is 
provided for an ISAM file with the ADDBUFF 
option) printed in positions 39 through 46. 

In the linkage editor output listing. 
the secordary entry name IJHAARZZ appears 
in the column LABEL under the associated 
CSECT name (IJHAARCZ, the name of the 
module which is provided for an ISAM file 
with the 1NDEXAREA'option). 

Figure 11 below shows how to build the 
name of a super3ettedI/0 module; this,name 
should then be specified in an INCLUDE card 
and inserted before // EXEC LNKEDT 
statement: 

INCLUDE IJHAARCP 
// EXEC LNKEDT 

Name of 
I/o module 

included 

ADDBUF 
specified 

INDEXAREA 
IJHAARCZ specified '---y--J 

Name of 
supersetted 
I/O module 

IJHAARCP 
~ 

Where the characters of the module names are identical, these 
characters are used in the same positions of the name for the 
supersetted module. 

Where the characters of the module names differ, the lowest 
character is used in the corresponding position of the name for 
the supersetted module. 

Figure 11. Building the Name of a Super
setted I/O Module 

Different user-written or PL/I modules to 
be linked to a program by the linkage edi
tor may have identical CSECT names, as 
shown in Figure 12. 

Running Programs Under DOS/TOS Control 21 



I 

I 

! I-
I • 

II JO~ I JOB 

I I PRce:: ~1'!IJiIlIC'" ~ I ._\_/PROCA: . I 
PROCB: 

".Jlm.1I PROCB: 

1* 
I I E.XEC LNKEDT 

II 
1* 
II EXEC LNKEDT 

/& 

Figure 12. Multiple CSECT Names 

The modules shown in Figure 12 may have 
completely different code,' or the code of 
the two modules may be identical to a cer
tain point,. with one of the modules having 
one or more additional entry points (as in 
Figure 12). 

A linkage-edit time, now, the linkage 
editor fetches the required module from the 
relocatable area, where the modules are 
stored under different names, and checks 
whether the corresponding CSECT name is 
already on SYSLNK. If the CSECT name is 
already contained in SYSLNK the second 
mouule with the identical CSECT name (but 
the different module name) is not linked. 
Ifa request to any additional entry (ENTRV 
or ENTRZ) exists, an error message is 
issued. but link-editing is.continued. At 
execution time, an error will result. 

To avo1d errors due to multiple CSECT 
names, the modules required must be 
included in the appropriate external proce
dure by means of an INCLUDE statement as 
shown in Figure 12e 

22 

SAMPLE COMPILATION 

The example ~hown in Figure 13 illustrates 
a combination of all three possibilities to 
build an object program. Four-modules plus 
the appropriate library subroutines are to 
be combined into an object program~ which 
is to be executed upon completion of the 
compilation. The examole is based on the 
following assumptions:-

1. One PL/I source module. 

2. Two modules (Pl, P2) have been pre
viously compiled and punched. 

3. One module (R) is contained in the 
relocatable library. 

4~ A listing of ~~e source program and the 
symbol table is required for module A4 

5. A is the entry point ~o be used. 

6. The job is being executed in the back
ground partition. 

Note: The numbers at the left in Figure 13 
are-for reference purposes only; they are 
not part of the coding. 

r-----T---------~-------------------------, 
1 1// JOB N01234 1 
2 1// OPTION LINK.SYM.LIST 1 
3 1 PHASE EXAMPLE,* 
4 1// EXEC PL/I 

1 A: PROCEDURE OPTIONS (MAIN); 
5 I 

I 
I 
1/* 

6 I 
1 
1 
I 
1 
1 
1 

7 
8 
9 

10 

1/* 
I 
I 
1// 
1// 
I 
I 
1 

11 1/* 
12 1/& 

END /*A*/; 

INCLUDE 

deck Pi 

deck P2 

INCLUDE R 
ENTRY 
EXEC LNKEDT 
EXEC 

data 

-----~-----------------------------------

Figure 13. Sample Compilation 

EXElanation 

1 Furnishes the Communication Region of 
the Supervisor with the name of the job. 



2 Specifies the compiler options SYM and 
LIST and enables the PL/I compiler and 
Job Control to write or copy the output 
on SYSLNK for later processing by the 
Linkage Editor. 

3 The PH~SE statement precedes all modules 
to be processed by the Linkage Editor. 
The asterisk indicates that the program 
is to be loaded immediately following 
the Supervisor. 

4 Calls the PL/I compiler. 

5 PL/I source program. A (the name of the 
M~IN procedure) is the primary entry 
point. 

6 Causes the subsequent modules Pl and P2 
to be copied onto SYSLNK. 

7 This statement is copied onto SYSLNK. 
When encountered by the Linkage Edit9r, 
the module R is fetched from the relo
catable library and incorporated. 

8 Delimits the input to the Linkage Edi
tor. The blank operand causes the pri
mary entry point A to be entered by Job 
Control at execution time. 

9 Calls the Linkage Editor to produce the 
object program. The names of all 
modules called by A, Pl, P2, and R must 
be names of modules contained in the 
relocatable library. These modules are 
automatically incorporated by the auto
link feature of the Linkage Editor. 

10 Causes Job Control to fetch the execut
able object program and transfers con
trol to A for execution. 

11 The end-of-data-file statement delimits 
the input data. If the file name is 
explicitly declared, this statement may 
be tested by means of an ON ENDFILE 
statement. 

12 End-of-job statement. In case of an 
abnormal termination of the job, Job 
Control skips all input up to this 
statement. 

Assumed that all input to be read from 
SYSIPT has been loaded onto a 7-track tape 
reel and that SYSIPT is assigned to the 
tape drive whose physical address is 281, 
the input from SYSRDR and SYSIPT for the 
above example is as shown in Figure 14. 

r--T--------------------------------------, 
I Cards read from SYSRDR I 
~--------------------------------------~ 
III JOB N01234 

1311/ ASSGN SYSIPT"X'281' ,X'90' 
III OPTION LINK,SYM,LIST 
I PHASE EXAMPLE, * 
III EXEC PL/I 
I INCLUDE 
1 INCLUDE R 
I ENTRY 
III EXEC LNKEDT 
III EXEC 

1 4 1/& L __ ~ _____________________________________ _ 

Figure 14. Control Cards and Input Units 
for Deck Shown in Figure 13 
(Part 1 of 2) 

13 SYSIPT is assigned to a 7-track tape 
drive. (The assignment differs from the 
installation standard.) 

14 1& must appear on both SYSRDR and 
SYSIPT. 

r--T----------~---------------------------, 
I Cards read from SYSIPT 1 

~--------------------------------------1 

1* 

1* 

1* 
114 1& 

A: PROCEDURE OPTIONS (MAIN); 

END I*A*I; 

deck Pl 

deck P2 

data 

L __ ~ _____________________________________ _ 

Figure 14. Control Cards and Input Units 
for Deck Shown in Figure 13 
(Part 2 of 2) 

To execute the same job in a foreground 
partition with a private core-image library 
on a disk unit whose physical address is 
191, the statement 

ASSGN SYSCLB,X'191' 

must follow the JOB card. In this case, 
the program is link-edited to be loaded at 
the start of the foreground partition. 

Running Programs Under DOS/TOS Control 23 



Cataloging 

Cataloging of frequently used program 
phases or object modules into one of the 
n()~/'T'()~ lihr;:!rip~ (Jrp;:!~lv rpnllrp~ +hp +imp 
---~ --- -----.---- ;)I-----~ ------- ---- ---.. -
required for card reading and/or Linkage 
Editor processing. Object modules may be 
cataloged into the relocatable library. 
Executable programs already processed by 
the Linkage Editor may be cataloged into 
the system or, if assigned," a private core
image library. 

The name of a phase or module must be 
unique for each library. If phases or 
ftl"u·"..:I'I .. 1 ....... c-- ~,....~ ,...~ ..... ~, ,....,....ort ~~" ... """"..:1 .. ,1 Q " ..... "r"\h:ll~o 
Ll'V\.A\A..L~.-;:J U.L.~ """u,l...ILA...L'J':I,-\,A. .......... &~ I.ll'-'\.A.\,A..&. ...... "".L. t:',I,,&\.A,V''-

already contained in t.he respective 1 ibrary 
and having the same name is automatically 
deleted. This necessitates some naming 
conventions for each installation in order 
to prevent a user from deleting programs 
that are either part of the system or cata~ 
loged into the library by other programmers 
using the same installation. core-image 
library phase names starting with $ as well 
as relocatable library module names start
ing with IJ are names of system programs. 
For this reason, the user should be very 
careful when cataloging phases or modules 
the names of which start with the above 
characters. 

The Library routine that handles ca~a
loging and deleting is called by the Job 
Control statement // EXEC MAINT. 

Cataloging Into The Core-Image Library 

If a program is to be cataloged into the 
core-image library, the statement // OPTION 
with the CATAL option ,must be given prior 
to Linkage Editor processing, i.e., this 
statement must precede the first PHASE card 
of the program to be cataloged in case of 
compile-and-link runs. Upon successful 
completion of Linkage Editor processing the 
program is then automatically cataloged 
when an // EXEC LNKEDT and /& card is read. 
(Note that no"// EXEC statement without 
name must precede the // EXEC LNKEDT or /& 
statement in this job.) No further catalog 
control statements are required. 

If a private core~image library is 
assigned, the program is cataloged into 
that library rather than into the system 
core-image library. 

~2~g: An error may occur if a phase exists 
in the core-image library whose name starts 
with the Same four characters as the pro
gram to be cataloged (see the publication 
!~~_§Y~E~m~~~Q_Q!~~_QQ~~~Eing_§y~!~~L_§Y~= 

24 

Programs or phases that are no longer 
required in the core-image library may be 
deleted by using the DELETe statement, the 
two possible formats of which are as 
follows: 

DELETe phasel[,phase2J ••• 
DELETC prg1.ALL[,prg2.ALLJ ••• 

The first format is used to delete 
c;n~lo ~h~coc Tho nnor~n~c nh~co1 ~h~_ 
~..L. ...... ",=,..r-'- l:"' ...... """....,'--.J ................. '-'t' ............. '-A. ...... """'..., f;' ...... '""'" ............. ..L.f .l:" ... .&'-A 

se2, etc., each specify the name of one 
phase to be deleted. The second format is 
used to delete entire programs. Since the 
first four characters of all phase names of 
any program are identical, the entire pro
gram is deleted if these four characters 
are specified. prg1, prg2, etc., must 
therefore be exactly four characters lon~. 

Cataloging Into The Relocatable Library 

Each card deck to be cataloged into the 
relocatable library must be preceded by the 
control statement 

CATALR module-name[~v.m] 

The module specified by the operand 
m09~!~-n~~ is then incorporated into the 
relocatable library_ Cataloging stops when 
the END card of the module has been cata
loged. The module may be preceded but not 
followed by Linkage Editor control 
statements. 

v.m specifies the change level at which 
the-module is to be cataloged. v may be 
any decimal number from 0 through 127. m 
may be any decimal number from 0 through-
255. A change level of 0.0 is assumed if 
this operand is omitted. 

compilation of a PL/I source module may 
result in two object modules.. (The first 
one will be referred to as file module and 
the second one as procedure module in this 
section.) The file module is produced for 
all of the file declarations (except file 
name parameters) contained in the s~urce 
module. The procedure module is produced 
for the source module itself. Note that 
each individual object module requires a 
separate CATALR statement for cataloging. 
Thp filp module mav be cataloaed under any 
oi-t~e-iiie -name~.~ " J 



The DOS PL/I compiler facilitates cata
loging into the relocatable library by 
optionally producing control statements on 
SYSPCH. If bit 0 of theUPSI byte (see the 
section The UPSI Statement) is on during 
compilatlon;-the~ollowing output is 
generated on SYSPCH depending on whether or 
not a file module is generated with the 
external procedure: 

~iih_f!!~~9~~~ 

CATALR Fname 
file module 

CATALR name 
INCLUDE Fname 

procedure module 

CATALR name 
prncedure module 

~~~~ is the primary en~ry point of the 
external procedure. Fname means that the
name of the external procedure, immediately
preceded by the character F, is used as the
name of the file module. The INCLUDE sta
tement is generated to have the file module
aUtomatically included with the proceoure
module.

There is no automatic catalog feature
for compile-and-catalog into. the relocat
able library. However, if a sufJicient
Lumber of tape drives is available, it is
recommended to assign SYSPCH to a magnetic
tape drive -and to reassign the same drive
to SYSIPT for the catalog step, thus eli
minating unnecessary card handling.

The following example shows what control
statements are required for compile-and
catalog into the relocatable library:

II JOB
*
II OPTION

1 II UPSI
2 II ASSGN
2 II MTC

II EXEC

1*
3 II MTC
3 II MTC
3 II RESET
4 II ASSGN
5 II EXEC

If.

COMPILE AND CATALOG
INTO THE RELOCATABLE
SYM,LISTX,DECK
1
SYSPCH,X'182'
REW,SYSPCH
PL/I

PL/I source program

WTM,SYSPCH
REW,SYSPCH
SYSPCH
S~SIPT,X'182'
MAINT

LIBRARY

1. This statement causes the DOS PL/I com
piler to generate control statements
that precede the object module(s).

2. Assigns magnetic tape unit 182 to SYS
PCH and positions the tape at the load
point.

3. Closes and repositions SYSPCH. (Do not
use the II CLOSE statement since this
statement unloads the tape, thus caus
ing unnecessary operator action).

4. The compiler output is now assigned to
SYSIPT.

5. The Librarian is called. The CATALR
statements cause cataloging into the
relocatable library.

~2~~: The control statements are generated
only on SYSPCH, not on SYSLNK. Thus"
compile-and-catalog into the relocatable
library does not preclude the LINK and
CATAL options in the same job.

The DELETR statement may be used to
delete either single modules or entire pro
grams contained in the relocatable library.
All modules whose names start with the same
3-cparacter combination are considered to
be part of the same program. The two poss
ible formats of the control statement are

DELETR module-name1 [,module-name2] •.••

DELETR prgl.ALLI,prg2.ALLJ •••

The operands prgl, prg2., etc ... must con
sist of exactly 3 characters.

Library Maintenance Runs

Cataloging and deleting for all libraries
can be done in one single job step. In the
following example, the program LNCT is
deleted from the core-image library and the
modules BCDFIR and BCDSEC are cataloged in
the same job step. BCDSEC is preceded by a
PHASE statement that is to be cataloged
with the module.

II JOB

*
II EXEC

CA'IALOG TWO DECKS,
SECOND WITH PHASE CARD
MAINT

DELETC
CATALR

LNCT.ALL
BCDFIR

deck BCDFIR

CATALR BCDSEC
PHASE BCDPR2,*

* THIS STATEMENT IS ALSO CATALOGED

1*
If.

deck BCDSEC

END OF MAINT. DECK

The input deck must be followed by an
end-of-data-file statement if another job
step within the same job follows the main
tenance run. The Librarian control state
ments and input decks to be cataloged are

Cataloging 25

read from SYSIPT. (In TOS, Librarian con
trol statements are read from SYSRDR.)

Two methods are available for cataloging a
foreground program:

1. If the program is compiled and link
e01tea in the background, the following
job stream can be used:

// JOB
// OPTION

1 ACTION
2 PHASE

// EXEC
•
PL/I
•

/*
3 // ASSGN

// EXEC
/&

CATALFG
CATAL
F2
FGPXYZ,*
PL/I

source deck

SYSRLB,X'192'
LNKEDT

The ACTION statement (1) causes the
Linkage Editor to allocate storage for
the program in the storage presently
allocated to the foreground-two parti
tion. The PHASE statement (2) gives
the program the name FGPXYZ. The
second operand (*> specifies that the
program is to start n bytes behind the
location assigned at link-edit time as
the start address of the foreground-two
partition (n is the length of a fore
ground save area required by the sys
tem). The program to be cataloged is
compiled in the same ;ob# The ASSGN
statement (3) assigns-SYSRLB' so that
the Linkage Editor can obtain modules
to be included by the AUTOLINK feature
from a private relocatable library.

I 2. If the program is compiled and link
edited in the foreground, two changes
are made to the above job stream:

26

a. The ACTION statement is removed
because the program will be link
edited to execute in the foreground
partition in which the link-edit
function is taking place.

b. ~hp statement

ASSGN SYSCLB,X'191'

is added to assign a private core
image library. The program will be
cataloged in the private core-image
library.

Special Considerations on TOS

If TOS is used, phases in the core-image
and modules in the relocatable library are
not stored at random locations but in
alphameric order. Therefore, all phases
and/or modules to be cataloged must also be
in alphameric order. Maintenance requests
for the core-image and the relocatable
library may be given in the same job step
but must not be intermixed. Note that a
maintenance run under TCS control causes
copying of the full system onto a new
volume that will be located on SYS002.
SYS001 must be assigned to a tape drive for
intermediate use in this case.

The TOS compiler does not generate
CATALR statements. However, the user may
prepare his own CATALR statements and ~U~
the~ into the job stream on SYSRDR follow
ing // EXEC MAINT. (In TCS, Librarian con
trol statements are read from SYSRDR
instead of from SYSIPT.) The file module
should be given a name equal to one of the
file names to avoid the use of an INCLUDE
statement for including the file module.

Users needing a large number of relocat
able modules should use a EEivat~r~lo£~~=
~£lg_libr~~y. Using a private relocatable
library yields the following advantages:

1. Only the relocatable library is copied
during updating.

2. The performance of INCLUDE and AUTOLINK
is considerably faster during proces
sing by the Linkage Editor.

During Linkage Editor processing and
library maintenance, the private relocat
able library resides on an additional mag
netic tape unit assigned to SYSRLB. A
private relocatable library is produced by
preceding the first CATALR or DELETR state
ment by the special Librarian statement
NEWVOL. (The tape reel on SYS002 to accom
modate the newly created relocatable
library must be.initialized with a standard
Voluille Idbel. j

If a private relocatable library is to
be used on Tes, it must contain all modules
to be included from the relocatable library
because SYSRLB and the relocatable library
on the system's resident library are never
searched both.

A file is a set of data stored on an
external storage medium. Its purpose is
either one or a combination of the
following:

• To provide the program with the required
input.

• To store intermediate results obtained
during the execution of the program.
This may be required because the storage
capacity does not suffice to accommodate
both the program and the data.

• To store the results obtained by the
execution of the program ,(maybe for use
as input either to the same program at a
later execution or to another program).

A ~!Q£~is the' physical unit of informa
tion transferred between internal storage
and the external storage medium of the
file.

A record is the unit of information
which-Is-logically-transferred between the
program and the file by a single PL/I READ,
WRITE, or REWRITE statement. A block may
contain more than one record (blocked reco
rds). In blocked record files, the records
are buffered until a full block has been
gathered and then physically transmitted to
the file. In the case of input files, one
block is read into a buffer, and each READ
statement transfers (locates) one single
record to the program.

A !~~~! is a special set of records that
identifies a magnetic tape file or a direct
access storage device (DASD) file. Labels
are processed by the PL/I statements OPEN
and CLOSE.

~ ~~y is the information required to
locate a record within a DASD file declared
with the attribute DIRECT.

File Organization Schemes

The organization of a file may be consecu
tive, regional, or indexed.

The term file organization is synonymous
with an algorithm for identifying and
locating blocks and records on the storage
medium holding the file.

Data Files

CONSECUTIVE FILES

The blocks contained in CONSECUTIVE files
are identified by the sequence in which
they are stored. This renders it imposs
ible to ,access (or store) the blocks in any
manner other than sequential. This, in
turn, implies that the DIRECT attribute is
not permitted for CONSECUTIVE files.

A PLI~ file declared to be CONSECUTIVE
may consist of a deck of punched cards, a
listing on a printer, one or more reels of
magnetic tape, or some space on one or more
1316 disk packs used with the 2311 disk
drive. Other storage media for CONSECUTIVE
files like the paper tape reader, the opt
ical character reader, or teleprocessing
lines (DOS only) may be addressed by using
subroutines written in Assembler language
that will process these files.

For an example showing the creation and
updating of a sequential disk file, refer
to ~eE~ndi~_~~ __ Prog~ing Exameles,
ftCreating And Updating a Sequential Disk
Fileft •

A magnetic tape file may be contained on
a single tape reel or on more than one reel
(multi-reel file). The logical unit where
the file is located must be declared in the
MEDIUM option of the ENVIRONMENT attribute.
When using a multi-reel file, more than one
tape drive may be assigned to this logical
unit by specifying the ALT option in the
ASSGN statement to overlap processing and
mounting of tape reels. Only labeled files
should be used for multi-reel files.

A magnetic tape may also contain more
than one file. To positicn the file
correctly an MTC statement may be used to
space the tape forward over as many tape
marks as precede the file to be opened.
(Refer to Multi-File Volumes and Backwards
Ki1~~ in the-section-K!li=1~be!§:-)--------

REGIONAL FILES

The regional file organization is possible
only for DIRECT DASD files. REGIONAL files
are processed using the DOS Direct Access
method. Two different methods are used:

• REGIONAL(l) where records are addressed
by their relative position in the file

• REGIONAL(3) where records are addressed
(1) by the number of the track on which
they reside, the track number being

Data Files 27

relative to the first track of the file
and (2) by means of a key associated
with the record.

For further details refer to the section
Q!~~_Q~g~n!~~t!2~·

Restrictions. REGlot~AL files mus.t be d.e
clared-with-the attributes DIRECT and
KEYED, which exclude the use of the STREAM,
PRINT, SEQUENTIAL" and the buffering attri
butes. The KEYLENGTH option of the
ENVIRONMENT attribute is not permitted for
REGIONAL(l) files but must-be specified for
REGIONAL (3) files. REGIONAL files permit
only fixed unblocked records~ The V, U.
BUFFERS, LEAVE, and NOLABEL options of the
ENVIRONMENT attribute are not permitted for
REGIONAL files. The maximum relative reco
rd or track number is 22~_~. The EXTENt'
statements for REGIONAL files must be supp
lied in ascending symbolic-unit order. If
there are multi-volume files, the symbolic
units must be assigned in consecutive
order.

~Q~~_Q~_gQ~e~t!2!~!tY. In OS PL/I, certain
information contained in the key field or
data field of REGIONAL files is used to
flag a record of that file as deleted.
Therefore. if the user plans to create
files with DOS PL/I and read and/or update
them with OS PL/I, he should avoid keys or
data that would cause OS PL/I to consider
the record as deleted. For detailed infor
mation refer to the pertinent section of
the as PL/I Programmer:s Guide, Order
No. GC28-6594.

The individual records in a REGIONAL(l)
file are identified by their position rela
tive to the position of the first record in
the file, which has a relative record numb
er of Oe A track is assumed to contain as
many records as may fit, i.e., if some
parts of the track are still empty, these
"holes" are nevertheless counted as real
records. The number of records per track
is shown on the programmer's Reference
Chart, Form X20-1705. The key used to
identify individual records and issued with
the KEY or KEYFROM option of a READ, WRITE,
or REWRITE statement is not written onto
the DASD file but specified as a numeric
field declared as PICTURE '(8)9'. There
fore, records to be read from a REGIONAL(l)
file must not contain keys on the DASD.
The value contained in the numeric field
(key) is the relative number of the record
in the file.

£f~~!:.!llil2 REG!~~l!l_Fil~. The extents
to be used by a PL/I REGIONAL(l) file must
be preformatted bv the DOS Cler:lr Disk uti
lity program. (For details refer to the
SRL publication IB~_£Y§~~~{1~QL-Dis~~~9
!~E~_Qpera!:.ing_Sys!~~§L_g!:.!!!ty_Proqra~
§E~£!K!£at!on§, Order No. GC24-3465_) This
utility program creates dummy records that
qontain a string -filled with user-defined
characters. The file can then be actually
created by specifying the OUTPUT attribute.
Figure 15 shows a sample card deck used for
preformatting a REGIONAL(l) file.

The DLEL and EXTENT statements are
described in the section f!!e Labe!§. Note

Figure 15. Sample Card Decks for Preformatting REGIONAL Files

28

that the dummy file should have an expira
tion date that has already been passed
because, otherwise, the unexpired-file con
dition would prevent the PL/I output file
from being opened. Note further that the
dummy file is sequential and that its' name
is UOUT, independent of the actual name of
the file to be used in the PL/I program.
The UeL statement and the END statement are
utility control statements and have a fixed
format, i.e., no additional blanks must be
inserted. K=O means that no key is asso
ciated with the records. D=100 means that
the block length is 100. This value may be
modified to the user's requirements and
must be identical with the actual block
length of the PL/I file. The dollar sign
is the character to which the file is
cleared. It may be replaced by any other
character.

!h~_~~!_~n~_~~![gQ~_QE~!2nS f2E-g~GIQ~~~!1
Files. The expression in the KEY or KEY
FROM-option in READ, WRITE, or REWRITE sta
tements must result in a character string
of the form PICTURE '(8)9'. The value n
represented by this expression is used to
access the n-th record of the file relative
to the beginning of the file. n must be
less than 221+.

For a programming example refer to
~EE~!:!'~!!_~.!-_~~9!:ammi!!L~Xa!!!I2le§., "Creat
ing l\nd Retrieving a REGIONAL(l) File".

contrary to REGlONAL(l) files, records in
REGIONAL(3) files are addressed by the
number of the track on which they are
located, the track being relative to the
first track occupied by the file •. The
first track of a REGIONAL(3) file is coun
ted as track O. Each individual record
contained in one track is associated with a
key on the DASD in order to distinguish it
from other records in that track. The
length of this key is declared in the KEY
LENGTH option of the ENVIRONMENT attribute.
The key is a concatenation of two strings.
The first (left) key string is a character
string of a maxi-mum length of 247 charac
ters and contains the information required
to distinguish the records from the remain
ing records .on the same track. The second
(right) key string is a numeric field de
clared as PICTURE '(8)9' which contains the
relative track number. The full key is
written onto, or read from., the DASD file.

Like REGIONAL(l) files, REGIONAL(3)
files require preformatting by the DOS
Clear Disk Utility program. In addition to
its clearing fUnction, the utility program
resets the record RO (capacity record) to
reflect that all tracks are empty. The
file can then be actually created by speci
fying the OUTPUT attribute.

If an attempt is made to write more
records onto a track than its capacity per
mits, the ON KEY condition is raised.

!h~_~~!_~~9_~~!fgQ~_Qe~iQn§._fQI_REG!ONa~1l1
~ile§.. The expression in the KEY or KEY
FROM option in READ, WRITE, or REWRITE sta
tements must result in a character string
whose length is the same as the length spe
cified in the KEYLENGTH option of the
ENVIRO~MENT attribute. The last 8 charac
ters must be in the form PICTURE '(8)9'.
The numeric value n represented by the last
8 characters is used to access the n-th
track of the file with a key identical to
the character-string expression. n must be
less than 221+.

INDEXED FILES

This file organization is supported by the
DOS PL/I compiler and by the PL/I DASD
macro instructions. Both methods may be
used to create, access, and update files
with the indexed-sequential file organiza
tion. For details on the PL/I DASD macro
instructions refer to the publication IBM
sys£em~1§Q_~i~~_2I2~~~£igg_§Y§.£~~L-R~/I_~~§Q
~~£~2~, Order No. GC24-5059.

An indexed-sequential file is one whose
records are organized on the basis of a
collating sequence determined by control
fields (referred to as keys) that precede
each block of data. The key for each block
of data is from 1 to 255 bytes in length
and contains the identifier of the last
logical record in that block. Indexed
sequential files are contained in some
space allocated on direct access volumes as
prime areas and index areas.

The indexed-sequential file organization
gives the programmer great flexibility in
the operations he can perform on a file.
Using this scheme of file organization. he
has the ability to

• read or write (in a manner similar to
that for sequential files) logical reco
rds whose keys are in ascending collat
ing sequence.

• read or write random logical records.
If a large portion of the file is being
processed, reading records in this mann
er is somewhat slower than reading
according to a collating sequence since
a search for pointers in indexes is
required for the retrieval of each
record.

Data Files 29

• add logical records with new keys. The
system locates the proper position in
the file for the new record and modifies
the indexes accordingly_

!~Qg~~~. The ability to read and write
records from anywhere in an indexed
sequential file is provided by indexes that
are part of the file. There are always two
types of indexes: a £~!1~de!_in£~! for the
entire file: and a t!:££~_!nd~! for each
cylinder. An entry in a cylinder or track
index contains the identification of a spe
cific cylinder or track and the highest key
associated with that cylinder or track.
The system locates a given record by its
key after a search of a cylinder index and
a track index within that cylinder.

A third type of index, the master index,
is optionally available for very-Iarge---
files. A master index is generated only if
the INDEXMULTIPLE option is specified in
the declaration of the respective output
file. The master index contains an entry
for each track of the cylinder index. ~~ a
master index is present, the search in the
cylinder index is limited to a search on
one track. For usual applications, a mast
er index is not recommended if the cylinder
index consists of less than four tracks.

The track index always resides on the
same extent as the prime data area. The
cylinder and master index may reside on the
same volume as the prime data area; howev
er, they may also reside on a different
volume of a different DASD type. The
cyl~nder index must be immediately adjacent
to the master index, if any, on the same
volume. Master and cylinder index must be
completely contained in one volume.

Insertion of Records. A new record added
to-an-Indexed=sequential file is placed
into a location on a track which is deter
mined by the value of its key field. If
records were inserted in precise physical
sequence, insertion would necesshtate
shifting all records of the file that have
keys higher than that of the one inserted.
However, an overflow area is available for
each cylinder. Thus, a record can be
inserted into its proper position with only
those records on the track being shifted in
which the insertion is made.

QY~f~!Q~_~E~~. In addition to the prime
area, whose tracks initially receive the
records of an indexed-sequential file~
there is an overflow area for records for
ced off their original tracks by insertion
of new records. When a record is to be

30

inserted, the records already on the track
that are to follow the new record are writ
ten back onto the track after the new reco
rd. The last record on the track is writ
ten onto an overflow track. Figure 16
illustrates this adjustrrent for addition of
records to an indexed-sequential file whose
keys are in a numerical ascending sequence.

Prime irack 1

Prime Track 2

Overflow Track 1

Prime Track 1

Prime Track 2

Overflow Track 1

Prime Track 1

Prirr:-e T iO<;k 2

Overflow Track 1

Figure 16.

i!"!!tk!i FO!"l'l1Qt of Flie

I 2 I 3 I 4 I 5 I 8 1 10 111 I

Format of File after Insertion of Record 7

I 12113 1161 , , , ,

Fonnat of File after Insertion of Records 17-22
and Record 9

Addition of Records to a 1-
Cylinder, 3-Track Indexed
Sequential File

When this file is created~ its records
are placed on the prime tracks in the
storage area allocated to the file. If a
record, e.g., record 7, is to be inserted
into the file, -the indexes indicate that
record 7 belongs on primary track 1. Reco
rd 7 is then written immediately following
record 5, and records 8 and 10 are retained
on this track. Since record 11 no longer
fits, it is written onto an overflow track
and the proper track index is adjusted to
show that the highest key on prime track 1
is 10 and that an overflow record exists.
When records 17 to 22 are added to the end
of the file, prime track 2 receives records
17 to 21 but record 22 does not fit and is
written following record lion the overflow
track. When record 9 is inserted~ record
10 is shifted to tpe overflow track after

record 22. Note that records 10 and lion
the overflow track are chained together to
show their logical sequence and to indicate
that they belong to the same prime track.

!~9~E~~9~~~Qyer!!Q~_~f~~. An independent
overflow area can be specified by an EXTENT
statement (before the program is executed)
to specify the area extent. If one or more
of the (cylinder) overflow area{s) become
full, additional overflow records are writ
ten on the independent overflow area. This
area may be on the same volume as the data
records or on another volume, but must be
contained on one single volume. The number
of overflow tracks reserved on each cylind
er of the prime data area is determined by
the OFLTR~CKS option of the ENVIRONMENT
attribute.

When using the PL/I DASD macro instruc
tions, two tracks per cylinder are reserved
as overflow area. The number of extents
per file with PL/I DASD macro instructions
is restricted to ten. Note that the
cylinder index constitutes a separate
extent.

The location of index areas, overflow
areas, and the prime data areas on DASD
devices are specified by means of DLBL and
EXTENT statements. (Refer to the section
!.:!1~_!:!~~~1~·)

~~£Qf9~[Qf~~£_ang_~~Y§. With indexed
files, all records .must be of fixed length
(blocked or unblocked). Since only one key
is permitted per block on DASD devices, the
access method for blocked records requires
that the key be embedded in the data field
of the record. The location of the key
within the record is specified by the KEY
LOC option of the ENVIRONMENT attribute.
The key must be embedded in the data field
if records are blocked; it may be embedded
if the records are unblocked. If KEYLOC is

specified to indicate embedding, the key is
inserted automatically into the field dur
ing creation of the file or during addition
of records to the file.

When the PL/I DASD macros are used, a
record key is located within each record,
and one extra key is associated with each
block. This key is identical with the
highest (or only) record key in the block.

When processing INDEXED tiles, the KEY
condition is raised in a number of cases.
If the programmer wants to identify a spe
cific situation at execution time. take
action, and continue processing, it is sug
gested to include the following coding in
the program:

DCL ERRBYTE BIT(8) EXTERNAL;
CALL ERROU'I (ERROUT is an Assembler

routine which returns in
ERRBYTE the contents of the
error byte)

IF ERRBYTE '00000100'B THEN •••
!duplicate record, for
example)

The contents of the error byte for
indexed-sequential output files and the
corresponding ON-conditions raised are as
shown in Figure 17.

The contents of the error byte for all
other indexed files and the corresponding
ON-conditions raised are as shown in Figure
18.

The Assembler routine ERROUT is shown in
Figure 19. (~he address of the error byte
is in the 10th word of the DTF-appendage.)

Data Files 31

Bits Couse

0 I DASD error
I

1 Wrong length record

2 Prime data area full

•

Explanation

IAny uncorrect~ble DASD error has occurred (except wrong length record).

A wrong length record has been detected during an I/o operation.

The next to the last track cl the prime data area has been filled during the load
- . - .

lor extension eX the tkJtQ fde. TM p!'ob!~m p!'Qg!"!lm!!!e!" !ha'..!!d !!!!..'e the ENDFl
macro, then do a load extend on the file with new extents given.

I 3 I Cy!!~!" !~)!; a!"~ fu!! IThe Cy!!nd~r !n~x area ;. not !arge enough to contuifi all the \!IflN'ies needed to
index each cylinder specified for the prime data area. This condition can occur
during the execution cl the SETFL. The user must extend the upper limit of the
cylinder index by using a new extent card.

4 Master Index full

I
5 Dupiicate record

6 Sequence check

7 Prime data area overflow

I

The Master Index area is not large enough to contain all entries needed to index
each trac~ of the Cylinder Index. This condition can occur during SETFL. The
user must extend the upper limit, if he is creating the file, by u.sing on extent
card. Or, he must reorganize the data file and assign a larger area.

The record being loaded is a duplicate of the previous record.

The record being loaded is not in the sequential order required for loading.

There is not enough space in the prime data area to write an EOF record. This
!condition can occur during the execution of the ENDFL macro.

Figure 17. Contents of Error Byte For Indexed-Sequent~al Output Files

Bit Cause Exp lanat i on

0 DASD error Any uncorrectable DASD error has occurred (except wrong length record).

1 Wrong length record A wrong iength record has been detected during an I/O operation.

2 End of file The EOF condition has been encountered during execution of the sequential
retrieval function.

3 No record found The record to be retrieved has not been found in the data file. This applies to
Random (RANSEQ) and to SETL in SEQNTL (RANSEQ) when KEY is specified,
or ofter GKEY.

4 Illegal 10 specified The 10 specified to the SETL in SEQNTL (RANSEQ) is outside the prime data
file limits.

5 Duplicate record The record to be added to the file has a duplicate record key of another record
in the file.

6 Overflow area full An overflow area in a cylinder if fuli, and no independent overflow area has
been 5pf!c:ifi~di or {!n ;ndepe~dent cve:f!cw wi~u ;~ fuU, und ihe odditiOQ cannor
be mode. The user should assign on independent overflow area or extend the
limit.

7 Overflow The record,being processed in one of the retrieval functions (RANDOM/SEQNTL)
is on overflow record.

* For indexed-sequential with READ KEY

** OA is raised if the key is too high, otherwise 00 is raised.

Figure 1.8 .. Contents of Error Byte For All Other Indexed Files

ON condition Followed by
raised Pl/I Message

OC i -I

OE -

I nn I Q? • I
•

it

72

I
00 83

00 84

- -

ON-conditon Followed by
raised Pl/I Message

OC -
- 70*

OE -
OA -

OA**or 80
dO

- -

00 83

00 81

- -

ERROR START 0
EXTRN ERRBYTE
OSING *,9
STM 14,12,12(13)
LR 9,15
LA 10,SAVEA
ST 13, (H10)
LR 13,10
MVC INDIC+2(1),INDIC+3
L 1,FILE
L 1,36(1}
L 4,AERRBYTE
OSING ERRBYTE,4
MVC ERRBYTE(l),O(l)
L 13,4(13)
LM 14,12,12(13)
BR 14
DS OF

SAVEA DC X'03'
DC AL3(INDIC)
DC F'O'

INDIC DC 3X'0'
DC X'FS'

FILE DC V(filename)
AERRBYTE DC A (ERRBYTE)

END

Figure 19. Assembler Routine ERROUT

No RECORD condition will be raised for
retrieving or updating files. The IOCS
module gets th~ record length during OPEN
time from the format-2 file label as 'it was
written at creation time. No checking is
made between this entry and the entry in
the DTFtable.

For blocked records" the RECORD condi
tion will be raised when the first record
of a block with o~e or more wrong=length
records is read. With each execution of a
READ statement the RECORD condition is
raised until the last record of the block
has been read.

The IOCS modules used by the PL/I (D)
compiler are not reentrant. The PL/I
library routine IJKTXCF deblocks such a
wrong-length record. No other file using
the same IOCS module may raise the RECORD
condition before the wrong-length record
has been deblocked to the end.

!h~_~§!L-~Ey[gOML_~n~~~!~~QE!~Q~~fQ~
!~~~§Q_[!!~~.' The expression or variable
in the KEY, KEYFROM, or KEYTO option of
READ, WRITE, or REWRITE statements must
result in or be a character string of the
same length as the length specified in the
KEYLENGTH option of the ENVIRONMENT
attribute.

~Q!~: In indexed-sequential files, retri
eval~ updating, and adding of records can
be performed either sequentially or at ran
dom. However, indexed-sequential files can
be created only sequentially.

~Q!~-2~£2~Eatib!lity. In OS PL/I, certain
information contained in the key field cr
data field of INDEXED files is used to flag
a record of that file as deleted. There
fore, if the user plans to create files
with DOS PL/I and read and/or update them
with OS PL/I, he should avoid keys or data
that would cause OS PL/I to consider the
record as deleted. For detailed informa
tion refer to the pertinent section of the
OS PL/I Programmer's Guide, Form C2S-659-4.

Disk Organization

As an example of aDASD organization, this
section describes the 1316 disk pack used
with the 2311 Disk Storage Drive. The 2316
disk pack used with the 2314 or 2319 Direct
Access Storage Facility is organized very
similarly. However. the 2316 disk pack
consists of 11 disks with 20 surfaces on
which data is recorded with double density.
For fUrther details (also on the 2321 Data
Cell Drive) refer to the publications !~~
§y~!em~l&Q_£Q~EQ~~g!_Q~~f~!E!!Qn~, Order
No. GA26-3599 (for the 2314) and IBM
§Y~!~ill/360~2ill£Q~~!_Q~~f~!E!!Qll~;-Order
No. GA26-59S8 (for the 2311 and 2321).

The 2311 DASD uses 1316 disk packs as
recording medium. One disk pack consists
of 6 disks. The top surface of the upper
disk and the bottom surface of the lowest
disk are not used, which leaves 10 surfaces
for recording. Each disk surface contains
203 concentric tracks. Track 1, 2, 3,
etc., on each surface is physically located
below or above track 1, 2, 3, etc., of the
other surfaces. Therefore, the correspond
ing tracks are referred to as 203 concentr
ic fY1inQ~f§. 200 cylinders are used for
actual recording; the remaining 3 are
reserved.

The 2311 is provided with one access arm
equipped with 10 read/write heads. The
heads a~e mounted vertically so that data
contained in one cylinder can be accessed
without any mechanical movement. This"
h6wever,' renders it necessary to internally
switch from surface to surface within a
cylinder in case one track (of a consecu
tive file) is completely filled. When a
cylinder is filled, reading or writing is
resumed on the first track of the next
cylinder. This technique minimizes the
access-arm movement time.

Thus,. a disk pack is thought of as con
sisting of 200 cylinders, e,ach cylinder
consisting of 10 tracks. A consecutive
part of cylinders (or tracks) set aside for
usage by a specific file is referred to as
an extent. An extent is defined by an
EXTENT-statement (refer to the section File
Labels). In case two or more files are to
be-accessed alternatingly, each individual

Data Files 33

Record 0 (T rac k
Descriptor) RO

Record 1
Rl

Record 2
R2

,,-__ --JA __ ___..,,,---------JA'-----------,,,,------.----...J"''-----------.

~I

li,1 . ".·.-.•. ·· •.. · •• ·.: .•.•... 1
I II I

Data

I I Hcone Add",.. ~ ~
Ie 01 the phys;'al paramel ... 01 ~ L Defines the location r:J the track in .

the files. Address Marker

Index Marker Indicates the beginning of a new record. The
ree ord RO does not have an address marker.

Indicates the physical beginning of each track.

Figure 20. contents of a Track

file may be assigned a part of consecutive
tracks per cylinder instead of full cylin
ders. For instance, tracks 0 to 4 of
cylinders 10 to 99 may be assigned to
FILEA, while tracks 5 to 9 of the same set
of cylinders may be assigned to FILEB. The
latter technique is referred to as 2E!it=
£Y!!ng~! technique.

The information contained on a track is
recorded in physical records (see Figure
20). Each physical record consists of 2 or
3 fields.

The first field is a count field (e)
identifying the record~ The programmer is
not concerned with this field. The second
field is the key field (K). It has the
length given in the KEYLENGTH option of the
ENVIRONMENT attribute or in the KEYLEN
operand of a PL/I DASD macro instruction
and contains the key given in the KEY or
KEYFROM option. CONSECUTIVE and REGIONAL(
1) files hav~ no key field. The last field
is the data field (D) and contains the
block to be read or written. The first
record (Track Descriptor) of each track
(RO) is not part of the information trans
ferred by a PL/I program but contains some
statistical information. The home address
(HA) is of no interest to the PL/I
programmer.

Record Types

These are five record types that can be
handled by PL/I programs:

34

fixed unblocked
fixed blocked
variable unblocked

variable blocked
undefined

Fixed Unblocked Record~

All records are of the same length.
block contains exactly one record.
ENVIRONMENT option used is F(m).

Each
The

All records are of the same length. Each
block contains a fixed number of records.
(Only the last block of a file may contain
less recordss) The ENVIRONMENT option used
is F(m,n).

The records are of variable length. each
block containing a variable number of reco
rds. However, a maximurr block length is
specified. To enable the input/output con
trol routines to determine the lengths of
blocks and records, the blocks contain
extra fields that are not part of the actu
al record. The first 4 bytes of each block
contain a block control field. Each record
in the block is also preceded by a 4-byte
record control field. The ENVIRONMENT
option used is Vern), where m is the maximum
block size. m must include the number of
bytes required by both the records and the
control fields.

The 0 Compiler automatically supports
variable-length blocked records if V(m) is
specified. i.e., it always accommodates as
many records in a block as will fit.

If at the end of a track there is not
enough space for the whole block, the I/O
routines write part of the block (but com
plete user-defined records) at the end of
the track and shifts the remaining records
onto the next track. Boundary problems may
occur, however, if the rules for using the
LOCATE statement with the SET option are
not followed.

This is a real subset of variable blocked.
With variable unblocked records, the value
of m in V(m) is 8 higher than the largest
possible record in the file. Variable
blocked and variable unblocked records may
be intermixed.

The records are of variable length. Each
block contains one record. No control
fields are used. The ENVIRONMENT option
used is U(m).

For the restrictions regarding the block
length refer to Appendix J under ~12£~~~~~
QE~!2!!2·

A block has the meaning that the physic
al storage medium is advanced one block
after the corresponding operation has been
performed. In the case of punched cards,
for instance, this implies that one card is
read or punched. This, in turn, implies
that the remainder of the card is ignored,
and the next block starts with transmission
of column 1 of the next card in case a
block length of less than 80 bytes i"s spe
cified for a card file.

Input/Output Processing

Since records in files declared with the
CONSECUTIVE option are identified merely by
the sequence in which they are created, the
only possibility to read, write, or update
records in such files is to sequentially
process the file from its starting point.
T,his procedure is referred to as the
§~g~~n~!~!_~ff~~~ method, and files so
accessed have the attribute SEQUENTIAL.

In other files, the records are identi
fied by keys. In this case, each individu
al record can be accessed by use of the key
regardless of the physical location of the
record. This procedure is referred to as
the direct access method, and a file so
accessed-has-the-attribute DIRECT.

~2~~: Indexed-sequential files may be read
or updated either sequentially or direct.

Note: If two or more files are simul
taneously open on the same physical non
DASD device or DASD extent, the order of
access to the files is unpredictable. Read
and punch feed of a 2540 Card Read-Punch
count as two different devices. For
example, a read and a punch file cannot be
open at the same tirre using the same 1442
or 2520 Card Read-Punch. As another
example, if there is a record f~le assigned
to a printer and the standard system -
STREAM - file uses the same printer, both
files have their own buffers and print
independently of each other, i.e., the
printed lines will not necessarily appear
in the same sequence as the WRITE and PUT
statements are executed.

A buffer is a part of storage used to
accommodate data to be read or written.
Buffers are used to allow transmission of
data asynchronously to the program flow~

Files with the UNBUFFERED attribute
allow no overlapping of input/output opera
tions. In files declared with the BUFFERED
attribute, execution of I/O operations is
overlapped if the option BUFFERS(2) is spe
cified in the ENVIRONMENT attribute. For
files declared with the BUFFERED attribute,
the buffers can be made available for use
as work areas by using the READ statement
with the SET option or the LOCATE state
ment, i.e., the based record variables are
located directly in the buffers.

Tape files with the UNBUFFERED attribute
must also have the NOLAEEL attribute.
Therefore, no multi-volume files or
alternate-tape specifications are
permitted.

If OUTPUT is specified in addition to
UNBUFFERED and NOLABEL, tape labels are not
checked and ~2! overwritten.

Disk input and update files with the
UNBUFFERED attribute are opened with the
2EEEEE OPEN routine. Therefore, the
expiration date for such files must be
lower than the current date.

Although buffering attributes are not
permitted for DIRECT files, one buffer is
assigned to REGIONAL and INDEXED DIRECT
files. The minimum length of the buffer is
the record length. The maximum length of
the buffer is the record length + key length
+ 8 for REGIONAL files and INDEXED DIRECT
INPUT files. For INDEXED DIREC~ UPDATE
files, the maximum length of the buffer is
the block length + keylength + 8 + 10 (for
the sequence link field).

Data Files 35

File Labels

A tape reel or disk pack may contain infor
mation that is required for a certain
period of time. Therefore: each file (tape
reel or disk extent) must be checked for
its expiration date. In addition, a check
must ·be 'performed to determine if the prop
er volume has been mounted for processing.
These checks are performeq by reading and
comparing special records that are con
tained in the respective volume. These
special records, which are referred to as
labels, are processed whenever an OPEN or
CLOSE statement is executed for a particu
lar file.

The label information is furnished by
means of special Job .Control statements,
which are described later in this section.
There are two types of l~bels: volume
labels and file labels.

VolUme labels are used to identify the
volume-(tape-reel or disk pack). During
execution of the OPEN routine, the volume
serial number is compared against the
information supplied to the Supervisor.
VolUme labels can be created by means of
IBM-supplied utility programs.

File labels describe the file to be pro
cessed-by-the-program and indicate whether
or not the file must be retained for a cer
tain period of timew When an OPEN state
ment is encountered, the information con
tained in the file labels of input and upd
ate files is compared against the informa
tion supplied to the Supervisor. If a mis
match is found, a message to the operator
is printed. When an OPEN statement is
encountered for an output file, the expira
tion date in the file label is checked
against the date stored in the communica
tion region of the Supervisor. If the
expiration date has been neither reached
nor passed, a message to the operator is
printed and the execution of the program is
interrupted. In case the expiration date
has been reached or passed, a new file
label is createu from the information supp
lied through the control cards. The old
file label is overwritten by the new file
label.

Labeled tape files have two types o£
labels: header labels and trailer labels.
The header-rabel-precedes each~rle-and-
defines it. The trailer label is written
at the end of the file. It furnishes the
information required to determine whether
the end of the file has been reached or
whether the file is continued on another
volume. Tape files may also be unlabeled.

36

This condition is specified by the option
NOLABEL in the ENVIRONMENT attribute.

Disk files must be labeled. Disk file
labels do not precede or follow the indivi
dual file. They are contained in a special
region referred to as the VTOC (Volume
Table Of Contents). Disk labels are
updated either during execution of the
CLOSE routine or when an end-of-extent is
reached. switching from volume to volume
for multi-volume files is effected automat
ically without any programming e·ffort.

Note: Punched-card and print files must
not-be labeled.

For detailed information and restric
tions on label processing see the SRL pub
lications describing the DO~/TOS data mana
gement concepts, the DOS/TOS Supervisor and
I/O macro instructions, and the DOS system
control and service programs.

Processing of File Labels by PL/I

PL/I does not provide for label processing
of UNBUFFERED files. However, file labels
are checked for expiration (also if INPUT
is specified) and cleared. The volume
label is maintained.

NO provision has been made for label
processing of the standard PL/I files SYSIN
and SYSPRINT.

As far as label processing is concerned,
UPDATE and INPUT files are handled in the
same manner.

Job-Control Statements

A set of Job Control statements is required
for each labeled file. This set of state
ments must be in a specific sequence and
immediately precede the // EXEC statement
for the job step in which the file is
processed.

Each set of label information submitted
within a job or job step is written in the
appropriate temporary label information
area. This information is not carried from
job to job. Unless overwritten by a suc
ceeding job step, any label information
submitted at the beginning of a job can be
used by a subsequent job step. For
example, if a job consists of three job

steps, label information submitted at the
beginning of the first job step can be used
by the second and third job steps of the
job. However, label information submitted
at the beginning of the second job step
would destroy the label information written
at the beginning of the first job step.

Note: OLBL and EXTENT Job Control state-
---~ ments for SYSIPT, SYSLST, or SY'SPCH must
precede the corresponding ~ermanent ASSGN
commands.

The sequence of Job Control statements
for disk labels is as follows:

// OLBL
// EXTENT (one or more)

The Job Control statement for tape
labels is as follows:

// TLBL

The syntax rules are the same as those
for the other Job Control statements.
Trailing commas not followed by an operand
may be suppressed.

~2t§: The former disk and tape label Job
Control statements OLAB, VOL, XTENT, and
TPL~B may still be used. However~ the old
and new disk label statements must not be
intermixed, i.e., XTENT is associated with
OLAB and VOL, and EXTENT is associated with
DLBL.

The DLBL statement furnishes the disk file
label information. The format of this sta
tement is as follows:

// OLBL filename, ('file-IO'], [dateJ,[codes]

The meaning and format of the operands is
described below:

filename is identical to the name of the
PL/I-fIle.
'file-ID' is the name of the file that is
recorded-on the disk drive as an identifi
cation of the file. It may comprise from 1
to 44 bytes of alphameric data. If less
than 44 characters are used~ the field is
left-justified and padded on the right with
blanks. If this field is omitted, the file
name is used as file-IDe

date is a field of one to six numeric
characters. Two formats are possible. The
first format is y¥/ddd, ~hich indicates the
expiration date of the file for output or
the creation date for input. (The day of
the year may have from one to three charac
ters.) Optionally, a 1- to 4-digit reten-

tion period may be specified for output
files. If this operand is omitted, a 7-day
retention period is assumed for output
files. For input files, no checking is
performed if this operand is omitted or if
a retention period is specified.

codes is a 2- or 3-character field indicat
ing~he type of file label as follows:

SO for Sequential Disk,

DA for REGICNAL files,

ISC for Indexed Sequential using Load Cre
ate,. or

ISE for Indexed sequential using Load
Extension, Add, or Retrieve.

SD is assumed if this parameter is
omitted.

For output files, the current date is
used as the creation date.

The EXTENT statement defines an extent of a
DASD file. One or more EXTENT statements
must follow each DLBL statement. The
EXTENT statement has the format

// EXTENT [SYSxxx].[ssssss]~[t]~[nnn]#
[rrrrr], [mmmmm], [dd]

The meaning and forma.t of the operands is
described below.

~x§~~! (syml?olic unit) is a 6-character
field that indicates the symbolic unit of
the volume to which this extent applies.
If this operand is omitted, the symbolic
unit of the preceding EXTENT statement is
used.

For multi-volume REGIONAL files the sym
bolic unit numbers in the corresponding
EXTENT statements must be in direct ascend
ing sequence (e.g., SYS006, SYS007,
SYSOOS).

ssssss (serial number) is a field of one to
six-characters that indicates the volume
serial number of the volume to which this
extent applies. If less than six charac
ters are used, the field is right-justified
and padded to the left with zeros. If this
operand is omitted, the volume serial numb
er of the preceding EXTENT statement is
used. If no volume serial number was pro
vided in that statement, the serial number
will not be checked. (Files may be des
troyed in this case due to mounting of the
wrong volume.)

File Labels 37

~ (type) is a 1-digit field indicating the
type of extent as follows:

1 - data area (no split cylinder)
2 - indepen~ent overflow area (for indexed

sequential file)
4 - index area (for indexed sequential

file)
8

Type 1 is assumed if this operand is
omitted.

nnn (sequence number) is a field of one to
three characters that contains a decimal
number from 0 to 255. The decimal number
indicates the sequence number of the extent
within a multi-extent file. For indexed
files, the sequence number 0 is always
associated wit.h the master index. Thus~ if
a master index is specified, the sequence
number for indexed files starts with O~
otherwise, i.e., if no master index is
used, the first extent of an indexed file
has the sequence number 1. The extent
sequence number for all other types of
files begins with O. If this operand is
omitted for the first extent of ISFMS
files, the extent is not accepted. This
operand is not required for SD and D~
files.

rrrrr (relative track number) is a field of
one-to five characters that indicates the
sequential number of the track (relative to
zero) where the data extent is to cegin.
For instance, track 0 of cylinder 150 on a
2311 has the relative track number 1500.
If this operand is omitted on an ISFMS
file, the extent is not accepted. The
operand is not required for SD or DA input
files (the extents from the file labels are
used in this case).

mmmmm (number of tracks> is a field of one
to five characters that indicates the numb
er of tracks to be alotted to the file.
The operand may be omitted for SD or DA
input files. For split cylinders, the
number of tracks must be an even multiple
of the number of tracks per cylinder speci
fied for the file.

QQ (split cylinder track) is a field of one
or two digits that indicates the upper
track number for the split cylinder in SD
files.

Note: For INDEXED and REGIONAL files the
LBLT¥P card must also be present.

The TLBL statement contains file label
information for tape label checking and
writing. Its format is as follows:

38

// TLBL filename, ('file-ID'l,[date],
[file-serial-number],
[volume-sequence-number].
[file-sequence-number]i
[generation-number] ,
[vers ion- number]

~ne meaning ana xormat of the operands
is described below.

filename is a field of ene to six charac
ters-Identical to the name of the PL/I
file.

'file-ID' is a field of one to 17 charac
ters~-contained within apostrophes, that
indicates the name associated with the file
on the volume. This operand may contain
embedded blanks. If this operand is
omitted for output files, filename is used
instead. If this operand Is-omitted for
input files, no labels are checked.

date is a field of one to six numeric
characters. Two formats are possible. The
first format is yy/ddd, which indicates the
expiration date of the file or output or
the creation date for infut. (The day of
the year may have from one to three charac
ters~) Optionally, a 1- to 4-digit reten
tion period may be specified for output
files. If this operand is omitted, a O-day
retention period is assumed for outfut
files. For input files, no checking is
performed if this operand is omitted or if
a retention period is specified.

file-serial-number is a field of one to six
characters-that-Indicates the volume serial
number of the first (or only) reel of the
file. If less than six characters are spe
cified, the field is right-justified and
padded with zeros. If this operand is
omitted for output files. the volume serial
number of the first (or only) reel of the
file is used. If this operand is omitted
on input, no checking is performed.

~Q!~~~=§~9~~~2~=~~~~~~ is a field of one to
four digits. The sequence numbers of the
volumes of a multi-volume file must be in
ascending order. If this operand is
omitted for output files, BCD 0001 is
assumed. No checking is performed if this
operand is omitted for infut files.

f!1~=§g9~~~2~=g~~~g~ is a field of -one to
four digits. The sequence numbers of the
files of a multi-file volume must be in
ascending order. If this operand is
omitted for output files, BCD 0001 is

assumed~ No checking is performed if this
operand is omitted for input files.

g~n~~~~!Q~-numbe! is f field of one to four
characters that modifies the file-IDe If
this operand is omitted for output files,
BCD 0001 is assumed. No checking is per
formed if this operand is omitted for input
files.

version-number is a field of one or two
charactersthat modifies the generation
number. If this operand is omitted for
output files, BCD 01 is assumed. No check
ing is performed if this operand is omitted
for input files.

Notes:
l:--Foroutput files, the current date is

used as the creation date.
2. ~s far as label processing is con

cernedw UPDATE files are handled the
same as INPUT files.

The first two statements in Figure 21 show
an example of DLBL and EXTENT statements
used for a sequential 2311 disk input file.
The statements identify the file declared
as MASTIN in a PL/I program. Its external
identification (stored in the VTOC) is
MASTER-INVENTORY- FILE. No further entries
in the DIJBL statement are required for an
input file.

The logical unit used for the file is
SYS005 and the volume identification of the
1316 disk pack to be mounted on SYS005 is
VOL172. No further EXTENT statement
operands are required.

1 2 3 4- 5 6 7 8 9 1011 1213 1.15 1617 1819 20 21 2223 2425 2b27 2829 l) 31 3233 305 3637 3839 «l.1

The following three statements in Figure
21 show an example the creation of an inde
xed sequential file by usage of the PL/I
DASD macro LODIS. In addition to the pre
vious example, the expiration date of the
file (March 1, 1969) and the code ISC is
specified in the DLBL statement~ There are
two EXTENT statements. The first one spe
cifies the extent of the cylinder index~
which is extent 1. It starts at track
number 1000 (i.e." cylinder 100, track 0)
on logical unit SYS004 and consists of 10
tracks. The data area, which is the second
extent, resides on a different logical
unit: SYS005. The extent number need not
be specified in this case w but the delimit
ing comma must be written.

The last statement in Figure 21 gives an
example of a 'ILBL statement. The file is
assumed to be an input file. It is no
multi-file volume and a version number is
not used. Since it is an input file, no
date entry has been specified.

Multi-File Volumes And Backwards Files

The handling of multi-file volumes on the
2311 requires no special preparation since
all file labels are available when the file
is opened. When using tape files, the tape
must be positioned so that the label can be
checked during execution of the OPEN rou
tine. Positioning is not required for the
first. file on the tape because it is auto
matically positioned unless the LE~VE
option has been specified. For correctly
positioning the tape for the second, third,
••• , nth file, the LEAVE option must be
specified in the ENVIRONMENT attribute.
This prevents the OPEN routine from rewind
ing the tape reel. A labeled tape file has
the format shown in Figure 22.

~~ .. .s ~Q 48 ~!50151 5253~ 5556 5758 59 60161 6263 ~65 6667 68 69 70 71 7273 7·175 7677 78791KJ

I I DL ISl I HA ST IN '1M A5 Tie R- tiN ve NT OR !~- FI LE' I.: I I J !

III EX TE NIT S;1 s,dI I~~ Ivlo l 1 1712 : I I I : I !

[I I ! ~ I I I I
i I

! I !
J I I [I i I

I I ntlBL e~ ST IN Ie us TO HE R- FI LE 37' 619 1/1.1&10 ISC I I L J I
1 i I

I II: IE xrr EN Ti 51~ si~ .~ PH 0:' f8 1.4 1 1. ct~ 1." I I I I I I ! ! I I I i
I

i i I I

'LI If;: XiT j::;lN 111 SI~ sij .151 PN o!. 27 li ZL~ 11; .11 .~dJ I I I i . i I I I I I I ~ \ I! !

i I I \ I I
I

I I I i 1 i I ! '
I

I
! I ! ' i : 1 i I I . I

~:I:I':'li : I . ! ! I
I I I [! : ! I I I I I ! 1 i I ! I i I I .

-Ti' I -i+ M-t! [Li~Jt I i~A~!R (!) L: I pIAI~ ROILlll- r: r LiE' I .:3 '9'7 Ii [./fig 1 [i I
! i I I ! [I I I I I i j I I ' I ! ! I

i 1 j ~ji
[1_'

I'! : . I .!! Ii! I I I I I i I I I I
i I ! I I

I I I
- i'--:-; I I I , I I I I : ! I: I I ii, I I I : I I 1 Ii I I I I I I I I I [I I : I ! i I I I I J : I I

Figure 21. Examples for Disk and Tape Label Statements

File Labels 39

~ i ..::,t. ..::,t. ..::,t. I
First D First File First Second 6 Second File

\
l i \ Volume Header ~ Trailer Header ~

label I\) Data Data etc: • (!

Label Q.
Records

Q.
D 0

~
I-

~

Load
point

Figure 22. Fermat of

To position a tape reel ·that contains
labeled files at the nth file, the tape
reel must first be rewound and then spaced
forward in such a manner that the first
information read is the header label of the
nth file~ The Job control statement used
to control tape drive operations has the
following form:

II MTC code,SYSxxx[,nn1

The operand £Qg~ is one of ~he following
function codes:

BSF backspace file
BSR backspace record
ERG erase gap
FSF forward space file
FSR forward space record
REW rewind
RUN rewind and unload
WTM write tape mark

Forward-space-file and backspace-file
cause the read head to be positioned at the
record following the next tape mark that is
encountered.

The operand SYSxxx is the logical device
address of the tape-drive on which the per
tinent tape reel is mounted.

The operand nn is a decimal number from
01 through 99 that specifies the number of
times the specified function is to be per
formed. If this field and the comma pre
ceding it are omitted, nn is assumed to be
01.

The following example shows the MTC sta
Lefliellb~ required to· position the tape reel
on SYS006 at the header label of the third
data file.

II MTC REW,SYS006
II MTC FSF.SYS006,03

In unlabeled tape volumes, the end of
each file is indicated by a tape mark. A
tape roark mayor may not precede the first
file. Unlabeled tape files written by PL/I
programs have a tape mark preceding the
first file unless NOTAPEMK is specified in
the ENVIRONMENT attribute.

40

I\) lU

(label g- label Q.
Records 0

If a magnetic tape file has the BACK
WARDS attribute, the read head must be
positioned behind the trailer label of this
file before the file is opened. In case a
file has been ~ritten and closed just
before it is re~opened to be read back
wards, it is positioned correctly if the
LEAVE option was specified for the written
file. Unlabeled BACKWARDS files must start
with a tape mark.

If an input file of a multi-file volume
declared with the LEAVE option has been
closed and the next file of this volume is
to be opened (or the same file is to be
opened in the reserve direction), the mag
netic tap~ is positioned correctly only if
the ENDFILE condition was raised prior to
the closing of the file. In the case of
STREAM input, additional (dummy) GET state
ments must be issued to synchronize the
input stream with the ENDFILE condition.
To prevent raising of the CONVERSION condi
tion, the variables read by these dummy GET
statements should be of the character type.

Link-Editing And Labeled Files
Before a program that uses andlor processes
labeled files can be processed by the Lin
kage Editor, the Linkage Editor must be
instructed to reserve a label area. This
area must precede the area occupied by the
program, except in the case of CONSECUTIVE
disk files where no such area is required.
To reserve the label area. a special Job
Control statement must precede the state
ment II EXEC LNKEDT. The type of staterrent
used depends on whether the program runs
under control of the Disk Operating System
or of the Tape Operating System.

The format of the Job Control statement for
processing disk files with the REGIONAL or
INDEXED option is as follows:

II LBLTYP NSD(nn)

~he operand nn is the largest number of
extents to be-used by any single file.

Note that this number must be enclosed in
parentheses.

Note that nn must specify the number of
EXTENT cards and not the EXTENTNUMBER in
the ENVIRONMENT attribute.

The format of this statement for the
processing of labeled tape files is as
follows:

// LBLTYP TAPE

Note: This statement is not required for
processing of labeled tape files if REGION
AL files are used at the same time.

The format of the Job Control statement for
the processing of labeled tape files is as
follows:

// LBLTYP TAPE(nn)

The operand ~~ is the number of labeled
tape files to be processed.

Figure 23 shows a source deck including
Job Control statements for processing one
REGIONAL file with two extents, and two
tape files.

I I JOB INVENTRY
IIOPTlONLlNK,LlST,ERRS,6OC

PHASE UPDATE, *
II EXEC PL/I

INVENTRY: PROCEDURE OPTIONS (MAIN);

1*
ENTRY

DECLARE MASTER FILE LPDATE RECORD ENVIRONMENT
(REGIONAL(3).; ••) •• -•• ,
BACKLP FILE OUTPUT ENVIRONMENT (MEDIUM
(SYSOO1,2400) •••.) •••• ,
EXEPT FILE OUTPUT ENVIRONMENT (MEDIUM
(SYSOO8,2400) ••••) •••• ,

END;

II LBLTYP NSD(02)
I I EXEC LNKEDT
II DLBL MASTER,' MASTER INVENTORY FILE' "DA
II EXTENT SYSOOS,1427
II EXTENT SYSOO6,1431
II TLBL BACKLP,' BACKLP INVENTORY' , 100,2711",10,8
II TLBL EXEPT,' EXCEPTION INVENTRY' ,30,2614",10,0
II EXEC

data
1*
1&

Figure 23. Sample Source Deck with Control
Statements

CATALOGING OF LABEL INFORMATION

For DOS, the DLBL, EXTENT, and TLBL state
ments for sequential files may be cataloged
as standard files so that the programmer is
relieved from issuing the control cards
with each execution of the program. For
details refer to the SRL publication
describing the DOS system control and sys
tem service programs.

Program-Label Communication

Figure 24 shows the communication between a
PL/I source program, the object program,
Job Control statements, and a 2311 disk
unit with a 1316 disk pack.

The LIOCS (Logical Input/Output Control
System) table produced by the PL/I compiler
somewhere contains the file name as a
character string. The communication
between this table and the actual file
extent(s) is established by storing the
extent information in the table during
execution of the OPEN statement.

The set of label statements (DLBL,
EXTENT) to be used for opening the file is
the one whose DLBL statement contains the
same file name as stored in the character
string of the LIOCS table. The logical
device address is taken from the EXTENT
card. The physical unit -- in this case a
2311 disk drive -- is then determined from
the standard assignment or from the tem
porary assignments, respectively. The
serial number field of the EXTENT statement
is compared against the volume label of the
1316 disk pack to determine whether the
right pack has been mounted.

The remaining action depends on the file
type. For INPUT or UPDATE files, the VTOC
on the disk pack is searched for a label
matching the file-ID issued in the DLBL
statement (MY DEAR FILE in Figure 24.)
When a matching label is found, the remain
ing file information is checked against the
label information in the VTCC, and the
extent information is passed to the LIOCS
table to allow proper addressing of the
blocks to be transferred.

In case of OUTPUT files, all existing
labels in the VTOC are checked against
overlap with the file to be created. The
file is opened only if there is no overlap
with any unexpired file. The new label is
then written into the VTOC.

In case of CONSECUTIVE multi~volume
files, one volume will be opened at a time,
i.e., the second volume is opened when the
last extent of the first volume has been
processed, etc. Opening of the second and

File Labels 41

following volumes is automatic. Thus, no
explicit OPEN statement need be given. For
all other files, all volumes will be opened
at once. Therefore, all volumes to be pro
cessed must be mounted at the same time in
this case.

The handling of tape label information
is simil~x.,

Assignment of System Files to Disk

In systems with at least 24K positions of
main storage, the system logical units SYS
IPT, SYSLST and/or SYSPCH may be assigned
to an extent of 2311, 2314, or 2319 disk
storage.

It should be noted that the assignment
of system files to disk requires operator
intervention. For a complete description
Calso of ASSGN and CLOSE commands} refer to
the SRL publication System/360 Disk operat
ing, System Control and System Service Pro
grams, Order No. GC24~5036.

The PL/I programmer should be aware of
the fact that the PL/I standard files SYSIN
and SYSPRINT are assigned to SYSIPT and
SYSLST respectively. since these files
cannot be closed by the programmer and only
one PL/I file can be opened for one System
logical unit on Disk at anyone time, the
use of GET or PUT statements without the
FILE option should be avoided if there are
user-declared files for SYSIPT and SYSLST.
In order to avoid implied usage of SYSLST
for comments as a result of error condi
tions, it is recommended to use the ONSYS
LOG option in the OPTIONS attribute of the
MAIN procedure.

The assignment of system logical units
to disk storage drives must be permanent.
The operator ASSGN command must be used
instead of the programmer statement
(// ASSGN). Temporary assignments (via the
// ASSGN statement) to other device types
are permitted.

~Q~~: The system generation parameter SYS
FIL is required to allow assignment of sys
tem logical units to a disk drive.

System input and output files are
assigned to disk by providing a set of DLBL
and EXTENT statements and then submitting a

42

permanent ASSGN Command~ The set of DLBL
and EXTENT statements preceding the ASSGN
command may contain only one EXTENT
statement.

The filename in the DLBL statement
(which will be associated with the SYSxxx
entry from the accompanying EXTENT state
ment) must be one of the following:

IJSYSIN for SYSRDR, SYSIPT, or the
combined SYSRDR/SYSIPT file SYSIN

IJSYSPH for SYSPCH

IJSYSLS for SYSLST

In the DLBL statement, the codes operand
must specify SD (or blank. which means SD)
to indicate sequential DASD file type~

In the EXTENT statement, ~~ may be 1
(data area, no split cylinder) or 8 (data
area, split cylinder). There is no unique
requirement for the remaining operands of
the EXTENT statement.

The ASSGN command must be one of the
following:

1. ASSGN SYSIN,X'cuu' (for a combined
SYSRDR/SYSIPT file).

2. ASSGN SYSRDR,X'cuu' (for SYSRDR only).

3. ASSGN SYSIP'I, X' cuu' (for SYSIPT only).

4. ASSGN SYSPCH,X'cuu' (for SYSPCH).

5. ASSGN SYSLST,X'cuu' (for SYSLST).

Note that all must be permanent
assignments.

System logical units assigned to disk
must be closed by the operator. The opera
tor CLOSE command must be used to specify a

I system input or output file which has been
previously assigned to a 2311, 2314, or
2319. The optional second parameter
(X'cuu') of the CLOSE command may be used
(instead of an ASSGN command) to assign the
system logical unit to a physical device.
The system will notify the opera~or that a
CLOSE is required when the limit of the
file has been exhausted. If a program
attempts to read or write beyond the limits
of the file, the program will be terminated
and the file must be closed.

II ASSGN SYS004,X'191'

FILE
'MY DEAR

FILE'

Volume label
VOL12A

Unit X'191'

2311 Disk lklit

I I EXTENT SYS004, V0L12A", 1000,210

VTOC containing I
label of ___J
'MY DEAR FILE'

-----1/0 commCl'lds in lIOCS table control actual dota transfer
---File information chain
- - -Information flow between VTOC and lIOCS table at open timed

Figure 24. Program - Label Communication

. ..-------1 Pl/I source program

Obi ect program
lIOCS table

DC CL8'FILEA

DECLARE FILEA FILE

UPDATE ENVIRONMENT

(MEDIUM (SYS004,2311)

File Labels 43

Linkage Conventions

The user of PL/I programs is not concerned
with internal linkage during activation and
de-activation of blocks. To increase the
capability and/or efficieny of his program
he may, however, wish to combine modules
written in the PL/I Subset language with
modules written in Assembler language. For
example, the programmer may wish to make
use of the checkpoint facility. Since
there is no checkpoint facility in PL/I,
the user may call a subroutine written in
Assembler language. Calling of subroutines
written in FORTRAN or COBOL is not
permitted.

Register Conventions

Some registers may have to be used during
the execution of the called program. The
user must save the contents of these regis
ters by providing a save area. The address
of the save area is contained in register
13. The general registers involved in
linking a called procedure to the main pro
gram are listed in Figure 25. Note that
floating-point registers are not saved by
the called subroutine.

r--------T--------------------------------,
I REGISTER I CONTENTS I
~--------+--------------------------------i

1 IAddress of an argument list. t
IThis list contains the addresses I
lof the arguments in the sequencel
Istated in the argument (or para-I
I meter) list in the CALL, PROCE- I
IDURE, or ENTRY statement. Each I
I argument requires one full-word I
Ion full-word boundary. In func-I
Ition references, the argument I
Ilist is immediately followed by I
Ithe address of the field where I
Ithe information computed by the I
lsubroutine is stored. I

~--------+--------------------------------~
I 13 IAddress of the save area. I

~--------+--------------------------------4
I 14 IAddress to which the called sub-I
I Iroutine returns when execution I
I Ihas been completed. I
~--------+--------------------------------~
I 15 IBranch address, i.e., the I
I laddress in the called subroutine I
I Ito which control is transferred I
I Ifor execution. I l ________ ~ ________________________________ j

Figure 25. General Registers Used for
Linking to a Subroutine writ
ten in Assembler Language

44

Note: If control is transferred from an
Assembler routine to another PL/I subrou
~lne, regls~ers 7 and 8 must contain the
same values as when control was trans
ferred to the Assembler routine4

Calling

Assume that register 13 has been set ear
lier in the program. To accomplish
correct linkage, three additional regis
ters (1, 14, and 15) must be set. Regist
er 1 need not be set if no arguments are
passed on and the call is not a function
reference. The three different sequences
that may be used to establish the required
linkage between the main program and the
called subroutine are shown in Figure 26.

~2t~: The DOS/TOS macro instruction CALL
may be used to facilitate programming in
cases 2 and 3 shown in Figure 26.

r---,
I L 15,=V(subroutine) I
I BALR 14 " 15 I
r---i
I CNOP 2,4 I
I L 15,=V(subroutine) I
I LA 14,*+6+4*n I
I BALR 1,15 I
I DC A(addressl) I
I DC A(address2) I
I I
I I
I DC A(addressn) I
r---i I L 15,=V(subroutine) I
ILl, =AClistaddr) I
I BALR 14,15 I
I I
I I
Ilistaddr DC A(address1) I
I I
I I l ___ J

Figure 26. Three Different eodings for
Linking the Main Program and
the Called Subroutine

Saving

Each calling program must provide a save
area to store the contents of the general
registers used by the called SUbroutine.
When communicatinq with PL/I, the minirrum
length of this area is 20 full-words (80
bytes). The area may be expanded for
storing intermediate results or data of

r----T------------T--------------------------------~t--------:t!'-----_,.----------------,
I WORD I DISPLACEMENT I CONTENTS I STORED BY I
~----+------------+---------------~--,.-------------+------------------------------~
I 1 I 0 IDC X'03' ICalling module I
I I IDC AL3(INDIC)1 I I
~----+------------+-------------------------------+------------------------------~
I 2 I 4 I Save area address of program I Calling module I
I I Ithat called the calling program I I
~----+------------+------------------------~------+---~--------------------------~
I 3 I 8 ISave area address of called ICalling module if initialized I
I I , I program I by IJKSZCN.2 I
~-~--+-----------..,.+----.---------------------------+------------------------------~
I 4 I 12 IRegister 14 ICalled module t
t----+------------+--------------~----------------+------------------------------~
I 5 I 16 IRegister 15 ICalled module I
~----+------------+-~-----------------------------+------------------------------~
I 6 t 20 IRegister 0 ICalled module I
~----+------------+-------------------------------+--------------,.----------------1
I 7 I 24 IRegister 1 ICalled module I
~----+------------+--------------..,.----------------+------------------------------~
I· I I·.·· I···· I
I . I I···· I···· I
~--~-+------------+-------------------------------+------------------------------~
I 18 1 68 IRegister 12 ICalled module I
r----+~-----~-----+----------~--------------------+------------------------------~
I 19 I 72 IInvocation count IPL/I library I
~--.--+---------.---+-------------------------------+-----------------,.-------------~
I 20 I 76 IDSA pointer to embracing IPL/I internal procedures 1
I I I Static block I I
~----~-__ ---------i-----,.-------------------------~~---___________________________ ~
I 1INDIC is a full-word containing the information on the status of I
I statement prefixes. I
I .2Modules.written in PL/I are initialized by IJKSZCN. I
l ________________ _,.------------------------------------_____________ -------------~J

Figure 27. Layout of the First 20 Words of the DSA of a Calling Program

the storage class AUTOMATIC. This storage
is called the DSA (Dynamic Storage Area).

Figure 27 shows the layout of the first
20 full-words of the DSA of a calling pro
gram. Assume that register 13 contains
the address of the first word of the DSA.

The first instruction of a subroutine
written in Assembler language must save
the general registers 14,15,0, •••• ,12.
The DOS/TOS macro instruction SAVE can be
used for this purpose. These registers
must be saved even if their contents are
not destroyed 'during execution of the sub
routine. Otherwise" ON-conditions that
may occur might not be handled correctly.
The next steps to be taken are:

1. Store the contents of register 13 in
word 2 of the subroutine save area.

2. Ensure that word 3 of the save area of
the calling PL/I program is not des
troyed by the Assembler subroutine.

3. Set register 13 to the address of the
subroutine save area.

4. Ensure the addressability in case
register 15 is destroyed during execu
tion of this module.

Returning

Before returning control from the subrou
tine to the calling program, the contents
of all registers must be restored. This
is done as follows:

L 13,4(13) RESTORES REG13
LM 14,12,12(13) RESTORES REG14-12
BR 14

The last two instructions may be replaced
by DOS/TOS macro RETURN (14.12)

The usage of LABEL parameters for
returning from subroutines written in
Assembler language necessitates a library
call instead of a RETURN macro instruc
tion. Therefore" the address of the LABEL
parameter must be loaded into register 1.
The routine IJKSZCP must be ca*led next.
The contents of register 13 are automatic
ally saved by this routine. Therefore,
they must not have been changed
previously.

Linkage Conventions 45

The following example snows how a
library call can be used to return from a
subroutine written in Assembler language
by means of LABEL parameters&

L 1,8(3)
* LOADS ADDRESS OF TABLE VARIABLE

CALL IJKSZCP

Note: The library subroutine IJKSZCN must
be-used to initialize the DSA if LABEL
parameters are used.

Correlation Between PL/I And
Assembler Modules
Modules written in the PL/I Subset lan
guage may call modules written in Assembl
er language and vice versa. However, if
the program is combined of both PL/I and
Assembler modules, one PL/I module with
the attribute MAIN is required for correct
initialization of the PL/I modules. Note
that this MAIN procedure must be the first
module to be executed.

A module written in Assembler language is
called according to the rules for calling
external procedures either by means of a
CALL statement or by means of a function
reference. The Assembler module must
satisfy all linkage rules given in this
section. If the Assembler module does not
call any other module, it must provide a
minimum save area of two full-words. The
4-byte field INDIC pointed to by bytes 1
to 3 of the first word must contain the
following information:

Byte 3 contains the standard prefi~
option switches, whereas byte 2 contains
the actual p-refix option switches. If
INDIC is not initialized by the library
subroutine IJKSZCN, the contents of byte 3
must be moved into byte 2 by the prologue
of the module. The contents of byte 2 may
be changed during execution of the module.

Bits 0 to 5 are used as switches with
the following fUnctions:

o ZERODItlIDE
1 UNDERFLOW
2 OVERFLOW
3 FIXEDOVERFLOW
4 CONVERSION
5 SIZE

If the re~pective bits are on (1), the
corresponding ON-condition is enacled. If
they are off (0), the ON-condition is
disabled.

If bit 7 is on, the PL/I interrupt
handling routine interprets a hardware

46

fixed-point or decimal overflow condition
as a SIZE error. If bit 7 is off. the
condition is interpreted as FIXEDOVERFLOW.

Note: Word 2 of the save area and regist
er-I3 must be correctly initialized prior
to the occurrence of any interrupt.

Assembler modules that directly or
indirectly call PL/I modules must provide
a full DSA with a minimum of 20 full
words. This can be done by using the PL/I
library subroutine IJKSZCN., which creates
the DSA and provides correct handling of
register 13. The subroutine sets the
words 1. 2, 3, 19, and 20 of the DSA.
Word 20 accommodates the contents of
register 0 at the time when IJKSZCN was
called. In internal PL/I procedures, this
will be the address of theDSA of the
statically embracing block. Word 3 con
tains the address of the storage location
where IJKSZCN will construct the next DSA
in case the present module calls another
module.

Calling IJKSZCN destroys register 5.
Therefore, register 5 should not be
initialized by an Assembler module before
IJKSZCN is called. IJKSZCN is called as
shown below:

LA
L
BALR

1,PBL
15, =V(IJKSZCN)
14,15

PBL is an 8-byte area containing the fol
lowing information:

DS
PBL DC

DC
DC

OF
X' 03'
AL3(INDIC)
A (length)

Note: Len9!h is the length of the DSA in
bytes.

The calling sequence for IJKSZCN should
be preceded only by the SAVE macro
instruction and two LR instructions pro
viding for the addressability of the
module itSelf aT~d the argument. list.

~~~sing_~fg~~n~~ 

The argument addresses in the argument 
list point to the first byte of the data, 
array, or structure to be passed on. The 
address of a v-type constant is passed for 
an ENTRY argument. The word following the 
V-type constant contains a pointer to the 
DSA of the block statically embracing the 
passed procedure if the passed procedure 
is internal. 



Figure 28. Format of Call to Entry Parameter 

To allow for addressing of AUTOMATIC 
variables contained within the embracing 
block of an entry parameter, a call to the 
entry parameter should have the format 
shown in Figure 28. 

If FILE arguments are used, the address 
in the argument list points to the file 
appendage. In addition to the information 
in byte 0, the first word of the file 
appendage contains the address of the DTF 
table for this file. 

File arguments sho~ld be used very 
carefully in Assembler subroutines. Issu
ing an IOCS macro to a CCB which is part 
of a DTF table used by a PL/I program may 
destroy the synchronization between the 
PL/I program and logical IOCS. (Note that 
the CCB address must be inserted at object 
time when laCS macros are used for file
name parameters.) However, a programmer· 
experienced in DOS/TOS laCS may use file
name parameters in Assembler subroutines 
to improve the capability of his program. 
For example, he may: 

1. change DTF tables to allow handling of 
additional user labels or non-standard 
tape labels before opening a file. 

2. change DTF tables to accomplish spe
cial stacker selection. PL/I programs 
use normal stackers for card input 
files and stacker 2 for punched:card 
output files. 

3. issue a CNTRL macro instruction for 
seeking on a REGIONAL file to allow 
overlapping of seek time. 

Figure 29 shows a PL/I procedure that 
calls a module written in Assembler lan
guage, which itself contains a function 
reference to another external PL/I 
procedure. 

Data of the scope EXTERNAL may be 
shared between PL/~ and Assembler modules. 

Case 1. Data items within PL/I modules 
whIch-are referred to by Assembler lan
guage modules: 

Use EXTRN statement in the Assembler 
modules. 

Case 2. Data items within Assembler 
modules which are referred to by PL/I 
modules: 

Each data item must be a separate CSECT; 
otherwise incorrect addresses will be 
assigned when the programs are 
I ink-edi t.ed. 

If a data item is a structure. all its 
individual elements can be coded together 
as a series of DCs or as a DS in the 
Assembler-language module under a single 
CSECT. In preparing such a structure, the 
PLiI structure mapping rules as described 
under Da!~_§!2~~g~_~~EE!~g must, however, 
be observed. 

The CSECT statement must be used if the 
respective name is not declared to be 
EXTERNAL in any PL/I program within the 
same phase. In all other cases, the pro
grammer may use the instruction he consi
ders convenient. 

Note: Values returned by routines written 
In-Assembler language must have the format 
specified for PL/I. Floating-point data 
~~~~_Q~_~2E~~1!~~9· 

Checkpoint And Restart

A typical example for a procedure written
in Assembler language is checkpointing and
restarting. For convenience, both the
checkpoint part and the restart part
should be contained in the same routine.

If checkpointing is desired, the
restart address, the end address, and the
tape file positioning information must be
provided. \Some additional information is
required if the checkpoint is to be writ
ten on disk.} The restart address is
known if it is in the same module as the
checkpoint routine. The end address can
be taken from word 3 of the save area,
since this is the address of the next (not
yet allocated) save area. Names of tape
files can either be passed as parameters
or addressed directly by using a v-type

Linkage Conventions 47

constant. (See the discussion on file
parameters in the section ~~§2ing_~!g~=
ments. The same applies to the usage of v=type constants~)

tively. Moreover, the program mask must
be reset.

After the job has been restarted with
the RSTRT statement, the restart routine
must issue an STXIT macro for Program
Check Interruption. The two address
operands to be issued with STXIT are the
external names IJKSZCI and IJKZWS! for the
routine address and the save area~ respec-

Note: PL/I input files must not contain
Interspersed checkpoint records.

~'igure 30 shows a coding example ofa
routine combining the checkpoint and the
restart part.. For detailed information
refer to the following SRL publications:

II EXEC
CALLER:

PLjI
PROCEDUtE OPTIONS (MAIN);
DECLARE C CHARACTER (25) STATIC; · ~LL SUBASM (A,B,C) 1* CALLS SUBROUTINE WRITTEN IN ASSEMBLER LANGUAGE *1;

/*

II EXEC

SUBASM

END;

ASSEMBlY

TITLE
START
USING
SAVE
lP.
LR
LA
CALL

L
LE
L
AE · CALL

L
~C
WI

L
RETURN

X OS
y OS

OS
PBL DC

DC
DC

ONINDICT DC
DC

REllJtN OS
*

· END
1*

II EXEC PL/I

'SUBROUTINE CALLED BY PLjI AND CALLING PLjI'
o PARAMETERS ARE A, B, C
* ,9
(14,12)
o u:: " . ..,
3,1
1,PBL
IJKSZCN

1,0(3)
0,0(1)
1,4(3)
0,0(1)

LEVEL3, (X, Y,RETUtN)

1,8(3)
0(2-4,0, RETURN
24(1),X' 48'

13,4(13)
(14,12)
F
Cl3
OF
X'03'
AL3(ON INDICT)
20A
3X'0'
B'11110000~
Cl24

SAVE REGISTERS
ASSURE PROGRAM ADDRESSAiii.iiY
ASSUtE ADDRESSA81l1TY OF PARAMETERS
CREATE OWN DSA

MAKE A ADDRESSABLE
LOAD A
MAKE 8 ADDRESSABLE
ADD 8

CALL PL/I FUNCTION PROCEDURE

MAKE C ADDRESSABLE
C iW RETURt--~ Ii '.' ;

RETUtN TO CALLING PL/I PROCEDURE
ARGUMENT X
ARGUMENT Y

DATA TO CREATE DSA
POINTER TO ON-INDICATOR WORD
2O-WORD DSA

SIZE AND CONVERSION DISABLED
SPACE FOR RECEIVING STRING FROM
PLjI FUNCTION LEVEL3

LEVEL3: PROCEDURE CU, V) CHARACTER (24);

1*

DECLARE STR CHARACTER (21), V FIXED DECIMAL (5,2); · RETURN ("$' II STR) 1* ONE BLANK AUTOMATICALLY

END;

ADDED AT THE END TO OBTAIN
CORRECT LENGTH *1;

Figure 29. Example of Linkages between PL/I Procedure and Assembler ~odule

48

~Sg:_QQ§ f2!_!Q§

IBM System/360 Disk Operating System, Sys
tem control and System Service Programs.
Order No. GC24-5036

IBM System/360 Tape Operating System, Sys
tem control and System Service Programs,
Order No. GC24-5034

IBM System/360 Disk Operating System,
Supervisor and Input/Output Macros, Order
No. GC2-4-5037

IBM System/360 Tape Operating System,
supervisor and Input/Output Macros, Order
No. GC24-5035

CPRS TITLE 'CHECKPOINT-RESTART ROUTINE'
* CALLED BY A Pl/I PROCED~E. THE INFORMATION ON THE
,;, POSITIONING OF THE TWO FILES TAPEIN AND TAPEOUT IS
* TO BE CHECKPOINTED.
CHPRES START

USING *,12
SAVE (14,12)
LR 12,15 SET BASE REGISTER
LA 1\, PBL CALL PI/I PROLOGUE ROUTINE
L 15,=V(IJKSZCN)
BALR 14,15
L 2,=V(TAPEIN) PREPARE FILE TABLE
L 2,0(2)
ST 2,FILETAB+2
L 2,=V(TAPEOUT)
L 2,0(2)
ST 2,FILETAB~
L 2,8(13) LOAD END ADDRESS
BALR 3,0 SAVE PROGRAM MASK IN AUTOMATIC
ST 3,80(13) STORAGE
.CHKPT SYSOO7,RESTART, (2), TPOINT CHECKPOINT ON SYSOO7
B RETURN

* RESTART PART. NOTICE THAT ALL GENERAL
* REGISTERS ARE AUTOMATICALLY RESTORED.
RESTART L O,=V(IJKSZCI) SET PROGR. CHECK INTERRUPTION EXIT.

L 1,=V(IJKZWSI)
STXIT PC,(O), (1)
L 2,80(13) SET PROGRAM MASK.
SPM 2'

RETURN L 13,4(13) RET~N TO PI/I CALLER
RETURN (14,12)
OS OF

PBL DC X'03' ARGUMENT FOR IJKSZCN
DC AL3{INDIC)
DC 22A PL/I SAVE AREA DEFINITION + 1 WORD FOR

* SAVING PROGRAM MASK (MUST BE MULTIPLE
* OF EIGHT).
INDIC DC A(O) ON INDICATORS
TPOINT DC A(FILETAB) POINTER TO FILET ABLE

DC A(O) PIOCS FILES NOT USED
CNOP 2,4

FILETAB DC H'2' * FILE TABLE
OS 2F *
END

Figure 30. Coding Example of Combined Checkpoint and Restart Routine

Linkage Conventions 49

General Programming Information

This section describes some programming
techniques to save storage, produce a
faster object program r perform functions
not easily achieved with more conventional
?L/I language facilities, make a program
fit into the available storage, etc.

The first column of every source text card
must be blank. Columns 73-80 are ignored;
they may contain any information.

Every pro9ram should be written so that it
can be segmented if necessary. The case
of storage overflow should be provided £or
so that, if it does occur, it can be
handled easily. Breakpoints in the logic
of a program, i.e., points where a prograrr.
phase can be terminated and a subsequent
phase entered, should be numerous.

Data common to successive programs can
be kept through the proper use of the
EXTERN~L attribute. However, not all data
need be external.

Programs that read data, compute, and
write results lend themselves to segmenta
tion most readily. Wherever practical,
entire programs should be written as
sequences of calls for subroutine proce
dures because each call is a logical brea
kpoint. Thus, the entire storage can be
loaded with as many subroutines as can be
accommodated. The next phase then repeats
the process of loading the storage with
the next group of subroutines, etc.

In general, no more than 90 % of the
storage available for any program phase
should be used during the first six months
of its life because, at one time or anoth
er, every program tends to expand due to

1. programming errors,

2. the need to expand the original
function,

3. errors in the system program or in the
associated subroutines, and/or

4. an increase of the data storage
requirements.

50

If a program uses the entire storage
and no space is left for eventualities~
reasonable solutions become difficult.
If, however, normal expansion was provided
for, the overall job is much easier.

If a numeric variable is to be used fre
quently-In-expressions, it is much more
economical to convert the variable to
coded form once and use the coded forrr in
all expressions. This is easily done by
means of an assignment statement.

Conversions implicit. in !f_§!at~!!!~!!:!:§
follow the rules for arithmetic conver
sions, and the intermediate precisions
should be considered when using such
expressions.

For example, in case 3 (IF X=U THEN •••)
of the following sample program the conv
ersion rules are applied to X, giving a
shdrt-precision floating-point number
which is then expanded (padded) with
trailing zeros to long precision before
the actual comparison operation. Thus
expression 2 will be executed, not expres
sion 1. However, if X and U are assigned
with a value which will be the same in
both short and long precision (e.g. 0.5).
then expression 1 will be executed.

In evaluating the following program,
refer to Section F: Data Conversion in
!~~_§y§~em~1~QL_Di§~_~~d-1~Ee-QEer~!ing
§y§~~~§L-f~~!_§~Q§g!~~~fg!~~~~~~ua1,
Order No. GC28-8202.

Z: PROCEDURE OPTIONS(MAIN) ;
DECLARE X DECIMAL FIXED(5,2);
DECLARE T DECIMAL FIXED (15,2) ;
DECLARE Y FLCAT(6);
DECLARE U FLOA'I(16);
X=123.45;
Y=123.45;
T=123.45;
U=123.45;
IF X=Y THEN expression 1; /* Yes */

ELSE expression 2; /* No *;'
IF X=T THEN expression 1; /* Yes */

ELSE expression 2; /* No */
IF X=U THEN expression 1; /* No */

ELSE expression 2; /* Yes */
IF Y=T THEN expression 1; /* No */

ELSE expression 2; /* Yes */
T'" .J..l: Y=U THEN expression 1; /* No */

ELSE expression 2; /* Yes */
IF T=U THEN expression 1; /* Yes */

ELSE expression 2 ; /* No */
END;

For an example showing the conversion
of characters into binary numbers, refer
to ~22~nQ!~~~ __ frQgramm!~~!~El~~,
"Conversion of Numbers in Character Form
Into Binary Numbers·.

Q§~_Q~_Q~§PE~

The UNSPEC pseudo variable ahd the UNSPEC
built-in function handle the internal
representation of data. The internal
representation of data is sUmmarized in
Figure 50 and described in detail in the
section Q~ta_2to~~g~~~~!~m~nt~.

The programmer must make sure that
val ues assigned by the UN SPEC pseudo v·ari
able have the correct format. Otherwise,
the results are unpredictable. Note that
the internal representation of floating
point data is normalized. Consider the
following example:

DECLARE A FLOAT, B CHARACTER(l), C FIXED
DECIMAL(5,3):

B= • 8' ;
X: PUT EDIT (UNSPEC(B» (SKIP,B);
Y: UNSPEC(A)=(31) 'O'B II '1 'B;
Z: UNSPEC(C)=(16}'O'B 1.1 '01100000'B;

The result of statement X is 11111000.
Statement Y yields unpredictable results
since the value to be assigned is not nor
malized. statement Z also yields unpre
dictable results since the last half-byte
does not contain a valid sign for packed
decimal data representation.

For an example of the UNSPEC built-in
function, see ~E~~~!!_~~_~!Q9!~~min9
~!~~E!~~, ·Conversion of Numbers in
Charac~er Form to Binary Numbers".

Whenever possible, input/output phases
should be performed separately from compu
tational phases. Thus, the I/O subrou
tines including the E and/or F conversion
subroutines are never in storage simul
taneously with the other subroutines (ari
thmetic, base, and scale conversion,
etc.). This can result in considerable
storage savings (see Figure 31).

I I
.----------11 ROOT 1 ... ----------.

2

,r

Phase 1:

Opens files,
Performs input,
Closes files.

-I J

3 4

I

Phase 2:

Computation

5 6

,

Phase 3:

Opens files,
Performs output,
Closes files.

Figure 31. Example of Using Overlays tc
Perform computations and I/O
Operations Separately

It may happen that one large set of data
is used in a program only at one specific
point, that another large set of data is
used at another point, etc. In this case,
each set of data used at one point should
appear in a separate block so that the
data is AUTOMATIC by default (unless de
clared to be STATIC) and allocated only
when the respective bleck is active,.
Thus, the same storage area can be used
for all data sets to be used.

The PICTURE-format items of OS PL/I are a
more powerful tool for editing than the
format items available in DOS/TOS PL/I.
However, numeric fields in edit-directed
I/O operations can easily be simulated by
overlaying numeric fields with character
strings using the DEFINED attribute. An
example is shown below:

DECLARE U PICTURE '$$,$$9.V99BCR'.
B CHARACTER (12) DEFINED U;

U= •••
PUT SKIP EDIT ('U = B) (2 A);

Since arrays of structures are not per
mitted in the PL/I Subset language, it is
recommended to simulate arrays 2f struc
tures by using arrays !g structures, i.e.,
by arrays that are not themselves struc
tures. Should this not be feasible,
arrays of structures may be simulated by
using based structures. This can be

General Programming Information 51

accomplished by assigning to the pointer
the value of an element of a character
string array. The programmer is respons
ible for satisfying all boundary
requi rements ,.

The following example shows the handl
ing of structures in OS PL/I versus D05/
TOS PL/I:

DECLARE 1 A, 2 B FLOAT, 2 C(lO), 3 D
PICTURE '9999',

DO 1=1

3 E PICTURE 'XX',
3 F PICTURE '9~V99';

mn 1n.
.LV .LV,

A.D(I'= ••••

END;

This could be written in DOS/TOS as
follows:

DECLARE PTR POINTER, 1 A, 2 B FLOAT, 2 C
(10) CHARACTER(lO), 1 X BASED
(PTR), 2 0 PICTURE '9999', 2 E
PICTURE 'XX', 2 F PICTURE '99V99';

DO 1=1 to 10;
PTR=ADDR{A.c{r»,

X.D= ••••

END:

For scalar variables or arrays, the
DEFINED attribute is used when

1. a variable is to have more than one
name (correspondence defining>, or

2. two separate variables are to occupy
the same storage area provided they
are never required simultaneously
(overlay defining).

In either case, the actual storage
requirement is that of the base identifier
and not the sum of the storage require
ments of all variables. For restrictions
on the use of the DEFINED attribute for
scalar variables and arrays see the Subset
language publication.

52

The use of the DEFINED attribute can
result in considerable savings of storage.
This is obvious for arrays, e.g •• the
statement

DECLARE A (5,9,7)" B (5 .. 9.,7) DEFINED Ai

merely requires the storage area for array
A (315 data items). Without the DEFINED
attribute, the storage requirements would
be twice as much. But in soite of the
more severe restictions on the use of the
DEFINED attribute for structures, it can
also be of considerable use in this case.

The restrictions on the use of the DEFINED
attribute for structures can be circum
vented by using based variables instead of
the DEFINED attribute. For example, in
the statement shown below structures U and
I are based variables. They are never
allocated any storage. Instead, the
pointer variable P can be used to utilize
the storage occupied by structure A
whenever ~tructures U and I are referred
to (provided that structure A is not
required at the same time).

DECLARE P POINTER,
1 A ALIGtiED.

2 B BIT(7},
2 C FIXED DECIMAL(13,2),
2 D CHARACTER (21).

1 U ALIGNED BASED (P),
2 V BINARY,
2 W,
2 X BIT(19),

1 I BASED (P),

2 J,
2 K,
2 L;

The statement

P = ADDR (A);

would cause any subsequent reference to
either U or I or any corrpcnent of U or I
to point to the storage area occupied by
A. This simulates the use of the DEFINED
attribute with all of its restrictions
removed except that the based structures
must be mapped in the same or less storage
than the map of the overlaid structure.
This process may be extended even further
so that a based variable structure occu
pies the storage area of anyone of many
structures. !his is derronstrated below:

DECLARE (Vl,V21 POINTER,
1 A, 2 B, 2 C, •••••• ~
1 U ALIGNED, 2 F, 3 Q BIT (9),.~.,
1 R, 2 Z, 2 M, 3 S CBARACTER(2)~ •••
1 Pl BASED (Vll, 2 L, 2 X, ••• ,
1 P2 ALIGNED B~SED (V2),

2 D BIT(9),.;

Vl=ADDR(A);

using Pl here points to A

Vl=ADDR(U) ;

using Pl here points to U

V2=ADDR(R);

using P2 here points to R

Vl=ADDR(R);

using Pl here points to R
etc.

Of course, the storage requirement of
structure Pl must not exceed that of the
smallest of either A, U* or R. Since the
structure P2 does not point to A or U in
this procedure, the only prerequisite is
that its storage requirement must not
exceed that of R.

~2~~_2~_~2~E~Ei~i!!~Y: The structure
mapping technique for OS PL/I is identical
to that for DOS/TOS PL/I in every respect
but one. The exception is that DOS/TOS
PL/I causes all structures to begin at
double-word boundaries. This is accomp
lished by padding to the left of the first
addressable element until byte zero is
reached. (See the section §~!~~~~_~~=
E!~g_g~!g~, rule 11.1

OS PL/I begins structures at the first
addressable element. This difference is
of no significance in PL/I programming
unless the above-described technique is
employed. When this technique is used.
compatibility is guaranteed if at least
one element of the non-based structure has
a stringency level that is as high as that
of the element (or elements) of the high
est stringency level of the based
structure.

For the D compiler the pointer asso
ciated with a based structure must be
assigned an address value which insures
that the first element of the structure
has the same distance to a double-word
boundary as it would have if the structure
was not based.

~2~g: The use of based structures to
avoid the use of the DEFINED attribute is
dependent on structure mapping Which, in
turn, is implementation-defined.

REDEFINITION OF A'!'TRIBUTES

The two preceding sections showed that a
number of structures can be made to occupy
the same stbrage area. Similarly, a
single character-class variable may be
conceived of in many different ways. Con
sider the declaration shown below.

DECLARE A CHARACTER (SO).
1 B DEFINED A,

2 C CHARACTER (40).
2 D CHARACTER (30),
2 E CHARACTER (10),

1 F DEFINED A,
2 G PICTURE '(8)9',
2 H PICTURE '9',
2 I CHARACTER (61),
2 J PICTURE '(5) 9V ("5) 9' "

1 K DEFINED A,
2 L (10) PICTURE '$$(4)9V(2)9';

A represents a string of SO characters
whereas B~ F, and K represent thre~ dis
tinct structures. However, these three
distinct structures refer to the same
storage area as A. This technique is
especially useful in programs with many
different structures to be read. For
instance, the program may read a character
string and, depending on its first
character, treat it in anyone of many
different ways without requiring space for
each possible structure.

If the 4S-character set is used" the word
PT, in addition to those listed in the
Subset language publication. is a reserved
keyword. Programs written in the 60-
character set can be read if 48C is speci
fied in the OPTION statement (but not vice
versa).

If a size overflow occurs during F~format
output, the output field will contain
asterisks. even if SIZE is disabled.

USE OF THE DISPLAY STATEMENT WITH THE
B~~!!!_OP1'±Q~

Using the DISPLAY statement with the REPLY
option is possible only if a 1052 Printer
Keyboard is available.

The use of an odd precision for decimal
data will keep the generated code at a
minimum and thus improve the program
performance.

General Programming Information 53

List-directed output to PRINT files auto
matically aligns data on preset tab posi
tions. FOr the D-level compiler, these
tab positions are 1, 25, 49, 73, 97, and
121.

TDe tan Dositions are determined from
the control-table IJKTLTB which is catalo
gued under this name in the relocatable
library. To obtain different tab posi
tions, the programmer only has t~ change
this table by specifying the following
macro instruction:

IJKZL (tab,[tab,.~.,]FF)

In this mac.ro instruction, 'tab' is a
decimal constant indicating the des~red
tab postion i and iFF' indicates the end of
the table. Tabs must be specified in
ascending sequence, and their values must
range between 1 and 144. The length of
the tab list specified in the IJKZL macro
instruction must not exceed 127 charac
ters, including opening and closing paren
theses and commas.

Following is an example of the IJKZL
macro instruction and the control state
ments required to change the tab settings.

II JOB IJKTLTB
II OPTION DECK
II EXEC ASSEMBLY

IJKZL (1,25,50,75,100,FF)
END

1*
* THE RESULTING OBJECT DECK IS INPUT
* FOR THE FOLLOWING EXEC MAINT PROGRAM
II EXEC MAINT

1*
If.

(Object deck)

If the specified tab positions do not fall
between the values 1 and 144, or if they
are not in ascending sequence, one of the
following messages is issued:

PARAMETER GT 144

PARAMETER NOT IN ASCENDING ORDER

The execution time of a DO-loop can be
reduced if a fixed binary variable is used
as control variable in the DO statement.

For example, if in the statement

54

DO var = exp1 TO exp2 [BY exp3J
[WHILE (exp4)];

'var' is a fixed binary value, all con
stants used as exp1. exp2. and exp3 will
be converted to fixed binary during compi
lation, in order to avoid conversions dur
ing execution.

On output, data edited by the E- or F
format are rounded at the last numeric
position, and not truncated.

When using a PICTURE specification with
'9's for numeric fields and the field is
olank, a program check (data exception)
occurs.

Thi~ is a particular problem for card
input where fields are often left blank
rather than filled with zeroes.

The problem can be avoided by declaring
the field with PICTURE using 'Z' rather
than '9' or with PICTURE using '9' plus
one of the overpunch picture ~haracters T,
I, or R.

Assume card colUmns 1-10 are numerical
and mayor may not be punched.

DECLARE COL 1 PICTURE' (10)9';
DECLARE COL-1 PICTURE '(10)Z':
DECLARE COL-1 PICTURE '(9)9{1)I':

The first DECLARE statement causes a
data exception if the field is blank. No
data except-ion occurs for blanks in
columns 1 through 10 if the field is de
clared as shown by the second and third
DECLARE statements.

The programmer should, however, be
aware that the exclusive use of '9's in a
PICTURE specification results in more
efficient code.

USE OF LIST-DIRECTED AND EDIT-DIRECTED
Q~!~-TE~~§~!§§!Q~---------------------

When the list-directed and edit-directed
transmission modes are used for the same
file, the user is responsible for the
correct positioning of the file.

USE OF PICTURES WITH STREAM-ORIENTED DATA
T8~~§~!§§!ON-----------------------------

The D Compiler handles them in the
same way as normal character-string
variables.

2. ~f!~h~et!£_e!£tuE~~~

All kinds of arithmetic pictures are
possible in the data lists of GET and
PUT statements.

a. Edit-directed transmission:
Only such items in the data stream
which can be described by the E or
F format can be transferred from
(PUT) or into (GET) arithmetic
pictures. If, on output, the pro
grammer wants the character repre
sentation of the picture, he
should use the CHAR built-in func
tion as pseudo-variable with the
picture as argument in the data
list.

b. List-directed transmission:
On input, only [+1-] arithmetic
constants can be transferred into
arithmetic pictures. On output.
the character representation will
be transferred into the data
stream.

Storage can be saved by proper declaration
of fixed numeric PICTURE fields.

1. PICTURE specifications without drift
ing characters: make the first digit
position 'Z' or '*' and avoid writing
the first '9' in the field immediately
following an insertion character.

'Z9,99.V99' is better than '99,99.V99'
'SZZ9999' is better than 'S999999'
'+ZZ,Z999' is better than '+ZZ,9999'

2. Specifying "v." rather than ".V"
results in better code in the follow
ing cases:

(a) If the first fractional digit
position is the first '9' in the
field, then
~ZZ,ZZZV.99' is better than
lZz,ZZZ.V99'.

(b) If a drifting character or zero
suppression is specified past the
decimal point. then
'$$$$$V.$$' is better than
'$$$$$.V$$'
'*****V.**' is better than
'*****.V**'

3. Give the variable in the right-hand
side of an assignment statement the
attribute DECIMAL FIXED with the same
scale and precision as the PICTURE.
If there is an expression on the
right-hand side try to produce the
desired scale and precision.

4. Zero-suppression with "*" costs more
storage (code) than zero-suppression
with "Z" if

"+" or "_" is used (static or drift
ing) or

"B" is used ~f~~f the last digit
position.

5. If the PICTURE does not contain at
least one "9", "T", "I" or "R", but
does contain a "V", additional code is
required for clearing the field in
case of a zero value.

When using a PUT statement producing mul
tiple lines, the ENDPAGE condition should
not be enabled because of possible loss of
data:

ON ENDPAGE{F) GO TO X;
PUT FILE(FJ EDIT (data-list) (format-list);
X: new header;

In this example the ENDPAGE condition
may be raised during execution of the data
list (assuming multiple-line output); but
no return from X is possible, so that the
rest of the data list will be ignored.

General programming Information 55

Program-Checkout Facilities

certain language features are provided in
PL/I to assist the programmer in debugging
his program. These facilities are
described below.

For a detailed Q1scussion or now to
debug a PL/I program, refer to the section
Q~~~gging_PL~!-Erog~~~2 in the SRL. publi
cation IBM System/360 Q!2~-2E~ra~in9_§Y2~
~~~~_§Y2~~~~fQ9f~~~er:2_~~!Q~, GC24-5073. 

Exhibit Changed 

The EXHIBIT CHANGED feature uses the 
library routine IJKEXHC which requires 
approximately 1200 bytes of main storage. 

In addition, each variable appearing in 
a CALL IJKEXHC statement requires about 12 
bytes of storage plus a field containing 
the variable name plus a field containing 
the value of the variable in static 
storage. 

Function: 

The first execution of the CALL IJKEXHC 
statement causes the printing of the names 
listed in the statement~ and their values 
in hexadecimal notation. 

General Format: 

CALL IJKEXHC (name, name •••• ): 

The argument 'name' can be an unsub
scripted, unqualified name repres.enting an 
element, an array, or a structure which 
are not contained in an array or struc
ture, or it can be a string or arithmetic 
constant. However, it cannot be a label 
constant, an entry name, or a file name. 

General Rules: 

1. Names with the attribute AUTOMATIC are 
printed each time the CALL IJKEXHC 
statement is first executed after a 
new block activation. Names with the 
attribute STATIC are printed only the 
first time the CALL IJKEXHC is 
executed if the activated block is 
internal. They are printed ~~£b time 
the CALL IJKEXHC statement is executed 
if the activated block is external. 

2. On subsequent passes of the CALL 
IJKEXHC statement, the names and 
values are printed only if the value 
has changed since the time the state~ 
ment was last executed. 

56 

3. If there are several CALL IJKEXHC sta
tements in one program, they are inde-___ ~ __ ~ & ___ ~ __ h _~h __ 

pCU\Acu.... .1..1. Vlll Ca.~l1 v .... 111::.1. • 

4~ The maximum number of arguments for 
one CALL IJKEXHC statement is 12. If 
an argument has the BASED or DEFINED 
attribute, the related pointer or base 
variable is counted as an argument, 
regardless of whether it has been spe
cified in the argument list or not. 

5. Up to 30 names can be checked by CALL 
IJKEXHC statements within one block, 
if 10K bytes are available to ~ne com
piler. For each additional 4K, up to 
46K, 30 additional names can be 
checked. 

6. The values of element variables having 
the attributes BINARY FIXED, BINARY 
FLOAT, DECIMAL FIXED~ DECIMAL FLOAT, 
CHARACTER, BIT, or PICTURE are also 
printed in their external form. 

Tracing 

The TRACING feature uses the library rou
tine IJKTRON which requires 1258 bytes of 
main storage. 

In addition, about 34 bytes of storage 
are required for each CALL IJKTRON state
ment and about 12 bytes for each CALL IJK
TROF statement. 

Function: 

The two statements~ CALL IJKTRON and CALL 
IJKTROF, function like a switch. IJKTRON 
switches tracing on, while IJKTROF turns 
it off. 

If tracing is enabled for a block, the 
following information is printed on 
SYSLST: 

1. On entry, the external name of the 
block~ or, if the block has no label, 
the internal name of the block. 

2. On leaving a block via an END or 
RETURN statement, a message is given 
to indicate the exit. If the STMT 
option is active, the statement number 
of the END or RETURN statement is 
printed as well as the number of the 
statement to which the program 
returns. 
Note: If for ·CALL entry name' infor
matIon should be printed, tracing must 



be enabled for the block which con
tains the entry name. 

3. For each executed GOTO statement 
a. the external name (up to eight 

characters) and value of the label 
variable or constant if the GOTO 
statement is not in an on-unit, or 

b. the ON-condition and the value of 
the label variable or constant if 
the GOTO statement !~ in an 
on-unit. 

If the STMT option is active, the sta
tement nureber of the GOTO statement 
and the statement number of the target 
statement are also displayed. 

General Format: 

CALL IJKTRON; 
CALL IJKTROF; 

General Rules; 

1. Tracing can be explicitly enabled in a 
block by a CALL IJKTRON statement. 

2. A CALL IJKTROF statement explicitly 
disables tracing in a block. 

3. If tracing is neither explicitly 
enabled nor disabled in a block, the 
tracing status of the dynamically con
taining block is applied. 

4. The dynaIPically containing block of 
the main procedure has tracing 
disabled. 

5. At least one of the two statements has 
to be specified if tracing is to 
appear in an external procedure. 

6. When calling an external procedure 
(provided tracing is enabled at the 
time of the call), the called phase 
must have a call for either IJKTRON or 
IJKTROF. If this condition is not 
satisfied, the results are unpredict
able in tbe event of an interrupt. 

1) Al: PROCEDURE OPTIONS (MAIN); 

2) CALL IjKTRON: 

3) GOTO All; 

4) All: CALL Bl; 
5) C=3; 

6) GOTO A2; 

7) A2: BEGIN; 

8) CALL IJKTROF; 

9) GO TO A21; 

10) A21: CALL IJKTHON; 

11) END A2; 

12) 
13) Bl: 

END Ali 
PRCCEDURE; 

14) CALL IJKTROF; 

15) RETURN; 

16) END Bl; 

This example causes the following (the 
statement numbers in the above example are 
referenced in the left-hand margin below): 

1) When the main procedure is invoked" 
no tracing status is specified and. 
therefore, tracing for this block 
and, per definition, for -the dynam
ically containing block is 
disabled. 

2) Tracing is explicitly enabled in 
block Al. 

3) The external name and value of 
label All are printed. 

4,13) No tracing status is specified for 
this block; therefore l the 
(enabled) status of the containing 
block Al is adopted and the name of 
the procedure Bl is printed. 

14,15) Tracing is explicitly disabled for 
this block, and no message is 
printed when control returns to 
statement 5. 

6) The external name and value of the 
label A2 are printed since tracing 
is still enabled in Al. 

Program-Checkout Facilities 57 



7) With the activation of block A2 
tracing is neither enabled nor dis
abled, ther~fore the (enabled) sta
tus of block Al is adopted and the 
exte~nal name of block Al is 
printed. 

8.9) Tracing is disabled for block A2 
and no message is printed. 

10,11) Tracing is again enabled and the 
pass of the END statement is indi
cated on SYSLST. 

12) Since tracing in the main routine 
is still enabled, the pass of this 
END statement is also indicated on 
SYSLST. 

The nYNnUMP Routine 

The statement 

CALL DYNDUMP (argument-list); 

may be used to have the internal represen
tation of the items in the argument list 
displayed in hexadecimal notation. The 
argument list may contain up to 12 items. 
Each argument .must be either a scalar 
expression or a variable name. 

The DYNDUMP routine (56 bytes in 
length) uses the PL/I Control routine and 
the SYSPRINT file with the associated 
module. No additional I/O subroutines are 
required. Thus, the DYNOUMP routine pro
vides an economical way of displaying 
intermediate results during checkout of 
PL/I programs with a minimum of library 
and I/O module overhead. 

The following example shows the use of 
the DYNDUMP routine .. 

DECLARE A FIXEO(5,2). B(10), C BIT(l); 

CALL DYNDUMP (A.B,C); 

Three items are displayed: A as 3 
bytes (6 hexadecimal digits), B as 40 
bytes (80 hexadecimal digits), and C as 
one byte (2 hexadecimal digits). 

~Q!~: The current value of C is indicated 
by the first bit. If the variable length 
is an exact multiple of 48 bytes, the end 
address+l will be printed on the next line 
in order to delimit the variables for ease 
of reading. 

Locating Ezecution .. Time Errols 

If a PL/I object program is terminated by 
the PL/I Control routine and the DUMP 
option is active, the problem program area 

58 

is printed (dumped) on the device assigned 
to SYSLST. The following information is 
intended to assist the programmer in ana
lyzing a program dump and to locate the 
error that caused the termination of this 
program. 

~2E~: There'~ no guaraptee that rna~n 
storage organization will always be as 
described below. Severe programming 
errors, e.g., illegal use of based 
variables~ the UNSPEC pseudo variable, or 
use of user-written Assembler subroutines 
may yield unpredictable results. 

If the error was caused by an 1/0 
operation, look up the Linkage Editor 
storage map to find the address of the DTF 
table for the ro?spective file. The first 
word of the DTF table contains the address 
of the corresponding CCB. For details on 
the CCB refer to the SRL publications 
describing the DOS/TOS Supervisor and I/O 
macro instructions. 

Data declared with the attribute 
EXTERNAL can be found using the addresses 
given in the Linkage Editor storage map. 

To determine the absolute address of 
static internal data refer to the offset 
table listing (see the section Offset 
!~Q!~-~!~~!~g). ------

To locate the storage allocated to an 
automatic variable, the offset of the 
variable within the DSA (Dynamic Storage 
Area) is determined from the offset table. 
and this offset is added to the DSA 
address of the block to which the variable 
is internal. The address of the DSA is 
automatically loaded into register 13 at 
prologue time. Word 20 of the DSA con
tains the DSA address of the statically 
embracing block. 

The load point of the main DSA is the 
next double-word boundary after the high
est high-core address of all external 
blocks linked in the program. 

More than one DSA may be allocated, 
i.e., if more than one block is active. 
To find the DSA of the block where the 
error is detected, check the byte pointed 
to by register 13. If this byte contains 
either X'h1' or X'h3' (h may be any hexa
decimal digit), register 13 points to the 
relevant DSA. In this case, the error 
message was most probably caused by a Pro
gram Check interrupt. 

The instruction that caused the inter
rupt can be found by means of the diag
nostic message. The old PSW and the regi
sters can be found at the location with 
the external label IJKZWSI. 



If the byte contains- X'OS', register 13 
points to a LSSA (Library Standard Save 
~rea), the second word of which contains 
the chain-back word. If this again points 
to a LSSA, repeat the chain-back process 
until the chain-back word points to a DSA. 
This DSA then belongs to the block where 
the error was detected. 

To identify the block, go to the chain
back address of the relevant DSA. If this 
points to another DSA, word S of the DSA 
contains the absolute address of the 
block. The block can then be identified 
using the object code listing and the Lin-

kage Editor storage map. If the chain
back word does not point to a DSA, the 
relevant DSA is the DSA of the MAIN proce
dUre ( see Figure 32). 

The chain of DSAs resembles the current 
environment at the point of execution 
where the error was detected. Each DSA in 
the chain has its correSponding currently 
active block. From where and at which 
location a specific block is activated can 
be determined by means of the DSA of the 
calling block. For detailed information 
on the first 20 words of the' DSA refer to 
the section ~ig~~g~_~Qg~~g~iQg~. 

MAIN .. PROCEDURE OPTIONS (MAIN),. SUB1 •. PROCEDURE, . LAST. . PROCED~E, . 

CALL SUB1 

L 15,=V(SUBl) 
BALR 14,15 

r-~---

---
---
---
END,. 
L 13,4(13) 
LM 14,12,12(13) 
BR 14 to STOP Routine 

DUMDSA 

-I 
Static Storage 

1 
DSA SAVMAIN 

Flags I AL3(Block Description) 

L_ Chain Bock 
A(DUMDSA) 

Chain Forward 
A(Next Available Core} 

L __ 
Return Register 14 

Entry Register 15 

Work Area 

Variables 

. . t 

Figure 32. DSA Chaining 

1 

h 
I 
J 

~J 

~--

~--

r 
I 
I 
I 
I 
J 

1 r~ 
I I : 
I : I 
L-t+ 

I I 
I I 

_...I I 
I 
I 
I 
I __ .J 

USING *,15 
- .. STM 14,12,12,(13) 

-"--
PROLOGUE 

CALL LAST 
L 15, =V (LAST) 
BALR 14,15 

r ~--
---
---
RET~N 

L 13,4, (13) 
LM 14,12,12(13) 
BR 14 

Static Storage 

I 
DSA SAVSU81 

L 

I Flags I AL3(Block Description) 
I 
I Chain Bock r A(Calling DSA) 
I 
I 

Chain Forward I 
I A(Next Available Core} 
I 
LI- Return Register 14 

Entry Register 15 

Work Area 

Variables 

- -
, 

h 
I 
I 

...I 
+-, r

I I 
I I 
I I 

l-

Ltt 
I I 
I I __ +.1 

-

I 
I 
I 
I 

_...J 

USING *,15 
~STM 14,12,12(13) 

---
PROLOGUE 

---
---
---
RETURN 
L 13,4(13} 
LM 14,12,12(13) 
BR 14 

Static Storage 

I 
DSA SAVLAST 

Flags I AL3(Block Description) 

Chain Bock 
A(Calling DSA) 

Chain Forward 
A(Next Available Core} 

Return Register 14 

Entry Register 15 

Work Area 

Variables 

t 

• , I 
I 
I 
I 

.J 

Program-Checkout Facilities 59 



Data Storage Requirements 

The storage requirements for data depend 
on the following two factors: 

1. The storage required for the data 
itself. 

2. The storage required for the data 
descriptor. (The data descriptor is 
required whenever the compile-time 
data description is to be used in the 
object program.) 

Data Descriptors 

A data descriptor may describe more than 
one data item. Only one data descriptor 
is required for a group of data items that 
have identical (either explicitly or 
implicitly declared) attributes, e.g~, for 
individual variables of identical attri
butes or for array elements. Thus, the 
statement 

DECLARE (A, B, C(21), D) FIXED DECIMAL 
(5,2), (E, F, G) PICTURE '$99.99'; 

requires only two descriptors: one 
describing A, B, the 21 C's, and D, and 
one describing E, F, and G. Constants 
(except those used in output lists), label 
variables, label constants, or pointer 
variables do not require a descriptor. 

A data descriptor and, therefore, 
storage in the object program is required 
only if the pertinent data item is used in 
a conversion or I/O library subroutine. 

r-------------T---------------T-----------, 
IFixed decimal I I I 
I Float decimarl I I 
IFixed binary ICoded I I 
I Float binary I I I 
I Sterling I I I 
I constants I I I 
~-------------+---------------~Arithmetic I 
!Fixed decimallNumeric I I 
!Float decimal I (picture- I t 
jSterling I specified) I I 
~-------------+---------------+-----------~ 
I Character I I I 

.IBit I String I I 
I Picture- I I I 
I specified I I I 
I character I I I 
~-------------+---------------~Non- I 
I Label I Label larithmetic I 
~-------------+---------------~ I 
I Pointer I Pointer I I L _____________ ~ _______________ ~ ___________ J 

Figure 33. Types of Data Items 

60 

Data Items 

Figure 33 shows the types of data iterrs 
that require storage. In the following 
text, the storage requirerr!ents for each of 
these items are specified and illustrated 
by means of examples.. The storage 
requirements given in these examples per
tainto the data only. Unless otherwise 
stated, references to coded arithmetic and 
string data appiy to both variables and 
constants. ether data types will have 
constants and variables explicitly dif
ferentiated in regard to storage 
requirements. 

CODED ARITHMETIC DATA 

Default precision = 15 bits 
Maximum precision: 31 bits 
Storage requirements: 

1. DesCfl:!2!:Qf 
3 bytes (if required) 

2. Data 
4-bytes internal fixed-point regard
less of declared or default precision. 
Scale factor ~E~!:_~Q! be specified. 

Figure 34 shows the storage require
ments for the binary fixed data declared 
in the following sarople statement: 

DECLARE I(S,S}, A FIXED BINA~Y(7), 
J STATIC, Z(3) FIXED BINARY(27); 

r----T---------------T--------------T-----' 
IDATAI DECLARED I DEFAULT I I 
IITEMI ATTRIBUTES I ATTRIBUTES I BYTES I 
~----+---------------+--------------+-----~ 
I I 1 Dimension (S", 5) f FIXED BINARY I 160 I 
I I IPrecision (15)1 I 
~----+---------------+--------------+-----~ 
I A IFIXED BINARY INcne I 4 I 
t 1 Precision (7) I I I 
~----+---------------+--------------+-----~ 
I J I STATIC IFIXED BINARY ! 4 I 
I I IPrecision (is)! I 
~----+--------------.+--------------+-----~ 
I Z IDimension (3) I None I 12 I 
I IFIXED BINARY I I I 
I IPrecision (27) I I I 
~----~---------------~--------------~-----1 
I TOTAL lS0 I L _________________________________________ J 

Figure 34. Example of Binary Fixed Data 



l2~£!'!!!~!_~!!~9 

Default precision: (S,O) 
Maximum precision: (15.0) 
Storage requirements: 

1. Q~~£;:!e:!:Q;: 
3 bytes (if required) 

2. Data 
Packed decimal form --
4 bits = 1/2 byte for each digit. The 
sign is always stored and requires 1/2 
byte. The total storage required must 
be expressible in byte form, i.e., 
+5.2 requires 2 bytes (1/2 byte for 
the sign, 1 byte for the two digits, 
112 byte padding). 
Scale factor range: 0 to 15 (if 
present) • 

Figure 35 shows the storage require
ments for the decimal fixed data declared 
in the following sample statement: 

DECLARE A FIXED, B(5,2,3) FIXED, I FIXED 
STA.TIC, QFIXED(14,2); 

r----T---------------T--------·------T-----' 
I DA.TA.I DECLARED I DEFAULT I 1 
I ITEM I A.TTRIBUTES I ATTRIBUTES I BYTES) 
~----+---------------+--------------+-----~ 
I A jFIXED iDECIMAL i I 
I I I Precision (5, 0) I 3 I 
~----+---------------+--------------+-----~ 
I B I Dimension I DECIMAL I I 
I I (5 .. 2,3) IPrecision(5,O) I 90 I 
I I FIXED I I I 
t----+--~------------+-----------~--+-----~ 
I I IFIXED STATIC I DECIMAL I I 
I I IPrecision(5,0) I 3 I 
~----+------=--------+--------------+-----~ 
I Q JFIXED 1 DECIMAL I 8 I 
I IPrecision(14,2) I t I 
~----~---------------~----------~---~-----~ 
I TOTAL 104 I 
l _________ ~-------------------------------J 

Figure 35. Example of Decimai Fixed Data 

~!!!~f~_~!Q~:!: 

Default precision: 21 bits 
Maximum precision: 53 bits 
Storage requi"xements: 

1. Q~~£!!E:!:2! 
2 bytes (if required) 

2. Data 
Hexadecimal floating-point form (see 
the SRL publication I~~_2y~:!:~!!!/3~~L 
~!!!!£!E!~~_2!_Q£~!~E!Q~. Order No. 
A.22-6821). 
a. Short floating-point form (4 

bytes) used for a precision of 
less than 22 bits.-

b. Long floating-point form (8 bytes) 
used for a precision of greater 
than 21 bits. 

Figure 36 shows the storage require
ments for the binary float data declared 
in the following sample statement: 

DECLARE A BINARY, B BINARY(29), C(2,S) 
BINARY(16), D FLOAT BINARY(50); 

r----T---------------T--------------T-----' 
IDATAI DECLARED 1 DEFAULT 1 1 
IITEMI ATTRIBUTES I ATTRIBUTES I BYTES 1 
~----+---------------+--------------+-----~ 
I A 1 BINARY I FLOAT 1 4 1 
I 1 IPrecision (21)1 1 
~----+---------------+--------------+-----~ 
I B I BINARY I FLOAT I 8 I 
1 I Precision (29) I I 1 
~----+---------------+--------------+-----~ 
\ C IDimension (2,5)IFLOAT t 40 I 
1 \ BINARY l I I 
I IPrecision (16) \ I I 
~----+---------------+--------------+-----~ 
1 D IBINARY FLOAT INone 1 8 I 
I \Precision (50) I I r 
~----~---------------~--------------~-----~ 
\ TOTAL 60 1 L _________________________________________ J 

Figure 36. Example of Binary Float Data 

De£!!!}~l Fl2~~ 

Default precision: 6 decimal digits 
Maximum precision: 16 decimal digits 
Storage requirements: 

1. ~~!!£f!E~2f 
2 bytes (if required) 

2. Data 
a:--Short form (4 bytes) used for less 

than 7 decimal digits. 
b. Long form (8 bytes) used for more 

than 6 decimal digits. 

Figure 37 shows the storage require
ments for the decimal float data declared 
in the following sample statement: 

DECLARE A(5,3), B FLOAT(8), 
C DECIMAL(14), D; 

r----T---------------T--------------T-----' 
IDATAI DECLARED I DEFA.ULT I I 
IITEMI ATTRIBUTES 1 ATTRIBUTES 1 BYTES 1 
~----+---------------+--------------+-----~ 
1 A IDimension (S,3) I DECIMAL FLOAT f 60 I 
I 1 IPrecision (6)1 I 
~----+---------------+---~----------+-----~ 
I B I FLOAT 1 DECIMAL I 8 1 
\ IPrecision (8) I I I 
~----+---------------t----~---------+-----~ 
I C 1 DECIMAL I FLOAT 1 8 I 
\ IPrecision (14) 1 \ I 
~----+---------------+--------------+-----~ 
1 D I None IDECIMAL FLOAT \ 4 1 
t 1 \precision (6) I I 
~----~---------------i--------------~-----i 
I TOTAL 80 I l ____________ ~ ____________________________ J 

Figure 37. Example of Decimal Float Data 

Data storage Requirements 61 



NUMERIC (PICTURE-SPECIFIED) DATA 

Default precision: not applicable 
Maximum length: after resolution of all 

replications, the picture-specified num
eric field must not be greater than 32 
characters. The number of possible 
picture-specified digit positions 
ri,... ___ ...:1 ___ 'r'_'Sk_.a..."h __ ........... _ ,:"... •• _1- __ .: __ ... ___ .!_ 

uc~cuuv uu wuc .... UC.l.. .... ~.lC UUlllUC.l.. ..1.0::> lJUlllc.1...1.\,; 

fixed (15 digits) or numeric float (16 
digits) .. 

Storage requirements: 

1· • Q~~£E!F2!::QE 
a. Fixed-point data -- one byte for 

each picture character plus 8 to 
20 bytes, with an average of 12 
additional bytes (if required). 

b. Floating-point data -- one byte 
for each picture character plus 20 
to 44 bytes, with an average of 24 
additional bytes (if required). 

c. Numeric sterling data -- one byte 
for each picture character plus 4 
bytes (if required). 

2.. Data 
one-byte for eacn picture character 
except for M, V, K, and G. 

Figure 38 shows the storage require
ments for the numeric data declared in the 
following sample statement: 

DECLARE A PICTURE 1$99.99'. B PICTURE 
'(8)9VC4)9', C PICTURE '.99K+99', D 
PICTURE i ZZ 99B9(2)B.9,99'; 

r----T---------------T-----~--------T-----l 
I I BEFORE I AFTER I I 
I DATAl REPLICATION I REPLICATION I I 
IITEMI RESOLUTION I RESOLUTION I BYTESI 
t----f---------------+--------------+-----~ 
I A 1$99.99 ISame ~ 6 I 
~----+-----~---------+--------------+-----~ 
I B I (8) 9V (4) 9 199999999V9999 I 12 I 
t----+----~----------+----~---------+-----~ 
I C 1.99K+99 ISame I 6 I 
~----+---------------+--------------+-----~ 
I D IZZ99B9(2)B.9,99IZZ99B9BB.9,99 I 13 I 
t----~-~-------------~--------------~-----~ 
I TOTAL 37 I L _________________________________________ J 

Figure 38. Example of Numeric Data 

STRING DATA 

Default precision: not applicable 
Minimum length: 1 cnaracter 
Maximum length: 255 characters 
Storage requirements: 

1. Q~~£E!F2!QE 
2 bytes (if required) 

62 

2. Data 
I-byte per character 

Figure 39 shows the storage require
ments for the character-string data de
clared in the following sample statement: 

DECLARE A(5) CHARACTER(20), B CHARACTER 
I ~ ....... '\. _ 
'..1..L.LJi 

i-----------T------------------~--T-------l 
I DATA ITEM I DECLARED ATTRIBUTES I BYTES I 
~-----~-----+--=-~----------------+-------~ 
I A I Dimension (5) I 100 I 
I I CHARACTER (20) I I 
t-----------+---------------------+-------~ 
I B k CHARACTER (111) I 111 I 
t-----------~---------------------~-------~ 
I TOTAL 211 I L _________________________________________ j 

Figure 39. Example of Character-String 
Data 

Default precision: not applicable 
Minimum length: 1 bit 
Maximum length: 64 bits 
Storage requirements: 

1. Q~sc!:.!12!::2!: 
2 bytes (if required) 

2.. Data 
I-byte for each group of 8 bits or 
part thereof. Packed format is ~!:: 
permitted. 

Figure 40 shows the storage require
ments for the bit-string data declared in 
the following sample statement: 

DECLARE A BIT(12), B (11,7,2) BIT (1); 

r-----------T---------------------T-------, 
I DATA ITEM I DECLARED ATTRIBUTES I BYTES 1 
t-----------+---------------------+-------~ 
I A I BIT (12) I 2 I 
t-----------+---------------------+-------~ 
I B I Dimension (11,7,2) I 15q I 
I I BIT (1) I I 
~-----------~---------------------~-------~ 
I TOTAL 156 1 L _________________________________________ J 

Figure 40. Example of Bit-String Data 

R!£!~Ee-§E~£!~ie~£h~!~ct~!:=st!!~Qat~ 

Default precision: not applicable 
Minimum length: 1 character 
Maximum length: 255 characters 
Storage requirements: 

1. Q~~£!:!Ei2!: 
2 bytes (if required) 

2. Data 
I-byte per character 



Figure 41 shows the storage require
ments for the picture-specified character
string data declared in the following 
sample statement: 

DECLARE A PICTURE '(105}X', B 
CHARACTER(105); 

r-----------T---------------------T-------, 
I DATA ITEM I DECLARED ATTRIBUTES I BYTES I 
~~----------+---------------------+-------~ 
I A I PICTURE • (105) X' I 105 I 
~----------~+---------------------+-------~ 
I B 1 CHARACTER (105) I 105 I 
~-----------L---------------------L-------~ 
I TOTAL 210 I L _________________________________________ J 

Figure 41. Example of Both Character
String and Picture-Specified 
Character-String Data 

LABEL DATA 

1~!?~!_Y:~!:!~Q!~~ 

Default precision: not app~icable 
Maximum precision: not applicable 
Storage requirements: 8 bytes 

Label Constants 
-...,----~-------

Default precision: not applicable 
Maximum precision: not applicable 
Storage requirements: 8 bytes for each 
occurrence of the label in an assignment 
statement or in a GO TO statement refer
ring to a label that is not contained in 
the block containing the GO TO statement. 
Label constants in R format items require 
4 bytes. A·II other label constants do not 
require storage. 

Figure 42 shows the storage require
ments for the label data declared in the 
following sample statement: 

DECLARE A LABEL, B(7) LABEL; 

r-----------T---------------------T-------, 
I DATA ITEM I DECLARED ATTRIBUTES I BYTES I 
~-----------+---------------------+-------~ 
! A I LABEL I 8 I 
~-----~-----+---------------------+-------~ 
I B I Dimension (7) I 56 I 
I I LABEL I I 
~-----------L---------------------L-------~ 
I TOTAL 64 I L _________________________________________ J 

Figure 42. Example of Label Data 

POINTER VARIABLES 

Default precision: not applicable 
Maximum prec1s10n: not applicable 
Storage requirements: 4 bytes 

Figure 43 shows the storage require
ments for the pointer variable declared in 
the following sample statement: 

DECLARE P PCINTER, A BASED (P) FLOAT; 

r----T-------~-------T--------------T-----' 
I DATA I DECLARED I DEFAULT I I 
IITEMI ATTRIBUTES I ATTRIBU~ES IBYTESI 

~----+---------------+--------------+-----~ 
I P I POI NTER I None 1 4 I 
~----L-----~---------L--------------L-----~ 
I TOTAL 4 I L _________________________________________ J 

Figure 43. Example of Pointer Data 

Data Storage Depending on Storage Class 

STATIC and AU~OMATIC data require the same 
amount of storage. No storage is required 
for BASED data. However, accessing based 
variables by means of pointers requires 4 
extra bytes per reference compared with 
the other storage classes. 

Storage of External Data 

Each distinct EXTERNAL variable, array, or 
structure requires storage in multiples of 
8 bytes, since padding to the next double
word boundary is required if the length of 
the EXTERNAL data item is not 8 or a mul
tiple of 8 bytes. Figure 44 shows the 
storage requirements of the EXTERNAL data 
declared in the following sample 
statement: 

DECLARE (A BIT{ 2), B( 3, .2, 3) CHARACTER (2), 
C CHARACTER (9), D FLOAT (14) 0' E" 
F PICTURE '$99.99', G FIXED DECIMAL 
(13,2» EXTERNAL; 

r----------T------------------------------, 
I I BYTE REQUIRED I 
I ~---------T---------T----------i 
I VARIABLE I DATA I I I 
I I STORAGE I PADDING I TOTAL I 
~----------+---------+---------+--~-------i 
I A I 1 I 7 I 8 I 
~----------+---------+---------+----------~ 
I B \. 36 I 4 I 40 I 
~----------+---------+---------+----------i 
I C I 9 I 7 I 16 I 
~----------+---------+---------+----------~ 
I D I 8 I 0 I 8 I 
.----------+---------+---------+----------~ 
I E I 4 I 4 \ 8 I 
~----------+---------+---------+----------~ 
I F I 6 I 2 I 8 I 
~----------+---------+---------+----------i 
! G I 7 t 1 I 8 I L __________ L _________ L _________ L __________ J 

Figure 44. Example of External Data 
Storage 

Data Storage Requirements 63 



Use of Constants in The Source Text 

Constants may appear in the source text 
wherever an expression is permitted. In 
addition, they-may appear as replication 
factors, upper bounds of a subscript range 
in the dimension attribute of an array, 
etc. Appearance and representation of 
constants in the object program depends 
entirely on their representation and con
text in the source program. Only the fol
lowing three cases are of concern to the 
programm'er: 

1. If a, constant appears in the source 
text as an argument in a function or 
subroutine procedure, its object-time 
representation is, derived directly 
from the source-program representa
tion. For example, the statement 

CALL A (1.5, 3.7E-4, 110011B); 

results in an object-time FIXED DECIM
AL representation of the constant 1.5, 
a FLOAT DECIM'AL (short float) repre
sentation of the constant 3.7E-4~ and 
a FIXED BINARY representation of the 
constant 110011B. 

Note: If arguments are written as 
constants, these constants are trans
mitted to the called routine in coded 
form and with the precision derived 
from the source text representation. 
The called routine, in turn, assumes a 
certain internal representation of the 
argument as specified in the parameter 
declaration. The user must therefore 
ensure that base, scale, and precision 
of both arguments and parameters 
match. For instance, declaring the 
first parameter in the above example 
as FIXED (7,l) might lead to an 
object-time error because the called 
program assumes an argument ,that occu
pies 4 bytes, whereas the constant 1.5 
occupies only 2 bytes. 

2. If a constant appears in the source 
text as the upper bound of an array 
subscript, the appearance of this con
stant in the object program depends on 
how the exoression used in this sub
script position is empioyed in the 
remainder of the source text. At 
best, no constant appears at object 
time for any upper bound. In the most 

64 

unfavorable case, a FIXED BINARY con
stant appears in the object program 
for every upper bound in the dimension 
attribute of the DECLARE statement. 
Thus, 

DECLARE 7\ (r:.. 
n \,J, 

.., 'l' 
fl kl, 

may result in. at most, five FIXED 
BINARY constants in the ObJect pro
gram. At best* no object-time con
stant will appear for the five upper 
bounds in the source text. 

3. An object-time constant is derived 
from each source-text constant of a 
certain base, scale, and precision. 
However, case, scale, and precision of 
the object-time constant depend 
entirely on the context in which it is 
usede For example, the statements 

DECLARE A BINARY; 
A = 1.7: 

cause the constant 1.7 to be stored in 
the object program in floating-point 
form, even though the source-text 
representation is fixed decimal. This 
shows that identically represented 
source-text constants may be converted 
at compile time into a number of dif
ferent object-time constants (this 
does not apply to constants in DO 
iteration specifications). For 
instance, the following samFle 
statements 

DECLARE A FIXED DECIMAL, 
B BINARY, C FIXED BINARY; 

A = 2; 
B = 2: 
C = 2; 

result in three different object-time 
representations of the single compile
time constant 2. On the other hand, 
constants of equal value, base, scale, 
and precision -are stored only once in 
the object program unless NOOPT has 
been specified in the PL/I PROCESS 
card. When in doubt about constants 
which appear similar, e.g., 1.2E+7 as 
opposed to 12000000, the programmer 
should review the question of preci
sion of arithmetic constants in the 
Subset language publication. 



This section discusses the location of a 
variable in relation to other variables. 
The location of data with respect to the 
entire program is discussed in the section 
~fQ9f~~_QyerQ~ad. 

~Q~g9~fy~g~g~!f~~~gE~ 

In the object program, variables that are 
not part of a structure are grouped 
according to certain rules referred to as 
boundary requirements, which depend on the 
hardware configuration of the system used. 
For the System/360, the largest unit of 
storage is the "double word" (8 bytes), 
which must always be on a double-word 
boundary (double-word aligned). That is, 
the first byte of any double word in 
storage must be·on an address divisible by 
8. "Full words" (4 bytes) must be full
word aligned, i.e., the first byte of any 
full word in storage must be on an address 
divisible by 4. Bit strings, as another 
example, must be byte aligned, i.e., they 
may occur on any byte boundary. If any 
machine address divisible by 8 is chosen 
as arbitrary byte 0, the above boundary 
requirements can be reduced to the 
following: 

• double-word aligned data may appear on 
any byte 0; 

• full-word aligned data may appear on 
any byte 0" 4, 0, 4,. etc.; and 

• byte-aligned data may appear on any 
byte O. 1, 2, 3, ••• 7., 0, etc. 

Storage Mapping - Element Data 

To minimize padding between element data 
items, the DOS/TOS PL/I compiler gathers -
as far as possible - all element data 
items that are subject to the same boun
dary requirements. This is done regard
less of the point of declaration within 
the program. 

The following discusses the possibili
ties of mapping elementary data items gQ£ 
£2~£~!n~9~in_~~!~£~~re~-2!~!!~y~ and 
should be understood as an introduction to 
the mapping of structures. 

Much storage can be saved by economic
ally arranging the individual data types. 
Consider the following example: 

A BIT(2), B, C BIT(9), D; 

The result of left-to-right storage 
allocation is illustrated in Figure 45. 

Data Storage Mapping 

The total storage requirement in this 
example is 16 bytes. of which 5 are used 
for padding~ 

.A 

o 4 6 7 0 2 4 5 6 7 

Figure 45. storage Allocation Example 1 

Rearranging the variables as follows: 

A BIT(2), C BIT(9)~ B. Dj 

results in a reduction of the total 
storage requirements to 12 bytes with only 
one padding byte. Figure 46 illustrates 
the storage allocation. 

o 4 5 6 7 0 2 

Figure 46. Storage Allocation Example 2 

Finally, assume that the variables were 
rearranged as follows: 

B~ D. A BIT(2), C BIT(9); 

This is the way in which the DOS/TOS PL/I 
compiler gathers elementary data items not 
contained in arrays or structures. The 
tot'al storage requirements would be 
reduced to 11 bytes without any padding. 
The storage allocation is shown in Figure 
47. 

BOA C 
~~,..-A-..~ 

I ! ! ! I ! ! ! I I ! I 
o 2 4 5 6 7 0 

Figure 47. Storage Allocation Example 3 

Storage Mapping - Arrays 

The storage requirement of an array equals 
the sum of the requirements of the indivi
dual data items contained in the array. 
Bit-string data items are aligned on byte 
boundary. Thus, the storage requirement 
of the array declared in the statement 

DECLARE A(5,4,3) BIT(9); 

can. be calculated as follows: The number 
of data items in the array is 5x4x3=60. 
Due to boundary alignment, each item 
requires 2 bytes. Total storage require
ment: 2x60=120 bytes. 

Data Storage Mapping 65 



The individual items of an array are 
stored in major row sequence. For-the 
above example, this means that the items 
are stored as follows: 

A(l,l,l) 
1'\.(1,1,2) 

nrc" 11 ')\ ..... "-,-,,.&,., 
A(5,4,3) 

Storage Mapping - Structures 

To minimize padding, the DOS/TOS PL/I com
piler gathers - as far as possible - all 
elementary data items that are subject to 
the same boundary requirements. 

In the declaration of a structure, such 
gathering of data is not performed because 
a structure is regarded as one record, and 
the programmer might wish to predestine 
the relative position of every data item 
within that record, e.g., in a punched 
card. Thus, the statement below results 
in the storage allocation illustrated in 
Figure 48. The total storage requirement 
is 12 bytes, including 3 padding bytes. 

DECL~RE 1 ~ ~LIGNED# 2 B, 2 C BIT(l), 2 0; 

B C 
~,.J"-... 

Ii! ! I i 
o 4 

o 
~ 

I ! ! I I 
a 7 0 

Figure 48. Storage Allocation Example 4 

In this example, structure A, which has 
the unused 3 bytes between C and 0, can be 
thought of as a record without any editing 
descriptors for the components B, C~ and 
D. It should not be thought of as a bit 
string because .this might lead the pro
grammer to erroneously assume that the 
first bit of the byte following C is the 
first bit of D. 

~Qg!£~!_Q~e~h_COn£~E~ 

In the following discussion, the term 
nlogical depthn is used to describe the 
level number of a minor structure or ele
mentary data item relative to the level of 
the major structure. A minor structure or 
elementary data item can have a high level 
number but be at a relatively low logical 
depth. For instance, in the following 
sample declaration: 

DECLARE 1 A, 
15 B, 
15 C, 

95 0, 
95 E, 

15 F, 
31 G, 

66 

31 H, 
45 I, 
45 J, 

54 K. 
54 L; 

structure J has components at logical 
depth 5 although the ~eve~ number is 54 • 
The logical depth of these components is 
greater than that of the components of 
structure C (3), even though their level 
number (54) is not as high. 

When mapping a major structure, first 
map all minor structures at greatest log
ical depth n. Then continue with mapping 
the minor structures at logical depth n-1. 
The components that form the minor struc
ture at logical depth n-1 consist of: 

1. elementary items at logical depth n, 
and 

2. minor structure-s at logical depth nr 
which have already been mapped. 

After mapping the minor structures at 
logical depth n-1, proceed by mapping all 
minor structures at logical depth n-2. 
Again, the components that form the minor 
structure at logical depth n-2 consist of: 

1. elementary items at logical depth n-1, 
and 

2. minor structures at logical depth n-1, 
which have already been mapped and 
contain the mapped structures at log
ical depth n. 

Continuing this process leads to the 
major structure, which is at logical 
depth 1. Mapping of the major structure 
is done by joining the corrponents at log
ical depth 2. These components consist 
of: 

1. elementary items logical depth 2, and 

2. minor structures at logical depth 2, 
which have already been mapped and 
contain the mapped structures at log
ical depth 3. These~ in ~urn~ contain 
the mapped s-tructures at logical depth 
4" etc. 

The storage mapping of structures is 
done according to the set of rules listed 
below. In the mapping process, a com
ponent (or a group of partially mapped 
components) may be shifted to minimize the 
padding that may be required between the 
component and the component to be 
appended. The opportunity or potential 
for such shifting depends on the stringen
cy level of the element to be appended. 
The amount of shifting that is permissible 



r-----------------T-----------------T---------------T-----------T---------------T-------, 
I Variable tStored Internally I Storage I Alignment I Istrin- I 
I Type I as I Requirement1 I Requirement I Explanation Igency I 
, I I (in Bytes) I I I Level , 
~-----------------+-----------------+---------------+-----------+---------------+-------~ 
I BIT(n) 2 lOne byte for each, n I I I I 
I Igroup of 8 bits ,CEIL --- I I 'I 
I I (or part thereof) , 8 I I 'I 
~-----------------+-----------------+---------------1 I I I 
I CHARACTER(n) lOne byte per I n l I I I 
I I character I I I Data may I I 
~-----------------+-----------------+------------.---~ I begin on I I 
I PICTURE lOne byte for eachlNumber of I Byte I any byte I 1 I 
I I PICTURE character I PICTURE charac-I I I' 
, lexcept M,V,K,G Iters other than I I I I 
I I I M, V, K, and G I ~ I I 
~-----------------+-----------------+---------------~ I I I 
IDECIMAL FIXED 11/2 byte per I w+1 I I I I 
I (w, d) I digit plus 1/2 I CEIL I I I I 
I I byte for sign I 2 I I I I 
~-----------------+-----------------+---------------+-----------+~--------------+-------~ 
IBINARY FIXED (w) IBinary integer I I I I I 
~-----------------+-----------------~ I I I I 
I BINARY FLOAT (w) I , I I Data must I I 
, w < 22 ,Short ,4 I Full-word I begin on I I 
~-----------------~floating point , I I byte 0 or 4 I I 
I DECIMAL FLOAT (w) I , , I , 2 \ 
\ w < 7 I I I I I I 
~-----------------+-----------------+---------------~ I I I 
I LABEL \ I 8 I I I I 
~-----------------+-----------------+---------------+-----------+---------------~ I 
iPOINTER I I 4 ! Full-word! Data must I I 
I I I \ (right- I begin on \ I 
\ I I I adjusted) I byte 0 or 4 I I 
~-----------------+-----------------+---------------+-----------+---------------+-------~ 
I BINARY FLOAT (w) \ I I I I I 
I 21 < w < 54 I I I I Data must \ \ 
~-----------------~Long I 8 I Double- I begin on \ 3 I 
IDECIMAL FLOAT (w)lfloating point I I word I byte 0 I I 
I 6 < w < 17 I I I II I 
~-----------------~-----------------~---------------~-----------~---------------~-------~ 
\1See ~E2!:~g~_2!_~?SE~f!!~1_DaE~ for data declared with attribute EXTERNAL. I 
12 Structures containing bit strings must have the attribute ALIGNED because the default I 
I attribute (UNALIGNED) is not permitted in the PL/I Subset language. I L _____ ~ _________________________________________________________________________________ J 

Figure 49. Summary of Data Alignment Requirements and Stringency Levels 

is determined by the alignment require~ 
ments of the element(s) to be shifted. 

Both the stringency level number and 
the alignment requirements for the indivi
dual data items are shown in Figure 49. 

1. Locate the first minor structure of 
the greatest !Qgic~1 depth. (See 
Figure 50, part A. The declaration 
shown is used throughout the figure.) 

2. Begin the map with the first element 
of this minor structure. The map 
begins on byte zero (See Figure 50, 
part. B). 

3. Append the next element of the minor 
structure at the first following byte 
position where it may be legally 
placed. This byte position is deter
mined by the alignment requirement of 
the element to be ~ppended. (See 
Figure 50, part B.) 

4. Owing to the alignment requirement" 
some unused space (padding) may result 
between the first and the appended 
element. The preceding element may 
then be shifted to the right provided 
the alignment requirement of that ele
ment is still satisfied after the 
shifting. If no shifting or only a 
partial shifting is permissible, the 
padding remains there permanently. 
(See Figure 50, part B.) 

Data Storage Mapping 67 



5. The elements so mapped are now per
manently joined and may be considered 
a single element. The alignment 
requirement of the joined items is 
that of the iLern of higher stringency 
level. 

6. Repeat rules 3 and q for ~ll remaining 
elements of the minor structure. (See 
Figure 50, part B.) 

1. Repeat rules 2 through 6 for all minor 
structures of the same logical depth. 
Map all minor structures individually. 
(See Figure 50, part C.) 

8. Repeat rules 2 through 7 for the minor 
structures of the next higher logical 
depth. Elementary items are appended 
according to rules 3 and 4. Minor 
structures are appended beginning at 
the byte position they had when they 
were previously mapped. padding 
between the two elements, if any, is 
removed by 

a. shifting the succeeding element as 
far to the left as its alignment 
requirement permits, and 

b. shifting the preceding element as 
far to the right as its alignment 
requirement permits. 

J 

Any padding that remains after these 
two shifting processes remains there 
permanently. (See Figure 50, part D.) 

9. Continue this repetitive process until 
all minor structures are mapped. (See 
Figure 50, part E.) 

10. Map the major structure as if mapping 
a minor structure. (see Figure 50, 
part F.) 

11. If the shifted structure does not 
begin on byte zero, pad to the left 
until byte zero is reached. This is 
the physical beginning of the struc
ture. However, the name of the maior 
~~~g2~gf~_~till_E2In!~=!Q_the !Ir§~-
£Q~E2~~~~_Q!_ih~~tr~£t££~·

12. The first element of the structure
must begin on byte zero of the struc
ture being mapped if the structure is
a based variable and the pointer vari
able associated with it appears in the
SET clause of a READ or LOCATE state
ment. In this case. the user must
make sure that the structure begins on
byte zero. Padding, if required, is
best done with a dummy variable of the
CHARACTER type. (See Figure 50, part
G.)

@ DECLARE 1 A ALIGNED,
2 B DECIMAL FIXED (11),
2 -C,

3 0 BIT (4),

® .0 0.1, No.2 _-""_ r_ ~1 Rule No.2

o 3 3 E PICTURE '(8)9V(4)9' I
3 F,

" G lASEl,
"H PICTURE '9.9KS99' ,
4 I,

Start here - 5 J BIT (7) I
(Rule No.1) 5 K FLOAT (6),

5 L BINARY (32),
4 M,

~ Q,

5 N CHARACTER (4),
5 0 FIXED (7,3),
5 P FLOAT (16),

3 R BIT (7),
3 S,

~ !, ~~:~~, 1M'
.. V ClII"4I"\r\.1 \LV/,

4 V FLOAT (9) I

3 W CHARACTER (3),
2 X DECIMAL (6);

Sample Declaration

J K

L-...---. f 1 Rule No.3

o 3 4

.... I~_J __ IL--~..&r---'L--~I Rule No.4

.4 6

J K

7
I Rule No.6

Application of Structure Mapping Rules NCII. 2-6

Figure 500 Example of Structure Storage Mapping (Part 1 of 2)

68

N 0

M
Rule No.6

Application of Structure Mopping Rule No.7

I
I

@

®

®

G

r Rule No.2 f Rule No.2

4 6 7 0 4 6 7

G H U

IJ);1 Rule No.3 tnt: Rule No.3

0 1 6 4 0 1 6 7 o 2

~H I T+U V

r I ~ ! I Rule No.6 f I : «~~'"'---'---'-~
0 4 5 6 .4 6 7 0 1 2 4 5 6 7 0 3 4 5 6

Rule No. 6
V ... , ~H T:U

~ ~ , ... ,

IJJEIUlLCI Rule No.8 TIn I I Rule No. '"

4 .e 0 4 6 7 4

~,-...;.4--:5:......::0 __ 1 __ -=-_3;;..,v 4 6 7 0 1 6 7,

Applicotion of Structure Mapping Rule No. 8

D n Rule No.2

D

-L-I~--,-I--'--~--'---J--...!.-f!..-..!.l_:'---'-=~l Rule No.
3 1

4 I
D+E

1 3 4

o

4 5 6

D+E F

il1J=rTIi1 Rule No.4

7023,,4567,

C

I
NO.6~

I
I
I
I

5 0 7 0

R

4 5 6 7

R n Rule No. 2

o

o 3 4 5 6

R S

CJ:IT[l
4 5 6 7

R+S W
,.....--"-----.

Rule No.3

Rule No.8

~---LlH(! I ! ! I Rule No.6

4 5 6 7 0

Q

Application of Structure Mapping Rule No.9

Rule No.2

4

Rule No.3

7 0 6

C Q

B+CI-Q x

A

©
A

If one of the conditions specified in Structure Mapping Rule
No. 12 were applicable to structure A, the leoding padding
byte could be removed by inserting a dummy variable as
follows;

DECLARE 1 A AUGNED,

2 PAD CHARACTER(I),

2 B DECIMAL FIXED (11),

2 C,

The unused character variable PAD now occupies byte 0 so
that the requirements of Rule No. 12 are met.

'--________ A_pp_l_ic_a_ti_on __ of __ St_ru_c_!u_re __ ~ __ pp_i_n9 __ R_ul_e_N_o_._l_O ___________________________ ~1 l __________________ s ____________ ~_I __ ~ __ ~ __________________ ~ . . Application of tructure Mapping u e o. 1

Figure 50. Example of Structure Storage Mapping (Part 2 of 2)

Data Storage Mapping 69

Subroutine Storage Requirements

Three types of subroutines may be required
in a program:

1. Conversion subroutines.

2. Subroutines called by built-in func
tion names~ pseudo variables, and
other implied subroutine calls.

3. Subroutines called by I/O statements.

Conversion Subroutines

Conversion subrcutine~ are required in the
object program when certain conversions
are implicitly requested in the source
text. For example, the statements

DECLARE A FIXED BINARY. B FIXED, C
BINARY;

A = B .+ C;

imply that B is to be converted to binary
float before being added to C, and that
the sum is to be converted to fixed binary
before being stored in A.

The 18 conversion subroutines (see
Appendix A) can perform every kind of data
conversion permitted in the PL/I Subset
language. Appendix B lists all possible
combinations of data conversion and shows
which subroutines are required to perform
such convers~ons. For instance, the conv
ersion from numeric float to numeric fixed
decimal requires subroutines 4, 5, and 12.
Subroutine 5 converts from numeric float
to an -internal intermediate form. Subrou
tine 4 converts from this internal inter
mediate form to coded fixed· decimal. Sub
routine 12 converts from coded fixed
decimal to numeric fixed decimal.

~2~~: In some cases it may happen that no
subroutine is used at object time although
the condition for its inclusion was satis
fied. In these cases, the user has over
estimated his storage requirements.

~y~!~g~_~Qnv~~siQB_B~~!~~~n~~

A system used for sci~ntific purposes will
normally use subroutines 1, 2, 7, 8, 9,
10, and possibly 17 and 18, with a total
storage requirement of approximately 2K
for an average program.

A system used for commercial purposes
will most likely use subroutines 11 and 12
with a total storage requirement of appro
ximately .7K for an average program.

70

Built-in Functions, Pseudo-Variables, And
Other Implied Subroutine Calls

Certain built-in functions and pseudo
variables require an object-time subrou
tine for proper functioning. Some of the
built-in functions only allow float argu
ments. If an argument is not in this
form, it is converted before the subrou
tine is activated.

The source text operator ** is an
implicit request for an exponentiation
subroutine and, depending on the attri
butes of the ar~uments, six different sub
routines co"uld be required ..

All information required for this type
of subroutines is listed in Appendix c.

Depending on the specific arguments,
some functions that are rr.arked IL mayor
may not require subroutines, For
instance. a fixed first argument in the
FIXED function would not require a subrou
tine, whereas a float first argument most
probably would. However, the subroutine
used is a conversion subroutine rather
than a function subroutine.

The object-time subroutines are cata
loged in the relocatable library. The
programmer can find the module name in the
entry-points column. If Q module has more
than one entry point, the module name is
written first.

Note: For s.ome mathematical functions.
the-programmer may be interested in
details such as error statistics and
algorithms. For such details refer to the
SRL publication IBM System/360~ratiug
§y~!~~L-PL/I Library Computational Subrou
tines, Order No. GC28-6590. The DOS/TOS
PL/I-compiler uses the same algorithms as
the OS PL/I compiler. Where apFlicable,
the respective internal names of the OS
PL/Icompiler subroutines are given in
parentheses in the rightmost column of
Appendix c.

§E~£ia1-~2~~Begarging_£Q~E~tibili!y

Certain built-in functions available in
the full PL/I language are not available
in the PL/I Subset language~ Thus, if the
name of a user-written function procedure
happens to be the same as that of an
unavailable built-in function. the user
written function procedure is called if
the program was compiled by means of the
DOS/TOS PL/I compiler because the built-in

function of that name is not available.
However, if this program were compiled by
means of the as PL/I compiler, the built
in function of that name -- which, in this
case, is available -- would be called.
For example:

1\: PROCEDURE;

x REA.L{Y);

END;

REA.L is a function procedure. If this
procedure is compiled by means of the as
PL/I compiler, the built-in function REAL

is called. Therefore, user-written func
tion procedures should be named in such a
manner as to avoid these complications.

Subroutines Called by I/O Statements

Subroutines may be called by I/O source
statements for use at object time. The
library subroutines that may be called are
listed and described in Appendix D.

Care should be taken that any subrou
tine called by an I/O statement does not
itself contain an I/O statement, a PUT/GET
STRING statement, or invoke another sub
routine containing such a statement.

Subroutine Storage Requirements 71

I/O Storage Requirements

This section provides the information that
allows the user to determine the amount of
storage required for I/O purposes at
object time, Object-time core storage is
required

1. as a function of the file declaration
itself. and

2. by library subroutines called by I/O
statements, such as GET, PUT, etc.

The library subroutines called by I/O
statements are listed in Appendix D.

File Declarations

Each file declaration requires four items:

1. Buffers (if required)
2; DTF table
3. Appendage
4. IOCS logic module

The first three items are unique to
each declaration. The fourth may be used
by various file declarations.

BUFFERS

The number of buffers and the correspond
ing storage requirements directly derive
from the file declaration.

For files other than REGIONAL or INDE
XED, the buffer size is equal to the block
size specified in th~ F, V, or U option.
Thus, 80 bytes are required with the
option F(SO) •. If, in addition, the option
BUFFERS(2) is used, the storage require
ments for the buffers of this file are
doubled. The total storage required for
such files equals the sum of the storage
requirements for all buffers used for all
these files.

~2te: No buffer stoLage is requirea 1I

the F or U option is used with unbuffered
files.

Additional buffer storage (8 * number
of extents) is set aside for REGIONAL
files.

For REGIONAL(3) files the key length
must be added to the buffer length.

The buffer storage requirements for
indexed files can be calculated according
to the following formulas:

72

unblocked: recsize+2* keylength+l0
blocked: MAXCblocksize,keylength+l0+
recs ize)

2. I~de!~~~~g~~~1!~1_2E~E~~

blocksize+keylength+8+recsize
[+keylength if unblocked]

recsize [+keylength if unblocked]
[+ADDBUFF if specified)
[+MAX(S+keylength+blocksize,
8+keylength+10+recsize) if ADDBUFF
not specified]
[+INDEXAREA if specified]

keylength+MAXChlocksize,10+recs ize)
[+INDEXAREA if specified]

DTF TABLE

The DTF (Define The File) table is
required for each declaration. The fUnc
tion of the DTF table is (together with
the appendage) to allow communication
between the object prograrr produced from
I/O source statements and the DTF program.
The DTF program in turn communicates with
the operating system for physical device
control.

The DTF table has a fixed length for
each I/O device type. Figure 51 shows the
storage requirements for the individual
DTF tables.

The number of DTF tables is equal to
the number of files. The total storage
req,uired for all DTF tables is, therefore!'
equal to the sum of their individual
storage requirements. Thus, an object
program using three printers and five buf
fered, blocked-record, magnetic tdpe files
would require

3 x 48 + 5 x 112 704 bytes of storage

for DTF tables.

A DTFCD table is generated for each
card device. Figure 52 shows the PL/I
attributes and the corresponding DTFCD
paramet ers .

r-----------------T-----------------------,
\ Declaration I Storage Requirements I
!Specified by Filel in Bytes 1
t-----------------+-----------------------~
ICard dev. INPUT I 56 I
ICard dev. OUTPUT I 48 I
i 2540, OUTPUT I 136 1
I 2520,OUTPUT I 56 \
~-----------------+-----------------------~
I Printer I 48 I
~-----------------+-----------------------~
I Unbuffered I I
1 magnetic tape I 48 I
~-----------------+------T--------T-------~
IMagnetic tape, I I I I
lather than unbuf-I I I I
Ifered, with the, I I I
I option I INPUT I OUTPUT I UPDATE 1
\ ~-----+--------+-------~
I F I 112 I 104 \ \
I V I 128 I 120 I I
I U I 112 I 104 \ \
t-----------------+------+--------+-------~
IRegional (1)* I I I \
I with VERIFY I I 256 I 264 1
1 without VERIFY I 216 I 216 I 216 1
t~----------------+------+--------+-------~
IRegional (3)* I I I I
!with VERIFY I I 328 t 336 1
I without VERIFY I 216 I 288 \ 288 \
r-------~---------+------+--------+-------1
iIndexed direct* I 300 I I 556**!
Iwith INDEXAREA* I 324 1 1 580**1
I Indexed I I I I
Isequential* I 284 I 252 I 284 \
1 I I I I
!~Q~~: 4 x extentnumber must be added to I
I all values given for indexed files I
~----------------_r~-----T--------T-------~
IConsecutive disk*l I I I
I Unbuffered I 152 1 152 , 152 I
I F I 136 I 160 I 160 I
I V I 152 I 176 I 192 f
I U I 152 I 168 \ 192 I
~-----------------+-~----+--------+-------~
\DTFDI I 240 I 240 \ 240 \
r-----------------.1.------·.1.--------.1.-------~
1 * Not permitted for TOS. I
l** Add keylength to this value. I L ___ J

Figure 51. Storage Requirem~nts for DTF
Tables

A DTFPR table is generated for each
printer. Figure 53 shows the PL/I attri
butes and the corresponding DTFPR
parameters.

A DTFMT table is generated for each
magnetic tape drive. Figure 54 shows the
PL/I attributes and the corresponding
DTFMT parameters.

A DTFSD table is generated for each
disk file with the CONSECUTIVE option.
Figure 55 shows the PL/I attributes and
the corresponding DTFSD parameters.

r------------------------T----------------,
IPL/I ATTRIBUTES IDTFCD PARAMETERS I
r------------------------+----------------~
IBlocksize in F option IBLKSIZE I
t------------------------+----------------~
ILogical device address IDEVADDR I
lin MEDIUM option I I
~---~--------------------+----------------~
IDev. type in MEDIUM opt. I I
I 2540 IDEVICE=2540 I
I 1442 IDEVICE=1442 I
I 2520 IDEVICE=2520 I
I 2501 IDEVICE=2501 I
t------------------------+----------------~
! Function attribute I I
I INPUT I TYPEFILE=INPUT I
I I EOFACDR I
I OUTPUT I TYPEFLE=OUTPUT I
I I SSELECT=2 I
t------------------------+-----~----------~
IF (blocksize) IRECFORM=FIXUNB I
r------------------------+----------------~
l BUFFERS option t \
I BUFFERS (1) I IOAREA1 I
I BUFFERS(2) 1 IOAREA1 I
I I IOAREA2 I
I \ IOREG=(2) I
t------------------------+----------------~
12540, OUTPUT tCRDERR=RETRY I
t------------------------+----------------~
\Control character for I I
I RECORD 1/0 , I
I CTLASA ICTLCHR=ASA \
I CTL360 I CTLCHR=YES I L ________________________ ~ ________________ J

Figure 52. PL/I Attributes and Corres
ponding DTFCD Parameters

r------------------------T----------------,
IPL/I ATTRIBUTES \DTFPR PARAMETERS I
t--------------~---------+----------------~
\Blocksize in F option IBLKSIZE \
t------------------------+---~------------~
ILogical device address IDEVADDR I
lin MEDIUM option \ I
·t------------------------+----------------~
\Dev. type in MEDIUM opt. I I
I 1403 IDEVICE=1403 I
I 1404 IDEVICE=1404 I
I 1443 IDEVICE=1443 I
I 1445 \DEVICE=1445 \
t------------------------+----------------~
IF (blocksize) IRECFORM=FIXUNB I
~------------------------+----------------~
lBUFFERS Option I I
I BUFFERS(l) \ IOAREAl I
I BUFFERS (2) \ IOAREA1 I
I I IOAREA2 I
I \ IOREG= (2) I
t------------------------+----------------~
IUSAGE attribute I I
I STREAM ICTLCHR=ASA I
I RECORD IPRINTOV=YES I
I CTLASA I CT~CHR=ASA I
i CTL360 I CTLCHR=YES ! L~ _______________________ .1. ________________ J

Figure 53. PL/I Attributes and Corres
ponding DTFPR Parameters

I/O Storage Requirements 73

r------------------------T----~-----------,
IPL/I ATTRIBUTES iDTFMT PARAMETERS/

~------------------------+----------------~
IBlocksize in F, lBLKSIZE I
IV, U option I I
~-----------------------~+----------------~
IRecsize in F option IRECSIZE I
~------------------------+-----~----------~
ILogical device address iDEVADDR !
lin MEDIUM option I I
~------------------------+----------------1
! F ~ V ~ U opt ion I I
I I I
i I I
I F (blocksize) IRECFORM=FIXUNB I
I F (blocksize, IRECFORM=FIXBLK I
I recsize) IIOREG=(2) /
I V (maxblocksize) IRECFORM=VARBLK I
I I IOREG= (2) I
I U (maxblocksize) !RECFQRM=UNDEF I
~---~--------------------+----------------~
I BUFFERS option I ~

I I I
I I I
I BUFFERS (1) t IOAREAl I
I BUFFERS(2) I IOAREAl I
I I IOAREA2 I

iIOREG~(2) i
~------------------------+----------------~
I Function attribute I I
I I I
i I I
I INPUT I TYPEFLE=INPUT I
/ I EOFADDR I
I OUTPUT I TYPEFLE=OUTPUT I
f INPUT I TYPEFLE=WORK I
I UNBUFFERED) I
I OUTPUT I EOFADDR I
~---------~~=~~----------+-~-----====~----i
IV (maxblocksize) OUTPUT IVARBLD=(3) I
~------------------------+----------------~
IINPUT, V and F IWLRERR I
I not UNBUFFERED I I
~~-----------------------+----------------~
I BACKWARDS IREAD=BACK I

~------------------------+----------------~
/LEAVE IREWIND=NORWD I
~------------------------+----------------~
jNOLABEL option I I
I I I
I NOLA BEL IFILABL=NO I
i without NOLABEL IFILABL=STD I
~------------------------+----------------~
IU optionw BACKWARDS I IOREG=(2) I
~------------------------+----------------i
I INPUT IERROPT=Library I
, I routine /
~------------------------+----------------~
IU, other than UNBUFFEREDIRECSIZE=(4) I L ________________________ ~ ________________ J

Figure 54. PL/I Attributes and Corres
ponding DTFMT Parameters

A DTFDA table is generated for each
disk file with the REGIONAL option.
Figure 56 shows the PL/I attributes and
the corresponding DTFDA parameters •

... ,. , ..

r------------------------T----------------,
IPL/I ATTRIBUTES IDTFSD PARAMETERS I
~------------------------+----------------~
IBlocksize in F, IBLKSIZE I
iV, U option I I
~------------------------+----------------~
IRecsize in F option IRECSIZE I
~------------------------+----------------~
!Device type in IDEVICE= 2311
IMEDIUM option ~ 2314
I ,2321 I
t------------------------+----------------~
IF, V? U option I I
! I I
, F (blocksize) IRECFORM=FIXUNB'
I (blocksize~ IRECFORM=FIXBLK I
~ recsize) I IOREG=(2) I
I V Cmaxblocksize) IRECFORM=VARBLK I
I I I OREG= (2) I
I U <roaxblocksize) jRECFORM=UNDEF !
~-====-------------~-----+--------------~-i
,BUFFERS option I I
I I I
,BUFFERS(1) I IOAREAl I
I BUFFERS (2) IIOAREAl ,
I I IOAREA2 I
I IIOREG~(2)!

t------------------------+----------------~
tFunction attribute I
I I
I INPUT TYPEFLE=INPUT ,
I EOFADDR I
I OUTPUT TYPEFLE=OUTPUT I
I UPDATE TYPEFLE=INPUT I
I UPDATE=YES I
I ECFADDR I
I INPUT TYPEFLE=WORK I
I) UNBUFFERED DELETFL=NO I

OUTPUT EOFADDR I
I UPDATE UNBUFFERED EOFADDR I
t------------------------+----------------~
IV Cmaxblocksize) OUTPUT IVARBLD=(3) 1

~------------------------+----------------~
I VERIFY IVERIFY=YES I
~------------------------+--------~-------~
1- - - IERROPT=Library ~
/ I routine I
t---~--------------------+----------------~
IINPUT or UPDATE, F and VIWLRERR I
~------------------------+----------------~
IU, other than UNBUFFEREDIRECSIZE=(4) I L _____________________ - __ i ________________ J

Figure 55. PL/I Attributes and Corres
ponding DTFSD Parameters

DTF APPENDAGE

The DTF appendage, like the DTF table,
consists of information derived from the
file declaration. It also allows communi
cation between the object program produced
from I/O source statements and the DTF
program. The length of the appendage is
exclusively determined by the presence of
a single attribute or option. If the
declaraticn

1. contains the INDEXED option, the
appendage length is 40 bytes;

2. contains the REGIONAL option. the
appendage length is 56 bytes;

3. contains the BUFFERED, STREAM, or UPD
ATE attribute, the appendage length is
24 bytes;

4. contains the PRINT attribute or is for
SYSLST. the appendage length is 32
bytes;

5. does not apply to one of the file
types listed under items 1 through 4,
the appendage length is 16 bytes.

The number of appendages is equal to
the number of files. The total storage
required for appendages is equal to the
sum of their individual storage
requirements.

r------------------------T----------------,
!PL/I ATTRIBUTES IDTFDA PARAMETERS 1
~---~--------------------+----------------~
JBlocksize in F option IBLKSIZE 1
~------------------------+----------------~
IDevice type in IDEVICE= 2311 1
IMEDIUM option I 2314 1
I I 2321 I
~------------------------+----------------~ IF (blocksize) IRECFORM=FIXUNB I
~------------------------+----------------~
I BUFFERS (1) I IOAREA1 I
~----------------------~-+----------------~
Function attribute and 1 I

organization option I t
INPUT, REGIONAL(l) TYPEFLE=INPUT I

READID=YES I
OUTPUT, REGIONAL(l) TYPEFLE=OUTPUT I

WRITEID=YES I
UPDATE, REGIONAL(l) TYPEFLE=INPUT ~

READID=YES I
WRITEID=YES I

INPUT, REGIONAL(3) TYPEFLE=INPUT I
READKEY=YES 1
KEYARG 1
KEYLEN 1

OUTPUT, REGIONAL(3) TYPEFLE=OUTPUT 1
AFTER=YES I
KEYLEN 1

UPDATE, REGIONAL(3) TYPEFLE=INPUT 1
READYKEY=YES I

lWRITEKY=YES 1
IKEYARG 1
IKEYLEN I
IAFTER=YES I

~------------------------+----------------~
1 VERIFY IVERIFY=YES 1
~------------------- ----+----------------~
1- - ISEEKADDR I
1 - - 1 ERRBYTE I
I - - I XTNTXIT=IJK'IXRM I
! - - I CONTROL=YES 1 L ________________________ ~ ________________ j

Figure 56. PL/I Attributes and Corres
ponding DTFDA Parameters

r--------------T---~----------------------,
IPL/I 1 I
1 ATTRIBUTES IDTFIS PARAMETERS 1
~--------------+--------------------------~
1 INPUT I TYPEFLE=SEQNTL I
I SEQUENTIAL or IIOAREAS 1
1 1 IOREG=(2) I
1 \ IOROUT=RETRVE 1
1 IKEYARG1 !
~--------------+--------------------------~
\INPUT DIRECT \ TYPEFLE=RANDOM I
1 I IOAREAR I
\ IIOREG=(2) I
1 IIOROUT=RETRVE I
I IKEYARG (separate) I
~--------------+--------------------------~
I OUTPUT I IOAREAL I
I SEQUENTIAL IWORKL (only if blocked) I
1 1 IOROUT=LCAD 1
~--------------+--------------------------~
IUPDATE DIRECT ITYPEFLE=RANDOM 1
1 1 IOAREAL2,4 1
1 \WORKL4 1
I I IOAREAR2 I
1 IIOREG=(2) \
\ IIOROUT=ADDRTR I
1 I KEYARG1, 3 ~

t--------------+--------------------------~
IDevice type IDEVICE=2311, 2314, or 23211
~--------------+--------~-----------------~
1 VERIFY or 1 I
I device \VERIFY=YES I
1 type = 2321 I 1
~--------------+--------------------------~
IF(a) IRECFORM=FIXUNB 1
IF(a,b) IRECFORM=FIXBLK \
I INRECDS I
I IRECSIZE I
~--------------+--------------------------~
IKEYLENGTH \KEYLEN
10FLTRACKS ICYLOFL
IINDEXMULTIPLE IMSTIND=YES
IEXTENTNU~BER 1 DSKXTNT
IKEYLOC IKEYLOC
lINDEXAREA IINDAREA
I IINDSIZE
I IINDSKIP
IADDBUFF IIOSIZE
IHIGHINDEX 2311IHINDEX=n
1 23141
1 2321~

~--------------+-----------------------.--~
1 1
11 separate for blocked I
12 IOAREAL and IOAREAR rray be one and the 1
I same area 1
13 Same as WORKL if unblccked 1
14 ADD separate I
1 I L ___ J

Figure 57. PL/I Attributes and Corres
ponding DTFIS Parameters

A DTFIS table is generated for each
disk file with the INDEXED option. Figure
57 shows the PL/I attributes and the
corresponding DTFIS parameters.

1/0 Storage Requirements 75

A DTFDI table is generated for Stream
files or buffered Record files if

1. the logical address specifies SYSIPT,
SYSLST, or SYSPCH in the MEDIUM
option,

2. records are of fixed length and
unblocked: and the record size (n} ~s

3.

not greater than 80 for SYSIPT
net gr;eater than 81 for SYSPCH
not greater than 121 for SYSLST

for output files either

CTLASA (RECORD OUTPUT files) or
PRINT (STREAM OUTPUT files)

is specified.

and

Figure 58 shows the PL/I attributes and
the corresponding DTFDI parameters.

r---------------------T-------------------,
1 PL/I ATTRIBUTES I DTFDI PARAMETERS I
r---------------------+-------------------~
I Device address in I 1
I MEDIUM option I DEVADDR=SYSxxx I
t--------------------~+-------------------~
I BUFFERS(1) I IOAREA1 1
I BUFFERS(2) I IOAREA1 I
I I IOAREA2 1
I I IOREG=(2) I
t----~----------------+-------------------i
I SYSIPT I EOFADDR=name 1
I I ERROPT=name I
! I WLRERR=name I
r--------==-=---------+-------------------i
i Recsize in F option I RECSIZE=... 1 L _____________________ ~ ___________________ J

Figure 58. PL/I Attributes and Corres
ponding DTFDI Parameters

IOCS LOGIC MODULE

The IOCS logic module uses the information
obtained from the DTF table and the appen
dage, to communicate between the object
program and the DOS/TOS control program.
Different IOCS logic m9dules are used
depending on the options and attributes
~pecified in the file declaration. Files
having the saroe options and attributes use
the same IOCS logic module. For instance,
any number of file declarations, each of
which refers to a double-buffered input
file using a 2540 card reader, would gen
erate a requirement for one single IOCS
logic module only.

The device type is the principal factor
in determining which IOCS logic module is
to be used. In Figures 59 through 64, the
individual modules are therefore grouped
according to device types. The storage

76

required for each module is stated in
bytes.

r-------T---------------j----------=======,
I Card I Cne Buffer I Two Buffers I
I ~-------T-------+-------T---------l
I Files I Input I Output I Input I output I
~-------+-------+-------t-~===--+---------i
i 2540 i 96 i i92 I 128 I 216 1
~-------+-------+-------+-------+--~------1
I 1442 I 100 I 74 ! 132! 116!
~-------+-------+-------+-------+---------~
I 2520 I 96 I 80 I 128 I 124 I
~-------+-------+-------+-------+---------~
1 2501 I 96 I 1 128 1 I
L ______ ~L-------L-------~-------L---------J

Figure 59. IOCS Logic Modules for Card
Reading and Punching Devices

r---,
I Printer Files I
.--------------------T--------------------l
I STREAM ~ RECORD 1
~~--------T----------+---------T----------~
11 Buffer 12 Buffers 11 Buffer 12 Buffers I
.---------+----------+---------+---------~i
I 196 I 220 f 118 I 152 I L _________ ~ __________ L _________ ~~---------J
Figure 60. ICCS Logic Modules for

Printers

r----------j-----------------T------------,
I I Buffered I Unbuffered I
I r-----T-----T-----i I
ITape Files I FlU I V 1 I
t----------+-----+-----t-----+------------~
jBackwards I 138 I 556 1 -- I I
t----------+-----+-----+-----~ 318 I
IAII othersl 690 I 564 I 162 1 I L __________ L _____ L _____ L _____ ~ ____________ J

Figure 61. roes Logic Modules for Magnet
ic Tape Units

If both BACKWARDS and non-BACKWARDS
modules are used in the same program, only
the BACKWARDS module is included.

r------T---------------~--------T---------,
I I Consecutive IRegional I
IDisk t---------T--------------+----T----~
IFiles !Un-! I I I
1 Ibuffered 1 Buffered 1 1 1
I I .----T----T----~ 1 1
I I 1 FI VI UI 113/
~------+------~--+----+----+----f----+----~
IInput I 682 I 5461 1461 6181 3921 3921
~------+---------+----+----+----+----+----~
loutputl 682 1 574111661 1301 3921 6961
.------+---------+----+----+----+----+----~
IUpdatel 722 1 91011255110621 3921 6961 L ______ L _________ L ____ L ____ L ____ L ____ L ____ j

Figure 62. IOCS Logic Modules for Disk
units (other than INDEXED
Files)

r--------------T-----T------T-------------,
! Disk I Input I Output I Update I
I I I ~-------T-----~
IIndexed Files I I IBlockedlUnbl·1
~--------------+-----+------+-------+-----~
I Sequential 1 10861 803 1 1086 11086 I
I Direct I 9901 -- I 2948 12752 I
!with INDEXAREAI 11381 -- I 3162 12966 I
Iwith ADDBUFF 1 --I -- 1 3220 12936 I L ______________ ~ _____ ~ ______ ~ _______ ~ _____ J

Figure 63. IOCS Logic Modules for Disk
Units (INDEXED Files)

r-----------T-----------------------------,
1 1 BUFFERS (1) BUFFERS(2) 1
~-----------+-----------------------------~
!Input 1 308 368 1
1 Output 1 643 723 1 L ___________ ~ _____________________________ J

Figure 64. IOCS Logic Module for DTFDI
Files

.EXAMPLES

The following examples show the storage
requirements for buffers. DTF table.
appendage. and IOCS logic module.

DECLARE PUNCHF FILE OUTPUT ENVIRONMENT
(FC80) MEDIUM (SYSPCH. 2540»;

Suffers
DTF table
Appendage
IOCS logic module

Total

80 bytes
136 bytes

24 bytes
192 bytes

432 bytes

DECLARE PRINTF FILE STREAM OUTPUT PRINT
ENVIRONMENT (CONSECUTIVE F{121) BUFFERS
(1) MEDIUM (SYSLST. 2400»;

Buffers
DTF table
Appendage
IOCS logic module

Total

~!~!!!E!~_1

121 bytes
240 bytes

32 bytes
690 bytes

.1083 bytes

DECLARE TAPEFF FILE RECORD UNBUFFERED
ENVIRONMENT (U(512) MEDIUM (SYS004. 2400)
LEAVE NOLABEL):

Buffers
DTF table
Appendage
IOCS logic module

Total

o bytes
48 bytes
16 bytes

318 bytes

382 bytes

DECLARE TAPEBF FILE RECORD BACKWARDS
UNBUFFERED ENVIRONMENT (U(512) MEDIUM
(SYS004, 2400) LEAVE NOLABEL);

Buffers
DTF table
Appendage
IOCS logic module

o bytes
48 bytes
16 bytes

318 bytes

Total 382 bytes

~~~!!)E1~_~ 

DECLARE DISK1F FILE STREAM INPUT ENVIRON
MENT (F(1739) BUFFERS (2) MEDIUM (SYS001. 
2311» ; 

Buffers 
DTF table 
Appendage 
IOCS logic module 

3478 bytes 
136 bytes 

24 bytes 
546 bytes 

Total 4184 bytes 

DECLARE DSKF FILE RECORD UPDATE BUFFERED 
ENVIRONMENT (F (1024 .• 256) BUFFERS (1) 
MEDIUM (SYS002, 2311»; 

Buffers 
DTF table 
Appendage 
IOCS logic module 

1024 bytes 
160 bytes 

24 bytes 
910 bytes 

Total 2118 bytes 

DECLARE DSKR3F FILE RECORD OUTPUT DIRECT 
KEYED ENVIRONMENT (REGIONAL (3) F(800) 
MEDIUM (SYS003, 2311) KEYLENGTH (9» 

Buffers 
8x3 extents 
DTF table 
Appendage 
IOCS logic 

809 
(default) 24 

288 
56 

module 696 

bytes 
bytes 
bytes 
bytes 
bytes 

Total 1873 bytes 

DECLARE DSKR1F FILE RECORD UPDATE DIRECT 
KEYED ENVIRONMENT (REGIONAL (1) F(600) 
MEDIUM (SYS004, 2311»: 

Buffers 600 
8x3 extents (default) 24 
DTF table 216 
Appendage 56 
IOCS logic module 392 

bytes 
bytes 
bytes 
bytes 
bytes 

Total 1288 bytes 

I/O Storage Requirements 77 



~~~[!!E!~_2 

DECLARE TAPERF FILE RECORD INPUT BUFFERED
ENVIRONMENT (V(2048; BUFFERS (2) MEDIUM
(SYS005, 2400)i;

Buffers
DTF table
Appendage
IOCS logic module

Total

E;~~[!!E!~_!Q:..

4096 bytes
128 bytes

2U bytes
762 bytes

5010 bytes

DECL~RE INDSQI FILE RECORD INPUT KEYED
ENVIRONMENT (F(800,80) MEDIUM (SYS011,
2314) INDEXED KEYLENGTH(10) EXTENTNUMBER(
3) INDEXMULTIPLE KE~LOC(15»;

Buffers
DTF table
Appendage
IOCS logic module

Total

800 bytes
296 bytes

40 bytes
1086 bytes

2222 bytes

DECLARE INDDUP FILE RECORD UPDATE DIRECT
KEYED ENVIRONMENT (F(800,80) MEDIUM
(SYS012,2321) INDEXED KEYLENGTH(12) VERIFY
EXTENTNUMBER(2) OFLTRACKS(3) KEYLCC(23)
ADDBUFF(1688»;

78

Buffers
DTF table
Appendage
Ioes logic

Total

1768 bytes
576 bytes

40 bytes
3220 bytes

5604 bytes

~2~~: If all of the file declarations
shown in these examples were to appear in
the same program, the total storage
requirements would be less than the sum of
the individual storage requirements
because, in a few cases, different file
declarations would use the same IOCS logic
module.

System Units

SYSPRINT

The storage required for the DTF table,
appendage. and IOCS logic module for SYS
PRINT is 416 bytes for TOS and 424 bytes
for Uvu. If DOS allows a 2311 as SYSLST,
688 bytes~re required.

SYSIN

The storage required for the DTF table,
appendage, and IOCS logic module is 192
bytes for TCS and 216 bytes for DOS. If
DOS allows a 2311 as SYSIPT, 408 bytes are
required.

Note: If SYSIN and SYSPRINT are used in
one-program, the storage required for both
is 568 bytes for TOS and 600 for DOS. The
storage requirement is 920 bytes for DOS
if a 2311, 2314, or 2319 is permitted for
SYSIPT or SYSLST.

Object-program overhead derives from the
following two sources:

1. The DOSITOS Supervisor, the size of
which is installation-dependent.

2. The general PLII overhead area, which
exists as a function of the PLII
source text. This area comprises the
following four parts:

a. The static storage area.
b. The dynamic storage area.
c. The block prologue.
d. The PLII control module.

Static Storage Area

Static storage is required by the seven
items listed below. (Note that internal
blocks require only the static storage
listed under items 5 - 7.)

1. A constant basis of 132 bytes.

2. All variables in any block declared
with the attribute STATIC.

3. Constants used in the source text.

4. Four bytes for
a. each library subroutine explicitly

or implicitly used in the source
text;

b. each reference to a procedure that
is external to the procedure under
construction; and

c. each distinct data item contained
in any block and declared with the
attribute EXTERNAL.

5. A communications area of 4 bytes.

6. ~n entry table with a minimum length
of 4 bytes. If the block is a proce
dure, an additional entry of 4 bytes
is made fer each ENTRY statement in
the block.

7. An entry of 8 bytes is made for the
occurrence of each different condition
in any ON statement-rnternal to the
block.

Since items 1, 5, and 6 are always
required, the minimum static storage area
required is 140 bytes .. even for the most
trivial procedure. For example,

A: PROCEDURE OPTIONS (MAIN);
END;

Program Overhead

The following procedure:

A: PROCEDURE OPTIONS (MAIN);
DECLARE B FIXED BINARY STATIC;
C: PROCEDURE;

D: ENTRY;
RETURN;
END;

E: BEGIN;

END;

DECLARE I STATIC;
I=1101Bi
END;
F: ENTRY;

consists of the blocks A, C, and E. The
static storage requirements of the indivi
dual blocks are discussed in terms of the
items 1 through 7 listed above.

1. 132-byte basis 132 bytes

2. Two variables with the STATIC
attribute 8 bytes

3. One constant 4 bytes

4. Communications area 4 bytes

5. Entry table of 4 bytes minimum

plus 4 bytes for entry point F 8 bytes

TOTAL 156 bytes

Block C -------

1. Communications area 4 bytes

2. Entry table 8 bytes

TOTAL 12 bytes

1. Communications area 4 bytes

2. Entry table 4 bytes

TOTAL 8 bytes

Consider another external procedure A
that contains no other blocks. It uses
400 bytes of static data storage
<variables and constants). It requires
five library subroutines explicitly and
three library subroutines implicitly~

Program Overhead 79

Three procedures external to A are
referred to in procedure A. Six variables
are declared with the attribute EXTERNAL.
The procedure has seven secondary entry
points and contains six ON statements# of
which four have differing conditions.
External procedure A would require the
following static storage:

1. 132-byte basis

2. STi-lTIC variables

3. Constants

4. a. 8 library subroutines
b. 3 procedures external
c. 6 EXTERNAL variables

5. Communications area

6. Entry table

7. Four ON statements with
differing conditions

to

TOTAL

132 bytes

400 bytes

32 bytes
A 12 bytes

24 bytes

4 bytes

32 bytes

32 bytes

668 bytes

Finally, consider a third external pro
cedure W that contains two other proce
dures, X and Y. Procedure Y contains a
BEGIN block Z.

W uses 400 bytes of static data
storage, X and Y each use 100, and Z uses
200 bytes. Procedure W requires 3 library
subroutines, X requires 2, Y requires 5,
and Z requires 13. The library subrou
tines used in blocks W, X, and Yare all
different. The 13 subroutines used by Z
comprise 3 that are required by other
blocks. No procedure external to W is
referred to, and there is no EXTERNAL
data. Procedure W has 5 ENTRY statements,
X has 2, and Y has 3. There are no ON
statements in W, 2 ON statements with
identical conditions in X, 3 ON statements
with differing conditions in Y, and no ON
statement in Z.

The static storage requirements for the
individual blocks are as follows:

2. STA.TIC variables

3,. Constants

4. 1\ total of 20 library
subroutines

5. Communications area

6 .. Entry table

80

i32 bytes

800 bytes

80 bytes

4 bytes

24 bytes

TOTAL 1040 bytes

Block X --=---""7

1. Communications area 4 bytes

2. Entry table 12 bytes

8 bytes 3e One ON statement

TOTAL 24 bytes

1. Communications area 4 bytes

2. Entry table 16 bytes

3. Three differing ON conditions 24 bytes

TOTAL 44 bytes

1. Communications area 4 bytes

4 bytes 2. Entry table

TOTAL 8 bytes

The total static storage required by
external procedure w thus amounts to

1040 + 24 + 44 + 8 = 1116 bytes.

Dynamic Storage Area

Each blocks has its own dynamic storage
area. The dynamic storage area 1S zero
when the block is not active. The length
of the dynamic storage area when the block
is active is determined by the following
fi'le items:

1. Data with the attribute AUTOMATIC,
either declared or by default.

2. A communications area of 80 bytes.

3. Four bytes for each Q!ff~! paramet
er to be transmitted to this block.

~. Working storage area I:
This area is used to store intermedi
ate results of arithmetic expressions.
The length of this area is a fnnction
of the complexity of the source text.
For a program with arithmetic data
only, the average length of this area
is approximately 36 bytes. However,
if the expressions contain character
strings, the length increases with the
length of the character strings.

5. Working storage area II:

This area is used to store expressions
contained in DO loops. DO statements
may be of either one of the following
three forms:

a. DO var=expr-l,expr-2, ••• ,expr-n;
For such DO statements, the expre
ssions are developed and stored
directly in the variable so that
no additional storage is required.

b. DO var=expr-l TO expr-2; or
DO variable=expr-l BY expr-2;

16 bytes are required for ~£h DO
statement of this form, regardless
of the number of iteration speci
fications ~n ea~h statement.

TO BY
c. DO var=expr~l expr-2 expr-3;

BY TO

24 bytes are required for each DO
statement of this form, regardless
of the number of iteration speci
fications in each statement.

The information required to determine
which iteration specification is being
operated upon is also stored in work
ing storage area II. ~~£h DO state
ment with more than one iteration spe
cification requires additional bytes
to service all iteration specifica
tions~ Thus~-each DO statement
requires zero,-16; or 24 bytes for
storing expressions within iteration
specifications, plus 8 bytes if there
is more than one iteration specifica
tion for the DO statement.

~ssume a procedure consists of the extern
al proc~dure AI which contains the intern
al procedures Band C. Internal procedure
C contains the BEGIN block D. A and B
each have 400 bytes of AUTOMATIC data, C
has 200, and D has 100 bytes of AUTOMATIC
data. Procedures A, B, and C have only
one entry point (their primary entry
point), and each procedure has a list of
five parameters. Only coded arithmetic
data is used. The dynamic storage
requirements of the individual blocks are
then as follows:

Block A r:---nata
2. Communications area

3. Parameter storage

4. Working storage area I,

5. Working storage area II (de
pends on complexity of DO·s)

TOTAL

400 bytes

80 bytes

20 bytes

36 bytes

96 bytes

632 bytes

1. Data

2. Communications area

3. Parameter storage

4. Working storage area I,
approx.

5. Working storage area II.
approx.

TOTAL

1. Data

2. Communications area

3. Parameter storage

4. Working storage area I,
approx.

TOTAL

1. Data

2. Communications area

3. Working storage area I,
approx.

4. Working storage area II,
approx.

TOTAL

400 bytes

80 bytes

20 bytes

36 bytes

32 bytes

568 bytes

200 bytes

80 bytes

20 bytes

36 bytes

336 bytes

100 bytes

80 bytes

36 bytes

32 bytes

248 bytes

'Ihe total requirement for dynamic
storage at a given moment depends on which
blocks are simultaneously active. The
total storage required is the sum of the
dynamic storage areas for the active
blocks. In the above exarrple , this is a
m1n1mum of 632 bytes. If all blocks are
active simultaneously, the dynamic storage
requirements amount to 1784 bytes.

The Block Prologue

The prologue is a set of instructions
generated for a PROCEDURE, ENTRY, or BEGI~
statement. The generated instructions
vary depending on the statement. The
minimum prologue is 52 bytes. The maximum
is approximately 140 bytes. The minimum
prologue is used whenever the block is a
BEGIN block. In all other cases, the
average is approximately 60 bytes per pro
logue. A secondary entry point with 12
arguments results in the maximum of 140
bytes.

Program Overhead 81

The PL/I Control Routine
The PL/I control routine is a library sub
routine, which is always required in
storage for PL/I programs. It is respons
ible for the interaction of the individual
PL/I program components. Some of its
functions are listed below:

1. Dynamic storage allocation.

2. Hardware interrupt servicing.

3. Handling of ON conditions.

4. Cons~ructing diagnostic messages.

5.. Terminating execution.

82

6. Transmitting communications informa=
tion from block to block.

7. Providing library work space.

The PL/I control routine is fixed in
length (approximately 1500 bytes) and is
present only once in a PL/I program,
regardless of the complexity of blocking
structures, the number of external proce
dures, and depth of overlaying.

~2~~: In the discussion of the program
overhead, it was shown where the STATIC
and AUTOMATIC data will be. In all fUrth
er references, the term "overhead" is used
for the actual overhead without data and
~!!:.!!2!!~ the DCS/TOS control-program.

~fter having estimated the storage
requirements of (1) data, (2) library sub
routines, (3) file declarations, and (4)
overhead contained in the program, the
user can determine what part of the total
storage capacity is left for the remaining
part of the program. The remaining part
mainly consists of (1) in-line instruc
tions produced directly from the source
text and (2) calling sequences to subrou
tines for those operations that cannot be
done in line.

What instructions are produced from the
source text can be shown by a simple
example.

DECLARE A FIXED DECIMAL;

B * C + D;

The instructions produced from the assign
ment statement might be as follows:

• In-line instruction to load B into
some register.

• In-line instruction to multiply C
(floating-point multiplication) with
the contents of this register.

• In-line instruction to add D
(floating-point) to the contents of
this register.

• Calling sequence(s) to convert the
contents of this register to fixed
decimal form.

• In-line instruction to store the
result in ~.

Calling sequences can be avoided in
some cases, e~g., 1n the example shown
above by giving A the attributes FLOAT
DECIMAL instead of FIXED DECIMAL. To save
storage, the user should, therefore, write
his programs in such a manner as to avoid
unnecessary calling sequences.

The above example shows that a series
of instructions is generated for a single
PL/I statement. The number of generated
instructions depends on the form and com
plexity of the respective statement. The
number of instructions generated for a
source-text DO statement, for instance,
depends on the complexity of the expre-

Source Text And Object Program

ssions within an iteration specification,
the number of options chosen, and the
number of iteration specifications.
However, the following average values can
be assumed:

1. In a purely scientific environment,
the average PL/I source statement
generates ten 4-byte instructions.

2. In a purely commercial environment,
the average PL/I source statement
generates seven 4-byte instructions.

3. These average values are considerably
increased by an excessive use of con
versions of base or scale and GET and
PUT statements in either scientific or
commercial environments.

4. Parameters as well as BASED and
EXTERNAL data require 4 bytes in addi
tion to the storage requirements of
the data item.

Thus, if 5000 bytes are available for
the object program,. the user may assume
that approximately 125 PL/I statements
(scientific environment) or 178 PL/I sta
tements (commercial envircnroent) can be
accommodated in this area. If the program
exceeds this number of statements, the
user must either shorten the function of
the program or use the overlay feature.
(Refer to the section Q~~r±~Y.)

~2t~: If listing of source-program state
ment numbers in case of execution-time
errors is requested (by specifying STMT in
the PL/I PROCESS card), the additional
storage requirements are 4 bytes for each
time the statement number appears in the
object-program listing.

Problem Analysis Example

A tape system that has a storage cafacity
of 16K is used for maintaining files. The
problem program consists of 3 phases.
Phase 1 reads transaction cards (one 80-
column card per transaction) and sorts,
edits,. and writes the contents of these
transaction cards on a magnetic tape file.
Phase 2 reads the old master file, a tran
saction card, and writes a new master file
record. Both of these operations involve
magnetic tapes for old and new master
records. An exception refort is written,
if necessary, on a fourth magnetic tape.
Phase 3 takes the excepticn file and pre
pares it with appropriate headings.

Source Text and Object Program 83

In the following example, only the
storage requirements for phase 2 are
examined.

FILE DESCRIPTION

Old Master File: recot:ds-of fIxed
Unblocked, 320-character

length.

New Master File: Unblocked, 320-character records-ot-tIxed length.

Transaction File. Unblocked aD-character
records-affIxed len-gth.

§~~~E!!Q~_~i!g: Unblocked 100-character
records of fixed length.

Numbers 11 and 12

TOTAL

a. Buffers-

b. DTF tables -

c. Appendages-

d. Ioes logic modules -

820 bytes

368 bytes

96 bytes

690 bytes

DATA ASSUMPTIONS TOTAL 1~74 !2yte~

Due to the requirements of temporary
storage, arithmetic statements~ etc~, 50
variables and constants are used in addi
tion to the data read from and written
into files. Ali data is describable in
terms of pictures and character strings;
no data is read or written in packed mode.

OTHER ASSUMPTIONS

1. Each file has only one buffer.

2. The data is processed in its respec
tive buffer by use of the READ SET or
LOCATE SET statements.

3. The program can be written in one
block.

4. The problem does not necessitate
inter-phase communication.

5. If conversions from numeric fixed to
coded fixed become excessive, the user
will convert the data items once and
use the coded fixed form for subse~
quent computations.

Storage Requirements

The storage requirements are as follows:

1,.

84

Data a:-.... -Data read from, or written into,
files are accounted for in
buffers.

b. 30 variables exxxx.XX)
20 constants (XXX.XX)

120 bytes
60 bytes

c. Descriptors approximately 150 bytes

TOTAL approx.

4. !~Q~2EQ!Q~!in~§

Number 6

TOTAL

a. Static - approx.

b .. Dynamic - approx.

c. prologue - approx ..

d. PL/I control - approx.

TOTAL approx.

6. QQ2~!.Q2_~Q!!!:!Q!_prQQf~!!!

approx. 61~0 bytes

160 bytes

150 bytes

60 bytes

1500 bytes

182!L!!yte~

GR~ND_:!QTAL~EfQ~. 11,616 l2Yte2

This means that approximately 4,770
bytes of storage are available for the
actual program, so that the approximate
number of PL/I statements that would fit
into storage is 160.

After having programmed the problem,
the user would determine whether or not he
can change the buffering to allow for
faster transaction processing. If the
data read and/or written are changed into
packed form, the buffer requirements are
reduced, and the non-I/C subroutines of
640 bytes would not be required. This
would allow for approximately 30 addition
al PL/I statements.

If certain parts of an object program are
not required in storage throughout its
execution and never simultaneously
required in storage, the same storage area
can be used to store these parts to reduce
the overall requirements of the program.

Each part of the program that will
reside in storage only for a fraction of
the execution time is referred to as an
overlay. The MAIN procedure must not be
used as an overlay. Each overlay as well
as any portion of the program that resides
in storage throughout the execution is
referred to as a phase. A phase consists
of one or more external procedures.

The PL/I subset does not provide direct
overlay facilities. However, overlays can
be performed by using the library subrou
tine OVERLAY that provides a link to the
operating system which, in turn, loads the
actual overlay. (Refer to the SRL publi
cations describing the DOS/TOS control and
service programs.) The statement calling
the overlay must be coded as follows:

[label:] •• • CALL OVERLAY
(character string expression - max.
length 8)

For example, LINK: CALL OVERLAY
(• PH~SE 5') ;

The overlay call activates the OVERLAY
subroutine and transmits the name \of the
phase to be fetched to· the control pro
gram. The control program locates this
phase on the external medium. The phase
is then loaded into storage. It must not
overlay the fetching procedure. Finally,
control is returned to the fetching
procedure.

Rules For Using Overlay

The following 17 rules should be observed
when using overlay calls:

1. ~fter the phase has been entered in
storage, it must be activated ty means
of a call to the procedure name or any
of its entry points.

2. The phase name is independent of the
procedure name. It is assigned by
means of a PHASE card during proces
sing by the Linkage Editor.

3. ~ fetching phase (i.e., a phase acti
vating an overlay) may have been

Overlay

fetched into storage by a preceding
fetching phase. A series of succes
sive fetching phases is referred to as
a tree structure (see Figure 65). The
principal fetching phase of a tree
structure is referred to as the root.
A phase within the tree structure
which is not a fetching phase is
referred to as a leaf.

4. A fetching phase may fetch any phase
lower than itself in the tree struc
ture. provided the fetched phase is on
the same tranch as the fetching phase.

5. If a phase fetches a phase more than
one level below it, an empty space is
left in storage for each phase between
the fetching and the fetched phase.

6. The root cannot be overlaid. It
resides in storage throughout the
execution of the problem program.

7. A phase may be activated at any time
after it has been fetched, provided it
has not been destroyed.

8. Fetching a phase already fetched into
storage causes a new copy of that
phase to be fetched into storage. All
variables of that phase which are in
static storage have no known value.

9. Data to be known in more than one
phase may be given the EXTERNAL attri
bute or be transmitted through argu
ment lists of the CALL statement.
External names that are to be common
to more than one phase below the root·
level must be declared to be external
both in the affected phases and in the
root. For larger volumes of data, the
use of the EXTERNAL attribute general
ly requires less storage than argument
transmission. Where the argument
names change, argument transmission is
normally more economical than giving
the data the EXTERNAL attribute.

10. External names of procedures to be
fetched must be unique {see Figure
65.}

11. A library subroutine is incorporated
in every phase in which it is used if

a. the subroutine is used in a proce
dure telow the root level; and

b. that subroutine is not in the
root. The multiple appearance of

Overlay 85

the subroutine can be avoided by
incorporating it in the root
through the use of an INCLUDE sta
tement during link-editing so that
it appears only in the root.

~
I

Note: The ROOT phose may fetch any phose, A through o. Phose A
may fetc h any phose, C through L. Phose B may fetch any phose I
M through o. Phase C may fetch phases F and G. PhO$(! E m('1Y
fetch any phase, H through L. Phase H may fetch phases J
through L. Phases 0, M, N, 0, F, G, I, J, K, and Lore
leaves.

Figure 65. Schematic Representation of a
Tree Structure

Note: Care should be taken if relo
eatable modules that are not PL/I
library subroutines are to be included
into more than one phase by the auto
link feature. For details, refer to
the SRL publications describing the
DOS/TOS system control and system ser
vice programs.

12. If many phases from different branches
of the tree structure activate the
same procedure, this procedure may be
incorporated in the root in a manner
similar to the inclusion of subrou
tines (see rule 11).

13. If (1) the declaration of a file is
made internal to some phase which is
not the root~ (2) this file is opened
in this phase, and (3) the phase is
about to be overlaid with a phase from
another branch of the tree structure,
the user ~ust close this file before
it is destroyed. This restriction
does not apply if the file is declared
both in the root and in a lower phase.

86

Note: If the PL/I standard files are
used (by a GET or PUT statement) in a
phase other than the root, these files
must either be used in the root phase,
too, or in a phase that will not be
further overlaid. Another possibility

is to include the corresponding
modules in the root by means of the
Linkage Editor control statements

INCLUDE IJKSYSA (for PUT)
INCLUDE IJKSYSI (fer GET)

In all other cases, the standard files
cannot be closed, and an error will
occur at End-of-Job=

14. If the object-time diagnostic messages
are to include the numbers of the
source statements causing the errors,
STMT must be specified in the PROCESS
card for at least the first external
procedure"contained in the root phase.

15. The time to find and transfer a phasp
to core storage requires between 200
and 600 rnsec for DOS, depending on the
phase length. A 10K phase. for
example, would require approximately
350 msec.

16~ The time required to find and transfer
a phase to core storage for TOS
depends on the physical location of
the phase on SYSLNK.

17. Different modules to be included from
the relocatable library may be ident
ical except for one or more additional
entry points in one of these modules.
If the module without the additional
entry point(s) is contained in the
root phase~ calling of the module with
the entry peint(s) in overlay phases
will result in an error during
link-editing.

For instance, the PL/I library rou
tines IJKTSTM and IJKTLCM have the
following ~ntries:

r------"-------T---------T---------,
, Module Name I IJKTSTM I IJKTLCM I
~-------------+---------+---------~
, Entry I IJKTSTM I IJKTSTM I
I Names I IJKTSTN I IJKTSTN I
I I IJKTSTR I IJKTSTR I
I I I IJKTLCM I
I I • .

------------------~-----~---------~

(IJKTSTM is used for stream I/O,
IJKTLCM is used for stream I/O with
COLUMN or LINE.)

If IJKTSTM is contained in the root
phase, calling of IJKTLCM in an over
lay phase will result in an error dur
ing link-editing~ To avoid such
errors, the module containing the
additional entry (IJKTLCM in this
caRe) must be included in the root
phase by means of an INCLUDE
statement.

Overlay Example

Assume that some program consists of one
external procedure, which is a single
block. Compilation of this procedure on a
system with a storage capacity of 16K pro
duces an object program that requires 20K.
The storage requirements for the individu
al parts of the program are as follows:

DOS/TOS control program
Overhead
Data
Subroutines including
logical IOCS

Object program

- 6K
- 2K
- 2K
- 5K

- 5K

Actually, the program requires only 19K
under the assumption that lK of data is
automatic and lK is static. However, 20K
is required when the data is allocated.

In order to make the object program run
on a system with a storage capacity of
16K, it is segmented into 8 phases. The
r"oot, which is located behind the DOS/TOS
control program, contains the MAIN proce
dure and the subroutines. Thus, the root
plus the DOS/TOS control program may
require 11K plus the overhead and program
requirement of 2K, i.e., a total of 13K.
Since the PL/I control program is in the
root phase, the total overhead for the
non-root phases is approximately .5K.

This remaining overhead increases
slightly because there are now 8 separate
blocks, each of which with its own over
head. The allotment of this remaining
overhead may result in .25K per block.
Due to these changes, the program logic
must be slightly changed and extended to
allow for the overlaying. This brings the
requirement for the object program to
about .7K per phase. Since each phase
requires less than lK and the root plus
the control program requires 15K, the pro
gram will now run on a system with a
storage capacity of 16K4 The root will
fetch the first phase (named PHSE1) and
activate it. Control is then returned to
the root, and the second phase (named
PHSE2) is fetched and activated. This
process is ret,'eated until the eighth phase
has been executed. This completes the
processing of one block of input data, and
the process is then repeated. The names
of the procedures shown below are A for
the root and Bl, B2, •••• , BS for the
phases.

A:PROCEDURE OPTIONS (MAIN);
DECLARE (data items) EXTERNAL;
ON ENDFILE (file-name) action;

BEGIN: CALL OVERLAY ('PHSE1');
CALL Bl;
CALL OVERLAY ('PHSE2');
CALL B2;

CALL OVERLAY ('PHSES');
CALL B8;
GO TO BEGIN;
END

B5:PROCEDURE;
DECLARE (data items) EXTERNAL;

source text

RETURN;
END;

For DOS, the additional time required
per block of input data when using the
overlay feature is approximately 4
seconds. For TOS, the additional time
required depends on the number and order
of the phases. In the above example, the
time increase is about the same for DOS
and TOS.

Processing of Overlays by The Linkage
Editor

All phases of one program are processed by
the Linkage Editor prograrr in one single
job step. Therefore, only cne // EXEC
LNKEDT statement must be given for a
multi-phase program. Each phase requires
one PHASE statement, which must immediate
ly precede the input for this phase. The
ENTRY statement, if used, must be the last
statement in the input stream to be writ
ten on SYSLNK. A multi-phase program must
contain-one external procedure with the
option MAIN. This external procedure must
appear in the physically first phase,
i.e., in the root phase.

If programs that contain overlays are
to be processed by the Linkage Editor pro
gram, a PHASE statement of either one of
the following three formats must be used:

1. PHASE phasename.ROOT
This format must be used for the root
phase. It must be the first PHASE
statement in the input stream.

2. PHASE phasename,*
This format of the PHASE statement
causes the subsequent phase to be
loaded beginning at the next double
word boundary. The use of this state
ment is recommended for the second
phase.

3. PHASE phasename,symbol
§y!!!E9.! is either a previously-defined
phase name or an entry name appearing
in a previous phase (except in the
root phase). This format of the PHASE
statement causes the next phase to be
loaded beginning at the address of the
symbol.

The syntax rules for the PHASE state
ment are as follows:

Overlay 87

1. ~ phase name must be from 5 to 8
characters long.

2. All phase names of a program must be
identical in their leftmost four
characters.

~2t~: Different programs (tree struc
tures) must differ in the first four
characters of their phase namES lfi
order to avoid incorrect storage
allocation ..

3~ The phase names must be identical to
the values of the character-string
expressions (except for blanks on the
right-hand side) that are used as
arguments in the OVERLAY statement.

When link-editing multiphase foreground
programs, th~ ACTION statement with the
operand Fl or F2 must be used because,
otherwise, the PHASE card for the first
phase could not have the ROOT operand.
The first three characters of the phase
names of a multiphase foreground program
should be FGP to have them retrieved fast
er from the core-image library.

r-T---------------------------------------,
1// JOB MYOVLAY I
1// OPTION LINK I
I PH~SE OVLAY1,ROOT I
1/1 EXEC PL/I I
I RT:PROCEDURE OPTIONS (MAIN); I
I RU:ENTRY I

11 C~LL OVERLAY ('OVLAY2'); I
I 1

21 C~LL OVERLAY ('OVLAY3')i I
i I

31 C~LL Ei I

I
1 1*
14
15 ,
I
I /*
16

END;

INCLUDE JKLM
PHASE OVLAY2,*
INCLUDE
deck XYZ

PHASE OVLAY3,OVLAY2
INCLUDE MYPROG 1+

I // EXEC PL/I
I
I
1

~ E:PROCEDURE;
I
I END;

I 1/*
171 ENTRY RU
1 1/1 EXEC LNKEDT
181// EXEC

t

1 1/& 1 L_i _______________________________________ J

Figure 66. sample Program to be Processed
by the Linkage Editor

Figure 66 shows a sample program to be
processed by the Linkage Editor. The num
bers at the left-hand margin are not part
of the coding; they serve as reference to
the explanations only.

88

~!E1~!!f!t!2!!

1 Causes loading of phase CVLAY2.

2 Causes loading of phase CVLAY3.

3 Activates procedure E in phase OVLAY3.
It is assumed that phase OVLAY3 has
been loaded oreviouslv and has not been
destroyed, (for example, ~-by reloading
phase CVLAY2).

4 The module JKLM that is cataloged in
the relocatable library is to be used
in OVLAY2 and OVLAY5. Therefore., it is
included in the Roar phase by an
INCLUDE statement.

5 This statement causes three actions:

a. It signals that the input stream of
OVIAYl is terminated.

b. The modules that are contained in
the relocatable library and
required for OVLAY1 are retrieved
from the library by the autolink
feature in order to complete
OVLAY1.

c. Phase CVLAY2 is loaded beginning at
the first double-word boundary fol
lowing the last module of OVLAY1.

6 This statement causes three actions:

a. It signals that the input stream of
OVLAY2 is terminated.

b. The library modules that are
required for phase OVLAY2 and not
contained in the ROOT phase
(OVLAY1) are retrieved from the
library by the autolink feature.

c. The starting point of OVLAY3 is
determined to be the same as that
for CVLAY2.

7 This statement causes four actions:

a. It signals that the input stream
for the program is terminated.

b. The librarv modules that are
required for phase OVLAY3 and not
contain~d in the RCCT phase
(OVLAY1) are retrieved from the
library by the autolink feature.

c. RU is determined to be the starting
point for the execution of the
program.

d. The starting point of the dynarric
storage area is determined to begin
on the first double-word boundary
following OVLAY2 or OVLAY3, whi
chever is longer.

8 Fetches OVLAYl and transfers control to
entry point RU. Note that only the
ROOT phase is loaded by II EXEC.

+ See PL/I Procedures contained in the
gg!QS~~~~!g-LIb!~!y-below:---------

The structure of the resolved overlay
scheme of the above example is shown in
Figure 67.

• } DOS/TOS

I"r'}
RT

OVLAYI < } JKLM
.

)

Modules included by the
autol ink feature I if any.

1
}xvz

OVLAY2 .

}

Modules Included
by the autolink
feature, if any.

} MYPROG

OVLAY3< } E

.} -Modules included
by the autolink

'. feature I if any.

~ Dynomk ,'o,oge

Structure of the Resolved Overlay Scheme - R.

Figure 67. Structure of the Resolved
Overlay Scheme

PL/I Procedure.s Contained in The
Relocatable Library

Precompiled PL/I procedures may be inco
rporated in the relocatable library by
using the DOS/TOS MAINT service program.
A module is retrieved from the library and
incorporated in the object program by the
autolink feature when the name of the
module is specified for the first time
either in a PL/I function reference or in
a CALL statement •

No module is retrieved from the library
if only secondary entry points are
referred to in the calling procedure(s).
In this case, a statement of the format

INCLUDE module-name

is required to include the module in the
object program. On the other hand" inco
rporation by the autolink feature can be
suppressed for a specific module by refer
ring only to secondary entries of that
module. To obtain the same result as by
calling the primary entry point, the pro
grammer may insert a statement of the
format

ENTRY secondary-en try-name

immediately behind the PROCEDURE statement
of the external procedure.

Note: Although this description covers most of the applications of the overlay
scheme, the reader should study the sec
tion covering the Linkage Editor program
in the SRL putlications that describe the
DOS/TOS system control and service
programs.

overlay 89

Program Listings

Source Program Listing

All source program cards are listed if the
LIST option is in effect. Each card is
printed as one line. The source state
ments are numbered sequentially starting
at 1. The statement number is printed in
print positions 1 through 6 of the line
where the statement begins (right
aligned). In case a line contains more
than one statement" only the number of the
first statement is printed. However,
since the remaining statements are coun
ted, the next line again gives the correct
statement number.

~~!~~ If comments or character ,strings
are not correctly opened or closed in the
source text, unpredictable diagnostic mes
sages may be produced. Also, the source
statement numbering will be erratic.

If the source statement contains any
error(s), the statement number is used in
the corresponding diagnostic message to
clearly identify the statement in error.
The diagnostic messages are listed in
Appendix F.

Column 1 of PL/I source program cards
must always be blank. If column 1 of a
source card contains any character, print
positions 7 through 20 of the correspond
ing line in the source program listing -
i.e., the gap between tbe statement number
column and the source statement column
plus column 1 of the source card -- are
filled with asterisks to indicate this
error. Columns 73 through 80 are ignored
and may contain any information.

Symbol Table Listing

If the SYM option is specified, all sym
bols used in PL/I source programs are
listed in the symbol table. The format of
the symbol table is shown in Figure 68.

The symbol table is listed even if
NOSYM was specified in case a declarat~on
contains an error or an external name is
too long.

The programmer is advised to examine
the symbol table listing after the first
compilation of a procedure to detect
erroneously declared identifiers and iden
tifiers that roay have been incorporated by
default rules as the result of
mispunching.

The attributes ALIGNED or UNALIGNED, if
specified for a major structure, are
printed together with the ~1~~~n~~of the

90

structure, unless an opposite attribute
has been explicitly declared for a parti
cular element.

r---------T-------------------------------,
! Print I I
~PositionslContain I
t---------+----------------------=---~----~
I 1-31 luser-defined name I

~---------+-------------------------------~
I 33-36 linternal representation I
t---------+-------------------~-----------~
I 38-39 Iblock number I
~---------+-------------------------------~
I 41 jblock level number I
r---------t-------------------------------i
I 43-49 lone of the attributes ARRAY, I
I ISTRUCT., ENTRY, or BUILTIN* I
t---------+-------------------------------~
I 51-53 Ilogical structure level* I
t---------+-------------------------------~
I 55-61 lone of the attributes ARITHM., ~
I I STRING, LABEL, PCINTER, FILE~ I
I lor PICTURE* I
~---------+-------------------------------~
I 63-69 lone of the attributes DECIMAL, I
I IBINARY, ALIGNED, UNAL., CONST.,l
I lor VARIAB. * I
~---------+-------------------------------1
I 71-75 lone of the attributes FIXED, I
I IFLCAT, BIT, CHAR., or STERL* I
.---------+-------------------------------~
I 77-81 Ithe precision or length* I
t---------+-------------------------------~
I 83-88 lone of the attributes STATIC. I
I IAUTOM., BASED, PARAM., or I
I IDEFIN.* I
t---------+-------------------------------~
I 90-92 !orie of the attributes INT or I
I IEXT I
.---------~-------------------------------1
1* if applicable I
L _____________ ~---------------------------J

Figure 68. Format of the symbol Table
Listing

Any error detected during compilation in
the declaration of the symbols is identi
fied in the symbol table. In this case,
only the source program symbol, one of the
messages listed in Figure 69, three
asterisks, and the code pertaining to the
message appear in the respective line of
the listing.

Message 12 appears with the iiE§! com
parand only. Comparison starts with the
innermost block and proceeds either on the
same nesting level according to the block
sequence of the program. or to the block
with the next higher nesting level.

OUT: PROCEDURE;
DECL~RE E BINARY EXTERNAL;
IN: PROCEDURE;

DECLARE E DECIMAL EXTERNAL:
END IN;

END OUTi

The message appears with the E in procedure
IN.

r----T------------------------------------,
ICodel Message Text I
~----+------------------------------------~
I 01 iSYNTACTICAL DECLARE ERROR. I
~----+--------------------------------~---~
I 02 ICONFLICTING ATTRIBUTES. I
t----+------------------------------------~
I 03 'PRECISION IS MISSING OR WRONG. I
~----+------------------------------------~
I 04 IB~SE VARIABLE ITSELF IS DEFINED OR I
I I BASED. I
~----+------------------------------------~
I 05 IB~SE OR POINTER INCORRECT. I
~----+------------------------------------~
I 06 IATTRIBUTES OF SECONDARY ENTRY CCN- I
I IFLICT WITH THOSE OF PRIMARY ENTRY. I
~----+---~--------------------------------~
I 07 IMULTI-DECLARED IDENTIFIER. I
~----+------------------------------------~
I 08 IENTRY RETURNS VALUE WITH CONFLICTING I
I I~TTRIBUTES. I
~----+------------------------------------~
I 09 IINV~LID STRUCTURE. (Any invalid I
I lelement in a structure may invalid- I
! late the entire structure). I
t----+------------------------------------~
I OA IARRAY TOO LONG. I
~----+------------------------------------~
I OB I STRUCTURE TOO LONG. I
~----+------------------------------------~
I OC IPOINTER IN BASED STRUCTURE. I
~----+------------------------------------~
I 00 ITOO MANY ARRAYS. I
~----+------------------------------------~
I OE IINVALID PICTURE. I
~----+--------------------------------~---~
I OF ISTRUCTURE LEVEL DEEPER THAN EIGHT ~

t----+------------------------------------~
I 10 INAME EXCEEDS 31 CHARACTERS IN I
I 1 LENGTH. I
t----+------------------------------------~
I 11 IEXTERNAL NAME EXCEEDS 8 CHARACTERS I
I I IN LENGTH. I
t----+------------------------------------~
I 12 IMULTIPLE DECLARATION OF EXTERNAL I
I IN~ME INCONSISTENT. I L ____ i ____________________________________ J

Figure 69. Error Codes Used in the Symbol
Table Listing

Cro ss-Reference Listing

If XREF is specified either in the OPTION
statement or in the PL/I PROCESS statement
a cross-reference listing will be provided

containing the external names in alphabetic
order as well as the internal names and the
statement numbers of those statements in
which the names appear. References to
identifiers in DECLARE statements or to
incorrectly declared identifiers are not
printed.

Offset Table List ing

The offset table listing is produced if the
SYM option is specified in the OPTION sta
tement. The information is printed in four
columns in hexadecimal notation.

Internal Name. A variable or constant is
lIsted-In-the offset table if (1) it is de
clared in the source text and (2) it
appears either in the automatic or static
storage area, and (3) has a fixed offset
relative to the beginning of the respective
storage area.

Offset. This column gives the offset of
the-data item relative to the beginning of
the automatic or static storage area for
the corresponding block.

~YE~. This column indicates whether the
data item is contained in static or in
automatic storage.

Module Offset. This column gives the off
set-of-the-da ta item re la t,i ve to th e beg in
ning of the module in which it appears.
(Since the addresses in automatic storage
are dynamically assigned, no offset rela
tive to the beginning of the module can be
given for automatic data.) The absolute
address of the data it~m contained in stat
ic storage can be determined by adding the
load address of the module (to be found in
the Linkage Editor storage map) to the
value given here.

External Symbol Table Listing

The external symbol table is produced if
the SYM option is specified in the OPTION
statement. It contains the following
information:

column 1: SYMBOL - the external symbol
column 2: TYPE - either SO, LD, or ER
column 3: ESID - ESID number of control

section that is referred
to (for SO and ER)

column 4: ADDR - begin address (for SD
and LD)

column 5: LENGTH - end address (for SD
only)

column 6 : ESID ESID number of control
section that is referred
to (for LD)

Program Listings 91

Block Table Listing

The block table listing is produced if the
SYM option is specified in the OPTION sta
tement. The block table gives the number
of the program block and the size of the
corresponding DSA in hexadecimal notation.

Obi ect Code Listing

The object code generated for a PL/I source
program is listed following the offset
table. The following should be noted:

1. All addresses and operands are printed
in hexadecimal notation.

2. Length specifications in SS instruc
tions are printed modulo 256 if one
length is specified and modulo 16 if
two lengths are specified.

3. Operands of the form X'nnn'(b) repre
sent generated variables or constants.
nnn is the displacement and b is the
base register.

4w Operands of the form N'nnn', where nnn
is greater than or equal to 100, repre
sent internal names of declared items.
(These can also be found in the symbol
table.)

5. Operands of the form N'nnn', where nnn
is less than 100, represent internal
names of PL/l library subroutines.

6. Labels of the form L'nnn' represent
internal names of declared or generated
labels. <Only declared labels can be
found in the symbol table.}

7. Operands of the form N'nnn' that appear
in the instructions BC, BAL, or BCT
represent internal names of either de
clared or generated labels.

8. ~ 'constant' of the form X" has the
same function as the assembler instruc
tion EQU *.

9. ~n instruction of the form

92

L"nnn' DC ~(N'nnn')

does not represent an address constant
of itself. L'nnn', in this case, is
the label of the constant, whereas A(
N'nnn') refers to an entry point of
that internal name in the program. For
example, in the instruction

L'0104' DC A{N'010Q')

10.

11.

L'0104' is the label of the constant
defined by the DC. A(N'0104') refers
to an entry point in the program that
has the internal name.

If a statement is preceded by more than
one label, all labels are equated to
the one directly preceding the state-
..... --"'- 1':1 __

U":;.11 £U.L "b'1estaterrent;

A: B: c: X = V· - ,

the following code would be generated:

L' EQU * (for ~)
L' EQU * (for B)
L' MVC

The number of the source statement for
which the object code is generated is
printed at the end of the specific part
of the object text. The statement
number may appear more than once if the
respective source statement was broken
down into logical parts during
compilation.

Statement Offset Listing

If LISTO is specified in the PROCESS card
the statement numbers and the relative
location of the end of each statement
within the object module is printed. LISTO
overrides LISTX, i.e., if LISTO and LISTX
are specified, the LISTX option is ignored
because the object code listing and the
statement offset listing cannot be printed
together.

Compile-Time Diagnostic Messages

Errors caused by non-observance of language
rules or restrictions in the source text
are detected by the compiler. A diagnostic
message is printed for each detected error
following the source listing. For a state
ment containing one or more errors, several
diagnostic messages may be printed.

The individua~ diagnostic error messages
are listed in Appendix F.

Object-Time Diagnostic Messages

Errors that occur during execution of PL/I
programs cause the printing of an object
time diagnostic message. For the format of
this message and for an explanation of the
message codes that may be included in the

I message, refer to Appendix G.

Appendix A. Conversion Subroutines

r-------T--------------------------------T-------------------------------T--------------,
i No. an d I I I I
i intern. I 1 Reason for Inclusion J I
I name I Function lin Object Program fSize(in Bytes) I
t-------+----------~---------------------+------~------------------------+--------------~
I 1 IConverts input data IF or E format has appeared I 404 I
I IJKVECM t from F or E notation to an I in an input statement I I
I linternal intermediate form I I I
r-------+~-------------------------------+-------------------------------+---~----------1
I 2 IConverts data from an internal IF or E format has appeared I 1024 1
IIJKVCEMlintermediate form to F or E lin an output statement I I
I I format in preparation for output I I I
~-------+--------------------------------+--------------------~----------t--------------~
I 3 Iconverts data in storage in ICoded fixed decimal expres- I 68 I
I Icoded fixed decimal form to an Ision appears in an output list I I
IIJKVPCMlinternal inte~mediate form I or I I
I I ICoded fixed decimal data I I
I I I requires conversion to ·float- I I
I I ling scale or binary base I I
~~------+--------------------------------+-------------------------------+--------------~
I 4 IConverts data from an internal ICoded fixed decimal variable I 214 I
I I intermediate form to coded lappears in an input list I I
I IJKVCPM 1 fixed decimal form I or I I
I t' I Whenever a conversion to I I
I I Icoded fixed decimal is required I I
t------~+--------------------------~-----+-------------------------------+--------------i
I 5 IConverts data stored in IA numeric float variable I 492 I
jIJKVFCMlnumeric float form to an inter- lappears in an arithmetic I I
IIJKVNPMlnal intermediate form lexpression or in an output listl I
t-------+-------------------------------·-+-------------------------------t--------------~
I 6 IConverts data in an internal INumeric float variable I 680 I
I lintermediate form to internal lappears in an input list I I
I IJI<VCFM I numeric float I or ~ I
IIJKVPNMI lappears on the left side of an I 1
I I I assignment symbol 'I I
r-------f--------------------------------+-------------------------------+--------------i
I 7 IConverts data in storage in IIntege~ binary fixed expres- i 60 I
IIJKVBCMlfixed binary form to an inter- Ision appears in an output list I I
I t nal intermediate form I I J
t-------+--------------------------------t-------------------------------+--------------~
i 8 IConverts data in an internal IBinary fixed variable appears I 238 I
IIJKVCBMlintermediate form to fixed lin an input list I I
I Jbinary form I I I
~-------+--------------------------------+-------------------------------+~-------------~
I 9 IConverts data from coded float- ICoded float expression or non- I 320 2 I
I ling point form (short or long I integer binary expression 1 I I
IIJKVTCMlword) to an internal intermedi- lappears in an output list I I
I I ate form I or I I
1 I ICoded float or non-integer I I
I I I fixed binary expression is I I
I I lassigned to a numeric decimal I I
I I Ivariable or a coded fixed I I
I I 1 decimal variable I I
t-------+--------------------------------+-------------------------------t--------------~
I 10 IConverts data from an internal ICoded float variable appears I 392 2 I
IIJKVCTMlintermediate form to coded lin an input list I I
I Ifloating form (short or long) I or I I
I I IConversion to coded float is I I
I I jrequired from either numeric I I
I I Idata or coded fixed decimal I I L _______ ~ ________________________________ ~ _______________________________ ~ ______________ J

Appendix A. Conversion Subroutines 93

r-------T--------------------------------T-------------------------------T--------------,
I NO. and I I I I
!-intern .. I I Reason for Inclusion I I
I name I Function jin Object Program ISize{in Bytes) I
t-------f--------------------------------+-------------------------------+--------------1
I 11~ IConverts data from numeric INumeric fixed decimal number isl 368 I
IIJKVNPMlfixed form to coded fixed lused in an arithmetic I I
I ldecimal form 3 ~expression or in an output listl I
r-------+--------------------------------+-------------------------------~--------------~
I 125 IConverts data from c.oded fixed iNumeric fixed decimal number i 316 i
I 1decimal form to numeric fixed lappears on the left of an i i
!IJKVPNMldeciIDal form3 lassignment symbol or in an I I
I I linput list I I
~-------+--------------------------------+-------------------------------+--------------~
I 13 IConverts from numeric fixed INumeric sterling field is used I 796 I
IIJKVRPMlsterling to coded fixed decimal lin an arithmetic expression or I I
I I lin an output list I I
~-------+--------------------------------+---------------------~---------+--------------~ I 14 JConverts from coded fixed INumeric sterling number I 1252 I
! !decimal to numeric fixed !appears on the left of an I
! IJKVPRM·1 sterling ! assignment symbol or in an i
I I I input list I I
~-------+--------------------------------+-------------------------------+--------------~
I 15 Iconverts character string to IConversion to bit string from I 254 I
I Ibit string Icharacter string form is I I
I IJ~VGIMt I required - I I ~

~-------+--------------------------------+-------------------------------+--------------~
16 Iconverts ~it string to characterjConversion to characteL i 148 i

I I string I string from bit string is I I
IIJKVIGMI Irequired or a bit-string I I
1 I 1 expression appears in an 1 I
I I loutput list I' I
~-------+--------------------------------+-------------------------------+--------------~
1 17 IConverts fixed binary data to IConversion from binary I 132 I
IIJKVBTMlcoded float I fixed to coded float is 1 I
I I I required I I
~-------+--------------------------------+-------------------------------+--------------~
I 18 IConverts coded float data to IConversion froID coded I 228 1
IIJKVTBM!fixed binary ,float to fixed binary is i
I I I required I I
~-------i--------------------------------~------------___________________ i ______________ ~
I I
11The only way for a non-integer fixed binary number to appear is if the result of a I
I division of one fixed binary integer by another results in a non-integral value or by I
I use of any of the built-in functions PRECISION, BINARY, or FIXED. I
I I
12Also requires a table of 128 bytes. Subroutines 9 and 10 require this table. If bothl
I subroutines appear, the table is in storage only once. I
J I
1 3 Any picture data represented by [9 •••] [V] [9 •••][T] is converted to and from coded I
I fixed decimal by a single in-line instruction and requires no subroutines. 1

I I
I~Subroutine 11 is a subset of sucroutine 5. If 5 is present, 11 is not. I
I 1
i5Subroutlne 12 i~ d ~ub~et of subroutine 6. If 6 is present, li 1S not. I L ___ ----------________________________ J

94

Appendix B. Possible Combinations of Data Conversions

FORMAT ITEMS -I

-I ~ TO ~ u 0 0 w
U 0 Z Z w ~
0 0 « -I 0:::

0
W ~ 0 0::: >- ~

~ « w Vl
W -I ~ 0:::

~ u.. 0 u.. Vl « 0:::

FROM -I Z
W

u.. U u.. U U ~

0 ~ 0 ~ ~ iil U
u.. w « cc w w w w w 0

«
0 ~ 0 ~ ~

0:::
w «

0 ::::> 0 ::::> ::::> ~ :::c
u Z u Z Z u.. u

F NP NP NP NP 1,4
1,4,

1,10 1,6
1,4,

1,8 NP 12 14
Vl 1,4, 1,4, ~ E NP NP NP NP 1,4 1,10 1,6 1,8 NP w 12 14 !:::
~ A NP NP NP NP NP NP NP NP NP NP X
~
0:::

0 B NP NP NP NP NP NP NP NP NP NP NP u..

CODED FIXED DECIMAL 2,3 2,3 NP NP IL 12 3,10 3,6 14 IL NP

NUMERIC FIXED DECIMAL 2,3, 2,3,
NP NP 11 11,12 3,10, 3,6, 11,14 11 IL

11 11 11 11

CODED FLOAT 2,9 2,9 NP NP 4,9 4,9, IL 6,9 4,9, 18 NP 12 14

NUMERIC FLOAT 2,5 2,5 NP NP 4,5 4,5, 5,10 5,6 4,5, 5,8 IL 12 14

NUMERIC STERLING 2,3 2,3
NP NP 13 12,13 3,10, 3,6, 13,14 13 IL 13 13 13 13

FIXED BINARY 2,7 2,7 NP NP IL 12 17 6,7 14 IL NP

CHARACTER STRING NP NP X NP NP NP NP NP NP NP IL

BIT STRING NP NP NP 16 IL 12 IL 6,7 14 IL 16

LABEL NP NP NP NP NP NP NP NP NP NP NP

POINTER NP .NP NP NP NP NP NP NP NP NP NP

Legend: NP - Not permitted.

IL - Done directly in-line; no subroutine required.

X - Contained as part of edit-directed I/o package to be discussed in I/O chapter.

The numbers indicate the applicable conversion subroutines listed in Appendix A.

0
Z 0:::
~ w
~ -I ~

Vl w Z
cc (5 !::: «

cc -I a..

NP NP NP

NP NP NP

NP NP NP

15 NP NP

IL NP NP

11 NP NP

18 NP NP

5,8 NP NP

13 NP NP

IL NP NP

15 NP NP

IL NP NP

NP IL NP

NP NP IL

Appendix B. Possible Combinations of Data Conversions 95

Appendix C. Built-In Functions, Pseudo-Variables, And Other
Implied Subroutine Calls

r--T--------------r-------------------T---------T--------T------------------------------,
I 1 I I I Size I I
I NOIName I Argument(s) IInternal I in IRestrictions and Additional i
I i I IName(s) I Bytes I Information I
r--f--------------+-------------------f---------f--------t-------======-----------------i
I I !bit string jIJKRBKA ! 292 i I
I 1 I I tJKRBKB 1 I Resul t must not exceed max. i
i191-REPEAT t-------------------t---------t---------Istring length 1
1 1 Icharacter string IIJKRGKM I 84 I I
~--+--------------t-------------------+--------_+--------+------------------------------~
120 I I bit string LIJKRBIM I 292 I I
I---~INDEX I-------~------------+---------+---------I I
I 21·1 I character string I IJKRGIM 1 108 I I
~--+--------------+-----~-------------+---------+--------+------------------------------~
! 22, BaaL I i IJKRBBM i 424 i i
I---f--------------+-------------------+---------f--------+------------------------------~
I I I character string I in-line 1 I I
1231SUBSTR .-------------------+---------+--------~ I
I I I bit string I IJKVIIM I 180 I I
I---f--------------+-------------------+---------f--------+------------------------------~
1241 UN SPEC Ibit string I in-line 1 1 Argument must not exceed I
! ! ! I I I 8 byte!:> I
I---f--------------f-------------------+---------f--------+~-----------------------------~
1261 DATE I tIJKSDTM 1 58 1 I
~--+--------------f-------------------+---------+--------+------------------------------~
127 1 STRING I I in-line I I I
I---f--------------+-------------------+---------f--------+------------------------------~
I I I fixed binary 1 IJKRUBM 1 148 1 I
1281 ROUND I fixed decimal I in-line I I I
I 1 t-------------------+---------+---------I I
I I I float lin-line I 1 I
~--+--------------+-------------------+---------+--------+------------------------------~
129 I I all fixed binary I IJKRMBX I 278 ! I
I I I I IJKRMBN I I I
~--~ .-------------------+---------+---------IArgument with differing data I
1301 lall fixed decimal IIJKRMPX 1 386 lattributes causes some of the 1
I 1 I 1 IJKRMPNI Idata to be converted to one ofl
t--~MAX/MIN.-------------------+---------+--------fthe four permissible types. I
1311 lall short float I IJKRMSX 1 132 I The choi'ce depends on the I
I , I 1 IJKRMSN I I element of the highest I
~--~ .-------------------+---------+--------~stringency level. I
1321 lall long float 1 IJKRMLX 1 172 1 I
1 I I 1 IJKRMLN 1 1 I
~--+--------------+-------------------+---------+--------+------------------------------~
133 1S IGN I 1 in-line 1 1 I
I---t--------------+-------------------+---------+--------+------------------------------~
I I 1 fixed binary I IJKRWBM I 356 I I
I I .-------------------+---------+--------~ I
I ! I fixed decimal I IJKR'iJPM I 58C I In=line code for TRUNC of
I 341TRUNC I---------------~----+----~----+--------~fixed jecimal data. IJKRWPM isl
I ~ Ishort float IIJKRWSM I 236 lused only for FLOOR and CEIL. I
t I .-------------------+---------+--------i I
I I lIang float I IJKRWLM I 244 I i
I---+-----------~--+-------------------~---------~--------~------------------------------~
I 351FLOOF IContained in TRUNC. Entry points are IJKRT.. I
~--+--------------+---~
1361 CEIL I Contained in TRUNC .. Entry points are IJKRV.. I
L __ ~ ______________ ~ ___________________________________ ------------------------------____ J

96

r--T--------------T-------------------T------~--T--------T------------------------------,
I I I I I Size I I
INolName I Argument(s) IInternal I in IRestrictions and Additional I
I I I I Name (s) I Bytes 1 Information I
~--t--------------+_------------------t---------t--------t------------------------------~
I I I fixed binary I IJKRSBM I 200 I I
1 I ~------------------t---------+--------~ I
1 I I fixed decimal I IJKRSPM I 265 I I
I 37 I MOD .-------------------t---------t--------~ I
I I Ishort float I IJKRSSM I 184 I I
1 I ~-------------------t---------t--------~ . 1
I 1 Ilong float I IJKRSLM t 192 I I
~--t--------------+-------------------t---------t--------t---~--------------------------~
1381 PRECISION I I in-line I I I
t--f--------------+-------------------+---------t--------t------------------------------i
I 391 HIGH J I in-line I -- I I
~--t--------------+-------------------+---------t--------+------------------------------~
I 40 I LOW I I in -1 in ell I
t~-f--------------f-------------------+-------~-t--------t------------------------------i
1411 FIXED I 1 -I Attributes of arguments must I
t--t------------.... -~ 1 1 permit conversion specified by I
i 421 FLOAT I I 1 built-in function name~ No 1
r--f--------------i 1 I subroutine is called if I
1431 BINARY I I I argument is already in re- I
t--+--------------~ I Iquested form. Appropriate 1
144 I DECIMAL I I I subroutines 1-18 are used. I
r--f--------------i 1 I Choice depends on attributes I
1451BIT I 1 lof argument and built-in I
t--t--------------~ I lfunction name. (See I
1461 CHAR I I I Appendix A. I
r--f--------------f-------------------t---------+--~-----t------------------------------i
147 1SUM I lin-line I I I
t--t--------------f-------------------+---------t------~-+------------------------------~
l48 I PROD I I in-l ine I I I
r--f--------------+-------------------+---------f--------t------------------------------i
149 1ALL I lin-line 1 1 I
t--+--------------f~------------------t---------t--------+-------~--~-------------------~
150lANY I I in-line I I I
r--f--------------+-------------------+---------+--------t------------------------------i
1511 ABS I I in-line 1 I I
t--+--------------f-------------------+---------t--------t------------------------------~
I I lexpr.1 fixed binarylIJKREBM I 92 I I Result I $ 231-1 I
1521 lexpr.2 integer I 1 I I
1 I I constant I I 1 (IHEXIB) 1
r--i ~------------------t---------f--------+------------------------------i
I I lexpr.1 fixed deci- IIJKREPM 1 140 I 1 Resultl $ 10 15-1 I
1531' I mal, expr. 2 integer 1 I I I
I J I constant I I I (IHEXID) 1
t--·~ .-------------------+---------+--------+------------------------------~
I I lexpr.1 short float,lIJKRESM I 144 IIResultl $ 7.2x1075 I
I 541 I expr. 2 fixed binary I I 1 I
I I I with scale factor 0 I I I (IHEXIS) I
t--iexpr.l**expr~2~------------------+---------+--------t------------------------------i
I 1 lexpr.l long float, IIJKRELM 1 152 I 1 Result I $ 7.2x1075 I
1551 I expr. 2 fixed binary I 1 I - I
I I I wi th scale factor 0 I I I (IHEXIL) I
t--~ .-------------------+---------+--------+-------------~-----~----------~
I 1 lexpr.1 short float IIJKRXSA 1 152 IExpr.1 > 0; expr.2 not integer I
1561 I t 1 (60,62)*lconstant or fixed binary; I
I I I 1 I Ilresultl $ 7.2x1075 I
1 I I 1 I I (IHEXXS-) I
t--~ .-------------------+---------+--------+------------~-----------------~
I I lexpr.l long float IIJKRXLM I 168 IExpr.1 > 0; expr.2 not integerl
157 1 I I I (61,631 *1 constant or fixed binary; 1
I I I I i I jresulti S; 7.2xl075 i
I I I i I I (IHEXXL) I L __ L __ - ___________ ~ ___________________ ~ _____ ~ ___ L ________ L ______________________________ J

Appendix :. Built-in Functions, Pseudo Variables, and ether Implied Sutroutine Calls 97

r--T--------------T-------------------T---------T--------T------------------------------,
I I I I I Size I I
I NolName I Argument (s) IInternal 1 in IRestrictions and Additional I
I I I IName(s) I Bytes 1 Information I
~--f--------------f-------------------+---------f--------+------------------------------i
I I lshort float IIJKQQSM I 176 IArgument = 0 or 2.4x10-78 ~ I
,581 I I I I argument ~ 7. 2x10 75 I
I I I I I I (IHESQS) I
~--~·SQRT .------------------+---------+--------+-------------------~-~-----==~~
I I lIang float 1 IJKQQLM I 160 I Argument = 0 or 2. 4x10-78 ~ I
1591 I ! I largument ~ 7.2x1075 I
I I I I I I (IHESSQL) i
~--f--------------+----------------~--+---------+---~----+------------------------------i
1601 Jshort float IIJKQASM I 232 IArgument ~ 174.6 I
I I I 1 1 1 (IHEEXS) 1
r--iEXP r-------------------+---------+--------t------------------------------i
161\ Ilong float IIJKQALM I 456 IArgument ~ 174.6 1
I I I 1 1 1 (IHEEXL) I
r--f---~----------f-------------------+---------t--------+--~---------------------------i
i i jshort float jIJKQLSA i 272 jArgument 5 7.2xl075
i 62 ~ i I IJKQLSB I i (IHr:;LNS)
1 t I I IJKQLSC I 1 I
~~-~LOG/LOG10/LOG2.-------------------+---------+--------+------------------------------~
I I (long float IIJKQLLA I 384 IArgument ~ 7.2x1075 I
\ 63\ I I IJKQLLB 1 1 (IHELNL) I
I I I I IJKQLLC I 1 I
r--f--------------f-------------------+---------t--------t------------------------------i
I I Ishort float IIJKQSSD I 304 1 1 Radian Argl < 218xpi I
1641 II IJKQSSB 1 II Degree Arg I < 218x180 I
I 1 I I IJKQSSC 1 I 1
I 1 I I IJKQSSAI I (IHESNS) I
r--iSIN/COS/ r-------------------+---------+--------+------------------------------i
1 I SIND/COSO Ilong float IIJKQSLD 1 416 I I Radian Argl < 250 xpi I
1651 I I IJKQSLB I I I Degree Arg I < 250x180 I
1 I I I I.:fKQSLC 1 1 I
I 1 -I I IJKQSLA I I (IHESNL) I
~--+--------------f-------------------+---------t--------+------------------------------i
I I Ishort float IIJKQTSB I 280 I I Radian Argl < 218xpi I
166 iii IJKQTSA iii Degree Arg I < 2:l 8 x180 i
1 I I I I I (I HET NS) I
~--~TAN/TAND .-------------------+---------t--------t------------------------------~
I 1 lIang float IIJKQTLB I 360 I I Radian Argl < 250xpi 1
1671 I I IJKQ'ILAI I 1 Degree Argl < 250 x180 I
I I I I I I (IHETNL) I
r--+-------~------f-~-----------------+---------+--------t-------------------------~----i
1 1 Ishort float IIJKQNSD I 400 10 < IX,YI ~ 7.2x1075 ~
168 1 I I IJKQNSB I I I
1 IA.TAN(X) I 1 IJKQNSCI I 1
I IATAN(Y,X) I 1 IJKQNSAI 1 (IHEA'IS) I
t--i ATA.NO eX) ~-------------------+---------f--------+------------------------------i
I IATA.ND(Y,X} Ilong float IIJKQNLD 1 536 10 < IX,YI ~ 7.2x1075 I
I I I I IJKQNLB I I 1
1691 I I IJKQNLCI I I
I 1 I 1 IJKQNLAI 1 (IHEATL) I
r--f--------------f-------------------+---------f--------t------------------------------i
1701 Ishort float IIJKQCSA 1 208 IIArgl ~ 174.6 I
I 1 I I IJKQCSB I (60) * I (IHESHS) 1
t--iSINH/COSH ~-------------------t---------+--------+------------------------------~
1711 Ilong float IIJKQCLA 1 288 IIArgl ~ 174.6 I
1 I I I IJKQCLBI (61) * I (IHESHL) I
r--f--------------f-------------------t---------t--------t------------------------------i
1721 Ishort float IIJKQDSA 1 212 IIArgl $ 7.2x1075 I
I 1 I I 1 (60)*1 (IHETHS) 1
t--~TANH r-------------------+---------t--------t----------------------~-------i
1731 Ilong float IIJKQDLA I 288 _ IIArgl ~ 7.2x1075 I
I 1 I I I (61) * 1 (IHETHL) I l __ ~ ______________ ~ ___________________ ~ _________ ~ _____ ---~-_____________________________ J

98

r--T--------------T-------------------T---------T~-------T------------------------------,
ill ! I Size I I
INolName IArgument(s) IInternal I in IRestrictions and Additional 1
I I I IName(s) I Bytes I Information 1
~--+--------------+-------------------+---------+--------+------------------------------~
1741 Ishort float IIJKQBSA 1 208 IIArgl < 1 I
I I I I I (62)*1 (IHEHTS) I
~--~ATANH r-------------------+---------+--------+------------------------------~
1751 Ilong float 1IJKQBLA 1 280 IIArgl < 1 1
I I I I 1 (63) * I (IHEHTL) I
~--+--------------+-------------------+---------+--------+------------------------------~
1761 Ishort float IIJKQRSB 1 408 IIArgl $ 7.62x1037 1
I 1 II IJKQRSA I (60) * I (IJEEFL) 1
~--~ERF/ERFC ~-------------------+---------+--------+------------------------------~
1771 llong float IIJKQRLB I 776 IIArgl $ 7.62x1037 I
I 1 I I IJKQRLAI (61)*1 (IHEEFL) I
r--+--------------+-------------------+---------+--------+------------------------------~
I 781ADDR I lin-line I I I
~--+--------------+-------------------+---------+--------+------------------------------~
1791NULL I 1 in-line 1 1 I
~--f--------------+-------------------+---------+--------+------------------------------~
180 lADD I lin-line 1 I I
~--+--------------+-------------------+---------+--------+------------------------------~
1811DIVIDE I 1 in-line I' I I
r--f--------------+-------------------+---------+--------+------------------------------~
1 821 MULTIPLY I 1 in-line 1 1 I
t--~--------------~-------------------~---------~--------~------------------------------1
I*The subroutine whose number is given in parentheses is also used by I
1 this routine. 1 L ___ ~ ___ ~

r---,
1 BUILT-IN FUNCTIONS CONTAINED IN THE FULL-SET LANGUAGE, BUT NOT IMPLEMENTED I
I IN THE D-LEVEL COMPILER 1
~---~
I ALLOCATION DATAFIELD LBOUND ONCHAR CNSCURCE I
1 COMPLETION DIM LENGTH ONCODE POINTER I
I COMPLEX EMPTY LINENO ONCOUNT POLY 1
I CONJG HBOUND NULLO ONFILE PRIORITY 1
I COUNT IMAG OFFSET ONKEY REAL I
I ONLOC S'IATUS I L ___ J

Appendix C. Built-in Functions, Pseudo Variables, and Other Implied Subroutine Calls 99

Appendix D.I/O Subroutines

r------T-------------T---------T---------------------T----------------------------T-----'
I I IInternal I !Reason for Inclusion in I f
!NumberlName IName(s) \ Description jObject Program I Bytes I
~------+-------------+---------+---------------------+----------------------------+-----~
i 1 IPagesize IIJKTPSM lControls number of IThe PAGESIZE option appears i 72 I
iii Ilines on printed pagelin an OPEN statement I I
~------+-------------+--~------+----------~=--==-----+----------------------------+-----~
1 21 I Stream IIJKTSTM, Constructs a logical I Always present for files 1674* 1
I ,Constructor II IJKTSTNlstream from physical Ideclared with the STREAM 1 1
I I , IJKTSTRI record and vice versalattribute I I
~------+-------------+---------+------------------~--+----------------------------+-----~
I 3 1 IStream IIJKTLCM ISame as Stream Con- IAlways present for files 1876* I
, IConstructorIII IJKTSTMlstructor I except Iwith the STREAM attribute, I I
I \ i IJKTSTNjthat LINE or COLUMN Iwith format list containing I l
I i IJKTSTRjis used ILINE or COLUMN, or with PUT I I
I I I I I statement containing the I I I' I I I LINE option 'I
~------+-------------+---------+-----------~---------+----------------------------+-----~
I 42 IFormat I IIJKTFDM IAssociates a variablelGET/PUT FILE EDIT statement 1480 1
1 1 I Iwith its editing lappears in source program 1 I
1 I I I descriptor! ! !
~------+-------------+---------+---------------------+----------------------------+-----~
I 52 IFormat II IIJKTGDI ISame as .Format I IGET/PUT STRING EDIT state- 1414 I
I I I IJKTGDOI ,rnent appears in source 1 I
I I " I program I I
~------+-------------+---------+---------------------+----------------------------+-----~
I 6 ,Consecutive IIJKTCBM ITransmits data to/ IREAD/WRITE/LOCATE/REWRITE 1552* 1
I I Buffered I I from the buffer from/lstatement is used for a I I
, I Transmitter I Ito a record variable Iconsecutive buffered file I I
I I I I for consec. files I I I
~------+-----~-------+---------+----~----------------+----------------------------+-----~
I 7 I Consecutive IIJKTCUM lTransmits data IREAD/WRITE/REWRITE statement I 252* I
I jUnbuffered i Idirectly from/to an lis used for a consecutive I I
1 I Transmitter I iexternal device lunbuffered file I 1
I I I I directly to/from a I t I
I' I I record variable I I I
~--~---+-------------+---------+---------------------+----------------------------+-----~
I 8 IRegional IIJKTRGM ITransmits data to andIREAD/WRITE statement is usedl398 I
I ~Transmitter I Ifrom a regional de- Ifor a regional file I I
'I I I vice via a hidden I I I
I I I I buffer I I I
~------+-------------+---------+----------------------+----------------------------+-----~
I 9 I Regional IIJKTXRM IDetermines extent of IA regional file exists 1356 1
1 IExtent I I Iregional file at openlfor 2311 or 2314 I I
I I I I time and serves as I I I
I I I I file addressing rou- I I I
I. I I I tine to subroutine 8 I I I
~------+-------------+---------+---------------------+----------------------------+-~=~-~
I 10 I Regional IIJKTXRN ,Same as 9 IA regional file exists 1378 I
I IExtent II I I I for 2321 I I
~------+-------------+---------+---------------------+----------------------------+-----~
,11 I Indexed IIJKTSIM lTransmits data to/ IREAD/WRITE statement is usedl652 I
I I Sequential I Ifrom indexed data Ifor indexed sequential file I I
I I Transmitter I I sets in seq. access I I I
I I I I access I I I
~------+-------------+---------+---------------------+----------------------------+-----~
I 12 I Indexed IIJKTDIM ITransmits data to/ IREAD/WRITE statement is used l540 I
I I Direct I Ifrom indexed data Ifor indexed direct file I I
I I Transmitter I Isets in direct access I I I L ______ ~ _____________ ~ _________ ~ _____________________ ~--------____________________ ~ _____ J

I/O Subroutines, Part 1 of 2

100

r------T-------------T--------~---------------------T----------------------------T-----'
I I I Internal 1 1 Reason for Inclusion in 1 I
I Number 1 Name I Name (s) I Description IObject Program 1 Bytes 1
~------+-~-----------+---------+---------------------+----------------------------+-----~
I 13 I Display IIJKTDPD IHandles DISPLAY IDISPLAY statement appears 1184 1
1 I ~ IJKTDPR I stat.ement and REPLY I in source program I 1
I 1 I I option 1 I l
~------+-------------+---------+---------------------+----------------------------+-----i I 14 I LIST-I/O IIJKTLIM IHandles list-directedlGET [FILE/STRING] LIST 11068 1
1 I I I input I I I
~------+-------------+---------+---------------------+----------------------------+-----i
I 15 I LIST-I/O IIJKTLOM IHandles list-directedlPUT [FILE/STRING] LIST 11076 I
I I , I output I 1 1
~------~-------------~---------~---------------------~----------------------------~-----i
I I
I I
I 1Subroutines 2 and 3 are never both used in any object program. I
I I
I 2Requires a 200-byte format scanner. May be required by either subroutine 4 or 5, I
1 but is present only once. I
I I
I *Requires an additional subroutine of 100 bytes. May be required by several l
I subroutines but is present only once. I
1 I L ___ ~ _____________ J

I/O Subroutines, Part 2 of 2

Appendix D. I/C Subroutines 101

t-'
C)

N

Field rFile Label Number

3 4

File
File Identifier Serial

-lumber

Identifier

5

Volume
Sequence
Number

6 7 "l-' 8

File 8 "-
Sequenctl ~ ~
Number' !:;)

~Z

'-.,--J

Versian
Number of
Generation

9 10 11 112 13f 14

Creation Expiration Block
System Ct. Reserved

Date Date Counlt

t
File Security.

The standard tope file label format and contents one os follows:

FIELD NAME AND LENGTH

I. LABEl IDENTIFIER
3 bytes, EBCDIC

r------
2. FILE LABEL NUMBER

r-------
3. FILE IDENTIFIER

17 bytes, EBCDIC
r--.----

4. FILE SERIAL NUMBER
6 bytes, EBCDI-C--

r-----
5,. VOLUME SEQUENCE ""UMBER

4 bytes

f--;::--~ fILE SEQlJ!:!:CCE NUMB!"
4 bytes

--_ .. - ~---. ------

7. GENERATION NUMBH~
4 bytes

."-- .. _- "

S. VERSION NUMBER OF
GENERATlON~es

-

DESCRIPTION
- _.

Identifies the type of label
HDR'" Header -- beginning of a data file
EOF = End of File -- end of a set. of dota
EOV= End of Volume -.. end of the physic

-- _._----_._-
Always 01

Uniquely identifies the entire file, may co
printable characters.

FIELD

9.

rltain only

NAME AND LENGTH

CREATION DATE
6b'ytes----

.---_._--+----+--
Uniquely. identifies a file/volume relations
field is identical to the Volume Serial Nur
volume lobel of the fint or only volume of
volume file or 0 multi-file set. This field ~

hlp. This
"ber in the
,~ multi-
~ill normelly
1tain any six be numeric (000001 to 999999) but may COl

olphameric characters.
---_.

Indicates the order of a volume in a given
multi-file set. The first must be numbered

file or
0001 and

subsequent numbers must be in proper nume ric sequence.

10.

11.

EXPIRArION DATE
6bvtes ----

FILE SECURITY
1 byte --

-"------"--f----I~-.
Assigns nuneric sequence to a file within c:' multi-file 12.
set. The first must be numbered 0001.

Uniquely identifies the vorious editions of the file.
May be from 0001 to 9999 in proper numer ic sequence.

BLOCK COUNT
6 bytes --'

_____ f--D-E-SC-R-,P-T-,O--N--------·--·----·-----------

Indicates the year and the ,cI(IY of the,)'ear that the
fi Ie was created:

I Position Code

1 blank none
2 - 3 00 - 99 Veor
4 - 6 001 - 366 Day af 'fear

(e.g., January 31, 1965 would be el1h.red as 65031)

Indicates the year and the da'y of the Y'ltar when the
file may become a scrotch I·ope. The fC'rrilat of this
field is identical to Field 9. On a mull·j-fil. neel,
processed sequentially all files are con'lidered to ex
pire on the some day.

Indicates security status 01 tthtt file,.
o = no security protection

.-

1 = security protection. Additional Identification aF
the file is requlned before it con bit processed.

_ (Not used by DOS / rOS) ____________ -\

-" ------------ 13. t
Indicates the number of datCllblocks written on the fillt
from the last header label te) the first trailer label ex"
elusive of tope marks. Counlt does no!' include check
point records. Tl>ls field is "sed in Tmiler Labels.

SVSTEM CODe Uniquely identifies the progr(lmming l.ystem.
13bytes--Indicates the version of a generation of a file.

~-4~- ---~-----------

-------_.-
... ___ . _____ 14_. __ --'-_~_E.~~~~EQ _________ ._1 Reserved. Should be recordtld tr.l blaniks. _____ -'

I"Ij
o
11
a
III
rt

~

Field

9 10 1112 13 14 15 16

~
~ ~ -£ -£ .~
&f~ 2> 11 2> j Reserved ~ ~ .!! -e 8 ..lI. ~~ LA: 0'- ~ ~ >-:8 ~ 011

iii ~

~IIIIII~ ~1(Jj :Q(8 ~I~ ~I~ ~ ~I~

File Name

11 18 19 20
First Extent

~8
Last 212~ 23 24 i~

o ~ Record !! Lower Upper u_
Pointer 8. Limit Limit JI::;(v).

at ~I 1 Ig! 8:1 1 1 I~ ~I~ §s ~III= =1 1 I::
L Data Set

Indicators

,~L.. Extent
Type
Indicator

Extent
Sequence
Number

Format 1: This format is common to all data files on Direct Access Storage Devices.

FIELD NAME AND LENGTH DESCRIPTION

1. FILE NAME This field serves as the key portion of the file label.
44 bytes, alphameric
EBCDIC Each file must have a unique file nome. Duplication of

file nome will couse retrieval errors. The file nome can
consist of tree sections:

I 1. File 10 is an alphameric name assigned by the user

I
and identifies the fi Ie. Can be 1 - 35 bytes if gene-
ration and version numbers are used, or 1 -44 bytes
if they are not used.

2. Generation Number. If us~d, this field is separated
from File 10 by a period. It has the format Gnnnn,
where G identifies the field as the generation number
and nnnn (in decimal) identifies the generation of
the file.

3. Version Number of Generation. If used, this section
immediately follows the generation number and has.
the format Vnn, where V identifies the field as the
version of generation number and nn (in decimal)
identifies the version of generation of the file.

Note: The Disk Operation System compares the entire
field against the file-ID given in the DLBL statement.
The generation and version numbers are treated
differently by Operating System /360.

~5

1 2 3

File
Serial

Number

LFormat
Identifier

Additional Extent

28 29

4 6 77 7
ABC

System Cadt

Extent ~ L Bytes used in last
Count block of direr.tory

Additional Extent
33

32
Pointer

~!:: ~III§ ~III~ ~E! ~III~ ~III~ ~IIII~

FIELD NAME AND LENGTH DESCRIPTION

The remaining fields comprise the DATA portion of the file labeh

2. FORMAT IDENTIFIER 1 = Format 1
1 byte, EBCDIC numeric

3. FI LE SERIAL NUMBER Uniquely identifies a fi Ie/volume relationship. It is
6 byt~s, alphameric EBCDIC identical to the Volume Serial Number of the first or

only volume of a multi-volume file.

4. VOLUME SEQUENCE NUMBER Indicates the order of a volume relative to the first
2 bytes, binary volume on which the data file, resides.

5. CREATION DATE Indicates the year and the day of the year the file was
3 bytes, discontinuous binary created. It is of the form YDD, where Y signifies the

year (0-99) and DO the day of the year (1 -366).

6. EXPIRATION DATE Indicates the year and the day of the year the file
3 bytes, discontinuous binary may be deleted. The form of this field is identical to

that of Field 5.

7A EXTENT COUNT Contains a count of the number of extents for this file
on this volume. If user labels are used, the count does
r,ot include the user label track. This field is maintained
by the Disk Operating System programs.

~ en
0 rt"
+= SlI FIELD NAME AND LENGTH

::s
a..
SlI
11
a..

78 BYTES USED IN LAST BLOCK
OF DIRECTORY
1 byte, binary

I:)
!l"
en

---_._- r-'
7C SPARE

1 byte
I:)

I'lj ..,. 8 SYSTEM CODE
13 byt~

.....
(t)

1:'"1
QJ

9 RESER'4D
7 bytes

tr
t'1)
..... .. 10. FILE TYPE

2 bytes

I'lj
0
11
3
SlI
rt"

~

~ II. RECORD FORMAT
SlI
t"I

1 byte

rt"

tv

0
HI

W

12. OPTION CODES
1 byte

DESCRIPTION

Used by Operating System /360 only for pa ioned rtlt
.0 (library Structure) data sets. Not usea by th isk

Operating System.
----------- ------

Reserved.

- ----
Uniquely Identifies the programming system • T

1m
he c:hurac-

ter cades that con be used in this field are I ited to
0-9, A - Z,or blanks.

Reserved

- - -~----

The cont.nts of this field uniquely id.ntlfy the type ol
data file.

Hex 4000 .. Consecutive organization

Hex 2000 = Dlrect-acc;eS$ organization

H.x 8000 = Indexed-sequ.ntlal organizatiOi

H.lI: 0200 = Library organization

H.x 0000 = Organization nat defined in the! fi Ie label.
-- ---

The cont.nts of this fi.ld indlcat. the type af~ cords
contained In the file.

Bit
Position Content

o and 1 01

10

11

2 0

1

3 0

1

-4 0

1

5 and 6 01

10

00

7 0

1

-

Meaning

Variabl.,. ngth records

FiXed 1.'1Ith re cord!

Undefi ned fe t

No track ov low "rf

Ized
"N

FII. Is organ using
track ov.rfle (Opera-
tlng Syst.m ,1.360 only)

Unblocked n

Blocked rece

tconD

>rd.

cords No truncal .. t r.
cord Truncated re

Contral char
code

Control char
machine c:ad

COntral char
stated

s in file

acte rASA

acl
II

'er

acta r riOt

Records haY .. na keys

Records are IAIri tten
with keys.

Bits within this field are used to Indicate vc II!'lou loptlOlll
used In building the file.

Bit

O· If on, indicates data file was created us ;i'ng Write
Valldltv Check.

1-7'" unused
-------,-- _._-

FIELD NAME AND LENGTH
-

13. BLOCK I.ENGTH
2 bytes, binary

1-4. RECORD LENGTH
2 bytes. binary

15. KEY LENGTH
'fliYt8,lli nary

16 • KEY LOCATION
2 bytes, . binary

-
17. DATA SET INDICATORS

1 byte

18. SECONC'ARY ALLOCATION
-4 bytes, binary

-
19. LAST RECORD POI NTER

5 bytes, ,~iscontinuous binary

-
20. SPARE

2 bytes

21. EXTENT 'rvPE INDICAT<)f\,
1 byte

-

--.------
DESCRIPTION

Indlc:at.s the block longth
maximum block size far Vell

f,ar fixed longth records or
rlabl. lel~th blocks.

Indicate. the record lengtt I for flx.d Ilength records eN'

the maximum record !engtt , -For varlc:able length r.!:onH.

Indlcat.s the I.ngth I)f the, Itey portion of the data
records In the fil ••

-.----
Indicates the high order pc JlflCIn of t'he data record"

Bits within this 'f1.1d are u sed to inclle:ate thefollowing.

Bit

0 If on, Indicates that thl
this fil. narmally reside

s Is the leIS' volume on which
t .. This bit I. used by the

Ol,k Operating System

1

2

3

If on, Indicates that tIM
file must remain In the:
the dlrec,t access devlCl

If on, Indicates that Ble
a multiple of 7 bytes.

If on, indicates that thi

I data set described by this
1(lImlt abscll~lte location O!~
I.

)(:k Lengtn must always b.

tected, a password musl'
s d(lta fil, 1st security pro··
be provldttd In order to

acc;e~ It.

-4 -7 Spare. R.served for

Indlcat.s the amount of ste
data fli. at End of Extent.

.rag .• to be requested for this
This field ils used by 0plra"
s not ~f by the DI.k Ope·,
a fillt byte of this fI.ld 1:1

tlng System /360 only. It ii
rating System routlnel. Thl
an Indication of the type e
code C2 (EBCDIC B) block

.f aliocatii0!1 request. He.1<
• (physh:(11 records), hex

code.E3 (EBCDIC 1) indlce ItM trackll, and hex cad.,
.yllndell. Tbe next three C3 (EBCDIC C) Indicates ('

bytes of thl, field Is a bincl ry number iindlcatlng how
'Ide,S are requested. many bytes, tracks 01' cylll

Points to the last record WI 'Ilfen In CI sequential or
partltlon-arganlzatl0l1 dote J : .. ~. Tllel format Is TTRLl,
where TT I. the relative
nlng tINt last record, R Is t

aclclreill of tn .. track contal· .
he 10 of f'M last record,
.... remall.II.lg on the track
If t ntlnt fI.ld contalolll
I'd polntel' clloes nat apply.

and LL is the number of by
follo.wlng the last record.
binary Ural, the last reco

R.served

Indicates the type of "xte~1 twith wMc:h the followlt/19
field. are associated.

HEX CODE

00 Next three fleld$ do n

01 Prime area {Indexed S.
area, .tc., (I ••.• , tIM
user's data recol'ds.)

02 Overflow area of an II

04 Cylinder Index or mas'
Indexed SequentIal fil

Qt Indicate any .xtent.

lquontlal); or Consecutl'fe
I.xtent containl~ the

nclexed Sitq'uential fll ••

ter Index ol.a of an
e.

FiELD NAME AND lENGTH DESCRIPTION FIELD NAME AND lENGTH DESCRIPTION

40 User label track area. 25-28. ADDITIONAL EXTENT These fields have the same format as the fields 21 -24
10 bytes above.

8n S'hared cylinder indicator, ·where n= 1,2, or 4. --
29-32. ADDITIONAL EXTENT These fields have the same format as the fields 21-24

~!2. EXTENT SEQUENCE NUMBER Indicates the extent sequence in a multi-extent file. 10 bytes above.
1 byte, binary

t-----
33. POINTER TO NEXT FILE LABEL The address (format CCHHR) of a continuation label if

~!3. lOWER liMIT The cylinder and the track address specifying the WITHIN THIS LABEL SET needed to further describe the file. If field 10 indicates
4 bytes, discontinuous binary starting point (lower limit) of this extent coinponent. 5 bytes, discontinuous binary Indexed Sequential organization, this field will point

This field has the format CCHH. to a Format 2 file label within this label set. Other-
I-- wise, it points to a Format 3 file label, and then only

24. UPPER liMIT The cylinder and the track address specifying the ending if the fi Ie contai ns more than three extent legments.
<Joint (upper limit) of this extent component. This field This field contains all binaty zeras if no additional
h<ls the format CCHH. file label is pointed to.

Field Name

1. DLBL-EXTENT Indicator

2. Filename

3. DA/IS Switch

4. File 10

5. Format 10

6. Fi Ie Serial Number

7. Volume Sequence Number

8. Creation Date

9. Expiration Date

to. Reserved

ii. Open Code

12. System Code

13. Volume Serial Number

14. EXTENT-Type

15. EXTENT ~uence Number

16. EXTENT Lower limit

17. EXTENT LWer Limit

18. System Lnit Class
System Lnit Order

19. 2321 Lower Call
2321 ~per Call

Description

X'SO' = Next EXTENT on new pack.
X'40' = last EXTENT
X'20' = Bypass EXTENT (SO), or number of EXTENTS (DA or ISFMS).
X'1()1= New value on same unit.
X'08' = EXTENT limits omitted.
X'04' = EXTENT converted to DASD address.

Same as field 1 except that only bits 4 and 5 are used for DA or ISFMS.

File identifier including ;neration and version numbers.
If field is missing on DLSL card, filename padded with blanks is inserted.

Numeric 1 is inserted.

Volume serial number from first EXTENT.

Always initialized to X'OOO1' •

Initialized with 3 bytes of)(100'.

If dote is in the form YVDDD, it is converted to YDD.
If dote is i" retention period form, 1 to 4 chorocters, the field is podded with
binary zeros.

The retention period, if specified, is converted to Q 2-byte number ond
inserted in this field.

DLBL type:
S = Sequential
0= Direct Access
C or E = Indexed Sequential Fi Ie Management System

Initialized to contain:
DOS/36O VER 3. This field is not processed by DOS.

Volume serial number for EXTENT.

Same codes as in Format 1 label:
X'OO' = Next three fields do not indicate any extent.
X'Ol' = Prime area (ISFMS) or consecutive area, etc., {i.e., the extent

containing the user's data records}.
X'02' = Overflow area c:J an ISFMS file.
X'04' = Cylinder index or master index of an ISFMS file.
X'40' = User label track area.
x'Sn' = Shared cylinder indicator, where n = 1, 2, or 4.

Number c:J extents as detennined by the EXTENT card s~uenc •.

Relative extent converted to the form HHnn T for / / DLBL job control statement, or
CCHH from / / DLAB job control statement.

Same ']$ field 16, but for upper limit.

Device class and unit numbers.

2321 EXTENT lower and upper limit bin numbers.

Note: For Sequential Disk files, a complete l04-byte block is repeated for each new EXTENT. For Direct Access and ISFMS files,
only fields 13 through 18 are repeated for each EXTENT.

Format of DASD Label Information in Label Area Reserved by LABTYP Card

106

Appendix F. Compile-Time Diagnostic Messages

In the list of diagnostic messages below,
the message text is preceded by the message
number and the applicable severity code.
Where necessary, the messages are followed
by an explanation, an example, a descrip
tion of the action taken by the system, and
the response required from the user.
Explanation, Example, and System Action are
given only when the text of the message is
not sufficiently self-explanatory.

When no User Response is stated, the
user should assume that he must correct the
error in his source program unless the
action taken by the system makes it unne
cessary for him to do so. However, even
when system action successfully corrects an
error, the user should remember that, if he
subsequently recompiles the same program,
he will get the same diagnostic message
again unless he has corrected the source
error.

The format of the diagnostic messages is
as follows:

5xdddI nnnn C comment

where:

x may be one of the following
characters:

A if compilation must be terminated as
a result of a job-control device
assignment or option error or

if an error is detected in the PL/I
PROCESS card.

C if a logical error has been detected
in a source statement.

E if a syntactical error has been
detected in a source statement.

G if the source program is too long or
causes a storage overflow.

ddd is the number of the error message.
For a message that is also printed on
the console, the number is composed of
only two digits.

I indicates that the message is of
information type and that no operator
action is required.

nnnn is the number of the statement in
which the error was detected. This

number is given only in 5C and 5,E type
messages.

C is the severity code, which may be one
of the following:

W = ~~!!!'!!!.9.
This code indicates that the compiler
suspects an error although the program
is written in legal PL/I language.
The compiler takes no further action.

E = Error.
The program is in error. However, the
compiler has taken appropriate correc
tive action. Execution of the program
will be successful if this corrective
action was adequate.

S = Severe Error.
The program-contains errors which the
compiler cannot correct, but which do
not prevent the compilation from being
continued. Execution of the generated
object program will be unsuccessful.

T = Termination ..
The sOUrce-program contains errors
causing the compilation to be ter
minated. Compilation ends after the
messages have been printed.

comment
is a compiler-generated explanation of
the type of error.

The error messages are printed on the
unit assigned to SYSLST if ERRS was speci
fied in the Job Control CPT ION statement or
in the PL/I PROCESS card.. The error list
is followed by a message resulting from all
detected errors. This rressage gives the
action taken by the compiler.

If errors of the severity Tare
detected, the message is:

5E01I JOBSTEP PL/I TERMINATED. LINK
OPTION RESET.

If no errors of the severity T, but
errors of the severity S are detected, the
message is:

5E02I LINK OPTION RESET.

Appendix F~ Compile-Time Diagnostic Messages 107

Since in the case of severe errors no
linkage editing is poss ible" the / / EXEC
LNKEDT statement, if any, is flagged as
invalid by the Job Control message lSlnD
STATEMENT OUT OF SEQUENCE.

5E031 POSSIBLE ERRORS IN SOURCE PROGRAM.

Note: One or more of the following four
dIagnostic messages may afpearafter one of
the messages 5C0031 through 5C0301 in order
to give additional information. These four
messages are printed without message num-If only errors of the severity W or E

are detected, the message is: h.o c:::.- "!!!o't"'lrl e-~ .. T~;~'ty ,..,..,.,;, ot""-
AJ,",".AO."" u,.I..A"" ~-.;;;,:;v ~..L x ",,",,'Vuc..::>.

CHARACTER MARKED BY ASTERISK IS NOT IN 60 CHAR. SET.

~2~~ This diagnostic message will only be printed for errors in DECLARE
statements.

THE PRECEDING ERROR CONCERNS THE VARIABLE NAMED variable name

THE PRECEDING ERROR r.'T"T"fTtTT
VV..LJ..n declare-

statement item

REPRESENTS CHARACTER STRING CONSTANT.

~!Ela~~~!Qn: Illegal use of character-string constant. Since external repre
sentation of the character-string constant is not available. the constant is
replaced by four periods.

§!~mE!~: DECLARE N PiCTURE A'99999'. Due to the illegal character 'A' the
string '99999' is not recognized as numeric picture but as character-string
constant. The following messages will be issued where xx represents the sta
tement number:

5COl9I xx S INVALID ATTRIBUTE(S) IGNORED •• A' •••• '
REPRESENTS CHARACTER STRING CONSTANT.

THE PRECEDING ERROR CONCERNS THE VARIABLE NAMED N.

5AOOiI T NO COMPILER OUTPUT SPECIFIED IN OPTION STATEMENT.

5A002I T NOT THE SAME OR WRONG MEDIUMTYPES FOR SYS001, SYS002, SYS003.

~!Ela!}~~!2!}: SYS001, SYSO 02, and SYSO 03 must be. assigned to the same device
type, i.e~, either to magnetic tape drives~ or to 2311 or 2314 DASD extents.

5A003I T PARTITION SIZE TOO SMALL FOR THE 12K VARIANT.

5AOO4I W ASTERISK IS NOT FOLLOWED BY BLANK. CARD IGNORED.

§!E~~~!:!2~: Refers to PL/I PROCESS card. A plus sign is treated as an
asterisk.

5AOO5I W ASTERISK AND BLANK (S) NOT FOLLOWED BY KEYWORD PROCESS.

~!Elam!.~!2~: Refers to PL/I PROCESS card. A plus sign is treated as an
asterisk ..

5A006I W OPTION invalid option UNKNOWN. FOLLOWING TEXT IGNORED.

~!E!~~~!:!2~: Refers to PL/I PROCESS card.

5A007I W KEYWORD PROCESS NOT FOLLOWED BY BLANKe CARD INGORED.

~!E!2~~t!2~: Refers to PLII PROCESS card.

5A008! W PROCESS LIST TOO LONG. IGNORED IS invalid option

~!E!~~~!:!g~: Refers to PL/I PROCESS card.

108

5A009I W PROCESS LIST TOO LONG.

~~El~n~~!on: Refers to PL/I PROCESS card.

5A010I W COMMA NOT FOLLOWED BY OPTION.

~~Elag~~!2n: Refers to PL/I PROCESS card.

5AOllI W OPTION NOT FOLLOWED BY COMMA.

~~Elag~~!2g: Refers to PL/I PROCESS card.

5C003I E LEVEL NUMBER OF STRUCTURE ITEM TOO HIGH. ASSUMED TO BE level number

~~Elag~~!2g: Level number must not be higher than 255.

SC004I S NO OPTIONS LIST WITH ENVIRONMENT ATTRIBUTE.

~~~~E!~: DECLARE FIL FILE ENVIRONMENT INPUT; 

5C005I S OPTION LIST NOT CLOSED BY ). PARENTHESIS INSERTED AT END OF STATEMENT .• 

~~Ela!!~~!2!!: This message concerns the ENVIRONMEN'r and the INITIAL 
attributes. 

~~~~!~: DECLARE FIL FILE PRINT ENV(MEDIUM(SYSLST.1403) F(80) ; 

5C006I S NO POINTER SPECIFIED FOR BASED ITEM.

~~e~!~: DECLARE VAR BASED;

SC007I S ERROR IN SPECIFICATION OF POINTER FOR BASED ITEM. IGNORED IS based data item

Ex~~l~~: 1. DECLARE B BASED (AwD);
2. DECLARE C BASED (F(I»;

5C008I S NO BASE SPECIFIED FOR DEFINED ITEM •

. ~~~illE!~: DECLARE X DEFINED;

5C009I S ERROR IN SPECIFICATION OF BASE FOR DEFINED ITEM. IGNORED IS defined data item

SC010I S ERROR IN RETURNS LIST. IGNORED IS invalid elements

~~~~1~: DECLARE FUNCT ENTRY RETURNS (7); 

5COllI E NO LENGTH SPECIFIED FOR STRING. LENGTH ASSUMED TO BE maximum value 

SC0121 S ERROR IN STRING LENGTH SPECIFICATION. IGNORED IS invalid element 

~~~~!~: DECLARE CHARA CHARACTER (STU); 

5C013I S ERROR IN PRECISION ATTRIBUTE. IGNORED IS invalid element

~~~~!~: DECLARE VAR FIXED (XYZ); 

SC0141 E VALUE OF ARRAY BOUND MUST NOT BE O. ASSUMED TO BE 1. 

5C0151 E VALUE OF ARRAY BOUND TOO HIGH. ASSUMED TO BE maximum value 

5C0161 S ERROR IN DIMENSION ATTRIBUTE. IGNORED IS invalid element 

5C0171 E RIGHT PARENTHESIS MISSING. CORRESPONDING LEFT ONE IGNORED BEFORE declare_sta
tement item 

Appendix F. Compile-Time Diagnostic Messages 109 



5COl8I S NESTING OF ATTRIBUTE FACTORIZATIONS TOO DEEP. DECLARATIONS FRCM NESTING LEVEL 
9 ON IGNORED 

5COl9I E INVALID ATTRIBUTE(S) IGNORED.. invalid attribute [,invalid attribute ••• ] 

5C020I E SYNTACTICALLY ILLEGAL CHARACTERlS) IGNORED.. ignored character(s) 

~!~~!~: DECLARE PP FIXED $: 

5C02lI S DECL.TOO LONG. ITEMS EXCEEDING LIMIT ARE IGNORED BEGINNING WITH declare sta
tement item 

5C022I S NO NAME OR FACTORIZATION FOR LEVELNUMBER.. level number 

~!~mE!~: DECLARE 1 STR, 2, 3 STR1: 

5C023I S NO INITIALIZATION WITH INITIAL ATTRIBUTE. 

~!~~E1~: DECLARE VAR INITIAL STATIC: 

5C02UI s LEVEL NUMBER MUST NOT BE O. ASSUMED TO 

5C025I E STRINGLENGTH MUST NOT BE O. ASSUMED TO BE maximum value 

5C026I E PRECISION TOO LARGE. SET TC 53. 

5C027I E SCALEFACTOR TOO GREAT. ASSUMED TO BE maximum value 

5C028I E STRINGLENGTH TOO GREAT. ASSUMED TO BE maximum value 

5C029I E LIST OF INITIALIZATIONS NOT CLOSED BY). PARENTHESIS INSERTED AT END OF 
STATEMENT. 

5C030I E NUMBER OF DIGITS IN PRECISION ATTRIBUTE MUST NCT BE O. DEFAULT VALUE ASSUMED. 

5C0431 S TOO MANY DIGITS SPECIFIED FOR PICTURE VARIABLE. DEFAULT VALUE IN SYMTAB 
ASSUMED FOR variable name. 

~~Ela~~~!2~: T~e precision of the numeric-picture variable exceeds 15 or 16 
digits for decimal fixed or decimal float, respectively. This would lead to 
an error at execution time. In the symbol-table listing, the default value is 
printed. 

5C044I S SYNTAX ERROR IN INITIALLIST. NO INITIALIZATICN CF variable name 

110 

~!Ela~~~!2n~ The INITIAL-list is composed of the following elements: con
stants, iteration-factors, left and right parentheses, and commas. Error 
number 44 will be issued if 

• the succession of these elements is incorrect, or 
• the constants or iteration-factors are incorrect. 

Examples of incorrect succession: 

1. iNlTiAL (1,l,) 
2. INITIAL (1,(2,3» 
3. INITIAL (1,(10) (2,3)4) 

Examples of incorrect constants: 

1. 1013B 
2. 123E 
3. 1.21.2L 



Examples of incorrect iteration-factors: 

1. INITIAL «-3)0) 
2. INITIAL {(0)(1,2» 
3. INITIAL (10(1,2» 

Moreover, message number 44 will be issued, if there is an illegal character 
within the INITIAL-list, e.g., INITIAL (2 * 3). 

5C045I S NESTING DEPTH EXCEEDS 8. NO INITIALIZATION OF variable name 

5C046I S ITERATION FACTOR NOT ALLOWED FOR SCALAR VARIABLE. NO INITIAL. OF variable 
naroe 

~~~~!~: DECLARE Z FIXED INITIAL «3)4); 

SC04?I S ITERATION FACTOR GREATER THAN 32K. NO INITIALIZATION OF variable name

SC048I S WRONG DATA TYPE. NO INITIALIZATION OF vari~ble name

~~Elan~~!Qnl This error message will be issued, if the type of a constant
within the INITIAL-list is not compatible with the type of the variable to be
initialized.

~~~~!~: DECLARE A DECIMAL FIXED INITIAL ('ABC'); 

5C049I S INITIAL VALUE IS NOT A LABEL CONST. WITHIN THE SCOPE OF LABEL VARIABLE. NO 
INITIAL. OF variable name 

~~E~n~~!Qn: The label constant is internal to a procedure or begin block 
internal to the block in which the label-variable is declared. 

~~~illE!~: P: PROCEDURE; 
DECLARE LAB LABEL INITIAL (L2);

BEGIN;

L2: END;
END Pi

SCOSOI S MORE THAN ONE CONST. FOR SCALAR VARIABLE. NO INITIALIZATION OF variable name

~~~-E!~: DECLARE Y INITIAL (3E + 01, 33 E + 2); 

SCOS1I W TOO MANY CONSTANTS FOR ARRAY. EXCESS ONES IGNORED FOR array name 

SCOS2I S INITIALLIST TOO LONG. INITIAL ATTRIBUTE IGNORED FOR variable name 

SCOS3I T SYMBOL TABLE ERROR FOR INITIALIZED name 

~~Elan~~ionl This message occurs only if a STATIC structure containing ele
ments with INITIAL attribute is mUltiply declared. 

SCOSqI E ERROR IN F-OPTION OF FILE filename 

SC05SI E LEFT PARENTHESIS INSERTED IN FILE filename 

SCOS6I E ILLEGAL ELEMENT IGNORED IN FILE filename 

SCOS?I E RIGHT PARENTHESIS INSERTED IN FILE filename 

SCOS8I S ILLEGAL USAGE OF REGIONAL OPTION. OPTION IGNORED IN FILE filename 

Appendix F. Compile-Time Diagnostic Messages 111 



5COS9I W KEYED ATTRIBUTE INSERTED FOR DIRECT AND/OR INDEXED FILE filename 

~~2!~~~~!Q~: Files with the attributes DIRECT and/or INDEXED must have the 
attribute KEYED. 

5C060I T KEYLENGTH SPECIFICATION MISSING IN FILE filename 

~~121a~~!:!2~: KEYLENGTH must be C!1""lo,....;4=;~rI +.;,,,~ h~~ • .; _~ .... h~ KEYED _-'-..I...._~1-. .... ..L._ 
-...J,t' ...... """ ........... .£,.'tt,;...\,A ... ,u .4 ......... IIC-O UQ V.4U':j .... uc C1l..l..l..J.l.JUl..c .. 

SC061I T ERROR IN KEYLENGTH SPECIFICATION FOR FILE filename 

5C062I T ERROR IN BLOCKSIZE SPECIFICATION FOR FILE filenaroe 

5C063I E ERROR IN BUFFERS OPTION. BUFFERS(l) ASSUMED FOR FILE filename 

5C064I E ERROR IN OFLTRACKS SPECIFICATION. OFLTRACKS IGNORED FOR FILE filename 

5C065I T ERROR IN MEDIUM OPTION FOR FILE filename 

5C066I T INVALID LOGICAL DEVICE NAt-m IN FILE filename 

~!~~!~: DECLARE FILE2 FILE INPUT ENVIRONMENT (MEDIUM (SYSRDR; 2540) ••• ); 
SYSRDR is an invalid logical unit (choice must be made between SYSIP'I and SYS
nnn [nnn=OOl-222])~ 

5C0671 T INVALID DEVICE TYPE SPECIFICATION IN FILE filename 

~~~~!~: DECLARE FILE3 FILE ••• ENVIRONMENT (MEDIUM( ••• ,2020) ••• ); 

5C068I T DEVICE TYPE OR FUNC. ATTR. CONFLICTS WITH LOG. DEVICE NAME IN FILE filename

~~~~E!~: DECLARE FILE4 FILE INPUT ENVIRONMENT (MEDIUM (SYS001, 1403) ••• ); 
Input from Printer 1403 impossible. 

5C069I T CONFLICTING ATTRIBUTES AND/OR OPTIONS IN FIlE filename 

§!5!~!~§: 1. DECLARE FILES FILE INPUT RECORD UFDATE ••• ; 

2. DECLARE FILE6 FILE OUTPUT ENVIRONMENT (MEDIUM (SYS002, 1403) 
LEAVE NOLABEL F (81»; 

5C070I T INPUT, OUTPUT. OR UPDATE ATTRIBUTE MISSING I~ FILE filename 

5C011I E DIRECT ATTRIBUTE INSERTED FOR REGIONAL FILE filename 

SC072I E NOLABEL OPTION INSERTED FOR UNBUFFERED TAPE FILE filename 

SC073I T ENVIRONMENT ATTRIBUTE MISSING IN FILE filename 

5C074I T MEDIUM OPTION MISSING IN FILE filename 

5C015I T BLOCKSIZE NOT DIVISIBLE BY RECORDSIZE IN FILE filename 

5C076I W RECORDSIZE OF RECORD NOT DIVISIBLE BY 8 IN FILE filename 

~~Ela~~ti2~: The record size must be divisible by 8 if blocked records are to 
be transferred by a READ SET or LOCATE statement. 

5C077I W DIVISION OF BLOCKSIZE BY 8 DOES NO! YIELD REMAINDER OF 4 IN FILE filename 

~~E!~Q~~iQQ: If the V option is used, the record size of records to be trans
ferred by a READ SET or LOCATE statement must yield a remainder of 4 after 
division by 8. 

5C078I T BLOCKSIZE BEYOND DEVICE DEPENDENT LIMITS IN FILE filename 

5C079I T F, U, OR V OPTION MISSING IN FILE filename 

112 



SC0801 T MORE ERROR(S) IN FILE filename 

~!Qlan~tion: The maximum number of error messages issued for one file 
declaration is 7. If the file declaration contains more than 7 errors, this 
message is printed. 

5C0811 E INVALID ATTRIBUTE IGNORED IN FILE filename 

5C082I E PRINT ATTRIBUTE ASSUMED FOR PRINTER AS PHYSICAL DEVICE IN FILE filename 

5C084I T ERROR IN EXTENT NUMBER SPECIFICATION FOR FILE filename 

5C0851 E EXTENT NUMBER SET TO 3 IN DECLARATION OF FILE filename 

5C0861 S INVALID DEVICE TYPE SPECIFIED FOR HIGHINDEX IN FILE filename 

~!Ela!!~!:!Q!!: Only the device types 2311 and 2314 are allowed. 2321 may be 
specified if the device type in the corresponding MEDIUM option is also 2321. 

§y~te!!! __ ~£!::.!2!!: The invalid device type is used for execution. 

SC087I S NUMBER OF OFLTRACKS EXCEEDS DEVICE DEPENDENT LIMITS IN FILE filename 

~!Qla!!~!:!2n: The number n of overflow tracks specified in the OFLTRACKS 
option must be within the following limits: 

o ~ n ~ 8 for 2311 
o ~ n ~ 18 for 2314 and 2321 

§y~te!!!_~£E.!2!!: The value in error is used for execution. 

5C088I S KEYLOC BEYOND RECORDSIZE LIMITS IN FILE filename 

~!Ela!!~!:!Q!!: The key location n specified in the KEYLOC option must be within 
the following limits: 

1 ~ n ~ record size - key length + 1 

The message is issued if n > record size - keylength + 1. If n ~ 0 message 
5C092I is printed. 

§y~te~_~£!!Qn: The value in error is used for execution. 

5C0891 S ADDBUFF AREA LESS THAN MINIMUM OR GREATER THAN MAXIMUM IN FILE filename 

~!E!~!!~!::.!2!!: The number n of bytes specified in the ADDBUFF option must be 
within the following limits: 

64 + block size + keylength ~ n < 32K 

§y~te!!!_~£!:!Qn: The value in error is used for execution. 

5C090I S RECORDSIZE NOT GREATER THAN KEYLENGTH IN FILE filename 

~!Ela!!~!:!Q!!: For blocked records, the record size must be greater than the 
keylength. If KEYLOC is specified, this also applies for unblocked records. 

§Y~!~~_~Q!!Qn: The value· in error is used for execution. 

5C091I W RECORDSIZE EXCEEDS LIMIT FOR OVERFLOW RECORD IN FILE filename 

~!E!~!!~!:!2!!: The lengths n of the records on the overflow tracks are 
restricted as follows: 

n ~ 3605 - keylength - 10 bytes for 2311 
n ~ 7249 - keylength - 10 bytes for 2314 
n ~ 1984 - keylength - 10 bytes for 2321 

Appendix F. Compile-Time Diagnostic Messages 113 



SC092I E INDEXAREA# ADDBUFF~ HIGHINDEX OR KEYLOC OPTICN IGNORED IN FILE filename 

~!2!~n~~!Qn: One of the options INDEXAREA. ADDBUFF. HIGHINDEX or KEYLOC is 
either ~ot followed by a parenthesized specification or is followed by an 
invalid specification. 

5C093I S INDEXAREA LESS THAN MINIMUM OR GREATER THAN MAXIMUM IN FILE filename 

§!Q!~g~tiQg: The number n of bytes specified in the INDEXAREA option must not 
exceed the following limits: 

3 + (keylength + 6) S n < 32K 

~y§teill_ActiQ~: The value in error is used for execution. 

SC094I S MAX. NUMBER OF EXPL. DECLARED VARIABLES PER BLOCK REACHED WITH name 

5C095I E MORE THAN ONE INITIAL ATTRIBUTE FOR variable name 

~Y~£~~~££!Qn: Only the first INITIAL attribute is used. 

SC096I E MORE THAN ONE DIMENSION ATTRIBUTE FOR variable name 

~y~teill_~£!!Q~: Only the first dimension attribute is used. 

SC097I E MORE THAN ONE LEVELNUMBER FOR STRUCTURE ITEM structure item name 

§y~te~_~£~!Qn: The first level number is used. 

SC098I E MORE THAN ONE PRECISION OR STRING LENGTH SPECIFIED FOR variable name 

§y~te~_~££!Qn: The first precision or length is used. 

SC099I E MORE THAN ONE PICTURE ATTRIBUTE SPECIFIED FOR variable name 

§Y~~~m_~£~!Qg: Only the first PICTURE attribute is used. 

SC100I E MORE THAN ONE BASE OR POINTER SPECIFIED FOR variable name 

~!~~E!~: DECLARE NAME BASED(X) DECIMAL FIXED(7) BASEO(Y); 

SC101I E STRUCT. NOT START. WITH LEVELNUMBER 1, ASS. TO BE MAJOR STRUCT. NAME IS struc
ture name 

~!~mE!~: DECLARE 2A, 2B, 2C; A is assumed to be the major-structure name. 

SC102I E NON-FILETYPE ATTRIBUTES IGNORED FOR FILE filename 

SC103I E NON-APPLICABLE ATTRIBUTE(S) IGNORED FOR STRUCTURE structure name 

~!~~Q!~: DECLARE 1 A1 FIXED, 2B~ 2Ci 

SC104I S INVALID INITIALIZATION IGNORED FOR variable name 

~!E!~~~!!Qn: Initialization with INITIAL-attrihute is conflicting with type 
or attributes of the variable. 

~!~~E!~: DECLARE E ENTRY INITIAL (SUBPRO)i 

SC105I E ALIGNMENT PERFORMED FOR BITSTRING bitstring-variable name 

~!Qla~~~!Qn: Bit strings contained in structures and bitstring-arrays are 
aligned by the D-compiler. 

5C106I E MORE THAN 12 DIFF. PARAMETERS TO BE PASSED TO OR FROM BLOCK NUMBER block 
number 

114 



~~Elan~~!Qn: Number of parameters is limited to 12. 

5C10?I E TOO MANY DIGITS SPECIFIED IN PREC. A'ITR. DEFAULT VALUE ASSUMED FOR variable 
narre 

5C108I E NO SCALE ALLOWED WITH FLOAT OR BIN FIXED. DFLT.PRECIS. ASSUMED FOR variable 
name 

~~E!~n~~!Q~: A scale factor must not be specified within the precision attri
bute of BINARY FIXED or FLOAT variables. The whole precision attribute will 
be ignored and the default precision is assumed for that variable. 

Illegal: 

BINARY FIXED (15,3) 
BINARY FIXED (31,0) 
DECIMAL FLOAT (3,2) 
DECIMAL FLOAT (6,O) 
BINARY FLOAT (53.8) 
BINARY FLOAT (53,0) 

Assumed: 

BINARY FIXED (15) 
BINARY FIXED (15) 
DECIMAL FLOAT (6) 
DECIMAL FLOAT (6) 
BINARY FLOAT (21) 
BINARY FLOAT (21) 

5C109I E ENTRY INTO EXT. PROC. IS OF TYPE EXTERNAL. INTERNAL ATTR. IGN. FOR entry name 

5CllOI T MORE THAN 32K BYTES REQUIRED FOR ARRAY array name 

5ClllI T POINTER AND/OR BASE IDENT. NOT OR INCORRECTLY DECL. FOR ARRAY array name 

~~~~!~: DECLARE U, BAS{lO) BASED (U); U is not a pointer. 

5Cl13I T REFERENCED VARIABLE OR RELATED BASE/POINTER INCORR. FOR ARRAY array name

~~~~E!~: DECLARE 1 A, 2 (B(lO),C), X(lO) DEFINED B; 
Defining on elements of structures is not allowed. 

5Cl15I E REPLICATION FACTOR OF ZERO IGNORED IN INITIAL LIST OF variable name 

5Cl16I E STRING CONSTANTS TRUNCATED ON RIGHT IN INITIAL LIS'I OF variable name 

5Cll?I E EXPONENTS TRUNCATED ON RIGHT IN INITIAL LIST OF variable name 

5Cl18I E FLOAT. CONSTANTS TRUNCATED ON RIGH'I IN INITIAL LIST OF variable name 

SCl19I E ZERO ASSUMED FOR INVALID FLOAT. CONSTANTS IN INITIAL LIST OF variable name 

SC120I E MAX. VALUE ASSUMED FOR INVALID FLOAT. CONSTANTS IN INITIAL LIST OF variable 
name 

5C121I E STERLING CONSTANTS TRUNCATED ON RIGHT IN INITIAL LIST OF variable name 

5C122I E BINARY FIXED CONSTANTS TRUNCATED ON RIGHT IN INI'IIAL LIST OF variable name 

5C123I E DECIMAL FIXED CONSTANTS TRUNCATED ON RIGHT IN INITIAL LIST OF variable name 

5C124I E RESULT OF CONST. CONV. UNDEF. DUE TO SIZE ERROR. CHECK INITIAL LIST OF vari
able name 

5E001I T ILLEGAL CHARACTER IN LABEL PREFIX OR STATEMENT BEGINNING. 

~~~~E!~§: 1. LB1: +B2: LB3: AEC = 50; 
Second label is not an identifier.

2. LAB: +BC = 50;
Statement begins with an illegal character.

§y~te~_~££!Qn: The error statement is replaced by a dummy statement.

Appendix F. Compile-Time Diagnostic Messages 115

5E0021 T STATEMENT TYPE CANNOT BE IDENTIFIED.

~!Qlarr~tion: An identifier at statement beginning is neither a statement
identifier nor followed by the assignment symbol =.
~!~~!~: PUTT SKIP EDIT (B) (A); PUTT is not a statement identifier.

~Y~~~~=~£~!Qn: The error statement is replaced by a dummy statement.

5E0031 T NESTING OF BLOCKS EXCEEDS 3 LEVELS.

~!Elanati2n: Implementation restriction. The depth of nested blocks is
restricted to 3 levels. The external proceduce is the first level.

§y§tem_Act!Q!!:
END statements.

The flagged statement is replaced by the required number of
The subsequent statements are ignored.

5E004!- T NUMBER OF BLOCKS EXCEEDS 63.

~~Q!~~~~!on: Implementation restriction. The total number of blocks in. an
external procedure (including the external procedure) must not exceed 63.

§y§tef!LAc:!::!Q!!:
END statements.

The flagged statement is replaced by the required number of
The subsequent statements are ignored.

2~~r R~2E2n2~: Reduce number of blocks in one compilation by generating
external procedures.

5E0051 T ILLEGAL CHARACTER FOUND IN IF-STATEMENT BEFORE ''THEN' IS DETECTED.

~!~~El~: IF A = 1; THEN GOTO LAB;

§Y2!~~_~£!!g!!: The incorrect IF statement is replaced by a dummy statement.

5E0061 T NO LABEL IS PERMITTED BEFORE AN ELSE-CLAUSE.

~~!!!El~: IF A = 1 THEN ••• ; LAB: ELSE B = 5;

SEOO?I T ELSE FOLLOwED BY INVALID UNIT.

~!~~l~: IF A = 1 THEN ••• ; ELSE 5 = B; where B is a correctly declared
variable

§Y§~~_~£:!::!Qrr: The invalid ELSE clause is replaced by a dummy statement.

5E008~ T DO-GROUP NESTING EXCEEDS 12 LEVELS.

~!Q!~!!~:!::!Q!!: Implementation restriction. The maximum depth of a nested set
of DO statements (including repetitive specifications in GET or PUT state
ments) is 12.

§Y2:!::~~_~£:!::!Qrr: The flagged DO statement is replaced by a dummy statement and
the following text is ignored.

5E0091 T INVALID END STATEMENT.

116

~!E!~~~E!2!!: The keyword END is not followed by a semicolon or by the label
of its asso~iated PROCEDURE, BEGIN, or DO statement.

~!~~E!~: LAB: PROCEDURE:

END LAS;

5E010I T LOGICAL END OF PROGRAM DETECTED BEFORE END OF SOURCE TEXT.

~~El~~~~!2~: Text follows the logical end of the program. The programmer
seems to have made an error in matching END statements ~ith PROCEDURE, BEGIN.
or DO statements.

~Y§~~~_~£~!QQ: All text follo~ing the flagged statement is ignored.

5E011I T MORE THAN ONE LABEL BEFORE PROCEDURE OR ENTRY STATEMENT.

~~Ela~~~!2Q: PROCEDURE and ENTRY statements must have one and only one label.

5E012I T NO LABEL BEFORE PROC. OR ENTRY STATEMENT. LABEL B INSERTED.

~~Ela~~~!on: PROCEDURE and ENTRY statements must have one and only one label.

~y§te~_~£~!QQ: The compiler inserts the label ~B:' before the flagged state
ment. This may cause further error messages (e.g., multiple declaration).

5E013I T FIRST STMNT NOT PROCEDURE STMNT. FOLLOWING TEXT IGNORED.

~y§~~~_~£tiQQ: Further error messages may result (e.g., 5E012I and 5E015I).

5E014I T STATEMENT TOO LONG. STATEMENT TRUNCATED.

~~2!~g~E!2~: Internal buffer overflow.

5E015I T END OF SOURCE MODULE FOUND BEFORE LOGICAL END OF PROGRAM.

~~El~~~~!2~: Problem causing the err6r may be:

1. Missing final semicolon.

~~~~2!~: LAB: PROCEDURE OPTIONS (MAIN); 

END 
/* 

2. Missing END statement(s). 

~~e~2!~: LAB: PROCEDURE OPTIONS (MAIN); 

/* 

DO I 
END; 

1 TO 5; 

5E016I T RIGHT PARENTHESIS MISSING IN THIS STATEMENT. 

~~~~E!~: A(2,3.1 = 15; where A is declared as a three-dimensional array. 

5E017I T END OF SOURCE MODULE FOUND IN PARENTHESIZED LIST.

5E018I T ILLEGAL CHARACTERS IGNORED IN THE PROGRAM

~~E!~g~~!Q~: Any of the characters listed below in hexadecirral notation are
ignored unless they are 'included in a character string. In a program contain
ing such illegal characters, the compiler flags the first statement that is
found to include one or more of these characters.

the illegal characters are:

B8
BA through BF
CA through CF

DA through DF
EA through EF
FA through FE

Appendix F. Compile-Time Diagnostic Messages 117

5E020I T ELEMENT IN PREFIX LIST IS NOT A LEGAL CONDITION NAME.

g~Ela~~~!2~~ The prefix list contains either an illegal condition name or no
conditiQn name at all.

): LAB: statement;

2. (ZERODIVIDE,+UNDERFLOW): LAB: statement;

3. (ZERODIDIVE, UNDERFLOW): LAB: statement;

§y~te~_~£~!Qg: The entire prefix list is ignored.

5E021I T NAME IN PREFIX LIST NOT FOLLOWED BY COMMA OR PARENTHESIS.

~~~~1~~: 1. (ZERODIVIDE UNDERFLOW): statement; 

2. (OVERFLOW+CONVERSION): statement; 

§y~te~_~2~!2~: The entire prefix list is ignored. 

5E022I T CONFLICTING CONDITION NAMES IN PREFIX LIST. 

~~~~E!~: (NOCONVERSION,CONVERSION): statement; 

2Y~~~~_~£~!2~: The conflicting names are ignored.

5E023I T COLON AFTER PREFIX LIST IS MISSING.

5E025I T RIGHT PARENTHESIS IS MISSING IN DATA OR FORMAT LIST

5E025I T MAIN PROCEDURE HAS INCORRECT OPTION LISTe

5E027I T

5E028I T

5E029I T

5E034I T

5E040I T

SE0411 T

118

~~E.!~~~~!2!!: For the D-level compiler, the option list of a rrain procedure is
defined as

MAl N [, ONSYS LOG]

It must be enclosed in parentheses immediately followed by a serricalon. The
problem causing the error may be:

1. Missing comma or right parenthesis.

~~~~E.!~: TEST: PROCEDURE OPTIONS (MAIN; 

2. Element in list which is not an identifier. 

~~~~E!~: TEST: PROCEDURE OPTIONS (+AIN); 

3. Identifier in list which is neither MAIN nor ONSYSLOG.

§~~~E!~: TEST: PROCEDURE OPTIONS (MIAN);

4. Option list not followed by semicolon.

NESTING OF ATTRIBUTES EXCEEDS 8 LEVELS.

INVALID DEFINED ATTRIBUTE IGNORED.

ILLEGAL FACTORIZATION OF FILE ATTRIBUTES ..

TWO OR MORE IDENTICAL IDENTIFIERS IN ONE PARAMETER LIST ..

FIRST ARGUMENT IN SUBSTR PSEUDO-VARIABLE IS NOT A STRING VAR.

r-m,JOR OR MINOR STRUCTURE IN IF S'rA'IEMEN'I.

5E0421 T ARRAY IN ELEMENT-EXPRES.Sl'ON OF IF-STATEMENT

5E0431 W NO DATA FORMAT ITEM IN FORMAT LIST.

5E0441 T ARRAY DECLARATION INCORRECT. FIRST BOUND OF ARRAY IS ZERO.

5E0451 T EXTERNAL NAME(S) OF THIS PROGRAM LONGER THAN 8 CHARACTERS.

~~Elana!!Qn: See explanation of message 5E046I.

5E0461 E EXTERNAL NAME(S) OF THIS PROGRAM LONGER THAN 6 CHARACTERS.

~~Elana~n: Implementation restriction. The length of external identifiers
must not exceed 6 characters. This also applies to names that are external by
default such as filenames, names of external procedures, e~c. If an identifi
er has 7 or 8 characters, the object program can still be executed but errors
may possibly occur. If the external identifier is longer than 8 characters
the compilation is terminated (message 5E04S1 is issued). The statement in
error indicated in this message need not be the statement in which the error
is detected.

SE0471 T TOO MANY IDENTIFIERS IN THIS STATEMENT.

!!~~Lg~~E2n~~: Subdiviqe statement and recompile.

5E0491 T POINTER AND/OR BASE IDENTIFIER NOT OR INCORRECTLY DECLARED.

~~~!!!E!~§: 1. DECLARE G CHARACTER (4) ; 
DECLARE K CHARACTER (4) BASED (G); 
K = 'TEST'; 

2. DECLARE P DECIMAL FLOAT POINTER; 
DECLARE A BASED (P); 
A = A+1; 

In both examples. the third statement is flagged. 

SE050I T ATTRIBUTE TABLE OVERFLOW. TOO MANY VARIABLES IN THIS STMNT. 

!!§~£_g~§e2n§~: For each element variable and for each structure element named 
in the statement, a table entry will be generated. 

subdivide statement and recompile. 

SEOS11 T INVALID DEFINING 

~~~!!!E!~: DECLARE 1 A, 

DECLARE D;
B = 4;

2 B DEFINED D.
2 C;

The third statement causes the error message.

SEOS31 T OPERAND IN A GOTO STATEMENT IS NOT A LABEL.

~~Ela~~~!2~: The operand in a GOTO statement must always be a label constant
or an element label variable.

SEOS51 S ZERO-REPLICATION FACTOR FOR STRING CONSTANT IGNORED.

5E0561 S STRING CONSTANT TOO LONG. TRUNCATED.

~~Q!~!!~!:!Q!!: Implementation restriction. The length of bit-string constants
is restricted to 64 bits; the length of character-string constants is
restricted to 255 characters.

~y~te~ __ ~£~!Q!!: Bit strings exceeding 64 bits and character strings exceeding
255 characters are truncated on the rignt.

Appendix F. Compile-Time Diagnostic Messages 119

5E057! E EXPONENT TOO LONG. TRUNCATED.

~~E!~n~t!Qn: Implementation restriction.
floating point constant is restricted to 2
ing point constant to 3 digits.

The exponent subfield of a decimal
digits, and that of a binary float-

§y§~~~_~£ti2n: The exponent is truncated on the right.

5E058I E FLOATING-POINT CONSTANT TOO LONG. TRUNCATED.

~~Elan~~!Qn: Implementation restriction. The length of binary floating-point
data is restricted to 53 bits; the length of decimal floating-point data is
restricted to 16 digits.

2y§tem_ActiQn: Decimal and binary floating-point constants exceeding 16
digits or '53 bits, respectively, are truncated on the right, and the exponents
are increased by the number of digits or bits truncated.

5E059I E FLOATING-POINT CONSTANT TOO SMALL. SET TO ZERO.

5E060I E FLOATING-POINT CONSTANT TOO LARGE. MAXIMUM VALUE ASSUMED.

5E061I E STERLING CONSTANT TRUNCATED.

Explan~~!Qn: The sterling constant is converted to and stored as decimal
fixed-point pence; The converted constant must not exceed 15 significant
digits.

§y§tem_~£~!Qn: The converted decimal fixed-point pence number is truncated cn
the right.

5E062I E BINARY FIXED-POINT CONSTANT TOO LONG. TRUNCATED.

~~2lan~t!2n: Implementation restriction. The length of binary fixed-point
numbers must not exceed 31 bits.

2Y§~~m_~£~!Qn: The constant is truncated on the right.

5E063I E DECIMAL FIXED-POINT CONSTANT TOO LONG. TRUNCATED.

~!E!~n~~!2n: Implementation restriction. The length of decimal fixed-point
numbers must not exceed 15 digits.

§Y§~~m_~£~!Qn: The constant is truncated on the right.

5E064I E RESULT OF CONSTANT CONVERSION UNDEFINED DUE TO SIZE ERROR.

~~Ela!!~~!2n: The number of significant digits resulting frorr the constant
conversion is greater than the precision specified for the target.

DECLARE X FIXED BINARY (10);
X = 2.444E5;

5E065I T TOO MANY CONSTANTS IN THIS COMPILA~ION.

~!Elan~~!Qn: Internal buffer or constant-counter- overflow.

5E067I E INVALID CHARACTER STRING. ONE BLANK ASSUMED.

~~Ela!!2~!2!!: The apostrophe opening the character string is immediately fol
lowed by the closing apostrophe.

§y§tem_~£~!Qn: The compiler assumes the character string to consist of one
blank ..

5E068I T QUALIFIED NAME NOT DECLARED.

120

~!~~1~: LAB: PROCEDURE OPTIONS (MAIN);
STRUCT.SUBl = 50;
END;

5E0691 T REFERENCED VARIABLE OR RELATED BASE/POINTER INCORRECT.

~!~!!!el~: DECLARE A CHARACTER (3) BASED (P);
A = 'XYZ';

If P is not declared, the assignment statement causes the error
message.

5E0701 E 1\) HAS BEEN INSERTED IN ARGUMENT OR FORMAL PARAMETER LIST.

~!~~1~: CALL DYNDUMP (A,B ;

5E071I T UNSPECIFIED SYNTACTICAL ERROR.

~!~!!!e!~: DO A = (B TO C BY D WHILE (E»; where A is a variable and B, C, D,
E are valid expressions,. The parentheses enclosing the sp.ecification of the
DO statement are illegal.

5E0721 T INTERNAL BUFFER OVERFLOW. (PROBABLY TOO MANY PARENTHESES).

Q~~Lg~~EQ!!~~: Subdivide statement and recompile.

5E073I E ONE OR MORE) INSERTED TO-OBTAIN A VALID EXPRESSION.

~!~!!!e!~: DECLARE (A,B,C,D,E) DECIMAL FIXED;
A = B** (C+D*E ;

5E0741 E ACTION FOR 5EO?3I MAY CAUSE ADDITIONAL ERROR MESSAGES.

5E075I T 2ND OPERAND IN DISPLAY STATEMENT INVALID.

~!Qla!!~~!Q!!: The second operand of the DISPLAY statement must be a character
string element variable enclosed in parentheses.

5E076I T SHILLING FIELD OF STERLING CONSTANT GREATER THAN 19.

5E077I T ERROR IN PARAMETER, OR SUBSCRIPT, OR ARGUMENT LIST.

5E078I S ILLEGAL FILENAME OR LABEL IDENT. IN ON, SIGNAL OR REVERT STMT.

5E079I T WHILE FOLLOWED BY INVALID EXPRESSION.

5EOSOI T 1ST OPERAND IN DISPLAY STATEMENT INVALID.

~!Qlan~~!Qn: The first operand in a DISPLAY statement must be an element
expression enclosed in parentheses.

5E0811 T INVALID OH MISSING CONDITION NAME.

~!Ela!!~~!Qn: The keyword ON is not followed by a valid condition name and/or
filename.

~!~~!~~: 1. ON +ONVERSION GOTO LAB;
2. ON CNVERSION GOTO LAB;
3. ON ENDFILE GOTO LAB; (filename missing)
q. ON ENDPAGE(?RATE)GOTO LAB; (invalid filename)

5E0821 T INVALID OR MISSING OPERAND AFTER GOTO IN ON STATEMENT;

~!Qlana~!on: The keyword GOTO in an ON statement is not followed by an
identifier.

1. ON CONVERSION GOTO;
2. ON CONVERSION GOTO +AB;

Appendix F. compile-Time Diagnostic Messages 121

5E083I T UNSPECIFIED ERROR IN ON STATEMENT.

g~E!~n~~iQn: The ON statement has the following format:

ON condition {SYSTEM; I ON-unit}

The compiler detected that the ON-condition is neither followed by the keyword
SYSTEM no+ by a valid ON-unit.

g~~!!!E!~: ON CONVERSION +5:

5E084I T INVALID CALL STATEMENT.

~~Ela~~tiQ~: No identifier. especially no entry name, is following the key
word CALL.

~~~~E!~~: 1. CALL +AB; 
2. CALL; 

5E085I T ERROR IN CLOSE LIST. 

~~Elan~t!Q~: The CLOSE statement has the following format: 

CLOSE FILE (filename) [, FILE (filename)] ••• ; 

Either the keyword CLOSE or one of the commas in the list is not followed by 
....... .0 IT.on •• y'' ..... ...:t PTTP 
""' ....... ""'" .. ~'-~ ... ""' .... "" .L .. ,u.L.I. 

~!~~!~~: 1. CLOSE FLE (OUT); 
2. CLOSE (OUT); 
3. CLOSE FILE (OUT). (IN); 

5E086I T ERROR IN FILE OPTION 

~!E!~~~~i2~: Syntax error. The file option consists of the keyword FILE fol
lowed by the file name enclosed in parentheses. 

~!~~E!~~: 1~ OPEN FILE (+-*); 
2. OPEN FILE IN); 
3. CLOSE FILE (IN ; 

where IN is a valid file name. 

SE08?I T ERROR IN OPEN LIST. 

~~Ela~~~iQ~: The OPEN statement has the following format: 

OPEN FILE (filename) options group [,FILE (filename) options group] ••• ; 

Either the keyword OPEN or one of the commas in the list is not followed by 
the keyword FILE. 

~~~~!~§: 1. OPEN FLE (IN); 
2. OPE 11 (Il~);

3. OPEN FILE (IN), (OUT);

5E088I T WRONG FILE OPTION IN READ, WRITE, OR REWRITE STMNT.

~!Elan~tiQ~: The keyword READ, WRITE, or REWRITE is not followed by the key
word FILE.

5E089I T INVALID OR MISSING OPERAND IN PAGESIZE OPTION.

5E090I T NO SET OPTION IN LOCATE STATEMENT.

122

~!E!~n~tiQn: The file option in a LOCATE statement is not followed by the
keyword SET.


~~~~lg~: 1. LOCATE A FILE (OUT); 
2. LOCATE A FILE (OUT) SE (P); 

5E091I T INVALID OR MISSING OPERAND IN KEY OPTION. 

~~Ela~~~!2~: Syntax error. The KEY option must consist of the keyword KEY 
followed by a parenthesized expression representing a character string. 

5E0921 T INVALID FROM, FILE, OR INTO OPTION. 

~eEl~~~~!2~: Syntax error. FROM, FILE, or INTO is not followed by a valid 
operand, or the operand is not enclosed in parentheses. 

~~~~l~: PUT FILE OUT EDIT (BUFFER) (A); 

5E093I T INVALID OR MISSING OPERAND IN SET, STRING-, CR KEYTO OPTION.

~~Ql~~~~!2n: Syntax error. E.g., the SET option consists of the keyword SET
followed hy the name of a pointer variable enclosed in parentheses.

~~~~lg~: 1. LOCATE A FILE (OUT) SET (Pi; where Pl is a pointer variable. 
2. LOCATE A FILE (OUT) SET (1); 

5E0941 T INVALID OR MISSING OPERAND IN KEYFROM OPTION. 

~~Q!~!!~~!Qn: The keyword KEYFROM must be followed by an element expression 
enclosed in parentheses. 

5E0961 T ERROR IN FORMAT LIST 

~~e!~!!~~!Q!!: The error may be caused by: 

1. Left parenthesis of one of the format lists is missing. 
2. A left parenthesis or one of the commas in the list is neither followed by 

an iteration factor nor by a valid format item. 
3. An iteration factor in the list is neither followed by a valid format item 

nor by a format list. 

5E097I E MISSING) INSERTED IN FORMAT LIST. 

5E0981 T MISSING OR INVALID CONTROLVARIABLE IN DO-STATEMENT. 

~~~~El~: DO C(S) = 1 TO 7; 
The control variable C must not be subscripted.

5E099I T INVALID LINE, COLUMN, OR X FORMAT ITEM.

~eElaQ~~!2~: Missing or invalid operand in a LINE, COLUMN, or X-format item.

~~~~El~: PUT SKIP EDIT (BUFFER) (X(5, A); 

In the above example, the right parenthesis enclosing the operand of the X
format item is missing. 

5E100I T INVALID R FORMAT ITEM. 

~ee!~!!~~!Q!!: Missing or invalid operand in an R-format item. 

5E101I T MISSING ( IN E OR F FORMAT ITEM. 

SE1021 T MISSING INTEGER IN E OR F FORMAT ITEM. 

SE103I T MISSING) IN E OR F FORMAT ITEM. 

5E104I T COMMA MISSING AFTER 1ST INTEGER IN E FORMAT ITEM. 

5E105I T BUIL~-IN FUNCTION AS ARGUMENT OF PSEUDO-VARIABLE. 

Appendix F. Compile-Time Diagnostic Messages 123 



SE10SI T INVALID OPTION LIST IN READ OR WRITE STATEMENT. 

5E109I S MAIN PROCEDURE MUST NOT RETURN AN EXPRESSION VALUE. 

SE1101 S CHARACTER OR BIT EXPRESSION IS TOO LONG. 

§~~lan~t!2n: The number of characters resulting from the evaluation of a 
character-string expression must not exceed 255. For bit-string expressions, 
the number of resulting bits must not exceed 64. 

5El1iI T DATA, OPTION_ OR FORMAT LIST CONTAINS INVALID ITEM(S). 

~!~~E!~§: 1. PUT SKIP EDIT (BUFFER (A); 
Right parenthesis missing after BUFFER. 

2.. PUT EDIT SKIP (BUFFER) (A); 
The keyword EDIT must immediately be followed by the data 
specification .. 

5El12! T INVALID DATA ELEMENT .. 

5El13I T INVALID REPETITIVE SPECIFICATION. 

SEl141 S ENTRYPOINT IN THIS STATEMENT INVALIDLY DECLARED. 

SEl16I T MISSING OR WRONG BASED VAR .. OR FILE OPTION IN LOCATE STMNT. 

~~El~!E!!:!2!!: Syntax error. The LOCATE statement has the following format: 

LOCATE based variable FILE (filename) SET (pointer variable); 

The based variable must be unsubscripted and must not be a minor structure or 
an element of a structure. 

~!~mE!~~: 1. LOCATE +1 FILE (OUT) SET (P1); 
2. LOCATE Ai (OUT) SET (Pi); 

SE117! T INVALID EXPRESSION. 

~!Elan~!:!2n: The error may be caused by: 

1. Missing operand. 
2. Two infix operators not separated by operand~ 

SE11SI E WARNING FOR INCORRECT PREFIX IN ENTRY STATEMENT. 

SEl19I T TOO MANY ENTRY POINTS AND/OR ON CONDITIONS IN BLeCK. 

SE120I S ILLEGAL NULL STATEMENT IN ON-UNIT. 

~!Elan~!:!2n: The null on-unit must not be specified for the conditions CONV
ERSION, ENDFILE, and KEY. 

5Ei211 'I' END o.to' 1.I.\IVAL.IDLY NESTED DO GROUP. NESTING EXCEEDS 12 LEVELS. 

~!Ela!!~!:!2!!: Implementation restriction. The maximum depth of a nested set 
of DO statements (including repetitive specifications in GET or PUT state
ments) is 12. This message is issued as a follow-up to message SEOOSI. 

~Y~!:~~_~£~!Qn: The flagged END statement is replaced by a dummy statement. 

SE122I S ILLEGAL FILENAME IN ON CONDITION. 

SE123I S ILLEGAL LABEL IDENTIFIER IN ON UNIT. 

124 

~!~~E!~: DECLARE C DECIMAL FIXEDi 
ON CONVERSION GOTO C; 



5E124I E REVERT STATEMENT WITHOUT CORRESPONDING ON STATEMENT. 

5E126I E INCORRECT NUMBER OF ARGUMENTS. 

~~~~!~: B = SUBSTR(A, 1 1); 
Due to a missing comma in the argument list, the compiler recognizes only two
arguments.

5E127I E OPTIONS MAY NOT BE SPEC. FOR SUBPRCCEQURES. OPTIONS IGNORED.

5E128I T BUILT-IN FUNCTION NAME IN INCORRECT CONTEXT.

~~Ela~~~!2~: A built-in function name has explicitly been declared with the
BUILTIN attribute, but is used in a non-function-reference context.

~~~~!~: DECLARE ABS BUILTIN; 
ABS = ABS + 1; 

~Q~~: Built-in functions without arguments or which have been declared con
textually only are not concerned. 

5E129I S CONVERSION OF ARITH. DATA TO BIT STRING YIELDS RESULT GT 31. 

5E130I T INVALID KEY. 

5E131I T MORE THAN 65534 VARIABLES AND/OR CONSTANTS. 

§~Ela~~~io~: An internal overflow of the variable and constant counter of the 
compiler occurred. 

5E132I T STACK OVERFLOW. (IF-NEST TOO DEEP). 

§~ela~~ti2n: Implementation restriction: The maximum number of IF statements 
in a nest is 100. 

5E133I T PROBABLY BAD IF-NEST. 

5E134I T ELSE IMMEDIATELY FOLLOWS IF. 

5E135I T ELSE IMMEDIATELY FOLLOWS ANOTHER ELSE. 

5E13?I T ILLEGAL STATEMENT USED AS UNIT IN AN IF STATEMEN~. 

~~2~e1~~: 1. IF element expression THEN FORMAT (format-list); 
2. IF element expression THEN unit-1 ELSE FORMAT (format-list); 

The FORMAT statement is not permitted as unit in an IF statement. 

5E138I T ELSE WITHOUT CORRESPONDING IF .• 

5E140I S INCORRECT SPECIFICATION OF CONSTANT ARGUMENT. 

5E141I T TOO MANY STRUCTURES IN STRUCTURE ASSIGNMENT. 

5E142I T NUMBER OF INTERMEDIATE RESULTS IS TOO BIG. STACK OVERFLOW. 

5E143I T NON-IDENTICAL STRUCTURING IN STRUCTURE ASSIGNMEN~. 

5E144I T ARRAY USED IN INCORRECT CONTEXT. 

5E145I T STRUCTURE USED IN INCORRECT CONTEXT. 

5E146I T INVALID CONVERSION OR ILLEGAL COMBINATION OF DATA TYPES. 
~~~~!~: P = A; where A is a character string and P is a pointer variable. 

5E14?I T NON-IDENTICAL NUMBER OF ARRAY ELEMENTS IN ARRAY-ASSIGNMENT.

Appendix F. Compile-Time Diagnostic Messages 125

5E148I T UNPERMITTED ASSIGNMENT TO FUNCTION VALUE.

~!Elan~~!2~: The left side of an assignment statement is a built-in function
which is neither a STRING built-in function nor a pseudo variable.

5El49I S NUMBER OF ARGUMENTS IS GREATER THAN TWELVE.

SEl50I T TOO MANY REPETITIVE SPECIFICATIONS.

~!Ela~~~!Q~: Implementation restriction. The number of iteration specifica
tions must not exceed 50.

~!~~!~: DO I = 1 TO 2, 2 TO 3, 3 TO 4, ••• , 51 TO 52;

§y~te~_~£tiQn: The flagged DO statement is replaced by a dummy statement and
the following text is ignored.

5El52I T PROCESSING OF STATEMENT TERMINATED. (TABLE OVERFLOW).

~!Ela~~~!2n: An internal table overflow occurred during the processing of a
DO statement.

Since the DO statement will be deleted from the text string, there will be a
surplus END statement in the source program.

~~~E-~~~E2~~~: Subdivide statement and recompile. 

5El5~I T POINTER AS ELEMENT OF DATA LIST, 

5El54I W POSSIBLE ERROR IN FORMAT ITEM IF USED FOR OUTPUT. 

5El551 S INCORRECT ARGUMENT IN BUILT-IN FUNC~ION OR PSEUDO-VARIABLE. 

~!~mE!~: DECLARE (A,B) CHARACTER (2): 
B = SUBSTRCA,5,4); 

Since A and B are only two characters long, the arguments 5 and 4 in the argu
ment list are invalid. 

5E01561 S INVALID NUMBER OF DIMENSIONS. 

g!~~E1~: A (2 3,1) = 15: where A is declared as a three-dirrensional ~rray. 
The error is caused by a missing comm~ between the integers 2 and 3. 

5El5?I W ERROR IF USED FOR OUTPUT. 

5E158I T ENTRY NAME OR LABEL ON LEFT SIDE OF ASSIGNMENT STATEMENT. 

~!~~!~: LAB: N = 3; DO LAB = A TO B: where A and B are valid expressions. 

5E159I T R FORMAT ITEM IN ITERATION LIST AT DEPTH GREATER THAN ~WO. 

5El60I T STATEMENT TOO LONG. STATEMENT DELETED. 

Internal buffer overflow. 
Subdivide statement and recompile. 

5E161I T TOO MANY IDENTIFIERS IN PROGRAM. 

5E1621 S CONTROL ITEMS NOT ALLOWED FOR THIS STATEMENT. 

5E1631 T NO LABEL DESIGNATOR IN REMOTE FORMAT ITEM. 

5E1641 E LAEEL CO~ST. IN R FORMAT ITEM NOT INTERNAL TO CRRNT BLOCK. 

126 

~!E!~~~~!2~: The R format item and the specified FORMAT statement must be 
internal to the same block. 



SE16SI S NO POINTER VARIABLE IN SET OPTION. 

5E166I S INCORRECT RECORD VARIABLE. 

SE167I ~ RECORD VARIABLE ON WRONG BOUNDARY. 

~~E!~~~t!Qn: The variable is not on a double-word boundary. An error may 
occur if later a READ statement with the SET option is issued. and a similar 
variable is used. 

5E168I S RECORD VARIABLE ON WRONG BOUNDARY. 

5E169I S RECORD VARIABLE LENGTH NOT IN ~CCORDANCE WITH RECORDSIZE. 

SE170I S INCORRECT VARIABLE IN STRING OPTION. 

SE171I T INCORRECT NAME IN FILE OPTION. 

~~E1~~~~!Q~: File name not or incorrectly declared. 

SE172I S STATEMENT NOT IN ACCORDANCE WITH FILE DECLARATICN. 

5E173I T INCORRECT ITEM IN DATA LIST. 

5E174I T NO STRING VARIABLE IN SUBSTR PSEUDO-VARIABLE. 

5E175I T FORMAT LIST TOO LONG. 

~~E±~~~~!Q~: Internal buffer overflow. 

5E176I S FORMAT STATEMENT NOT PRECEDED BY LABEL. STATEMENT DELETED. 

~~E1~~~~!Q~: A FORMAT statement must be preceded by at least one label. 

5E177I T TOO MANY FORMAT LABELS IN PROGRAM. 

~~E!~~~~!Q~: Implementation restriction. The number of labels preceding FOR
MAT statements in one program is restricted to 127. 

5E178I T NESTING OF I'IERATION LIST IN FORMA'! LIST TOO DEEP. 

5E179I S REMOTE FORMAT ITEM IN FORMAT STATEMENT. STATEMENT DELETED. 

~~E!~~~~!Q~: A FORMAT statement cannot contain an R format item. 

§Y~~~~_~f~iQ~: The error statement is deleted from the text string. 

5E180I S INCORRECT A,B FORMAT ITEM IN GET STATEMENT. 

5E181I S VIOLATION OF FORMAT ITEM RESTRICTION. 

5E182I W MOD (LENGTH OF RECORD VARIABLE,8) IS UNEQUAL TC FOUR. 

EXElanation: If the V option is used, the record size of records to be trans
ferred-by-a READ SET or LOCArE statement must yield a remainder of 4 after 
division by 8. 

5E183I S INCORRECT VARIABLE IN REPLY OPTION. 

SE184I S WRONG VARIABLE IN SET OR KEYTO OPTION. 

5E186I T TOO MANY REPETITIVE SPECIFICATIONS IN DATA SPECIFICATION. 

SE187I S LENGTH OF RECORD VARIABLE GREATER THAN MAXBLCCKSIZE. 

5E218I S ILLEGAL EXPRESSION IN ASSIGNMENT STATEMENT. 

Appendix F. Compile-Time Diagnostic Messages 127 



5E219I S MORE THAN TWELVE PARAMETERS IN PROCEDURE/ENTRY STATEMENT. 

§Y§~~m_~£!!QQ: The parameter list is truncated on the right. 

5E228I E CHARACTER STRING IN DISPLAY STATEMENT LONGER THAN 80 BYTES. 

5E229I E EVALUATION OF OPTIM. SUBSCR. YIELDS DISPLACEM, GREATER 32K 

~!Ql~~~~!Q~: At least one subscripted variable in this statement is outside 
the declared bound of the array. 

~!~~e!~: The semantically wrong statement A(I) = A(I+35000); where A is de
clared as A(10), will cause this diagnostic message. This error is only 
detected if OPT is specified. 

5E230I W IMPLEMENTATION DEFINED SUBROUTINE. 

~!Ql~~~~!QQ: This warning message will appear for each statement using one of 
the facilities DYNDUMP, OVERLAY, IJKTRON, IJKTRCF, IJKEXHC. 

5E2311 E TOO MANY ARGUMENTS FOR IJKEXHC IN ONE BLOCK. 

5E232I E INVALID ARGUMENT(S) FOR EXHIBIT CHANGED IGNORED. 

5E233I E UNPERMITTED VALUE OF CONSTANT SUBSCRIPT(S). 

~~Elag~~1~g: Constant subscript(sj too large. The absolute value of the dis
placement to the origin of the array is greater than 32767. 

5E234I E NO SCALE FACTOR GIVEN IN BUILT-IN-FUNCT. 

~!Qla~~t!Q~: Concerning the built in functions ADD, MULTIPLY, DIVIDE for 
fixed-scale arguments. 

5E235I S INTERMED. RESULT IN ADD-FUNCT. TOO LONG. STATEMT. IGNORED 

~!E!~~~ti2~: Length of necessary working space (resulting froIT prec1s10n and 
scale of the arguments) greater than hardware defined limits (only for fixeu 
scale arguments). 

5E236I S INTERMED. SCALE-FACT. EXCEEDS PERMITTED RANGE 

~!El~Q~t!Q~: The intermediate scale factor in the built-in-functions ADD, 
MULTIPLY. or DIVIDE is greater than 127 or less than -128 (only for fixed
scale arguments). 

5E2371 S EVEN PRECISION HERE ~OT ALLOWED. CHOICE ODD TARGET PRECISION. 

5E2381 E TIME/DATE/OR NULL ASSUMED TO NAME PL/I BUILT-IN-FUNCTION 

~!e!~~~~!QQ: Builtin functions without a~guroents should be explicitely de
clared with the BUILTIN attribute. 

5E239I E UNKNOwN FUNC~IUN OR SUBROUTINE. ATTR. ENTRY ASSUMED 

5GOII 

5G02I 

5G03I 

5G04I 

5G05I 

128 

~!E!~n~t!2~: Entry names must be explicitly declared with the attribute 
ENTRY. 

PROGRAM BLOCK GREATER THAN 32K. COMPILATION TERMINATED. 

SOURCE PROGRAM TOO LONG. COMPILATION TERMINATED. 

STATIC STORAGE OVERFLOW. COMPILATION TERMINATED. 

AUTOMATIC STORAGE OVERFLOw. COMPILATION TERMINATED. 

MORE THAN 256 ESID NUMBERS NECESSARY. COMPIlATICN TERMINATED. 



5G06I 

5G07I 

5W01I 

5W02I 

MORE THAN 65,534 VARIABLES AND/OR CONSTANTS. COMPILATION TERMINATED. 

POSSIBLE RECURSIVE USE OF EXTERNAL PROCEDURE. COMPILATION TERMINATED. 

SUCCESSFUL COMPILATION. 

COMPILATION IN ERROR. 

Appendix F. Compile-Time Diagnostic Messages 129 



Appendix G .. Object-Time Diagnostic Messages 

~Q~~: For a discussion of the program
checkout facilities of the compiler, refer 
to the section ~;Qg!~m=£h~£~2~~_~~f!~i~~~~. 

The format of object-time diagnostic mes
sages is as follows: 

SLOOI ccqqqqqq aaaaaa ERROR nnnn 

SLOOI is a prefix to identify the message 
as a PL/I object-time message. 

cc are .two hexadecimal digits identi
fying the message, {see the message 
code list below>, 

qqqqqq are six hexadecimal digits qualify
ing the message code with the 
address of a file, if applicable. 
Otherwise six zeros. 

aaaaaa are six hexadecimal digits specify
ing the address where the error was 
detected. If the error was 
detected in a library routine, 
aaaaaa is the address of the 
·instruction that follows the call 
of the routine in the PL/I object 
program. 

nnnn is the number of the source state
ment that caused the error. This 
number is printed only if STMT was 
specified in the PL/I PROCESS card. 
If STMT was not specified or when 
the compiler cannot determine the 
statement that caused the error, 
nnnn is set to 0000. 

The messages are _listed below by message 
code number (cc above). 

Notes: 
l:--For errors not rals1ng an ON-condition 

(other than ERROR), a message is 
printed for the specific error and the 
ERROR condition is raised. This app
lies to all errors with a message code 
higher than 10. 

2. If SYSLST is not yet opened (for 
example, because of insufficient 
storage available for DSA), some of the 
messages reay be printed only on the 
conso.le. 

LIST OF MESSAGE CODES 

These object-time diagnostic messages are 
issued only if an enabled PL/I ON-condition 

130 

is raised and no ON-unit is currently being 
executed for this condition. 

01 OVERFLOW 
02 UNDERFLOW 
03 ZERODIVIDE 
04 FIXEDOVERFLOW 
05 SIZE 
06 CONVERSION 
09 ERROR 
OA ENOFILE 
DC TRANSMIT 
00 KEY 
OE RECORD 

Only the last four conditions use the file
name qualification. 

With indexed-sequential files the END
FILE condition will also be raised if a key 
higher than the last one on the file is 
requested. If the ENOFILE condition is not 
enabled for the file, the message 80 - NO 
RECORD FOUND - will be issued. 

~~EQ~~E~_!n!~ff~E!~ 

Severe programming errors might lead to 
program-check hardware interrupts during 
the execution of a PL/I program. These 
possible interrupts are identified by the 
following codes: 

11 Operation Exception 
12 privileged-Operation Exception 
13 Execute Exception 
14 Protection Exception 
15 Addressing Exception 
16 Specification Excepticn 
17 Data Exception 
1E Significance Exception 

Each of these exceptions is briefly dis
cussed below. 

11 Operation Exception. When an operation 
code-Is-not-assIgned-or the assigned opera
tion is not available on the particular 
model, an operation exception is reco
gnized. The operation is suppressed9 

The instruction-length code is 1, 2, or 3. 

!'£_~!ivil~g~£=QE~f~~!2!l_~!S~E!iQ!l. When a 
privileged instruction is encountered in 
the problem state, a privileged-operation 
exception is recognized. The operation is 
suppressed. 

The instruction-length code is 1 or 2. 



1~_~~~~~~~~~£~~!2Q~ When the subject 
instruction of EXECUTE is another EXECUTE, 
an execute exception is recognized~ The 
operation is suppressed. 

The instruction-length code is 2~ 

!~_~~Q~~~~iog_~!£~E!~Qg. When the key of 
an instruction halfword or an operand in 
storage does not match the protection key 
in the PSW, a protection exception is 
recognized~ 

The operation is suppressed on a store 
violation, except in the case of STORE MUL
TIPLE, READ, DIRECT, TEST, AND SET, and 
variable-length operations, which are 
terminated. 

Except for EXECUTE, which is suppressed, 
the operation is terminated on a fetch 
violation~ 

The instruction-length code is 0, 2, or 3~ 

!~_~99~~§§!gg_EX~~gE!Qg. When an address 
specifies any part of data, an instruction, 
or a control word outside the available 
storage for the pareicular installation, an 
addressing exception is recognized. 

In most cases, the operation is ter
minated for an invalid data address. Data 
in storage remain unchanged, except when 
designated by valid addresses. In a few 
cases, an invalid data address causes the 
instruction to be suppressed - AND (NI), 
EXCLUSIVE OR (XI), OR (01), MOVE (MVI), 
CONVERT TO DECIMAL, DIAGNOSE, EXECUTE, and 
certain store operations (ST, STC, STH, 
STD, and STE)~ The operation is suppressed 
for an invalid instruction address. 

The instruction-length code normally is 1, 
2 or 3; but may be 0 in the case of a data 
address~ 

!§_§Q~~!f!£~~!Qg_~!££E~!Qg~ A specifica
tion exception is recognized when: 

1. A data, instruction, or control-word 
address does not specify an integral 
boundary for the unit of information. 

2~ The R1 field of an instruction speci
fies an odd register address for a pair 
of general registers that contains a 
64-bit operand. 

3. A floating-point register address other 
than 0, 2, 4, or 6 is specified. 

4~ The multiplier or divisor in decimal 
arithmetic exceeds 15 digits and sign~ 

5. The first operand field is shorter than 
or equal to the second operand field in 
decimal multiplication or division~ 

6. The block address specified in SET 
STORAGE KEY or INSERT STORAGE KEY has 
the four low-order bits not all zero. 

7. A PSW with a nonzero protection key is 
encountered ~hen protection is not 
installed. 

The operation is suppressed~ The 
instruction-length code is 1, 2, or 3. 

!1_Qat~~~ceE~!2Q. A data exception is 
recognized when: 

is The sign or digit codes of operands in 
decimal arithmetic or editing opera
tions or in CONVERT TC BINARY are 
incorrect. 

2. Fields in decimal arithmetic overlap 
incorrectly. 

3. The decimal multiplicand has too many 
high-order significant digits. 

The operation is terminated. The 
instruction-length code is 2 or 3. 

!~_§!ggi!i~~Q~~~!~~E~!2Q. When the result 
of a floating-point addition or subtraction 
has an all-zero fraction, a significance . 
exception is recognized. 

The operation is completed. The inter
ruption may be masked by PSW bit 39. The 
manner in which the operation is completed 
is determined by the mask bit. 

The instruction-length code is 1 or 2. 

21 STORAGE OVERFLOW 
There is not sufficient storage avail
able for dynamic storage allocation. 

22 INVALID LABEL 
The label variable in a GOTO statement 
does not contain a valid label. 

23 SECOND CALL OF MAIN 
A procedure ~ith the option MAIN is 
called by a PL/I program. 

2U PARAMETER NOT ON DOUBLE-WORD BOUNDARY 
Procedure expecting double-precisi~n 
f-Ioating-point variable as parameter 
has been passed single-precision value. 

25 INVALID SIGN CHARACTER 
Incorrect character for sign position 
of PICTURE data containing 'I, I, or R 
in specification. 

Mathematical and Arithmetical Subroutines 
I§h2rt Afg~~~~~~I----
30 X LT 0 IN SQRT(X) 

Appendix G. Object-Time Diagnostic Messages 131 



31 ~BS(X) GE (2**18)*K IN SIN(X) 
OR COS (X) (K=PI) OR SIND(X) OR 
COSO (X) (K=180) 

32 ABS{X) GE (2**18)K IN TAN(X) 
(K=PI) OR TAND(X) (K=180) 

33 X Toe tffiAR SINGULARITY IN TAN (X) or 
TAND(X) 

34 Y=X=O IN ATAN(Y.X} 

35 X, GR 174.6 IN SINH(X) OR COSH{X) 

36 X GR 174.6 IN EXP(X) 

37 X GR 1 IN ATANH(X) 

38 X LE 0 IN LOG(X) OR LOG2(X) OR LOG10(X) 
OR X LE 0 AND Y NOT FIXED POINT {p.O} 
IN EXPRESSION x**y 

39 X=O, Y LE 0 IN x**y 

3A X=O, N=O IN X**N 

Mathematical and Arithmetical Subroutines 
1~2ng=~!g~~~n~~I-------------------------

40 X tT 0 IN SQRT(X) 

41 ABS(X) GE (2**50)*K IN SIN(X) OR COS (X) 
(K=PI) OR SIND(X) OR COSD(X) (K=180) 

42 ABS(X) GE (2**50)*K IN TAN(X) (K=PI) OR 
TANO{X) (K=180) 

43 X TOO NEAR SINGULARITY IN TAN (X) OR 
TAND(X) 

44 Y=X=O IN ATAN(Y,X) 

45 X GR 174.6 IN SINH(X) OR COSH(X) 

46 X GR 174.6 IN EXP(X) 

47 

48 

49 

4A 

X GR 1 IN ATANH(X) 

X LE 0 IN LOG(X) OR LbG2(X) OR LOG10(X) 
OR X LE 0 AND Y NOT FIXED POINT (P,O) 
IN EXPRESSION X**Y 

X=O, N=O IN X**N 

50 Y=O IN MOO(X,Y) 
Binary fixed arguments 

51 Y=O IN MOO(X,Y) 
Decimal fixed arguments 

52 Y=O OR 

132 

ABS(X/Y) GT 7.2*10**75 IN MOD(X,Y) 
Short floating-point arguments 

53 Y=O OR 
ABS(X/Y) GT 7.2*10**75 IN MOD{X,Y) 
Long floating-point arguments 

54 MOD(X.Y) GE ABS(Y) 
Short floating-point arguments 

55 MOD{X,Y) GE ABS{Y) 
Long floating-point arguments 

MOD for floating-point arguments will 
be calculated as 

a=X/Yi b=Y*ai MOD(X,Y)=X-b 

If the exponent of X is so high that 
X+Y has the same value as X. then MOO( 
X,Y)=Oi message 54 or 55 will be 
generated in such a case. 

61 FORMAT ERROR 

62 

Illegal combination of data list item 
and format list item. 

END OF STRING 
1!.+-+-orn ..... +- +-1"\ YO:::';! I"\Y ....... ;+-0 hOUI"\",;! +-ho .I..I."-"""'-41.1,t:"' __ ........ -'-'-'- ...., ........ -_ ....... ...., ..... ;z. ........ ~ ......... _ ............ 

specified string in a GET EDIT or PUT 
EDIT statement with the STRING option. 

63 ILLEGAL USE OF CONTROL FORMAT OR OPTION 
An invalid PAGE, SKIP, LINE, or COLUMN 
format is specified for a file. 

64 ILLEGAL USE OF STREAM FILE 
Attempt to execute a disallowed GET 
EDIT or PUT EDIT statement for a STREAM 
file. 

This error message may also occur if a 
program processes file labels, but the 
job-control LBLTYP card has been 
omitted in the job-control deck for the 
program. 

65 ILLEGAL USE OF CONSECUTIVE BUFFERED 
FILE 
Attempt to execute a disallowed READ. 
WRITE, REWRITE, or LOCATE statement for 
a CONSECUTIVE BUFFERED file. 

This error message may also occur if a 
program processes file labels, but the 
~~h_~~~~~~' TOTmvn ~~~~ h~~ ~~~_ 
JVU '-V..l..I.'-".L.'-"" ..... .L.Ij."J"'-' • ..L.a; '-'-4.\..4 .L,J"Uo..;;l ~"i;;C.L.I 

omitted in the job-control deck for the 
program. 

66 ILLEGAL USE OF CONSECUTIVE UNBUFFERED 
FILE 
Attempt to execute a disallowed READ, 
WRITE. or REWRITE statement for d CON
SECUTIVE UNBUFFERED file. 

This error message may also occur if a 
program processes file labels, but the 
job-control LBLTYP card has been 
omitted in the job-control deck for the 
program. 



67 ILLEGAL USE OF REGIONAL FILE 
Attempt to execute a disallowed READ, 
WRITE. or REWRITE statement for a 
REGIONAL file. 

This error message may also occur if a 
program processes file labels, cut the 
job-control LBLTYP card has been 
omitted in the job-control deck for the 
program. 

69 PAGE SIZE OPTION FOR NON-PRINT FILE 

6A ILLEGAL USE OF INDEXED SEQUENTIAL FILE 
Attempt to execute an invalid READ, 
WRITE, or REWRITE statement for an 
INDEXED SEQUENTIAL file. 

6B ILLEGAL USE OF INDEXED DIRECT FILE 
Attempt to execute an invalid READ, 
WRITE, or REWRITE statement for an 
INDEXED DIRECT file. 

This error message may also occur if a 
program processes file labels, but the 
job-control LBLTYP card has been 
omitted in the job-control deck for the 
program. 

6C INPUT DATA ELEMENT TOO LONG 
Attempt to read an element of excessive 
l~n9th in a GET LIST statement. 

60 TOO MANY CONCURRENT I/O ERRORS FOR 
STACK SIZE 
Indicates that more than three files 
have WLR and/or TRANSMIT errors being 
handled at the same time. 

6E FILE IN ERROR NOT IN STACK 
Indicates that a file with WLR or TRAN
SMIT error flagged in the OTF appendage 
is not in the error file stack. 
This message can also occur if the 
LBLTYP card has been omitted, thereby 
causing label data to 'overlay and set 
the appropriate bit in the DTF 
appendage. 

6F ILLEGAL USE OF STREAM FILE 
Attempt to execute a disallowed GET 
LIST or PUT LIST statement for a STREAM 
file. 

70 ERROR DURING PQSITIONING OF INDEXED 
SEQUENTIAL INPUT FILE 
An error has occurred during the posi
tioning to the record key specified in 
the KEY option of a READ statement. 

71 ERROR DURING INITIALIZATION OF INDEXED 
SEQUENTIAL OUTPUT FILE 
The cylinder index area is not large 
enough to accommodate all entries 
required to index each cylinder speci
fied for the prime data area. 

72 ERROR DURING INITIALIZATION OF INDEXED 
SEQUENTIAL OUTPUT FILE 
The master index area is not large 
enough to accommodate all entries 
required to index each track of the 
cylinder index. 

7B END OF STRING 
Attempt to read or write beyond the 
specified string in a GET LIST or PUT 
LIST statement with the STRING option. 

If the ERROR condition is raised as a 
result of System action for the KEY condi
tion, one of the following messages may be 
printed to give a more specific description 
of the error that caused the KEY condition 
to be raised. 

80 NO RECORD FOUND 
The record to be retrieved by a READ 
KEY from an INDEXED file has not been 
found in the data file. 

81 OVERFLOW AREA FULL 
There is no more space available in the 
overflow area(s) for the record to be 
added to an INDEXED DIRECT file by a 
\OJRITE KEYFROM statement. 

82 PRIME DATA AREA FULL 
The prime data area has been filled 
while creating or extending an INDEXED 
SEQUENTIAL file by a WRITE KEYFROM 
statement. 

83 DUPLICATE RECORD 
The record being added by a WRITE KEY
FROM STATEMENT to an INDEXED SEQUENTIAL 
or DIRECT file has a duplicate record 
key of another record in the file. 

84 SEQUENCE CHECK 
The record being written by a WRITE 
KEYFROM statement to an INDEXED SEQUEN
TIAL file is not in the sequential 
order' required. 

87 FORMAT ERROR IN INPUT 
a) Delimiter is neither blank nor comma 

b) Character B is missing in external 
format of a bit string 

c) External format of data item is 
incompatible with internal declara
tien; for example: 

r----------------T----------------, 
I External I Internal I 
~----------------+---------------~ 
ICharacter stringlBit string I 
~----------------+----------------f 
IString data I Numeric, E, I 
I IF-format I L ________________ ~ ________________ J 

Appendix G. Object-Time Diagnostic Messages 133 



Appendix H. I/O Statement Forma t And On-Condition Checklist 

STREAM 

TYPE OF FILE 

SEQUENTIAL 

CONSECUTlVt 
I INRI IFFFRH) 

(3) IDIRECT 

I I 

VALID INPUT/'lUTPUT 
STATEMENT FORMATS 
AND APPLICABLE 
'~N-CONDITIONS 

I 

OPEN 

CLOSE 

GET' 

PUT' 

READ 

REWRITE 

LOCATE 

WRITE 

,.._ ............ _ ... ... 
'-VI'IU'IIV'''I.l 

WHICH MAY 
OCCUR 

I 

FILE (filename) OOOMMMMMM MMMMMMMMMMM 

FILE (filename) INPUT MM 

FiLE (iiienamei OUTPUT I ! I 1M 
FilE (filename) PAGESIZE (n) ! ,0 ! i I I 

FILE (filename) 010
1

0 0 0 0 0 010 01010 0 0 0 0 0 0 0 0 0 0 0 

FILE (filename) EDIT (data) (format) I(data)(format)] ... O! I i I 
FILE (filename) LIST (data) o I I 
FILF (filename) EDIT (data) (format) /(dataj(format)]... 0 0 I I 
FILE (filename) LIST (data) 0 I 0 iii I 

FILE (filename) PAGE fLl_N_E...:..(n_).:...I _____________ --t_,f-1 -+!_0-f----1!r--+!_r-+-_+-i--iI_+! ---,r....-+--+-! -+_1I-.... !_+1 ---,!-+:-~+_.j...il-l 
FILE (filenome)(PAGEILINE (n)lSKIP (n)} I i 0 ill: i i 
FILE (filename}{PAGEILINE (n)jSKIP (n)}EOIT (data)(format)[(data) (format)] i 1 0 I ! : i 
FILE {Filenome}{PAGEllINE {nllSKIP (n)ll!ST (data) i i 0 j I i I 
FILE (filename) INTO (variable) o 0 0 010 0 o 0 

FILE (filename) SET (pointer) I 01 10 Iii I i I 
FILE (filename) INTO (variable) KEY (expression) ! o 1'0 01 10 0 o 0 0 

FILE (filename) INTO (variable) KfYTO (variable) I I I ! ! ! ! o ! 0 ! ! 
FILE (filename) o 
FILE (filename) EROM (variable) o 10 I o 
FILE (filename) FROM (variable) KEY (expression) ! I I o o o 
variable FILE (filename) SET (Pointer) o 
FILE (filename) FR0M (variable) o o o 
FILE (filename) FROM (vllriable) KEYFROM (expression) o o 0 o 0 o 
CONVERSION 000 

SIZE 000 

ENOFILE (filename) o o o 0 000 o o 
ENDPAGE (filename) o 
KEY (filename) 00000000000 

RECORD (filename) 00000 000 0 000 0 000 00 00 

TRANSMIT (filename) 00000000000000000000000 

Symbols used: M = Use of this state~ent is,mandatory 

134 

0= For I/o statements: Use of this statement format is optional 
For ON conditions: This condition may occur 

• = Note that GET/PUT STR!NG is not en I/o ~tatement and may be used without 

St~tcmcnt Fcrmat~ ~nd 



Appendix I. File A ttribu tes And Options 

STREAM REC( >1m 
CONSECLmVE REGIONAL I INDEXED 

INPlJ[ OUTPlJ[ OUTPlJ[ 
BUFFERED UNBUFFERED (1) (3) SEQUONTIAl DIRECT 

lYPE OF FILE NOT PRINT 
PRINT INPlJ[ OUTPUT LPD. DA5D ONLY 

'" i!! I=! !3 ~ I=! t:! '" 5 z '" 0 z ~ 5 ~ 
FILE '" '" ~ ~ '" ~ g 0 ~ 5 5 ~ ~ 

~I 
UJ 5 UJ '" ATTRIBlJ[ES .... <t UJ~ 5 .... 5 .... 5 .... 

~ 
.... 

0 0 0 0 Sl 0 w~ 0 0 Sl o w~ Sl 5 ~ 5 <t 5 <t <t 
AND OPTION5 6 a.. 

~ 6 a.. ~ 
Z a.. 6 a..U 

~ 6 a.. 
~ ~~ ~ ~ 

0 

~ 
0 0 

~ ~ 0 ~ ~ ~ ~2 ~~ ~ ~ ~ 0 ~ 0 ~ 0 :5 ~ :5 

filename [1-6 characters] 5 S S 5 5 S S S 5 5 S S 5 S S 5 5 5 5 S S 5 S S S 5 5 S 5 5 S 

FILE D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D 

RECORD 5 5 S S S S S 5 S S S S 5 5 5 S 5 5 S 5 5 S 

STREAM D D D D D D D D D 

INPlJ[ S S S S S S S E E S 5 S S 

OUTPlJ[ S S S D D D S S 5 E E S S S 

UPDATE S 5, 5 S S S 

5EQUENTIAl D D D D D D D D D D D D D D 

DIRECT S S S S S S S S 

KEYED S S S S S S 5 S S 5 S 

BACKWARDS S 0 

PRINT S S S 

BUFFERED D D D D D D D D D 0 D 

UNBUFFERED S 5 5 

ENVIRONMENT ( S 5 S S S S S S 5 S S S S S S S S S S S S 5 S S S S S S S 5 S 

MFDIlJM ( S S S S S S 5 S S S S S S S S S 5 S S S S S S S 5 5 5 S S S 5 

SYSIPT, C C C C C C 

SYSPCH, C C C ci C C 

SYSlST, C C C C C C C C C 

5YSnnn, [nnn = 000-222] C C C C C C C C C C C S C C C C S S S S S S S S S S S S S S S 

2501125201254011442) S C S C 

1403114041144311445) C S C 

,2400) S S S S S S S 

23111231412321) 5 5 S S J S S S,. S* S S S S S S S S S S S 

U (maxblacksize) C C C C C C C C C 

F (blacksize) S S 5 S 5 S S -S 5 5 C C C S C C C C C C S S S S S S C C C C C 

F (blocksize, recsize) C C C C C C C C C C C 

V (maxblocksize) C C C C C 

BUFFERS (1) D D D D D D D D D D D D D D D D 0 

BUFFERS (2) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

CTLASA1 CTl360 0 

LEAVE 0 0 0 0 0 0 0 

NOLABEL 0 0 0 0 0 0 S 

NOTAPEMK 0 0 0 

VERIFY 0 0 0 0 0 0 0 0 0 0 0 0 0 

CONSEClJ[IVE 0 D D D D D 0 D 0 D D D 0 D D D D D D D 

REGIONAL (1) 5 S 5 

REGIONAL (3) S S S 
INDEXED S S S S S 
KEY LENGTH en) [n = 9 - 255 for REGIONAL (3) 

n '" 1 - 255 for INDEXED 
S S S S S S S S 

EXTENTNUMBER (n) .... 0 0 0 0 0 0 S 5 S S S 

I NDEXMULTIPlE 0 0 0 0 0 

HIGHINOEX ({2311\231412321:) 0 0 0 0 0 
OFLTRACKS (n) [n = 0 - 8 for 2311 J 0 0 n ., 0 - 1 B for all other OASes 
KEYlOC en) [1~ n i recsize-keylength +1] B B B B B 

INDEXAREA {n)[n<32K] 0 0 

ADDBUFF (n)[74T blocksize+keylength~ n< 32K 0 

) S S 5 5 5 S 5 5 S S S S 5 S S 5 S S 5 S S S S S S S S S S S S 
EXTERNAL 0 D D D D D 0 D D D D D D D D D D D 0 D 0 D D D D D D D D D 0 

S = Attribute or aptian must be specified. No entry Is pennltted where a blank Gpf*Ino 
D - Default ottn"bute or aptian if not speclfled. * UNBlJ'FERED Is not pennltted for mes residing an a 2321 Data <:en DrIve. 
0= Optional attribute or aptian. Specify if ~Iicable. **For INDEXED Ales,. EXTENTNUMBER(n) must be tpedAed[2Sn <256]. 
C - Choice must be mode between these aptians. For REGIONAL flies,. EXTENTNt.f.4IER(n) Is optI_1 [0< n<256]. 
E ~ Must be specified here or in the OPEN statement (but not in both places). 
B " Optional for unbloc:ked files. The default value for blocked Ales Is n = 1. 

Appendix I. File Attributes and options 135 



Appendix J. Default Attributes of Coded Arithmetic Variables 

DECLARED ATTRIBUTES DEFAULT ATTRIBUTES I 
DECIMAL FIXED (5,0) I 
DEC!MAL FLOAT /1..\ I 

\OJI I BINARY FIXED (15) 

B!NARY FLOAT ,,,,\ I 
\'" I 

DECIMAL FLOAT (6) I 

BINARY FLOAT (21) 

FIXED DECIMAL (5,0) 

FLOAT DECIMAL (6) 

None - initial character I - N BINARY FIXED (15) 

None - a!! others I"\l:r.liAI ~I "'AT /L,\ 
W'L.""UYII""\L. rl.Vl"\1 \OJ 

136 



Appendix K. Restrictions to The PL/I Subset Language 

Must not be specified for minor-structure 
names. 

~!!~n~~~!£_£Q~st~n~~ 

Any embedded blanks in arithmetic constants 
will be deleted from the number string and 
no error message will be given. However, 
embedded blanks in repetition-factor fields 
of PICTURE items are not deleted. 

The maximum number of arrays in a source 
module is 32. 

~rrays of structures are not implemented. 

~ttribute Factorization 
------~----------~-----

The maximum attribute factorization depth 
is 8. 

~!Q~!Y_~!~~9=~oiQ!_Q~!~ 

Binary fixed-point numbers may have a 
length between 1 and 31 bits. This also 
applies to all intermediate results in 
binary fixed-point form. 

~!n~!Y_~lQ~~!~~~Q!n~_Da~~ 

Binary floating-point data may have a 
length between 1 and 53 bits. 

~!L§!!!!!g~ 

Bit strings roay have a length between 1 and 
64 bits. The default alignment attribute 
is not implemented; bit strings are aligned 
by the D-Compiler. A warning message is 
given if a bit string associated with the 
default alignment attribute occurs within a 
structure. 

Blanks embedded in arithmetic constants 
will be deleted (see also ~!!~hm~!ic 
~2!!~~~!!~~)· 

Blanks between operators will also be 
deleted. E.g., X * * Y; will be inter
preted as X**Y. Similarly, 'XXX' 'YYY' 
will be interpreted as 'XXX"YYY', result
ing in a character-string value of XXX'YYY. 

The size of any internal or external pro
gram block (exclusive of data) is 
restricted to 32K. The size of an external 
block plus all of its internal blocks 
(exclusive of data) must not exceed 64K. 

The depth of nested blocks is restricted 
to 3. The external procedure counts as 
depth 1. 

The total number of blocks in an extern
al procedure (including the external proce
dure) must not exceed 63. 

The block length must be at least 1 byte 
(18 bytes for magnetic tape files) and must 
not exceed 32,767 bytes. The device types 
and corresponding maximum block lengths are 
as follows: 

2540 80 
2540 (CTLASA, CTL360) 81 
1442 80 
14l+2 (CTLASA, CTL360) 81 
2520 80 
2520 (CTLASA, CTL360) 81 
2501 80 
1403 (PRINT attribute or CTL~SA or 133 

CTL360) 
1403 (no PRINT attribute) 132 
1404 (PRINT attribute or CTLASA or 133 

CTL360) 
1404 (no PRINT attribute) 132 
1443 (PRINT attribute or CTLASA or 145 

CTL360) 
1443 (no PRINT attribute) 144 
1445 (PRINT attribute or CTLASA or 114 

CTL360) 
14.45 (no PRINT attribute) 113 
2400 (no PRINT attribute) 32,767 
2400 (PRINT attribute) 145 
2311 (no key, no PRINT attribute) 3625 
2311 (PRINT attribute) 145 
2311 (including key) 3605 
2314 (no key, no PRINT attribute) 7294 
2314 (PRINT attribute) 145 
2314 (including key) 7249 
2321 (no key, no PRINT attribute) 2000 
2321 (PRINT attribute) 145 
2321 (including key) 1984 

The block size option V must include the 
control fields for the blocks and records. 

Only fixed~length unblocked records are 
permitted for STREAM files. 

Appendix K. Restrictions to the PL/I Subset Language 137 



The block size options V an~ U and the F 
option with the record size option are per
mitted for magnetic tape files and disk 
files only .. 

~~11!~1rr_~~!iorr§ 

String arguments must not be used in the 
ROUND built-in function. 

Bit arguments must not be used with the 
UN SPEC built-in function. 

£U~~~21~~_~t~!rrg~ 

Character strings may have a length between 
1 and 255. 

Q2~E~!ibi!ity_wi!h_Q~F PL/I 

1. A GOTO statement which branches direct
ly into an iterative DO loop will n21 
be diagnosed as an error by the D Com
piler, although such a statement is not 
allowed in the language, and is flagged 
as illegal by the F Compiler. 

2. certain statements are not recognized 
by the F compiler (see DY~DU~RL 
!~~~~B£L_~~ in this Appendix). 

3. The I/O ENVIRONMENT attributes are not 
recognized by the F Compiler. 

Refer also to ~£!£!endi!_2.:. __ QE~rd_£2!!!E~= 
!iQi1ilY in the publication !~~~yst~~~l~~ 
DOS/TOS PL/I Subset Reference Manual, Order 
NO~-GC28-8202:----------------------

Arithmetic to bit string: 
The scale factor must be less than the 
precision. 

Bit string to arithmetic: 
The maximum length of the bit string to be 
converted is 31. 

Q~!~_§l2!:~Q:~ 

Static - internal: 
The static storage for any external proce
dure (excluding external data) must be less 
than 64K. 

Automatic: 
The automatic storage area per block must 
be less than 64K. 

Data aggregates: 
Each individual data aggregate must be less 
than 32K. 

138 

Decimal fixed-point numbers may have a 
length between 1 and 15 digits. This also 
applies to all intermediate results in 
decimal fixed-point form. 

Decimal floating~point numbers may have a 
length between 1 and 16 digits. 

The length of a DECLARE statement is unre
stricted; . however , the length of one 
declaration-unit appearing in a DECLARE 
statement is restricted to 

• 136 syntactical elements, if 10K bytes 
are available to the compiler. and to 

• 2000 syntactical elements, if 46K bytes 
are available to the compiler. 

One declaration-unit is deligited by 

• the keyword DECLARE and a semicolon, or 

• the keyword DECLARE and a first-level 
comma, or 

• two first-level commas. or 

• a first-level comma and a seroicolon. 

Each parenthesis, identifier, comma, 
attribute, and constant is counted as one 
syntactical el·ement. A character-string 
constant in an INITIAL-list counts as two 
syntactical elements. Consider the follow
ing example: 

DECLARE (X FIXED. D FLOAT) STATIC, 
fA INITIAL (7), B(10» EXTERNAL, 
NAME CHARACTER (4) INITIAL 
(. ABCD' ) ; 

The above DECLARE statement consists of 
three. declaration-units, the first of which 
contains 8, the second 13, and the third 10 
syntactical elements. 

A bit class variable must not be a DEFINED 
item. The attributes for the DEFINED item 
and the base identifier will not be checked 
to determine whether they correspond to the 
rules for overlay defining. 

The maximu~ number of dimensions is 3. 
Each bound must be an unsigned i,nteger less 
than 32.768. The dimension attribute may 
be factored. 



DISPLAY statement 
---------~-------

The result in the message expression in the 
DISPL~Y statement must not exceed 80 chara
cters. If the REPLY option is used, the 
message must be followed by the EOB (End of 
Block) condition by pressing the appropri
ate keys. For an example see ~EE~ng~!_~~_ 
~fQg!~~~!n9-~~~~E!~~. "Using The Console 
For Communications". 

The number of iteration specifications in a 
DO nest must not exceed 50. 

The maximum depth of a nested set of DO 
statements is 12. For details on repeti
tive specification see §~!~~~te~~n~. 

The names DYNDUMP. IJKEXHC., IJKTRCN, IJK
rROF, and OVERLAY are not recognized by the 
OS PL/I compiler. Consequently, the CALL 
statement referring to one of these names 
will result in an unresolved external 
reference from the linkage editor under the 
os PL/I compiler. Under the D-level com
piler, a warning message is issued for each 
statement using one of these names. 

If a label follows the END statement, it 
must be the label of the nearest unmatched 
PROCEDURE. BEGIN, or DO statement. If a 
BEGIN or DO statement is preceded by more 
than one label, only the one closest to the 
statement identifier may be used with the 
END statement. 

The exponent subfield for decimal and 
binary floating-point constants is 
restricted to 3 digit positions for binary 
and 2 digits for decimal constants. 

For unbuffered files the RECORD condition 
will not be raised for records of incorrect 
length, because for the implementation of 
unbuffered files the system work files have 
been used (compiler enters the DTFSD para
meter TYPEFLE=WORK in the DTF table). 

Replication factors: 
rhe replication factor in a FORMAT state
ment may range between 1 and 255. 
The depth of nested replication factors in 
a format list of a FORMAT statement is 
limited to 2. 

Format constants: 
The format constants must be such that w, 
d, Sf and p are decimal integer constants. 
Only p may be signed (positive or nega
tive). The A, X, LINE, and COLUMN field 
widths must be less than 256. The B field 
width must be less than 65. 
The E and F field width must be less than 
33. This width includes the sign for out
put fields even when they are positive, 
i.e., written as a blank. A SKIP must be 
less than 4. 
The exponent subfield for input data 
described by the E format specification is 
limited to 2 digit positions. 
The exponent subfield for output data 
described by the E format specification is 
always written with 2 digit positions. 

The replication factor in a format list in 
GET or PUT statements may range between 1 
and 255. 

The depth of nested replication factors 
in a format list of GET or PUT statements 
is restricted to 5. If the format list 
contains a remote format item that is con
tained in a replication nest, it must not 
be at a depth greater than 2. 

The depth of a nested set of repetitive 
specifications as well as tbe total number 
of repetitive specifications in GET and PUT 
statements are restricted to 11. 

The length of EXTERNAL identifiers must not 
exceed 6 characters. This also applies to 
names that are external by default, such as 
file names, names of external procedures, 
etc. 

!~_~~§,~iQ9 

The maximum number of IF statements in a 
nest is 100. 

The identifiers DATE, NULL, and TIME should 
always be declared explicitly. If they are 
not explicitly declared a warning message 
is issued. and the BUILTIN attribute is 
pssumed. 

!~!~·!~!:_!1~~fi!:~~~ 

The length of the INITIAL-list for a 
character-string array is restricted by the 
following formula: 

NC * LE + 14 * NF < NI 

Appendix K. Restrictions to the PL/I Subset Language 139 



where 

NC the number of constants in the 
INITIAL-list 

LE the length of one array element 

NP the number of iteration factors 

NI 1500 (if 10K are available to 
compiler) 

18000 (if 46K are ~ ..... ~..;, _ 1,....1 _ .L_ 
QVQ..L.LCl.l.J..LC \..U 

compiler) 

Consider the following example: 

the 

.Ll..._ 
\..u\:: 

DE~LARE CH(10) CHARACTER(250) INITIAL 
«3)(2)'A','B",(2)'C','D','E','P', 
'G','H I

): 

The INITI~L-list in the above DECLARE 
statement contains eight constants and one 
iteration factor. String repetition fac
tors (as in (2)'A' and (2)'C') are not 
counted. The length of one array element 
is 250. 

Application of the above formula yields 
a result of 2014 which is in error if NI = 
1500. 

The KEY condition ~ill not b~ raised for 
REGIONAL files if an attempt is made to add 
a duplicate key by a WRITE statement. 

~~Qg!.~ 

The total number of labels for all remote 
FORMAT statements in an external procedure 
must not exceed 127. This restriction is 
independent of the size of the avai~able 
background program area. 

since environmental information is 
assigned to a !~Qgl_!~~!!bl~ during assign
ment, a static label variable must be 
initialized each time a procedure is 

- activated .. 

The statement PUT LIST(NULL); - where NULL 
is declared as the built-in function - will 
not be diagnosed as an error, but will be 
executed giving unpredictable output data. 

Internal names: 
The maximum number of names in all DECLARE 
statements of a program block is 3048. The 
maximum number of names given all its 
attributes by default is 3048. 

140 

Note: The above restrictions are applic
able only if the source frogram is corr-piled 
on a 16K system. The restrictions are 
eased considerably with the availability of 
additional core storage. 

External names: 
The number of external narres must not 
exceed 255. Names of external structures 
count as two names. This restriction is 
independent of the size of the available 
background program area. 

Note: The number 255 includes the narres of 
all-library subroutines used by this 
external procedure. 

Total number of names: 
The total number of distinct internal and 
external names in a source program must not 
exceed 32.000. This restriction is inde
pendent of the size of the available 
background 

While an I/O statement is active, no other 
I/O statement must be activated (GET and 
PUT STRING are considered I/O statements in 
this connecti-on). Thus. in the following 
example the second PUT statement is not 
allowed since it is 'nested' in the first 
one. 

PUT PILE (X) EDIT (FUNCT(PAR1,PAR2, •••. ) 
(format list): 

PUNCT: PROCEDURE (PARA1,PARA2, •••• ) 
RETURNS (CHAR(120»~ 

DCL Y CHAR (120); 

PUT STRING (Y) EDIT (data list) (format 
list); 

RETURN (Y); 
END FUNCT; 

If the condition of the ON statement is 
CONVERSION, ENDPILE, or KEY, the action 
must not be the null statement. A prefix 
is not allowed in an ON statementp 

ON ENDFILE must not be specified with 
default files. When a program uses an 
implicit file declaration. such as GET FILE 
LIST (A,B,C); it is not possible to use ON 
ENDFILE <SYSIN). Therefore. when the END
FILE condition is raised, a message occurs, 
and the job is cancelled. 



When a key error occurs in a WRITE sta
tement, the KEY condition is raised during 
execution of the current statement or the 
next I/O operation. 

The standard system action for FIXEDO
VERFLOW is corrment and raise the ERROR 
condition. 

The default condition is the size specified 
by the ·line count of the system. 

The number of distinct parameters of a pro
cedure must not exceed 12. The same para
meter appearing in a number of parameter 
lists of the same procedure (one PROCEDURE 
statement and several ENTRY statements, 
each with parameter lists) is considered as 
only one parareeter. 

Entry name parameters mu~t be explicitly 
declared with the ENTRY attribute. 

~ PICTURE specification must have at least 
one FICTURE character other than M, V, K, 
or G. Arithmetic pictures must not have 
more than 32 characters excluding M, V, K, 
and G. PICTURE character strings must not 
have more than 255 characters. A PICTURE 
character preceded by the replication fac
tor k is considered as k PICTURE 
characters. 

Data declared with the PICTURE attribute 
must not have more than 15 digit-characters 
for numeric fixed-point data and 16 digit
characters for the mantissa and two for the 
exponent of numeric floating-point data. 

Pictures with the fill character * pre
ceded or followed by one of the characters 
+, -, S, or $ cause these characters to be 
replaced by * when the variable has a value 
of zero. Similarly, CR or DB are replaced 
by **. 

The picture character B is implemented 
as a conditional insertion character when 
used in conjunction with a drifting 
character. 

The default condition for all procedures 
excluding built-in functions and litrary 
subroutines is IRREDUCIBLE. The default 
condition for all data is ABNORMAL in the 
DOS/TOS PL/I compiler. 

The PL/I Subset language does not have 
the attributes REDUCIBLE, IRREDUCIBLE~ 
NORMAL. and ABNORMAL. Therefore. the user 
should familiarize himself with these items 
if he wishes to run programs written in the 
PL/I Subset language under OS control. Fer 
details on these .attributes see the SRL 
publication !~~_£Y~!~~~l~QL_QE~!~!in~~ys
~~~L_~~~!!~l_~~~g~~g~_g~!~~~Q£~_Manu~l, 
Order No. GC28-8201.

The OPTIONS attribute permits an options
list, the form of which is {MAIN (f
ONSYSLOG)). The MAIN option specifies this
procedure to be the initial procedure. The
ONSYSLOG option specifies that all output
as a result of action taken due to an ON
condition is to be printed on the device
assigned to SYSLOG. If both options are
used, they must appear in the order given
above. Procedures declared with the
OPTIONS attribute cannot be called from
other procedures.

If a qualified name is truncated on the
right, the remaining part of the qualified
name must be unique. For example, in the
structure

DECLARE 1 ATR,
2 Al,

3 Bl,
3 B2,

4 Dl,
4 D2,

2 A2,
3 Bl,

4 D3,
4 D4,

3 B3;

the qualification ATR.Bl.D3 is not allowed
since ATR.Bl is not unique. The correct
qualification would be ATR.A2.Bl.D3. Ambi
guous names may not be flagged by the com
piler, and the code produced for such ambi
guous references is unpredictable.

g~E~~i~!2n_~~£!2!

A repetition factor must be an unsigned
decimal integer. Its length is restricted
to three digits~ Its value must not exceed
255. The two examples below are in error:

DECLARE A PICTURE '(0010)X';
DECLARE B PICTURE' (260)X';

No embedded blanks are allowed in the
repetition factor. E.g. DECLARE C PICTURE

Appendix K. Restrictions to the PL/I Subset Language 141

'(1 2)9': is invalid. Ho~e~er, preceding
or following blanks are allowed, as e.g. in
DECLARE D PICTURE'(4)X';

Declaration of a scale factor is permitted
only with decimal fixed-point data. It may
ranqe between 0 and 15 and must be
unsigned.

The total number of identifiers, constants,
and delimiters (excluding insignificant
blanks and cemments) contained in a state
ment must not exceed 230.

The number of different identifiers and
constants (excluding constants not con
tained in. an expression) is limited to 90
for each statement.

~2E~: The above restrictions are applic
able only if the program is compiled ona
16K system. Each additional 4K available
to the compiler allows an equivalent
:increase.

~E~~£~~~~_Q~£!ar~E!Qg§

The maximum logical depth of a structure is
8. The maximum level number is 255. The
number of names in a structure is
restricted to 62, if 10K are available to
the compiler (766 if 46K are available).

142

This includes the major-structure name~
minor-structure name(s), and structure
element names.

§E~~£E~f~_i!~y~!_g~~2~~22

Any embedded blanks in level numbers will
be deleted from the number string during
compilation and no errcr message will be
given. Level numbers may only be factored
for elements of a structure, i~e~1 if fac
torizatIon-occurs in a structure declara
tion, the corresponding items are reco
gnized as structure eleroents.

For example, in the declaration

DCL 1 A,
2(B,C,D),
""'t IT"'I T""1 ,.. ...

J\J:"L',I.:J);

B, C, D. E, F and G will all be assumed to
be elements of structure A, and will be
assigned the logical level 2.

In order to obtain the structure

DCL 1 A,
2 B,
2 C,
2 D,

3 E,
3 F,
3 G:

the declaration of D must be removed from
tne factorization brackets. Hl

Figure 70. conversion of Numbers in
Character Form to Binary
Numbers

Appendix L. Programming Examples

Conversion of Numbers in Character Form
Into Binary Numbers

The example in Figure 70 (encircled numbers
are used for reference purposes only) shows
how numbers in character form may be con
verted into binary numbers. For this pur
pose the time is used.

Note, however, that the example shows
machine-dependent programming and was cho
sen for illustration purposes only.

The current time is obtained with the
TIME built-in function G) which returns a
character string of length nine, in the
form hh~~§§!tt, where:

hh is the current hour of the day
mm is the number of minutes
55 is the number of seconds
ttt is the number of milliseconds in
---machine-dependent increments

Through the use of the STRING pseudo
variable the time (nine characters) is
assigned piece by piece to the elements of
X @ (the lengths of the pieces being
determined by· the lengths of the elements
in X).

Take, for example, the time

AM AMI

162319080 -AH AS

(4 P.M., 23 minutes, 19 seconds, and
80 millilKonds)

To convert from character to binary, the
UNSPEC built-in function ® is used which
returns a bit string that is the internal
representation of a given value. Thus, the
characters '1' and '6' would be represented
as

r 1
zone portion

and T'110
zone portion

Appendix L. programming Examples 143

-I . To eliminate the zone portion of the
characters. a mask is used ® and "anded"

I with the binary representation of the
I characters • l' and • 6 • ®:

I I . !!!!~!!!!!~!!~ I I .. ~IIIIUU\NIIII
II .~~ I 1 6

Although the first byte of H now would
contain binary one and the second binary
six" the value of H would not be sixteen.
To obtain an actual value of binary six
teen .• the following is done:

The SUBS~R built-in fu~ction is used to
Cal extract the first eight bits of H
(which would be '00000001') which are
assigned to B1. ® and (b) extract the
second eight ·bits C'00000110') which are
=-C!C!;rm.::.~ f-n R? f'7\ _ 'T'h.::.n f-h.::. u=-1n.::. nf= R1 • ----':1 .. -- -- -- ~ - _ .. _ .. ---- .---- -- --

144

is multiplied by ten (which would yield a
value of ten) and the value of B2 (six) is
added (giving a total of sixteen).

The result ® must have a precision of
31 ~ccording to the precision ru~s for
binary multiplication «2) and ~). if
truncation is to be avoided.

The method that is used to convert the
hours is also used to convert the minutes,
seconds. and milliseconds. The results are
returned -to the invoking procedure which
prints them in the following form @ :

HOUR MIN SEC MULL
16 33 8 960

HOUR MIN SEC MULL
16 33 9 80

HOUR MIN SEC MULL
16 33 9 220

HOUR MIN SEC MULL
16 33 9 360

HOUR MIN SEC !!lull

Storing And Retrieving Statistical Data

The example in Figure 71 (encircled numbers
are used for reference purposes only) shows

II JOB STATLAB BEGIN OF JOB

how volumes of statistical data that are
too large to fit in core storage may be
stored on disk and retrieved~

II ASSGU SYS009,X'291' LOGICAL DEVICE ADDRESS IS * ASSIGNED TO PHYSICAL DEVICE (SEE EIN ATTRIBUTE)
II DLBL STATLI,'LAD 6 DATA FI~E',O,SD
* STATLI = FILEUAME USED IN PROGRAM * ' LAB 6 DATA F.ILE' =IDENTIFlCATION OF DATA SET ON DISK
* 0 MEANS THAT THE FILE MAY BE OVERWRITTEN Am TIME * SD INDICATES A SEQUENTIAL DISK FILE
II EXTENT SYSOO9,PLlD03,1,0,1800,40 * SYSOO9 = LOGICAL ADDRESS OF EXTENT (SEE ElN ATTRIBUTE) * PLID03 = SERIAL NUMBER OF VOLUME TO WHICH EXTENT BELONGS
* 1 IUDlCATES A DATA AREA * 0 = EXTENT SEQUEUCE NUMBER
* 1800 = RELATIVE TRACK NUMBER (TRACK 0 OF CYLINDE:R l eo I
* 40 = NUMBER OF TRACKS THAT MAY BE USED
II ASSGN SYS010,X'291'
II DLBL STATLA 'LAB 6 DATA FILE' ,O,SD
II EXTENT SYS010,PLID03,1,0,1800,40
II OPTION LINK,LIST,SYM,ERRS,6OC,NODECK,LISTX, DtrnJ?
I I EXEC pL/I EXECUTION IS INITIATED

@I
@I

Figure 71. storing And Retrieving statistical Data

Appendix L. programming Examples 145

The program creates 5000 values CD I which are stored on disk in groups of 10 11 12 13 14 15 16 17 18 19 20 11
values each (Q) and Q». For this pur- l 2 3 4 5 6 7 8 9 10 1
pose a nested DO-group is used CD. I I 1 2 3 II 5 6 7 8 9 10 1 \

I
1 2 3 4 5 6 7 8 9 10

~ I 1 2 3 4 5 6 7 8 9 10
The same data is then retrieved again 1 2 3 4 5 6 7 8 9 10

from disk ® and printed in the form shown 1 2 3 " 5 6 7 8 9 10
in Figure 72 ® . I 1 2 3 4 5 6 7 0 n .. /\ ...

I
u ;7 IV

n 1 2 3 4 5 6 7 8 9 10
i 2 3 " 5 6 7 8 9 10 .. 2 3 4 5 6 7 8 9 H) I 1
1 2 3 If 5 6 7 8 9 10 1
1 2 3 4 5 6 7 8 9 10 1
1 2 3 If 5 6 7 8 9 10 1
1 2 3 4 5 6 7 8 9 10 1
1 2 3 4 5 6 7 8 9 10 1
1 2 3 " 5 6 7 8 9 10 1
1 2 3 If 5 6 7 8 9 10 1

Figure 72. Program Output of ST~T

146

Creating And Retrieving a REGIONAL(I) File

The program shown in Figure 73 (encircled
numbers are used for reference purposes
only) shows how a REGIONAL (1) file (!) may
be created and retrieved from disk.

Appendix L. Programming Examples 147

I ri--~
I I
I I

I I

I I
I I
I I

I

I I
I I

(3)

I
I I JOB CLEAR
II ASSGN SYS011,X'291'
/1 DLBL OOUT,'CLASS':OOO
II EXTENT SYS011,PLID03,1,O,1500,5
II EXEC CLRDSK

(
>-.

\ ~I Job Control Statements
to Clear And

/ Preformat Disk Area

,I
r
J

Figure 73. Creating And Retrieving a REGIONAL(l) File

148

Before a REGIONAL(l) file can be
created, the extents used by the file must
be preformatted by the DOS Clear Utility
program @, which creates dummy records
that contain a strin~ filled with user
defined ch~racters ~. Only when the disk
area preformatted, can the REGIONAL(l) file
actually be created with the OUTPUT attri
bute (!).

Each record in the file has a length of
80 characters (® and ®). The key ®
which must be declared as a numeric
character variable with the attributes
PICTURE' (8)9' is not contained in the reco
rd; it is not written on disk, but only
indicates the relative number of the record
in the file. The first record in a
REGIONAL (1) file always has the relative
recc;:>rd number 0 «(J) and®). The key
used to identify the record on disk must be
specified in the KEYFROM -option @ of tlie
WRITE statement, or in the KEY option ~
of the READ statement.

Printed, the records of the program
shown in Figure 73 would look as shown in
Figure 74.

123456789
123456789
123456789
123456789
123456789
123456789
123456789
123456789
123456789
123456789
123456789
123456789
123456789
123456789
123456789
123456789

0123456789
4123456789
8123456789

12123456789
16123456789
20123456789
24123456189
28123456789

0123456789
4123456789
8123456789

12123456789
16123456789
20123456789
24123456789
28123456789

Figure 74. Program output of F'IEST

Appendix L. Programming Examples 149

I Creating and Updating a Sequential I Disk File

I
The three programs shown in Figures 75
through 77 (encircled numbers are used for
reference purposes only) will creat~ a

I ~;~~'o~i~a~:r~~~ f~!e~sa~ds~~~~~ti~t ~ii:e I The input is also sequential.

I
I

The program shown in Figure 15 creates a
sequen tial disk file Q) whose records are
80 bytes long. The input for this file is
furnished by presorted cards @. The
records on the cards are just read Q) and
written onto disk @ as they are.

In the program shown in Figure 76 the
data on disk_created in the first program
is updated Q) _ Input for any updates is
furnished by other pre-sorted cards <i).

The information that is processed con
cerns college students~ their credit hours.
grade points, etc. ®. The updates
reflect changes du~ing a semester.

The update process is as follows: Stu
dent identification (10) on card records
® are compared ® with student ID on
disk records. If a disk record ID is
smaller than the corresponding card ID" a

II JOB CU~BUILD
II DLBL IJSYS10, 'DATA-FILE'
II EXTENT SYS010,PLID03,i,O,1500,250
II ASSGN SYS010,1'291'

new disk record is read in ® f (J) . If the
ID numbers are equal, the disk record is
updated depending on the code of the card
file record. The codes may be one of the
following:

concerns only reaular hour~and grade
'.. I~ ~ ~" p01m: cnanges \ \g}, -..:v, '<:::J I

F co~erns~nly ~tal
(Qj, (0. (S)

hours attempted

N -- c2R,cerns credit hours (ti:'4'.. '15' I'
~) '¢.Y 'C:J

P concerns probation (©, @, @)
A co~erns~nly ~tempt to change hours

(Q!), ~, Q]})

G -- co~erns~ours~owards graduation
(8, @, ~)

When upd~ed, the record ~ written back
onto disk.. (25). ID errors (26) and data
errors Q:t) '-a:'re signalled by'1?'rinting them
out. The third program (shown in Figure
77) reads the data on disk (Q) ~and 0)
and punches them, as they are ®, into
cards ®.

II OPTION LINK,Sy~,LIST,ERRS,60C,NODECK,LISTI
II EXEC PLII

•• ·S.,··t··············.···;p .. qn.··.······ .. _.iff ... i;~/:: •..•• :
~ I DECLARE IJSYS10 FILE OUTPUT RECORD EUFFERED
\lI ENVIRONMENT (MEDIUM (SYS 010,2311) F (80) BUFFERS (2)) ;
~2 I DECLARE CU~CARD FILE INPUT RECORD
\!) ENVIRON~ENT ~EDIUM SYSIPT 2540

Figure 75. Creation of Sequential Disk File

150

II JOB CUMUPDT
II OPTION LINK,SYM,ERRS,60C,NODECK,LIST,LISTI
II lSSGN SYS01C,X'291'
II DLBL IJSYS10,'DATl-FILE'
II EXTENT SYS010,PLID03,1,0,1500,250
II EXEC PL/I

lU:1.IU]I~I?\~:~t:\I_f~jjIID!!II_;~j:j:~I:(-I\[J.~:\:/): /yr~:t.~(j~::::·:·~::::::}:::::·:·····: : .. :.:::::~::::::::.:::::::::::::::::.:.: .. ,:

~ I DECLARE IJSYS10 FILE UPDATE RECORD o ENV'IRONMENT (MEDIUM (SYS010, 2311) F (80)) ;
r:i\ I DECLARE CUMCARD FILE INPUT STREAM
~ ENVIRONMENT (MEDIUM (SYSIPT,2540) F(80»;

·······:II ... _ •• !:::~il:II~li·.~ •• ·~ ••• ·: •••• I •• • •• ·i •.•.•••.•......•.•......
DECLARE 1 SEMGRADECARDS,

2 SEMHOURSATTEMPTED PICTURE
2 SEMHOURSOFNOCREDIT PICTURE
2 SEMGRADEPOINTS PICTURE
2 SEMGRADEPOINTAVE PICTU~
2 TOTHOURSATTEMPTED PICTURE
2 TOTHOURSOFNOCREDIT PICTURE
2 TOTGRADEPOINTS PICTURE
2 CUMULATIVEGRADEPOINTAVE PICTURE
2 TOTHOURSTOWARDGRADUATION PICTURE
2 SEMHOURSOFFORGGRADES PICTURE
2 MAJOR PICTURE
2 MARITALSTATUS PICTURE
2 ADVISOR PICTURE
2 CLASSIFICATION PICTURE
2 COLLEGE PICTURE
2 SEX PICTURE
2 STUDENTIDNUMBER PICTURE
2 STUDENTALPHANUMBER PICTURE
2 SEM PICTURE
2 YEAR PICTURE
2 AFFILIATION PICTURE
2 STUDENTNAME CHARACTER(23) ,
2 CONTROLCODE CHARACTER 1 ;

n:· .. · •• · ••••

'99V9',
'99',
'99V9',
'9V999',
'999V9' ,
'99',
'999V9' ,
'9V999',
'999V9' ,
'99' ,
'999' ,
'9' ,
'999' ,
'9' ,
• 9' ,
'9' ,
'99999',
'99999' ,
'9' ,
'99·' ,
'9' ,

111~II=lroLL01irsuA:telEbbr ... un
~ I GRADE POINTS ARE OF FORM R+3.0 +9.0 .(LETTER, F9.0,F10.0)
~ R CARDS ARE REGULAR HOURS, GRADE POINT$ CHANGES.

1
3 I F GRADE CARDS MAY BE POSITIVE OR NEGATIVE AND ONLY AFFECT TOTAL

HOURS ATTEMPTED. NO-CREDIT CARDS ARE OF THE CHANGE NO HOURS
16 I ONLY AND ARE OF THE FORM N3.0 (LETTER, F9.0) */
1 I /* A = CHANGE HOURS ATTEMPTED ONLY. */

1) ••.• <t.q ... =:~~F:E.~~tJ~::i.~()G~Ul\TIO~ ONLY •.. * /
}.tl~.:r.·JI=.<I== g: ~: :~
·;;·jl~.·.......~.~'I~~"~~~I;t~tl".~I"~I?:II.:!23.567890123.567890 */
.:ll.I.~i.~,>~~~it~f ···.+i~ o. * / o GET EDIT (ID ,CNAME, DUMMY) . (COLUMN (1) ,F (5) ,A (2) ,A (3)) ; <lIMII ~; , .. ~

Figure 76. Updating Sequential Disk File (1 of 3)

Appendix L. Programreing Examples 151

I j .

aD • In; ,
HE.CARD: .

@ I LOOP: 'READ FILE (IJSYS 19) . INTO (SEMGllADECARDS) ;
PNA!! -= SWeIT'R (S!l1DJIITII!J,',2"t

~: ~~S~T~.~:~i~~~~~~~:m~R ID < T~~N G~Bi~ ~~D~~ELo~p; .•. • ..

ELSE::' ::: ::.:!5.1::::;u"i~4j:i
GO 'f0 CHaC.III,eI1»;,··; .. ::::::::~
liD;•....•.. ><.; pi"

/* CRICl{PItSI TIO L,"IISO' SfODI'f.A'$~ ••• ""~;:~:;·
UPDATB: IP n& : ·CI1IIB TBZ. GO .~,.JDRlIO';J ; ... ~ ".,.... i;(

PUT EDI!(S!lJD •• tJ.I.) (5 .• If {21.IJ:
PUT lOr! (t B.:rOIS UPDAif.') (SIIP,I);'·
PUT BOX! (' IDt .. II), , ALPBl' , C'I:'~" tot •• •. ~ .ft.' .!.

TOTHOtJRS1TTIIIPT:aD.. • .15. IC' .•
TOTBOUIS01IOCIID%'f, • GIADI.'!'.'.,. ."'.11."%"51-

• HRS. fO. GIlD.' ., .'M.onS"OI'.DG.'~1J.'UO~.
) (.1 .. 7(6) , I,l (3) ,l .. " (Sf 1) ,1"($..1,.&,11.".;1·,.:1_1) r

1* SC1~ liS! 07 CIID .ID .IiPDl". rlti·~'Clft"I'~"q'.I'IIt.~
HEIT!)lTl: GBT IDIT (5:1.1) (1'(11) J. . .

I IF SIGN = 'R' THEN GO TO HOURS;
11 I IF SIGN 'F' THEN GO TO FGRADE;

I IF SIGN = 'N' THEN GO TO NOCBEDIT;
14· i IF SIGN i pi THEN GO TO 'PROBATION;
17 I IF SIGN 'A' THEN GO TO ATTHOUllS;

I IF SIGN 'G' THE) GO TO GRlDHOURS;
19 11 81GI • •••• >(lo!O , •••.•• ,_ ••••• llh
22 HOU1S: GET EDIT (CREDITHOURS,GRADEPOINTS) U'(9,O) ~P(10,O»;

TOTHOURSATTE~PTED = TOTHOURSATTEEPTBD + CREDITHOURS;
TOTGRADEPOINTS = TOTGRADEPOINTS + GRADEPOINTS;
TOTHOURSTOWARDGRADU1TIOM = TOTHOURSTOW1RDGRADUATION

+CREDITHOURS;
GO TO NEXTDATA;

@ FGRADE: GET EDIT (CREDITHOURS) (P (9,0» ;
TOTHOURSATTEMPTED = TOTHOURSATTE!PTED

+ CREDITHOURS;
GO TO NEXTD1TA;

@ I NOCREDIT: GET EDIT (CREDITHOURS) (F (9,0) ;
TOTHOURSOFNOCREDIT = TOTHODRSOFNOCHBDI! + C~!DI!HOU~S;

I
TOTHOURSATTEMPTED=TOTHOURSATTEMPTED + CREDITHOURS;
TOTHOURSTOWARDGRADU1TION=TOTHOURSTOW1RDGRlDU1TION+CREDITHOURS;
GO TO NEITDATA;

~IPROBATION: CONTROLCODE='S';
GET EDIT (DUMMI) (F (9,0) ;
GO TO NEXTDATA;

@ I A 'ITHOURS: GET EDIT (CREDITHOURS, GR1DEPOINTS) (F (9,0) , P (10,0)) ;
TOTHOURSATTEMPTED = TOTHOURSATTEMPTBD + CREDITHOURS;
GO TO NEITDATA;

Figure 76. Updating Sequential Disk File (2 of 3)

152

GBADHOURS: GET EDIT (CREDITHOURS,GRAtEPOINTS) (F(9,0) ,F(10,0});
TOTHOURSTOWARDGRADUATION = TOTHOURSTOiARDGRADUATION

+CREDITHOURS;
GO TO NEXTDATA;

I CORRECTFILE:
REWRITE F

PUT EDIT (' ID EBROR, UPDATE ID',ID,' ALPHA',CNA~E,' FILE I
D',STUDENTIDNU~BER,' FILE ALPHA',FNA~E)

(SKIP,A,1(6) ,A,A(3) ,A,1(6) ,A,A(3»;
GO TO NEWCARD;

I
DATAERROR: PUT EDIT (' DATA ERROR, UPDATE ID',ID,' ALPHA',CNA~E)

(SKIP,A,F (6) ,A,A (3» ;
" , ' ,GO TO ~EiCARD;, "

Figure 76. Updating sequential Disk File' (3 of 3)

II JOB CUMPCH
II ASSGN SYS01C,X'291'
II DLBL IJSYS1C
II EXTEN~ SYS010,PLID03,1,0,1500,250
II OPTION ~INK,SYM,LIST,ERRS,60C,NODECK,LISTX
II EXEC PL/I

F (80) BUFFERS (2)) ;

@I
@I

Figure 77. Punching Disk Data Into Cards

Appendix L. Programming Examples 153

The DO WHILE Statement

The program shown in Figure 78 shows how
the sum of the series 1 + 1/2 + 1/~ + 1/4 +
1/5 + ••• may be computed using the DO
WHILE statement.

~~HILE :
SUM=l;
N=l:

PROCEDURE OPTIONS

DO WHILE (l/N> 1.E-3*SUM);
N=N+1;
SUM=SUM+l/N;
END;
PUT LIST(SOM,N);
END;

Figure 78. Examfle Illustrating The Use of
The DO WHILE Statement

Using The Console For Communications

The example in Figure 79 (encircled numbers
are used for reference purposes only) shows •

154

how the console may be used for communica
tion with a program.

Four files are used: a tape input file
<D, a tape output file @, a card output
file Q)., and a print file (no declaration,
default). The input from the tape input
file may be written on tape, punched into
cards, or printed. The answer as to what
is to he done_ mUR~ he aiven hv ~hp nnpr~-
tor -~si~g -th~' c~n~~l; - ® . ---Th~ ~p~r~t~~--
has to type any combination of "PRINT".

\ICOpy", or "PUNCH".

The answer is then scanned by the pro
gram to determine first whether COpy 5,
then whether PRINT (6). and finally whether
PUNCH (J) llas been returned. If the reply
that is-searched for is not found in -
ANSWER, 0 is returned by the INDEX built-in
function.

Depending on the answer of the operator,
the input is written onto ta~ QD, punched
; n+- r'I ro;:a T~c! (Q) r'lT Y'\T; n +- o~ ,lIffi ----- ----~ ~, ~- ~ __ u_~~ v.

II JOB MON_43
* PAUSE READY TAPES MASTER ON 180
II ASSGN SYS01C,X'182'
II ASSGN SYS011,X'181'
II OPTION LINK, LIST,SYM,ERRS,60C,NODECK,LISTI,DUMP

ACTION NOMAP
II EXEC PL/I

OT1L: PROCEDURE OPfIOIiS (KAIB);
DECLARE TAPEIN FILE RECORD SEQUENTIAL INPUT ENVIRONMENT
(MEDIUM (SYSO 10,2400) CONSECUTIVE F (800,80) BUFFERS (2)

NOLA BEL) ;
DECLARE TAPEOU FILE RECORn SEQUENTIAL OUTPUT ENVIRCNMENT
(MEDI UM (SYSO 11,2400) CONSECUTIVE F (800, 80) BUFFERS (2)

1fOLABEL} ;
DECLARE CARDOU FILE RECORD SEQUENTIAL OUTPUT ENVIRONMENT
(MEDIUM (SYSPCH,2540) CONSECUTIVE F (80) BUFFERS (2»;
DICLAlt,lCIBD CHAll(SO); ..
DECLl RE llSIBR CHAR (2() ;
DECLARB (C(lPI Blf, ,tl'!B.I1f f 'U)l¢IIXi)
DECLiRE ,LOGIC Clia (.3); 1.·····;
Olf IID111.I (~lPII • .)GO !OOO.,;

START:

o
®
@

115 Wilt • • , ; COPISI'. ." •. ··t; "ltlllt" '.f;
DISPLAY ('TYPE CONTROL WORDS COPY- ANY COMBINATION

•) RIPtt ,i.$111):
M=INDEI (ANSWER,' COPY') ;
IP ! (} !IIIICO,YII."'::
M=INDEI (AN SWER, • PRINT') ;
IF I! ... = 0 fH11 'll·: •• !I- .,.~; .'. o M=INDEX (ANSWER,' PUNCH') i
II (}. ta •• ··.IICI •• ••• "';;'c
11.511)00;. .'. "'2> (..) ii< /' •

LOGIC. ·.¢Q'~B;r;, ••. JJ .•. 'JI.aD ,'1 IDleB'ID;~_
IF .LOGIC ·' <'f .. GO ., OUY, .
D!$PLAl'(.,·$ •• P.$f()lIIBt·.··.··,. __ ~~.·:
~·fO$,".'; . .' '. .. .
END;

OKAY:
0'. FILE (t~a~~)

1FCOPYB1fJ'" '1' .. '~
air!!N FILS .(1J:~EOU);

x:FJ?:UNCDIT •••• tl.'~
Q1?§n. FII.t8 .(~~1

®I
01
@I

WOP. R:E.M)·PlLECWeSml !~.·(aMl;;··
IF COPYBIT = '1' THEN

WRITE FILE (TAPEOU) FROH (CARD);
IF PUNCHBIT = '1' THEU

WRITE FILE (CARDOU) FROM (CARD);
IF PRINTBIT = '1' THEN

PUT EDIT. (CARD) (SKIP,A(80»)
GO TO .~,;/'.'

DONE; .CLOSlt ·.Ji·JiLI.C'lAPEIlfll
IFCQPY9rr··.·.~ •.. 'l'?'l~,
~S.· F:tLS (~~lOUl<;

IF PUNCHlJIT.'l! ··bEN·
CLOSBrX1£ (~);
$NO;

Figure 79~ Using the Console for Communications

Appendix L~ Progra~IDing Examples 155

Index

(where ~ore than one page reference is given,

ABNORMAL at~ribute ••••••••••••••••••••• 141
Access methods •••••••••••••••••••••••••• 35
ACTION statement •••••••••••••••••••••
~LIGNED ••••••••••••••• _ •••••••••••••••• 137
Alignment requirements of data •••••••••• 67
All option •••••••••••••••••••••••••••••• 14
Appendage ••••••••••••••••••••••••••••••• 74
~rguments, passing of •••••••••••••••• ~ •• 46
Arithmetic constants ••••••••••••••••••• 137
Arith~etic data (storage
requirements)~_~~~~~~~~~~~~~~~~~~:::::: 60

~rray bounds •••••••• _._. ____ ~ ~ .. ~~~~~ 65
Arrays ••••••••••••••••••••••••••••••••• 137
Arrays of structures •••••••••••••••• 51,137
Assemb:er modules ••••••••••••••••••••••• 46
Assembler modules calling PL/I •••••••••• 46
Assembler modules, linking of ••••••••••• 44
ASSGN statement ••••••••••••••••••••••••• 13
1\ .a- _..: 1,..,. .. ",.1-_ & __ .L. __ ': __ .L.":' __ .. -.."
n~~L~UU~C La~~vL~£a~~vu •••••••••••••••• ~~I

Attributes, redefining •••••••••••••••••• 52
Autolink feature •••••••••••••••••••••••• 20
AUTOMATIC data sto:rage 63,138
AUTOMATIC variables ••••••••••••••••••••• 46

Background partition ••••••••••••••••• 11,18
Background processing ••••••••••• ~ •••• 11,18
BACKWARDS attribute ••••••••••••••••••••• 39
BACKWARDS files ••••••••••••••••••••••••• 39
BASED attribute ••••••••••••••••••••••••. 52
BASED data storage •••••••••••••••••••••• 63
Based structures •••••••••••••••••••••••• 52
Based variables ••••••••••••••••••••••••• 52
Based variables with structures ••••••••• 52
Binary

fixed data •••••••••••••••••••••••• 60,138
fixed and float variables ••••••••••••• 67
fixed data •••••••••••••••••••• ~ ••• 60,137
float data •••••••••••••••••••••••• 60.137

Bit strings ••••••••••••••••••••••••• 137,62
Blanks ••••••••••••••••••••••••••••••••• 137
Block (of data) ••••••••••••••••••••••••• 27
Blocks (of program) •••••••••••••••••••• 137
Block length ••••••••••••••••••••••••••• 137
Block prologue •••••••••••••••••••••••••• 81
Dlock slze ••••••••••••••••••••••••• ~ •••• 31
Block table listing ••••••••••••••••••••• 92
Blocked records ••••••••••••••••• ~ ••••••• 31
Blocking •••••••••••••••••••••••••••••••• 51
Blocksize option ••••••••••••••••••••••• 137
Boundary requirements ••••••••••••••••••• 65
Bounds of an array •••••••••••••••••••••• 64
Buffer (length) ••••••••••••••••••••••••• 35
BUFFERED attribute •••••••••••••••••••••• 35
Buffers ••••••••••••••••••••••••••••••••• 72
Buffering ••••••••••••••••••••••••••••••• 35
,Buffering attributes.................... 35
Built-in functions •••••••••••••••••• 96,138

156

major reference appears first.)

CALL statement ••••••••••••••••••••••• 44,46
Calling Assembler modules ••••••••••••••• 46
CATAL option (OPTION statement) ••••••••• 15
Cataloging ••••••••••••••••••••• ~ •••••••• 24

foreground programs ••••••••••••••••••• 26
into core-image library ••••• ~ ••••• ~ ••• 24
into relocatable library •••••••••••••• 24
label information ••••••••••••••••••••• 41
relocatable modules ••••••••••••••••••• 24

CATALR statement •••••••••••••••••••••••• 24
Chain-back word._ •• ~_ •• _ ••••.••••••••••. 58
Chaining of DSA's ••••••••••••••••••••••• 58
Character strings ••••••••••••••••••• 138,62
CHARACTER variables ••••••••••••••••••••• 67
Checkpointing ••••••••••••••••••••••••••• 47
CNTRL macro 47
COBOL subroutines {calling of) •••••••••• 44
Coded arithmetic data (stor~ge

requirerflents) •••••••••••••••••••••••••• 60
Coded arithmetic variables (default
attributes of) •••••••••••••••••••••••• 136

comments statement •••••••••••••••••••••• 16
Compatibility ••••••••••••••••••••••• 138,70
Compilation requirements •••••••••••••• 18,5

in background partition ••••••••••••••• 18
in foreground partition ••••••••••••••• 18

Compilation under DoS/roS •••••••••••• 17,20
Compile and catalog ••••••••••••••••••••• 25
compile-time diagnostics ••••••••••••••• 107
Compile-time options ••••••••••••••••• 16,15
Configuration (supported maximum) •••••••• 6
CONSECUTIVE files ••••••••••••••••••••••• 27
Console (using console for

communication) ••••••••••••••••••••••••• 64
Constants, representation of •••••••••••• 64
Control field ••••••••••••••••••••••••••• 34
Control routine, PL/I ••••••••••••••••••• 82
CONVERSION condition •••••••••••••••• 140,40
Conversion •••••••••••••••••••••••••• 50,138

example •••••••••••••••••••••••••••••• 143
possible combinations of •••••••••••••• 95
requirements •••••••••••••••••••••••••• 70
subroutines •••••••••••••••••••••••• 70,93

core-image library •••••••••••••••••••••• 11
Correspondence defining ••••••••••••••••• 52
CLO~~-Le£erence listing ••••••••••••••••• 9i
CSECT names ••••••••••••••••••••••••••••• 21
Cylinder •••••••••••••••••••••••••••••••• 33
Cylinder index •••••••••••••••••••••••••• 30

DA (DLBL statement) ••••••••••••••••••••• 37
DASD file label formats •••••••••••••••• 102
Data

alignment ••••••••••••••••••••••••••••• 67
aggregates •••• s ••••••••••••••••••• ~ee 137
area .. ,. .,
descriptor ••••••••••••••••••••••••••••
f il es
items ~

37
60
27
60

storage •••••• ~ ••••••••••••••••• ~ •••••
storage mapping •••••••••••••••••••• _~.
storage requirements ••••••••••••••••••

138
65
60

conve~sion, possible combinations ••••• 95
Date (in job control) •••••••••••••••• 37,38
Decimal

data, precision pf •••••••••••••••••••• 53
fixed and float variables ••••••••••••• 67
fixed data •••••••••••••••••••••••• 138,61
float data •••••••••••••••••••••••• 138,61

DECK option (OPTION statement) •••••••••• 15
DECLARE statement •••••••••••••••••••••• 138
DEFINED attribute ••••••••••••••••••• 52,138
DELETe statement ••••••••••••••••••••••••
Deleting from libraries •••••••••••••••••
DELETR statement ••••••••••••••••••••••••
Device address ••••••••••••••••••••••••••
Device specification for tapes ••••••••••
Diagnostic messages

24
24
25
13
13

compile-time ••••••••••••••••••••••••• 107
object-time •••••••••••••••••••••••••• 130

Dimension attribute •••••••••••••••••••• 138
Direct access illethod ••••••••••••••••• 29,35
Disk and Tape Operating systems •• ~ ••••• ~ 10
Disk files ••• : 36

creating and updating sequential ••••• 150
Disk file processing •••••••••••••••••••• 36
Disk labels 36
Disk organization ••••••••• ~ ••••••••••••• 33
DISPLAY statement •••••••••••••••• ~ •• 139,53
Displaying intermediate results

(DyNDUMP} ••••••••••••••••••••••••••••••
DLAB statement ••••••••••••••••••••••••••
DLBL statement ••••••••••••••••••••••••••
DO loops

58
37
37

optinization of ••••••••••••••••••••••• 54
DO statement ••••••••••••••••••••••• 139,154
DOWN opti~n ••••••••••••••••••••••••••••• 14
DSA- •••••••••••••••••••••••••••••••••••• 80

chaining •••••••••••••••••••••••••••••• 58
layout ••••••••••••••••••••••••••••••.• 46

DTF program ••••••••••••••••••••••••••••• 72
DTF table •••••••••••••• ~ •••••••••• 72,47,58
DTFCD ••••••••••••••••••••••••••••••••••• 72
DTFD~ ••••••••••••••••••••••••••••••••••• 74
DTFDI ••••••••••••••••••••••••••••••••••• 76
DTFIS ••••••••••••••••••••••••••••••••••• 75
DTFMT ••••••••••••••••••••••••••••••••••• 73
DTFPR ••••••••••••••••••••••••••••••••••• 73
DTFSD ••••••••••••••••••••••••••••••••••• 74
Dump interpretation •••••••• '! ••••••••••••. 58
DUMP option (OPTION statement) •••••••••• 15
Dynamic storage area (DSA) •••••••• 80.46,58
DYNDUMP r~utine ••••••••••••••••••••• 58 r 139

E-format output~ •••••• ~ ••••••••••••••••• 54
Edit-directed data transmission ••••••••• 54
END statement (PL/I) ••••••••••••••••••• 139
ENDFILE condition ••••••••••••••••••• 140,40
End-of-data-file statement •••••••••••••• 16
End-of-job statement •••••••••••••••••••• 16
ENDPAGE with multiple-line PUT •••••••••• 55
Entry name parameter ••••••••••••••••••• 141
Entry points •••••••••••••••••••••••••••• 21
ENrRY statement ••••••••••••••••••••••••• 21
Error nessages

compile-time ••••••••••••••••••••••••• 107

object-time •••••••••••••••••••••••••• 130
Error statistics (for mathematical
functions) ••••••••••••••••••••••••••••• 70

Errors
due to multiple secondary entry
points ••••••••••••••••••••••••••••••• 21

due to multiple CSEcr names ••••••••••• 21
tracing object-time ••••••••••••• 31,56,58
tracing compile-time •••••••••••••••••• 90

ERRS option (OPTION statement) •••••••••• 15
EXEC statement •••••••••••••• ~ ••••••••••• 13
Execution requirements ••••••••••••••••••• 6
Execution-time errors ••••••••••••••••••• 58
EXHIBIT CHANGED ••••••••••••••••••••••••• 56
Expiration date ••••••••••••••••••••••••• 36
Exponent subfield •••••••••••••••••••••• 139
Extent •••••••••••••••••••••••••••••••••• 33
EXTENT statement ••••••••••••••••••••• 33,37
External

attribute •••• ~ ••••••••••••••••••••• 50,85
data storage •••••••••••••••••••••••••• 63
procedure ••••••••••••••••••••••••••••• 21
structures ••••••••••••••••••••••••••• 140
symbol table listing •••••••••••••••••• 91

F~f ormat output _... 54

Factorization of attributes •••••••••••• 137
File •••••••••••••••••••••••••••••••••••• 27

appendage ••••••••••••••••••••••••••••• '47
arguments •••••••••••••••••••••• ~ •• ~ ••• 47
attributes ••••••••••• · ••••••••••••• 135,35
declaration checklist •••••••••••••••• 135
declarations •••••••••••••••••••••••••• 72
generation number ' ••••••••• 39
identification.~.~ •••••••••••••••••••• 37
label formats •••••••••••••••••••••••• 102
labels ••••••••••••••••••••••••••••• ~ •• 36
modu·le ••••••••••••••• ,. '. • • •.•• • •• 24
organization •••••••••••••••••••••••••• 27
parameters •••••••••••••••••••••••••••• 46
sequence number........................ 38
serial number ••••••••••••••••••••••••• 38
unbuffered •••••••••••••••••••••••• 35.139
version number ••••••••••••• ~ ••••••• ~ •• 39

Fixed blocked records ••••••••••••••••••• 34
Fixed unblocked records ••••••••••••••••• 34
Floating-point registers •••••••••••••••• 44
Foreground partition ••••••••••••••••• 11,18
Foreground program ••••••••••••••••••• 11,26
Foreground save area •••••••••••••••••••• 18
Format constants ••••••••••••••••••••••• 139
FORMAT statement ••••••••••••••••••••••• 139
FORTRAN subroutines (calling of) •••••••• 44
Function reference •••••••••••••••••••••• 46

Generated catalog control statements •••• 25
Generation number ••• ~ ••••••••••••••••••• 39
GET statement •••••••••••••••••••••••••• 139

Hardware interrupts •••••••••••••••••••• 130
Header label •••••••••••••••••••• ~ ••••••• 36
Housekeeping errors •••.•••••••••••••••• 131

Identification (file) ••••••••••••••••••• 38
Identifiers •••••••••••••••••••••••••••• 139
IF nesting ••••••••••••••••••••••••••••• 139

Index 157

IJKEXHC ••••••••••••••••••••••••••••• 56.139
IJKSZCI ••••••••••••••••••••••••••••••••• 48
IJKSZCN ••••••••••••••••••••••••••••••••• 46
IJKTROF ••••••••••••••••••••••••••••• 56,139
IJKTRON ••••••••••••••••••••••••••••• 56,139
IJKZL ~acro instruction ••••••••••••••••• 54
IJKZWSI •••••••••••••• ~ •••••••• _ ••••••••• 48
Implicit declaration ••••••••••••••••••• 139
Implied subroutine calls ••••.•••••••• 96~70
Including

by compilation ••••••••••••• ~ •••••••••• 20
from the relocatable library •••••••••• 20
object card decks ••••••••••••••••••••• 20
object modules •••••••••••••••••••••••• 20

Independent overfloW' area ••••••••••••••• 31
Index •••••••••••••••••••••• ~ •••••••••••• 30
Index area ••••••••••••••••••••••••••• 30,.38
iNDEX built-in function •••••••••••••••• 154
Indexed files ••••••••• ~ ••••••••••••••••• 29

options for~_._ •• __ ._ ••••• _ ••••• e.e ••• 33
Indexed-se~uential

file~ cr~ation of ••••••••••••••••••••• 29
organization •••••••••••••••••••••••••• 31

INITIAL attribute •••••••••••••••••••••• 139
Initial Program Loader •••••••••••••••••• 10
I/O device assignment ••••••••••••••••••• 12

listing of •• _ ••• ~ ••••••••••••••••••••• 12
I/O errors ••••••••••••••••••••••••••••• 132
I/O rrocessing~ ••••••••••••••••••••••••• 35
I/O statement

format checklist ••••••••••••••••••••• 134
140

I/O storage requirements •••••••••••••••• 72
I/O subroutines (list of) •••••••••••••• 100

nesting of~ ••••••••••••••••••••••••••

laCS logic module ••••••••••••••••••••••• 76
I PI ... e ... '", ••• oe .. , • .a _ • It _ e _ ,. •••

IRRED(1CIBLE attribute
ISC (DLBL statement' ••••••••••••••••••••

10
141

37
ISE (DLBL statement).~_ •• _._._ •••••••••• 37
Iter2ti~n s~ecification CDO nest) •••••• 139

Job ••••••••••••••••••••••••••••••••••••• 12
Job Control program ••••••••••••••••••••• 12
Job Control statements •••••••••••••••••• 12
JOB state~ent ••••••••••••••••••••••••••• 14
Job step •••••••••••••••••••••••••••••••• 12

Key •••••••••••••••••••••••••••••••••• 27,29
KEY condition ••••••••••••••••••••••• 31,140
KEY option ••••••••••••••••••••••••••• 29,33
KEYFROM option ••••••••••••••••••••••• 29,33
KEYLENGTH option ••••••••• ~ ••••••••••• 29,33
KEYTO option ••••••• ~ •••••••••••••••••••• 33

LdceL ••••••••••••••••••••••••••••••• 36,140
constants (storage) ••••••••••••••••••• 63
control statements •••••••••••••••••••• 36
data •••••••••••••••••••••••••••••••••• 63
{END statement) •••••••••••••••••••••• 139
information, cataloging of •••••••••••• 41
processing ••••••••••••••••••• ~ •••••••• 36
-program communication •••••••••••••••• 41
statement examples ••••••••••••••••. 39,40
variables~~~e ••••••••••••••••• ~ ••• ~ 63,67

Labeled files 8 link-editing ••••••••••••• 40
Labeled tape files ••••••••••••••••••. 36,40
LBLryp statement •••••••••••••••••••••••• 40
Leaf {of overlay tree) •••••••••••••••••• 85

158

LEAVE option •••••••••••••••••••••••••••• 39
Level number {structures) •••••••••••••• 142
Librarian ••••••••••••••••••••••••••••••• 11

control statements •••••••••••••••••••• 24
Library maintenance (TOS) •••••••••••••••

maintenance runs ••••••••••••••••••••••
standard save area (LSSA) •••••••••••••

26
25
58

subroutines •••••••••••••••••••••••••••• 8
LINK option (OPTION statementj •••••••••. 15
Linkage Editor ••••••••••••••••••••••• 18,10

control statements •••••••••••••••••••• 18
program •••••••••••••••• ~ •••••••••••••• 18
storage map •••••••••••••••••••••••• 58,18

Link-editing
foreground programs ••••••••••••••••••• 18
labeled files ••••••••••••••••••••••••• 40
multiphase foreground programs •••••••• 88
overlays •••••••••••••••••••••••••••••• 87

Linking Assembler modules •••••••••••• 44,46
Linking conventions. __ • _______ ._.~~~ •••• 44
LIOCS table •••••••••••••••••• _ ••• _ •••••• 41
LIST option (OPTION statement) •••••••••• 15
List~directed data transmission ••••••••• 54
List I/O ••••••••••••••••••••••••••••••• 140
Listing of 1/0 assignments •••••••••••••• 14
Listings, program ••••••••••••••••••••••• 90
LISTIO statement ••••• _ •••••• ~~ •••••••••• 14
LISTO option (PROCESS statemeuti •••••••• 17
LISTX option (OPTION statement) •••••• ~ •• 15
Locating execution-time errors........... 58
LODIS macro ••••••••••••••••••••••••••••• 39
LOG option (OPTION statement) ••••••••••• 15
Logical depth (structures) •••••••••••••• 66
Logical device address •••••••••••••••••• 12
Logical units •••••••• ~ •••••••••••••••••• 13

Machine features ••••••••••••••••••••••••• 6
Machine requirements ••••••••••••••••••••• 6
Magnetic tape, positioning of ••••••••••• 40
MAIN option ••••••••••••••••••••••••• 140,46
MAIN procedure ,," e"" e .. 46
Mappi~g {storage) ••••••••••••••••••••••• 65
Master index •••••• ~ ••••••••••••••••••••• 30
MINSYS option (OPTION statement) " 15
Module names •••••••••••••••••••••••••••• 24
MTC statement •••••••••••••••••••• e 14,39,40
Multi-extent file ••••••••••••••••••••••• 37
Multi-file volume ••••••••••••••••••••••• 39
Mu~tiprogramming •••••••••••••••••••••••• 11
Multi-reel file ••••••••••••••••••••••••• 27
Multi-volume file ••••••••••••••••••••••• 39

Names •••••••••••••••••••••••• _ ••••••• ~. 140
Nested blocks.· ••••••••••••••••••••••• ~. 137
Nested Llo statements •••••••••••••••• ~. 140
NEWVOL library statement •••••••••••••••• 26
NOAUTO option {PHASE or AcrION stmt) •••• 20
NODECK option (OPTION statement) •••••••• 15
NODUMP option (OPTION statement) •••••••• 15
NOERRS option (OPTION statement) •••••••• 15
NOLINK option (OPTION statement) •••••••• 15
NOLIST option (OPTION statement) •••••• ". 15
NOLISTO option (PROCESS statement) •••••• 17
NOLISTX option (OPTION statement) ••••••• 15
NOLOG option (OPTION statement) ••••••••• 15
NOOPT option (PROCESS statement) •••••••• 17
NORMAL attribute ••••••••••••••••••••••• 141
Normalized data ••••••••••••••••••••••••• 51

NOSTMT option {PROCESS statement) ••••••• 17
NOSYM option (OPTION statement) ••••••••• 15
NOXREF option {OPTION statement) •••••••• 15
NULL ••••••••••••••••••••••••••••••••••• 139
Numeric data (storage) •••••••••••••••••• 62
Numeric fields in edit-directed I/O •• 51,5~

Object code listing ••••••••••••••••••••• 92
object module •••••••••••••••••••••••••••• 8
Object-time diagnostics •••••••••••••••• 130
Object-time errors (locating) ••••••••••• 58
object-time storage layout •••••••••••••• 10
Offset table listing ••••••••••••••••• 91,58
ON-conditions •••••••••••••••••••••• 13~,140
ON-condition comments •••••••••••••••••• 130
ON statement •••••••••••••••••••••••••••
ONSYSLOG option ••••••••••• ~ ••••••••••••
OPEN statement ••••••••• ~ ••••••••••••••••
OPT option (PROCESS statement) ••••••••••
Optimization (of compiled code) •••••••••

140
141

36
17
17

OPTION statement •••••••••••••••••••••••• 15
OPTIONS attribute •••••• ~ ••••••••••••••• 141
Options

supported by job ~ontrol •••••••••••••• 17
not supported by job control •••••••••• 17

Overflow area ••••••••••••••••••••••••••• 30
independent ••••••••••••••••••••••••••• 37

Overhead ••••••••••••• ~e.e ••••••••••••• 79,8
overlap, seek time •••••••••••••••••••••• 47
Overiapping I/O operations •••••••••••••• 35
Overlay •••••••••••••••••••••••••• 85,51,139

defininge ••••••••••••••••••••••••••••• 52
example ••••••••••••••••••••••••••••••• 87
rules for using ••••••••••••••••••••••• 85

P-£ormat items •••••••••••••••••••••••••• 51
Padding ••••••••••••••••••••••••••••••••• 65
PAGESIZE option •••••••••••••••••••••••• 1~1
Parameters ••••••••••••••••••••••••••••• 141
parti.tion, foreground/background 11
PAUSE statement ••••••••••••••••••••••••• 16
Phase ••••••••••••••••••••••••••••••••• 85,8

loading ••••••••••••••••••••••••••••••• 86
names •••••••••••••••••••••••••••••• 24,85

PHASE statement •••••••••••••••••••••• 19,87
Physical device address ••••••••••••••••• 12
PICTURE attribute •••••••••••••••••••••• 141

data ••••••••••••••••••••••••••••••••• 141
specifications •••••••••••••••••••••••• 55

Picture-specified
character strings ••••••••••••••••••••• 62
data (storage) •••••••••••••••••••••••• 62

PICTURE variables ••••••••••••••••••••••• 67
Pictures, use witnstream-oriented
data transmission •••••••••••••••• 4 ••••• 55

PL/I control routine •••••••••••••••••••• 82
Point~r variables.~._ •••••••••••••••. 63,67

storage ••••••••••••••••••••••••••••••• 63
Positioning of magnetic tapes........... 40
Precision (of arithmetic constants) ••• _~ 6~

Precision (of decimal uata) ••••••••••••• 53
preformatting REGIONAL files •••••••• 28,149
prime data area ••••••••••••••••••••••••• 28
Pri\ate relocatable library •••••••••. 20,23
prcced'..lre

contained in relocatable library •••••• 89
default condition •••••••••••••••••••• 141

module •••••••••••••••••••••••••••••• 8,24
PROCEDURE statement •••••••••••••••••••• 1~1
PROCESS statement ••••••••••••••••••••••• 16
PROG option •••• ~ ••••• _ •••••••••••••••••• 14
Program examples ••••••••••••• e ••••••••• 143
Program expansion •••••••••••• Q •••••••••• 50
Program segmentation •••••••••••••••••••• 50
Program storage requirements •••••••••••• 83
programmer logical units •••••••••••••••• 13
Pseudo variables ••••••••••••••••••••• 70,96
PUT statement •••••••••••••••••••••••••• 141

Qualified names •••••••••••••••••••••••• 141

Re-assigning logical units •••••••••••••• 13
Record •••••••••••••••••••••••• ~ •••••• _ •• 27

types ••••••••••••••••••••••••••••••••• 34
RECORD condition •••••••••••••••••• ~ ••••• 33
Redefinition of attributes •••••••••••••• 53
REDUCIBLE attribute •••••••••• ~ ••••••••• 141
REGIONAL files •••••••••••••••••••••••••• 27

creating and retrieving a
REGIONAL (1) file •••••••••••••••••••• 147

Register usage for linking ••• ~ •••••••••• ~4
'Relative track number ••••••••••••••••••• 38
Relocatable library ••• ~ ••••••••••• 89,11,24

private ••••••••••••••••••••••••••••••• 20
Remote format item •••••• ~ ••••••••••••••
Remote FORMAT statement
Repetition factor ••••••••••••••••••••••
Repetitive specification •••••••••••••••

139
139
141
139

Replication factor ••••••••••••••••••••• 139
REPLY option '. • • •• • •• 139, 53
RESET statement ••••••••••••••••••••••••• 16
Restarting •••••••••••••••••••••••••••••• ~7
Restrictions on PL/I language~ ••••••••• 137
Retention period...................... 37, 38
RETURN macro •••••••••••• ~ ••••••••••••••• 45
Returning registers ••••••••••••••••••••• 45
Rewind operation •••••••••••••••••••••••• 40
Root ••••••••••• ~ ••••• _ •••••••••••••••••• 85
Rounding on output •••• ~ ••••••••••••••••• 55
RSTRT statement •••••• ·.~ ••••••••••••••••• 47

Save area •••••••••••••••••••••••••••••••
SAVE macro •••••• w •••••••••••••••••••••••

46
45

Saving registers 44
Scale factor ••••••••• ~ •••••••••••••••••
SD (DLBL statement)_ ••••••••••••••••••• ~
secondary entry points ••••••••••••••••••
Seek time overlap ••• _ ••••••••••••••••• ~.
Segmentation of programs ••••••••••••••••
Self-relocating programs ••••••••••••••••

142
37
89
47
50
20

Sequence number (file) •••••••••••••••••• 39
Sequential access method ••••••••••••• 27,35
Serial number (file) •••••••••••••••••••• 38
SIZE overflow ••••••••••••••••••••••••••• 53
SKIP ••••••••••••••••••••••••••••••••••• 139
Source

module ••••••••••••••••••••••••••••••••• 8
program listing ••••••••••••••••••••••• 90
statement library ••••••••••••••••••••• 11
text and object program ••••••••••••••• 83

Split-cylinder technique •••••••••••••••• 34
Split cylinder track ••• ~ •••••••••••••••• 38
Standard I/O assignments •••••••••••••••• 12
Statements (restrictions to) ••••••••••• 142
statement format •••••••••••••••••••• 50,142

Index 159

Statement offset listing •••••••••••••••• 92
STATIC data storage ••••••••••••••••••••• 63
Static storage ••••••••••••••••••••••••• 138
static storage area •••••.••••••••••••••• 79
STMT opti~n (PROCESS statement) •••••••••
Storage layout ••••••••••••••••••••••••••
Storage mapping

arrays ••••••••••••••••••••••••••••••••
element data ••••••••••••••••••••••••••
structures ••••••••••••••••••••••••••••

Storage requirements

1 ..,
.LI

10

6S
65
66

for block prologue~~~~~~============== 81
fer compilation ••••••••••••••••••••••• 18
for data •••••••••••••••••••••••••••••• 60
for dynamic storage.·................... 80
examples for computing ••••••••••••• 83,87
for I/O ••••••••••••••••••••••••••••••• 72
for PL/I control routine •••••••••••••• 82
for program expansion •••••••••••••••••
for static storage ••••••••••••••••••••

50
79

for subr~utines ••••••••••••••••••••••• 70
STREAM files (blocksize options) ••••••• 137
String data, storage of ••••••••••••••••• 62
STRING ~seudo-variable ••••••••••••••••• 143
Stringency level ••••••••••••••••••••• 66,67
Structure ••••••••••••••••••••••• ~ ••••••• 51

declaration •••••••••••••••••••••••••• 142
external ___ ._ •• _ ••••••• ~ ••••••••••••• 1" n

.... "TV

level numbers •••••••••••••••••••••••• 142
mapping •••••••••••••••••••••••••••• 66,51
mapping rules ••••••••••••••••••••••••• 67
maximum depth •••••••••••••••••••••.•• 142
maximum level number ••••••••••••••••• 142

STxrr macro ••••••••••••••••••••••••••••• 48
Subroutine calls, implied •••••••••••• 96,70
Subroutine storage requirements ••••••••• 70
Subroutines, (called by I/O
statements) •••••••••••••••••••••••••••• 71
conversion •••••••••••••••••••••••••••• 93

SUBSTR huilt-in function ••••••••••••••• 144
Supervisor •••• 4 •••••••••••••••••••••••••

Symbol table listing ••••••••••••••••••••
Symbolic unit •••••••••••••••••••••••••••
SYM option (OPTION statement) •••••••••••

10
90
37
15

SYS option •••••••••••••••••••••••••••••• 14
SYSCLB ••••••••••••••••••••••••••••••• 12,13
SYSIN ••• ~ ••••••••••••••••••••••••• 13,36,78
SYSIPT ••••••••••••••••••••••• ~ ••••••• 12,13
SYSLNK ••••••••••••••••••••••••••••••• 12,13

assignments for ••••••••••••••••••••••• 19
SYSLOG •••••••••••••••• ~ •••••••••••••. 12,13
SYSLST ••••••••••••••••••••••••••••••• 12,13
SYSOUT •••••••••••••••••••••••••••••••••• 12
SYSPCH ••••••••••••••••••••••••••••••• 12,13
SySPRINT •••••••••••••••••••••••••••••
SYSRDR ••••••••••••••••••••••••••••••.

160

"'\r .,.n
JU, 10

12,13

SYSRES •••••••••••••••••••••••••••••••••• 13
SYSRLB •••••••••••••••••••••••••••••••••• 20
SYS001-003 ••••••••••••••••••••••••••• 12,13
System control programs ••••••••••••••••• 11
System files

assignment to disk •••••••••••••••••••• 42
System logical units ••••••••••••••••• 12,13
System service programs •••••••••••••.•••• 11
System units •••••••••••••••••••••••••••• 79

Tab control table ••••••••••••••• ' •• ' ••••••
Tab positions •••••••••••••••••••••••••••
Tape

54
CII
..1"1'

drive control operation ••••••••••••••• 39
file processing ••••••••••••••••••••••• 40
labels •••••••••••••••••••••••••••••• ~. 36

Terminology (basic) •••••••••••••••••••••• 8
TIME ••••••••••••••••••••••••••••••• 143_139
TLBL statement........................... 38
TPLAB statement::==::~;= •••• _ ••••••••••• 37
TRACING •••.• ~~.~e~ee:~=~;;= __ ._.=._ 56
Track •••••••••••••••••••• ~ ••••••••••• _ •• 33

index ••••••••••••••••••••••••••••••••• 30
number of ••••••• ~ ••••••••••••••••••••• 38

Trailer label ••••••••••••••••••••••••••• 36
Tree structure.................... •.••••• 86

UA option •••••••••••••••••••••• _ •••••••• 14
UCLstatement ••••••••••••••••••••••••••• 29
UNALIGNED •••••••••••••••••••••••••••••• 137
Unassigning (logical units) ••••••••••••• 13
UNBUFFERED attribute •••••••••••••••••••• 35
Undefined records ••••••••••••••••••••••• 35
UNITS option •••••••••••••••••••••••••••• 14
Unlabeled files ••••••••••••••••••••••••• 33
Unlabeled tape files •••••••••••••••••••• 40
UNSPEC •••••••••••••••••••••••••••••••••• 51
Updating (sequential disk file) •••••••• 150
UPSI byte •••••.•••••••••••••••••••••• 16,25
UPSI statement ••••••••••••••••••••••• 16,25
User Program Switch Indicator ••••••••••• 16

V option •••.••••••••••••••••••••••••••• 137
Variable blocked records •••••••••••••••• 34
Variable unblocked records •••••••••••••• 35
version number ••••••••••••••••••••••••••
VOL statement •••.••••••••••••••••••••••••
Vol ume ••••••••••••••••••••••••••••••••••

39
37
36

label ••••••••••••••••••••••••••••••••• 36
serial number •••••••••••••••••••••• 36,37
sequence number ••••••••••••••••••••••• 39
Table of Contents (VTOC) ••••••••••• 36,41

VTOC ••••••••••••••••••••••••••••••••• 36,41

X~EF optiun (OPTIONi statement •••••.••••
XTENT statement •••••••••••••••••••••••••

15
37

GC24-9005-6

International Business Machines Corporation
Data Processing Division
1133 Westchester AvenuB, White Plains, Naw York 10604
[U.S.A. only)

I BM World Trade Corporation
821 United Nations Plaza, New York, Naw York 10017
[International]

	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093
	094
	095
	096
	097
	098
	099
	100
	101
	102
	103
	104
	105
	106
	107
	108
	109
	110
	111
	112
	113
	114
	115
	116
	117
	118
	119
	120
	121
	122
	123
	124
	125
	126
	127
	128
	129
	130
	131
	132
	133
	134
	135
	136
	137
	138
	139
	140
	141
	142
	143
	144
	145
	146
	147
	148
	149
	150
	151
	152
	153
	154
	155
	156
	157
	158
	159
	160
	xBack

