GA23-0060-0 File No. S360/S370/S3/4300-09

IBM 3270 Information Display System

3271 Control Unit 3272 Control Unit 3275 Display Station Description and Programmer's Guide

Systems

First Edition (November 1980)

The material in this publication was formerly contained in the *IBM 3270* Information Display System Component Description, GA27-2749-10. For the applicable publications for other units of the IBM 3270 Information Display System, see the *IBM 3270 Information Display System Library User's Guide*, GA23-0058.

It is possible that this material may contain reference to, or information about, IBM products (machines and programs), programming, or services that are not announced in your country. Such references or information must not be construed to mean that IBM intends to announce such IBM products, programming, or services in your country.

Publications are not stocked at the address given below; requests for IBM publications should be made to your IBM representative or to the IBM branch office serving your locality.

A form for readers' comments is provided at the back of this publication. If the form has been removed, address comments to IBM Corporation, Department 52Q, Neighborhood Road, Kingston, N.Y. 12401. IBM may use or distribute any of the information you supply in any way it believes appropriate without incurring any obligation whatever. You may, of course, continue to use the information you supply.

©Copyright International Business Machines Corporation 1980

Preface

This publication provides management, programmers, and system analysts with detailed reference material relating to the IBM 3270 Information Display System. The 3270 display system comprises the following units:

- IBM 3271 Control Unit Models 1, 2, 11, and 12
- IBM 3272 Control Unit Models 1 and 2
- IBM 3275 Display Station Models 1, 2, 11, and 12
- IBM 3277 Display Station Models 1 and 2
- IBM 3284 Printer Models 1, 2, and 3
- IBM 3286 Printer Models 1 and 2
- IBM 3287 Printer Models 1 and 2
- IBM 3288 Line Printer Model 2

Organization of This Publication

This publication is divided into eight chapters:

Chapter 1, Introduction, contains a general description of the individual 3270 units and features, and presents local and remote attachment configurations and system concepts.

Chapter 2, Terminal Operations, contains information on data buffering and display image and printout formatting. Display, keyboard, selector pen, printer, and operator identification card reader operations are described in detail.

Chapter 3, Commands and Orders, describes in detail the functions of the commands and orders that can be executed by the 3270.

Chapter 4, Local Operations, outlines the unique operations of locally attached 3270 systems. Described are operations with the channel, selection, command initiation and chaining, status bit definition, and error-recovery procedures.

Chapter 5, Remote Operations—BSC, discusses the unique operations of remotely attached 3270 systems using binary synchronous communication (BSC) line discipline. Described are BSC procedures, the functions and usage of data link control characters, 3270 command, selection, and polling operational sequences (including interaction with the access method and the channel program), remote 3270 command chaining, and error-recovery procedures.

Chapter 6, Remote Operations-SDLC, discusses the operation of remotely attached 3270 systems using synchronous data link control (SDLC) line discipline. This section describes command operation, data transfer, and errorrecovery procedures.

Chapter 7, Screen Design, discusses the elements of screen design, field concepts, panel design, data stream coding, and the relationship between data streams.

Chapter 8, Screen Management, discusses the decoding and generating of data streams.

This publication also has six appendixes:

Appendix A, Indicators and Controls

Appendix B, Buffer Address I/O Interface Codes

Appendix C, Katakana Feature

Appendix D, Data Analysis-APL Feature

Appendix E, Abbreviations

Appendix F, Glossary

Related Publications

This document assumes that the reader has read the following publications, as appropriate:

- IBM System/360 Principles of Operation, GA22-6821
- IBM System/370 Principles of Operation, GA22-7000
- General Information-Binary Synchronous Communications, GA27-3004
- IBM Synchronous Data Link Control General Information, GA27-3093
- IBM 2701 Data Adapter Unit Component Description, GA22-6824
- IBM 2703 Transmission Control Component Description, GA27-2703
- Introduction to the IBM 3704 and 3705 Communications Controllers, GA27-3051
- IBM System/3 Model 10 Components Reference Manual, GA21-9103
- IBM System/3 Model 10 Multi-line/Multi-point Binary Synchronous Communications Reference Manual, GC21-7573
- IBM Systems Network Architecture General Information, GA27-3102
- Virtual Storage Supplement, GC20-0001, for IBM System/360 and System/370 Bibliography, GA22-6822

The following publications may also be of interest:

- An Introduction to the IBM 3270 Information Display System, GA27-2739
- Operator's Guide for IBM 3270 Information Display Systems, GA27-2742
- IBM 3270 Information Display System Configurator, GA27-2849
- IBM 3270 Information Display System: Character Set Reference, GA27-2837

For a description of all 3270 publications, see the *IBM* 3270 Information Display System: Library User's Guide, GA23-0058

Contents

Chapter 1. Introduction 1-1 Display System Components 1-1 Control Unit 1-1 Display Station 1-2 Printer 1-2 Display System Configurations 1-3 Local Attachment 1-3 Remote Attachment 1-3 Remotely Attached 3270 Systems Using BSC Operating Mode 1-6 Remotely Attached 3270 Systems Using SDLC Operating Mode 1-6 Teleprocessing Networks and Modems 1-7 Features 1-7 System Concepts 1-7 Data Stream 1-8 Interface Codes 1-8 Local and Remote Operations 1-8 Chapter 2. Terminal Operations 2-1 Buffer Concepts 2-1 Display Operations 2-2 Display Images 2-2 Unformatted and Formatted Display Images 2-3 Display Fields 2-7 Keyboard Operations 2-9 Cursor 2-10 Keyboards 2-10 Key Functions 2-12 Numeric Lock Special Feature Operation 2-15 Keyboard Disabled (INPUT INHIBITED Indicator On) 2-15 Indicators and Controls 2-16 Selector-Pen Operations 2-16 Selector-Pen Field Format 2-17 Designator Characters 2-17 Security Keylock 2-19 Operator Identification Card Reader 2-19 10-Character Set 2-21 Magnetic-Stripe Format 2-21 Operational Differences Due to Screen Format 2-21 Error Conditions 2-25 Printer Operations 2-26 Print Line Formatting 2-26 NL, EM, and FF Printer Orders 2-26 Buffered Printer Operations 2-28 Unbuffered Printer Operations 2-28 Page Length Control/VFC Operations 2-29 Error Conditions 2-30 Not Ready 2-30 Character Generator or Sync Check Errors 2-31 Parity Error 2-31 Command-Chaining 2-31 Unit and Model-Dependent Differences 2-31 Buffer Size 2-31 Uppercase and Lowercase Printouts 2-31 Split Vertical Bar () Character 2-31

Chapter 3. Commands and Orders3-1Commands3-1Timing Considerations3-1Read Commands3-2Read Buffer Command3-3

Read Modified Command 3-4 Write Commands 3-7 Write Command 3-8 Erase/Write Command 3-10 Control Commands 3-10 Copy Command 3-10 Select Command 3-12 Erase All Unprotected Command 3-12 No Operation Command 3-13 Sense Command 3-13 Orders 3-14 Start Field (SF) Order 3-14 Set Buffer Address (SBA) Order 3-15 Insert Cursor (IC) Order 3-15 Program Tab (PT) Order 3-15 Repeat to Address (RA) Order 3-16 Erase Unprotected to Address (EUA) Order 3-16 Chapter 4. Local Operations (3272 Models 1 and 2) 4-1 Introduction 4-1 Interface Operations 4-1 Selection 4-1 Command Initiation 4-4 Chaining 4-4 Status 4-4 Initial Status 4-6 Ending Status 4-7 Asynchronous Status 4-7 Error-Recovery Procedures 4-11 3272 Device-Detected Errors 4-11 Recommended Procedures 4-11 Channel-Detected Errors 4-12 Chapter 5. Remote Operations - BSC (3271 and 3275 Models 1 and 2) 5-1 Introduction 5-1 Code Structures 5-1 Channel Program Concepts 5-1 Text Blocking 5-11 **Related Publications** 5-2 Multipoint (Nonswitched Line) Data Link Control 5-2 3270 Modes of Operation 5-2 Control Mode 5-3 Text Mode 5-3 Transparent Monitor Mode 5-3 Redundancy Checking 5-3 Data-Link Control Characters 5-4 Pad 5-5 SYN (Synchronous Idle) 5-5 DLE (Data Link Escape) 5-5 ACK 0 (Even Acknowledge) 5-5 ACK 1 (Odd Acknowledge) 5-5 NAK (Negative Acknowledgment) 5-5 ENQ (Enquiry) 5-6 WACK (Wait before Transmit) 5-6 RVI (Reverse Interrupt) 5-6 STX (Start of Text) 5-6 SOH (Start of Heading) 5-6 ETB (End of Transmission Block) 5-7 ETX (End of Text) 5-7 EOT (End of Transmission) 5-7

v

ITB (End of Intermediate Transmission Block) 5-7 ESC (Escape) 5-7 TTD (Temporary Text Delay) 5-7 Operational Sequences (Nonswitched Line) 5-7 Remote Chaining of 3270 Commands 5-8 General and Specific Poll Sequences 5-8 Selection Addressing Sequence 5-13 Write-Type and Control-Type Command Sequences 5-16 Read-Type Command Sequences 5-16 Status and Sense (S/S) Bytes 5-17 Error-Recovery Procedures 5-17 Supplementary Procedures 5-27 NAK to a Text Block 5-28 EOT to a Text Block 5-28 Errors Detected during a Specific or General Poll Sequence 5-28 RVI to Selection Addressing Sequence 5-28 Point-to-Point (Switched Line) Data Link Control 5-28 Terminal Identification 5-28 Contention Line Discipline 5-29 Bid Sequence 5-29 3275-Initiated Call 5-29 Computer-Initiated Call 5-29 Disconnection 5-30 Data Link Control Characters 5-30 ACK 0 and ACK 1 (Positive Acknowledgment) 5-30 NAK (Negative Acknowledgment) 5-30 ENO (Enquiry) 5-30 **RVI** (Reverse Interrupt) 5-31 EOT (End of Transmission) 5-31 DLE EOT (Disconnect) 5-31 Operational Sequences (Switched Line) 5-31 3275-Initiated Sequences 5-31 TCU-Initiated Sequences 5-31 Maintained Connection Sequences 5-35 Device Busy and Device End 5-35 Chapter 6. Remote Operations - SDLC (3271 and 3275 Models 11 and 12) 6-1 Introduction 6-1 Related Publications 6-1 Multipoint (Nonswitched Line) Data Link Control 6-1 SDLC Transmission Blocks 6-2 Link Test Command/Response 6-3 Information (I) Field 6-3 Transmission Header (TH) 6-4 Request/Response Header (RH) 6-5 Command Byte 6-8 3270 CU Responses 6-8 Data Transmissions by the 3270 CU 6-10 Control Functions 6-11 SDLC Sequence/Response Diagrams 6-12 Status and Sense (S/S) Bytes 6-12 Error-Recovery Procedures 6-21 Timeout to a Poll 6-23 CMDR Response to Invalid Nonsequenced Commands and I-Field Formats 6-23 ROL Response to a Poll 6-23 Aborting an Inbound I-Frame 6-23 Chapter 7. Screen Design 7-1 Field Concept 7-1 How Fields Are Defined 7-1 What Attributes May Be Assigned to a Field 7-2

Visibility and Detectability 7-2 Transmission 7-3 Example of Field Definition 7-4 Field 1: SIGN-ON PROCEDURE 7-4 Field 2: PLEASE ENTER ... INFORMATION 7-4 Field 3: NAME: 7-5 Field 4: The Area Following "NAME:" 7-5 Field 5: LOCATION: 7-5 Field 6: The Area Following "LOCATION:" 7-5 Field 7: SERIAL NUMBER: 7-5 Field 8: The Area Following "SERIAL NUMBER:" 7-6 Field 9: The Area between the Additional Attribute Described in Field 8 and "WHEN ALL ... KEY" 7-6 Field 10: WHEN ALL ... KEY 7-6 Panel Design 7-7 An Example of a Sequence of 3270 Panels 7-7 Planning a Sequence of Panels 7-11 Defining the Purpose of Each Panel 7-12 Using the Panel Layout Sheet 7-12 An Example of Laying Out a Panel 7-13 Data Stream Coding 7-15 Orders 7-15 Adding Orders to the Panel Layout Sheet 7-15 Coding the Panel 7-19 Repeat to Address Order 7-22 Write Control Character (WCC) 7-23 Analyzing Input Data 7-24 The Operator's Response 7-24 Attention Identifier (AID) 7-25 Input Data 7-25 SBA Codes 7-27 Program Access Keys 7-27 Program Attention (PA) Keys 7-27 Program Function (PF) Keys 7-28 Selector-Pen Input and Output 7-28 Selector-Pen Field Format 7-28 Designator Characters 7-29 The Relationship of One Data Stream to Another 7-30 Modifying Existing Panels 7-30 Write Control Character (WCC) 7-32 Erase Unprotected to Address 7-33 Erase All Unprotected Command 7-35 Repetitive Output 7-37 Program Tab 7-37 Chapter 8. Screen Management 8-1 Decoding and Generating Data Streams 8-1 Decoding Read Modified Input Data Stream 8-2 Non-Selector-Pen Data Streams 8-3 Immediate Selector-Pen Data Stream 8-6 Mixed Read Modified Input Data Streams 8-7 Building Output Data Streams 8-7 Static Data Streams 8-8 Semidynamic Output Streams 8-11 Dynamic Output Streams 8-11 Copy Function for the 3271 and 3272 8-12 Appendix A. Indicators and Controls A-1 Appendix B. Buffer Address I/O Interface Codes B-1 Appendix C. Katakana Feature C-1 Interface Codes C-1

Keyboard Shift Operations: LATIN SHIFT and KANA SHIFT Keys C-2

Protection 7-2 Character Content 7-2 Appendix D. Data Analysis – APL Feature D-1 APL Keyboard Special Feature Operation (3277 Display Station Model 2) D-4 APL ON/OFF Key D-4 APL ALT Key D-4 Text Keyboard Special Feature Operation (3277 Display Station Model 2) D-6 ALT ON/OFF Key D-7 CODE Key D-7 ERASE EOF/TEST REQ Key D-7

Figures

- Frontispiece. IBM 3270 Information Display System: 3271/ 3272 Control Unit, and Attached 3277 Display Station and 3284/3286 Printer x
- 1-1. Locally Attached 3270 Information Display System 1-4
- 1-2. Remotely Attached 3270 Information Display System 1-5
- 2-1. Data Flow between Data Processing System and 3270 Information Display System 2-1
- 2-2. Relationship between Display Station Buffer and Character Position Display Image (Unformatted Display) 2-3
- 2-3. Buffer Addressing Layouts for Model 1 and Model 2 Devices 2-4
- 2-4. Examples of Display Image Fields (Formatted Display) 2-4
- 2-5. United States I/O Interface Code-EBCDIC 2-5
- 2-6. United States I/O Interface Code-ASCII 2-6
- 2-7. Control Character I/O Codes 2-8
- 2-8. Attribute-Character Bit Definition 2-9
- 2-9. Basic Keyboards for 3277 and 3275 Display Stations 2-11
- 2-10. Selector Pen 2-16
- 2-11. Sample Display Screen for Selector-Pen Operations 2-18
- 2-12. Operator Identification Card Reader 2-20
- 2-13. 10-Character Set Used with Operator Identification Card Reader 2-20
- 2-14. Magnetic-Stripe Format (10-Character Set) 2-21
- 2-15. Operation of the Display with an Unformatted Screen (Using 10-Character Set) 2-22
- 2-16. Operation of the Display with a Formatted Screen (Using 10-Character Set), Example 1 2-23
- 2-17. Operation of the Display with a Formatted Screen (Using 10-Character Set), Example 2 2-24
- 2-18. Relationship between Buffer Data and Printed Data 2-27
- 3-1. Local and Remote Command Codes 3-1
- 3-2. Attention ID (AID) Configurations 3-4
- 3-3. Write Control Character (WCC) 3-9
- 3-4. Copy Control Character (CCC) 3-11
- 3-5. Sense Bit Description 3-13
- 3-6. Buffer Control Orders and Order Codes 3-14
- 4-1. Locally Attached 3270 Information Display System 4-2
 4-2. 3272 and Device Addressing 16 or Fewer Devices
- per Control Unit 4-3 4-3. 3272 and Device Addressing – 17 or More Devices per Control Unit 4-3

New Line Key D-8 Tab and Backtab Functions D-8 3288 Printer/Text Feature D-9

Appendix E. Abbreviations E-1

Appendix F. Glossary F-1

Index X-1

- 4-4. Status-Byte Bit Assignments for 3272 4-5
- 4-5. Initial Status and Sense Conditions for 3272 4-6
- 4-6. Ending Status and Sense Conditions for 3272 4-8
- 4-7. Asynchronous Status and Sense Conditions for 3272 (2 parts) 4-9
- 5-1. General Poll and Specific Poll, Sequence/Response Diagram (2 parts) 5-10
- 5-2. Remote Control Unit and Device Addressing-BSC 5-12
- 5-3. 3270 CU Message Response to Polling or Read Modified Command 5-13
- 5-4. Selection Addressing, Sequence/Response Diagram (2 parts) 5-14
- 5-5. Write-Type and Control-Type Commands, Sequence/ Response Diagram-BSC (2 parts) 5-18
- 5-6. Read-Type Command, Sequence/Response Diagram-BSC (2 parts) 5-20
- 5-7. Remote Status and Sense Byte Definitions-BSC 5-22
- 5-8. Remote Error Status and Sense Responsed-BSC (3 parts) 5-23
- 5-9. Remote Status and Sense Conditions-BSC 5-26
- 5-10. 3275-Initiated Transmission, Sequence/Response Diagram 5-32
- 5-11. Status Message Transmission with Dial Feature, Sequence/Response Diagram 5-33
- 5-12. TCU-Initiated Transmission, Sequence/Response Diagram 5-34
- 5-13. Example of Maintained Connection, Sequence/Response Diagram (2 parts) 5-36
- 6-1. Remote Control Unit and Device Addressing-SDLC 6-6
- 6-2. Request and Response Format 6-9
- 6-3. Online and Offline Procedures, Sequence/Response Diagram 6-13
- 6-4. Read-Type Command, Sequence/Response Diagram-SDLC (2 parts) 6-14
- 6-5. Write-Type Command, Sequence/Response Diagram-SDLC (2 parts) 6-16
- 6-6. Remote Status and Sense Byte Definitions-SDLC 6-18
- 6-7. Remote Error Status and Sense Responses and Requests-SDLC (2 parts) 6-19
- 6-8. Remote Status and Sense Conditions-SDLC 6-21

- 7-1. Example of Four Fields and Attribute Bytes 7-1
- 7-2. Results of Keyboard and Field Combinations 7-3
- 7-3. Example of Attribute Specification 7-4
- 7-4. An Example of a Panel 7-7
- 7-5. Another Example of a Panel 7-7
- 7-6. Panel 1 of an Accounts Receivable Application 7-8
- 7-7. Panel 2, Showing the Results of a Search on a
- Customer Name 7-9
- 7-8. Panel 3, Showing the Customer's Open Invoices 7-9
- 7-9. Panel 4, Showing Use of the Calculator 7-10
- 7-10. Panel 5, Showing Selection of Invoices after Use of the Calculator 7-10
- 7-11. Panel 6, Showing New Balance after Posting 7-11
- 7-12. Sign-On Panel Block Diagram 7-12
- 7-13. Block Diagramming 7-12
- 7-14. Sign-On Panel as Written Out on Layout Sheet 7-13
- 7-15. Panel Layout, Including Attribute and Cursor
- Positions 7-14
- 7-16. Laying Out Field Attributes 7-14
- 7-17. Text Items on Panel Layout Sheet 7-16
- 7-18. Field Attributes 7-16
- 7-19. Attribute Default Values 7-17
- 7-20. Completed Order and Attribute Information 7-17
- 7-21. Buffer Control Orders and Order Codes 7-19
- 7-22. Sign-On Procedure Panel Orders and Attributes 7-20
- 7-23. Attribute Character Combinations in Hexadecimal 7-21
- 7-24. Assembler Language Statements for Sign-On Panel 7-22
- 7-25. Example of RA Order 7-23
- 7-26. WCC Hexadecimal Codes 7-24
- 7-27. Sign-On Panel with Operator's Input 7-25
- 7-28. Input Data Sequence 7-25
- 7-29. Attention Identifiers (AIDs) in Hexadecimal Codes (EBCDIC) 7-26
- 7-30. Definition of Field for Selector-Pen Operation 7-28

- 7-31. Sample Panel for Selector-Pen Detection 7-29
- 7-32. Modifying an Existing Panel-Basic Panel 7-31
- 7-33. Existing Panel with Error Message 7-31
- 7-34. Panel Layout Changes for Error Message (Keyed to Text) 7-34
- 7-35. Error Message Panel with Serial Number Field Erased 7-34
- 7-36. Example of EUA Use 7-34
- 7-37. Sign-On Panel with Three Erased Fields 7-35
- 7-38. Erasing Multiple Fields with EUA 7-35
- 7-39. Example of Data Entry Panel 7-36
- 7-40. Data Entry Panel with Entered Data 7-37
- 7-41. Employee Data Panel 7-37
- 7-42. Panel Defined with Program Tab 7-38
 8-1. Relationship of Screen Management to Telecommunication Management and Application Programs 8-1
- 8-2. Table of Requirements 8-4
- 8-3. Example of Selector-Pen Panel 8-7
- 8-4. Sample of Mapping Table 8-7
- A-1. Indicators and Controls A-1
- A-2. Indicators and Controls for 3287 Printer (4 parts) A-5
- C-1. Japanese Katakana EBCDIC I/O Interface Code C-1
- D-1. Data Analysis-APL Feature and Associated Features D-1
- D-2. Data Analysis-APL Interface Codes (2 parts) D-2
- D-3. APL Keyboard D-4
- D-4. APL Keyboard Feature Character Set D-5
- D-5. APL Keyboard TN Character Availability D-6
- D-6. Text Keyboard D-7
- D-7. Text Keyboard Feature Character Set D-8
- D-8. Text Print Character Set for 3288 Printer
- Model 2 D-9 D-9. 3288 Variant of EBCDIC for Text Print Feature D-10
- D-10. 3288 Text Print Restricted Character Set (Copy Command) D-11

Frontispiece. IBM 3270 Information Display System: 3271/3272 Control Unit, and Attached 3277 Display Station and 3284/3286 Printer

Chapter 1. Introduction

An example of an IBM 3270 Information Display System is shown in the frontispiece. The 3270 system offers the user a wide selection of components and configurations. Also available are a large variety of standard and special features that improve performance, provide additional operational capability, and permit expansion of the display system. See the *IBM 3270 Information Display System Configurator*, GA27-2849, for features and configurations.

The 3270 system can attach locally (via cable) or remotely (via common carrier or equivalent facilities) to a host sytem. Remote systems employ binary synchronous communication (BSC) or synchronous data link control (SDLC) line discipline.

Display System Components

The 3270 Information Display System has three types of components: control unit, display station, and printer.

Control Unit

The control unit provides for the 3270 system's attachment to a data processing system. It directs the operation of up to 32 attached 3270 display stations and printers. Two control units of the 3270 system are described in this publication:

3271 Control Unit

- Models 1 and 11 have a 480-character buffer capacity.
- Models 2 and 12 have a 1,920-character buffer capacity.
- Models 1 and 2 attach to a System/360 or System/370 via modems and a BSC data link, and operate with any of the following: an IBM 2701 Data Adapter Unit, an IBM 2703 Transmission Control Unit (TCU), an integrated communication adapter, or an IBM 3705 Communications Controller.
- Models 1 and 2 attach to System/3 Model 10 via a System/3 BSC adapter or to System/3 Model 15 via the local communication adapter.
- Models 11 and 12 attach to a System/370 via modems and an SDLC communication link, and operate in Network Control Program (NCP) mode with an IBM 3704 or 3705 Communications Controller.
- Models 1 and 2 attach to the 4300 Processors via a 2701 Data Adapter Unit or a 3704 or 3705 Communications Controller, and to the 4331 Processor via the communication adapter.

3272 Control Unit

- Model 1 has a 480-character buffer capacity.
- Model 2 has a 1,920-character buffer capacity.
- The unit attaches to a System/360 or System/370 via a selector, multiplexer, or block multiplexer channel.
- The unit attaches to the 4300 Processors via a byte multiplexer or block multiplexer channel.

Display Station

The display station provides image display of data transmitted from the data processing unit. A display station with an attached keyboard enables the user to enter, modify, or delete data on the display, and to cause the revised display to be returned to the processing system for storage or additional processing. Two display stations of the 3270 system are described in this publication:

3275 Display Station

- Models 1 and 11 have a 480-character buffer capacity.
- Models 2 and 12 have a 1,920-character buffer capacity.
- Models 1 and 2 are stand-alone units that attach to a System/360 or System/370 via modems or data access arrangements (DAAs) and any of the following: an IBM 2701, an IBM 2703, an integrated communication adapter, or an IBM 3705 Communications Controller.
- Models 1 and 2 attach to System/3 Model 10 or 15 via a BSC adapter or the local communication adapter.
- Models 11 and 12 attach to System/370 via modems and an SDLC communication link, and operate in NCP mode with a 3704 or 3705 Communications Controller.

3277 Display Station

- Model 1 has a 480-character display image.
- Model 2 has a 1,920-character display image.
- Model 1 attaches to a 3271 Control Unit (all models) or to a 3272 Control Unit Model 1 or 2.
- Model 2 attaches to a 3271 Control Unit Model 2 or 12 or to a 3272 Control Unit Model 2.
- Models 1 and 2 attach to the 3791 Controller (3790 Communication System).

The printer provides printed copy of data displayed at a display station or of data transmitted from the data processing system. Four printers of the 3270 system are described in this publication:

3284 Printer

- Model 1 has a 480-character buffer capacity with a 40-cps print rate.
- Model 1 attaches to a 3271 or a 3272 Control Unit (all models).
- Model 2 has a 1,920-character buffer capacity with a 40-cps print rate.
- Model 2 attaches to a 3271 Model 2 or 12 or to a 3272 Control Unit Model 2.
- Model 3 has no buffer; the print rate is 40 cps.
- Model 3 attaches to a 3275 Display Station (all models).

3286 Printer

- Model 1 has a 480-character buffer capacity with a 66-cps print rate.
- Model 1 attaches to a 3271 or a 3272 Control Unit (all models).
- Model 2 has a 1,920-character buffer capacity with a 66-cps print rate.
- Model 2 attaches to a 3271 Model 2 or 12 or to a 3272 Control Unit Model 2.

Printer

1-2

3287 Printer

- Model 1 has a 480- or 1,920-character buffer capacity with an 80-cps maximum print rate and 132 print positions.
- Model 2 has a 480- or 1,920-character buffer capacity with a 120-cps maximum print rate and 132 print positions.
- Both models attach to a 3271 or 3272 Control Unit (all models).

3288 Line Printer (Model 2 only)

- Model 2 has a 1,920-character buffer capacity. The average print rate is 120 lines per minute.
- Model 2 attaches to a 3271 Control Unit Model 2 or 12 or a 3272 Control Unit Model 2.

Display System Configurations

Local Attachment

Locally attached 3270 display systems (Figure 1-1) use a 3272 Control Unit Model 1 or 2. The 3272 Control Unit Model 1 can communicate with up to 32 devices, consisting of Model-1 3277 display stations, Model-1 3284 or 3286 printers, and Model-1 or Model-2 3287 printers. The 3272 Control Unit Model 2 can attach up to 32 devices, consisting of Model-1 or Model-2 3277 display stations, Model-1 or Model-2 3284, 3286, or 3287 printers, and Model-2 3288 Line Printers. At least one display station with a keyboard must be attached to any control unit. The 3272 is attached to a System/360 or System/370 through a block multiplexer, a byte multiplexer, or a selector channel via one of the eight control unit positions on the channel interface. The channel provides the 3272 with data to be displayed and with control information needed to direct the operation of the display station or printer attached to the 3272. Separate buffer storage in the display stations or printers holds digitally coded data for display or printing.

Remote Attachment

Remote attachment differs from local attachment in the medium through which the control unit and the system channel communicate. In a local configuration, the control unit is cabled directly to the system channel. In remote attachment, common-carrier (or equivalent customer) facilities of unlimited length are employed to communicate between the host and the 3270 system.

Two types of remote attachment are available: BSC data link mode and SDLC operating mode. Display data and control information are relayed from the system channel to a control unit by a TCU, an integrated communication adapter, or a communications controller in BSC mode of operation, or by use of a communications controller in SDLC operating mode. Transmission is via modems and common-carrier nonswitched network communication facilities, such as telephone lines, microwave transmission, and satellite, or via switched facilities (BSC mode only). See Figure 1-2.

Figure 1-1. Locally Attached 3270 Information Display System

1-4

¹ 2701 Data Adapter Unit, 2703 Transmission Control (nonswitched with external modem only), 3705 Communications Controller, or equivalent Integrated Communication Adapter. In addition, the 3705 Communications Controller attaches to a selector or block multiplexer channel. In BSC mode, the choice of unit is dependent upon the processing system model, the type of channel, and the communication network selected. SDLC mode of operation requires a 3704 or 3705 Communications Controller.

² IBM 3872, 3874, 3875, or 4872 Modems (or equivalent), as required. When switched network backup capability is provided, an IBM 3872, 3874, or 3875 modem is used, with a dial telephone attached, to communicate with the transmission control unit. ³ 1200-bps operation only.

- ⁴3271 Control Unit Model 1 or 2 and 3275 Display Station Model 1 or 2 are required for BSC operation. 3271 Control Unit Model 11 or 12 and 3275 Display Station Model 11 or
- 12 are required when using the SDLC operating mode.
- ⁵ 1200-bps operation only, on nonswitched line.

Figure 1-2. Remotely Attached 3270 Information Display System

Remotely Attached 3270 Systems Using BSC Operating Mode

A 3271 Control Unit Model 1 or 2 or a 3275 Display Station Model 1 or 2 is used to remotely attach a 3270 system to the teleprocessing network employing BSC operating mode, allowing communication with a host System/360 or System/370. A 2701 Data Adapter Unit, a 2703 Transmission Control Unit, a 3705 Communications Controller, or an equivalent integrated communication adapter, depending upon the host system and channel selected, connects the teleprocessing network to the host system channel.

The 3271 Control Unit Model 1 can attach up to 32 devices, consisting of Model-1 3277 display stations and Model-1 3284 or 3286 printers, or Model-1 or Model-2 3287 printers.

The 3271 Control Unit Model 2 can attach up to 32 devices, consisting of Model-1 or Model-2 3277 display stations, Model-1 or Model-2 3284, 3286, or 3287 printers, and Model-2 3288 line printers. One display station with a keyboard must attach to each control unit. The model number of the display station and that of the control unit must be the same.

The 3275 Display Station Model 1 or 2 provides added convenience for remote locations that require a single display device. The 3275 functions as a control unit and as a display station, and is therefore more economical than a 3271 with a single 3277 attached. The 3275 capabilities can be expanded by attaching a 3284 Printer Model 3 to provide a paper copy of displayed messages. The 3275 can be attached to (multidropped from) the same nonswitched communication line as other 3270 display systems and other IBM products that use the BSC mode of operation, or, with the Dial feature installed, it can be attached by use of a point-to-point common-carrier switched network.

Remotely Attached 3270 Systems Using SDLC Operating Mode

When employing SDLC line discipline, the 3270 system is remotely attached to a host System/370 via a 3271 Control Unit Model 11 or 12, or a 3275 Display Station Model 11 or 12, over a teleprocessing network. A 3704 or 3705 Communications Controller is required for this configuration. Display data and control information are relayed from the host system channel by the communications controller to the 3271 or 3275 Model 11 or 12 unit, via modems and common-carrier voice-grade lines.

The 3271 Control Unit Model 11 can communicate with up to 32 devices, consisting of Model-1 3277 Display Stations, 3284 or 3286 Model 1 Printers, and 3287 Model 1 or 2 Printers.

The 3271 Control Unit Model 12 can direct the operation of up to 32 Model-1 or Model-2 3277 Display Stations, 3284, 3286, or 3287 Printers, or Model-2 3288 Printers.

At least one display station with a keyboard must attach to a control unit.

The 3275 Display Station Model 11 or 12 does not require a control unit for attachment to a nonswitched line teleprocessing network. When a paper copy of a computer message is desired, a 3284 Model 3 Printer can be attached to the 3275 Display Station. The 3275 Display Station Model 11 or 12 can be attached to the same nonswitched remote communication line as other 3270 systems and other IBM products that use the SDLC mode of operation.

Teleprocessing Networks and Modems

Remotely attached 3270 display systems that use BSC or SDLC line discipline operate in half-duplex transmission mode on half-duplex or full-duplex communication facilities.

The 3271 Model 1 or 2 can attach to a multipoint nonswitched line network. The 3275 Model 1 or 2 can operate in multipoint mode on nonswitched lines or on switched network lines when the Dial feature is installed.

The 3271 and 3275 Models 11 and 12 can attach to multipoint nonswitched line networks. Messages may be simultaneously transmitted and received by the 3704 or 3705 units on full-duplex facilities (duplex-multipoint operation), when two or more SDLC devices are multidropped and attached to the same communications controllers.

IBM modems that can be used in remote systems that employ BSC or SDLC line control (specified in Figure 1-2) are as follows:

- 3872 Model 1 (2,400 bps)
- 3874 Model 1 (4,800 bps)
- 4872 Models 1 and 3 (4,800 bps)
- 3875 Model 1 (7,200 bps)

Switched network backup is a method of replacing a failing nonswitched line with a switched communication system. This capability is available when the IBM 3872 and 3875 Modems are being used. The 3875 operates on nonswitched lines at transmission speeds of 7,200 and 3,600 bps, and on switched lines at speeds of 3,600 and 1,800 bps. The 3872 operates at transmission speeds of 2,400 and 1,200 bps on both nonswitched and switched lines. If an excessively high error rate occurs during operation on a non-switched line at the maximum transmission speed (7,200 or 2,400 bps), the speed is reduced by one-half at both modems used in the system, and a check is made for a continued high error rate. If the error rate is still high, the display-terminal operator establishes a switched-line connection by dialing the 2701 (or equivalent unit). If the 3872 or 3875 modem was operating at half-speed when the error condition began, the operator establishes the switched-line connection without first changing the transmission speed. The lower line speeds available for dial operation (1,800 or 1,200 bps) may be used if too many errors occur at the higher line speeds.

Features

No attempt has been made in this publication to catalog all the features available for the 3270 system, although some features are discussed. For details on the availability of various 3270 features, see the *IBM 3270 Information Display System Configurator*, GA27-2849, or discuss the matter with your IBM sales representative.

System Concepts

and a start of the s The start of the start

The 3271 and 3272 Control Units and the 3275 Display Station control the operations of, and the transfer of data to or from, their attached terminals. See Chapter 2, Terminal Operations, for details.

The 3271, 3272, and 3275 handle all communications with the host system, using the 3270 data stream and the appropriate interface codes.

The 3270 data stream consists of user-provided data, commands, and orders transmitted between the control unit and the host system (Figure 2-1). Control information, which governs the movement of the data stream, is also transmitted. The control units can differ as to the type of commands and/or transmission protocols employed.

Commands are issued to initiate such operations as the total or partial writing, reading, and erasing of data in a selected 3270 device buffer. Orders can be included in write data streams, either alone or intermixed with display or print data.

Two types of orders are available. One type is executed as it is received by the control unit. This type is used to position, define, and format data being written into the buffer, to erase selected unprotected data in the buffer, and to reposition the cursor. The second type or order specifies printer format. These orders are initially stored in the buffer as data and are executed only during a print operation.

See Chapter 3 for a detailed description of the 3270 commands and orders associated with the 3270 units described in this publication.

Interface Codes

Data, commands, and orders transmitted between the control unit and the host system are in the form of interface codes. Two different codes are used in the United States: extended binary-coded decimal interchange code (EBCDIC) and American National Standard Code for Information Interchange (ASCII). The EBCDIC codes are also used in the World Trade countries (ASCII is available only in the U.S.); refer to *IBM 3270 Information Display System: Character Set Reference*, GA27-2837, for details. (Chapter 2 contains the U.S. codes, Appendix C contains the Katakana codes, and Appendix D contains the Data Analysis–APL codes.)

Local and Remote Operations

See Chapter 4 for local operations, Chapter 5 for remote BSC operations, and Chapter 6 for remote SDLC operations.

Chapter 2. Terminal Operations

Buffer Concepts

Each unit in the 3270 Information Display System (except the 3284 Printer Model 3) has its own buffer for storing data (Figure 2-1).

Buffers are checked to determine whether all characters in the buffers have correct parity. A parity check error occurs when circuitry detects one or more characters with bad parity.

The 3275, as a stand-alone display station, contains its own control unit and executes commands in the same way as the 3271 with one device attached. The 3275 contains one buffer, which it uses both for preparing and for displaying data. When a printout is required at an attached 3284 Printer Model 3 (which has no buffer), the 3275 buffer is used to format and store the printer data.

When not executing a command operation, the 3271 and 3272 control unit hardware continually performs an internal poll of all attached devices. Internal polling is performed to determine what the device status is and whether the device has an input/ output (I/O) pending condition.

Figure 2-1. Data Flow between Data Processing System and 3270 Information Display System

The current status of each device indicates to the control unit whether the device is available, ready, or busy. This information is recorded in the associated device adapter in the control unit.

When an I/O pending condition is detected at a device, polling stops and the control unit communicates solely with that device. When communication is ended, the control unit commences polling at the next sequential device.

In addition, when the program addresses a specific device, the control unit stops the sequential polling and polls the addressed device to obtain its latest status. If conditions permit, the control unit communicates solely with that device until the operation is completed. At that time, sequential polling is resumed.

The 3270 terminal operations are divided into display operations and printer operations.

Display Operations

This section provides information on the functions and operation of display stations and their associated special features. No distinction is made between the 3277 and 3275 Display Stations, since the units have the same display capabilities. In addition, no distinction is made between various keyboard special features unless they are pertinent to the topic being discussed.

Display Images

Display data that is stored in a display station buffer is presented to the operator on a cathode-ray tube (CRT) screen in the form of alphameric characters and symbols.

When a keyboard is attached, input messages can be generated at the keyboard and displayed on the screen as they are composed.

The image on a 480-character unit is displayed on 12 horizontal rows of 40 characters each (Figure 2-2). The image on a 1,920-character unit is displayed on 24 horizontal rows of 80 characters each.

There is a fixed relationship between each display station buffer storage location and its related character position on the display screen (Figure 2-2). Buffer address locations are referenced from 0 (the first displayable character location in the upper-left corner of the screen) to 479 or 1,919 (the last displayable character location in the bottom-right corner of the screen). Figure 2-3 shows the layouts of these address locations for display buffers of both sizes. By using these address locations under appropriate commands, a program can load a display station buffer with many combinations of control and data characters to present to the operator a display image that exactly fits the application. A total of 93 character codes may be transferred from the sytem processor and stored in the display station buffer. These include the uppercase and lowercase alphameric characters and special characters shown in Figures 2-5 and 2-6. They include printer control characters EM, NL, and FF (which is displayed as < for the 3288 Line Printer) and two selector-pendetectable control characters (? and >), also shown in Figures 2-5 and 2-6. They also include attribute characters described below under "Display Fields."

Figure 2-2. Relationship between Display Station Buffer and Character Position on Display Image Screen (Unformatted Display)

Unformatted and Formatted Display Images

An application program can communicate with a display operator by one of two basic methods. In one method, the display screen is left unformatted and the display operator uses the screen in a free-form manner. In the second method, the display image is completely or partially formatted (organized or arranged) by the application program.

The display image shown in Figure 2-4 illustrates the flexibility available with 3270 display image formatting. In this example, the visible characters represent displayed data stored in the display buffer. Character positions indicated by dotted squares represent buffer locations where control characters are stored. Dotted characters represent display data that is defined by the program as not displayable, that is , not visible to the operator. In all display images, control characters stored in a display unit buffer are not displayed; data characters may or may not be displayed, depending upon program definition.

Note: See Appendix B for hexadecimal equivalents.

Figure 2-3. Buffer Addressing Layouts for Model 1 and Model 2 Devices

□NAME: JOHN B DOE SALARY 12 5 2 5 JOB TITLE: WRITER PHONE #: 383-7628

			0	0			(01			1	0				11		Bits 0,1
	Hex 1	00	01	10	11	00	01	10	11	00	01	10	11	00	01	10	11	-2,3
4567		0	1	2	3	4	5	6	7	8	9	A	В	с	D	E	F	-Hex
0000	0	NUL				SP	8	-					,				0	
0001	1		SBA					1		l a	i			A	L		1	
0010	2		EUA							ь	k	s		в	к	s	2	
0011	3		ю							l c	1	t	1	с	. L'	т	3	
0100	4									d	m	u		D	м	υ	4	
0101	5	РТ	NL							. e	n	v		E	N	v	5	
0110	6									f f	o	w		F	0	w	6.	
0111	7									9	р	×		G	Р	×	7	
1000	8									l h	q	У		н	٥	Y	8	
1001	9		EM							i .	r	z		1	R	z	9	
1010	A					¢	!	;	:									
1011	в						\$		#									
1100	с	FF	DUP		RA	<	•	%	ø									
1101	D		SF			()	_	•									
1110	E		FM			+	;	>	=									
1111	F				SUB	1		?										

Notes:

- Character code assignments other than those shown within all outlined areas of this chart are undefined. If an undefined character code is programmed, the character that will be displayed or printed is not specified. The character displayed by the 3277 or 3275 for a given undefined character code may be different for other devices. IBM reserves the right to change at any time the character displayed for an undefined character code.
- 2. Lowercase alphabetic characters (shown within the dotted outlined area) are converted to uppercase by the display station or printer and displayed or printed as uppercase characters.
- NL, EM, FF, DUP, and FM control characters are displayed or printed as 5 9 < * and ; characters, respectively, except by printers under format control, in which case NL and EM do not result in the printing of a character, and by printers successfully executing FF, in which case < is not printed.
- 4. Bits 0 and 1 are assigned for the following characters: AID, attribute, write control (WCC), copy control (CCC), CU and device address, buffer address, sense, and status. Bits 0 and 1 are assigned so that each character can be represented by a graphic character within the solid outlined areas of the chart. See Figure 2-7.
- 5. This table also applies for Belgian, French, and Italian mono-case I/O interface codes and graphics.
- 6. The character (hex 6A) is not displayed and is printed by the 3287 and 3288 only.
- 7. For BSC data-link control characters, see Chapter 5.
- 8. See Appendix C for Katakana EBCDIC codes.
- 9. See Appendix D for Data Analysis APL codes.
- 10. See IBM 3270 Information Display System: Character Set Reference, GA27-2837, for all interface codes for the 3270 system.

Figure 2-5. United States I/O Interface Code - EBCDIC

	1 A A A A A A A A A A A A A A A A A A A						_				a Bits
	Disa	Hex 1	000	001	010	011	100	101	110	111	- 7, 6, 5
	4321		0	1	2	3	4	5	6	7	🗲 Hex O
	0000	0	NUL		SP	0	@	Ρ		р	
	0001	1		SBA	I	1	A	٥	a	q	
	0010	2		EUA		2	в	R	ь	r	1
	0011	3		IC.	#	3	с	s	c	s	
	0100	4		RA	\$	4	D	т	d	t	
	0101	5			%	5	E	υ	e	u	
	0110	6			&	6	F	Ÿ	f	v	1
	0111	7			•	7	G	w	9	w	
	1000	8			(8	н	x	h	×	
	1001	9	РТ	EM)	9	1	Y	i	y	
	1010	A	NL	SUB	•	:	J	z	j	z	Í
	1011	8			+	;	к	t	k		
	1100	с	FF	DUP		<	L	١	I.		
	1101	D		SF	-	=	м	1.	m		
	1110	E		FM		>	N	^:	n		
l	1111	F			1	?	0	_	0		
										and the second second	

Notes:

- 1. Character code assignments other than those shown within all outlined areas of this chart are undefined. If an undefined character code is programmed, the character that will be displayed or printed and the I/O interface code returned on a subsequent read operation are not specified. The character displayed or printed by these terminals for a given undefined character code may be different for other terminals. IBM reserves the right to change at any time the character displayed or printed and the I/O interface code returned for an undefined character code.
- 2. Lowercase alphabetic characters (shown within the dotted outlined area) are converted to uppercase by the display station or printer and displayed or printed as uppercase characters.
- 3. NL, EM, FF, DUP, and FM control characters are displayed or printed as 5 9 < * and ; characters, respectively, except by printers under format control, in which case NL and EM do not result in the printing of a character, and by printers successfully executing FF, in which case < is not printed.
- 4. AID, attribute, write control (WCC), copy control (CCC), CU and device address, buffer address, sense, and status characters are assigned as specified in Figure 2-7 so that each character can be represented by a graphic character within the solid outlined portion of this chart.
- ASCII A option displays and prints | and ¬ for interface codes 21 and 5E (hex), respectively. ASCII B option displays and prints ! and ∧ for codes 21 and 5E (hex), respectively.
- 6. The FF control character (0C) is returned to the host during a subsequent read operation as 46.

7. For BSC data-link control characters, see Chapter 5.

Figure 2-6. United States I/O Interface Code - ASCII

The control characters (dotted squares) shown in Figure 2-4 are constructed by the program. They define the characteristics or attributes of the data that follow them and are called *attribute characters*. Each attribute character plus all the data following it up to the next attribute character is called a *field*. When a field "wraps" the screen, the field continues from the last character location in the buffer to the first location in the buffer until it is terminated by an attribute character. Figure 2-4 shows eight fields. Figures 2-5, 2-6, and 2-7 show the United States I/O interface codes used.

Organizing the display data into fields facilitates display operations for the program and for the operator. Fields are also used in most 3270 programming operations: functions that involve the storage, display, printing, or transmission of data are primarily fieldoriented. Some operations performed on fields that wrap the screen are terminated by the last buffer address rather than by the field terminating attribute. This effect is noted in the descriptions of the specific operations.

Attribute characters, in addition to defining the start of a field, define the following field characteristics for all character locations contained in that field:

- Protected (from modification by a display operator) or unprotected (available for the operator to modify or enter data). The unprotected definition classifies a field as an input field.
- Alphameric (an input field in which an operator can enter alphabetic, numeric, or symbol characters) or numeric (has special meaning for protected fields, data entry keyboards, and the Numeric Lock special feature).
- Character display (nondisplay, display, intensified display).
- Detectable or nondetectable (by use of the selector pen).
- Tab stop positions (first character position of unprotected fields).

Each attribute character occupies one of the 480- or 1,920-character locations in the buffer, but it cannot be displayed or printed. During a display or a printout, its character location appears as a space. Figure 2-8 shows the bit definition for an attribute character.

Attribute characters are treated as characters that are protected from operator intervention; that is, they cannot be replaced by alphameric characters entered from the keyboard or modified by use of the selector pen. However, the modified data tab (MDT) bit (7) of the attribute character can be changed by an operator, as described in Figure 2-8. Also, attribute characters are not protected from being overwritten by alphameric data that is included in the data stream of a Write or Erase Write command. When the operator uses the CLEAR key, attribute characters and all characters in a formatted buffer are erased. See Chapter 7 for details of screen design. See Chapter 8 for screen management.

Programming Note: Refer to "Selector Pen Operations" for use of intensified field attributes when formatting selector-pen-detectable fields.

Bits 2—7	Graphic	EBCDIC	ASCII		Bits 2—7	Graphic	EBCDIC	ASCII
00 0000	SP	40	20		10 0000	-	60	2D
00 0001	A	C1	41		10 0001	/	61	2F
00 0010	В	C2	42		10 0010	S	E2	53
00 0011	С	C3	43		10 0011	Т	E3	54
00 0100	D	C4	44		10 0100	Ŭ	E4	55
00 0101	E	C5	45		10 0101	v	E5	56
00 0110	F	C6	46		10 0110	w	E6	57
00 0111	G	C7	47		10 0111	x	E0 E7	57
00 1000	H	C8	48	1	10 1000	Î	E0	50
00 1001		C9	49]	10 1000		E0	55
00 1010	μ φ Γ	4A 	58				E9 64	DA TO
00 1011	L L	40	2F		10 1010	(EBCDIC)	6A CD	
00 1011	<	40	30		10 1011	,	0B	20
00 1100	li	40	28		10 1100	%	60	25
00 1110	, ,	40 4F	2B	i	10 1101	-	6D	5F
		4E 4F	-	ľ.	10 1110	>	6E	3E -
00 1111 {		-	21		10 1111	?	6F	3F
		-	26					
01 0000	l &	50	20		11 0000	0	F0	30
01 0001	J		4A 4D		11 0001	1	F1	31
01 0010		D2	48		11 0010	2	F2	32
			40		11 0011	3	F3	33
01 0100		D4	40		11 0100	4	F4	34
01 0101		05	45		11 0101	5	F5	35
01 0111	P	70	50		11 0110	6	F6	36
01 1000	Ω	08	51		11 0111	7	F7	37
01 1001	R	D9	52		11 1000	8	F8	38
		5A	-		11 1001	9	F9	39
01 1010]]	-	5D .		11 1010		74	34
01 1011	\$	5 B	24		11 1011	#	78	22
01 1100	*	5C	2A		11 1100		76	20
01 1101)	5D	29		11 1100	, w	70	40
01 1110	;	5E	3B		11 1101	_	70	27
01 1111		5F			11 1110	=	/E	30
	∧	-	5E		11 1111		7F	22

Note: The characters above are used as attribute, AID, write control (WCC), copy control (CCC), CU and device address, and buffer address. They are also used as status and sense. When any of these characters is transmitted to the program, the CU assigns the appropriate EBCDIC code. If transmission is in ASCII, the CU translates the EBCDIC code to ASCII code prior to transmission.

To use this table to determine the hex code transmitted for an address or control character, first determine the values of bits 2–7. Select this bit configuration from the "Bits 2–7" column. The hex code that will be transmitted (either in EBCDIC or in ASCII) is to the right of the bit configuration.

Use this table also to determine equivalent EBCDIC and ASCII hex codes and their associated graphic characters. See Note 5 of Figure 2-6 for ASCII A and B graphic character difference for ASCII codes 21 and 5E (hex).

Graphic characters for the United States I/O interface codes are shown. Graphic characters might differ for particular World Trade I/O interface codes. Refer to IBM 3270 Information Display System: Character Set Reference, GA27-2837, for possible graphic differences when these codes are used.

Figure 2-7. Control Character I/O Codes

Attribute-Character Bit Assignments

х	1	U/P	A/N	D/SPD		Reserved	MDT				
0	0 1		3	4	5	6	7				
EBCDIC Bit	;	Field Descri	otion								
0		Value deter	nined by conte	ents of bits 2	-7. See Figu	ıre 2-7.					
1		Always a 1.									
2		0 = Unprotected 1 = Protected									
3		 0 = Alphameric 1 = Numeric (causes automatic upshift of data entry keyboard) 									
		Note: Bits 2	n automatic	: skip. See te	ext.						
 4 & 5 00 = Display/not selector-pen-detectable. 01 = Display/selector-pen-detectable. 10 = Intensified display/selector-pen-detectable. 11 = Nondisplay, nonprint, nondetectable. 											
6		Reserved. N	ust always be	0.							
7		Modified Data Tag (MDT); identifies modified fields during Read Modified command operations.									
		 0 = Field has not been modified. 1 = Field has been modified by the operator. Can also be set by program in data stream. 									

Note: Bits 0 and 1 are not decoded when received by the 3270. When characters are transferred to the CPU, bit 1 is a 1 and bit 0 is set (as shown in Figure 2-7), depending upon the character being transferred. All attribute characters are part of the defined character set. The default option (bits 2 through 7 all set to 0) results in an unprotected, alphameric, displayed, nondetectable field.

Figure 2-8. Attribute-Character Bit Definition

Keyboard Operations

Keyboards, which can be attached to a 3277 or 3275, enable the operator to change, edit, or create character displays except within fields, defined by attribute characters, as protected from keyboard operations by the program. As messages are being composed or modified by keyboard operations, the changes are inserted in the buffer and displayed on the subsequent display regeneration cycle.

When the operator completes an operation and presses the ENTER key, an I/O pending interruption occurs. In local operations, this causes an interruption to inform the program; the program may then read the modified data fields from the display buffer. In remote operations, an interruption cannot be generated; instead, the modified data fields are read automatically in response to a Poll sequence.

Cursor

A special symbol (that resembles an underscore), called a *cursor*, is displayed beneath a character or character position on the display screen to indicate where the next character entered from the keyboard will be stored (Figure 2-2). For example, when the cursor is displayed under one character in a line of characters, that character can be changed or deleted by keyboard action. Also, if the cursor is displayed under a position without a display character, a character can be inserted in that position by keyboard action. All these operations, when performed on a formatted display, cause the MDT bit (7) of the attribute character for the field to be set to 1. However, when the cursor appears beneath a character in a protected field or an attribute character, that position cannot be modified by keyboard action, and the MDT bit is not set.

One, and only one, cursor is always displayed on the display. A cursor check occurs when the display station circuitry detects no cursor or more than one cursor in the buffer. When the display is turned on, the cursor is automatically generated and displayed in the first location on the screen. The cursor can be repositioned by the keyboard operator and also by the program. The cursor is not affected by field attributes or by the Key Lock special feature; it is displayed even when positioned in a nondisplay/ nonprint field and when the Key Lock special feature (if installed) is turned off.

Four types of keyboards are available for the 3277 and 3275 Display Stations: typewriter, data entry, data entry-keypunch layout, and operator console keyboard. All keyboards have special symbol keys and control keys for entering data. The type of keyboard determines the characters and symbols that can be key-entered from the display station, but does not determine which type of characters and symbols can be transmitted from the system for the display image.

Variations between keyboards include 66-key and 78-key versions. The 66-key keyboard provides all the basic operator keys. The 78-key keyboard provides expanded operator-to-program message flexibility with 12 additional keys that may be defined to fit the requirements of the application program. The four basic types of keyboards, shown in Figure 2-9, are defined below. Refer to the *IBM 3270 Information Display System: Character Set Reference,* GA27-2837, for World Trade (WT) keyboard key layouts and nomenclature.

Typewriter Keyboard: This keyboard provides the basic typewriter key layout. Alphameric keys are encoded with both lowercase and uppercase codes. The typewriter keyboard is available with program-function keys PF1 through PF12 (78-key version) or without (66-key version).

Data Entry Keyboard: This keyboard provides the basic data-entry type of key layout. When characters are entered in a numeric field, the keyboard is automatically upshifted to take advantage of the grouped numeric keys (bold-outlined in Figure 2-9). The data entry keyboard contains 66 keys, including program-function keys PF1 through PF5.

Data Entry Keyboard–Keyboard Layout: This keyboard has the same keys and features as the data entry keyboard. The key layout of this keyboard more closely resembles the layout of the 29 Card Punch and 129 Card Data Recorder. In many cases the layout is identical with that of the keypunch units except for function-key designations. This keyboard is recommended for data entry applications.

Operator Console Keyboard: This keyboard provides an IBM 1052 Model 7 type of key layout. It has 78 keys, which include program-function keys PF1 through PF12.

Keyboards

Figure 2-9. Basic Keyboards for 3277 and 3275 Display Stations

Alphameric character keys encompass the complete 63-character EBCDIC and 64character ASCII character sets (as shown within the bold outline in Figures 2-5 and 2-6, respectively), including Space.

Alphabetic characters can be entered into the display buffer in either uppercase or lowercase code, depending upon the position of the SHIFT key, from the typewriter or operator console keyboard. Only uppercase alphabetic codes can be entered from the data entry keyboards. All alphabetic characters in the buffer (uppercase or lowercase codes) are displayed as uppercase characters.

Keyboard entry of an alphameric character into the display buffer occurs at the cursor location, provided the cursor is located in an alphameric character location within an unprotected data field. (An attempt to enter an alphameric character into a protected data field or into an attribute character location is blocked.) Successful keyboard entry of the alphameric character causes the cursor to advance to the next character location within the unprotected data field.

Automatic-Skip: Upon entry of a character into the last character location of an unprotected data field, the cursor is repositioned according to the attribute character describing the next field.

If the attribute character defines the next field as (1) alphameric and either unprotected or protected, or (2) numeric and unprotected, the cursor skips the attribute character and is positioned to the first character location in that field.

If the attribute character defines the field as numeric and protected, the cursor automatically skips that field and is positioned to the first character location of the next unprotected field.

Character-Oriented Keys: A cluster of four keys (located to the right of the main keyboard) moves the cursor one location at a time into any character location: \uparrow (up), \downarrow (down), \rightarrow (right), and \leftarrow (left). A fifth key, the backspace key, occupies its normal position on the main keyboard. It is also designated by \leftarrow and performs the same functions as the move-cursor-left key. The cursor may be moved into any character location, including unprotected and protected alphameric character and attribute character locations, through the use of these keys. Operation of these keys does not affect the MDT bit.

These keys are all capable of causing the cursor to wrap. Horizontal wrap always involves a vertical movement; the cursor repositions to the next or preceding row of characters. Vertical wrap due to operation of the up or down keys involves no horizontal movement: the cursor stays in the same character column.

These keys all have typamatic operation at a repeat rate of approximately 10 operations per second. (When a typamatic key is fully pressed, its function is repeated as long as the key is held pressed.)

Field-Oriented Keys: Any of four keys moves the cursor to the first position in a field. All four key operations can cause the cursor to wrap from the end of the last line on the display and to continue at the beginning of the top line. Operation of these keys does not affect the MDT bit.

 \rightarrow (*Tab*) Key: Moves the cursor to the first character location of the next unprotected data field. In a display with no unprotected fields, the cursor is repositioned to character location 0. The Tab key has typamatic capability at a repeat rate of approximately 10 operations per second.

 \leftarrow (Backtab) Key: When the cursor is located in the attribute character or the first alphameric character location of an unprotected data field or in any character location of a protected data field, this key moves the cursor to the first alphameric character location of the first preceding unprotected data field. When the cursor is located in any alphameric character location of an unprotected data field other than the first location, this key moves the cursor to the first alphameric character location of that field. In a display with no unprotected fields, the cursor is repositioned to character location 0. The Backtab key has no typamatic capability.

← (New Line) Key: Moves the cursor to the first unprotected character location of the next line. If the display has no unprotected data fields, the cursor is repositioned to character location 0. If the display contains no fields, the cursor is repositioned to the first character position of the next line. The New Line key has typamatic capability at a rate of approximately 10 operations per second.

SKIP Key (Data Entry Keyboards Only): Performs the same functions as the Tab key.

ERASE EOF (Erase to End of Field): If the cursor is located in an alphameric character location in an unprotected data field, this key clears the character location occupied by the cursor, and all remaining character locations in that field, to nulls. The operation can wrap from the end of the last line on the display to the beginning of the top line. The cursor does not move as a result of operating this key, and the MDT bit is set to 1.

Operation of this key when the cursor is located in an attribute character location or is within a protected data field disables the keyboard; no character locations are cleared, the cursor is not moved, and the MDT bit is not set.

ERASE INPUT Key: This key clears all unprotected character locations to nulls, resets the MDT bit to 0 in unprotected fields, and repositions the cursor to the first unprotected character location on the screen.

In a buffer with only protected data fields, no character locations are cleared and the cursor is repositioned to character location 0.

If the display contains no field, the entire buffer is cleared to nulls and the cursor is repositioned to location 0.

INS (Insert) MODE Key: This key lights the INSERT MODE indicator and places the keyboard controls in an insert mode of operation, regardless of the cursor location.

If the cursor is located in an unprotected data field having a null character either in the character location identified by the cursor or in any character location in the field beyond the cursor, operation of an alphameric key causes that alphameric character to be entered at the cursor and the MDT bit to be set to 1. The character formerly occupying the cursor location and all remaining characters within the field (except for null characters or characters to the right of null characters) are shifted one character location to the right. If the location identified by the cursor location at the time of the insert operation is a null, no character shifting occurs.

After all null characters at or beyond the cursor location in the field have been overwritten, or if there were no null characters, operation of an alphameric key disables the keyboard. Attribute characters remain in their fixed character locations and are not shifted as part of the insert operation. If more than one row of characters is contained within the field, a character occupying the last character location in the row is shifted into the first character location of the next row.

Operating an alphameric key in insert mode when the cursor is located in an attribute character location or is within a protected data field disables the keyboard; no character locations are cleared, the cursor is not moved, and the MDT bit is not set.

Operation of the RESET key returns the keyboard to normal mode.

DEL (Delete) Key: If the cursor is located in an alphameric character in an unprotected field, operation of the DEL key deletes the character from the character location occupied by the cursor and sets the MDT bit to 1 (if it has not previously been set). The cursor does not move. All remaining characters in the unprotected field, to the right of the cursor and on the same row, shift one character location to the left. Vacated character locations at the end of the row are filled with nulls. If the unprotected field encompasses more than one row, characters in rows other than the row identified by the cursor are not affected.

Operating this key when the cursor is located in an attribute character location or is within a protected data field disables the keyboard; no character locations are cleared, the cursor is not moved, and the MDT bit is not set.

RESET Key: The RESET key is used to recover from a *keyboard* operation that has resulted in a disabled keyboard. When a keyboard is disabled, no other keyboard operations are honored. The RESET key will not reset a disabled keyboard when a command is being executed for the device to which the keyboard is attached or when a parity error or cursor check is detected in the device buffer.

DUP (Duplicate) Key: Operation of this key causes a unique character code to be entered into the display buffer, a standard Tab key operation to be performed, and the MDT bit to be set to 1. The DUP key is provided only on the typewriter, data entry, and data entry—keypunch layout keyboards. The DUP character provides a means of informing the application program that a "duplicate" operation is indicated for the rest of the field in which it is located. The DUP character is transferred as a DUP code (Figures 2-5 and 2-6) when the data is read from the display to the program. No duplicate operation is performed at the 3270 control unit. The DUP character, when stored in a device buffer, is displayed or printed as an asterisk (*).

Operation of this key when the cursor is located in an attribute character location or is within a protected data field disables the keyboard; no character locations are cleared, the cursor is not moved, and the MDT bit is not set.

FIELD MARK Key: Operation of this key causes a unique character code to be entered into the display buffer and the MDT bit to be set to 1. The field mark character provides a means of informing the application program of the end of a field in an unformatted buffer or subfield in a formatted buffer. The field mark character is transferred as an FM code (Figures 2-5 and 2-6) when the data is read from the display to the program. The field mark character, when stored in a device buffer, is displayed or printed as a semicolon (;). The field mark is not provided on operator console type keyboards.

Operating this key when the cursor is located in an attribute character location or is within a protected data field disables the keyboard; no character locations are cleared, the cursor is not moved, and the MDT bit is not set.

Program Attention Keys: These keys solicit program action by causing an I/O pending to occur at the device. The program is notified of the interruption by an Attention status indication in locally attached systems and by response to a poll in remotely attached systems. In remotely attached systems that are using a 3275 Display Station, the display screen momentarily goes blank while the program accepts and responds to the attention signal. An attention identification (AID) character is generated at the time of the interruption to identify which key caused the interruption, but the MDT bit is not affected. The program-attention keys are CLEAR, ENTER, CNCL (cancel), TEST REQ, all program-function (PF) keys, and the program-access (PA) keys. Operation of the CLEAR key also clears the entire display buffer to nulls and positions the cursor to character location 0.

Operation of any program-attention key disables the keyboard, lights the INPUT INHIBITED indicator, and extinguishes the SYSTEM AVAILABLE indicator.

Note: Not all program-attention keys are available on each type of keyboard. See Figure 2-9.

Numeric Lock Special Feature Operation

When the Numeric Lock special feature is installed, the operator may enter the characters 0-9, the period (.), the minus sign (-), and DUP in a field identified in the attribute byte as numeric and unprotected. Operation of any other key that can enter a displayable character lights the INPUT INHIBITED indicator and disables all keys except the RESET key. Operation of the RESET key enables the keyboard (if disabled) and extinguishes the INPUT INHIBITED light. The nondisplay/nonprint attribute bits 4 and 5 and MDT bit 7 operate normally.

On a data entry or data entry-keypunch layout keyboard (Figure 2-9), the Numeric Lock special feature is disabled while the ALPHA or NUMERIC key is operated.

On a typewriter or operator console keyboard, the characters that can be entered in the field identified in the attribute byte as numeric and unprotected are 0-9, the period (.), and the minus sign (-); in addition, on typewriter keyboards when the SHIFT or the LOCK key is operated, the DUP character may be entered by the operator. It is not possible to disable the Numeric Lock special feature for entry of other displayable characters.

Note: On Austrian/German, Belgian, Danish, French, Italian, Norwegian, Portuguese, and Spanish keyboards with the Numeric Lock feature installed, the comma (,) replaces the period (.) as a valid numeric character.

Keyboard Disabled (INPUT INHIBITED Indicator On)

When INPUT INHIBITED is on, the keyboard and other input devices are disabled. In cases caused by operator key action, the input-inhibited condition can be cleared by use of the RESET key unless one of the following conditions coexists:

- A command is being executed for a device to which the keyboard is attached.
- A card is being read at the operator identification card reader.
- The 3284 Printer Model 3 is printing.
- A parity error or cursor check is detected in a device buffer. (The INPUT INHIBITED indicator remains off as long as the RESET key is pressed, but turns on when the RESET key is released.)
- The security keylock is in the off position. (Turning on the security keylock clears this condition.)

The conditions that can be cleared by use of the RESET key are as follows:

- A program-attention key operation preceded initiation of a command for a device with an attached keyboard.
- A selector-pen attention operation preceded initiation of a command for a device with an attached keyboard.
- The operator initiated the input-inhibited condition by pressing an alphameric key not included in the numeric key grouping when the Numeric Lock special feature was installed.
- The operator tried to change the data displayed in a protected display field. (The CLEAR key can also be used in this case, which places nulls in all buffer positions and turns on the INPUT INHIBITED indicator. INPUT INHIBITED can then be turned off by pressing the RESET key prior to initiation of a command for a device with an attached keyboard.)

Indicators and Controls

See Appendix A for the functions of indicators and controls.

Selector-Pen Operations

The selector pen, shown in Figure 2-10, is a light-sensitive pen that can detect the light emitted from characters displayed on the 3275 or 3277. With the selector pen, the operator can select from a list or table of displayed items and can then cause those selections to be identified to the application program.

The selector pen is operated by pressing the tip of the pen against the screen on fields programmed for selector-pen operations.

Figure 2-10. Selector Pen

Selector-Pen Field Format

A field that is to be used for selector-pen operations must be defined in the following format:

Note: On 3275 displays, selector-pen operation resets the same input-inhibited condition as the RESET key. After reset occurs, the functions are executed.

The attribute character, the designator character, and displayed alphameric characters must be on the same line. If the field extends beyond one line, the selector pen can detect only those characters on the same line as the attribute character. A maximum of 6 detectable fields in the 3277 or 3275 Model 1, or 12 detectable fields in the 3277 or 3275 Model 2, may precede the last detectable field on any given line. When detectable and nondetectable fields are mixed, a maximum of 14 mixed fields on both Model 1 and Model 2 3277 and 3275 units may precede the last detectable field on any given line. In this situation, therefore, a nondetectable field could be one character long.

Designator Characters

Designator characters are used to define two types of selector-pen fields: selection fields and attention fields. Each type of field performs a different selector-pen operation.

The selection field is defined by a question mark (?) designator character. When the selector pen detects on a selection field, the MDT bit in the attribute character for that field is set (1) in the display buffer. In addition, the designator character is automatically changed on the screen to a greater than (>) sign to indicate to the operator that the detection was successful. If a mistake was made and the operator again detects on that same field, the > reverts to a ? and the MDT bit for that field is reset (0).

The attention field is defined by a space or null designator character. A detection on an attention field causes an I/O pending (attention) at the display. This I/O pending indicates to the program that the selector-pen operation has been completed. The program may then issue a Read Modified command to obtain the address of each field that the operator selected or modified.

Programming Notes:

- 1. The application programmer should be aware that high-intensity/unprotected fields can be modified by the display station operator to become selector-pendetectable fields.
- 2. Use of the selector pen feature is expected to be such that the program will correlate the address of each SPD field with the data associated with it. Therefore, to minimize TP line loading, channel loading, and buffer size requirements, only the addresses of selector-pen-detected fields are required to be sent to the application program; the field data is not included.
- 3. Users who wish to combine selector-pen-detect input with keyboard input must use the keyboard to generate the I/O pending. Use of the selector pen on an attention field to generate the I/O pending will result in transmission of only the addresses of the fields in which the MDT bit was set.

Figure 2-11 shows a sample display with fields defined for selector-pen operation. In this sample, "FULL", "50MG", and "4 TIMES" are all preceded by > designator characters to indicate that they were selected by the operator. When the operator detects on the word "EXIT", which has no displayed designator character, an I/O pending will occur and the program will read the locations of the four selected fields.

R JONES 2-22-7 CARE-NORMAL FOO	I, HOSPITAL VISIT D-SAME,		
DRUG-ASPIRIN			
STRENGTH DOSE DAILY SCHEDULE	<pre>> FULL ? 20MG ? 1 TIME > 4 TIMES ? 12 TIMES</pre>	? 1/2 > 50MG ? 2 TIMES ? 6 TIMES ? 24 TIMES	? BABY - ? 100MG ? 3 TIMES ? 8 TIMES ? AS REQUIRED
DRUG A - EXIT	DRUG B FOOD	DRUG C HISTORY	DRUG D

The security keylock is a security-enhancement special feature that provides a keycontrolled lock for 3275 and 3277 displays. When the key is in the off position or is removed from the display station, the message buffer is locked, preventing the entry, modification, and display of data. The display station is unavailable to programmed read or write operations and to operator inputs such as keyboard entry, card reader entry, and selector-pen operations.

Programmed attempts to access display stations that have the key turned off or removed from the lock cause the 3270 devices to return responses to the central processing unit (CPU). 3270 responses are device- and operation-dependent. They are summarized in the following table:

Device Attachment	Operation	Response	
3272 Models 1 and 2	All	UC, IR Status and Sense	
3271 (all models)	Specific Poll	IR Status and Sense	
	General Poll	EOT	
	Selection Addressing Sequence	RVI	
3275 (all models)	Specific Poll General Poll	No response (timeout) EOT	
	Selection Addressing Sequence	No response (timeout)	

Programming Note: When no response is received from a 3275 after a specific poll or selection-addressing sequence, a general poll should be issued. An end of transmission *(EOT)* response to the general poll indicates that the 3275 buffer is locked.

Operator Identification Card Reader

The operator identification card reader (OICR), which is attached by a cable to a 3275 or 3277 (Figure 2-12), reads data, such as a unique operator ID number, encoded on a magnetic-striped card. As the card is inserted into the reader, the ID number is read from the magnetic stripe and written into the display buffer, in nondisplay mode and at the location specified by the cursor. The ID number, therefore, is not displayed on the screen. An I/O pending is generated at the display to inform the program that the ID number can be retrieved and transferred to main storage.

With the 10-character set, plus control characters (Figure 2-13), the maximum number of characters that can be read is 40 characters at 3 bits per millimeter (75 bits per inch). This number includes the start of record (SOR), longitudinal redundancy check (LRC), and either end of record (EOR) or end of inquiry (EOI) characters.

With the 10-character set shown in Figure 2-13, the maximum number of characters that can be read is:

- 40 characters at 3 bits per millimeter (75 bits per inch) and at 8.3 bits per millimeter (210 bits per inch)
- 100 characters at 5 bits per millimeter (128 bits per inch)

Note: A minimum of seven characters must be encoded between the Start Sentinel and End Sentinel characters.

The 10-character set may be used to log on and log off in systems network architecture (SNA) mode (LU-LU session only, *not SSCP-LU session*) or in a non-SNA mode.

Figure 2-12. Operator Identification Card Reader

	n a shekarar na shekarar na shekarar Na shekarar na shekarar na shekarar	Bit Pa	ttern	Direct Recor	ion of ding	-		I/O Interfac	e Code (Note 5)
Character		2 ⁰	2 ¹	2 ²	2 ³	Р	Hex Code	EBCDIC	ASCII
Data	(0 1 2 3 4 5 6 7 8	0 1 0 1 0 1 0	0 0 1 1 0 0 1 1	0 0 0 1 1 1 1	0 0 0 0 0 0 0	1 0 1 0 1 1 0	0 1 2 3 4 5 6 7 8	F0 F1 F2 F3 F4 F5 F6 F7 F8	30 31 32 33 34 35 36 37 38
Control {	9 ((Special - See Note 1) SOR (Note 2) EOI (Note 3) Field Separator (Unassigned) EOR (Note 4)	1 0 1 0 1 0	0 1 1 0 0 1 1	0 0 1 1 1	1 1 1 1 1 1	1 1 0 1 0 0 1	9 A B C D E F	F9 7A 7B 7C 7D 7E 7F	39 3A 23 40 27 3D 22

Notes:

1. This character is reserved for operator identification only and must be located in the first data character position.

2. Start of Record

3. End of Inquiry. May also be used as a termination character on the operator identification card reader.

4. End of Record

5. Programmers use only the four least-significant bits of the hex codes.

Figure 2-13. 10-Character Set Used with Operator Identification Card Reader

The 10-character set shown in Figure 2-13 comprises 10 numeric characters, a field separator, and control characters. Each character is composed of a 4-bit pattern plus an odd-parity bit. This bit pattern is recorded with the low-order bit recorded first. An LRC character is placed at the end and is protected by an odd-parity bit of its own.

Characters are recorded, low-order bit first, beginning at the left-hand side of the magnetic stripe when the stripe is at the bottom of the card or badge as you face the magnetic material. The characters are read in one direction only.

Magnetic-Stripe Format

The format used on the magnetic stripe is in the sequence shown in Figure 2-14.

When the SOR character is read from the magnetic stripe, a field-attribute character is entered automatically into the cursor-identified location of the buffer (provided the cursor is at an uprotected character location). This attribute character defines the following data field as protected, alphameric, and nondisplay or nonprint. As the data characters are read into the buffer, they are stored starting at the first character location after the field-attribute character. As each data character is stored in the buffer, the cursor advances one buffer location. The cursor advancement is all the operator sees on the display screen when using the operator identification card reader.

Operational Differences Due to Screen Format

When the 10-character set is being used with the OICR, differences exist in the content of the data stream sent to the application program, depending upon whether the display screen is unformatted or formatted.

When an unformatted screen (that is, a screen without attribute characters or fields) is being used, the operation of the display results in an inbound data stream, as shown in Figure 2-15.

The reader operation formats the screen by the automatic generation of the fieldattribute character at the cursor position by the reader.

A formatted screen has at least one field-attribute character defined at initial presentation. This may be the only field-attribute character, as in the instruction sequence ENTER ID; or one or more attributes may be required, as, for example, in the instruction sequence NAME, TITLE, ID CARD READER.

Inbound Data Stream

AID Cursor Address SBA Start of Data Address Data

Set to indicate input from a magnetic-stripe reading device.

Address of the cursor upon completion of the reader operation.

Set Buffer Address.

Address of the first data character following the field-attribute character.

The reader data followed by any additional information present in the display buffer. The additional information can be initiated by the application program as ENTER ID (as shown in the example) or entered by the operator before the reader operation is started.

Note that with an unformatted screen the reader data is the first text in the data stream sent to the application program.

Figure 2-15. Operation of the Display with an Unformatted Screen (Using 10-Character Set)

Two fields (new data field and previous data field), with the MDT bits set, are sent to the application program, because the displays treat all information from the reader as data until the information has been written into the display buffer. In addition, the MDT bit is set in the reader-generated field-attribute character that was initiated when the data was entered.

The following examples are included to help clarify operation of the reader with a formatted screen.

Example 1

If the OICR field is set up by the application program as an unprotected field and contains instruction information, the inbound data stream is as shown in Figure 2-16.

Figure 2-16. Operation of the Display with a Formatted Screen (Using 10-Character-Set), Example 1

Example 2

When the OICR field is set up by the application program as an unprotected field, with the cursor directly following an unprotected field-attribute character, the inbound data stream is as shown in Figure 2-17.

Figure 2-17. Operation of the Display with a Formatted Screen (Using 10-Character Set), Example 2

Error Conditions

If any of the following error conditions exists when the magnetic stripe is read, OICR data will not be written into the display buffer:

- The SOR character is not successfully connected to a field-attribute in the display buffer.
- The cursor is located in a protected field.
- The cursor is located in a field-attribute character location.
- The display is busy performing another operation.

Programming Notes: The proper use of the OICR as an identification and data-entry device requires that the application program perform certain validity tests. The following guidelines are recommended for proper operation:

- 1. No field should be accepted as reader input unless the reader AID code is set.
- 2. For preformatted displays, the application program must know the location of the field defined to receive the reader data and the exact location of the entered data, based upon the hardware operation that was previously defined. The use of the cursor address present in the inbound data stream, in combination with the AID byte to ensure reader input, is an additional technique that can be used to ensure the integrity of the data. For unformatted displays, the reader data is always presented as the first data entry in the input record to the application program.
- 3. For preformatted display, it is advisable to terminate the reader data field with another attribute byte.
- 4. Upon completion of the reader operation, the application program should check for the presence of the EOI/EOR character. Absence of this character means that the reader data has not been transferred successfully. This condition can occur under the following error conditions:
 - a. Normal data flow from the reader has been interrupted.
 - b. The cursor has been moved to a field-attribute character location. This means that the field defined for reader input is too small or that the cursor was not initially positioned at the beginning of a correct-length field.
- 5. Upon completion of the reader operation and a successful check for the EOI/EOR character, the LRC character may be used for a parity check to ensure integrity of the data.

Because of the makeup of the 10-character set codes (4 bits plus parity bit), only the right-hand four bits are of concern. The application program should set up a 1-byte field initialized to X'0B'. This is the SOR character, which is not included in the inbound data stream, but which is used to compute the LRC. As each character is checked for validity, it is exclusively ORed into this field. This operation should include the EOR/EOI character and the LRC, resulting in the byte containing zero. If the byte is nonzero, it means the result of the check on the data characters, including EOR/EOI, does not equal the LRC, and a parity error has occurred.

6. If the reader input field is to be reused, the application program must remove the hardware-generated field-attribute character and reader input data. The location of this character can be derived from the inbound data stream by using one less than the start of the data address preceding the input data. In addition, the cursor is located one position beyond the end of the reader data field.

The card field may be reused if more than one card input is required or if the original attempt was unsuccessful and the application program desires to retry the operation.

- 7. Text for all fields having the MDT bit set is transferred to main storage when the reader data is retrieved in response to the reader-generated I/O pending.
- 8. The cursor must be moved out of the reader-generated field before further keyboard activity is allowed.
- 9. A test card is delivered with each OICR and is available for system validation. The test card data (in 4-bit code) written into the display buffer is as follows:

BB1234567890123456789012345678955ABDEF7

Care should be taken that this card is not accidentally auto-entered. The display should be placed in test mode to avoid auto-entering magnetic-stripe information to the host.

Printer Operations

Printers for the 3270 display system are used to provide a printed copy (for future reference) of information that is displayed at a 3277 or 3275, or of information written from the program. Printed data appears in the same alphameric characters and symbols that appear on a display image, and printouts can be formatted in the same manner as a display image. Cursor information is ignored by the printer.

Two types of printers are available, a buffered printer and an unbuffered printer. The buffered printer, with its own buffer and a unique device address, can be attached to a 3271 or 3272 and operates in the same manner as a 3277. The buffered printer includes the 3284, 3286, and 3287 Models 1 and 2 and the 3288 Model 2 Line Printer.

The unbuffered printer is the 3284 Model 3, which is provided for attachment to the 3275. The relationship between the 3284, 3286, 3287, or 3288 printer buffer or the 3275 Display Station buffer and a printout is shown in Figure 2-18.

Print Line Formatting

Printout operations are specified by a Write command or a Copy command (3271 only) addressed to the printer. The print line format in which the data is to be printed from the buffer can be specified as part of the command in one of three printer formats. These formats simply define the print line length: 40, 64, or 80 character positions per line. If a format is not specified, the print line length is determined by platen length on 3284 and 3286 printers, while the line length is 132 character positions on the 3287 and 3288 printers.

Programming Note: To duplicate the copy function when operating with the 3272 local CU, the display buffer must be read and then written to the printer.

NL, EM, and FF Printer Orders

New Line (NL), End of Message (EM), and Forms Feed (FF) printer orders are transferred as part of the data stream from the application program. They are stored in the buffer as data.

The NL order is executed only when encountered in a print field during a printout that does not have a line-length format specified. When an NL order is encountered in the buffer, the printer performs a new line function. If no NL order is encountered before the printer reaches the end of a line (as determined by the maximum carriage length), the printer automatically performs a line feed and continues printing. NL orders are not executed when located in a nondisplay/nonprint field; instead, they are treated as alphameric characters and printed as spaces. In addition, they are not executed when they are encountered in a print field during a printout that uses a line-length format; instead, they are printed as the graphic 5.

Chapter 2. Terminal Operations 2-27 For buffered printer operation (described under the heading "Buffered Printer Operation"), EM orders are executed only when they are encountered in a print field during a printout that does not have line-length format specified. EM orders are not executed when they are located in a nondisplay/nonprint field. They are treated as alphameric characters and printed as spaces. When encountered in a print field of a printout that uses line-length format, they are not executed; instead, they are printed as a graphic 9. For unbuffered printer operation (described under the heading "Unbuffered Printer Operation"), EM orders are executed when encountered, whether or not line-length format is specified. When an EM is encountered, the printing operation is terminated. None of the data following the EM order in the buffer is printed.

Valid FF orders are executed by the 3287 and 3288 printers during printouts, both with and without a line-length format specified. (The FF order is described under the heading "Page Length Control/VFC Operations.") When a valid FF order is encountered in the first print position of a line, the print form indexes to a predetermined print line on the next form.

Buffered Printer Operations

When a command specifying a printout is received from the system, the contents of the addressed printer are transferred to the 3271 or 3272 buffer, where they are modified and transferred back to the printer. The printout starts after the transfer from the control unit to the printer buffer is completed.

During the print operation, if line format is specified, data characters in the printer buffer are scanned one line at a time before they are printed. A line feed is executed after each line is printed. If a line contains one or more space characters only, a line feed is performed to cause a blank line in the printout. When null characters, attribute characters, or alphameric characters in the nonprint field are encountered, they are treated as follows:

- If embedded in a print line, they are printed as spaces.
- If they constitute an entire line, they are ignored and the line feed is not performed; as a result, a blank line does not appear in the printout, and the data is compressed vertically one line.

When line-length format is not specified, printout of the buffer data begins at buffer location 0 and continues until the last position of the buffer is printed or until a valid EM character is encountered. Each print line is left-justified. At the end of each printout, a final line feed is executed so that the printer is ready to start the next printout. When the print terminating EM order appears in the first print position of the print line, a final line feed is not executed, because the printer is already positioned at the left margin for the next printout.

Unbuffered Printer Operations

Attachment of an unbuffered printer to a 3275 does not affect operations between the 3275 and the system. However, when a printout is being executed, the 3275 will be busy to all other request command operations.

When a command specifying a printout is received from the system, the 3275 transfers its printer data to the printer. As characters are transferred to the printer, display regeneration continues and the cursor advances on the display screen by one position with each character transferred.

Data is not scanned before printout. Attribute characters, null characters, and alphameric characters in nondisplay/nonprint fields are transferred as spaces. When these characters constitute an entire line, that line will be printed as spaces and a blank line will appear in the printout. The print operation is terminated with the printing of the last buffer position, unless an EM order is encountered first.

The NL order is executed only when the line-length format is not specified. Whether or not line-length format is specified, EM orders are executed when encountered.

At the end of each printout, a final line feed is executed so that the printer is ready to start the next printout, except when the print terminating EM order appears in the first print position of the print line, in which case a final line feed is not executed, because the printer is already positioned at the left margin for the next printout.

Page Length Control/VFC Operations

The ability to index forms vertically under program control to a predetermined print line is provided by the page-length-control function for the 3287 Printer and by the vertical forms control (VFC) specify feature for the 3288. Special inks and preprinted forms containing index marks are not required to make this feature operational.

When a valid FF order is encountered in the buffer during a printout, the form skips to a predetermined line. Printing begins on the predetermined line; the first print position, the buffer location containing the FF character, is printed as a space character. Printing and skipping continue until the printout is terminated. The printer is *busy* while printing and skipping.

There is no limit on the number of FF orders that can be included in the printer buffer or on the frequency of their occurrence. However, for an FF order to be considered valid and thus initiate skipping, FF characters must be placed in buffer locations corresponding to the first position of a print line in a field designated either print or nonprint. This can be accomplished by placing the FF character (1) in the first character after the write control character (WCC) in a write, erase/write, or erase/write alternate data stream to the printer or (2) after a valid NL or CR order.

When an FF character is placed in the first character position of any print line (for example, in character position 41 in a buffer with a printout format of 40 characters per line specified, or in character position 133 in a buffer for an unformatted printout), the form skips to line 1, position 2.

An FF order in any other position (than the above) in the printer buffer is considered invalid; the skip operation is not executed, and the FF character prints as a "<" character, except when the FF order is located in a nonprint field. The "<" character prints during either formatted or unformatted printouts. When an FF order is sent to a 3288 that does not have the VFC feature installed, or if the skip operation is not executed, the FF character is printed as a "<" character. A valid FF order prints as a space character.

During a print operation, if a valid FF order is encountered when the form is located at the predetermined skip stop line (the first print line of each form) of a 3288, the skip operation is executed, and a blank form results. The 3287 will not skip a blank form.

Programming Note: Placing the FF order at the end of a print buffer is not recommended. When a valid FF order is placed at the end of a print buffer and is followed by an EM order, the printers will stop printing and skip to line 2 of the next form.

Before beginning page-length-control/VFC operations, forms must be loaded in the printer and aligned to the print line where skipping should stop and printing begin. If the forms are not aligned properly while initially being loaded, all forms will be misaligned. The page-length-control/VFC circuitry synchronizes with the skip stop line on the form as the cover is closed and the printer goes from not ready to ready. If the cover must be raised or if a not-ready condition occurs, the form must be checked to ensure that the skip stop line is in the proper position before the cover is reclosed.

The two Selector Switches must be set to the number corresponding to the total number of print lines from one skip stop line to the next for each page-length-control/VFC application. There can be up to 99 lines between successive skip stop lines. When uniform length forms are used, the setting for the switches is computed by multiplying the forms length in inches by the lines-per-inch setting: 6 lines per inch for the 3288; 6 or 8 lines per inch for the 3287 printers. (For example, when 11-inch forms are installed on the 3288, the switches should be set at 66.)

Programming Notes:

- 1. If an NL order and an FF order appear on the last line of a 3288 printout and VFC is installed, FF is suppressed and the printer will not skip a full form. If this condition occurs on a 3287 printer, subsequent printing will begin on a new form.
- 2. The page-length-control function on the 3287 printer is synchronized when power is applied or when the FF switch is pressed.
- 3. If a 3287 or 3288 buffer containing FF characters (hex'0C') is read back by the program, the FF characters are returned to the program as '8C' (EBCDIC hex) or '46' (ASCII hex). This is a hardware function of the control units and should not be mistaken for a printer error.

Four error conditions may be encountered at both the buffered and unbuffered printers. In each of the following cases, when an error is detected, the program is notified. (Power should *never* be removed from unbuffered printers during a printout; the error conditions that may be returned to the program are unpredictable if this is done.)

A printer is defined as *not ready* when it is out of paper, its cover is open, or it is mechanically disabled (unable to advance to its proper position). When a 3284 or 3286 printer mechanism experiences a "printer hang" condition (see Appendix F, Glossary) during a printout, the printer stays busy with an equipment check (EC) present. For 15 seconds, the mechanism automatically attempts to recover. If the recovery attempt is successful, the printer returns to the ready condition. If the recovery attempt is not successful after 15 seconds, the printer becomes not ready, as indicated by Intervention Required (IR) status.

If a printer is not ready at the start of a printout, or if it becomes not ready during a printout operation, the print operation terminates. Error status is sent to the channel once when the condition occurs during a printout and again each time a printout is initiated.

When the 3287 detects other than parity errors, the Check indicator lights, and the associated error code is displayed in the 2-digit Status indicator. The operator may be able to correct the error and continue operation.

Error Conditions

Not Ready

Character Generator or Sync Check Errors

The characters printed by a buffered or unbuffered printer are a function of the character generator or character belt installed. When an incorrectly formed character is printed during a printout (not the 3287), no attempt is made to replace or alter the character. When the printout operation is completed, a new line function is executed and an X is printed (feature-dependent). A sync check error occurs when a character belt hammer is out of sync.

Parity Error

If a parity error is detected on a character about to be printed, the graphic X (3284, 3286, 3288) or an error graphic (prx10T,L) (3287) is printed in place of the character with incorrect parity. The buffer continues printing until all printable characters have been printed. The printer prints a graphic X. The isolated X-character (specify feature on the 3287 and 3288) serves to indicate the detection of the parity error.

Command-Chaining

In local operations, if any command is chained to a command that initiates a print operation, an error condition occurs: no printout is performed, the command is aborted, and the system channel is notified of the error. In remote operations, if command chaining is attempted, error status is sent to the system channel but the printout is completed.

Unit and Model-Dependent Differences

The following differences between 3270 units affect printer operations.

Buffer Size

The buffer size of the 3284, 3286, and 3288 is model-dependent. Model 1 units contain 480 characters, and Model 2 units contain 1,920 characters.

The 3287 buffer size is specified as 480 or 1,920 bytes.

During an erase/write operation to a 3284, 3286, or 3288, the full 480- or 1,920character buffer is erased. When an Erase/Write command is sent to the 3287, the buffer is erased up to the specified size (480 or 1,920 characters).

A data or attribute wrap operation to buffer position 0 occurs when data characters are addressed beyond the effective end of the buffer. The last effective position in the buffer is the default buffer size when operating in SNA/SDLC protocol.

Uppercase and Lowercase Printouts

The 3284, 3286, and 3288 print uppercase alphabetic characters unless the Extended Character Set feature is installed (which provides additional characters, including lowercase).

Printouts in either uppercase or lowercase characters may be obtained from the 3287 printer, depending upon the setting of the 3287 Change Case switch, and the command or print operation in process. During execution of an Erase/Write or Erase/Write Alternate command, the printer switch setting determines the character case, and the previous request is erased. During a Copy command or local print operation, the character case is determined by the setting of the Mono/Dual switch on the *from* display.

During a Write command or buffer reprint operation, the previous print case request is honored. Charge Case switch settings are ineffective during transmission of the SCS data stream to a 3287 (SCS is always dual case). The proper character code points must be used to ensure the correct printout.

Split Vertical Bar () Character

The split vertical bar $(\frac{1}{2})$ character, hex 6A, is available on the 3287 and 3288.

Program control of 3270 operations is accomplished with a flexible set of commands and orders. Commands are issued by the channel program to initiate such operations as the total or partial writing, reading, and erasing of data in a selected 3270 device buffer. Orders can be included in write data streams, either alone or intermixed with display or print data.

Two types of orders are available. One type is executed as it is received by the 3271, 3272, or 3275. This type is used to position, define, and format data being written into the buffer, to erase selected unprotected data in the buffer, and to reposition the cursor. The second type of orders specifies printer format. These orders are initially stored in the buffer as data and are executed only during a print operation.

Commands

Four basic types of commands are executed by the 3270 system:

- 1. Write commands, which transfer data and orders from main storage to the 3270 system.
- 2. Read commands, which transfer 3270 buffer data, keyboard key data, and, for remote configurations, status information to main storage.
- 3. Control commands, which cause certain printer or display station operations.
- 4. Sense command (local configurations only), which transfers to main storage a byte of sense data that reflects certain control or check conditions existing in the device or control unit (CU) to which the command was addressed.

Figure 3-1 lists the commands, and associated codes, that can be executed by the 3270 system.

Timing Considerations

The rate at which data is transferred between main storage of the data processing system and a device attached to the 3270 display system depends on the information-transfer capability of the channel, on whether data or command codes are transferred, and on whether a local or remote 3270 system is attached.

In a local configuration, the 3272 CU provides information to, and accepts it from, the channel at a byte rate established by the channel or by the CU, whichever is the slower rate. The maximum data-transfer rate for a Write command operation is 650,000 bytes per second. For a read operation, the maximum data-transfer rate is 400,000 bytes per second.

	Local	Remote		
Command	EBCDIC (Hex)	EBCDIC (Hex)	ASCII (Hex)	Graphic
Write	01	F1	31	1
Erase/Write	05	F5	35	5
Read Buffer	02	F2	32	2
Read Modified	06	F6	36	6
Сору	NA	F7	37	7
Select	0B	NA	NA	NA
Erase All Unprotected	0F	6F	3F	?
No Operation	03	NA	NA	NA
Sense	04	NA	NA	NA

When a remotely attached 3270 display system is in operation, the rate at which data is transferred between the data processing system's main storage and the 3271 CU depends on the type of transmission control unit (TCU) and on the modems and communication facilities used. The 3270 system accepts data from, and provides data to, the TCU or communication facility at the byte rate established by the TCU or communication facility.

All command operations that direct movement of data to and from the 3270 system result in transfer of data between the CU and a device buffer. When commands are not being performed, the CU and the device buffer cycle asynchronously, and the last image displayed by a previous command is continuously regenerated at a visible rate.

The CU contains the timing controls required to move data between the CU and the device buffers. To accomplish a data transfer to a CU buffer from a device buffer, as, for example, during a Read command, the device buffer must first shift to the buffer position where data will initially be sent. Because buffers are loaded one position at a time, a 480-character device buffer can be filled faster than a 1,920-character buffer. During a read or write type command, the average time required to transfer data from a 1,920-character device buffer to the CU is approximately 50 milliseconds (ms). During execution of a Write command with a 1,920-character position buffer, approximately 80 ms (average time) is needed for buffer transfers, since the contents of the device buffer must first be brought from the device to the CU, where the contents are updated and then returned to the device.

An average time of approximately 30 ms is required to transfer data from a 480-character device buffer to a 480-character CU buffer during a read operation, and approximately 40 ms is needed for 480-character-buffer transfers during execution of a Write command. To obtain the total command execution time, the time needed to transfer information between the channel and the CU must be determined and added to the buffer transfer times given here.

During the short periods when information is transferred between buffers, the display buffer regeneration cycle is suspended, causing the display image to blink momentarily.

Two read-type commands are executed by the 3270: Read Buffer and Read Modified. Read Buffer, which is provided primarily for diagnostic purposes, causes the entire contents of the selected 3275, 3277, 3284 (Model 1 or 2), 3286 (Model 1 or 2), or 3288 (Model 2) buffer to be read into main storage. The operation initiated by Read Modified is determined by 3275 or 3277 operator actions. The information read during execution of Read Modified could consist of fields of data modified by keyboard, data entered by the card reader, buffer addresses or data of selector-pen fields, or the code of a programfunction or program-access key.

In remote configurations, reading is normally accomplished by a General or Specific Poll sequence (described later under "Remote Operations"). In local configurations, an operator action that requires program interaction causes an attention interruption; the program would respond to this attention interruption with a read command. In remote, the 3271 or 3275 cannot generate attention interruptions. Instead, the program should issue poll sequences periodically. Upon receipt of a poll sequence, the 3271 or 3275 hardware initiates one of three operations:

1. If status and sense information is pending, this information is sent to the TCU.

2. If an operator action has occurred that requires reading by the program, and status and sense information is not pending, a hardware-generated Read Modified command operation is performed by the 3271 or 3275.

Read Commands

3. If no operator action has occurred and status and sense information is not pending, the 3271 or 3275 sends End of Transmission (EOT) to the TCU, terminating the operation.

Programming Note: Unsolicited read commands are not recommended, because the information read by these commands may be incomplete.

During a Read Buffer or Read Modified operation, a SUB character (3F in EBCDIC, 1A in ASCII) is sent in place of any byte that has bad parity. Also, a data-check sense condition is recorded. Normal transmission of the read data then continues until the usual ending point. At that time, the operation ends as follows: (1) in local, Unit Check is sent in the ending status byte; (2) in remote, the transmission is terminated with ENQ in place of ETX or ETB.

Read Buffer Command

Execution of the Read Buffer command causes all data in the addressed terminal buffer, from the buffer location at which reading starts through the last buffer location, to be transferred to main storage. This command is provided primarily for diagnostic purposes. The transfer of data begins:

- 1. From buffer address 0 if the Read Buffer command is unchained, or if it is chained from a Sense, Select, No Operation, or Copy command.
- 2. From the current buffer address if the Read Buffer command is chained from a Write, Erase/Write, Read Modified, or another Read Buffer command.

Regardless of where the transfer of data begins, data transfer from the buffer terminates when the last character location in the buffer has been transferred, or before the last character location has been transferred as follows: (1) in local configurations, when the channel byte count reaches 0 or (2) in remote configurations, when the last character of a text block has been transferred (described under "Remote Operations").

The transferred data stream begins with a 3-character read heading consisting of the attention identification (AID) character followed by a 2-character cursor address. The contents of all buffer locations are transferred, including nulls. The 3270 inserts Start Field (SF) order codes before each attribute character to identify the beginning of each field. An example of the read data stream follows:

The possible cursor address byte configurations are shown in Appendix B. The possible AID byte configurations are shown in Figure 3-2. An AID configuration other than 60 or E8 is set when the operator at the selected display station has performed an operation that requires program intervention: (1) pressing a program-function or program-access key, (2) entering a card into the card reader, or (3) with the selector pen, detecting on an attention field. The attribute character is shown in Figure 2-7.

AID	Hex Character (EBCDIC)	Hex Character (ASCII)	Graphic Character	Read Modified Command Operation	Resultant Transfer to CPU
No AID generated (Display or Display Station)	60	2D		Rd Mod	If performing a remote polling operation, no read operation occurs; other- wise, field addresses and
No AID generated (Printer)	E8	59	Y	Rd Mod	text in the modified fields are transferred.
ENTER key	7D	27	•	Rd Mod	
PF 1 key	F1	31	1	Rd Mod	
PF 2 key	F2	32	2	Rd Mod	
PF 3 key	F3	33	3	Rd Mod	
PF 4 key	F4	34	4	Rd Mod	AID code and cursor
PF 5 key	F5	35	5	Rd Mod	address, followed by an SBA order, attribute
PF 6 key	F6	36	6	Rd Mod	address +1, and text for
PF 7 key	F7	37	7	Rd Mod	each modified field. Nulls
PF 8 key	F8	38	8	Rd Mod	are suppressed.
PF 9 key	F9	39	9	Rd Mod	
PF 10 key	7A	3A	:	Rd Mod	
PF 11 key	7B See	23	#	Rd Mod	
PF 12 key	7C∫note.	40	@	Rd Mod	
Operator Identification Card Reader	E6	57	w	Rd Mod)
Selector Pen Attention	7E	3D	=	Rd Mod	AID code, cursor address, and field address only; no data.
PA 1 key	6C	25	%	Short Rd)
PA 2 (CNCL) key	6E	3E	>	Short Rd	
PA 3 key	6B	2C	,	Short Rd	And code only.
CLEAR key	6D	5F	-	Short Rd)
TEST REQ key	FO	30	0	Tst Req Rd	A test request message. AID transferred on Read Buffer only.

Note: Graphic characters for the United States I/O interface codes are shown. If a World Trade I/O interface code is used, refer to the applicable figure in the IBM 3270 Information Display System: Character Set Reference, GA27-2837, for possible graphic character differences.

Figure 3-2. Attention ID (AID) Configurations

Read Modified Command

Read Modified initiates one of three operations, as determined by operator actions at the display station: (1) Read Modified, (2) Short Read, or (3) Test Request Read. Figure 3-2 lists the operator actions and the resulting Read Modified command operation initiated by each action. Read Modified commands are not normally used for remote configurations, since polling initiates a hardware-generated Read Modified operation if AID is generated and if status is not pending.

A major feature of Read Modified command operations is null suppression. When operations start at a device, the device buffer is cleared to all nulls (1) when the operator turns power on or presses the CLEAR key, or (2) when the erase portion of an Erase/ Write command is executed with that device selected. In addition, the Erase All Unprotected command and certain orders can clear selected portions of a buffer to nulls. During Read Modified command operations, all modified characters are sent to main storage; null codes are not sent.

Read Modified Operation. During a Read Modified command, if an AID other than Selector Pen Attention, a PA key, or CLEAR key is generated, all fields that have been modified by keyboard, selector-pen, or operator identification card reader (OICR) activity are transferred to the program. All nulls are suppressed during data transfer and thus are not included in the read data stream. As a field is modified by the operator, the modified data tag (MDT) bit is set in the attribute byte for that field. Then, when a read modified operation is performed, successive attribute bytes are examined for a set MDT bit. When the bit is found, the data in the associated field is read (with nulls suppressed) before the next attribute byte is examined.

The first three bytes of the read data stream are always the AID code (Figure 3-2) and the 2-byte cursor address; these bytes are called the *read heading*.

Following the read heading is the alphameric data of each modified field. The data for each field is preceded in the data stream by a hardware-generated Set Buffer Address (SBA) order code followed by the 2-byte buffer address of the first character position in that field (the attribute address +1). Thus, the read data stream when data has been modified is as follows:

If selector-pen-attention AID is generated, fields are not transferred to main storage during the Read Modified operation. Instead, when a set MDT bit is found (indicating selector-pen and/or keyboard activity), only the SBA order code and the attribute address +1 are transferred.

Note that if fields are modified by the keyboard, but completion of the modification is signaled by a selector-pen-attention operation, a resulting Read Modified operation will read only the address of the modified fields, not the modified data.

The buffer location at which the search begins for attribute bytes that define modified fields is a function of command chaining. This location is:

- Buffer address 0 if the Read Modified command is unchained or is chained from a Copy, Select, Sense, or No Operation command.
- The current address if the Read Modified command is chained from a Write, Erase/ Write, Read Modified, or Read Buffer command.

The search for modified-field attribute bytes ends when the last buffer location is checked or, during 3272 operations, when the channel byte count reaches zero.

The transfer of read data is terminated as follows:

- 1. If the last modified field is wrapped from the last buffer location (479 or 1919) to the first location, the operation is terminated after all data in the field is transferred (nulls are suppressed). The buffer address at the end of the operation is the address of the next attribute byte in the buffer. For example, if a modified field extends from address 1900 (the attribute byte) to address 79 (wrapped field), the data from address 1901 through 79 is transferred (nulls are suppressed); in this case the read operation is terminated with the buffer address set to 80 (the attribute byte of the next field).
- 2. If the buffer does not contain a wrapped modified field and if the channel byte count has not reached zero (local operation only), the modified data stream is terminated when the last modified field is transferred; at the end of the operation, the buffer address is set to 0.
- 3. During 3272 operations, if the channel byte count reaches zero before all modified data is transferred, read operations are terminated and the remaining modified data is not transferred. The buffer address after termination is undefined.

If the buffer is formatted (contains fields) but none of the fields has been modified, the read data stream consists of the 3-byte read heading only.

If the buffer is unformatted (contains no fields), the read data stream consists of the 3-byte read heading followed by all alphameric data in the buffer (nulls are suppressed), even when part or all of the data has not been modified. Since an unformatted buffer contains no attribute bytes, no SBA codes or address characters are included in the data stream and the modification of data cannot be determined. Data transfer starts at address 0, regardless of command chaining, and continues to the end of the buffer. At the end of the operation, the buffer address is set to 0. This read operation can also be terminated by the channel byte count's reaching zero before all data is read; in this case, the buffer address after termination is undefined.

Short Read. The Read Modified command causes a short read operation if the CLEAR, CNCL, or a PA key has been pressed at the selected device. During the Short Read operation, only an AID byte is transferred to main storage. This AID byte identifies the key that was pressed.

3-6

Test Request Read. The Read Modifed command causes a Test Request Read operation if the TEST REQ key has been pressed at the selected device. The Test Request Read data stream sent to main storage is as follows:

Test Request Read Heading

The Test Request Read heading is generated by hardware. The remainder of the data stream is the same as described previously for Read Modified operations, excluding the 3-byte read heading (AID and cursor address). If the buffer is unformatted, all alphameric data in the buffer is included in the data stream (nulls are suppressed), starting at address 0. If the buffer is formatted, each attribute byte is examined for a set MDT bit. Each time a set MDT bit is found, the alphameric data in the field associated with that bit is sent to main storage (nulls are suppressed); if no MDT bits are set, the read data stream consists of the Test Request Read heading only. The buffer location at which the search for MDT bits begins and the transfer of data ends is the same as described for Read Modified operations.

Test Request Read function usage is determined by the access method. Normally, the operator would (1) clear the display, (2) enter test request data in a predefined format, and then (3) press the TEST REQ key.

Write Commands

Two write-type commands, Write and Erase/Write, are used by the channel program to load, format, and selectively erase device buffer data. These commands can also initiate certain device operations, such as starting the printer, resetting the keyboard, and sounding the audible alarm. Write and Erase/Write operations are identical except that Erase/Write causes complete erasure of the selected buffer before the write operation is started. Thus, Erase/Write is used to load the buffer with completely new data, whereas Write can be used to modify existing buffer data. Because of this, the 3271 and the 3272 initiate a device-to-CU buffer transfer before Write command operations, but not before Erase/Write command operations.

Write Command

The bytes received by the 3271, 3272, or 3275 for Write command operation consist of a command code, a write control character (WCC), and any orders and/or new buffer data needed to modify the existing buffer contents. The 3271 or 3275 also receives appropriate framing (data-link control) characters. The sequence of bytes is as follows:

The minimum Write command data stream to the 3272 consists of one byte, a WCC. [This is assured since the byte count field of the write channel control word (CCW) must be set to a minimum of 1 or else the command code is not sent to the 3272.] The minimum Write command data stream to the 3271 or 3275 consists of framing characters (STX, ESC, and ETX) and the command code. To be meaningful, a WCC byte should follow the command code; if ETX follows the command code, hardware generates an allzero WCC byte and command execution is ended normally. An order or display/print data byte that immediately follows the command code is interpreted by hardware as a WCC.

The WCC byte format is as follows:

*	WCC Reset Bit 1	Printout Format		Start Print	Sound Alarm	Keyboard Restore	Reset MDT Bits
0	1	2	3	4	5	6	7

*Determined by the configuration of bits 2-7. See Figure 2-7.

Figure 3-3 describes the function of each WCC bit. When the WCC specifies an operation that does not apply to the selected device (for example, if the Sound Alarm bit is set and the selected device does not have the audible alarm feature), the specified operation is not performed and status or sense information is not generated. When the WCC byte is followed by order or display/print data bytes, only the Reset MDT Bits function, if specified, is performed before the write operation; any other WCC function is deferred until all data is written and all orders are performed.

Bit	Explanation in the second se
0	Determined by the contents of bits 2–7 as shown in Figure 2-7.
1 1	Always a 1.
2,3	Define the printout format, as follows: = 00 - The NL order in the data stream determines the print-line length. = 01 - Specifies 40-character print line. = 10 - Specifies 64-character print line. = 11 - Specifies 80-character print line.
4	Start Printer bit. When set to 1, initiates a printout operation at completion of the write operation.
5	The Sound Alarm bit. When set to 1, sounds the audible alarm at the selected device at the end of the operation if that device has an audible alarm.
6	The Keyboard Restore bit. When set to 1, restores operation of the keyboard by resetting the INPUT INHIBITED indicator. It also resets the AID byte at the termination of the I/O command.
7	Reset MDT bits. When set to 1, all MDT bits in the selected devices' existing buffer data are reset before any data is written or orders are executed.

Figure 3-3. Write Control Character (WCC)

Orders and buffer data can follow the WCC character. (Orders are described later in this chapter, following commands.) Buffer data can be written into any specified location of the buffer without erasing or modifying data in the other buffer locations. Data characters are stored in successive buffer locations until an order is encountered in the data stream that alters the buffer address, or until all the data has been entered. During the write operation, the buffer address is advanced one location as each character is stored.

The buffer location where data entry starts depends upon the following considerations:

- The starting location may be specified by a Set Buffer Address order that follows the WCC. (This order is described under "Orders.")
- The starting location will be the buffer address containing the cursor if the Write command is not chained or if it is chained from a control or Sense command.
- The starting location will be the current buffer address if the Write command is chained from a Read or another Write command.

The formatting and placement of write data and the modification of existing buffer data are described under "Orders."

Programming Notes:

- 1. If commands are being chained, the Write or Erase/Write command with the Start Print WCC bit set must be the last command in the chain. If not:
 - a. The 3272 aborts the Write or Erase/Write command that specifies Start Print.
 - b. The 3271 or 3275 performs the print operation and aborts the next command.
- 2. The Printout Format bits are honored only if the Start Print bit is set in the same WCC.

3. In 3271 operations, if a Write command that includes data is chained from a previous Write command, a Set Buffer Address (SBA) order shall immediately follow the WCC to define the starting location at which data entry is to start; this permits recovery in case of an error condition that requires retransmission of that data. 4. Every text message to a 3275 must have an SBA order immediately following the WCC to enable recovery from a line error.

Programming Restriction: A write command should not be chained from an Erase All Unprotected command. If it is, the operation is undefined.

Erase/Write Command

Execution of the Erase/Write command performs two operations: an erase operation and a write operation. For its erase operation, this command clears the entire device buffer to nulls (all zero characters), positions the cursor to character location 0, and resets the buffer address to 0.

Erase/Write then performs the write and WCC operations in the same manner as a Write command. If no WCC is sent, the Erase/Write command will not erase the buffer.

Control Commands

Control commands initiate certain CU and/or device operations not involved with the transfer of data (other than status). Four control-type commands are executed by the 3270: Copy, Select, Erase All Unprotected, and No Operation. Copy is valid for the 3271 only, Select and No Operation are valid for the 3272 only, and Erase All Unprotected is valid for the 3271, 3272, and 3275.

Copy Command

This command is executed by a 3271 only, and is invalid for the 3272 and 3275. Copy is used to transfer buffer data from one device to another device attached to the same 3271. The selected device is the *to* device, the one to which buffer data will be transferred. The *from* device, the source of the buffer data to be copied, is identified in the second of two bytes that follow the Copy command code; the first byte, called the *copy control character* (CCC), identifies the type of data to be copied. The CCC can also, at the *to* device, start print operations, specify the printout format for those operations, and sound the audible alarm.

The Copy data stream is as follows:

The CCC-byte format is as follows:

*	1	Printo Form	out at	Start Print	Sound Alarm	Type o to Be (of Data Copied
. 0	1	2	3	4	5	6	7

*Determined by the configuration of bits 2-7. See Figure 2-7.

Figure 3-4 describes the function of each CCC bit. A CCC and an address byte must always follow the command code; if they do not, the 3271 aborts the command and generates error status.

Copy command operations are similar to Write command operations. After the 3271 accepts the Copy data stream, it initiates the transfer of all 480 or 1,920 bytes from the *from* device buffer to the 3271 buffer. Upon completion of this transfer, the 3271 inserts nulls in all character locations that do *not* contain the type of data specified by CCC bits 6 and 7. The updated CU buffer contents (480 or 1,920 bytes) are then transferred to the selected (to) device. At the completion of Copy command operations, the cursor is in the same character location at the to device as it was at the *from* device at the start of operations.

The *from* device buffer can be "locked" (made incapable of being copied) by writing a protected/alphameric attribute byte (bit 2=1 and 3=0) in address 0.

Programming Note: Although not essential for locking, it is recommended that a null be written in address 1 of the buffer to facilitate possible future use of the address 1 position.

The Copy command can specify as the *from* device the same device that is selected (the *to* device). This procedure provides a means of programming selective device buffer "erase" operations as specified by CCC bits 6 and 7. In this case, the device buffer contents are transferred to the CU, nulls are inserted as determined by the CCC, and the resulting buffer contents are transferred back to the same device buffer.

Programming Notes:

- 1. Copy should not be chained from a Write or Erase/Write command, since it will destroy the data already written for the selected device.
- 2. If the CCC Start Print bit is set and commands are being chained, Copy should be the last command of the chain. If not, the 3271 aborts the subsequent command.

Bit	Explanation
0	Determined by the contents of bits $2-7$ as shown in Figure 2-7.
1	Always a 1.
2, 3	Define the printout format as follows: = 00 - The NL order in the data stream determines print line length. = 01 - Specifies a 40-character print line. = 10 - Specifies a 64-character print line. = 11 - Specifies an 80-character print line.
4	The Start Printer bit. When set to 1, initiates a printout operation at the <i>to</i> device after buffer transfers are completed.
5	The Sound Alarm bit. When set to 1, sounds the audible alarm at the <i>to</i> device after buffer transfers are completed if that device has an audible alarm.
6,7	 Define the type of data to be copied as follows: = 00 - Only attribute characters are copied. = 01 - Attribute characters and unprotected alphameric fields (including nulls) are copied. Nulls are transferred for the alphameric characters not copied from the protected fields. = 10 - All attribute characters and protected alphameric fields (including nulls) are copied. Nulls are transferred for the alphameric fields (including nulls) are copied. Nulls are transferred for the alphameric fields (including nulls) are copied. Nulls are transferred for the alphameric characters not copied form the uppresented fields.
	= 11 - The entire contents of the storage buffer (including nulls) are copied.

Figure 3-4. Copy Control Character (CCC)

Select Command

Select is an immediate command executed only by the 3272; it is invalid for the 3271 and 3275. The 3272 executes a Select command by performing a device-to-3272 buffer transfer. If not preceded by a Select command, this same buffer transfer operation is performed as part of an initial (unchained) Write, Read Modified, or Read Buffer command.

The advantages of Select command usage are realized when the 3272 is attached to a block multiplexer channel or to a byte multiplexer channel operating in forced burst mode for the complete data transfer. Upon receipt of Select, the 3272 sends Channel End as initial status to the channel. This frees a block multiplexer channel to perform other operations. Upon successful completion of the buffer transfer, the 3272 sends Device End status asynchronously to the channel. Upon receipt of this status by the channel, a chain operation to the desired command (Write, Read Modified, or Read Buffer) must be initiated for effective use of the Select command. Note that device-to-3272-buffer-transfer time is not part of the execution time for this command.

At the conclusion of the command following the Select command, the 3272 again issues Device End status. At this point, the channel may chain to another command of the same type or it may disconnect. If a chaining operation is performed, another Select command is unnecessary since the addressed-device buffer contents are already in the 3272 buffer.

Thus, the Select command is used to separate the device-to-3272 buffer transfer operation portion of a Write, Read Modified, or Read Buffer command from the actual execution of the command. By doing so, the channel can use the buffer transfer time for other operations.

Erase All Unprotected Command

This command performs five functions at the addressed device:

- 1. Clears all unprotected buffer character locations to nulls.
- 2. Resets to 0 the MDT bit for each unprotected field.
- 3. Unlocks the keyboard.
- 4. Resets the AID byte.
- 5. Repositions the cursor to the first character location in the first unprotected field of the buffer.

If the entire buffer is protected, buffer data is not cleared and MDT bits are not reset. However, the keyboard is unlocked, AID is reset, and the cursor is repositioned to buffer address 0.

If the first unprotected field wraps the buffer, the cursor is positioned to buffer location 0.

In local configurations, Erase All Unprotected is an immediate-type command. Upon acceptance of this command, the 3272 goes *busy* and sends Channel End initial status to the channel. Upon successful completion of this command, the 3272 sends Device End status asynchronously to the channel and then goes *not busy*.

Programming Restriction: Erase All Unprotected should not be chained to a Write, Erase/Write, or Copy command. If it is, the resulting operation is not defined.

This command is valid for the 3272 only. It performs no functional operation in the 3272, but may be used to retrieve pending status. No Operation is an immediate command, and therefore Channel End and Device End normally will be presented as initial status unless pending status or a busy condition exists.

Sense Command

Sense is valid for the 3272 only. It should be issued in response to Unit Check status for further definition of the Unit Check condition. The 3272 responds to a Sense command by sending one byte of sense data to the channel and resets the sense register when the channel accepts the Device End (DE) for the command. All commands, except No Operation or Test I/O (command code X'00'), reset the sense register immediately when the command is issued, including a Sense command to a different address for which the sense data is pending. For this reason, the 3272 in a multiple-program environment may, at times, respond with zero sense data even after a unit check.

The sense byte configuration is as follows:

CR	IR	BOC	EC	DC	US	СС	ос
0	1	2	3	4	5	6	7

Figure 3-5 summarizes the significance of each sense bit. The various sense and status bit combinations are described in Figures 4-5, 4-6, and 4-7.

Bit	Name	Significance
0	Command Reject	Set if the 3272 has received an invalid command; the valid commands are listed in Figure 3-1.
1	Intervention Required (IR)	Set if a command other than Sense was addressed to a device that is unavailable or <i>not ready</i> .
2	Bus Out Check (BOC)	Set if the 3272 has detected bad parity on any command or data byte received from the channel.
3	Equipment Check (EC)	Set if (1) the 3272 has asynchronously detected a parity check on data received from a device in response to an internal poll for attention status (the internal poll is tried twice before EC is set), or (2) a printer error occurs. If this is a device-detected condition, Unit Specify is also set.
4	Data Check (DC)	Set if (1) the 3272 or a device has detected bad parity on data transferred internally or between the 3272 and a device during command operations, (2) a 3277 has detected a cursor check, or (3) a device has detected a buffer check. If this is a device-detected condition, Unit Specify is also set.
5	Unit Specify (US)	Set if the sense bits resulted from a device-detected error.
6 1992/4	Control Check (CC)	Set when the 3272 has detected a timeout condition. (The addressed device fails to perform a specified operation or respond to the 3272 within a specified period of time.)
7 * * *	Operation Check (OC)	 Set when the 3272 has received a valid command or order that it cannot execute, as follows: 1. SBA, RA, or EUA order specifies an illegal buffer address. 2. Write data stream ends before all required bytes of SBA, RA, EUA, or SF order sequence are received. 3. Write, or Erase/Write with Start Print bit set in WCC, is chained to the next command; the print operation is suppressed.

Figure 3-5. Sense Bit Description

Orders

Orders can be included in Write or Erase/Write command data streams, either alone or intermixed with display or print data. Two types of orders are available: printout format orders and buffer control orders. Printout format orders are initially stored in the buffer as data and are subsequently executed only during a print operation. (These orders are described under "Printer Operations" in Chapter 2.)

The following paragraphs describe buffer control orders, which are executed as they are received in the write data stream by the 3271, 3272, or 3275; these orders are not stored in the buffer. Six buffer control orders (see Figure 3-6) are provided (1) to position, define, and format data being written into the buffer, (2) to erase selected unprotected data in the buffer, and (3) to reposition the cursor.

Start Field (SF) Order

This order identifies to the CU that the next byte in the write data stream is an attribute character. (The attribute character is described in Figure 2-8.) The CU always stores the next byte as the attribute character at the current buffer address. As the attribute character is stored, the CU sets a control bit at that address; this bit identifies the byte as an attribute character during subsequent program or device operations with the buffer data.

During execution of a Read Buffer command, the CU automatically inserts SF order codes in the read data stream immediately before each attribute character. This permits identification of the attribute characters by the program and also permits correct storage of attribute characters in the buffer if the read data is used for subsequent write operations.

Order Sequence	Byte 1 (Order Code)				
Order	EBCDIC (Hex)	ASCII (Hex)	Byte 2	Byte 3	Byte 4
Start Field (SF)	1D	1D	Attribute Character ¹		
Set Buffer Address (SBA) (Starting Address)	11	11	1st Address Byte ²	2nd Address Byte ²	
Insert Cursor (IC)	13	13			
Program Tab (PT)	05	09			
Repeat to Address (RA) (Stop Address)	3C	14	1st Address Byte ²	2nd Address Byte ²	Character to Be Repeated ³
Erase Unprotected to Address (EUA) (Stop Address)	12	12	1st Address Byte ²	2nd Address Byte ²	

¹ Figure 2-8 shows the attribute byte, and Figure 2-7 shows the coding of this byte.

² Appendix B lists the 2-byte code for each possible address. To be valid, an address must not exceed 479 (if issued to a Model 1) or 1,919 (if issued to a Model 2).

³ Figures 2-5 and 2-6 show the coding of this byte.

Figure 3-6. Buffer Control Orders and Order Codes

This 3-byte order specifies a new buffer address from which write operations are to start or continue. Set Buffer Address orders can be used to write data into various areas of the buffer. An SBA order can also precede another order in the data stream (1) to specify the starting address for a PT, RA, or EUA order, (2) to specify the address at which an attribute byte is to be stored by an SF order, or (3) to specify the address at which the cursor is to be repositioned by an IC order.

Programming Note: Every text message to a 3275 must have an SBA order immediately following the WCC to enable recovery from a line error.

If the SBA order specifies an invalid address (greater than 479 if Model 1 or 1919 if Model 2), the write operation is terminated at this point.

When a Read Modified command is executed and an attribute character (initially sent to the device by writing an SF order) is detected with the MDT bit set, the CU inserts, in place of the attribute, an SBA code followed by the 2-byte buffer address of the first character in the modified field (attribute address +1). This permits identification by the CU of fields that are modified. When a Read Modified command is executed in a remote 3270 unit, this 3-byte sequence is always sent in the same text block. Remote 3270 units do not split this sequence between two successive blocks.

Insert Cursor (IC) Order

Program Tab (PT) Order

This order repositions the cursor to the location specified by the current buffer address. Execution of this order does not change the current buffer address. For example, if IC is issued when the current buffer address is 160 and the cursor is at location 80, the cursor is removed from location 80 and inserted at location 160. The current buffer address at the end of this operation would remain 160.

The PT order advances the current buffer address to the address of the first character position of the next unprotected field. If the PT is issued when the current buffer address is the location of an attribute byte of an unprotected field, the buffer address advances to the next location of that field (one location). In addition, if the PT order in the write data stream does not follow a control command, order, or order sequence such as WCC, IC, or RA (3-character sequence), nulls are inserted in the buffer from the current buffer address to the end of the field, regardless of the value of bit 2 (protected/unprotected) of the attribute character for the field. When the PT order follows a control command, order, or order sequence, the buffer is not modified.

The PT order stops its search at the last location in the buffer. If an attribute character for an unprotected field is not found by this point, the buffer address is set to location 0. (If the PT order finds an attribute character for an unprotected field in the last buffer location, the buffer address is also set to zero.)

To continue the search for an unprotected field, a second PT order must be issued immediately following the first one. Since the current buffer address was reset to 0 by the first PT order, the second PT order begins its search at buffer location 0. If the previous PT order was still inserting nulls in each character location when it terminated at the buffer location, the new PT order will continue to insert nulls from buffer location 0 to the end of the current field. **Programming Restriction (for Remote Operations):** Successive PT orders, without intervening characters or other orders (not including the Insert Cursor order), should not be issued to a 3271 Model 2 Control Unit when the buffer (1) contains one unprotected field or (2) is unformatted. To do so may cause the Write command to be aborted and error status to be generated.

Repeat to Address (RA) Order

The RA order stores a specified alphameric or null character in all buffer locations, starting at the current buffer address and ending at (but not including) the specified stop address. This stop address and the character to be repeated are identified by the three bytes immediately following the RA order in the write data stream, as follows:

The third character following the RA order is always interpreted as the character that will be repeated. If an invalid stop address (greater than 479 if a Model 1, or 1919 if a Model 2) is specified, the write operation is terminated at this point without storing the character, and error status is generated.

When the stop address is lower than the current buffer address, the RA operation wraps from the bottom row of the buffer to the top row. When the stop address equals the current address, the specified character is stored in all buffer locations.

Attribute characters can be overwritten by the RA order if they occur before the RA order stop address.

Programming Note: If the RA order specifies X'ID' to indicate a 2-byte character code (for the Data Analysis/APL feature), only X'ID' is repeated.

Programming Restriction (for 3271 and 3275 Only): If the RA order specifies storing a character in more than 480 locations, the write operation may be aborted and error status generated.

Erase Unprotected to Address (EUA) Order

The EUA order inserts nulls in all unprotected buffer character locations, starting at the current buffer address and ending at, but not including, the specified stop address. This stop address is specified by two address bytes, which immediately follow the EUA order in the write data stream. If an invalid address (greater than 479 if a Model 1, or 1919 if a Model 2) is specified, the write operation is terminated at this point, no erasure (insertion of nulls) occurs, and error status is generated.

When the stop address is lower than the current buffer address, the EUA operation wraps from the bottom row of the buffer to the top row. When the stop address equals the current address, all unprotected character locations in the buffer are erased.

Attribute characters are not affected by the EUA order.

Chapter 4. Local Operations (3272 Models 1 and 2)

Introduction

The 3272 Control Unit Models 1 and 2 can attach to a selector channel, a byte multiplexer channel, or a block multiplexer channel, each through the I/O interface (Figure 4-1). When it is attached to a byte multiplexer channel, operations can be in forced-burst mode or in single-byte-multiplex mode. The channel, in turn, is attached to main storage and to the central processing unit (CPU).

The channel program controls all control unit operations by transmitting information across the I/O interface. This information consists of (1) an address byte, which selects one 3272 control unit and one device (display or printer) attached to the control unit, (2) command bytes, which specify the type of operation to be performed by the control unit for that device, (3) data bytes, which either are stored in the control unit buffer for ultimate use by the selected device as display or printout data or are decoded as orders and used by the control unit for formatting the buffer, and (4) various control signals. Status bytes, which are automatically generated by the control unit, inform the channel program (1) of the general condition of the control unit and selected device at various stages of command operations and (2) of unique conditions of the control unit and any attached device when command operations are not in progress.

Interface Operations

Selection

Local interface operations are summarized in the following paragraphs and are described in detail in the *IBM System/370 Principles of Operation* manual, GA22-7000. The CPU program initiates control unit operations with a Start I/O instruction. This instruction identifies the I/O control unit and device (in this case, the control unit and a display or printer) and causes the channel to fetch a channel address word (CAW) from a fixed location in main storage. The CAW designates the storage protection key and the location in main storage from which the channel subsequently fetches the first channel command word (CCW). The CCW specifies the command to be executed and the number and address, in main storage, of any bytes to be transmitted.

The channel attempts to select the control unit and an attached device by sending a unique address byte to the control unit (and to all other control units attached to the same channel or subchannel). When a control unit has 16 or fewer devices attached, the first four bits of the address byte specify the control unit address and the last four bits of the address byte specify the device address (Figure 4-2). Up to 32 devices can attach to control units that have even-numbered addresses; these addresses are coded as shown in Figure 4-3. Note that no more than 16 devices can be attached to a control unit that has an odd-numbered address. Device address must always be assigned sequentially, starting with address 0. However, no priority is given to any particular device address.

When a control unit recognizes both addresses, it logically connects to the channel and responds to the selection by returning the address byte to the channel.

Figure 4-1. Locally Attached 3270 Information Display System

4-2

	8-Bit Loc Address E	al Syte		Device No.	4567 (XXXX)
	Control Unit	Device		0	0000
Control Unit No.	0123	4567		1 2	0001 0010
0 1 2 3 4 5 6 7 8 9 10 11	0000 001 0011 010 011 0100 0111 1000 1001 1010 1011	XXXX XXXX XXXX XXXX XXXX XXXX XXXX XXXX XXXX		3 4 5 6 7 8 9 10 11 12 13 14	0011 0100 0101 0110 1000 1001 1010 1011 1100 1101 1110
12 13 14 15	1100 1101 1110 1111	XXXX XXXX XXXX XXXX			
15	1111	xxxx]		

Figure 4-2. 3272 and Device Addressing - 16 or Fewer Devices per Control Unit

	8-Bit Local Address Byte		Device No.	34567 (XXXXX)	Device No.	34567 (XXXXX)
	Control Unit	Device	0	00000	16	10000
Control			1	00001	17	10001
Unit No.	012	34567	2	00010	18	10010
	1 1		3	00011	19	10011
0	000		4	00100	20	10100
2	0.01	XXXXX	5	00101	21	10101
4	010		6	00110	22	10110
6	011		7	00111	23	10111
8	100		8	01000	24	11000
10	101	XXXXX	9	01001	25	11001
12	110	XXXXX	10	01010	26	11010
14	1111	XXXXX	11	01011	27	11011
			12	01100	28	11100
		1	13	01101	29	11101
			14	01110	30	11110
			15	01111	31	11111
			· · · ·			
				- 1		Ť
				1		
		L				

Note: Control Unit Nos. 1, 3, 5, 7, 9, 11, 13, and 15 cannot be assigned when attached devices are assigned Device No. 16 or greater.

Figure 4-3. 3272 and Device Addressing - 17 or More Devices per Control Unit

Command Initiation

Command operations by the control unit start when the control unit and a device are successfully selected. When a command is to be executed by the control unit (not by the channel alone), the channel sends the command code (CCW bits 0-7) to the control unit.

When execution of the command involves a transfer of data (such as Write or Read Modified), the control unit responds to the command with a status byte (called *initial* status) indicating whether it can execute the command. If the command can be executed, the channel is set up to respond automatically to service requests from the control unit, and the control unit assumes further control of the operation. Command operation can be terminated by the control unit or when the channel byte count reaches 0. At this time, the control unit sends the channel a second status byte (called *ending* status), which indicates whether the command operation was successfully performed.

When the function of the 3270 command does not involve the transfer of data (such as EAU), it is called an *immediate* command. The resulting control unit operation depends on the particular command, as follows. If the command is No Operation, ending status and initial status are combined to indicate to the channel that the control unit has completed execution of the command. If the command is Select or Erase All Unprotected, which initiate certain control unit and device operations, the initial status from the control unit is such that block and byte multiplexer channels are released to perform other operations (selector channels remain logically connected to the control unit). When command execution is completed by the control unit and selected device (and regains selection if attached to a block or byte multiplexer channel), the control unit sends ending status to the channel, indicating whether the command was successfully performed.

Chaining

When the channel has completed the operations specified by a CCW, it can continue the activity initiated by the Start I/O by fetching a new CCW, thereby starting execution of another command. The fetching of this new CCW is called *command chaining*, and the CCWs belonging to such a sequence are said to be chained. All CCWs in a chain apply to the control unit and device specified by the Start I/O instruction.

Either of two types of chaining can be specified by the current CCW (bits 32 and 33): data chaining or command chaining. During data chaining (current CCW bit 32=1), the new CCW fetched by the channel defines a new main storage area (data address) for the current command. During command chaining (current CCW bit 33=1), the new CCW specifies a new command and a data address for that new command.

Thus, when command chaining is used, the control unit is selected following the Start I/O instruction when the channel receives the first CCW in the chain that involves operations with the control unit. The control unit is dedicated to one CCW string until final channel-end time or until operations are abnormally terminated. Programming restrictions that must be observed when command chaining is used are described in Chapter 3, "Commands and Orders."

Status

The control unit generates a status byte to inform the channel of certain control unit and device conditions. This status byte can be generated synchronously (while the control unit is selected and performing a command operation with the channel) or asynchronously (while the control unit is not selected).

Synchronous status is passed to the channel as both *initial* and *ending* status to a command. Initial status reflects the condition of the selected device and/or control unit upon receipt of a command and indicates to the channel whether the command can be executed. Ending status reflects the condition of the control unit and selected device after all channel/3270 interface operations of a nonimmediate command are completed. Asynchronous status reflects (1) ending status for an immediate command other than No Operation, (2) a second ending status for a Write, Erase/Write, or Erase/Write Alternate command, indicating that the control-unit-to-device-buffer transfer is completed, or (3) an equipment condition or operator action not associated with command execution (an attention).

Figure 4-4 describes each bit of the status byte. Status is reset by the control unit once it has been accepted by the channel.

Bit	Name	Condition
0	Attention (A)	Indicates a request for services from a 3277 attached to a 3272. Set by certain keyboard, selector-pen, or card-reader activity at a 3277 (Figure 3-2). The program should respond by issuing a Read Modified command (chained from a Select command if block or byte multiplexer channel) to the 3277 requesting attention. The attention bit is also set with the Unit Check bit as a result of an asynchronously detected equipment malfunction; in this case, the program should respond by issuing a Sense command.
. 1	Status Modifier (SM)	Is set, with Busy bit, in initial status byte to indicate that there is pending status for a device other than the one selected.
2	Control Unit End (CUE)	Is set following a busy condition, after pending status is cleared or when control unit is no longer busy, to indicate that control unit is now not busy and is free to accept a new command.
3	Busy (B)	Is set alone in initial status byte when addressed device is busy because it is performing a print operation or an Erase All Unprotected command. Set with SM when addressed control unit is busy. When the channel addresses a device other than the one that is busy and control unit is not busy, addressed device becomes selected and the command is honored. Busy bit is also set with pending status if addressed device has such status; if pending status is for a device other than the one addressed, Status Modifier bit is also set.
4	Channel End (CE)	Indicates channel data transfer operations are completed. Is set alone (1) in initial status for Select or Erase All Unprotected command, or (2) as ending status for Write, Erase/ Write, or Erase/Write Alternate command; in all cases, Device End status is sent asynchronously when device operations (command execution or control-unit-to-device- buffer transfer) are completed.
		Is set with Device End, to indicate that control unit and device operations (except printing) are completed (1) in initial status for No Operation command, (2) in ending status for Read Buffer, Read Modified, or Sense command, or (3) asynchronously if only Channel End status was pending and the device operation is completed before the channel accepts status.
		Is set with Device End and Unit Exception in initial status for Read or Write command if addressed device is busy executing another command.
5	Device End (DE)	Indicates that control unit and device have completed all command operations and are free to execute another command. Is set (1) in initial status for No Operation command, (2) in ending status for Read Buffer, Read Modified, or Sense command, and (3) in asynchronous status for Write, Erase/Write, Erase/Write Alternate, Select, or Erase All Unprotected command.
6	Unit Check (UC)	Is set when an irregular program or equipment condition is detected by control unit or the device. Program should always respond to Unit Check status by issuing a Sense command for further definition of condition.
7	Unit Exception (UE)	Is set in ending status (synchronous or asynchronous) when control unit has attempted to execute a command but has found, after initial status was returned, that addressed device was busy.

Figure 4-4. Status-Byte Bit Assignments for 3272

Initial status is generated by the control unit in response to initial selection, by the channel, of the control unit and an attached device. During the initial selection sequence, the status byte is sent to the channel after the control unit receives a command.

Figure 4-5 shows the possible initial status bit configurations. An all-zero status byte is sent when a nonimmediate command is accepted for execution by the control unit; it is also sent in response to Test I/O if other status is not pending. The unit-check bit is set if the command is not accepted by the control unit because of a program or equipment error.

Initial status to immediate commands is as follows. For No Operation, channel end and device end are both set to indicate completion of the command. For Select and Erase All Unprotected, which do not involve data transfer between the channel and the control unit, channel end is set. This frees a block or byte multiplexer channel for other operations while the command is being executed. When command execution is completed, ending status is presented asynchronously.

If a Start I/O Fast Release (SIOF) is executed by the channel, then unchained initial status becomes ending status. (See System/370 Principles of Operation, GA22-7000.)

Status ¹ (Hex)	Sense (Hex)	Display	Printer	Error-Recovery Procedure	Condition
All Zeros (00)		X	X		Normal status for any command other than No Operation, Select, or Erase All Unprotected.
CE (08)		X	×		Normal status for a Select or Erase All Unprotected command.
CE, DE (OC)		X	×		Normal status for a No Operation command.
UC (02)	BOC (20)	x	×	1	A parity check was detected on the command byte.
UC (02)	IR (40)	X	X	2	A command other than Sense was addressed to a device that the con- trol unit has recorded as <i>unavailable</i> or <i>not ready</i> .
UC (02)	CR (80)	X	x	3	An invalid command was issued to control unit.
UC (02)	None . (00)	x	×	1	3272 sense data was reset by a command to another device on the control unit.
B (10)		X	×		Response to a command addressed to a device that is being serviced by the control unit or that is completing a command previously issued.
B, SM (50)		×	x		Response to a command addressed to a device other than a device whose status is pending or a device being serviced by the control unit.

¹ If an SIOF is executed by the channel, unchained initial status becomes ending status.

Figure 4-5. Initial Status and Sense Conditions for 3272
When status is pending (a previous status byte is awaiting transfer to the channel), the pending status byte, with the busy bit set, is sent to the channel in response to any command (not to a Test I/O instruction), and that command is not accepted by the control unit. For Test I/O, the pending status byte is presented without the Busy bit set. If the pending status is for a device other than the one selected during the initial command sequence, only busy, status modifier (B, SM) is presented to the channel and the pending status is retained at the control unit.

Ending Status

When the control unit completes channel operations for a nonimmediate command, it sends an ending status byte to the channel, freeing the channel for other operations. This status byte always relates to the command operation that has been executed. The normal ending status byte for a Read Buffer, Read Modified, or Sense command will have only the channel-end and device-end bits set, indicating that the command has been executed. Normal ending status for a Write, Erase/Write, or Erase/Write Alternate command is channel end alone. When the control-unit-to-device-buffer transfer is completed, ending the command operation, device-end status is sent to the channel as asynchronous status. Any error condition associated with the operation just executed will cause additional status bits to be set. Figure 4-6 shows the possible ending status bit configurations. Ending status causes an I/O interruption unless chaining is specified.

When the control unit has pending status, it attempts to gain selection of the channel asynchronously to pass this status. It is passed to the channel either when selection is accomplished or as initial status for the next command (with the busy bit set), whichever occurs first.

Asynchronous Status

Asynchronous status reflects (1) the ending status of an "immediate" command other than No Operation, (2) the second ending status for a Write, Erase/Write, or Erase/Write Alternate command, indicating that all command-initiated operations are completed, (3) an action by the device operator that requires program intervention (attention status), or (4) a control-unit or attached-device equipment malfunction. Figure 4-7 shows the possible asynchronous status bit configurations.

When an asynchronous status condition occurs, the control unit attempts to gain selection by the channel (this is a hardware function) and passes this status to the channel when selection is accomplished. This status is called *pending* status until selection is accomplished. If the channel issues a command before retrieving this pending status, the pending status is returned, with the Busy bit set, in place of initial status for the command; in this case, the command is not executed, unless it is a Test I/O instruction.

When an asynchronous condition occurs at a device while the control unit is performing command operations with another device, the asynchronous status remains pending until the control unit completes the current command operation, returns ending status to the channel, and becomes not busy. The control unit then retrieves the pending status from the device and attempts to present it to the channel in the same manner as other asynchronous statuses.

Some other conditions of multiple status that can occur are not covered here. These conditions can be caused by multiple error conditions occurring simultaneously.

Status (Hex)	Sense (Hex)	Display	Printer	Error-Recovery Procedure	Condition
CE ¹ (08)		X	x		Sent at end of data stream on Write, Erase/Write, or Erase/Write Alternate command.
CE, DE ^{1,2} (0C)		X	×		Sent at end of data stream on a Read Buffer, Read Modified, or Sense command or when channel byte count goes to zero on a Read Modified or Read Buffer command.
CE, DE, UC ² (0E)	BOC (20)	X	X	10	The control unit detected a parity error on a character in data stream of a Write, Erase/Write, or Erase/Write Alternate command. ³
CE, DE, UC ^{1,2} (0E)	DC, US (0C)	x		1	Addressed device detected a parity or cursor check during a Write, Read Buffer, or Read Modified command.
CE, DE, UC ^{1,2} (0E)	DC (08)	X	×	1	The control unit detected a cursor or parity check during receipt of data stream on a Write, Erase/Write Alternate, or Erase/Write command.
CE, DE, UC ^{1,2} (0E)	DC (08)	X	×	10	The control unit detected a cursor or parity check during transmission of data stream on a Read Buffer or Read Modified command.
CE, DE, UC ^{1,2} (0E)	CC (02)	×	×	10	Addressed device failed to respond in a specified period of time to an Erase/Write, Erase/Write Alter- nate, unchained Read Buffer, Read Modified, or Write command.
CE, DE, UC ² (0E)	OC (01)	×	×	3	The 3272 received an invalid buffer address in data stream of a Write, Erase/Write, or Erase/Write Alter- nate command, or data stream ended before providing all characters required for an SBA, RA, SF, or EUA order on a Write, Erase/Write, or Erase/Write Alternate command.
CE, DE, UC ² (0E)	None (00)	×	×	1	3272 sense data was reset by a command to another device on the control unit.
CE, DE, UE ^{1,2} (0D)		×	×	9	The control unit attempted to perform Read Buffer, Read Modified, Write, Erase/Write, or Erase/Write Alternate command but found, after returning initial status, that the addressed device was busy.

¹Occurs if a Start I/O Fast Release (SIOF) is executed by the channel for Select, Erase All Unprotected, or No Operation.

² If this status is stacked by the channel, CUE could be generated and combined with it before the stacked status is accepted by the channel.

 3 The 3272 updates the device buffer after the total data stream has been processed.

Figure 4-6. Ending Status and Sense Conditions for 3272

Status ¹ (Hex)	Sense (Hex)	Display	Printer	Error-Recovery Procedure	Condition
A (80)		X			An attention-generating action (e.g., program access key has been depressed) was performed by the operator.
DE (04)		x	×		The control unit-to-device buffer transfer is completed on a Write, Erase/Write, or Erase/Write Alternate command which did not start a printer. The device becomes "not busy" after completing an Erase All Unprotected command or the printer becomes
					"not busy" after completing a printout. The device-to-control unit buffer transfer is completed on a Select command.
					A device changes from "not available" to "available" or from "not ready" to "ready". A device becomes "not busy" after having previously
					sent Unit Exception when the control unit attempted to execute a command with the device when it was "busy". The 3272 Online/Offline switch is thrown from Offline to Online. This causes each "available" device to present a Device End to the channel.
A, DE (84)		x			The 3272 Online/Offline switch is thrown from Offline to Online and an attention-generating action (e.g., program access key has been depressed) was performed by the operator.
A, UC ² (82)	EC (10)	x	x	5	An idle 3272 polled a device twice and detected a "transmit" parity check each time on the data in the device reply.
A, UC ² (82)	DC, US (0C)	x	×	1	An idle device detected a parity check or cursor check in its buffer.
A, DE, UC ² (86)	DC, US (0C)	X 1. 1. 1. 1. 1. 1. 1. 1.	X	4 or 8	A device on a 3272 changes from "not available" to "available" or from "not ready" to "ready" and has detected a parity check or cursor check in its buffer or a printer detected parity check while printing.
A, DE, UC ² (86)	IR (40)		×	6	The addressed printer became Not Ready (out of paper or cover open) before completion of a print operation.
DE, UC ² (06)	IR (40)		×	6	A command attempting to start a printer found it Not Ready.
A, DE, UC ² (86)	IR, EC, US (54)		X	6	A printer became mechanically disabled during a printout and an automatic recovery was not successful, the printer CARRIAGE MOTOR POWER switch was off, or the switch fuse was blown.
DE, UC ² (06)	IR, EC, US (54)		x	6	A command attempted to start a print operation, but the printer CARRIAGE MOTOR POWER switch is turned off.
A, DE, UC ² (86)	EC, US (14)		×	7	A printer character generator or sync check error occurred or the printer became mechanically disabled during printout, but restored itself.
DE, UC ² (06)	DC (08)	x	×	10	During a Select, Erase/Write, or Erase/Write Alternate command the control unit (1) detected a parity or cursor error, or (2) detected a parity check on data received from the addressed device in response to an internal poll during a command.

Figure 4-7 (Part 1 of 2). Asynchronous Status and Sense Conditions for 3272

ţ

Status ¹ (Hex)	Sense (Hex)	Display	Printer	Error-Recovery Procedure	Condition
DE, UC² (06)	DC (08)	x	x	1	During a Write command, the control unit (1) detected a parity or cursor error, or (2) detected a parity check on data received from the addressed device in response to an internal poll during a command.
DE, UC ² (06)	DC, US (OC)	x	X	1	The addressed device detected a parity or cursor check while executing a Select, Write, Erase/Write, Erase/Write Alternate, or Erase All Unprotected command.
DE, UC ² (06)	OC (01³)	x	x	3	A Write, Erase/Write, or Erase/Write Alternate com- mand, containing a WCC with a Start Print bit, is chained to a subsequent command
DE, UC ² (06)	CC (02)	x	x	10	The addressed device failed to respond in a specified period of time to a Select, Write, Erase/Write, Erase/ Write Alternate, or Erase All Unprotected command, a display was in test mode, or a printer was assigned as a local copy device. (UC, IR will be reported on a subsequent operation.)
DE, UE (05)		x		9	The control unit attempted to perform a Select or Erase All Unprotected command, but found, after returning initial status, that the addressed device was busy.
CUE (20)		x	x		The control unit had been addressed while busy, but is now not busy and is free to accept a new command.

¹ If this asynchronous status is stacked by the channel, an asynchronous CUE could be generated and combined with it before the stacked status is accepted by the channel.

² If the 3272 sense byte is zeros after a unit-check status, it can be assumed to have been reset by an intervening command to another device on the control unit. Use error-recovery procedure 1.

³ The 3272 does not set OC upon receipt of a WCC=X'88'.

Figure 4-7 (Part 2 of 2). Asynchronous Status and Sense Conditions for 3272

Error-Recovery Procedures

3272 Device-Detected Errors

Error conditions detected by the control unit or by an attached device are indicated to the program by unit-check status. The program must respond to this status by using a Sense command for further definition of the condition. If a Sense command is not performed and the sense conditions still exist, the control unit will not honor any other interruptions from the devices. Subsequent recovery operations are then determined by the combined configurations of unit-check status bits and associated sense bits.

Figures 4-5, 4-6, and 4-7 list the initial, ending, and asynchronous status and sense bit combinations, respectively. The abbreviations used in these figures are as follows:

- Status Bits
- B Busy
 - CE Channel end
 - DE Device end
- SM Status modifier
- UE Unit exception
- UC Unit check
- Sense Bits
 - BOC Bus out check
 - CC Control check
 - CR Command reject
 - DC Data check
 - EC Equipment check
 - IR Intervention required
 - OC Operation check
 - US Unit specify

Recommended Procedures

The procedures referred to in the Error-Recovery Procedure column of Figures 4-5, 4-6, and 4-7 are as follows:

- Reconstruct the entire buffer image, and retry the failing chain of commands. The sequence of commands used to reconstruct this image should start with an Erase/ Write command. If, after two retries, the problem is not corrected, follow procedure 4.
- 2. The error indicates the device is *unavailable*. Request and wait for operator intervention to *ready* the device; then, upon receipt of DE status, retry the chain of commands.
- 3. A nonrecoverable program error has occurred. Examine the data stream to locate the problem.
- 4. Request maintenance for the device that is giving trouble. After the repair, reconstruct the buffer image, starting with an Erase/Write command.
- 5. Record the error for future reference, and continue with the program. This error occurred while the control unit was *idle* and does not indicate a data error.
- 6. The error indicates the printer is out of paper, has the cover open, or has a disabled print mechanism. Request operator intervention to ready the printer; then, upon receipt of DE status, retry the print operation by issuing a Write command with the proper WCC and no data stream. (There is no data error; the data is still intact in the device buffer and can be reused.) If this procedure is unsuccessful, follow procedure 1.

- 7. The error occurred during a printout and indicates either a character generator or sync check error or a disabled print mechanism. There is no buffer data error. The proper error-recovery procedure is application-dependent, because the user may or may not want a new printout. Since the buffer contents are still good, procedure 6 may be followed.
- 8. A data error occurred at the device during a printout. Follow procedure 1.
- 9. A device is busy but the control unit was not informed of this in time to respond with busy status in the initial-status byte. A DE status will be generated asynchronously when the device becomes not busy. After the DE is received, retry the chain of commands that was being executed when the unit-exception (UE) status was received.
- 10. Retry the failing chain of commands. If, after two retries, the problem is not corrected, follow procedure 1.

Channel-Detected Errors

Errors detected by the channel are indicated to the program by the channel status byte in the channel status word (CSW). If the channel status byte indicates a channel control check, an interface control check, or a channel data check, the recommended errorrecovery procedure is to retry the chain of commands. If the problem is not corrected after three retries, request maintenance for the channel that is giving trouble.

Introduction

When using binary synchronous communications (BSC) operating mode, the 3271 Model 1 and 2 and 3275 Model 1 and 2 units can communicate with the program via an IBM 2701, 2703, 3704, 3705, or an equivalent integrated communications adapter (hereafter called *TCU*) and appropriate data sets as specified for the control unit.

Note: In the following paragraphs, the term 3270 CU is used in statements that apply to the 3271 and 3275 BSC units. If a statement applies to only one 3270 unit, the appropriate unit number is used.

The 3270 CU uses BSC procedures over duplex or half-duplex facilities (nonswitched or privately owned); these communications use the Multipoint Data Link mode of operation only. A 3275 with the Dial feature uses the BSC point-to-point data link procedure over a switched line.

Code Structures

Each 3270 CU can operate with one of two code structures: extended binary-coded decimal interchange code (EBCDIC) or American National Standard Code for Information Interchange (ASCII). The choice of code depends on the application. For system compatibility, however, the same code must be chosen for all units on a particular communication line.

Channel Program Concepts

In remote configurations, the TCU becomes the intermediary between the 3270 CU and the channel program. As such, the TCU, not the 3270 CU, executes channel commands and initiates I/O interruptions. At the start of each I/O operation involving the TCU, the Start I/O instruction addresses the TCU and a communication line attached to that TCU; it does not address an individual remote control unit on that line. Subsequent CCWs in the channel program initiate TCU operations; they specify TCU commands, not 3270 commands.

Selection of a 3270 CU and all subsequent command operations are specified by character sequences in TCU Write CCW data streams. Write CCW data to the TCU communication line selected by Start I/O can contain (1) address bytes to select a control unit on that line, (2) the code of a command (such as Erase/Write or Write) to initiate a control unit operation, or (3) orders and/or display/print data for the control unit buffer. In addition, this write data will contain the appropriate data-link control characters. Thus, all characters sent by the TCU to a 3270 CU, with the exception of SYN, pad, and BCC characters, originate from the data stream of a Write CCW addressed to the TCU.

Programming Note: All Write commands should be set for CCW chaining to a Read command when a response is expected. (This prevents a loss of data received by the TCU in response to Write command operations.) An exception to this requirement is the use of the Write command to issue EOT to the 3270.

Text Blocking

The 3270 CU performs inbound text blocking. Each block of data can contain a maximum of 256 test characters. Of that total, each block contains the STX and ETB (or ETX) data link control characters. Two address bytes (CU poll address and device

address) precede the read heading in the first block only and are included in the 256character total. The last block of a message is terminated with ETX, which is also included in the 256-character total.

Programming Note: If the automatic polling facility (auto poll) is used by the TCU, the auto-poll index byte will add 1 byte to the text block created by the 3270 CU.

Block check characters (BCCs) are transmitted as the last characters of a data stream. (See "Redundancy Checking.") A BCC is not counted as text because it follows the ETX and ETB data link characters. Upon successful comparison of the received BCC with the accumulated BCC, the program should respond with ACK to read the next block of text; each subsequent block is preceded by STX to initiate BCC accumulation by the TCU.

Text blocking does not disjoin the 3-byte SBA order sequence (SBA code and 2-byte field address) generated during the execution of a Read Modified command. Therefore, the last characters of a block ending with an SBA sequence would be ... SBA, address, address, ETB (or ETX).

Related Publications

Readers who are unfamiliar with the binary synchronous method of communication should review the following publications, as applicable:

- General Information Binary Synchronous Communications, GA27-3004
- IBM 2701 Data Adapter Unit Component Description, GA22-6864 (especially the section that describes the Synchronous Data Adapter Type II)
- IBM 2703 Transmission Control Component Description, A27-2703 (especially the section on BSC capabilites)
- Introduction to the IBM 3704 and 3705 Communications Controller, GA27-3051

Multipoint (Nonswitched Line) Data Link Control

Each 3270 CU can operate on a nonswitched communication line with multiple stations. Time-sharing of the line is accomplished by interleaving transmissions between the TCU and all units on the line. A 3271 or 3275 (without the Dial feature) operates multi-dropped on the same line with other properly featured units, such as other 3270 units, IBM 2770s, and IBM 2780s. [Differences for a 3275 with the Dial feature are discussed under "Point-to-Point (Switched Line) Data Link Control."]

The TCU is the *control station* of the multipoint, centralized network. All units attached by communication lines to the TCU are called *tributary stations*. The control station is the focal point of the network and maintains, under program control, an orderly flow of network traffic by initiating all data transfers. The control station is either the transmitter or the receiver of every communication.

3270 Modes of Operation

In the multipoint environment, the 3270 CU is always in one of three modes of operation: control mode, text mode, or transparent-monitor mode.

Text Mode

Transparent-Monitor Mode

Redundancy Checking

The 3270 CU enters control mode whenever it transmits or receives a valid EOT sequence. While in control mode, the unselected 3270 CU monitors the communication line for the following:

- A valid selection or poll addressing sequence, by which the 3270 CU will become selected for entry into text mode.
- A DLE-STX sequence, placing the 3270 CU in transparent-monitor mode.

Once a 3270 CU is successfully selected, it enters text mode. In text mode, the 3270 CU is either a master station or a slave station, as is the TCU. This status depends on the operation being performed. The station that is transmitting a message is called the *master station*, whereas the station that is receiving and acknowledging the message is called the *slave station*.

The 3270 CU becomes the master station (and the TCU the slave station) once it sends STX to the TCU while executing a Read command or a poll operation. As the master station, it can (1) transmit text messages and (2) transmit ENQ to request a reply or retransmission from the TCU. After transmission of the message is completed, the 3270 CU returns to control mode.

The 3270 CU becomes the slave station (and the TCU the master station) when executing a write-type command. As a slave station, it responds appropriately to master-station (TCU) transmissions.

Transparent-monitor mode is provided with EBCDIC 3270 CUs only. It permits the transmission of data in any of the 256 possible EBCDIC bit patterns between the TCU and another unit on the same communication line with the 3270 CU. This data may be independent of the selected transmission code (EBCDIC). Examples of such format-independent data are packed-decimal data, programs (both source and object), core images, and other binary data. Thus, link control characters within this data will not inadvertently initiate a 3270 CU operation.

When an EBCDIC 3270 CU decodes a DLE STX sequence while in control mode, it enters transparent-monitor mode. While in this mode, the 3270 CU disregards *all* data configurations that may appear on the communication line except for (1) a transparent text sync sequence (DLE SYN) or (2) a transparent text-terminating sequence (DLE ITB, DLE ETX, DLE ETB, or DLE ENQ). The 3270 CU leaves transparent-monitor mode and returns to control mode (1) if a transparent text sync sequence is not received within any 3-second period or (2) if a transparent text-terminating sequence is decoded.

A redundancy check is performed on the following communication line data:

- 3270 CU command-sequence characters (including the write data of a Write, Erase/ Write, or Erase/Write Alternate command).
- Data transmitted to the TCU in response to a read-type command or to a polling sequence.

A BCC is accumulated for each block of data at both the TCU and the 3270 CU. If EBCDIC code is used, a 2-byte BCC is generated (cyclic redundancy check accumulation); if ASCII code is used, a 1-byte BCC is generated (longitudinal-redundancy-check accumulation). A. Stevenski and A. Stevanski, S. S. Stevenski, and A. Stevanski, and S. Stevenski, S.

BCC accumulation is initiated by, but does not include, the first STX or SOH framing character. All characters following this STX or SOH, up to and including the end-ofblock character (ETB or ETX), are part of the accumulation. Following the ETB or ETX character, the transmitting unit transmits its BCC character(s). The receiving unit then compares this character(s) with the BCC it has accumulated. If the redundancy accumulations are different, a transmission error has occurred.

When the 3270 CU is the receiving unit and detects a BCC error, it responds to the transmission by sending EOT (3275) or NAK (3271) to the TCU. When the TCU is the receiving unit, it sets unit check in the ending status for the TCU command being executed when the BCC error was detected; it also sets data check in the sense byte.

Note: BCC characters are removed from the data stream when received for comparison by the TCU or by the 3270 CU; they are not stored in main storage or in the 3270 CU buffer.

In both EBCDIC and ASCII, transmission formats (data-link controls) are rigidly screened so that communication is orderly and accurate. Improper transmissions are ignored or rejected to prevent the acceptance of faulty messages. Received or transmitted data blocks are counted odd-even-odd-even, etc., by both the transmitter and the receiver (by means of ACK 0's and ACK 1's), and their counts must agree at each block-check point.

Data-Link Control Characters

and a start of the second start of the second

Two types of characters are transmitted between the TCU and the 3270: CU data-link control characters and 3270 message data. Data-link control characters are used for such purposes as message framing, acknowledgment that received message data was valid or invalid, and identification of the start- or end-of-text transmission. Data-link control characters are used (singly or in sequences) by the TCU (under program control) and by the 3270 CU to establish and control all data-link operations in an orderly fashion. The 3270 message data consists of all address, command, order, and display/print characters sent to the 3270 CU and of all buffer data, AID bytes, and status/sense bytes read from the 3270 CU. Data-link control characters are described individually in the following paragraphs and are described with 3270 message data later in this chapter, under "Operational Sequences."

The data-link control characters, with their EBCDIC or ASCII codes, are as follows:

Data-Link		
Control Character	EBCDIC (hex)	ASCII (hex)
ACK 0 (2 bytes)	1070	1030
ACK U (2 Dyles)	1001	1030
ACK 1 (2 bytes)	1061	1031
DLE	10	10
ENQ	2D	05
EOT	37	04
ESC	27	1B
ETB	26	17
ETX	03	03
ІТВ	1F	1F
NAK	3D	15
RVI (2 bytes)	107C	103C
SOH	01	01
STX	02	02
SYN	32	16
TTD	022D	0205
WACK	106B	103B

All control characters transmitted by the TCU (except pad and SYN) are issued by the channel program as part of a TCU Write CCW data stream. All control characters transmitted by the 3270 to the TCU are generated by the control unit; a Read command to the TCU is used to store these characters (except pad and SYN) into main storage for subsequent analysis by the access method.

Pad characters, leading and trailing, are generated by TCU or 3270 CU hardware to ensure complete transmission or receipt of the first and last significant characters of each transmission.

Two consecutive SYN characters are generated by TCU or 3270 CU hardware to establish character synchronization. The TCU can also embed SYN characters in text for time-fill to maintain synchronization; the 3270 CU discards these SYN characters (does not store them in the buffer).

DLE is always the 1st byte in the following 2-byte control characters: ACK 0, ACK 1, WACK, and RVI. DLE is also used as the 1st character in several 2-character sequences that are used in transparent-monitor mode (described earlier in this chapter under "Transparent Monitor Mode").

ACK 0 is a 2-byte character:

- EBCDIC: 1070 (hex)
- ASCII: 1030 (hex)

ACK 0 is transmitted by the 3270 CU after a successful selection addressing (not poll) sequence to indicate to the TCU that the 3270 CU is ready to accept transmission. ACK 0 is also transmitted by the 3270 CU or by the TCU upon receipt and validation of an even-numbered (2nd, 4th, etc.) text block.

ACK 1 (Odd Acknowledge)

ACK 1 is a 2-byte character:

- EBCDIC: 1061 (hex)
- ASCII: 1031 (hex)

ACK 1 is transmitted by the 3270 CU or TCU upon receipt and validation of an oddnumbered (1st, 3rd, etc.) text block.

NAK (Negative Acknowledgment)

NAK is transmitted by the 3270 CU in response to a TCU text transmission that (1) terminates with ENQ, (2) has ENQ embedded in text, (3) has invalid BCC (3271), (4) contains a TTD sequence (STX ENQ), or (5) has ETX missing (3271). (The 3275 responds with EOT to a TCU text transmission that has invalid BCC or missing ETX.)

When NAK is received by the 3270 CU in response to a text transmission, the 3270 CU retransmits the last block of text.

Programming Note: The TCU should be programmed to respond with NAK to an ENQ (that ends a text block) from the 3270 CU; this NAK causes the 3270 CU to send EOT and retain the status for error recovery.

Pad

SYN (Synchronous Idle)

DLE (Data Link Escape)

ACK 0 (Even Acknowledge)

ENQ (Enquiry)

The 3270 CU transmits ENQ (1) to request a reply from the TCU following a 3-second timeout, (2) to request retransmission of the previous reply from the TCU, or (3) as the last character of a text message in which a data check was detected by the 3270 CU. (See "Programming Note" above.)

When the 3270 CU receives ENQ in response to a transmission, the last 3270 CU transmission to the TCU is repeated. The 3270 CU responds with NAK when ENQ is received (1) as the last character of a TCU-aborted text transmission, (2) embedded in text, or (3) as part of a TTD sequence (STX ENQ).

To be addressed successfully, the 3270 CU must receive ENQ as the last character of a polling or selection addressing sequence.

and the second second

WACK (Wait before Transmit)

WACK is a 2-byte character:

• EBCDIC: 106B (hex)

• ASCII: 103B (hex)

WACK is generated by the 3270 CU (1) in response to a selection addressing (not poll) sequence when a printer (attached to a 3270 CU) or a 3277 attached to a 3271 is busy, and (2) in response to a Write or Copy (3271) command text transmission when the Start Printer bit is set in the WCC or CCC. The 3270 CU responds with ENQ to a WACK from the TCU.

RVI (Reverse Interrupt)

RVI is a 2-byte character:

- EBCDIC: 1070 (hex)
- ASCII: 103C (hex)

RVI is generated by the 3270 CU in response to an attempted selection (not poll) by the TCU when the 3270 CU has a status and sense message to be transmitted. Whenever the 3270 CU accepts RVI from the TCU, the CU responds with EOT and resets all pending status and sense information.

STX (Start of Text)

The 3270 CU receives STX as the first character of a command or TTD sequence. The STX causes the 3270 CU to clear its BCC and start accumulating a new BCC (STX is not included in the accumulation). Subsequent STX (and SOH) characters are included in the BCC accumulation. STX is transmitted by the 3270 CU to the TCU as the 1st character of a read-data text block, except in a status or test-request message; this STX causes the TCU to start accumulating a new BCC (STX is not included in the accumulating a new BCC (STX is not included in the accumulation).

The 1st character in status and test-request messages is SOH, with STX following 2 header characters. With a message of this type, the TCU starts BCC accumulation upon receipt of the first SOH; the subsequent STX character is included in the BCC accumulation.

SOH (Start of Heading)

The 3270 CU generates SOH in a 3-character heading sequence that identifies the accompanying data as a status message (SOH, %, R, STX, ---) or as a test-request message (SOH, %, /, STX, data ---). The TCU starts BCC accumulation upon receipt of SOH (SOH is not included in the accumulation).

ETB (End of Transmission Block)

ETX (End of Text)

During a message transfer operation, ETB informs the receiving unit that BCC follows. The 3270 CU treats ETB as though it were ETX by checking BCC and then generating the appropriate response; the 3270 CU does not accept conventionally blocked outbound text.

During a message transfer operation, ETX informs the receiving unit that BCC follows. The 3270 CU transmits ETX at the end of the last (or only) block of a text message. Then, upon successful comparison of the received BCC with the accumulated BCC, the program should respond with ACK to the 3270 CU. If the BCC comparison is unsuccessful, the TCU interrupts the program (channel-end, device-end, and unit-check status, with data check set in the sense byte); the program should respond with NAK to the 3270 CU. Receipt of ETX by the 3270 CU initiates a BCC comparison, causes a line turnaround, and causes generation of an appropriate response to the TCU.

EOT (End of Transmission)

EOT is transmitted by the 3270 CU(1) when the 3270 CU is a slave station and is unable to perform an operation requested by the TCU, (2) when the 3270 CU is a master station, as normal termination of a read operation, (3) when the 3271 has completed general-poll operations with each attached device, (4) as an answer to RVI sent by the TCU, (5) when the 3275 in text mode has invalid BCC, or (6) when the 3275 ETX is missing. Line synchronization is dropped, and the 3270 CU is returned to control mode. Note that the program can also issue EOT to the 3270 CU in order to drop line synchronization and return the 3270 CU to control mode. EOT does not reset status and sense in the 3270 CU; therefore, it should not be sent as a response to a status message.

ITB (End of Intermediate Transmission Block)

The 3270 CU does not accept conventionally blocked text. However, to coexist on a BSC multipoint line on which ITB may be used, the 3270 CU includes the ITB and associated BCC in its own BCC accumulation but then removes them from the data stream so that they are not stored in the buffer. The 3270 CU does not perform a BCC comparison at that time, but continues the receive operations until ETB or ETX is decoded.

ESC (Escape)

ESC must precede the command code in each command-sequence data stream transmitted to the 3270 CU, as follows: STX, ESC, CMD, ----. The 3270 CU does not generate ESC.

TTD (Temporary Text Delay)

TTD is a 2-character sequence: STX ENQ. The 3270 CU responds to TTD by transmitting NAK to the TCU. The 3270 CU does not generate TTD. TTD may also be used by the master station to terminate an operation (that is, initiate a forward abort). The 3270 CU (slave station) will always respond with a NAK, expecting the master station to transmit EOT. In this case, the slave station interprets this sequence as a controlled forward abort rather than an end of transmission.

Operational Sequences (Nonswitched Line)

The following paragraphs describe the various data and control sequences that can be performed with the 3270 operating on a nonswitched line. Differences for a 3275 with a Dial feature are discussed under "Operational Sequences (Switched Line)." These sequences are divided into four categories:

- Specific and General Poll
- Selection addressing
- Write and control-type commands
- Read-type commands

The description of each category is associated with a sequence/response diagram, which shows (1) all 3270 CU responses to program-generated transmissions by the TCU and (2) normal program-handling of 3270 CU transmissions. These diagrams show the I/O supervisor/access method as examining each 3270 response to determine which operation to initiate next; for specific applications, however, additional use of command chaining in the channel programs may be desirable.

A selection addressing sequence selects a 3270 CU and an attached device for subsequent command operations. Polling sequences are selection sequences used specifically to obtain pending status at a device. Either a Specific Poll sequence requesting status from a particular device or a General Poll sequence sent to all devices may be executed.

Remote Chaining of 3270 Commands

For remote operations, 3270 command codes are included in the data stream of a Write CCW to the TCU. Remote chaining of 3270 commands is defined as the transmission of more than one command sequence to a 3270 CU following a single selection addressing or poll sequence. This chaining normally is accomplished with separate Write CCWs in the channel program. For example, the channel program could (1) write a selection addressing sequence and read the response for evaluation by the I/O supervisor/access method, (2) write a 3270 Write command and text block and read the 3270 response for evaluation, and then (3) write a 3270 Write command followed by a second text block and read the 3270 response for evaluation.

The program may chain 3270 commands following a selection addressing sequence, provided that the BSC rules governing limited conversational mode are observed. (Refer to *General Information – Binary Synchronous Communications*, GA27-3004.) The 3270 CU permits any valid command to be chained following a poll sequence; Read Buffer or Read Modified should not be chained, however, because the BSC rules for limited conversational mode (a maximum of two consecutive data transfers without an intervening ACK) will be violated.

Any 3270 command (except Erase All Unprotected) may be chained from a Write, Erase/Write, Erase/Write Alternate, or Copy command. However, if the Write, Erase/ Write, Erase/Write Alternate, or Copy command has started a print operation, the 3270 CU will abort the subsequent chained command (the print operation is completed normally).

General and Specific Poll Sequences

When a General or Specific Poll sequence is issued (Figure 5-1), one of three possible results occurs:

- If status and sense information is pending with or without an AID present, a status and sense message is generated.
- If status and sense information is not pending and an AID is present, a Read Modified command is executed.
- If there is no status or sense information or *no* AID pending, an EOT response is generated.

The conditions under which status and sense messages are transmitted are listed under "Error-Recovery Procedures."

Note: When a program attention key is pressed at a 3275 Display Station, and status is not to be sent, the display station screen will momentarily go blank while the AID character is accepted during the polling cycle and a read or write type command reply is sent.

Control unit and device address bytes transmitted for the General and Specific Poll sequences are as follows:

- General Poll address byte sequence:
- 3270 CU Poll Address (See Figure 5-2.)
 3270 CU Poll Address (See Figure 5-2.)
 7F (EBCDIC) or 22 (ASCII) Used in place of the 2
 7F (EBCDIC) or 22 (ASCII) device-address bytes
- Specific Poll address byte sequence:
- 3270 CU Poll Address (See Figure 5-2.) 3270 CU Poll Address (See Figure 5-2.)

Device Address For the 3275, this is always the address of device 0.

The selected 3270 CU remains selected at the completion of a poll operation so that the program can issue a Write, Erase/Write, Erase/Write Alternate, Copy, or EAU command without reselecting the 3270 CU and the device; command operations will be with (1) the device that was selected by Specific Poll or (2) the device from which a response was last received during the General Poll operation. Selection is dropped when the 3270 CU transmits EOT; the 3270 CU transmits EOT when the 3270 CU has no pending status or messages or after it receives NAK from the TCU in response to a message ending with ENQ.

Specific Poll addresses the 3270 CU and one device to determine whether status and sense information or a manually entered message is awaiting transfer to the TCU. The 3270 CU automatically transfers the pending status and sense information or message upon receipt of the Specific Poll addressing sequence.

General Poll addresses the 3270 CU and examines each attached device in sequence (starting at a random device address) to determine whether a status and sense or a manually entered message is awaiting transfer to the TCU. If a message is present, it is transferred to the TCU. Each message is accompanied by the address of the device from which it originated. The 3275 responds to a General Poll the same as a 3271 with one device attached.

Upon completion of this transfer, an ACK response from the program causes the 3270 CU to continue the General Poll operation, either by transferring another block of a text message or by examining other attached devices for pending messages. The program could issue a command rather than ACK to the device from which the message was just received, only after inbound blocks that end with ETX. Once the 3270 CU has examined all attached devices and has successfully transferred all pending messages, it generates EOT and returns to control mode. If the program wishes to terminate the General Poll, an RVI may be issued to the 3270, forcing an EOT response. A command issued rather than the ACK (after blocks that end with ETX) will also terminate the General Poll.

Figure 5-3 shows the message formats. The Test Request, Read Modified, and Short Read operations and the resulting data are described under "Read Modified Command" in Chapter 3. Note that a device address is not provided in the heading of a Test Request message. The operator must enter an address manually as part of the text, because the operator may specify the address of another device for test operations with the program.

The status and sense bits are described in this chapter under "Status and Sense (S/S) Bytes."

Selection Addressing Sequence

The selection addressing sequence (Figure 5-4) specifies a 3270 CU and an attached device in preparation for write-, control-, or read-type command sequences. It is similar in format to a Specific Poll sequence in that a CU address is sent, followed by a device

¹Only the critical framing characters (sync pattern and pad) are shown. All other framing characters are also hardware-generated as required. See *General Information - Binary Synchronous Communications*, GA27-3004, for a complete description.

Figure 5-1 (Part 1 of 2). General Poll and Specific Poll, Sequence/Response Diagram

Notes:

1 The 3270 CU will fail to respond to the addressing or polling sequence, causing a TCU timeout, for any of the following reasons:

- The 3270 CU is unavailable (has power off, is offline, or is not attached).
- The 3275 is unavailable to a Specific Poll sequence because the Security Keylock is in the off position.
- Any character in the polling sequence is invalid.
- The characters in the polling sequence are out of order.
- The polling sequence is incomplete (fewer than 7 characters).
- The 3270 CU address is incorrect in the write data stream.
- The addressed 3270 CU was left selected from the previous transmission.

2 There is no I/O pending or pending status. For General Poll, the CU sends EOT only after polling all devices.

The device response is a function of the kind of device and its status. Types of responses include Text, Status, and Test Request messages. (Refer to Figure 5-3.)

3271: For General Poll, the search for a response starts at some random device address and continues sequentially (as long as ACKs are received in response to text transmissions) until all devices are given the opportunity to respond.

Upon detection of an internal parity check or a cursor check, the 3270 CU (1) substitutes the SUB character for the character in error, (2) records Data Check status, and (3) transmits an ENQ in place of ETX (or ETB) and BCC at the end of the text block. The General Poll process is stopped.

5 Mandatory program response to a text block terminated in ENQ.

6 Terminates the operation. The nature of the error (parity or cursor check) does not warrant a retry. This response indicates that status and sense information is stored and that internal 3271/device polling is stopped. The status retrieval information included in Note 2 of Figure 5-6 applies.

TETB is used to frame each block of a blocked text message, except the last block. ETX is used to frame the last block of a blocked text message.

8 BCC error has been detected. The program issues NAK to cause the 3270 CU to repeat its last transmission.

9 Response issued by the program to terminate the operation if the TCU is unsuccessful in receiving a valid BCC following *n* attempts by the 3270 CU to transmit the message. This response does not cause the 3270 CU to reset its sense/status information. Therefore, the same status message will be transmitted if a Specific PolI is immediately issued to the same device.

This transmission must be a write or control-type command sequence (described in Figure 5-5). A read-type command would violate BSC standards on limited conversational mode.

3271: For General Poll, this transmission stops the polling operation. The General Poll must be reinitiated to ensure receipt of all pending device messages.

1 Positive acknowledgment. The text block has been successfully received by the TCU. The program issues ACK 1 in response to the first and all odd-numbered text blocks and issues ACK 0 in response to the second and all even-numbered text blocks. This response to a text block terminated in ETX turns on the 3275 SYSTEM AVAILABLE indicator.

12 Normal termination of a Specific Poll.

3271: Normal termination of a General Poll.

3275: No additional response is generated by the 3275 at the end of a General Poll.

13 The second and all succeeding text blocks are framed as the first except they do not include the 3270 CU/device address sequence.

14 RVI to terminate polling sequence.

15 Termination of polling sequence on receipt of RVI.

LEGEND:

(CC) = Chain Command (CC) Flag in CCW is set to 1.

(Interrupt) = TCU-generated interruption (CE = Channel End, DE = Device End, UE = Unit Exception, UC = Unit Check).

1 Reversed numbers refer to notes.

Figure 5-1 (Part 2 of 2). General Poll and Specific Poll, Sequence/Response Diagram

Column Use this o Device Specif Gener Fixed	1 column for: e Selection ic Poll al Poll Return Addresses	5				Column Use this 327(Test	co CO CO Re
CU or Device Number	EBCDIC I/O Char	EBCDIC (Hex)	ASCII I/O Char	ASCII		CU Number	
Number		(Note 1)		(Hex)		Number	
0 1 2 3 4 5 6 7 8	SP (Note 2) A B C D E F G H	40 C1 C2 C3 C4 C5 C6 C7 C8	SP A B C D E F G H	20 41 42 43 44 45 46 47 48		0 1 2 3 4 5 6 7 8	
9	1	C9		49		9	
10	¢	4A	1	5B	•	10	
11		4B		2E		11	l
12	<	4C	<	3C		12	
13	(4D	(28		13	
14	+	4E	+	2B		14	
15	lor!	4F	!	21		15	
16	&	50	& .	26		16	1
17	J	D1	J	4A		17	
18	K ·	D2	ĸ	4B		18	1
19	L	D3	L	4C		19	
20	M	D4	м	4D		20	
21	N	D5	N	4E		21	
22	0	D6	0	4F		22	
23	Р	D7	P	50		23	
24	Q	D8	a	51		24	
25	R	D9	R	52		25	
26		5A		5D	1	26	
27	\$	5B	\$	24	1	27	
28		5C		2A		28	1
129		5D -	1)	1 29		29	1

5E

5F

CU Number	EBCDIC I/O Char.	EBCDIC (Hex) (Note 1)	ASCII I/O Char.	ASCI (Hex)
	_	60		20
1	,	61	-	20
	e l	E2	, s	52
2		E3	T	54
3		EA		55
-	v i	E5	v	56
6	W.	EG	w/	57
7	YV V	E7	• X	57
'	Q	E9	Ŷ	50
ŝ	7	EQ	7	59
9	2	64	ĩ	70
	i	6P	1	
		60	, 9/	20
12	70	60	70	25
13	2	60	~	25
14	-	65	5	JE
15			r	35
16	0	FU E1	1	30
1/			1	31
18	2	F2	2	32
19	3	F3	3	33
20	4	- F4 EE	4	34
21	5	го ге	5	35
22	7	F0	7	30
23	<i>.</i>	F7	<i>'</i>	3/
24	P ^O	50	0	20
20	3	74		20
20	#	78	#	22
21	# @	70	π @	40
20	بي ر	70	~~~ 1	27
20	_	75	=	27
30		75	-	30
31 1		/ Г 1		1 22

Examples:

;

¬ or ∧

30

31

3271 Addressing	3275 Addressing		-				
		EBCDIC	ASCII			EBCDIC	ASCII
General Poll CU5	CU Address	{C5 {C5	45 45	General Poll CU5	CU Address	{	45 45
	Device Address	{7F {7F	22 22		Device Address	{ 7F { 7F	22 22
Specific Poll Device 4 on CU5	CU Address	{	45 45	Specific Poll CU5	CU Address	{ C5 C5	45 45
	Device Address	{C4 {C4	44 44		Device Address	{ 40 40	20 20
Select Device 4 on CU5	CU Address	{	56 56	Select CU5	CU Address	{	56 56
	Device Address	{C4 {C4	44 44		Device Address	{ 40 40	20 20

3B

5E

;

٨

Notes:

1. Graphic characters for the United States I/O interface codes are shown. Graphic characters for EBCDIC 4A, 5A, 5B, 7B, 7C, and 7F might differ for particular World Trade I/O interface codes. Refer to IBM 3270 Information Display System: Character Set Reference, GA27-2837, for possible graphic differences when these codes are used.

2. I/O character address (SP) is always used as the device address to select a 3275.

3. I/O character address (") is used as the device address to specify a General Poll operation.

Figure 5-2. Remote Control Unit and Device Addressing - BSC

¹Response to General Poll or Specific Poll only (*not* program-generated Read Modified command)

Notes:

A status message response is issued to a General or Specific Poll if (1) the 3270 CU has pending status (General Poll ignores Device Busy and device *unavailable* and the 3271 continues polling of next device) or (2) error status develops during execution of the poll. Status and sense bit assignments are described in Figure 5-7.

2 A Test Request Message response is issued to a General or Specific Poll if a TEST REQ key is pressed at the keyboard of a polled 3275 or 3277.

3 This address is included only in the first block of a blocked text message.

The text portion of this message is the result of either a Read Modified or Short Read operation by the 3270 CU. Figure 5-5 lists each operator action and the resulting read operation that will be performed. The read operations and the resulting data are described under "Read Modified Command" in Chapter 3.

LEGEND:

(Interrupt) = TCU-generated interruption.

1 Reversed numbers refer to notes.

Note: This figure is referred to in Figures 5-1 and 5-6.

Figure 5-3. 3270 CU Message Response to Polling or Read Modified Command

¹Only the critical framing characters (sync pattern and pad) are shown. All other framing characters are also hardware-generated as required. See *General Information – Binary Synchronous Communications*, GA27-3004, for a complete description.

Figure 5-4 (Part 1 of 2). Selection Addressing, Sequence/Response Diagram

Notes: 1 The 3270 CU will fail to respond to the addressing or polling sequence, causing a TCU timeout, for any of the following reasons: • The 3271 is unavailable (has power off, is offline, or is not attached). • The 3275 is unavailable because the Security Keylock is in the off position). Any character in the polling sequence is invalid. . The characters in the polling sequence are out of order. The polling sequence is incomplete (fewer than 7 characters). . The 3270 CU address is incorrect in the write data stream. The addressed 3270 CU was left selected from the previous transmission. 2 3271: The addressed device has pending status (excluding Device Busy or a Device End) or is unavailable, the device-to-3271 buffer transfer was unsuccessful, the 3271 detected an internal parity or cursor check, or the addressed printer became not ready (out of paper, unrecoverable hang, power off, or cover open). The S/S information is stored in the 3271, and the internal 3271/device polling is stopped. 3275: The 3275 has pending status, excluding Device Busy or Device End. 3 The addressed 3271 device or the 3275, including the 3284-3 Printer, is busy. No S/S information is stored. An RVI response takes precedence over a WACK response. 4 The address has been successfully received, no status is pending, and, in the case of the 3271, the device-to-3271 buffer transfer is successfully completed. 5 Termination of attempted addressing sequence: 3271: The availability of valid status and sense information cannot be ensured unless a Specific Poll is issued to the responding device as the next addressing sequence issued to this 3271. Successful completion of a Specific Poll addressed to the responding device, a device selection addressed to any other device on the same 3271, or a General Poll addressed to the same 3271, is required to start the internal 3271 device polling operation. 3275: A Specific Poll to the 3275 retrieves the status existing at the time the RVI response was made. 6 Termination of attempted addressing sequence.

7 See Figure 5-5 or 5-6 for the desired command sequence.

LEGEND:

(CC) = Chain Command (CC) Flag in CCW is set to 1.

(Interrupt) = TCU-generated interruption (CE = Channel End, DE = Device End, and UC = Unit Check)

8 Reversed numbers refer to notes.

Figure 5-4 (Part 2 of 2). Selection Addressing, Sequence/Response Diagram

address, but different I/O characters and hex codes are used to represent the CU address bytes. Column 1 in Figure 5-2 lists the characters and hex codes used to complete the selection addressing sequence. Comparative examples showing CU and device address codes for General Poll, Specific Poll, and selection addressing sequences are given at the bottom of Figure 5-2.

For the 3270 CU, the selection addressing sequence performs a function similar to a local Select command in that it causes a device-to-control-unit buffer transfer. The 3270 CU returns ACK 0 if the selection and buffer transfer were completed successfully.

When a 3275 is to be selected, note that device number 0 is always addressed (Figure 5-2, Note 2).

Write-Type and Control-Type Command Sequences

The program initiates a Write, Erase/Write, Erase/Write Alternate, Copy, or EAU operation (Figure 5-5) by first writing a command and, except for EAU, a data sequence to the selected 3270 CU and then reading the response. A minimum of 1 data byte (the WCC or CCC byte) must follow all write-type and Copy commands. If the program reads a positive response (ACK) from the 3270 CU, it can terminate the operation or continue with another command. The program can write blocks of text to the 3270 CU by initiating, after receipt of each ACK, a Write command sequence for each block to be written.

The blocking of write data to devices attached to a 3271 control unit is accomplished as follows: Each time the 3271 receives a selection addressing sequence, it transfers the contents of the device buffer to the 3271 buffer before any data is received. After the 3271 has successfully completed execution of the Write command, the contents of the 3271 buffer are transferred to the device buffer. If the transfer of a block of write data to the 3271 is unsuccessful (for example, NAK reply), the 3271-to-device-buffer transfer is not performed. However, the 3271 can receive retransmission of that block; upon receipt of the command, the 3271 retrieves the device-buffer contents (which include any previous text blocks that were written successfully) before any write data is received.

The blocking of write data is of less value with a 3275 since the 3275 buffer is also the device buffer. Thus, if text-blocking is used and the 3275 fails to receive the block successfully, the buffer should be entirely written because orders within the unsuccessful data block may have affected data in any area of the buffer, possibly destroying the integrity of the buffer.

Read-Type Command Sequences

Programming Note: Read Buffer is used primarily for diagnostic purposes, and Poll (General and Specific) is normally used in place of Read Modified for remote read operations.

The program initiates a read operation (Figure 5-6) by first writing a command sequence to the selected 3270 CU and then reading the response. If the 3270 CU responds with text followed by ETB, and if BCC comparison at the TCU is successful, the program should write ACK to retrieve the next text block. This should continue until an error is detected or until a text block is followed by ETX. After ETX is received, the program should write ACK to the 3270 CU and then read the EOT reply. The three types of Read Modified message responses are shown in Figure 5-3.

Status and Sense (S/S) Bytes

All remote status and sense conditions are combined into 2 bytes. These 2 bytes are always sent in a status message. In EBCDIC code, the bits are transmitted as indicated in Figure 5-7. If the sense bytes are transmitted in ASCII code, the EBCDIC code defined below is translated into ASCII before transmission.

The 3270 records status and sense conditions for each device. These conditions may include busy or ready status or detected errors. Figure 5-8 shows how these status and sense conditions are interpreted for each error response that the 3270 transmits in response to a poll sequence from the TCU.

Error-Recovery Procedures

Errors detected at the 3270 system are indicated to the system processor by the following responses: RVI, NAK, EOT, or sense/status information. The meaning of the responses depends upon their sequences, as defined in Figures 5-1 and 5-3 through 5-6.

Figure 5-9 lists the various error combinations of sense/status bits [except for device busy (DB), which is not an error] and the recommended error-recovery procedure for each combination. Although there are 256 possible combinations of status and sense bits, only a portion of this total is normally used. Combinations other than those listed may occur. For example, an unpredictable catastrophic hardware failure could induce an undefined combination of status and sense bits. Errors that occur at the *from* device during a Copy command are identified by an operation check (OC) sense bit in addition to the sense bit representing the detected error.

The error-recovery procedures recommended in Figure 5-9 are as follows:

- 1. Execute a new address selection addressing sequence, and retransmit the message, starting with the command sequence that was being executed when the error occurred. If, after two retries, the operation is not successful, this should be considered a nonrecoverable error. Follow supplementary procedure B after two retries.
- 2. Reconstruct the entire device buffer if possible, and retry the failing chain of commands (within the BSC sequence of operations). The sequence of commands used to reconstruct the buffer should start with an Erase/Write or Erase/Write Alternate command. If the information in the screen buffer is such that it cannot, or need not, be reconstructed, the operation may still be retried. If, after three retries, the operation is not successful, this should be considered a nonrecoverable error. Follow supplementary procedure A.

Programming Note: A cursor check in the 3284 is indistinguishable from a data check that occurred in the 3271 or from a second selection to a 3277 with a cursor check. A selection addressing sequence or a poll sequence to another device on the same control unit should be attempted before the control unit is flagged as inoperative. A successful sequence indicates that the CU is probably satisfactory, and that the device requires manual intervention to reset it (for example, a 3277 with a nonrecoverable data check). An unsuccessful sequence indicates that the CU may be at fault and requires manual intervention to reset it.

3. The error occurred during execution of a Copy command. Execute procedure 2, except that it is the buffer of the *from* device specified by the Copy command that should be reconstructed. After three retries, follow supplementary procedure B.

Figure 5-5 (Part 1 of 2). Write-Type and Control-Type Commands, Sequence/Response Diagram-BSC

Notes:

1 No text is transmitted on an EAU command transmission. 2 The command transmission was not successfully received, because of invalid framing (STX missing), causing a timeout at the TCU. 3 3271: The control unit is unable to perform the operation indicated in the command transmission because of a busy/unavailable/not ready device or one of the following 3271-deteted check conditions: • Receipt of an illegal command/order sequence Failure to decode a valid command An I/O interface overrun A parity/cursor check An illegal buffer address A locked buffer In the case of the Copy command: The Copy feature is not installed (3271 only), the from device is busy or has a locked buffer, or the CCC is missing. The EOT response to a command transmission indicates that status information is stored in the control unit and that internal 3271/ device polling is stopped. To ensure retrieval of valid status, the program must issue a Specific Poll (addressing the device that was selected when EOT was generated) as the next addressing sequence to this control unit. Successful completion of a Specific Poll addressed to the responding device, a device selection addressed to any other device on the same control unit, or a General Poll addressed to the same control unit, is required to restart the internal control unit device polling operation. 3275: The 3275 is unable to perform the operation indicated in the command transmission because of (1) a BCC error, (2) a busy 3275 (including the attached 3284-3 Printer), or (3) a 3275-detected check condition (receipt of an illegal command/order sequence, failure to decode a valid command, an I/O interface overrun, a parity/cursor check, or missing ETX). A Specific Poll to the 3275 retrieves the status existing at the time the EOT response was made. 4. 3271: If a transmission problem causes both a 3271-detected check condition and a BCC error, the BCC error takes precedence over all other check conditions, and a NAK is transmitted to the TCU. 5 3271: BCC error or missing ETX has been detected. The NAK response requests the program to repeat its last transmission. Note: The 3275 responds with EOT if it detects a BCC error or a missing ETX. 6 Response issued by the program to terminate the operation if the 3270 CU is unsuccessful in receiving a valid BCC following n attempts by the program to transmit the message. If the Start Printer bit is set in the WCC or CCC, a WACK response indicates that the text transmission was successfully received (and, if 7 3271, that the 3271-to-device buffer transfer was successfully completed) but that the printer is now busy and an additional chained command cannot be accepted. If any of the conditions cited in Note **3** prevail, the EOT response takes precedence over the WACK response. 8 Normal termination of the operation by the program. 9 Command execution has been successfully completed and, in the case of the 3271, the 3271-to-device buffer transfer is successfully completed. 10 Repeat the operation shown in this figure or in Figure 5-6 for the next command sequence. 11 Example of a Temporary Text Delay (TTD) sequence. 12 Example of terminating an operation using TTD (a forward abort sequence). LEGEND: (CC) = Chain Command (CC) Flag in CCW is set to 1. (Interrupt) = TCU-generated interruption (CE = Channel End, DE = Device End, UE = Unit Exception, UC = Unit Check). 1 = Number in parentheses refers to note. Figure 5-5 (Part 2 of 2). Write-Type and Control-Type Commands, Sequence/Response Diagram-BSC

Figure 5-6 (Part 1 of 2). Read-Type Command, Sequence/Response Diagram-BSC

5-20

140103	Notes	
--------	-------	--

1 The command transmission was not successfully received, because of invalid framing (STX missing), causing a timeout at the TCU.

2 3271, 3275: The 3270 CU is unable to perform the operation indicated in the command transmission because of a busy/unavailable/ not ready device or a 3270 CU-detected check condition (receipt of an illegal command/order sequence, failure to decode a valid command, or an I/O interface *overrun*). The EOT response to a command transmission indicates that status information is stored in the 3270 CU. To ensure retrieval of a valid status, a Specific Poll must be issued to the device-responding EOT as the next addressing sequence issued to this 3270 CU. Internal 3271/device polling is stopped. Restarting the internal 3271 polling operation requires the successful completion of a Specific Poll addressed to the responding device, a device selection addressed to any other device on the same 3271, or a General Poll addressed to the same 3271.

3275: The 3275 is unable to perform the operation indicated in the command transmission because it (1) has detected a BCC error, (2) is busy (includes an attached 3284-3 Printer), (3) has detected a check condition (has received an illegal command/order sequence, has failed to decode a valid command, or has detected an I/O interface *overrun* or a missing ETX). A Specific Poll to the 3275 retrieves the status existing at the time the EOT response was made.

3 3270 CU: If a transmission problem causes both a 3270 CU-detected check condition and a BCC error, the BCC error takes precedence over all other check conditions, and a NAK is transmitted to the TCU.

4 3271: BCC error or missing ETX has been detected. The NAK response requests the program to repeat its last transmission.

Note: The 3275 responds with EOT if it detects a BCC error or a missing ETX.

5 Response issued by the program to terminate the operation if the 3270 CU is unsuccessful in receiving a valid BCC following *n* attempts by the program to transmit the message.

6 This address sequence is included only in the first block of a blocked text message.

Z ETB is used to frame each block of a blocked text message, except for the last block. ETX is used to frame the last block of a blocked text message.

8 Upon detection of an internal parity check, the 3270 CU automatically substitutes the SUB character for the character in error. If a parity or cursor check is detected, ENQ is transmitted in place of ETX (or ETB) and BCC at the end of the text block and appropriate status and sense information is stored; also, internal 3271/device polling is stopped.

9 Mandatory program response to a text block terminated in ENQ.

10 Response to terminate the operation. The nature of the error (parity or cursor check) does not warrant a retry. This response indicates that appropriate status and sense information is stored and that internal 3271/device polling is stopped. The status retrieval information included in Note 2 applies.

BCC error has been detected. The program issues NAK to cause the 3270 CU to repeat its last transmission.

Positive acknowledgment. The text block has been successfully received by the TCU. The program issues ACK 1 in response to the first and all odd-numbered text blocks and issues ACK 0 in response to the second and all even-numbered text blocks. This response to a text block terminated in ETX turns on the device SYSTEM AVAILABLE indicator.

13 The second and all succeeding text blocks are framed as the first except that they do not include the 3270 CU/device address sequence.

14 Normal termination of the operation following transmission of the last text block.

LEGEND:

(CC) = Chain Command (CC) Flag in CCW is set to 1.

(Interrupt) = TCU-generated interrupt (CE = Channel End, DE = Device End, UE = Unit Exception, UC = Unit Check)

Reversed numbers refer to notes.

Figure 5-6 (Part 2 of 2). Read-Type Command, Sequence/Response Diagram-BSC

Bit No.	Bit Definition
10.00	S/S Byte 0:
0	Dependent upon setting of bits 2-7.
1.	Always a 1.
2	Reserved.
3	Reserved.
4	<i>Device Busy (DB)</i> — This bit indicates that the addressed device is busy executing an operation or that a busy detection was previously made by a command or Specific Poll. The device is busy when it is executing an Erase All Unprotected command or a print operation, accepting data from the operator identification card reader, or performing various keyboard operations (ERASE INPUT, Backtab, and CLEAR).
	This bit is set with Operation Check when a Copy command is received that specifies a busy device with its from address.
	This bit is set with Unit Specify when a command is addressed to a busy device. This can occur by chaining a command to a Write, Erase/Write, Erase/Write Alternate, or Copy command that started a printer or by chaining a command to a Specific Poll addressed to a busy device.
5	Unit Specity (US) — This bit is set if any S/S bit is set as a result of a device-detected error or if a command is addressed to a busy device.
6	Device End (DE) — This bit indicates that the addressed device has changed from unavailable to available and not ready to ready, or busy to not busy. This bit is included during a Specific or General Poll but is not considered pending status by a selection-addressing sequence.
	If a selection-addressing sequence detects that the addressed device has pending status and also detects one of the above status changes that warrants a Device End, then the Device End bit is set and preserved with the other pending status, and an RVI response is made.
7	Transmission Check (TC) - Not used by the 3271. This bit is set when the 3275 detects a BCC error on the TCU transmission.
	S/S Byte 1:
0	Dependent upon setting of bits 2-7.
1	Always a 1.
2	Command Reject (CR) — This bit is set upon receipt of an invalid 3270 command (or 3271 Copy command if this feature is not installed).
3	Intervention Required (IR) — This bit is set if:
	• A Copy command contains a <i>from</i> address in its data stream that specifies an unavailable device.
	• A command attempted to start a printer but found it <i>not ready</i> . The printout is suppressed.
	 The 3271 receives a selection-addressing sequence or a Specific Poll sequence for a device that is unavailable or that became not ready during a printout. A General Poll sequence does not respond to the unavailable/not ready indication and proceeds to determine the state of the next device.
	• The 3271 receives a command for a device that has been logged as unavailable or not ready.
4	Equipment Check (EC) — This bit indicates that a printer character generator or sync check error occurred, the printer became mechanically disabled, or a 3271 detected bad parity from the device.
5	Data Check (DC) — This bit indicates the detection of a parity or cursor check in either the 3271 or a device buffer or in the 3275 buffer, or a 3271 detected bad parity from the device.
6	Control Check (CC) — This bit is not used by the 3275. For the 3271, this bit indicates a timeout check. A timeout check occurs when a device fails to respond to 3271 communications within a specified time or when a device fails to complete an operation within a specified time.
7	Operation Check (OC) - This bit, when set alone, indicates one of the following:
	Receipt of an illegal buffer address or of an incomplete order sequence on a Write, Erase/Write, or Erase/Write Alternate command.
	• The device did not receive a CCC or a <i>from</i> address on a Copy command.
	Receipt of an invalid command sequence. (ESC is not received in the second data character position of the sequence.)
	• An I/O interface <i>overrun</i> is detected on a 3271. This occurs during a command when a data byte (character or order) is presented to the device by the TCU before the operation required by the previous data byte has been completed.
	This bit is set with Control Check, Intervention Required, Data Check, Device Busy, or Data Check with Unit Specify to indicate that the errors that set these sense bits were detected while the 3271 was executing an operation with the <i>from</i> device during a Copy command. This bit is set with Unit Specify to indicate that the <i>from</i> address on a Copy command specified a device with a <i>locked</i> buffer (the device data is secure).

Figure 5-7. Remote Status and Sense Byte Definitions - BSC

Device Response	Command	S/S Explanation
RVI	Selection	Outstanding Status – Pending information from a previous operation with the same device. (If the addressed device is busy, WACK is sent to the TCU instead of RVI, and no S/S bit is set.) Note: A selection-addressing sequence does not recognize a Device End as pending status. If there is no other pending status, it resets this bit and proceeds with the selection. If the addressed device has other pending status, Device End remains set with it, and the RVI response is made as usual.
		CC – A timeout check is caused by the addressed device. The operation is tried twice before this bit is set.
		IR – The addressed device is unavailable.
		DC, EC (either or both) – The 3271 detects bad parity on data received from the addressed device.
		DE, EC, US – A character generator or syn check error has occurred, or the printer was mechanically disabled but the condition has been corrected.
		DE, IR The addressed printer is out of paper, its power has been turned off, or its cover is open.
		DE, IR, EC, US – The addressed printer is mechanically disabled and cannot recover.
		DE, DC, US – A parity error is detected at the printer.
		DC, US — A parity check or cursor check is detected by the addressed device on the data it is sending to the control unit.
EOT	Read	CR – Invalid 3270 command is received.
	Commands	OC Invalid command sequence (ESC is not in the second data character position), or data follows the command in the data stream received at the device.
		DB, US – The addressed device is busy. The command was chained to a Write, Erase/Write, Erase/Write Alternate, or Copy command which started a print, or it was chained to a Specific Poll.
		DB, US, DE – The addressed device becomes <i>not busy</i> before a Specific Poll is issued to retrieve the DB, US status.
		IR - A command is addressed to an unavailable device. (This is not applicable to the 3275.)
		DC
		• A cursor check is detected at the 3271 before data transmission starts. The 3271 detects bad parity on data received from the addressed device. The operation is tried twice before this bit is set. No data is transmitted.
		• A parity check is detected by the 3271 before it is transferred to the TCU. A SUB character is substituted for the error character during transmission. When the transmission is completed, the 3271 sends ENQ to indicate an error. When the TCU responds NAK, the 3271 responds EOT.
		• A cursor check is detected by the 3271 during transmission to the TCU. When the transmission is completed, the 3271 sends ENQ to indicate an error. When the TCU responds NAK, the 3271 responds EOT.
		DC, US – The addressed device detects a parity check or cursor check on the data it is sending to the control unit.
		TC – A BCC error is detected at the 3275.
ЕОТ	Write	CR – An invalid or illegal 3270 command is received.
	Commands	OC An invalid command sequence (ESC is not in the second data position), an illegal buffer address, or an incomplete order sequence is received, or a data byte was sent to the device during the Write command before the operation required by the previous data byte was completed.
		TC – A BCC error is detected at the 3275.
		DC – The 3271 detects a parity or cursor check on its buffer during command operation. The 3271 detects bad parity on data received from the addressed device. The operation is tried twice before this bit is set.
		DC, US – The device detects a parity or cursor check on its buffer during the command operation.
		CC - The device fails to complete an operation or respond to the 3271 in a certain time (timeout check).
		DB, US – The addressed device is busy. The message is accepted, but not stored in the 3271 or 3275 buffer. The command is aborted.
		DE, DB, US – The addressed device becomes <i>not busy</i> before a Specific Poll is issued to retrieve the DB, US status (described above).

Figure 5-8 (Part 1 of 3). Remote Error Status and Sense Responses - BSC

Device Response	Command	S/S Explanation
EOT	Copy Command	CC, OC — The <i>from</i> device fails to complete an operation or respond to the 3271 in a certain time (timeout check).
· · ·		DB, OC — The <i>from</i> device is busy. (The device is busy executing an operation, a printout, reading data from the operator identification card reader, or performing a keyboard operation.) The Copy command is aborted.
	· .	IR, OC – The <i>from</i> device is not available.
		OC, US – The <i>from</i> device has a locked buffer.
		OC – The data stream contains other than 2 bytes (the CCC and the <i>from</i> address). The command is aborted.
		OC — The <i>from</i> device buffer is larger than the <i>to</i> device buffer.
		OC — The buffer of the <i>from</i> device (has APL/Text feature) contains APL/Text characters (entered since an Erase/Write or Erase/Write Alternate command or a CLEAR key operation), and the <i>to</i> device does not have the APL/Text feature.
		DC,OC – The 3271 detects a parity check on the data transferred from the from device.
4 .		DC, OC, US – Set when the from device detects an internal parity or cursor check.
		DB, US – The addressed to device is busy.
		DB, US, OC – The addressed to device is also specified as the from device and is busy.
		DB, US, OC, DE – The addressed device becomes <i>not busy</i> before a Specific Poll is issued to retrieve the DB, US, OC status (described above).
EOT	Write,	IR — The addressed device is not available, or the addressed printer is not ready.
	Erase/Write, Erase/Write Alternate, Copy Commands	IR, EC, US — A command attempted to start a printer operation, but the printer CARRIAGE MOTOR POWER switch (a CE service switch) is turned off.
EOT	Erase All Unprotected Command	OC – One or more data bytes followed the command (buffer overrun).
	Specific	DE, IR, EC, US – An unrecoverable mechanical failure is detected at the printer.
	and General	DE, EC, US – A character generator or sync check error or a mechanical failure is detected at a 3284/ 3286/3288 printer, but then recovered from.
	Poll	DC, US – A parity check or cursor check is detected by the addressed device on the data it is sending to the control unit.
		DC
		• The 3271 detects a parity error on data to be transferred to the TCU. A SUB character is substituted for the error character during transmission. The transmission is completed, and the 3271 sends ENQ. When the TCU responds NAK, the 3271 responds EOT.
		• A cursor check is detected at the 3271 before data transmission starts. (No data is transmitted.)
		• The 3271 detects a cursor check during transmission to the TCU. The transmission is completed, and the 3271 sends ENQ. When the TCU responds NAK, the 3271 responds EOT.
		DC, EC (either or both) - The 3271 detects a parity check on data received from the device.
		DE – The poll finds a device (1), previously recorded as busy, now not busy or (2), previously recorded as unavailable <i>or</i> not ready, now available <i>and</i> ready. (The 3271 record is updated.) Note: When 3271 power is turned on, the DE bit is set for every available and ready device that is attached.
		IR, DE – The poll finds a device, previously recorded as ready, available, and busy, now not ready and not busy, or the printer went <i>not ready</i> during a printout. (The 3271 record is updated.)

Figure 5-8 (Part 2 of 3). Remote Error Status and Sense Responses - BSC

Device Response	Command	S/S Explanation
EOT	Erase All Unprotected Command Specific and General Poll	 DC, US, DE – A parity error is detected at the printer. CC (Specific Poll only) – The poll finds a device, previously recorded as unavailable, still unavailable (timeout check). DC, DE – 3275 (only) detects an internal parity or cursor check on its buffer when the printer goes not busy. IR, EC, DE (3275 only) – The printer CARRIAGE MOTOR POWER switch (a CE service switch) is turned off, or a mechanical hang condition is detected. EC, DE (3275 only) – Character generator readout error.
	Specific Poll	CC — The poll finds a device, previously recorded as available and ready, now unavailable (timeout check). (The 3271 record is updated.) DB — The addressed device is busy.
NAK	Read and Write Commands	The 3271 transmits NAK when it detects a block check character (BCC) error on the TCU transmission. A BCC error has priority over all other detectable error conditions. If, for example, a BCC error and a parity error are detected during the same command transmission, the parity error condition is reset, and a NAK response is set by the 3271.

Figure 5-8 (Part 3 of 3). Remote Error Status and Sense Responses - BSC

	Detected during 3270 Operation							Transmitted in Response to:		Error Recovery Procedure			
Sense/ Status	Hex		Selection Addressing	Specific Poll	General Poli	A 3270	Specific	General					
Bits	EBCDIC	ASC11	Sequence	Sequence	Sequence	Command	Poll	Poll	3271	3275	3274	3276	
CR	40 60	20 2D				D, P	D, P		6	6	6	6	
oc	40 C1	20 41				D, P	D, P		6	6	6	6	
OC, US	C4 C1	44 41	18 - 19 - 19 - 19 - 19 - 19 - 19 - 19 -			. D, P	D, P		13	NA	13	13	
CC	40 C2	20 42	D,P ·	D, P		D, P	D, P		1	NA	NA	NA	
CC, OC	40 C3	20 43				D, P	D, P		1	NA	NA	NA	
IR	40 50	20 26	D, P	D,P		D, P	D, P		4	4	4	4	
IR, OC	40 D1	20 4A				D, P	D,P		5	NA	5	5	
DC	40 C4	20 44	D, P	D, P	D, P	D, P	D, P	D, P	1, 2	2	1	2	
EC	40 C8	20 48	D, P	D, P	D,P	D, P	D, P	D,P	1, 2 ¹	2	NA	NA	
DC, EC	40_4C	20 3C	D, P	D,P	D, P	D,P	D, P	D, P	1, 2 ¹	2	NA	NA	
DC, OC	40 C5	20 45				D,P	D,P		1	NA	NA	NA	
DC, US	C4 C4	44 44	D, P	D, P	D, P	D, P	D, P	D, P	2	NA	2	2	
DC, OC, US	C4 C5	44 45				D, P	D,P		3	NA	3	3	
DC, DE	C2 C4	42 44		Р	Р	1. A.		Р	NA	8	NA	NA	
DC, US, DE	C6 C4	46 44		Р	Р		Р	Р	8	NA	8	8	
IR, DE	C2 50	42 26		P	P		Р	Р	4	4	4	4	
IR, EC, DE	C2 D8	42 51		Р .	Р		P	Р	NA	7	NA	NA	
EC, DE	C2 C8	42 48		Р	Р		P	Р	NA	7	NA	NA	
EC, US, DE	C6 C8	46 48		P	Р		Р	Р	7	NA	7 ²	NA	
IR, EC, US, DE	C6 D8	46 51		Р	Р		Р	Р	7	NA	7	7	
DB	C8 40	48 20	D, P	D, P			D,P		9	9	9	9	
DB, DE ³	4A 40	54 20					D		9	NA	ŇA	NA	
DB, US⁴	4C 40	3C 20				D, P	D,P		10	10	10	10	
DB, US, DE	4E 40	2B 20				D, P	D, P		1	1	NA	NA	
OC, DB ⁴	C8 C1	48 41				D, P	D, P		11	NA	11	11	
TC	C1 40	41 20				D	D		NA	12	NA	NA	
TC, OC	C1 C1	41 41				D	D		NA	12	NA	NA	
TC, CR	C1 60	41 2D				D	D		NA	12	NA	NA	
TC, DC	C1 C4	41 44				D	D		NA	12	NA	NA	
DE	C2 40	42 20	ļ	D, P	D,P		D,P	D, P	None	None	None	None	
IR, EC, US	C4 D8	44 51				Р	Р		7	NA	NA	NA	
CC, IR	40 D2	20 4B		D, P	D, P	D, P	D, P		1	NA	NA	4	

Note: The attached device errors that are detected asynchronously do not cause a sense bit to set until the device is polled for status during a selection-addressing, Specific Poll, or General Poll sequence. Those error S/S bit combinations that contain DE were detected during a printout.

¹Perform error recovery procedure 1 if the error occurred during a read operation. Perform error recovery 2 if the error occurred during a write operation. ² Occurs only if the 3284, 3286, or 3288 printers are attached.

³The DB and DE S/S bits can occur together in response to a Specific Poll to a formatted 3277 if the operator has performed Backtab or Erase Input operations in rapid succession. Ignore Device End, and treat as Device Busy only.

⁴The DB, US, and OC S/S bits will be combined if a Copy command is addressed to a busy to device and the command also specifies the from device the same as to device.

Legend

NA Not applicable

D - Display (3275, 3277)

Ρ - Printer

Figure 5-9. Remote Status and Sense Conditions-BSC

- 4. The error indicates that the printer is out of paper, has its cover open, or has a disabled print mechanism; or it indicates that the device is unavailable. Request (or wait for) either the display or system operator to ready the device. Then, retry the printout by issuing a Write command with the proper WCC and no data stream. (There is no data error, and the data is still intact in the device buffer and can be reused.) Or, follow procedure 2.
- 5. The eror indicates that the *from* device specified by a Copy command is unavailable. Note that the device address associated with the error status and sense information does not indicate the device that actually required *readying*. The device that requires the corrective action is the device specified by the *from* address in the Copy command. When the device is determined and made *ready*, follow procedure 1.
- 6. The operation should be tried not more than six times. Continued failure implies an application programming problem, which can be detected by analysis of the failing write data stream.
- 7. The error occurred during a printout operation and indicates either a charactergenerator error or a disabled print mechanism. There is no data error. The proper error-recovery procedure is application-dependent, since the user may or may not want a new printout. If a new printout is required, follow procedure 4.
- 8. A data error occurred in the device buffer during a printout, and procedure 2 should be followed.
- 9. A Specific Poll detected that the addressed device is busy. Periodically issue a Specific Poll to pick up the device-end sense/status bit sent by the device when it becomes not-ready (unless this status change is detected on a selection addressing sequence).
- 10. Indicates that a command was erroneously addressed to a busy device. Periodically issue a General or Specific Poll to pick up the device-end sense/status bit sent by the device when it becomes not busy. Then follow procedure 1.
- 11. Indicates that, during an attempt to execute a Copy command, the *from* device was found to be busy. Follow procedure 1 when the *from* device becomes not busy. Note that the device address associated with the status and sense message is the address of the *to* device and not that of the busy *from* device. The *from* device will transmit device end via a Specific or General Poll when it becomes not busy.
- 12. Indicates that the 3275 detected a BCC error during text transmission from the TCU. Follow procedure 2 if the failing command is a Write command with a data stream of more than 1 byte or if it is in a chain of commands and one of the previous commands in the chain is a Write command without an SBA order immediately following the WCC character. In all other cases, follow supplementary procedure D. If, after the recommended procedure has been tried six times, the problem is not corrected, follow supplementary procedure A.
- 13. An attempt was made to execute a Copy command, but access to the *from* device data was not authorized. The device address associated with the error sense/status bits is that of the copy *to* device.

Supplementary Procedures

- A. Request maintenance for the device that is giving trouble. After repair, reconstruct the screen buffer image. The sequence of commands used to reconstruct this image should start with an Erase/Write command. Retry the failing chain of commands according to the procedure that referred you to this supplementary procedure.
- B. The *from* device specified by the Copy command in the failing chain of commands (CCWs) is malfunctioning. The *from* device should be determined from the data-stream information, and maintenance should be requested for the device. After the

repair, reconstruct the buffer image. The sequence of commands used to reconstruct this image should start with an Erase/Write command. Retry the failing chain of commands according to the procedure that referred you to this supplementary procedure.

- C. Same as procedure 1, except a new selection addressing sequence is not performed, and this message is transmitted as part of the present device selection.
- D. Same as procedure 1, except retransmit the entire failing chain of commands.

NAK to a Text Block

When the 3271 detects a BCC error at the end of a text transmission, it transmits a NAK. The following recovery action should be taken:

If the text is a write command sequence chained from a previous Write, Erase/Write, or Erase/Write Alternate command, and if the failing write command data stream contains more than 1 byte but does not contain an SBA order sequence immediately following the WCC, then procedure 2 (above) should be executed.

In all other cases, supplementary procedure C (above) should be executed, except the number of retries should be six. If after these six retries the problem is not corrected, the program should issue an EOT and follow supplementary procedure A (above).

Notes:

- 1. When the 3275 detects a BCC error, it will set the transmission-check (TC) sense/ status bit and respond EOT.
- 2. An FF (hex) character in a data field will cause a BCC error.

EOT to a Text Block

The recovery procedure recommended depends upon the type of error detected. A Specific Poll must be issued immediately following the EOT to obtain the error sense/ status information. (If the Dial feature is installed, a Specific Poll is not needed, because the 3275 automatically bids for the line present sense/status information.) Then the recovery procedures recommended in Figure 5-9 should be executed.

Errors Detected during a Specific or General Poll Sequence

Any errors that result from execution of the poll sequence itself are listed in Figure 5-9, and those recovery procedures apply. The detected error bits are transmitted to the TCU in a status message during the poll sequence.

RVI to Selection Addressing Sequence

A Specific Poll must be issued immediately following the RVI to a selection addressing sequence to obtain the error sense/status information. Then the recovery procedures defined in Figure 5-9 should be followed.

Point-to-Point (Switched Line) Data Link Control

A 3275 with the Dial feature operates on a point-to-point, switched communication line. Data exchange takes place between a 3275 and a TCU, but not between 3275s.

Terminal Identification

Four terminal ID characters (4 bytes) are wired into each 3275 with the Dial feature. Only graphic characters can be assigned. The 1 character for 3270 devices is always f (for EBCDIC units) or F (for ASCII units). The remaining 3 characters can be assigned by IBM or by the customer at the customer's location. The non-IBM-assigned terminal ID characters consist of numbers and uppercase letters only. IBM-assigned terminal ID characters consist of lowercase letters and special graphics.

Contention Line Discipline

Bid Sequence

3275-Initiated Call

In switched-line operation, the stations are normally disconnected. When the TCU is dialed from a 3275, or a 3275 is dialed by the TCU and a connection is successfully made (with both stations in data mode), the data link is in point-to-point contention. Once a connection is made, either station can bid to become the control station by sending a terminal identification sequence. Normally, the control station would be the station that initiated the connection. The initial 3275 bid sequence is made up of the 4 terminal ID characters, followed by the character ENQ. Subsequent bids by the 3275 transmit only the ENQ character. The TCU bids for the line by sending the computer ID-ENQ sequence only during the first transmission and ENQ on the following bids. The bid sequence is used to maintain line discipline.

Note: In the switched-line environment, the 3275 does not operate in transparent monitor mode.

The telephone number of the desired computer system is dialed by the 3275 operator. Upon recognition of the answer tone from the called station, the modem (or line adapter) is automatically or manually switched into data mode. The 3275 operator then presses an attention ID (AID) key, usually ENTER, causing the following actions:

- 1. Disables the keyboard (except for the RESET key).
- 2. Turns on the INPUT INHIBITED indicator.
- 3. Initiates a bid for the line which, when successful, transfers a text message. The form of the message depends upon the key pressed (see Figure 3-2).

The SYSTEM AVAILABLE indicator's coming back on indicates to the operator that the 3275's message has been successfully transmitted. The operator can then press the RESET key, enabling the keyboard for transmitting another message, or disconnect, as desired. The keyboard can also be enabled by the computer's responding with a Write, Erase/Write, or EAU command and with the appropriate WCC.

Computer-Initiated Call

A 3275 with the Dial feature can be called from the computer. If an external modem, wired for auto answer, or the 1200-bps integrated modem with the Auto Answer feature is used, the 3275 can answer a call unattended. This is of use when the 3275 is unattended and a printer is attached.

An external modem or the 1200-bps integrated modem with Auto Answer feature will, upon recognizing the ringing signal, initiate off-hook, send an answer tone to the TCU, and automatically switch into data mode. The computer then begins transmission by sending a bid sequence.

In manual operation, the 3275 operator recognizes the ringing signal, lifts the telephone receiver (goes off-hook), and activates the exclusion key on the handset.

In all cases, data mode is indicated to the 3275 operator. In the manual case, data mode is implied by the handset's being out of the cradle. In the automatic case, an OFF HOOK indicator on the 3275 implies data mode.

Disconnection

Disconnection is the process of terminating a call. During this action, both stations should perform the disconnection. If only one station disconnects, the other station can stay connected and appear busy to incoming calls.

Manual Disconnection. To disconnect a 3275 manually, the operator must:

- 1. Raise and release the DISCONNECT switch on the 3275, causing the 3275 to send the disconnect sequence line control characters, DLE EOT. If the 3275 has an external modem wired for auto answer or a 1200-bps integrated modem with Auto Answer feature, the connection is automatically terminated.
- 2. On a 3275 without auto answer, the 3275 operator must replace the handset onhook to achieve disconnection at the 3275. Replacing the handset restores the exclusion key to the talk position and disconnects the call. The handset should be cradled only following activation of the DISCONNECT switch, as confirmed by the SYSTEM READY indicator's turning off.

Automatic Disconnection. There are two ways to disconnect automatically, both requiring auto answer, either in an external modem or as part of the 2300-bps integrated modem:

- 1. By receipt of the disconnect sequence line control characters, DLE EOT.
- 2. By a 20-second timeout, which is enabled when the 3275 receives a ring signal from the CPU. The 20-second timeout is initiated each time a station transmits a valid header, text, response, or control transmission. It is reset each time a station receives two SYN characters from the line. Failing to reset the timer within 20 seconds causes the disconnect sequence of DLE EOT to be transmitted and causes the telephone to be hung up.

Data Link Control Characters

The use of some link control characters in the 3275 with the Dial feature differs from the use of those in the basic 3275, as follows.

ACK 0 and ACK 1 (Positive Acknowledgment)

When the 3275 responds to an initial bid for the line, the terminal ID precedes ACK 0. When an initial bid has been successfully completed, subsequent bids use only ACK 0.

The use of ACK 0 and ACK 1 to acknowledge data blocks positively is the same as for the basic 3275.

NAK (Negative Acknowledgment)

When the 3275 is called by the computer, but has pending status other than *printer* busy, the 3275 responds to the initial bid for the line with the terminal ID preceding NAK. NAK alone precedes all further bids for the line when status is pending. The 3270 CU transmits NAK in response to a text transmission that contains a TTD sequence (STX ENQ). When the 3275 receives the NAK in response to a text transmission, the 3275 retransmits the last block of text.

ENQ (Enquiry)

This character is transmitted by either station to bid for the line any time after it has transmitted or received EOT. However, ENQ is preceded by the terminal ID when the 3275 is making an initial bid for the line, and by the last character of a text message in which data check was detected by the 3275.
When the 3275 receives ENQ in response to a transmission, the last 3275 transmission to the TCU is repeated. The 3275 responds with NAK when ENQ is received (1) as the last character of a TCU-aborted text transmission, (2) embedded in text, or (3) as part of a TTD sequence (STX ENQ).

RVI (Reverse Interrupt)

Upon receipt of the RVI character, the 3275 with the Dial feature completes its buffer transfer before sending EOT.

EOT (End of Transmission)

EOT is transmitted by the master station (usully the caller) to indicate end of transmission. Either station is free to bid for the line following the EOT character.

When used as a response to a text block, EOT indicates that status is pending.

DLE EOT (Disconnect)

The DLE EOT is the disconnect signal. Any 3275 with the Dial feature can transmit DLE EOT (initiated by activating the DISCONNECT switch). However, only units that are equipped with auto answer have the ability to disconnect automatically.

Operational Sequences (Switched Line)

The following paragraphs describe the various data and control sequences that are unique to the 3275 with Dial feature operating on a switched line. Because operation is initiated differently from that of the basic 3275 operating on a leased line, neither selection nor polling applies to point-to-point contention operation. 3270 commands can be chained as described under "Remote Chaining of 3270 Commands."

3275-Initiated Sequences

The 3275 with the Dial feature does not need a read-type command, including a poll, to start transmission of text entered into the buffer or a status message. Normally, a 3275 operator who intends to transmit a text message to the computer enters this message by keyboard into the buffer. After correction of keying errors, the computer is dialed. After the connection has been made, the operator presses an attention key (Figure 3-2). Pressing this key causes the 3275 to bid for the line by sending its 4 assigned terminal ID characters and ENQ.

Receiving a positive acknowledgment ends the identification phase and allows the 3275 to enter the data exchange phase. In the latter phase, assuming no status is pending, the 3275 transmits a text message that is identical with messages generated by the read-modified operation in the basic 3275 (see Figure 5-10). If status is pending, the 3275 transmits a status message (see Figure 5-11).

TCU-Initiated Sequences

The 3275 with the Dial feature can be called by the computer. The computer bids for the line with a computer ID-ENQ sequence or by sending ENQ only. (The computer ID of up to 15 characters is not decoded by the 3275.) When the 3275 responds with an ACK 0 or NAK to the initial line bid, the response character is prefaced by the 4 terminal ID characters. The program can then continue, as appropriate. Refer to Figure 5-12.

Notes:

Upon correct reception of an invalid terminal ID, the computer disconnects. The TCU may optionally send DLE EOT before disconnecting. This is defined in the BSC rules as an *unusual termination*.

2 The 3275 retries three times. When the number of retries is exhausted, the 3275 sends DLE EOT.

AID indicates which situation caused attention.

ETB is used to frame each block of a blocked text message, except the last block. ETX is used to frame the last block of a blocked text message.

5 The remainder of this sequence/response diagram is the same as that for a General or Specific Poll, as shown in Figure 5-1.

6 The 3275 as the master station solicits a response by sending ENQ. After the number of retries is exhausted, the 3275 acts as described in Note 2

LEGEND:

Reversed numbers refer to notes.

Figure 5-10. 3275-Initiated Transmission, Sequence/Response Diagram

Notes:

The 3275 is not ready to receive, because of a printer, keyboard, or card reader operation.

2 The TCU should transmit DLE EOT before disconnecting. The 3275 with the Auto Answer feature will recognize DLE EOT and automatically disconnect.

The 3275 has status pending other than a busy printer and is not ready to receive. The 3275 monitors for EOT and prepares transmission of a status message.

4 Refer to Figure 5-5 or 5-6 for the desired command sequence.

5 Not decoded or used by the 3275.

LEGEND:

Reversed numbers refer to notes.

Figure 5-12. TCU-Initiated Transmission, Sequence/Response Diagram

Maintained Connection Sequences

Once either station has signaled EOT, either station can bid for the line with ENQ without further use of a computer ID or terminal ID. The response to the bid need not be preceded by the ID either. See Figure 5-13 for an example.

Device Busy and Device End

It is possible for a TCU line bid to find the terminal busy because of a printer, keyboard, or operator identification card reader operation. To an initial bid for the line, the busy 3275 responds WACK. The TCU might then either respond with a disconnection sequence DLE EOT or enter an ENQ/WACK loop, waiting for the busy-causing operation to end as indicated by a terminal ID-ACK response.

To a TCU line bid during a maintained connection, the busy 3275 also sends WACK. In this case, the program has a third choice of responding with just EOT. With EOT, the 3275 bids for the line and sends the device end status when the busy-causing operation ends.

Notes:

Positive acknowledgment, when the printer bit has been set in the Write Control Character (WCC) included with the Write command issued to a 3275 with attached printer. The printer is now busy.

The 3275 as the master station solicits a response by sending ENO. After three retries, the 3275 that is equipped with the Auto Answer feature sends DLE EOT and disconnects automatically. The 3275 that is not so equipped sends DLE EOT. The operator should then manually disconnect.

The 3275 aborts because it is unable to receive or to execute the command. This condition causes status to be set and the transmission of a status message to be prepared. This situation could have been caused as the result of a command in a chain following a start-print operation or as the result of a BCC error.

4 The connection is still maintained. The 3275 has prepared another text message and bids for the line.

5 Here, it is assumed that the 3275 cannot complete transmission, because of a malfunction other than an internal parity check. A 5-second transmission timeout becomes effective, the uncompleted text transmission is terminated by DLE EOT, and, with auto answer installed. the telephone is automatically hung up.

6 Here, it is assumed that an internal parity error has been detected and the SUB character has been substituted for the character in error. The text block is terminated by ENQ. The mandatory response is NAK. In this situation, the 3275 is preparing for the transmission of a status message.

LEGEND:

Reversed numbers refer to notes.

Figure 5-13 (Part 2 of 2). Example of Maintained Connection, Sequence/Response Diagram

Chapter 6. Remote Operations – SDLC (3271 and 3275 Models 11 and 12)

Introduction

The 3271 Control Unit Models 11 and 12 and the 3275 Display Station Models 11 and 12 use synchronous data link control (SDLC) mode of operation and communicate, as terminal nodes, with the program via an IBM 3704 or 3705 Communications Controller and appropriate modems.

Note: In the following paragraphs, the term 3270 CU is used in statements that apply to both a 3271 and a 3275. If a statement applies to only one 3270 unit, the appropriate unit number is used. The term controller is used in statements that apply to the 3704 and 3705 Communications Controllers.

The 3270 CU that uses SDLC procedures provides half-duplex transmission over duplex or half-duplex facilities (nonswitched or privately owned). These communications use the multipoint data link mode of operation only.

When employing SDLC line discipline, the 3270 CU operates in extended binary-coded decimal interchange code (EBCDIC) or American National Standard Code for Information Interchange (ASCII) and performs as a PU type 1 unit.

Related Publications

The line discipline for management of information transfer between the controller and the 3270 CU, SDLC is one of several logical elements that the total communication system network comprises. The remainder of that network consists of the controller and the host System/370. The operation of the total communication system network is governed by an overall group of procedures and protocols, referred to as Systems Network Architecture (SNA).

This chapter makes use of SDLC terms and a limited number of SNA terms. Only a few SDLC terms are defined herein. Readers who are unfamiliar with SDLC concepts and terminology should review the *IBM Synchronous Data Link Control General Information* manual, GA27-3093. Readers who require an understanding of SNA should refer to the *IBM Systems Network Architecture General Information* manual, GA27-3102. A functional description of the controllers is given in the *Introduction to the IBM 3704* and 3705 Communications Controller, GA27-3051.

An aid to programming the 3270 in this discipline can be found in Introduction to Programming the 3270 Information Display System, GC27-6999.

Multipoint (Nonswitched Line) Data Link Control

Each 3270 CU can operate on a nonswitched communication line with multiple stations. Time-sharing of the line is accomplished by interleaving transmissions between the controller and all units on the line. A 3271 Model 11 or 12 or 3275 Model 11 or 12 operates multidropped on the same line with properly featured units, such as other 3270 units employing SDLC, IBM 3601 Finance Communication Controllers, and IBM 3791 Controllers.

The controller is called the *primary* station of the multipoint network and controls operation of the communication link. All units attached by communication line to the controller are called *secondary* stations. The primary station is the focal point of the network and maintains, under program control, an orderly flow of network traffic by initiating all data transfers. The primary station is either the transmitter or the receiver of every communication. Secondary stations receive primary station controls and information and, as a result, initiate transmissions (responses and information) depending upon the specific command.

SDLC Transmission Blocks

SDLC transmission blocks are called *frames*. Frames, as defined for 3270 application, consist of a series of 8-bit, binary-coded bytes containing data and control information transmitted between the controller and the 3270 CU. Frames are subdivided into the following types of information, transmitted in the sequence listed:

- 1. Flag (F) sequence -1 byte
- 2. Control unit address (A) 1 byte
- 3. Control (C) field -1 byte
- 4. Information (I) field up to 256 bytes of message data preceded by header information
- 5. Frame check sequence (FCS) -2 bytes
- 6. Flag (F) sequence -1 byte

When sending information to the host system, these units operate in modulo-3 mode - that is, up to two frames at a time. When receiving information from the host system, they operate in modulo-8 mode. Note that the information in any particular transmission must be associated with only one device.

An information field is required within the frame only when message data is to be transmitted. The descriptions of the components of the SDLC frame, as given in *IBM Synchronous Data Link Control General Information*, GA27-3093, are applicable to the 3270 system, with the following qualifications:

• The 3270 system makes use of the Receive Ready (RR) and Receive Not Ready (RNR) supervisory commands and responses only. RR and RNR responses are always sent by the 3270 CU with the final bit set to 1.

The C-field byte formats for RR and RNR are as follows:

6-2

• The nonsequenced commands and responses employed by the 3270 system are limited to the following:

Command/Response	C-Field	Hex Code
Set Normal Response Mode	100P0011	93 \
(SNRM) command	01234567	
Disconnect	010P0011	53
(DISC) command	01234567	
Unnumbered Acknow-	011F0011	73
ledgment (UA) response	01234567	/*
Disconnect Mode (DM)	000F1111	1E
	01234567	
Frame Reject	100F0111	97
(FRMR) response	01234567	1
Link Test	1 1 1 P/F0 0 1 1	F3}**
	0 1 2 3 4 5 6 7	

*Described in the *IBM Synchronous Data Link Control, General Information* manual, Form No. GA27-3093.

**Described in this section.

Link Test Command/Response

The Link Test command/response is a basic test of the data link between the controller and the 3270 CU. When the controller sends the Link Test command, the 3270 CU checks that the FCS field is valid and that the C-field poll bit is set to 1. Data may be sent to the 3270 CU that is included in the nonsequenced frame. If the command is received correctly, the 3270 CU sends the Link Test response to the controller. Data is not sent by the 3270 CU.

Information (I) Field

An information (I) field is required when message text is transmitted in either direction between the controller and the 3270 CU. The C-field format, which indicates that an I-field is being sent, is:

Nr	P/F	Ns	• 0
012	3	456	7

The I-field is transmitted as a series of 8-bit bytes in the following format:

I-field sent from the controller to the 3270 CU

I-field sent from the 3270 CU to the controller

Transmission Header (TH)

A transmission header is always included in an I-field. The 2 bytes of the transmission header contain four SNA fields in the following format:

	В	Byte	1		
Format Identifier Field (0011)	Mapping Field	Reserved	Expedited Flow Indicators	Logical Unit/ System Services Control Point	Device Address
0123	45	6	7	0 5	1234567

SNA Controls

The SNA controls are employed by higher-level network management. A description of these controls, as implemented by the 3270 system, follows.

Bits 0, 1, 2, and 3 of byte 0 compose the format identifier (FID) field. The 3270 CU does not check these bits when they are received from the controller. When the TH is sent by the 3270 CU, FID 3 (0011) is used.

Bits 4 and 5 of byte 0 are the mapping field, which records the text segment format that is used when read or write type operations are performed. Text segments contain a maximum of 256 bytes. Bit assignments for the mapping field are as follows:

- 11 Indicates a complete basic information unit (BIU); that is, the segment associated with the TH is a complete unit.
- 10 Indicates that the segment associated with the TH is the first segment in the BIU.
- 01 -Indicates that the segment associated with the TH is the last segment in the BIU.
- 00 -Indicates that the segment associated with the TH is an intermediate segment within the BIU.

Bit 6 is reserved.

Bit 7 is the expedited flow indicator (EFI) and is not checked by the 3270 CU when it is received from the controller. The 3270 CU sends the EFI as 0 in all cases except when sending a clear response, in which case the EFI is sent as 1. The Clear command and response are described under the heading "Control Functions." Bit 0 of byte 1 is the Logical Unit/System Services Control Point (LU/SSCP) unit indicator. The 3270 CU stores this bit when it is received from the controller. When sending a response to the controller in reply to a request, the 3270 CU returns this bit as it was received. When an attention AID is generated, except when caused by a test request unit, the 3270 CU sets this bit to 1, indicating LU. A test request unit causes this bit to be set to 0, indicating SSCP.

The device address is contained in bits 1 through 7 of byte 1. When received by the 3270 CU, the device address is decoded as the destination address for which the transmission is intended. When transmitted by the 3270 CU, the address indicates the device that initiated the transmission. Bit 1 is always set to 1, and bit 2 is always a 0. Up to 32 addresses, designated 0 through 31, are available for attachment of display station or printers to a 3271 control unit (Figure 6-1). Device address 0 is used when communicating with a 3275 display station.

Request/Response Header (RH)

The request/response header contains 24 bits of SNA control information used by higherlevel network controls to route and sequence transmissions and to indicate to the 3270 CU the form of response required. The RH and the message text contained in the text segment provide the basic exchange unit of control and data across the data link, called the *basic information unit* (BIU).

Each I-field may contain up to 256 bytes of message data. When the text of message exceeds 256 bytes, the message is segmented into a series of I-formatted frames. The first and all intermediate frames within the segmented group contain 256 bytes of message text. The last frame contains the remainder of the text being transmitted, up to 256 bytes. A request/response header is required when the message contains one I-frame (up to 256 bytes of message text) or within the initial I-frame of a segmented message.

The request/response header consists of 3 bytes with the following format:

EB = End Brackets

Column Use this Devic Spec Gene Fixed	1 column for: ce Selection ific Poll ral Poll d Return Addres	5S6S			Column Use this 3270 Test	2 column for:) CU Selection A Requests	Addresses		
CU or Device Number	EBCDIC I/O Char.	EBCDIC (Hex) (Note 1)	ASCII I/O Char.	ASCII (Hex)	CU Number	EBCDIC I/O Char.	EBCDIC (Hex) (Note 1)	ASCII I/O Char.	ASCII (Hex)
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27	SP (Note 2) A B C D E F G H I ¢ √ (+ I or ! & J K L M N O P Q R ! ¢	40 C1 C2 C3 C4 C5 C6 C7 C8 C9 4A 4B 4C 4D 4E 4F 50 D1 D2 D3 D4 D5 D6 D7 D8 D9 5A 59	SP A B C D E F G H I [. V (+ ! & J K L M N O P O R] #	20 41 42 43 44 45 46 47 48 49 58 28 28 28 28 28 21 26 4A 4B 4C 4D 4E 4F 50 51 52 50 24	0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 27 27 27 27 27 27 27 27 27	- / S T U V W X Y Z, % -> ? 0 1 2 3 4 5 6 7 8 9 : #	60 61 E2 E3 E4 E5 E6 E7 E8 E9 6A 6B 6C 6D 6E 6F F0 F1 F2 F3 F4 F5 F6 F7 F8 F9 7A 78	- / STUVWXYZ ,% -> ? 0 1 2 3 4 5 6 7 8 9 :#	2D 2F 53 54 55 56 57 58 59 5A 7C 25 5F 3F 30 31 32 33 4 56 37 38 39 3A 22
28 29 30 31	*) ;	5C 5D 5E 5F	⊅ *) ;	24 2A 29 3B 5E	27 28 29 30 31	# @ ' = ''(Note 3)	7C 7D 7E 7F	π @ , = ,	40 27 3D 22

Examples:

3271 Addressing			3275 Addressing				
		EBCDIC	ASCII			EBCDIC	ASCII
General Poll CU5	CU	C5 ز	45	General Poll CU5	CU	∫ C5	45
	Address	1 C5	45		Address	1C5	45
	Device	(7F	22		Device	(7F	22
	Address	17F	22		Address	17F	22
Specific Poll Device 4 on CU5	CU	· (C5	45	Specific Poll CU5	CU	∫ C5	45
	Address	1 C5	45		Address	1 C5	45
	Device	(C4	44	1	Device	(40	20
	Address	1C4	44		Address	140	20
Select Device 4 on CU5	CU	(E5	56	Select CU5	cu	(E5	56
	Address	{_5	56		Address	{ E5	56
	Device	(C4	44		Device	(40	20
	Address	1 C4	- 44	and the second second second	Address	140	20

Notes:

1. Graphic characters for the United States I/O interface codes are shown. Graphic characters for EBCDIC 4A, 5A, 5B, 7B, 7C, and 7F might differ for particular World Trade I/O interface codes. Refer to IBM 3270 Information Display System: Character Set Reference, GA27-2837, for possible graphic differences when these codes are used.

2. I/O character address (SP) is always used as the device address to select a 3275.

3. I/O character address (") is used as the device address to specify a General Poll operation.

Figure 6-1. Remote Control Unit and Device Addressing - SDLC

Higher-level network controls determine the implementation and bit assignments within the RH. The response-indicating bits are definite response 1 (DR), exception response (EX), and pacing (P). Following are a detailed description of the response-indicating bits and a general description of the remaining RH bits.

The 3270 CU responds to combinations of response-indicating bits, specified in the RH received from the controller. The response generated by the 3270 CU consists of a frame containing the appropriate RH response bit(s) set to 1. (This is explained under the heading "3270 CU Responses.") Receipt of an RH by the 3270 CU with the DR bit set to 1 (byte 1, bit 0) indicates to the 3270 CU that a response must be sent when the specified command operation in the 3270 CU has been completed. An exception response (EX) is requested when RH bit 3 of byte 1 and the DR bit are set to 1. The 3270 CU generates an EX response if an error condition (other than an SDLC error) is detected during execution of a command. Error conditions are reported by the 3270 CU in the form of sense bytes contained within an I-field. If no error occurs, no response for the DR bit is sent. Pacing (P) is a response that allows the 3270 CU to indicate to the controller when message data can be sent for a device. The pacing response is returned when the requested operation is completed at the device.

The functions of the remaining 21 bits contained in the RH are summarized as follows:

Bit 0 of byte 0 is the request/response (RR) bit. The 3270 CU does not check the RR bit when it is received from the controller. It sends the RR bit to the controller as a 0 to indicate a request. This occurs when message text is sent as part of a read-type command or read-by-poll operation, or when asynchronous status or sense information is transmitted. The 3270 CU sends the RR bit as a 1 to indicate a response in reply to a definite or exception response (with or without pacing) requested by the controller.

Bits 1 and 2 of byte 0 are the request/response unit (RU Category) bits. They are stored, but not checked, by the 3270 CU when they are received from the controller. These bits are set, depending upon the contents of the RU, as follows:

RU	RU Category
Function Management (FM) Data	00
Network Control	01
Data Flow Control	10
Session Control	11

The 3270 CU sends FM data, except when sending a Clear or Pseudo Bid response, in which case bits 1 and 2 are sent in the same form in which they are received from the controller.

Bit 3 of byte 0 (always 0) is not used by the 3270 CU.

Bit 4 of byte 0 is the format indicator. The 3270 CU stores, but does not check, this bit when it is received from the controller. When the 3270 CU generates a request, the format indicator bit is sent as a 0; when sending a response, the 3270 CU sends this bit as it was received from the controller.

Bit 5 of byte 0 is the sense-data-included indicator. The 3270 CU does not check this bit when it is received from the controller. The 3270 CU sends this bit as a 1 when sense data is transmitted and as a 0 when sense information is not sent to the controller.

Bits 6 and 7 of byte 0 (always 1) are not used by the 3270 CU.

Bits 1, 2, 4, 5, and 6 of byte 1 (always 0) are not used by the 3270 CU.

Bit 0 of byte 2 is the begin bracket (BB) bit and is used by the 3270 CU in conjunction with the Pseudo Bid command (described under "Control Functions"). Receipt of the BB bit set decrements the poll counter in the 3270 CU.

Bit 1 (end brackets), and bits 2, 3, 5, 6, and 7 of byte 2 are always 0 and not used by the 3270 CU.

Bit 4 of byte 2 is the code selection indicator. This bit identifies the transmission code as EBCDIC (0), or ASCII (1).

Command Byte

The command contained in the command byte is sent after the RH by the controller for execution by the 3275 or by a device attached to the 3271. A list of command codes and a description of 3270 command operations appear in Chapter 3. Order codes, when employed, are transmitted within the message text following a Write or Erase/Write command.

The following conditions must be met to allow command execution:

- The frame must have a valid FCS character.
- The I-field must be the initial I-field of a segmented message or must contain the entire text of the message.
- The addressed device must be in a ready state (not busy).

3270 CU Responses

The 3270 CU responds to combinations of DR, EX, and P bit settings received from the controller in byte 1 of the RH. Valid request and response formats are listed in Figure 6-2.

Definite Response with Pacing

- 1. Write and Erase/Write Commands for Display Stations and Printer. When a write-type operation is successfully completed, the 3270 CU responds with a frame containing byte sequence F, A, C, TH, RH, FCS, F, with DR=1, EX=0, and P=1. Successful completion of a write operation to a printer occurs when the printout is completed. When the Write command, Start Print, and buffer data is successfully transferred from the 3271 CU to the printer, the RR response is sent to the controller. DR1 with the pacing response bit set on is sent only when printing has been completed. In the interim, the 3271 CU can process other messages to other devices. If an error is detected (other than an SDLC error) during command execution, the 3270 CU sends a response frame with DR=1, EX=1, and P=1 within the RH, and inserts a text segment containing a 4-byte sense RU to report the error condition. Sense RU format is defined under the heading "Error Responses and Error Recovery."
- 2. Read Modified and Read Buffer Commands for Display Stations. Successful completion of a read-type command occurs when the data has been sent and acknowledged at link level by the controller. The 3270 CU then replies with a frame containing DR=1, EX=0, and P=1 within the RH. If an error is detected (other than an SDLC error) while the device buffer is being obtained, the 3270 CU sends a response frame containing DR=1, EX=1, and P=1, and includes a sense RU text segment. If an error is detected during transmission of the message data to the

<u> </u>	Reques	t format-	-	Respo	nse format-	•	T
_	sent by	y the cont	troller:	sent in	reply by th	e 3270 CU:	
Response	DR	EX	Р	DR	EX	Р	Explanation
Definite response with pacing	1	0	1	1 6 1	0 ollowed by: 0 1	1 0 1 1	 Indicates successful completion of a read or write type or Copy command by a display station; or a write type or Copy command by a printer. Indicates that an error occurred during transmission of read data. In this case, the response may be preceded by a sense RU request containing an abort indication. Indicates that an error was detected while a device buffer was being obtained. Note: The printer operates in definite response with pacing mode only. Therefore, when a command has been executed by a printer, the 3270 CU always responds with positive response with pacing (101 or 111), regardless of the request received.
Exception response with pacing	1	.1	1	0 1 0 fc 0	0 1 0 billowed by: 0		 Indicates successful completion of a read or write type or Copy command by a display station. 1. Indicates that an error was detected while a device buffer was being obtained. 2. Indicates that an error occurred during transmission of read data. In this case, an exception request with an abort segment indication is transmitted before the response.
No response with pacing	0	0	1	0	0	1	Applicable to commands executed by display stations only. An error response (EX = 1) is not sent, regardless of how the operation ends. The 3270 CU transmits only an isolated pacing response.
Definite response, no pacing	1	0	0	1	0	0	Applicable to display station command operations only. The response description is the same as described above for positive response with pacing, except that the pacing bit is always set to 0.
Exception response, no pacing	1	1	0	0	0	0 ¹	Applicable to display station command operations only. The response format is the same as explained above for exception response with pacing, except that the pacing bit is always set to 0.
No response, no pacing	0	0	0	0	0	0 ¹	Applicable to display station command operations only. The 3270 CU does not send a response.

¹ A response format 000 indicates that no response is sent.

Figure 6-2. Request and Response Format

controller, the 3270 sends an exception request to the controller with an abort segment structure (DR1=0, EXC=0, and P=0) as described under the heading "Error Responses and Error Recovery." Following the exception request, a frame is sent containing DR=1, EX=0, and P=1. In this case, the read operation is considered completed, but unsuccessful.

3. Copy Command for Display Stations and Printers. When buffer data has been transferred from the *from* device to the *to* device without detection of an error, the operation is considered completed. The 3270 CU then sends a response frame with DR=1, EX=0, and P=1. If the *to* device is a printer, the response is delayed until the printout is completed. When the Copy command, Start Print, and buffer data is successfully transferred from the 3271 CU to the printer, the RR response is sent to the controller. DR1 with the pacing response bit set on is sent only when printing has been completed. In the interim, the 3271 CU can

process other messages to other devices. If an error is detected while the *from* device buffer is being obtained, the 3270 CU sends a sense RU response with DR=1, EX=1, and P=1. The address in the TH is the address of the *to* device, but the sense RU indicates that the error is in the *from* device or in the 3270 CU. If an error is detected during the transfer of data to the *to* device, the 3270 CU responds with a sense RU response with DR=1, EX=1, and P=1, with sense indicating an error condition (see Copy command).

Exception Responses with Pacing

1. Write and Erase/Write Commands for Display Stations and Printers. During execution of a write-type command to a printer, when the transfer of message text from the 3270 CU to the printer has been completed, the CU may begin servicing other attached devices.

When the printer operation has been successfully completed, the form of the response requested within the RH for the printer message is no longer present in the 3270 CU. In this situation, the 3270 CU replies by sending a definite response with pacing (DR=1, EX=0, P=1).

When the addressed device is a display station, the operation is the same as that described for Write and Erase/Write commands under "Definite Response with Pacing," except that successful command execution results in the 3270 CU's sending an isolated pacing response that is DR=0, EX=0, P=1.

- Read Modified and Read Buffer Commands for Display Stations. The operation is the same as that described for Read Modified and Read Buffer commands under "Positive Response with Pacing," except that the 3270 CU sends DR=0, EX=0, P=1 when the command has been successfully completed.
- 3. Copy Command for Display Stations and Printers. Since the printer must operate in positive response with pacing mode, the 3270 CU treats a request on Copy command operations to a printer as though positive response with pacing has been specified, regardless of the actual setting of the DR, EX, and P bits. The operation is the same as that described for the Copy command under "Definite Response with Pacing."

When the to device is a display station, the operation is the same as that described under "Definite Response with Pacing," except that successful completion causes the 3270 CU to reply with an isolated pacing response, DR=0, EX=0, P=1.

Definite or Exception Responses without Pacing; No Response with or without Pacing. Definite or exception response without pacing, and no response with or without pacing, are four variations of responses based on the definite or exception response with pacing. The response formats and a description of the response operations are given in Figure 6-2.

Data Transmissions by the 3270 CU

Data transmitted by the 3270 CU can be message text, test request data, or status and sense information. Data is transmitted to the controller in the same SDLC frame format used by the controller except that a command code is not present within the text segment. The frame format is as follows:

Message Text. Message text can be transmitted following:

- 1. Receipt of a Read Buffer or Read Modified command with a poll bit set to 1 in the C-field, or when an RR command with the poll bit set to 1 is received after the frame containing the read-type command.
- 2. Receipt of an RR command with the poll bit set to 1 when an attention key is pressed (except the TEST REQ key).

The address contained in the TH is the address of the device that received the read-type command or the address of the device that had an attention key pressed when an RR command was received.

When more than 256 bytes of message text are transmitted, the data stream is segmented into 256-byte segments [as described previously for data transmissions to the 3270 CU under the heading "Request/Response Header (RH)"].

Test Request Messages. Test request messages can be entered from a display station keyboard when the operator has pressed the TEST REQ key and a Read Modified command is issued to the device. For a description of the test request operation, refer to the heading "Test Request Read" in Chapter 3.

The Clear and Pseudo Bid control functions take the form of control commands issued by the controller in information format. The 3270 CU sends a Clear response when replying to the Clear command.

Clear Command/Response. The controller sends the Clear command to cancel pending DR and (or) pacing responses from the 3270 CU. The Clear command format consists of a 1-byte RU (hex A1), with the DR request bit set in the RH. The 3270 CU replies with a response frame in the same format received from the controller.

Pseudo Bid Command. The controller sends the Pseudo Bid command to cause the 3270 CU to do a Specific Poll to a specific device and, if no attention ID is pending, to execute a write-type command at the selected device. The Pseudo Bid command is sent in information format as 1 byte of data (hex F8). If an attention ID is not present at the addressed display station or printer and a request was sent by the controller, the 3270 CU replies with a response frame. The controller then sends an information frame containing a write-type command and the BB bit set in the RH. The operation then proceeds as a write-type command. Bracket protocol for the application program and the terminal operator is given in *Introduction to Programming the IBM 3270 Information Display System*, GC27-6999.

Generally, the bracket state management function resides within the SNA CU. In the 3270 system employing SNA, however, the controller provides bracket state management control for the 3270 CU. As a result, the controller controls the operation of the poll counter in the 3270 CU and generates the Pseudo Bid command.

The poll counter is used for bracket state management. A successful Pseudo Bid command operation at the 3270 CU (that is, no attention ID pending) increments the poll counter. Receipt of the BB bit set, with no attention ID pending, decrements the poll counter. The poll counter must be equal to zero to allow the 3270 CU to present attention-generated information to the controller. When the poll counter is not equal to zero, communication with the devices is inhibited.

Control Functions

SDLC Sequence/Response Diagrams

Figures 6-3, 6-4, and 6-5 are sequence/response diagrams showing, respectively, online/offline procedures, read-type commands, and write-type command operations. Only the portions of the SDLC frames essential to the operation are shown. The descriptive text in each diagram summarizes the flow of information between the controller and the 3270 CU.

Status and Sense (S/S) Bytes

The 3270 CU records SNA and device status and sense (S/S) conditions for each attached device. All remote status and sense conditons are contained in 4 bytes, which are sent to the controller as an exception request or an exception response. Bytes 0 and 1 contain SNA S/S information, and bytes 2 and 3 contain device S/S information in the same format used for remotely attached BSC devices. An exception request or an exception response is returned to the controller when the 3270 CU has status pending and receives an RR command or I-formatted frame with the poll bit set to 1.

The status and sense message contains 9 bytes in the I-field in the following sequence:

TH – byte 0 TH – byte 1	{	Address of the device for which the trans- mission is intended, or the address of the					
RH — 3 bytes][device which originated the transmission					
S/S – byte 0)	SNA status/sense					
 S/S – byte 1	}						
S/S – byte 2)	device status/sense					
S/S — byte 3)						

Figure 6-6 defines each S/S bit. Figure 6-7 shows how these status and sense conditions are interpreted for each error response or request transmitted by the 3270 CU.

Note: Only SDLC bytes that are significant for the sequence being illustrated are shown in this figure.

P/F=poll/final bit I = information frame dash (--) above a letter = not set to 1.

Figure 6-3. Online and Offline Procedures, Sequence/Response Diagram

*Error occurred on this segment.

Figure 6-4 (Part 1 of 2). Read-Type Command, Sequence/Response Diagram - SDLC

6-14

<i>c</i>		Descr	iption		
Controller sen	ds Read type command. Cor 1. TH contains device addres	ntroller may send one I-fr ss. If a response is requir	rame with p=1, or send I-fran ed by the 3270 CU, the cont	ne with p=0, followed b roller requests a respon	y RR command e format in
the HH.					
3270 CU send	s two l-frames of data follow	ed by RNR with f=1 Or	ontroller acknowledger with I	PRoommand Qual-	repeated until
all I-frames ha	ve been sent. RH bytes are c	ontained only in the first	Introner acknowledges with I	TR command. Cycle is	repeated until
		ontained only in the mat	, Fridine sent.		
Ç				n an the second s	
ſ					
has been reque	H response had been specified ted and no errors have occurre	by the controller, an I-franed. In this case, the I-fran	ame containing the response f ne[C-1 TH, RH] is not needed	ormat is sent, unless an I I and the 3270 CU sends	Exception response RR only
{ · ·					
2					
Controller and	CU RR exchange to complete	the read operation. RR i	is sent by the 3270 CU only a	t the completion of a co	mmand.
2				and the second second second	
					a ta aba Dilla fait
Read type cor	mand initiated. Error detect	ted while fetching device	butter. If a response was rec	uested by the controlle	r in the RH of the
I-trame contai	ning the command, the 3270	CO responds with error I	esponse in the RH and 4 byt	es of sense data.	
			wa the second	1. S.	
S			· · · · · · · · · · · · · · · · · · ·		
				1 - 1	
					an an a' an a'
ſ		a de la construcción de la constru		1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -	
command, the request is not a	3270 CU transmits a frame co ent, and read command is co	ontaining the error, follo mpleted as in normal ope	wed by an exception request ration.	frame; if no error occu	s, the exception
l					
•				*	
1					
]					
f a 3270 CU	esponse had been requested, a	an I-frame is sent containi	ng an error response.		
1					
L					
-	3 				
ſ					
			1	1	1997 - Serie State
This condition	is caused by an Attention ID	When the controller polls	s. Inframes are transmitted and	acknowledged in group	s of two
frames, as in th	e réad-by-command operation et require 3270 CU responses.	Error sequences and ter	mination of read are the same	as shown for read by co	immand. Read
					a station of the
C					
r				and a second state of the second s Second second	
		· · · · ·			
An exception r	equest is returned to the contr	roller when the 3270 CU i	is polled and has status pendir	ng, and a read, write, or p	print operation
) is not in proces	s.				
1				•	e et el composition de la composition d
			and the second	and the second	
ND: (continued)					
ND: (continued)			RH, 24-bit request/res	ponse header; specifies of	lefinite
ND: (continued) F, 8-bit flag	(01111110) sequence		RH, 24-bit request/res response (DR), e	ponse header; specifies (xceptior, (EX), and pacif	lefinite 1g (P) request
F, 8-bit flag A, 8-bit CU a C, 8-bit cont	(01111110) sequence Iddress field rol field; specifies transmission mation field)	1 format:	RH, 24-bit request/res response (DR), e and response forr P/F bit, poll/final bit cor	ponse header; specifies (xceptior, (EX), and paci- nats. Itained in the C-field	Jefinite ng (P) request
ND: (continued) F, 8-bit flag A, 8-bit CU a C, 8-bit cont C-1 (Infor C B2(20)	(01111110) sequence Iddress field rol field; specifies transmission mation field) B. (Supportung): Comment in com	n format:	RH, 24-bit request/res response (DR), e and response forr P/F bit, poll/final bit cor	poonse header; specifies (xceptior, (EX), and pacin nats. Itained in the C-field	definite ng (P) request
ND: (continued) F, 8-bit flag A, 8-bit CU a C, 8-bit cont C-I (Infor C-RP/RM	(01111110) sequence iddress field rol field; specifies transmission mation field) R (Supervisory Commands and DIC/11.0/DM/CPMP.	n format: d Responses)	RH, 24-bit request/re: response (DR), e and response forr P/F bit, poll/final bit cor Note: A number of DR.	ponse header; specifies (xceptior, (EX), and pacin nats. ntained in the C-field <i>EX, and P request/resp</i>	definite ng (P) request onse formats
ND: (continued) F, 8-bit flag A, 8-bit CU a C, 8-bit CO t C-1 (Infor C-RR/RN C-SNRM, C-SNRM,	(01111110) sequence Iddress field rol field; specifies transmission mation field) R (Supervisory Commands and DISC/UA/DM/F RMR (nonse frame check sequence	n format: d Responses) iquenced format)	 RH, 24-bit request/reiresponse (DR), e and response forr P/F bit, poll/final bit con Note: A number of DR, are available. For a desc 	ponse header; specifies (xceptior, (EX), and pacin nats. Itained in the C-field EX, and P request/resp ription of the request/r	definite ng (P) request onse formats isponse formats
ND: (continued) F, 8-bit flag A, 8-bit CU a C, 8-bit cont C-I (Infor C-R/RN C-SNRM, FCS, 16-bit	(01111110) sequence Iddress field rol field; specifies transmission mation field) R (Supervisory Commands and DISC/UA/DM/FRMR (nonse frame check sequence transmission bencher include	n format: d Responses) iquenced format) device address	 RH, 24-bit request/reiresponse (DR), e and response forr P/F bit, poll/final bit cor Note: A number of DR, are available. For a desc applicable to each comm 	ponse header; specifies (xceptior. (EX), and paci- nats. ntained in the C-field EX, and P request/resp ription of the request/r and, refer to the heading	definite ng (P) request onse formats isponse formats g ''3270 CU

459

Repetitive bytes: initial and ending F, A, and FCS bytes are omitted from this figure.

Figure 6-5 (Part 1 of 2). Write-Type Command, Sequence/Response Diagram - SDLC

Description

The controller set bit is not = 1 in ti possible replies: RNR, unless an e. required and RR controller. When final bit is set to	Ids a request consistin le l-frame, a frame wi lf the controller reque kception response had is sent. If the 3270 Cl the controller does no h all 3270 CU trans	g of a write-type commu th RR and the poll bit s ists a response in the RH I been requested and no U cannot perform the oj ot request a response fro missions, except I-frame	Ind containing one I at to 1 is sent. The 3 b, the 3270 CU sends errors had occurred. Deration indicated wi m the 3270 CU, RR transmissions.	frame of message data. 1270 CU can send one of the response frame fol In this case, the frame thin 75 ms, RNR is sen is returned to the cont	If the poll of three lowed by is not it to the roller. The
The controller set frame sent, a fran the entire messag sends additional I requested a respo requested and no Note: As in the a respond within 72	Ids a write-type comm with RR and the po a. If a partial transmin -frames. The cycle is nae, the 3270 CU sence errors occurred. In the wample above, of a or 5 ms, or RR as the las	nand containing a series of bit = 1 is sent. The c ssion occurs, the 3270 C repeated until the contr ds the response frame fo his case, only RR is sent ne 1-frame message, the it transmission if a reque	of I-frames. If the p ontroller may send a U acknowledges with oller has sent the las llowed by RNR, unk 3270 CU can reply w st was not sent by d	oll bit is not = 1 in the partial transmission of n RR, and the controlle l-frame. If the contro ass an exception respon the RNR if it cannot be controller.	last data data or In then Iler had Ise was
A write type comr	nand is initiated. If a r	response was requested b	y the controller, and	an error was detected d	luring
command execution	in, an exception respon	nse is sent by the 3270 C	U after transmission	of data from the contro	lier is
C					·
· · · · · · · · · · · · · · · · · · ·	and an of the				
			1 - A - A - A - A - A - A - A - A - A -		
The controller sen	ds an I-frame containi	ing the Pseudo Bid com	nand. The 3270 CU	, with an attention ID p	pending,
replies with an ex	ception response (Brai	cket Bid Heject).	· · ·		
			George Const		
	An in 1 igure 0-4, nea	a-rype command, orde			
an a					
				1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -	
			D^{*} , $z = z$		
	· · · · · · · · · · · · · · · · · · ·	1 2 2 1 1 1 1 N			
Bracket Bid Rejection (Bracket Bid Rejection)	Is an I-frame containing t) if a response had be ler followed by RNR.	ng the Pseudo Bid comm een requested, other tha . Subsequently, the data	nand. Because an att n an exception respo that caused the atte	ention ID is pending inse, a response frame is intion is sent to the cor	s troller.
	1		2		
			- k		
5		. 31	an for the second second		
		· · ·			
The controller sen	ds an I-frame containi	ing a write type comman	d with the BB bit se	t in the RH. The norm	al write
type command op	eration takes place, as	shown above in this dia	gram.		
D: (continued)				and the second second	
			· · · · · · · · · · · · · · · · · · ·		

- F, 8-bit flag (01111110) sequence.
- A, 8-bit CU address field. C, 8-bit control field; specifies transmission format: C-I (Information field) C-RR/RNR (Supervisory Commands and Responses) C-SNRM/DISC/UA/DM/FRMR (nonsequenced format)
- FCS, 16-bit frame check sequence
- TH, 16-bit transmission header; includes device address

RH, 24-bit request/response header; specifies definite response (DR), exception (EX), and pacing (P) request and response formats. P/F bit, poll/final bit contained in the C field

Note: A number of DR, EX, and P request/response formats are available. For a description of the request/response formats applicable to each command, refer to the heading "3270 CU Responses."

Figure 6-5 (Part 2 of 2). Write-Type Command, Sequence/Response Diagram - SDLC

Bit No.	Bit Definition	Bit No.	Bit Definition
S/S Byte 0: 0	<i>Path Error</i> —For the 3271, this bit is set if the device address received (bits 1 through 7 of TH byte 1) is	S/S Byte 3 (cont) 3	 A command attempted to start a printer but found
	invalid, or if the device adapter card for the indicated address is not installed. For the 3275, this bit is set if the device address is not 1000000 (bits 1 through 7 of TH byte 1).		 it not ready. The printout is suppressed. The 3271 receives a Pseudo Bid sequence for a device which is unavailable or which became not ready during a printout.
1,2 3 4 5,6,7	Reserved. Request Error — This bit is set if the first byte of the RU is not recognized as a valid command or command function. Command Reject (CR), S/S byte 3, bit 2, is set when Request Error is set. Request Reject — The bit is set if a Pseudo Bid command or begin bracket bit (set in the RH) is sent to a device that has an attention pending. Reserved.	4 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	 The 3270 CU receives a command for a device which the 3271 has logged as unavailable and not ready. Equipment Check (EC) - This bit is set if: A printer character generator error occurred, or the printer became mechanically disabled. The 3270 CU detected bad parity from the device, or data transmitted in a device reply. Note: The data check (DC) bit may also be set.
S/S Byte 1: 0,1,2,4,5 3,6,7	Reserved. These bits are set with <i>request reject</i> (bit 4, byte 0)	5	<i>Data Check (DC)</i> — This bit indicates detection of a parity or cursor check in either the 3271 or a device buffer, or in the 3275 buffer, or that the 3271 detected bad parity from the device.
S/S Byte 2: 0,1,2,3 4	Reserved. <i>Device Busy (DB)</i> — This bit indicates that the addressed device is busy executing an operation. The device is busy when executing an Erase All	6	Control Check (CC) – This bit is not used for the 3275. For the 3271, this bit indicates a timeout check. A timeout check occurs when a device fails to respond to 3271 communications within a specified time period or when a device fails to complete an operation within a specified time period.
5	Unprotected command, or a print operation, accepting data from the operator identification card reader, or performing various keyboard operations (ERASE INPUT, Backtab, and CLEAR). Unit Specify (US) – This bit is set if any S/S bit is set	7	 Operation Check (OC) — This bit, when set alone, indicates one of the following: An invalid buffer address or an incomplete order sequence was received on a Write or Erase/Write command.
6	as a result of a device-detected error. Device End (DE) — This bit indicates that the addressed device has changed from unavailable to available and not ready to ready, or busy to not busy. When a printer goes from busy to not busy, a positive response with pacing is generated instead of DE.		 The device did not receive a CCC or a <i>from</i> address on a Copy command. A Read, Read Modified, Copy, or Erase All Unprotected command was received with TH mapping field bits not equal to 11 (i.e., a complete BIU).
7 S/S Byte 3: 0,1	Reserved.		 An I/O interface overrun is detected. This occurs if a data byte follows a Read Buffer, Read Modi- fied, or Erase All Unprotected command, or if more than 2 data bytes follow a Copy command.
2 3	 Command Reject (CR) – This bit is set upon receipt of an invalid 3270 command. Intervention Required (IR) – This bit is set if: A Copy command contains a from device address in its data stream which specifies an unavailable device. 		This bit is set with Control Check, Intervention Required, Data Check, or Data Check with Unit Specify, to indicate that the errors that set these sense bits were detected while the 3270 CU was executing an operation with the <i>from</i> device during a Copy command.

Figure 6-6. Remote Status and Sense Byte Definitions-SDLC

	Explanation	general second
Status/Sense Bits	Response	Request
PE (Address not available)	Bits 1 through 7 of TH byte 2 are not a valid device address or the device adapter card is not installed in the 3271.	NA
CC CC	A timeout check is caused by the addressed device. The operation is tried twice before the CC bit is set.	n NA rs and the second se
сс, ос	The <i>from</i> device fails to complete an operation or to respond to the 3271 within a specified time period (timeout check) during a Copy command operation.	NA NA a Maria a superior a Superio
DC	 The 3271 or 3275 detects a parity or cursor check in its buffer during a command operation. The 3271 detects bad parity on data received from the addressed device. The operation is attempted twice before the DC bit is set. 	A parity error is detected by the 3271 on a data transfer to the controller as a result of a poll or a parity error detected in the 3275,
DC, US (3271 only)	 A parity check or cursor check is detected by the addressed device on the data it is sending to the 3270 CU. The device detects a parity or cursor check in its buffer during a command operation. 	A parity check or cursor check is detected by the polled device on the data it is sending to the 3271 CU.
DC, OC (3271 only)	The 3271 detects a parity check on the data transferred from the <i>from</i> device during a Copy command operation.	NA (1996) - Constanting of the second s
DC, OC, US	Sent when the <i>from</i> device detects an internal parity or cursor check while performing the Copy command.	 NA to use the space during the product of the space of t
IR	The addressed device is not available or the addressed printer is not ready.	na NA en esta en esta esta esta esta esta esta esta esta
IR, OC (3271 only)	The <i>from</i> device is not available on a Copy command.	har se an strand an trainn an strainn an s
IR, EC, US	The addressed printer is mechanically disabled and cannot recover.	NA
OC	1. The Copy command data stream contains more or less than 2 bytes (the CCC and the <i>from</i> device address). The Copy command is aborted.	NA data di secondaria di secon
	 One or more data bytes followed an Erase All Unprotected command (buffer overrun). 	¹ NA strategy News Application (News) and Comparison (News) (News) (
	3. A data byte followed a read type command in the data stream received at the device.	NA <u>stratura de la composition de la composition</u>
OC, US (3271 only)	The device has a locked buffer during a Copy command operation. (Refer to the heading "Copy Command" in Chapter 3, "Commands and Orders.")	NA State And Sta
EC, US (3271 only)	A character generator error or a mechanical failure is detected at the printer, but recovery occurs.	n an Araba a Araba an Araba an Arab
RE, CR	An invalid command is detected (first byte of data). For example, a Copy command is sent to the 3275.	NA 1. 1994
EC	Character generator error (3275 only) in printer.	Bad parity from a device (3271 only).

Figure 6-7 (Part 1 of 2). Remote Error Status and Sense Responses and Requests - SDLC

	Explanation	e de la completa de la seconda de	
Status/Sense Bits	Response	Request	
EC, DC	Transmit parity error has occurred. If a buffer was obtained during the operation, the Data Check bit is also set.	NA	
DE	The poll bit finds a device which was previously recorded as busy, as not busy. Transmission of an I-frame with read or write type data resets this bit.	The poll bit finds a device which was previously recorded as unavailable or not ready, as available and ready.	
IR	The addressed printer is out of paper, power has been turned off, or the printer cover is open.	NA	
IR, EC (3275 only)	Power is off at the 3284 Model 3 printer, or a malfunction is detected.	NA	
OC, DB	The <i>from</i> device receiving a Copy command is busy. The device is busy performing an operation or a printout, reading data from the operator identification card reader, or performing a keyboard operation.	NA	
DB	The addressed device is busy.	NA	

Notes:

1. There are other conditions of multiple status that can occur which are not included here; for example, an unpredictable catastrophic card failure or multiple error conditions occurring simultaneously could cause an undefined combination of status and sense bits. If a multiple-status condition occurs, each bit must be checked separately to determine the cause(s) of the failure.

2. See Figure 6-8 for error-recovery procedures that are applicable for certain combinations of status/sense bits.

Figure 6-7 (Part 2 of 2). Remote Error Status and Sense Responses and Requests - SDLC

Error-Recovery Procedures

Errors detected by the 3270 CU are indicated to the system by a timeout, an FRMR response, or an exception request or response.

Figure 6-8 lists the various error combinations of sense/status bits (described in Figure 6-7) and refers to error-recovery procedures. The error-recovery procedures recommended in Figure 6-8 are as follows:

- 1. a. Any response other than NSA to a Set Mode command is discarded and results in *n* retries of the particular Set Mode command being attempted. If the timeout response persists, the system operator should take action to verify the link.
 - b. Execute a new command sequence, starting with the command that was being executed when the error occurred. Executing a new command is a function of the access method or the application program and is the responsibility of the customer-written application program. If, after two retries, the operation is not successful, inform the system operator of the problem and follow procedure 4a.
 - c. Perform procedure 1b, except, if operation is not successful, follow procedure 4b instead of 4a.
- 2. Notify the responsible application programmer that a nonrecoverable program error was detected.

0	Detected during 3270 Operation		5	
Sense/	- •		Error Recovery	
Status	I ransmitted as:		Procedure:	2075
BIT	Response	Request	3271	3275
PE (Address		i		
not available)	D, P		2	2
CC	D, P		1b	NA
CC, OC	D, P		1c	NA
DC	D, P	D, P	1b, 3a ¹	3a
DC, US	D, P	D, P	3a	NA
DC, OC	D,P	i	1c	NA
DC, OC, US	D, P		Зb	NA
IR	D, P		6a	6a
IR, OC	D, P			NA
IR, EC, US	Р		5	NA
OC	D, P		2	2
OC, US	D, P		7	NA
EC, US	Р		5	NA
FIE, CR	D, P		2	2
EC	D, P	D, P	1b	5
DC, US, DE	D, P		3a	NA
IR,EC	D	i	NA	5
DE	D, P	D, P	None	None
OC, DB	D, P	i	8a	NA
RR	D, P		None	None
DB	D, P		8b	8b

Legend:

NA – Not applicable

D – Display (3277 or 3275)

P - Printer

¹Perform error-recovery procedure 1b if error occurred during a read operation. Perform error-recovery procedure 3a if error occurred during a write operation.

Figure 6-8. Remote Status and Sense Conditions - SDLC

- 3. a. Reconstruct the entire device buffer image, starting with the first segment if a multisegment transmission occurred, and retry the failing sequence of commands. The sequence of commands used to reconstruct the image should start with an Erase/Write command to correct a possible missing- or multiple-cursor condition in the device buffer. This procedure is the responsibility of the customer-written application program. If, after a series of retries, the problem is not corrected, inform the system operator of the problem and follow procedure 4a.
 - b. The error occurred during execution of a Copy command. Follow procedure 3a, and reconstruct the entire image of the device buffer of the *from* device specified by the Copy command. If, after a series of retries, the operation is not successful, follow procedure 4b.
- 4. a. Request the system operator to request maintenance support. Following repair, reconstruct the buffer image. The sequence of commands used to reconstruct the image should start with an Erase/Write command to correct a possible missing- or multiple-cursor condition in the device buffer.
 - b. The *from* device specified by the Copy command in the failing chain of commands is malfunctioning. The device should be identified from the customer- written application program, and the system operator should be requested to have this device repaired. After repair, reconstruct the device buffer image. The sequence of commands used to reconstruct the image should start with an Erase/Write command to correct a possible missing- or multiple-cursor condition in the device buffer.
- 5. The error occurred during a printout operation and indicates either a charactergenerator error or a disabled print mechanism. There is no data error. The proper error-recovery procedure is application-dependent since the user may not want a new printout. In this case, the appropriate recovery procedure is the responsibility of the customer-written application program. If a new printout is required, follow procedure 6a.
- 6. a. The error indicates that the printer is out of paper, has its cover open, or has a disabled print mechanism, or it indicates that the device is unavailable. Request (or wait for) the terminal operator to ready the device. A Device End can be expected. Then retry the printout by issuing a Write command with the proper WCC and no data stream. (There is no data error, and the data is still intact in the device buffer and can be reused.) Or, follow procedure 3a.
 - b. The error indicates that the *from* device specified by a Copy command is unavailable. The device address associated with the error status and sense information is not the device that requires reading. The device that requires reading is the *from* address specified in a Copy command. The responsible customer application programmer should determine the *from* device address and inform the system operator.
- 7. An attempt was made to execute a Copy command in which access to the *from* device data was not authorized. Determine the appropriate customer-written application program, and notify the customer. The device address associated with the error status/sense bits in the sense RU is that of the Copy command *to* device.
- 8. a. This indicates that, in attempting to execute a Copy command, the *from* device was found to be busy. Follow procedure 1b when the *from* device becomes not busy. Note that the device address associated with the S/S bits in the sense RU is the address of the *to* device and not that of the busy *from* device. The *from* device will transmit Device End when it becomes not busy.
 - b. This indicates that the addressed device is busy. If the device is a display station, it will transmit Device End when it becomes not busy. If the device is a printer, a positive response with pacing is sent.

When the 3270 CU detects an FCS check, it initiates a timeout and does not respond to the controller. The controller retransmits the message several times, if necessary, in an attempt to correct the error.

CMDR Response to Invalid Nonsequenced Commands and I-Field Formats

The 3270 sends the FRMR response for invalid nonsequenced command formats and Iformats. The recovery action for FRMR response is the responsibility of the controller's.

ROL Response to a Poll

The 3270 CU sends a DM response upon receipt of an RR or RNR command with the poll bit set to 1, when it is in disconnect response mode. Disconnect response mode is a result of a DISC command's having been issued previously by the controller or of power's having been removed from the 3270 CU and then applied. The controller must issue an SNRM command to return the 3270 CU to online status.

Aborting an Inbound I-Frame

Data checks are sensed by the 3270 CU before a segment of message data is transmitted to the controller. If the segment assembled for transmission was the first or the only segment, an exception request is transmitted with the mapping bits set to indicate one segment (whole) in place of the segment of message data that contained the error. If the segment assembled for transmission was an intermediate, or the last, segment and contained an error, an exception request is transmitted with mapping bits indicating one segment. In either case of this abort-segment structure, RH byte 1 is DR1=0, EXC=0, PAC=0, and the sense and status data check indicator is on. As a result, the host discards all segments received up to and including the segment containing the exception request.

Chapter 7. Screen Design

Field Concept

People dealing with information see it as a collection of individual elements. For example, what we know about John Smith's employment may be a collection of individual elements: his name, serial number, location, and date of hire. The size of the element is the amount of data required to convey useful information. You think of J and O and H and N as useful, not individually, but collectively, as the name JOHN. You do not think of JOHNSMITH963981BOSTON070262 as being useful collectively, but see the elements individually – name: JOHN SMITH, serial number: 936981, location: BOSTON, date of hire: 07/02/62.

Each data element has its own characteristics. In this example, the serial number is 6 numeric digits and varies from employee to employee. The word *NAME* is 4 characters, is alphabetic, is all uppercase, and does not change. When people record these elements of data on paper, they take on such additional characteristics as position (where on the sheet of paper the item is written), color (what ink or medium is used), size of the letters, and writing style.

In the past, when information was handled by a data processing device, it was generally handled as an artificial entity called a *record*. The contents and characteristics of a record were primarily determined by device requirements, and little or no attention was given to the individual information elements. Data processing users had to adjust their thought pattern to the machine requirements.

The IBM 3270 Information Display System recognizes that people deal with individual units of information. The system has been designed to conform to human needs and requirements, and it enables you to deal with data by individual elements, or *fields*, each with its own characteristics.

You may describe data to the 3270 on a field basis and specify the characteristics, or *attributes*, of each individual field. The 3270 then provides program and data control on the basis of your individual field definitions.

How Fields Are Defined

Each data field is established by writing a field attribute control code, or attribute character, as the first position of the field. A field is defined as the attribute character, plus all the data following it up to the next attribute character. The placement of attribute characters defines the field lengths, and the content of the attribute characters defines the other field characteristics. In the following examples, the symbol designates an attribute character.

All the characters in a field, except the attribute character itself, assume identical characteristics based on the specifications within the attribute character. In Figure 7-1 the characteristics of the field NAME: are controlled by the attribute 1, and terminated by the attribute 2. The placement of attributes controls the length of the fields.

Figure 7-1. Example of Four Fields and Attribute Bytes

Field attributes can be modified or removed by a 3270 program. Removing the attribute character 2 causes NAME: JOHN DOE to be considered by the 3270 as a single field. Changing the content of the attribute 3 alters the characteristics of SERIAL: even though SERIAL: itself has not been altered and remains associated with that attribute.

What Attributes May Be Assigned to a Field

Besides length, which is controlled by the position of attributes, you may specify these additional characteristics with the attribute character.

Protection

A field is either protected or unprotected. When it is protected, the operator cannot enter or modify data in any location within that field.

In an unprotected field, the operator can enter characters or can delete or modify characters that are already there. Headings, labels, titles, and formats are commonly specified as protected. Any field in which the 3270 operator should enter or modify data must be specified as unprotected.

In Figure 7-1, NAME: would most likely be specified as protected. JOHN B DOE would be specified as protected if it were written by the computer and was to remain unchanged. If JOHN B DOE is to be entered or modified by the operator, the attribute 2 must specify unprotected.

A field is either alphameric or numeric. An operator can enter alphameric, numeric, or

The numeric attribute is more complex; it depends upon whether the Numeric Lock feature is present and upon which keyboard is attached to the display. Figure 7-2 shows what characters may be entered with various combinations of keyboards and field types.

special characters in an alphameric field.

Character Content

Visibility and Detectability

A field is either displayable or nondisplayable. When it is displayable and contains characters, those characters are displayed. When it is nondisplayable, any characters within that field are not displayed. The nondisplayable attribute is useful for entering classified or security information at a display unit that is in public view. Nondisplayable data is accepted by the 3270, but it is not visible on the screen.

All characters within a displayable field can be displayed at regular brightness or at a high intensity so that they stand out among regular display fields. High intensity may be used to call attention to error conditions or to highlight protected or format fields. Normal intensity may be used for all input fields, so the terminal operator can tell at a glance which fields require operator action. You should not specify unprotected fields as high intensity, since such fields may become selector-pen-detectable (if this feature is installed) if the operator enters a question mark or space as the first input character. Fields are specified as either detectable or nondetectable. When a field is detectable, it can be used for selector-pen operations. A nondetectable field location cannot be detected by the selector pen. You are urged to designate all detectable fields as protected to prevent the operator's changing the content of the sensitive field.

7-2

	Kauland	Ch:ft			Resulting Characters		
Keyboard Type	Numeric Lock	Key Pressed	Field Type	Protected	In Buffer	Displayed on Screen	Read into Storage
Typewriter	No	No	Alpha or Numeric	No	Lowercase	Uppercase	Lowercase
Typewriter	No	Yes	Alpha or Numeric	No	Uppercase	Uppercase	Uppercase
Typewriter	Yes	No	Alpha	No	Lowercase	Uppercase	Lowercase
Typewriter	Yes	Yes	Alpha	No	Uppercase	Uppercase	Uppercase
Typewriter	Yes	No	Numeric	No	Can only enter 0–9, period, and minus sign; any other characters lock key- board.		
Typewriter	Yes	Yes	Numeric	No	Can only press dup key; any other action locks keyboard.		
Data Entry	No		Alpha	No	Alpha keys produce uppercase alpha characters. Numeric shift key pro- duces numeric characters. Alpha shift key has no effect.		
Data Entry	No	_	Numeric	No	Numeric shift key has no effect. Alpha shift key overrides numeric specification and allows alpha char- acter entry.		
Data Entry	Yes	_	Alpha	No	Alpha keys produce uppercase alpha characters. Numeric shift allows numeric character entry. Alpha shift key has no effect.		
Data Entry	Yes	-	Numeric	No	Can only enter 0–9, period, dup, and minus sign. Any other char- acters lock all keys except for RESET key. Numeric shift key allows numeric character entry; alpha shift key allows alpha character entry.		

Figure 7-2. Results of Keyboard and Field Combinations

Transmission

The most common operation of the 3270 (Read Modified) sends to the computer only those fields that have been entered, deleted, or changed by the operator. The 3270 keeps track of such modifications and uses that information to select data to send to the computer. If you wish to pass a field into the computer regardless of modification, you may assign the modified or modified data tag (MDT) attribute. You should note, however, that the operator can change the MDT attribute unless you also assign the protected attribute.

Certain attribute combinations produce additional characteristics. For example, the numeric (limiting keyboard use) and protected (eliminating keyboard use) attributes seem contradictory but, when specified together, automatically skip the cursor past the field.

You should also be aware that the computer is not limited by attributes. The computer can, for example, place alphabetic information in a field defined as numeric, or protected, or both. The operator does not have such liberty.

If you do not specify any combination of attributes, a field is assumed to have the following attributes:

- Alphameric
- Unprotected
- Displayable (at regular brightness)
- Nondetectable by the selector pen or cursor select
- Not modified

You will find that these are the attributes most commonly used.

The attribute character for each field uses a single nondisplayed and protected character position on the screen and serves as a visual separation between successive fields.

Example of Field Definition

A typical sign-on procedure illustrates how you might define fields. Figure 7-3 illustrates a simple procedure in which the computer requests the operator to provide his name, location, and serial number.

Figure 7-3. Example of Attribute Specification

Field 1: SIGN-ON PROCEDURE

This field is a heading that the operator should not be able to alter. It is unnecessary for the words "SIGN-ON PROCEDURE" to be returned to the computer when the ENTER key is pressed. This field should be protected, alphameric, displayed at normal intensity, not detectable by the selector pen or cursor select, and not modified. All default attributes can be assumed, except that you must specify this field as protected.

Field 2: PLEASE ENTER ... INFORMATION

You should specify this field as protected. Remember that the characteristics of a field are determined by the attribute character at the beginning of the field. Field 1 and field 2 have identical attributes and are adjacent to each other. You may choose to define them separately and use 2 attribute characters, or you may choose to omit the attribute character at the beginning of field 2. In the latter case, the two headings combine to become a single field of greater length.
Field 3: NAME:

This field should be protected, alphameric, not modified, and not detectable by the selector pen. The heading could be displayed at high intensity. Specify the protected and high-intensity attributes (the two deviations from the default attributes).

Field 4: The Area Following "NAME:"

.

The null area following NAME: is an input area for the operator and must therefore be unprotected. The 3270 marks this field as modified if anything is entered into it, so you should not specify the modified attribute. The default attributes (alphameric, unprotected, displayable at normal intensity, not detectable by the selector pen or cursor select, and not modified) apply. Use a default attribute at the beginning of this field.

The maximum number of characters the operator can enter is determined by the length of this field. The length is equivalent to the number of nulls, or available positions on the screen, between the attribute character for field 4 and the attribute character for field 5.

Field 5: LOCATION:

The attribute character for this field is the same as that specified for field 3: protected and high intensity should be specified. This attribute prevents the operator from keying a name longer than the maximum length desired. If the name is shorter than the maximum field size, the operator presses the TAB key when the name is complete. The TAB automatically skips the cursor past protected fields, such as this one, and stops at the first character position in which data can be entered (the next unprotected field). In this example, the cursor would be positioned for entry of location. If the operator attempts to key too many characters (a name greater than 17 characters in the example), the cursor is positioned under this attribute for the 18th character. The next keystroke attempts to destroy this attribute, but fails to do so because attribute characters are protected. The keyboard is inhibited, the clicker shuts off, and the *input inhibited* indicator is turned on. The operator's attention is assured, since this condition requires pressing the RESET key to continue.

If the attribute character for this field were omitted, the work *LOCATION*: would become part of field 4 and would be of normal intensity and unprotected. This is undesirable because the operator could continue entering name information beyond the desired maximum length and could modify the heading information by entering data in the screen locations occupied by LOCATION:.

Field 6: The Area Following "LOCATION:"

This field is for operator input and must therefore be unprotected. The rest of the default attribute values apply, and so a default attribute may be used. You need specify only that a field is to begin following LOCATION:. This field ends with the attribute character at the beginning of field 7, which determines the length of the field.

Field 7: SERIAL NUMBER:

This field, like NAME: and LOCATION:, should be specified as protected and of high intensity. This also limits the location field length to 5 characters. Note that if field 6, the input field for location, were defined as always being a 5-character code, field 7, SERIAL NUMBER:, could be defined as auto-skip to save the operator from having to press TAB after filing in the location code.

Field 8: The Area Following "SERIAL NUMBER:"

The null area following SERIAL NUMBER: is an input area for the operator and must be unprotected. It should also be specified as numeric so that, if the operator tries to enter alphabetic data in the field (and the keyboard has the Numeric Lock feature), the keyboard inhibits entry of the incorrect character, the keyboard clicker shuts off, and the *input inhibited* indicator appears to notify the operator of the error. The improper character does not appear on the screen, and the correct digit may be entered after the operator presses the RESET key.

The serial number in the example always contains a fixed number of digits and is the last field entered. The maximum length of the field is determined by the location of the attribute for the next field. But the next field in the example is too far away ("WHEN ALL...KEY").

By placing an additional attribute character following input field 8, the operator cannot enter a serial number that is too long. If the positions allocated to the serial number are filled, the next keystroke locks the keyboard, as in the name and location fields.

This additional length check is used here because this is the last field to be entered. If you had another field to enter after SERIAL NUMBER, it might be more advantageous to omit this length check, as explained in field 9.

Field 9: The Area between the Additional Attribute Described in Field 8 and "WHEN ALL ... KEY"

By definition, the additional attribute character you used to delimit the serial number field begins a new field. The protected attribute alone is sufficient for this field, and this attribute limits length for the serial number field. Normally, however, protected (output) fields that follow fixed-length input fields should be defined as protected and numeric. The protected and numeric attribute defines a field as auto-skip. Auto-skip automatically positions the cursor at the location following the attribute character for the next unprotected field, which is the next place you want to key data. This technique saves keystrokes for the operator. When the operator keys the last character of the preceding fixed-length field, the cursor normally enters the next field, which may be protected. But since the next field is auto-skip, the cursor skips this intervening protected field and automatically positions itself for entry of the next field, without an extra keystroke.

Field 10: WHEN ALL...KEY

This field is a heading that the operator should not be allowed to change. It need not be of high intensity and, thus, may be defined as protected only. Field 10 does not automatically terminate when the last screen position is reached. The field definition continues from the bottom-right screen position to the upper-left screen position until the next attribute character is reached. This is called *wraparound*. Keep this in mind, particularly if you define the last field on a screen as unprotected!

Since fields 9, 10, and 1 are adjacent to each other (by wraparound) and have the same attributes, they may be combined into a single field by the omission of attributes before WHEN and SIGN-ON. The result is a single protected field beginning after the input area for serial number, wrapping around the screen, and terminating either at PLEASE or at NAME if fields 1 and 2 have been previously combined.

Combining fields in the above manner may be convenient, but may cause confusion and error if you change the screen layout later. It is a better practice to specify separate fields in all cases. The panel is completely formatted when the fields are positioned, the attribute characters are all defined, and the cursor is placed. You must now begin the transition from the visual image, or human-oriented panel, to the detailed data necessary for the 3270 to implement your panel design.

Panel Design

You can think of a panel as a single 3270 display screen image created by your program. (The term *screen* or *screen image* or *display image* could also have been used.)

If the terminal operator filled in the information requested in the panel in Figure 7-4, he might receive another panel, such as the one shown in Figure 7-5.

		the second se	
SIGN-DI	N PROCEDU	RE	
PLEASE ENTER YOU	R SIGN-ON	INFORMATION	
NAME:	. L	OCATION:	
SERIAL NUMBER:			
WHEN ALL INFO YOU MAY PRES	DRMATION : S THE ENTI	IS COMPLETE ER KEY	J

Figure 7-4. An Example of a Panel

YOUR SIGN-ON HAS BEEN ACC CHOOSE ANY OF THESE PROCE	CEPTED. EDURES	PLEASE
ACCOUNTS RECEIVABLE	PFL	
PAYROLL	PF2	
PERSONNEL	PF3	
PLEASE PRESS THE DESIRED	PF KEY	/

Figure 7-5. Another Example of a Panel

An Example of a Sequence of 3270 Panels

Assume you are given the assignment of designing the panels for an accounts-receivable application. You are to create the panels that will allow a terminal operator to post a customer payment against his unpaid invoices. The terminal operator will be sitting at a 3270 work station, removing checks and invoice copies from envelopes. If the invoice copies are returned with the check, the terminal operator will, for each invoice, enter the customer number, payment, and invoice number. If the invoice copies are not returned, the terminal operator will have to find the customer number based on the customer name and then decide which open invoices to apply the payment against. It will be helpful if the operator has some way of adding various open invoices to find a combination that totals the payment.

The 1,920-character panels that follow show one possible solution.

The first panel in the application is shown in Figure 7-6. If the invoice copies come with the check, the terminal operator can enter the customer number, amount, and invoice number, and press the ENTER key.

This posts the payment against the specified invoice. The terminal operator can then post the next payment, and so forth; as long as the customer number and the invoice number are known, only Panel 1 is displayed.

If, however, no invoice is returned and the customer number is not known, the customer name can be entered. The name need not be the complete name of the company; it can be the first name of the company. In our example, the check says only "CAPITOL" so that is what the operator enters. When the name has been entered, the terminal operator presses the ENTER key. The customer number is missing, so Panel 2 is displayed.

Panel 2, shown in Figure 7-7, shows all customers and customer numbers phonetically similar to the name entered in response to Panel 1. Item numbers in Panel 2 allow the terminal operator to select one by using a corresponding program-function (PF) key. (See "Program Attention Keys" in this chapter.)

As a result of terminal operator response to Panel 2, Panel 3 (shown in Figure 7-8) displays all open invoices for the identified customer. The terminal operator can now use the selector pen to specify the open invoices to which the payment applies. He does this by touching the selector pen to the question mark adjacent to each desired invoice number; selection is verified immediately by the question mark's changing to a > character. To post the payment against the selected invoice numbers, the operator can select APPLY. If, however, the operator cannot easily tell the invoices to which the payment is applied, he can select CALC instead of APPLY.

ENTER CUSTOMER #	CHECK AMOUNT	INVOICE #	
OR CUSTOMER NAME			
	PANEL 1		
Na sa			

ITEM	CUST #	NAME/ADDRESS	ITEM	CUST #	
****	* * * * *	* * * * * * * * * * * *	* * *	* * * * * *	* * * * * * * * * * *
ľ	0010341	CAPITAL AVIATION 711 HILLSBOROUGH ST. RALEIGH, N.C. 27611	5	0052693	CAPITOL ELECTRIC 56 STATE ST. MONTPELIER, VT. 05602
2	0028472	CAPITOL BAKERIES 1800 MAIN ST. COLUMBIA, S.C. 29201	6	0084362	CAPITOL FEATHER CO. 899 LOGAN ST. DENVER, COLO. 80217
3	0034020	CAPITOL COLA CORP 1439 PEACHTREE ST. NE ATLANTA, GA. 30309	7	0048729	CAPITAL GLASS CO. 121 STATE ST. ALBANY, N.Y. 12201
4	0041938	CAPITAL DRUG CO. 201 NORTH 9TH ST. RICHMOND, VA. 23219	8	0038492	CAPITOL HOLDING CO. 1609 SHOAL CREEK B AUSTIN, TEXAS 78701
		PANEL	2		- /
L					

Figure 7-7. Panel 2, Showing the Results of a Search on a Customer Name

		ACCOUNTS R	ECEIVABLE	1		
CUST #	NAME	INVOICE #	DATE	(D)	GROSS	NET
0028472	CAPITOL BAKERIES	? A984632	11/01/71		\$182.50	\$182.50
СНК АМТ	\$4.000.00	? B000512	12/07/71		\$98.50	\$118.00
TOT DUE	\$5.358.40	? B000964	12/11/71		\$1.250.00	\$1.250.00
	43,330010	? B001.200	12/21/71		\$682.40	\$682.40
		? B001439	12/25/71		\$395.00	\$395.00
		? B001800	01/11/72	*	\$1,029.75	\$1,009.15
		? B002015	01/15/72	*	\$982.50	\$962.85
MANUAL	APPLY					
CALC	NEXT					

Figure 7-8. Panel 3, Showing the Customer's Open Invoices

Selecting CALC displays Panel 4 (Figure 7-9); this is the same as Panel 3 except that ACCOUNTS RECEIVABLE, which was of high intensity in Panel 3, is now of normal intensity in Panel 4. A new line with CALCULATOR in high intensity indicates the screen mode and explains the functions of the PF keys. The terminal operator can now use the lower right-hand quadrant of the screen as a *scratch pad* to figure out a combination of open invoices that will total the payment check. This use of one part of the screen for a separate function is sometimes called a *split-screen capability*.

The calculator could be programmed a number of different ways. It could, as our example illustrates, show in one column in the CALCULATOR quadrant all invoice numbers selected (shown with > in Figure 7-9) prior to selecting CALC and in another column show any balance remaining from the check amount after subtracting the selected invoice numbers. In Figure 7-9, Panel 4 is shown as it would appear if the terminal operator had first selected four invoice numbers and then selected CALC. In this example, the selected invoices equal the check amount, so .00 is shown as the balance after subtraction of the selected invoices.

	ſ							٦
·			ACCOUNTS R	ECEIVABLE				1
CUST #	NAME		INVOICE #	DATE	(D)	GROSS	NET	
0028472 Chk Amt Tot Due	CAPITOL BAKERIES \$4,000.00 \$5,358.40	? ? ? ??? /	A984632 B000312 B000418 B000964 B001200 B001439 B001439	11/01/71 12/05/71 12/07/71 12/11/71 12/21/71 12/25/71	*	\$182.50 \$778.00 \$98.50 \$1,250.00 \$682.40 \$395.00	\$182.50 \$778.00 \$98.50 \$1,250.00 \$682.40 \$395.00	
		5	B002015	01/15/72	*	\$982.50	\$962.85	
MANUAL CALC	APPLY NEXT		CALCULATOR	1111111 1 PF1= + 1 111111	 PF2= - 	 - PF3= CLE/ 	/ / / // AR PF4= RET	
				\$7 \$1,2 \$1,0 \$9	78.00 50.00 09.15 62.85	•00		1
			PANEL	4			_]

Figure 7-9. Panel 4, Showing Use of the Calculator

Panel 4 shows that the CALCULATOR could also allow the operator to key in amounts and to add them to or subtract them from the check amount (pressing PF1 in our example adds keyed-in amounts; PF2 subtracts one keyed-in amount from another). To start over at any point, the operator can press PF3 to clear the calculator quadrant. In our example, the selected invoices equal the check amount, so they can now be posted. But first the terminal operator must leave the CALCULATOR routine by pressing PF4 (RETURN). This displays Panel 5, shown in Figure 7-10.

Panel 5 is the same as Panel 4 except that, the operator having signaled completion of the CALCULATOR, that word now appears in normal intensity and ACCOUNTS RECEIV-ABLE once again appears in high intensity. The terminal operator can now, using the selector pen, select the invoices against which to apply the payment, and then select APPLY to post the payment.

_	the second se							the second s	
Γ			\rightarrow	ACCOUNTS R	ECEIVABLE				
	CUST #	NAME		INVOICE #	DATE	(D)	GROSS	NET	
	0028472 CHK AMT TOT DUE	CAPITOL BAKERIES \$4,000.00 \$5,358.40	~ ^ ? ^ ? ? ^	A984632 B000312 B000418 B000964 B001200 B001439 B001800	11/01/71 12/05/71 12/11/71 12/11/71 12/21/71 12/25/71 01/11/72	*	\$182.50 \$778.00 \$98.50 \$1,250.00 \$682.40 \$395.00 \$1.029.75	\$182.50 \$778.00 \$98.50 \$1,250.00 \$682.40 \$395.00 \$1.009.15	
	MANUAL CALC	APPLY NEXT	>	B002015 CALCULATOR	O1/15/72	* PF2= -	\$982.50 PF3= CLEA	\$962.85	
				PANEL	\$778 \$1,250 \$1,009 \$962 5	.00 .00 .15 .85	•00	_	
-									_

Figure 7-10. Panel 5, Showing Selection of Invoices after Use of the Calculator

Panel 6 (Figure 7-11) shows the ACCOUNTS RECEIVABLE file for the customer after posting of the payment, with the new balance and the total amount applied. To continue to the next customer, the operator selects NEXT and returns to Panel 1.

Not all the 3270's possibilities are shown in these six panels, and not all users will have the selector pen; this example was designed to show only what panels are and how the 3270 can be used.

Note that, in the above example, the terminal operator does not see as many panels as the programmer must create; not all panels necessarily appear to the operator in any given application. What the programmer regards as separate panels may appear to the terminal operator as one changing panel.

In the above example, a number of additional panels or variations to the panels shown would be required. For example, if the terminal operator presses an invalid PF key, a variation of the panel would be required to send a message to the operator over the panel presently at his display. In programming panels that are variations of one main panel, it may be useful to assign panel designations (for example, Panel 4A, 4B, and so forth) for variations of Panel 4.

Planning a Sequence of Panels

After an application program has been defined, the information that will be passed between the program and the terminal operator must be defined. This information can be thought of as output panels and input response to panels. Usually, you will be able to approximate the sequence of panels. The exact sequence of output panels often depends on the input response to panels. The following discussion shows one way to define a sequence of panels.

CUST #	NAME		INVOICE #	DATE	(D)	GROSS	NET
028472	CAPITOL BAKERIES	?	A984632	11/01/71		\$182.50	\$182.50
HK AMT	\$4,000.00	?	B000418	12/07/71		\$98.50	\$98.50
OT DUE	\$5,358.40	?	B001200	12/21/71		\$682.40	\$682.40
IEW BAL	\$1,358.40	?	B001439	12/25/71		\$395.00	\$395.00
EL INV	\$4,000.00						
ANUAL	APPLY						
ALC	NEXT						

Defining the Purpose of Each Panel

Assuming you have a good understanding of the type of application program (such as data entry, order entry, or inquiry) and the kind of information that must be exchanged and processed (such as customer name, invoices, and check amounts), you can consider which panels come first. Suppose the first panel required is a sign-on panel, as shown in Figure 7-12.

After sign-on, the next panel might allow the terminal operator to choose one of several different applications or procedures that he would use. But what if the name or word entered was not an authorized sign-on? Another panel might tell the terminal operator about this and ask him to reenter a sign-on name. Figure 7-13 illustrates a technique, sometimes called *block diagramming*, that may help in laying out a sequence of panels.

Using the Panel Layout Sheet

After block diagramming the panels in the application or procedure, you are ready to decide on the exact contents of each panel: the fields that will be in the panel, what attributes each field will have, and what words will be displayed in the panel. This can be done on graph paper. The *IBM 3270 Information Display System Layout Sheet*, GX27-2951, is useful for layout.

One of these sheets can be used for each panel. After laying out a sequence of panels, you have a collection of panel layout sheets. With the information on these sheets and the block diagram showing the relationship between panels, the program can be written to send the panels to a terminal and handle an operator's response to them.

Figure 7-12. Sign-On Panel Block Diagram

To lay out a panel, consider the sign-on panel shown in Figure 7-14. You might jot down on a piece of paper the information required for the panel, or you might write it directly on the panel layout sheet. Figure 7-14 shows what the panel part of the layout sheet might look like after you put the text you wanted for your sign-on panel on the layout sheet. It is assumed you are using the 480-character display.

Now that you have written out what you want the terminal operator to see, you can define as fields the separate items of displayed text and spaces you are allowing for operator input. Remember that a field is always preceded by an attribute character. The attribute character occupies a space on the panel even though it appears as a blank space to the operator. Before deciding the attributes of a field, insert a character such as \overline{A} on the layout sheet to indicate the space for the attribute character. As you get used to creating panels, you may want to enter the \overline{A} at the same time you are laying out the text. You should also show the cursor location on the panel layout sheet to indicate to the operator where to start his response. The cursor position can be indicated by an underscore (_) under the space where you want it to appear, or you might enclose the space or characters in a rectangle. After the indications for attribute characters and the cursor position have been added, the sign-on panel appears as shown in Figure 7-15.

You could have designed the panel as one long field (or even no field at all), but, if you had, you would not have been taking advantage of the 3270's capabilities. If you designate various items on the panel as fields, each field can have different attributes, as discussed in "What Attributes May Be Assigned to a Field."

For example, you might want the fields NAME:, LOCATION:, and SERIAL NUMBER: to have high-intensity attribute to focus the operator's attention on them, because these fields indicate where the operator enters information. You might want to protect the fields other than the operator input fields so that the operator could not erase them; the operator input fields following NAME:, LOCATION:, and SERIAL NUMBER: should be unprotected so that the operator can type in information. The operator input field following SERIAL NUMBER: can be numeric to allow some work station editing; the operator would not be allowed to enter an alphabetic character accidentally. Field length can be defined by beginning a new field where you want the previous field to end. (In some cases, this new field serves only to give a length attribute to a previous field.)

															•									со	LUM	N	
			1	10		-			11	_	20				2	1 -	30					31 -	- 40	2			_
		123	45	6 7	89	0	1 2	2 3	4 5	6	7 8	3 9	0	12	3	4 5	6	78	90	11:	2 3	4 5	6	78	90	12	:
	01		<u> </u>		<u>t í</u>	,		ند				1		1	11	1	L	L	1_1_	1		1	Ι.		11		_
	02	Li	L.L	L	11		3	J	GI	Ŀ	01	L	P	Ro	ıCı	EID	U,	R.E	4	1.		_	L		Ļ.		
	03		i I		11			نب	L.L						LI	1.		1	11			L.	L	_	1.1		_
	04	Р	LE	A.S	E	,E	N,1	Ē	R	IY.	0,0), R		SI	6	<u>N -</u>	0	N.	I.N	F.C	2R	MA	h	T ₁ C	hNt_		
	05		LL.	L	<u></u>		L	1			_1				11	1	L		<u>. </u>	1.	1.1	1			1.1	11	-
	06	N.A	ME	:	1.1.		L		<u> </u>	L					1_1		L	0,C	TA.	tic	aN	÷.	L		L		
	07	SE	RI	AL	<u>,)</u>	. u	ME	S.E.	Ri		1	+			i i i				<u></u>	<u> </u>			L				
	08		L.		<u></u>		L				1	1		1	11		<u> </u>	1	ı.i.	L		1		1	11		
	09		·		1.1					Ĺ	Ì			1	11	1_	Ĺ			1				1	11		
	10		W	H,E	N	A	LL		IN	E	O,F	<u>s</u> M	A	TJ	01	N	F.	Si_	CO	Mf	2	ET	E		LL.		
	11		Y	0.0	11	1A	Y	P	R _I E	S	S,	J	H	\mathcal{E}_{L}	IEI	V.T	1E,	RI	IKIE	IY.		1	L		11	L	
2	12		· · · · ·		L		L	<u></u>						1			L		1.1.	1.			L	_	1480		
BO	13			١.	4 1	, [1	1.	,	1	.	1	1 1	1		1.	н і. 1	١.	1 1		Ι.		1.1	Ι.,	

Figure 7-14. Sign-On Panel as Written Out on Layout Sheet

					COLUM	N.
		1 10	11 - 20	21 – 30	31 40	
		1234567890	1 2 3 4 5 6 7 8 9 0	1 2 3 4 5 6 7 8 9 0	1234567890	12
	01					11
	02		ASIGN-ON P	ROCEDURE		
	03					11
	04	APLENSE E	WITER YOUR	SIGN-LAN, IN	FORMATION	
	05	<u> </u>	<u>liiiiliiii</u>		<u>l</u>	
	06	ANAME: A	Ling June	I. ALOCAT	Ign: A	
	07	ASERTAL NU	MBER	, A , I , , , , , , , , , , , , , , , ,		1.1
	08					11
	09					
	10	, AWHEN A	LL JINEORMA	tion is co	MPLETE	
	11	YOU, MA	Y. P.R.ESS. T.H	EI ENTER KE	Y.,,, ,,,,	
Z	12	Lini lini	Luliul		480	
RO	13	in line				

Figure 7-15. Panel Layout, Including Attribute and Cursor Positions

Having decided on these attributes, you can use the columns on the reverse side of the layout sheet to record the locations and attributes of the fields you have created. Your recording in these columns might appear as shown in Figure 7-16.

The use of these columns depends on whether the panel designer also codes the panels or only designs them. The information now on the layout sheet can be used to write a line of code that, when sent to the display, displays your panel with its specified field characteristics. "Data Stream Coding" shows how the panel in this example is coded.

Figure 7-16. Laying Out Field Attributes

Orders

You must communicate certain information to a 3270 device or its control unit so that it can use the panels you have designed. This information includes commands, control characters, orders, and data.

Commands control such things as whether you write to or read from a display and whether the screen is erased before new data is written. For the examples given below, assume that you begin with a clear screen: all writes to the 3270 are Erase/Write commands, and all positions are set to nulls. (Commands are discussed in more detail in this chapter under "The Relationship of One Data Stream to Another." Refer to Chapter 3 for the command codes.) Control characters are used with certain commands to perform such functions as sounding the audible alarm, formatting the printer, and restoring or enabling the keyboard. (Control characters are discussed later in this chapter.) Orders are instructions written to the 3270 to tell the display unit how to format your panel. They control the creation and placement of fields and data. You may reduce the size of your data streams by careful order selection. (Orders are discussed below.)

Orders (1) position, define, and format data being written to the device, (2) erase selected unprotected data stored in the device, and (3) reposition the cursor.

Three orders provide enough instruction to format every panel:

- Start Field (SF) order: Specifies that the next character is an attribute character.
- Set Buffer Address (SBA) order: Specifies an address for data and successive orders.
- Insert Cursor (IC) order: Moves the cursor to the current buffer address.

These orders are included with the text, which is both the data you have in your computer for the terminal operator, such as field headings or inquiry responses, and the data that the operator has that must be provided to the computer, such as serial number, part number, or quantity desired. The orders and text are sent to the display unit and are interpreted by a control unit to which the display unit is attached. The control unit formats the panel text before it is actually displayed at the display station.

Adding Orders to the Panel Layout Sheet

The back of the panel layout sheet is used for writing the panel orders. The column headings indicate what the columns should contain.

The first six columns, as shown in Figure 7-17, identify items in the text, their addresses, and the orders required to format them. The column headings are explained below:

- Item: Refers to any part of the panel that requires one or more orders to the control unit to format it. There are 11 items in the sign-on panel:
 - 1. SIGN-ON PROCEDURE
 - 2. PLEASE ENTER YOUR SIGN-ON INFORMATION
 - 3. NAME:
 - 4. Input field
 - 5. LOCATION:
 - 6. Input field
 - 7. SERIAL NUMBER:
 - 8. Input field
 - 9. Field to limit size of serial number input
 - **10. WHEN ALL INFORMATION IS COMPLETE**
 - 11. YOU MAY PRESS THE ENTER KEY

	Displa Printe	ny Tr	Buffe Addre	r ess	lers	
Item	Row	Col	Dec	Hex	ŏ	
	1					

Figure 7-17. Text Items on Panel Layout Sheet

It is only by coincidence that the number of items in this example equals the number of fields. Since each field requires an SF order, there are always at least as many items as fields. There are more items than fields when, for example, the SBA order is used to space over unused positions within a single large field, as it item 11.

- Row, Col: Contain the starting location (row, column) address of each item.
- Dec, Hex: Are for a different addressing format, which you do not need if you use the row, column addressing format. Therefore, you may use these columns for any notes to yourself or leave them blank.
- Orders: Contains the orders you are writing, such as SBA, SF, or IC.

As shown in Figure 7-18, the next six columns under the word Attribute provide the field attributes that can be defined with each attribute character. The programmer checks the appropriate columns of the attributes he is changing from the default values:

- Prot: Protected
- No.: Numeric
- High Int: High intensity
- Sel Det: Selector-pen-detectable
- Non-Disp/Prt: Not displayed (nor printed at printer)
- MDT On: Modified data tag on

Figure 7-18. Field Attributes

At the bottom of the six columns are the attribute values (Figure 7-19) that are automatically provided unless you specify a change. You must, however, specify a hexadecimal order value for the default attributes, as discussed under "Coding the Panel" in this chapter. The default values are:

- Unpr: Unprotected
- A/N: Alphameric (alphabetic and numeric)
- Norm: Displayed at regular brightness
- Non: Not detectable by the selector pen
- Norm: Displayed (at regular brightness)
- Off: Not modified

Figure 7-19. Attribute Default Values

You are now ready to add the required orders to the panel layout form. This may require that you rewrite the back of the form if it was originally prepared without regard to orders or if insufficient space was allowed.

Figure 7-20 shows a completed layout sheet containing all the orders to be sent with the sign-on panel. (The hexadecimal order values are discussed under "Coding the Panel" in this chapter.) Each item on the panel has been assigned a number to help you correlate the text with its associated orders.

									Attri	bute		
	Displ Print	ay er	Buff Addr	er ress	a second]			High	Sel	Non- Disp	мрт
Item	Row	Col	Dec	Hex	ð		Prot	No.	Int	Det	Prt	On
1	02	\prod			SBA							
					SF	ATT	1					
2	04	02			SBA							
					SF	ATT	~					
3	06	01			SBA							
					SF	ATT	~		~		· ·	L
4	06	07		I	SF	ATT	_				L	L
					IC	L		L	ļ		I	L
5	06	25	ļ	L	SBA		1	ļ	_			<u> </u>
		·		L	SF	ATT	~	L	~		ļ	ļ
6	06	35	ļ	i	SF	ATT					ļ	
7	07	01		L	58A							L
	+			<u> </u>	SF	ATT	~		~		ļ	L
<u></u>	07	16		<u> </u>	5F	ATT	+	~			I	
9	07	23		<u> </u>	SBA		+				<u> </u>	
	+		<u> </u>	<u> </u>	SF	ATT	1	<u> </u>				
Ю	10	03			SBA		+		<u> </u>			-
	+			<u> </u>	5F	ATT	<u> </u>				ļ	
<u>n</u>	+"	05		 	58A		+				ļ	<u> </u>
					-							
	ł					ļ.,		ļ			l	
	+								+		I	

Figure 7-20. Completed Order and Attribute Information

Item 1. SIGN-ON PROCEDURE

To write this title, you must tell the control unit:

- Where you want the title displayed on the panel. The SBA order sets the buffer address (SBA) to the location at row 2, column 11 (R2, C11).
- That this location is the start of a field. The SF order tells the control unit that the location contains an attribute character and not a text character. You also indicate which attributes the attribute character is defining. In this case, the field is protected. The rest of the attributes for the field are default attributes and, therefore, do not have to be changed.

Item 2. PLEASE ENTER YOUR SIGN-ON INFORMATION:

To write this information, the control unit must know only where the text is located. Therefore, you must write an SBA order followed by the address R4, C2. This is also the beginning of a protected field, so you should include an SF order and a protected attribute.

Item 3. NAME:

As with item 2, you must idenfity where this text is displayed. Therefore, you must write an SBA order followed by the buffer address R6, C1, where the text begins. R6, C1 is also the beginning of a protected, high-intensity field and you should include an SF and an attribute as shown.

Item 4. Input Field for operator's name

Since this item immediately follows item 3, the control unit already knows the correct address. Therefore, there is no reason to issue an SBA order. Item 4 is the start of a new field, however, so you must issue an SF order to instruct the display to expect an attribute character next. The attribute character defines the input field as unprotected (U), alphameric (A), of normal intensity, not detectable by selector pen, and with no MDT on. Because these are the default attributes, you do not have to check anything in the attribute definition columns.

The cursor should follow the attribute character to indicate where the operator should begin to enter information. The Insert Cursor (IC) order displays the cursor at this current buffer address. After the display has stored that attribute character in location R6, C7, the new current address is R6, C8; this is the place where the cursor appears on the panel.

Item 5. LOCATION:

The control unit must have two orders for this item which (1) give the starting buffer address (SBA) of the field as R6, C25, and (2) indicate that it is the start of a new field (SF), that it is protected, and that it has high intensity.

Item 6. Input field for operator's location code

This item immediately follows the text of the last item, so there is no need to set the buffer address. Write only the SF order to indicate the start of a new unprotected field, and use default attributes.

Item 7. SERIAL NUMBER:

This field requires an SBA to location R7, C1, and an SF to begin a new field. The attribute is specified the same as that for item 5.

Item 8. Input field for serial number

The attribute character for this input field immediately follows the last character of the previous field, so an SBA is not required. The attribute is numeric only.

Item 9. An extra field created to limit the size of the serial number input field.

This follows the input field and is protected only. An SBA is required for location R7, C23, for proper placement of the attribute.

Item 10. WHEN ALL ... COMPLETE.

The control unit must have two orders for this item: an SBA order that gives the starting address of R10, C3, and an SF order to indicate that it is the start of a new field. The attribute character defines a protected field, and the rest of the field attributes take the default values.

Item 11. YOU MAY ... KEY.

All the words from "WHEN ALL" through "KEY" could have been treated as a single item, but 8 blank spaces would have to be sent between "COMPLETE" and "YOU" to position "YOU" properly at R11, C5. Use only the 3 characters required for an SBA order and its associated address, breaking the field into 2 items, to position "YOU" at R11, C5.

Coding the Panel

To write a panel in assembler language so that it can be part of the application program, you must transfer the panel's text and orders to an assembler coding sheet or to any other form you find suitable.

On the coding sheet (and in your program), a panel is represented by a series of assembler DC statements, each with a name to which your program can refer. In the example given below, SIGNPANL is the name of the sign-on panel. When the application program wants to send the sign-on panel to a display unit, it issues an Erase/Write command and designates SIGNPANL as the panel for display.

The display orders must be written in the DC statements in the hexadecimal codes listed in Figure 7-21. Thus, SF is represented by 1D, SEA by 11, and IC by 13.

Order Sequence	Byte 1 (Order Co	ode)				
Order	EBCDIC (Hex)	ASCII (Hex)	Byte 2	Byte 3	Byte 4	
Start Field (SF)	1D	1D	Attribute			
Set Buffer Address (SBA)	11	11	Address	Address		
Insert Cursor (IC)	13	13				
Program Tab (PT)	05	09				
Repeat to Address (RA)	3C	14	Address	Address	Char.	
Erase Unprotected to Address (EUA)	12	12	Address	Address		
Keyboard Only						
Duplicate (DUP)	1C	1C				
Field Mark (FM)	1E	1E				

Figure 7-21. Buffer Control Orders and Order Codes

Each part of each order must be written in hexadecimal, including the attribute character that follows the SF order and the buffer address that follows the SBA order. The *IBM 3270 Reference Summary*, GX20-1878, contains the hexadecimal codes for all the attribute character combinations and the hexadecimal code for every buffer location in both EBCDIC and ASCII.

Begin coding with the first item on the panel layout sheet, the title: SIGN-ON PRO-CEDURE. Start with the orders for the panel text, which must always precede the text itself so that the control unit knows what to do with the text.

The first order for the title is the SBA order. Figure 7-21 shows that the SBA hexadecimal code is 11, so you write this code in a DC statement as:

Now look up the R2, C11 address that must follow the SBA order. The EBCDIC address is 40F2, and it follows the SBA code in the DC statement:

DC X'1140F2'

You should also record this statement in the Buffer Address Hex column to the left of the SBA on the layout form for possible future reference. You may, if you prefer, look up all the addresses and record them in a similar manner before you begin to write your DC statements. See Figure 7-22 for an example.

The next order for the title is the SF order, which is followed by the attribute character. Attribute characters are shown in Figure 7-23. The SF code, 1D, and the attribute code, 60, are read from the table and added to the DC statement, which is then closed with a single quotation mark:

DC X'1140F21D60'

Following the DC statement containing the orders for the title is the DC statement containing the text for the title:

DC X'1140F21D60'

DC C'SIGN-ON PROCEDURE'

								At	tribute)		
	<u>Dis</u> Prir	play hter	Bui Ade	fer dress	lers				High	Sel	Non- Disp	мот
ltem	Row	Col	Dec	Hex	ð		Prot	No.	Int	Det	Prt	On
1	02	11		YOFZ	SBA			-				
					SF	Att	~					
2	04	02		CIF9	3BA							
					SF	Att	r					
3	06	01		C 3C8	SBA		ļ	L			L	
					SF	AH	1		V			
4	06	07		· · ·	SF	A#	ļ	I	i			
					IC	· .		 			ļ	
5	06	25		C360	SBA		L					
				ļ	SF.	Att	r	· · ·	r			
6	06	35			SF	A#	ļ					
<u> </u>	07	0		C3F0	SBA		L				ļ	
					SF	Att	1		r		· ·	
8	07	16			SF	_A#	L	1			-	
9	07	23		<u>C4C6</u>	SBA						ļ	
	:				SF	A#	V	ļ				
10	10	03		C564	SBA							
					SF	A#	r					
11	11	05		C604	SBA			L				
		· · ·									ļ	
						<u> </u>	L					
	I	I		1		l, i	1	1	1	I	1	1

Figure 7-22. Sign-On Procedure Panel Orders and Attributes

7-20

DC X'11'

ATTRIBUTE	CHARACTER	BIT DEFINITIONS
-----------	-----------	-----------------

Prot	A/N'	MDT On	High Intens	Sel Det	Non- disp Prt	Bit 23	s 4567	Hex
U.						00	0000	40
U		Y				00	0001	C1
U		Y		Y		00	0100 0101	C4 C5
U			Н	Y		00	1000	C8
U		Y	н	Y	ľ	00	1001	C9
U			-	-	Y	00	1100	4C
U		Y		-	Y	00	1101	40
บ	N					01	0000	50
U	N	Y				01	0001	01
U	N	v		, T	1	01	0100	04
							0101	
U	N -		н	Y		01	1000	08
υ	N	Y	H	Y .		01	1001	09
U.	N		-	-1	· Y	01	1100	50
<u> </u>			-	-		UI	1101	50
٩	-					10	0000	60
Ρ		Y				10	0001	61
Ρ				Y		10	0100	E4
P		•		,		10	0101	5
Ρ			н	Y		10	1000	E8
P		Y	н	Y		10	1001	E9
P		~	-	-		10	1100	60
P		•				10	1101	60
Ρ	S					11	0000	FO
P	S	Y				11	0001	F1
P	S						0100	F4
r								F 3
P	S		н	Y		11	1000	F8
. Р о	S	Y	н	Y	v	11	1001	F9
P	S	Y	-		Y	11	1100	70
<u> </u>				L	L	<u> </u>		<u> </u>

Note: Hexadecimal values are given in EBCDIC. Figure 7-23. Attribute Character Combinations in Hexadecimal

To code an input field that contains no text, such as the input field for NAME:, write just one DC statement that contains the orders for that field:

DC X'1D4013'

1D is the hexadecimal code for the SF order, 40 is the hexadecimal code for an attribute character that defines an unprotected field (and all other default attributes), and 13 is the hexadecimal code for the IC order.

A DC statement can be written as two or more statements. The DC statement above, for example, could be written as:

DC X'1D40'

DC X'13'

Each item from the panel layout sheet is coded in this fashion. Figure 7-24 shows the complete code required to display the sign-on panel. Except for one control character, it consists entirely of the panel text, preceded by the display orders for that text. (The control character is described under the heading "Write Control Character (WCC).")

IBM								IBM	System 36	10 Am	eenbler Ceding	j Perm								
water of the second						_					*							14.54	·.	
ne casure -							2411					1.00								
									1.94444											
***** B				<u>n</u>		<u> </u>	. 10						*		<u>«</u>	••		ł	'	
SIGNPANL	DC	L X	$\mathbf{\dot{c}}$	1		_			WCC			<u> </u>							1	
	DC	X	Л	1.4	OFAL	D60'			SBA.	R	211	ATT	ρ	_	-					
	DC	1 c	<u>`S</u>	16	N-01	PROC	EDUG	2E'	1								L		.	
	DC	X	11	IC	1 F91	D60'			5.BA	R	402	ATT	ρ					[
	DC	Tc	Ŷρ	LE	ASE	ENTE	RKOV	IR	51 GI	M-4	ON IN	FORM	ATIO	1	· [·				1	
	DC.	TK	1	1C	3081	DE8'	-	ŝ	SBA	R	6C1	ATT	PH	- I ·	1.			i I	1	
	DC.	Tr	N	AM	E:/				T									··· -·· T		
	DC.	Y	1	D4	013				T			ATT	11	CURS	de			T	T	
	M	T R	11	IC	3601	DEQ'			SBA	2	6025	ATT	Pu		T		1		1	
	DC	h	YE	AC	ATT	w: /												· · · · 1	1	
	DC .	17	VI	Di	01	au			t · · ·	1		ATT	11		-+		†	· · · †	1 .	
	DC	†₿'	1	ĩC	3FOI	DF9'	1 .	17	KRA.	Ø	ici	ATT	- Du		T.		· ··	· · · †		
	br.	ħ	ī	ED	TAI	VIIIMA	=0.7		een.		1	+ 2)	+-n					t t	1	
	D	17	V1	35		N LUID			t			ATT	an		+		t		1	
	he	t 🕻	1	ic	LCL.	N-o'	-		SQA	D	1013	ATT	D	-+	-+-			+	+	
	hc h	t₽		10	CI.A	Die0'			KAA	6	1003	ATT	5		-+	•		• •• •• 	1.	
	DC .	1ĥ	1.	1.	J VOH			. T-	Sun	л.,	6000	L ALL	1		1.	••			1	
	PC	15	- "	10	1.74	P P P	r.skuni	ar a	E AA	-3	LON	16.5.I.E	· + · · · · · · · · ·		· • •		1	·	1	
	N	† B	14	12	10 4 ST	00 -	a T	. .	DOH.	Ā	100		• +		• + • • •			+	1	
	<u> </u>	┼┡		<u>oy</u>	WH 2	TKE	22 14	tc	ENI	E.K.	KEY.	<u> </u>			-+		+		· + · ·	
		++	· · ·					·	<u> </u>			<u>+</u>	-+		••+				+	
· · · · · ·	+	++					-+		+			+	+		 	+	↓		-+	
		┥┽╌					··				-	÷	. .		.	•••••	÷ .		4	
·		++-							+			↓		4					+ -	
L							. 1		I			1		1			I .	. 1	1	

Figure 7-24. Assembler Language Statements for Sign-On Panel

Repeat to Address Order

The Repeat to Address (RA) order stores a specified alphameric or null character in buffer locations, starting at the current buffer address and ending at (but not including) the specified stop address. The specified stop address then becomes the current buffer address. You specify the stop address immediately following the RA order, just as you specify an address after an SBA order. After the stop address, you specify the character that you want repeated. Symbolically this appears as:

RA Rx	Cx	Char.
-------	----	-------

RA is 3C in hexadecimal. RA can repeat null characters and can erase selected parts of the screen. You may also use it to repeat any other character. To put a row of asterisks under the last title in the sign-on panel, after the DC statement for YOU MAY PRESS THE ENTER KEY, you specify an SBA for R12, C1. The RA order should repeat the asterisk character to location R1, C1 (the address after the last *). This is noted on the layout form as shown in Figure 7-25.

The order in the example is coded as:

DC X'3C4040' DC C'*'

If you want to delete a field already on the screen, you can repeat the *null* character to delete it.

						_		A	ttribut	e			_
	Dis Prir	play hter	Buf Add	ifer dress	ders				High	Sel	Non- Disp	мот	
Item	Row	Col	Dec	Hex	ð		Prot	No.	Int	Det	Prt	On	
1	02	11		40F2	SBA								Γ
			Γ		SF	ATT	1						Γ
2	04	02		CIF9	SBA								Γ
					SF	ATT	~						Γ
3	06	01		6365	SBA								
					SF	ATT	-		4				
4	06	07			SF_	ATT							L
					IC								
5	06	25		C340	SBA				L				L
					SF	ATT	1		r				L
6	06	35			SF	ATT							L
<u> </u>	07	01	L	C3f0	SBA								
					SF	ATT	1		r				L
8	07	16			SE	ATT		1				ļ	L
9	07	23		<u>C4C6</u>	SBA								L
•					SF	ATT	~	L	ļ				
10	10	03	ļ	C.541	<u>SBA</u>	1-1		L	L		L		
		ļ	L		<u>SF</u>	ATT	1					ļ	L
<u>//</u>	11	05	L	C604	SBA								Ļ
12	0	01	L		<u>KA</u>	*			L		· · · · ·		L
								ļ				<u> </u>	L
				1								1	

Write Control Character (WCC)

The control unit to which the display unit is attached uses the orders to format the panel. One control character for the control unit must be included as the first character of every panel you write: the write control character (WCC). The WCC is a hexadecimal code that provides control information for the control unit and defines printer information for printing panels. The other information in the WCC specifies:

- Whether to sound the audible alarm. The audible alarm is an optional display unit and printer feature that sounds a tone at the display unit upon program request. You can request this function by selecting the appropriate WCC hexadecimal code. If this feature is not installed on a display unit, the request is ignored.
- Whether to restore the keyboard at the end of your panel operation. If this option is requested, the keyboard, which locks when the operator completes a panel operation, is automatically unlocked when the program has finished processing the operator's input. Keyboard restoration means the operator does not have to press the RESET key.

You might not want to unlock the keyboard after each panel is displayed. For example, if you plan to write out another panel before you want to accept input, locking the keyboard prevents the operator from entering data before it is needed. Also, after writing an incorrect panel, you may want to force the operator to press the RESET key to make sure you have gained his attention.

• Whether to reset the modified data tag (MDT). If this option is specified, the attribute characters of all modified fields are reset. This function resets all input fields to their original (unmodified) status when an operation is completed so they are ready for the next operation.

Each panel written to a display unit or printer must begin with the WCC to identify whether these functions are requested.

The hexadecimal code for each possible WCC combination is shown in Figure 7-26.

The sign-on panel data is now complete and can be sent to the display unit.

WCCs for the Display

Start Printer	Sound Audible Alarm	Restore Keyboard	Reset MDTs	Code This Hex Value
No	Yes	Yes	Yes	C7
No	Yes	Yes	No	C6
No	Yes	No	Yes	C5
No	Yes	No	No	C4
No	No	Yes	Yes	C3
No	No	Yes	No	C2
No	No	No	Yes	C1
No	No	No	No	40

WCCs for the Printer

	Sound			Code This Hex Value If You Want								
Start Printer	Audible Alarm	Restore Keyboard	Reset MDTs	NL and EM Codes Honored	40-Char. Line	64-Char. Line	80-Char. Line					
Yes	Yes	Yes	Yes	4F	5F	6F	7F					
Yes	Yes	Yes	No	4E	5E	6E	7E					
Yes	Yes	No	Yes	4D	5D	6D	7D					
Yes	Yes	No	No	4C	5C	6C	7C					
Yes	No	Yes	Yes	4B	5B	6B	7B					
Yes	No	Yes	No	4A	5A	6A	7A					
Yes	No	No	Yes	C9	D9	E9	F9					
Yes	No	No	No	C8	D8	E8	F8					

Note: Hexadecimal codes are given in EBCDIC.

Figure 7-26. WCC Hexadecimal Codes

Analyzing Input Data

The Operator's Response

When the sign-on panel is displayed, the operator responds by entering name, location, and serial number as shown in Figure 7-27. As the operator keys this information, the entered data characters are stored in the display unit's buffer and are displayed as part of the panel. Data that is entered in a nondisplayable field is stored in the buffer, but does not appear on the panel.

When the operator finishes entering the requested sign-on data, he indicates the end of this operation by pressing the ENTER key, which causes an automatic Read Modified command execution and sends the following information to your program:

- An attention code to identify that the ENTER key was pressed
- The address of the cursor's location
- The start buffer address code to identify the next 2 characters as addresses
- The starting addresses of every modified field, followed by the data in the modified fields

Figure 7-28 shows this sequence of input data, which is explained below.

ſ	SIGN-ON PROCEDURE
	PLEASE ENTER YOUR SIGN-ON INFORMATION
	NAME: JOHN SMITH LOCATION: BOSTN
	SERIAL NUMBER: 96398 <u>1</u>
L	WHEN ALL INFORMATION IS COMPLETE YOU MAY PRESS THE ENTER KEY

Figure 7-27. Sign-On Panel with Operator's Input

AID for ENTER	Cursor address	SBA	Addr of first modified field	Text from first modified field	SBA	Addr of second modified field	Text from second modified field		}	
---------------------	-------------------	-----	---------------------------------------	---	-----	--	--	--	---	--

Figure 7-28. Input Data Sequence

Attention Identifier (AID)

The attention identifier (AID) is a hexadecimal code. By identifying this code, your program can determine in which of several possible ways the operator contacted the program and determine what request is being made. For example, pressing the ENTER key requests "Please enter this data."

The AID code is always the first code your program receives from the display unit. The hexadecimal codes for all AID codes are shown in Figure 7-29.

For a Read Modified, the AID code is followed by the cursor address, which is the hexadecimal code for the row and column location of the cursor when the operator contacted your program.

Input Data

All the modified fields from the panel follow the AID code and the cursor address. A modified field is any field whose attribute character has the MDT on. A modified field can be one that was modified by the operator or one that was defined by you in your program with the MDT on in its attribute character.

When any character location in an input field is modified by the operator, the MDT in the attribute character for that field is automatically turned on. An input field is not necessarily a modified field. If the operator made no entry in the SERIAL field, for example, only his name, location, and the date would be sent as modified fields to your program.

The display unit sends all the data in a modified field except nulls. When an operator finishes an operation, the display unit reads through the buffer for every attribute character whose code indicates that its MDT is on. Each time one is found, the display unit provides an SBA code and the starting address (the attribute character's address plus 1) of the modified field. The SBA code identifies to your program that an address follows. It is the same X'11' code that you coded in your panel to identify the starting locations of the panel's text.

Attention Identification (AID) Configuration

AID Values for Text Read

Graphic Char- acter	EBCDIC (Hex)	Operator Action
_	60	No action by display operator
Y	E8	No action (printer)
,	7D	ENTER key pressed
1	F1 -	PF key 1 pressed
2	F2	PF key 2 pressed
3	F3	PF key 3 pressed
4	F4	PF key 4 pressed
5	F5	PF key 5 pressed
6	F6	PF key 6 pressed
7	F7	PF key 7 pressed
8	F8	PF key 8 pressed
9	F9	PF key 9 pressed
:	7A	PF key 10 pressed
#	7B	PF key 11 pressed
@	7C	PF key 12 pressed
=	7E	Immediately detectable field selected
0	F0	TEST REQUEST key pressed
w	E6	Data transferred from card reader

AID Values for Short Read

-	6D	CLEAR key pressed (screen cleared)
%	6C	PA1 key pressed
>	6E	PA2 (cancel) key pressed
,	6B	PA3 key pressed
	- % >	6D % 6C > 6E , 6B

Figure 7-29. Attention Identifiers (AIDs) in Hexadecimal Codes (EBCDIC) SBA codes identify the incoming data by cross-referencing it to the correct input field.

For the sign-on panel, your program knows that row 6, column 8 (X'C34F') is the start of the name input field. When it receives the first SBA code (X'11'), it checks the address that follows to see whether it is (X'C34F'). If it is, your program knows that the text following it (until the next SBA code) is the operator's name and can process the input accordingly.

The first part of the input from the sign-on panel is as follows:

|--|

The hexadecimal codes are:

- 7D: The AID code for the ENTER key. (See Figure 7-29.)
- C4C6: The cursor address R7, C23. The cursor is at the next character location after the entered serial number.
- 11: The SBA (Set Buffer Address) order code, which tells the program that the next 2 characters are addresses. (See Figure 7-21.)

C34F: The location (R6, C8) where the following text is located on the panel.

JOHN SMITH ...: The first modified field containing the operator's name.

Program Access Keys

Program Attention (PA) Keys

Each 3270 keyboard has at least one program (PA) key that the operator can use to request program attention without sending any input data.

The AID codes for the PA keys are shown under a separate heading in Figure 7-29 because they are not followed by input data, even though there may be modified fields on the panel when a PA key is pressed. All four short read codes consist of the AID code only.

Your program should use these keys for operator requests for immediate action, such as trouble alerts, or for requests for termination. For example, the assignment of several PA keys might be:

- PA1: Terminate current application.
- PA2: Return to starting (master) panel.

PA3: Explain system message.

Program Function (PF) Keys

Program function (PF) keys are a keyboard feature. Your program defines the function that each key requests when it is pressed by the operator.

There is a separate AID code for each PF key so that your program can quickly identify which key was pressed and, consequently, which function was requested. When a PF key is pressed, all modified fields on the panel and their addresses are sent with the AID code and cursor address, the same as the ENTER key. For this reason, a PF key can be a valuable timesaving device for the operator. For example, the assignment of several PF keys might be:

- PF1: Return to previous panel.
- PF2: Clear (without using data) and repeat current panel.
- PF3: Set up next panel.
- PF4: Page forward.
- PF5: Page backward.
- PF6: Return to page #1.

Selector-Pen Input and Output

Positioning data for selector-pen (optional feature) use and setting the attribute characters are the same as for any other type of data, but the selector pen has additional data-stream requirements.

Selector-Pen Field Format

A field for selector-pen operations must be defined as shown in Figure 7-30.

The attribute character, the designator character (described under the next heading), and displayed alphameric characters must be on the same line. If the field is longer than one line, only those characters on the same line as the attribute character can be detected by the selector pen.

Figure 7-30. Definition of Field for Selector-Pen Operation

Designator characters define two types of selector-pen fields: selection and attention. Each type of field performs a different selector-pen operation.

The selection field is defined by a question mark (?) designator character. When the selector pen detects a selection field, the MDT bit in the attribute character for that field is set in the display buffer. Also, the designator character is automatically changed on the screen to a greater-than (>) sign to provide a visible indication to the operator that the detection was successful. If a mistake was made and the operator again detects on the same field, the > reverts to a ? and the MDT is reset. The attention field is defined by a space or null designator character. Probing an attention field is similar to using an ENTER key. The input information is released to be read by the computer when it is ready to do so.

Figure 7-31 shows a sample selector-pen panel that illustrates some of the special input and output data stream considerations.

For output, an Erase/Write creates the panel. In the WCC, you enable input and optionally reset the MDTs. Next you specify an SBA sequence to get you to R1, C7, followed by an SF with a protected attribute.

This should be followed by the heading "PICK...COLUMN" and another SBA to R3, C9. Then specify an SF order, followed by a protected (detectable fields may be protected) and detectable attribute. Next you need the designator "?" followed by "RED":

C O L U M N SBA	R3 C9 S	F P+D ?	RE	D
-----------------	---------	---------	----	---

An SBA after "RED" to R3, C25, provides more than the 3 required null characters and positions the SF, attribute, and designator for "2 DOOR". This type of sequence is repeated for the remaining fields to location R7, C28. The designator here must be a null or a blank so that probing the ENTER field releases the selection to the computer.

				COLUMN	
	1 - 10	11 - 20	21 - 30	31 40	
	1234567890	1 2 3 4 5 6 7 8 9 0	1234567890	1 2 3 4 5 6 7 8 9 0 1	2
01		K. ONE FROM	EALCH COLU	MN	
02					
03		RED	1,1,1,1,1,1,2,1,D,0	0 R	
04	<u> </u>	B,L,U,E,	1, 1, 1a ?, 4, 10,0	OR	
► 0 5		YELLOW	,□ ?,6, ,D,0	0:R	L
06					ш
07			TER		
08					
09					
10					
11					
> 12				480	
0 13					

Figure 7-31. Sample Panel for Selector-Pen Detection

As the operator uses the selector pen, the program correlates the address of each selectorpen-detectable field with the data associated with it.

To combine selector-pen-detectable input with keyboard input, use the keyboard to release the data to the computer by pressing the ENTER key or a PF key. Use of the selector pen to release the data transmits only the addresses of the selector-pen-detected fields.

In this example, if you pick RED and 4 DOOR, the symbolic input would appear as follows:

Pen AID	Cursor Addr	SBA	R3	C10	SBA	R4	C26	
---------	----------------	-----	----	-----	-----	----	-----	--

Shortening transmissions by eliminating unnecessary data requires some caution. If you design a panel requiring both pen selection and keyboard entry, do not put an attention designator (space or null) on the panel. An attention designator after keyboard entry transmits only the address of the keyboard input field and causes the loss of its contents. Not having an attention designator on the panel assures you that an ENTER or PF key will be used and the modified field contents will be transmitted (and the words "RED" and "4 DOOR" in the example).

The Relationship of One Data Stream to Another

The examples used so far have assumed that you started with a blank screen and that you built the entire panel into your data stream with ERASE or WRITE commands. This approach may lead to tedious work and lengthy data streams, which you can avoid if the panel you wish to display differs only slightly from the one that is presently displayed.

Modifying Existing Panels

Suppose the displayed panel is the sign-on panel in the previous sections. If the operator keys an invalid serial number, you may wish to notify him of his error and request reentry of the serial number field only. You could create a new error message panel, write it to the display, require that the operator acknowledge its receipt, create a special serial number entry panel, write it, and finally read the corrected serial number. A better way might be to use the existing sign-on panel.

After the operator has keyed the data and it is has been read into the computer, the screen appears as shown in Figure 7-32. You would like the screen to look like Figure 7-33. Most of the information you want displayed is already there. An Erase/Write command would clear the screen and require writing a data stream containing all the information for the new panel. You could use a Write command which modifies existing data in the 3270's buffer.

To change the panel in Figure 7-32 to look like Figure 7-33, you would:

- 1. Position the cursor at R7, C17,
- 2. Replace the message beginning at R10, C5 with the error message,
- 3. Change the attribute at R10, C4 to high intensity for the error message.

						COLUMN
		1 – 1	10	11 - 20	21 - 30	31 - 40
		12345	6 7 8 9 0	1 2 3 4 5 6 7 8 9	0 1 2 3 4 5 6 7 8 9 0	123456789012
	01				1	
	02	ind		ASILIGIN-ONL	PROCEDURE .	
	03		ليبت	Lulu	<u></u>	
	04	APLE	AISIE E	NTER YOUR	SILGN-ON IN	FORMATION
	05		ليبين	Lulu	<u> </u>	
	06	BINAME	HO LA:	N. S.MITH	LI ALOCAT	ILON : ABOSTN
	07	ASERI		MBER: AB63	981A	
	08			hinteri]
	09				1	
	10	AWH	EN AL	L INFORMA	TILION, IS, ICION	PILEITIE
	11	Y Y	DIUI MIA	Y PRESS T	HE ENTER KE	Y
>	12				1	480
ROV	13	1111			1	

Figure 7-32. Modifying an Existing Panel – Basic Panel

					COLUM	N
		1 - 10	11 - 20	21 – 30	31 – 40	
		1234567890	1 2 3 4 5 6 7 8 9 0	1234567890	1234567890	12
	01					
	02		ASILGIN-ION IP	ROCEDURE		
	03					
	04	APILE ASIE IE	NITER YOUR	SILGN-ON IN	FORMATIOIN	
	05		,,,, ,,,,			
	06	ANAME : AJOH	N. S.MITTH	LIDCAT	ION: ABOSTN	
	07	BSERTAL NIL	MB.E.R. : 08.63.9	8.1A		
	08					
	09					
	10	AY OU HA	VE MADE AN	ERRORIN	EASE RE-	
	11	ENTER	THE FLELD	AT THE CUR	SIGRI IIII	
2	12	LOCATI	ION , CORRECT	LY.	480	
Ő	13					

Figure 7-33. Existing Panel with Error Message

To do this the right side of your panel layout for the error panel might (in abbreviated form) look like Figure 7-34.

Item 1. Repositions the cursor to R7, C17.

Item 2. Changes the attribute at R10, C4 to protected and high intensity. If the designer of the sign-on panel had combined the original field at this location with the previous field, the SIGN-ON PROCEDURE field, and the following field by omitting the attributes at R10, C4, R2, C11, and R4, C2 (as you saw in the discussion of attributes), the result would have been undesirable. The attribute placed at R10, C4 would begin a new field. This would not affect the preceding field but, by wraparound, would cause SIGN-ON PROCEDURE and PLEASE . . . INFORMATION to be of high intensity, even though they were neither intended to be so nor rewritten. For this reason, you should adhere closely to the *Field Concept* and not combine fields unless necessary for efficiency; if you must combine fields, be very careful to avoid undesired results.

Item 4. Repositions the data flow for the third line of the error message.

Since there are two different types of Write commands, you must tell the I/O portion of your program which type to use for the data stream. You may want to indicate the type you want in a comment in the data stream. It is suggested that you establish some convention for indicating command selection by discussing it at your installation with the persons responsible for the I/O portion of the program.

Figure 7-34. Panel Layout Changes for Error Message (Keyed to Text)

Write Control Character (WCC)

When the operator presses the ENTER key after filling in the sign-on panel, the keyboard automatically locks, as it always does after an operator-initiated input operation. One function of the WCC, which was also discussed under "Coding the Panel," is to enable the keyboard. You should now decide whether you want the WCC at the beginning of the error panel data stream to enable the keyboard for the operator. Though it is normal to enable the keyboard at this point, you may not want to do it here. It might be better for the operator to press the RESET key, calling further attention to the error panel.

In Figure 7-32, assume that the operator now keys 9 and presses the ENTER key. The 9 corrects the original entry error, and the serial number field now reads 963981. What goes into the computer? The prior discussion of input data streams shows the basic

Item 3. Repositions the data flow to place the second line of the error message correctly: 3 characters are used instead of 6 null characters.

format, but which fields can you expect? You know that the serial number input field will be received in its entirety, since keying the 9 caused the 3270 to turn on the MDT for this field, and any field that has been modified is transmitted in its entirety (except nulls).

The input field MDTs for NAME, LOCATION, and SERIAL NUMBER were all turned on by the data entered into those fields in the sign-on panel. Though an Erase/Write resets all MDTs, a Write does not; therefore, if you do not reset them, all 3 input fields are returned to the computer. Since not all of them have changed, not all 3 should return to the computer. You may specify in the WCC that all MDTs in the device are reset off or not modified (you should do so here).

You may also want to sound the audible alarm, if you have one, with the error panel. A WCC to reset the keyboard, reset all MDTs, and sound the alarm is defined as DC X'C7' (see Figure 7-26). You can now use the Write command to change the signon panel into the error message panel.

Caution: As you have seen, the Write command allows you to modify an existing screen image while retaining all, or a portion of, the information already displayed. With the Write command, you can treat the 3270 as a typewriter-type terminal and write your panel line by line or field by field. Using multiple Write commands to create a panel, while technically possible, may create problems.

This operator might start keying data into the panel before you have finished writing it all to the screen. You can prevent this problem by not enabling the keyboard (see WCC above) until the last Write in the series.

Using successive Write commands to accomplish what one Write command can do is an inefficient use of the communication line on remote 3270s, and unnecessary I/O overhead on local 3270s. In addition, in both local and remote use, successive Write commands without an intervening READ may result in a *blinking* effect while you build up the panel. Blinking may be annoying to the operator.

Wherever possible, use a single Write command to avoid the inconveniences noted above.

Erase Unprotected to Address

The error panel shown in Figure 7-33 displayed the erroneous serial number. All the operator had to do was key over the incorrect digits. This may sometimes be confusing. You might instead want to erase only the serial number input field, as shown in Figure 7-35.

Begin again with the desired WCC. Place the cursor at R7, C17 with an SBA to R7, C17, followed by an IC order. To erase what was entered in the serial number input field, use the Erase Unprotected to Address order, or EUA (watch the sequence of these letters so you do not confuse them with EAU, which is discussed next.) The EUA order inserts nulls (erases all unprotected positions, including attributes) from the current buffer address up to, but not including, the specified stop address.

The specified stop address then becomes the current buffer address. The format of the order is similar to an SBA; the code for the order itself (X'12' EUA) is immediately followed by a row and column address.

At the first position to be erased (a result of prior operation), you should include an EUA order. For a terminating address, you may use R7, C23 (the first position after the last to be erased). There is a better stop address, however. Since EUA erases only unprotected fields, and since the field beginning at R7, C23 is protected, it can be included in the range covered by the EUA. If R10, C4 is used as the stop address, nothing additional is erased, but you can then write the next attribute without using an SBA, saving 3 characters of transmission (see Figure 7-36). The current buffer address is the stop address. Any data or SF order that follows goes into the buffer at this address.

The EUA order erases all unprotected fields within its range and can erase multiple fields. Suppose you wanted all three input fields erased on the error panel, as shown in Figure 7-37.

First place the cursor at R7, C17; then *back up* with an SBA to R6, C8 (the name input field) before issuing the EUA to R10, C4 (see Figure 7-38).

You could have started at R6, C8 with an SBA to R6, C8, followed by the EUA to R10, C4. Sometime later in the data stream, however, you would have had to *back up*, probably with an SBA to insert the cursor.

			COLUMN
1 10	11 – 20	21 – 30	31 – 40
1234567890	1234567890	1234567890	12345678901
<u></u>	harding	Lunding	
	DSIJGIN-ION IP	ROCEDURE	
	<u>iiiiliii</u>		
APLEASE E	NTER YOUR	SIGN-ON IN	FORMATILON
ANAME : AJOH	N SMITH	LOCAT	TAN: BBOSTN
DSERIAL NU	MBER:		
MY OU HA	VIEL MADIE AN	ERRIOR	EASE RE-
EWITER	THE FILLD	AT THE CUR	SOR
LIQCATI	AN . CORRECT	LY	

Figure 7-35. Error Message Panel with Serial Number Field Erased

									Attri	oute	- •	
	Dis Prir	play hter	Buf Add	Buffer Address					Hiah	Sel	Non- Disp	MDT
Item	Row	Col	Dec	Hex]ð		Prot	No.	Int	Det	Prt	On
T	07	17			SBA							
	1.1	1.			10							
	10	04	Ι	[EUA							
2				1	SF	AH	1		r			
	"LI	NE	1	OF	ERA	OR M	ESS	AGE	a 1			
		<u> </u>	1		•							
				-	•							
					•							
	1		1	t in the second se	1							

Figure 7-36. Example of EUA Use

ROW

7-34

																												_			_		_	
	. [<u> </u>	1, 10			Γ			11	- :	20						21 -	- 30)					3	1 -	4()							
		12	34	15	6	7 8	3 9	0	1	2	3	4 5	6	7	8	9	0	1 2	3	4 9	5 6	7	8	9 0	1	2	3 4	5	6	7	8	0	1	2
(01		1	1	١,	1	1	1			. 1					1	1	1	1.1	1		1.1		1	L.	-					_			_
. (02			1	Ι.	1	1	1	A	S,	E _l (S.A	-	0	Ni		PI	RO	NC.	Eil	Ju	R	E.	1	L		_			_		_		
(03	.	,		1.	i	ŕ	1			ر ار	1				1	1	1		1		i l	1	1		_	1			1	1	1		
(04	A	Pil	,E	A	S,E	.	E	IN	T	E	R	Ŋ	0,	U,	Rı	l	SI	G	N.	-0	N.	ī	E.N	F	O,F	3/	1	T	L	0	V,	L	
į	05		1	1			L.	4			_	1			_		1	_ _				.		1	4		_			1	_	1	Ļ	
	06	AN	AN	ιE	:	A	1	1			_	1						1	L	E		.i0	<u>C</u> ,	AT	T.	<u>a</u> !	N:	B	L			_		
1	07	ØS	EF	<u>s</u> I	A	L	,	1,0	A	B	E,	R, :	A		_1				A	1		<u> </u>			L.	1	_	1	L	_		.	L	Ц
	08			1	Ι,	1	1	1	1	1 1	1	1			1	1		L	1.1		1	1.1		i		1	1			1	1	1		
	09				Ι,		1	,	1		1	,	1			1	1	1	1 1		1	1		1	,	t.	1		L		_1	1		
	10						· 1	1			,	,	Ī				1	1:			T	1			Ι.	L	1	L			1	1	L	
	11				Ϊ.	i	i	1	1	1		1	1			1		1	1		1	1		1	! .	1	i.	L			1	1	L	
	12				Ι.	1			Ĩ		_	1					1	1			ĺ	1					1	1		_	1	480	L	L
2	13				Ι,	1				r 1	1	1	1	1 1			1	1	1			1		I		1	1	1			1	1		

			· · · ·	en en el composition de la composition Composition de la composition de la comp	1 				Attri	oute		
	Display Printer Address		fer Iress	ders				High	Sei	Non- Disp	MDT	
Item	Row	Col	Dec	Hex	ŏ		Prot	No.	Int	Det	Prt	On
01	07	17			SBA		[
					IC							
	06	08			SRA							
	10	04	1 (₁₀)	2 B - 2	EUA	e a starte	с.					
			1.1		SF	AH	~		~			
					•							
	a second	1		an an a'	itie in te	a de la	ŀ					
	T											
	1											

Figure 7-38. Erasing Multiple Fields with EUA

Erase All Unprotected Command

an ta Alba Rena San R

In the preceding example, you wanted to erase all unprotected data, reposition the cursor, and add some titles to the sign-on panel to make it an error panel. The Erase All Unprotected (EAU) command:

- Clears all unprotected fields (except attributes) to nulls.
- Resets MDTs in all unprotected fields.
- Unlocks the keyboard.
- Resets the AID (see "Program Access Keys").
- Repositions the cursor to the first character of the first unprotected field.

This command appears to do what you want (it even does what the WCC would have done), but it does not write any data to the screen. You could issue an Erase All Unprotected command before the Write command. Then you would just write the new titles in their proper positions. You have then issued two commands to create one panel. What, then, is EAU for? It logically resets the panel for repetitive input using the same panel. Do not use EAU to change panels. Data Entry Example: You can use the EAU command to change a sign-on panel slightly and make it a data entry panel. Then the operator just keys in NAME, LOCATION, and SERIAL NUMBER for the first employee. If an error is made, an error panel is shown. If there is no error, you may want to clear the input, reset the MDTs, unlock the keyboard, and reposition the cursor.

The data entry panel might appear as shown in Figure 7-39.

The operator keys JOHN SMITH, presses TAB, keys BOSTN, presses TAB, keys 963981, and presses ENTER (Figure 7-40).

You simply send the 3270 and EAU command to unlock the keyboard. The operator then sees the same panel as in Figure 7-39. The operator may now key data for the next employee. You have used your knowledge of what is displayed already to arrive at the next panel or to re-create the present panel.

Figure 7-39. Example of Data Entry Panel

ROW

ROW

				COLUM	N
	1 10	11 - 20	21 – 30	31 – 40	
	1234567890	1234567890	1234567890	1234567890	12
91					
02		AEMPLOYEE	DATA ENTRY		ŀ
3			<u></u>		
)4	APLIENSE, E	NTER YOUR	ENPLOYEE I	N, F, O, RMA, TION	
95		Lillill	<u>ĺ</u>		
96	ANAME: DIOH	N. SMITH	LI ALOCIAT	I.O.N.: ABO.S.T.N	
17	DSERIAL NU	MBER: A9.6.3.9	80		
8					t
9					
0	AWHEN A	LL INFORMA	TILON TIS CO	MPLETE	
11	YOU MA	Y, P.R.E.S.S. T.H.	E ENTER KE	Y., , , , , , ,	
2		Lucilia		480	
3					

Figure 7-40. Data Entry Panel with Entered Data

1999 - C.

In the data entry example, you used one panel repetitively for input of employee information. You can reverse the requirement and design an employee data screen. For this example, assume the application is inquiry with *browsing* capability. Assume also that the operator has previously used another panel to request the information for employee number 963981. The display might appear as shown in Figure 7-41.

At the bottom of the panel, the operator is instructed to use the PA1 key to see the next employee page, probably number 963982. The PA2 key is assigned to page backwards. Remember, PA keys are assigned by the program. Program access keys cause a short transmission; they do not even transmit the contents of changed fields. For an inquiry and browsing application, there should be no input. The PA key assures there is no input even if the operator changes one of the unprotected fields; its use is therefore preferred to that of the ENTER or PF keys.

ROW

Program Tab

The input fields in the previous examples are output fields in this example. You could designate them as protected, but, if you did, you could not use another 3270 function called *Program Tab*. The Program Tab (PT) order advances the current buffer address to the address of the first character location of the next unprotected field. When the PT order immediately follows an alphameric or null character (not another order) in the WRITE data stream (other than the character specified by the Repeat to Address order, which is discussed earlier), it also inserts nulls in all the character positions from the current buffer address to the end of the current field. The PT order can be used to page through the employee data file.

When the operator is ready to view the information for the next employee, he presses the PA1 key. Since you want only to modify the present panel, not erase it or blank the unprotected fields, you request a WRITE command with a WCC to unlock the keyboard. Because you are not sure of the present buffer address, you might begin with an SBA order to R6, C8 followed by the next employee name from the disk file – JOE AMES. Because this name contains fewer characters than JOHN SMITH, the screen would look like this if you did not clear the remainder of the field:

You must also place the location code at location R6, C36. You could use blanks after the name and an SBA sequence, or EUA with its associated address. Use PT instead. Insert a PT order after the "S" in "AMES". The single PT order clears the remainder of the unprotected name field to nulls and positions for the location code. PT should also follow the location code to position for the serial number. The data stream might look like this:

WCA SBA R6 C36 J O E A M E S PT K N G S T PT 9 3 9 8 2
--

The screen would appear as shown in Figure 7-42.

As you have seen, you can write each new panel out in its entirety with an Erase/Write command. You should understand the relationship between the past data streams and the one you are building.

	1 – 10	11 – 20	21 – 30	31 40		
	12345678901234	567890	1234567890	123456789	0 1 2	
01		ليبيل		1		
02	IIII AEMF	LOYEE	DIAITIAI LILI	1		
03						
04	B, T.H.IS, INFORMA	IT. NOITT	SI ICIOINFITIDIEN	TIAL		
05			<u>l</u>	1		
06	MAIME : DJOE AME	<u>s</u> ll	BLOCAN	TI.O.N. : AKINIGISI		
07	BS.E.R.IAIL NUMBER	:A.9,6,3,9	8.2.B	1		
08		11111		1		
09				1		
10	TO SEE THE		EMPILIO YIEIE , F	AGEL PALL		
11	TIQ RETURN	TO THE	PIRIEN INOUS	PAGE PAR		
12			li.i.	48		
13		Luni		1		

Figure 7-42. Panel Defined with Program Tab

ROW

A screen-management program module is a set of subroutines physically separate from application programs and from the telecommunication-management program module of an online 3270 system. Figure 8-1 illustrates this relationship.

Support functions in a screen-management program may reduce the amount of detail work required by the application programs and effectively use the features of the 3270. The separation of screen management from the other programs also allows screen management to be modified with little or no impact on application programs or on the telecommunication-management programs.

Screen management might include:

- Decoding input data streams.
- Dynamic building of output data streams.
- Generating multiple I/O requests to the Line Control Module based upon a single request from an application program (that is, WRITE then READ).
- Automatic paging; the application program passes multiple pages to screen management, which asks the line control module to write a particular page to a display, depending on the display operator's request.
- Automatic copying (providing a hard copy of a display image).

The copy function supports data movement between any types of device attached to the same control unit: display to display, display to printer, printer to display, and printer to printer. To prevent copying information from an unauthorized device, the control unit provides a program-controlled copy lock for devices attached to it. If the first position of a device buffer contains an attribute character with the protected option and the second buffer position contains a null character, the control unit rejects any attempt to copy from that device.

Figure 8-1. Relationship of Screen Management to Telecommunication Management and Application Programs

Decoding and Generating Data Streams

The data streams sent between application programs and the 3270 contain unique orders that request particular operations by the 3270 displays and printers. Generalized subroutines can be written to assist the application programmer's interface with the 3270 system, and an interface can be built to simplify online programs.

This chapter discusses several approaches to developing a screen-management module whose functions the application programmer can use to prepare output data streams and to decode input data streams. The approaches demonstrate how some 3270 devicedependent considerations can be removed from the application programmer's responsibility. The different techniques for 3270 input or output data stream manipulation can be used in various combinations to suit the needs of the installation. This discussion assumes that the BTAM device management routines (line control) make the local and remote 3270 transparent to the application program. Therefore, discussion of data streams in this chapter ignores all header data in the input stream up to and including the AID character, and all header data in the output stream up to but not including the write control character (WCC).

Decoding Read Modified Input Data Stream

A Read Modified command for a display station with a formatted screen (a screen with at least one attribute character defined) produces a data stream consisting of the data from each field whose modified data tag has been turned on (either by program control or by data entered in the field). Each transmitted data field is preceded by the 3270 buffer address where that data is located on the display. The order of the fields transmitted from the screen is from left to right for each line, starting at the top of the screen and ending at the bottom of the screen. All null characters in a transmitted field are stripped out by the control unit during transmission.

The data stream, ignoring the header information up to and including the AID character, appears as:

SBA	A1	A2	Data	SBA	A1	A2	

If the data entered in a field is of variable length or if a field can be skipped by the terminal operator, the data from a particular field on a given panel can appear in a different location within the data stream for each set of operator input. A Read Modified command produces a variable-length data stream of fixed-length fields and variable-length fields concatenated together.

Each 2-character screen address in the data stream is immediately preceded by a Set Buffer Address (SBA) order. The detection of each SBA order in the data stream identifies the next 2 characters in the stream as a 3270 screen address and also indicates the end of the preceding data field. The System/360 and System/370 Translate and Test instruction (TRT) can be used to scan the data stream and to stop at each main storage address containing an SBA order. If the detected main storage address of the current SBA order is known, the following calculations can be performed for a given data stream:

SBA(1), ADD(1A), ADD(1B), DATA FIELD(1), SBA(2), ADD(2A), ADD(2B), DATA FIELD(2), SBA(3),

The numbers in parentheses are used as subscripts to provide unique identification:

- The length of data field(1) = [Address of SBA(2) Address of SBA(1)] -3.
- The 2-character 3270 screen address of data field(1) can be found at the address of SBA(1) +1.
- The length of data field(2) = [Address of SBA(3) Address of SBA(2)] -3.
- The 2-character screen address of data field(2) can be found at the address of SBA(2) +1.

The 2-character 3270 screen address as it appears in the input stream does not provide a direct decimal or binary numeric value that can be used to calculate the relative position in the 3270 buffer from which the data was read. However, you can use the following routine to convert the 3270 address as it appears in the input data stream into a binary value that directly indicates the position (relative to zero) of the data in the 3270 buffer.
Assume that R3 contains the address of SBA(1) and that R4 and R5 are work registers. R5 will contain the result at the end of the routine.

ADDCNVRT	EQU	*	
	SR	R4, R4	CLEAR WORK REG
	SR	R5, R5	CLEAR WORK REG
	IC	R4,0(R3)	GET FIRST ADDRESS CHAR (ADD (1A))
	Ν	R4, = F'63'	TURN OFF ALL BITS EXCEPT LAST SIX
	IC	R5, 1 (R3)	GET SECOND ADDRESS CHAR (ADD (1B))
	Ν	R5, = F'63'	TURN OFF ALL BITS EXCEPT LAST SIX
	SLL	R4, 6	SHIFT FIRST ADDRESS SIX BITS TO THE LEFT
	AR	R5, R4	ADD THE RESULTS TOGETHER

By use of the above technique, several approaches can be developed to a general-purpose subroutine that decodes the variable-field-length data stream for the application program, and returns the data in a more easily processed format.

Non-Selector-Pen Data Streams

Display Buffer Image Technique: By using the READ BUFFER command, you can use the display buffer image technique to return to the application program a main storage buffer area of the same size as the display buffer (480 or 1,920). The data read from the display is placed in the same relative position in the main storage buffer that it occupied in the display buffer, with all other positions in the returned buffer cleared to spaces.

For this technique, use the TRT instruction and the 3270 address conversion routine. You must know the relative locations in the display buffer where the operator can enter data, so that the decoded buffer can be processed when returned by the mapping subroutine. The completed layout sheet for the panel in which the operator enters data will give you the required addresses relative to the respective buffers.

With the image technique, all data received from the 3270 is left-justified in its respective fields. This has no effect on fixed-length fields, variable-length alphameric fields (which are normally left-justified), or omitted input fields. However, you must be aware of variable-length numeric fields where the operator can omit leading 0's.

Although the image technique requires little main storage for the mapping subroutine, main storage can be wasted if the routine returns a complete buffer with little data. To help overcome this problem, the decoding routine can pass back to the application program a field at the beginning of the buffer. The field indicates the total length of the buffer, which allows the decoding routine to use a buffer area just large enough to accommodate the relative address of the last data field read.

Mapping from a Table of Requirements: This mapping technique requires a table assembly for each unique input panel that the mapping subroutine decodes for the application program. The table provides information to the subroutine so that the input data stream in one main storage buffer can be decoded a field at a time and moved to a specified relative offset in another main storage buffer (the target buffer) according to the directions assembled in the table. The preassembled table could be used to specify the following information to the mapping subroutines:

1. The 3270 buffer address preceding each field, which could be read from a particular panel. This is the buffer address as it appears in the data stream that corresponds to the first data position in a field, not to the buffer location of the attribute character that defines the field. Any data fields in the 3270 input stream that do not have a matching buffer address in the table would be ignored by the typical mapping routine using the table approach.

- 2. An offset relative to zero that provides the starting position of each field in the target buffer. This information allows the application programmer to order the fields in the target buffer in a sequence that may or may not agree with the field sequence in the transmitted data stream.
- 3. A value that indicates the maximum length of each field in the target buffer. This information allows the mapping routine to truncate data stream fields that are too long for the target fields. The maximum field length value is also required if the mapping routine supports right justification of fields during mapping.
- 4. A flag byte consisting of bit switches that could indicate:
 - Whether left justification with low-order blank padding is requested
 - Whether right justification with high-order zero fill is requested
 - Whether the field should be translated to ensure uppercase characters only
 - Any additional functions the installation wishes to implement in the mapping routine

Figure 8-2 shows some typical logical contents of the table. The order of the elements within each table entry is optional.

Assume that you map the following input data stream in hexadecimal using the sample table in Figure 8-2:

1140D4F1F2F31140E8818283848511C1C6E385A7A3

The following target buffer, also in hexadecimal, would be returned to the application program:

C1C2C3C4C54040404040F0F0F1F2F3E385A7A34040

This approach to mapping makes the application program's input processing routine device-independent.

	TABLE	DS	он	
	ENTRY1	DC	X'40D4'	ACTUAL 3270 ADDRESS FOR POS 20
		DC	H'10'	RELATIVE OFFSET IN TARGET BUFFER
		DC	HL1'5'	MAX FIELD LENGTH OF TARGET FIELD
		DC	X '80'	RIGHT JUSTIFY, NO TRANSLATE FLAG
	ENTRY2	DC	X'40E8'	ACTUAL 3270 ADDRESS FOR POS 40
		DC	H'0'	RELATIVE OFFSET IN TARGET BUFFER
		DC	HL1'10'	MAX FIELD LENGTH OF TARGET FIELD
		DC	X'40'	LEFT JUSTIFY, TRANSLATE FLAG
	ENTRY3	DC	X'C1C6'	ACTUAL 3270 ADDRESS FOR POS 70
		DC	H'15'	RELATIVE OFFSET IN TARGET BUFFER
		DC	HL1'6'	MAX FIELD LENGTH OF TARGET FIELD
,		DC	X '00'	LEFT JUSTIFY, NO TRANSLATE FLAG
	ENDOLIST	DC	X'FF'	END OF LIST INDICATOR
_				

Note: 3270 buffer addresses in the table are shown relative to buffer location zero; relative offsets in the target buffer are shown relative to zero.

Figure 8-2. Table of Requirements

Instead of the mapping table, you could write a macro instruction to prepare the table; the macro would convert written requests into the proper machine language constants.

A typical format for a macro instruction to build the sample table shown in Figure 8-2 might be:

MAP	NAME=TABLE,MODEL=2
MAP	ADD=(1,21),OFFSET=11,MAXL=5,JUST=RIGHT
MAP	ADD=(1,41),OFFSET=1,MAXL=10,JUST=LEFT,TRAN=YES
MAP	ADD=(1,71),OFFSET=16,MAXL=6,JUST=LEFT

Note: The ADD parameter specifies the 3270 buffer in row and column notation relative to 1. For example, buffer position 0 equals row 1, column 1. The offset values are expressed relative to 1. The macro instruction can have default options; for example, if JUST=RIGHT is not specified, JUST=LEFT can be assumed.

The following example shows the logic flow for a table-driven input mapping technique:

- 1. Find the 3270 buffer address of a data field to be processed in the input data stream, using the TRT instruction.
- 2. Determine the length of the data field in the data stream, using the techniques discussed in this chapter.
- 3. Search the table of requirements, using the 3270 buffer address found in step 1 as a search argument, to find a matching entry.
- 4. Add the offset value from the entry found in the table to the starting address of the main storage map buffer, to produce the main storage address of the start of the receiving field.
- 5. If the length of the data field determined in step 2 is greater than the maximum field length value in the entry found in the table, go to step 10.
- 6. Check the flag byte in the entry found in the table. If left justification is requested, go to step 10. Otherwise, proceed to step 7 for right justification.
- 7. Move zoned decimal zeros to the receiving field, using the field starting address determined in step 4. Use the maximum field length value in the entry found in the table as the length for the move.
- 8. Develop a new main storage address for the start of the receiving field to accommodate the request for right justification. The right-justified starting address for the receiving field equals (field starting address determined in step 4 + maximum field length value in the entry found in the table) minus length of the data field in the data stream found in step 2.
- Move the data field from the data stream to the main storage address developed 9. in step 8, using the length of the data in the data stream determined in step 2. Return to the start of this routine to find the next data field in the data stream.
- Move blanks to the receiving field, using the starting address of the field as deter-10. mined in step 4. Use the maximum field length value in the entry found in the table as the length for the move.
- 11. Move the data field from the data stream to the receiving field, using the field address determined in step 4. Use the length of the data in the data stream (determined in step 2) as the length for the move.
- 12. Check the flag byte in the entry found in the table to determine whether uppercase translation is requested. If it is not requested, return to the start of this routine to find the next data field in the data stream.

- 13. Translate the data in the receiving field to uppercase; then return to the start of this routine to find the next data field in the data stream. The translation can be done in two ways:
 - a. Use the TRANSLATE instruction with the translation table built to convert lowercase alphabetic characters to uppercase.
 - b. Use the OR instruction to place spaces in the field. This will change the DUP and FM characters. The FM appears as a semicolon (;) on the screen, but appears in the data stream as X'1E'. It will be converted to a true ; (that is, X'5E'). The DUP appears as an asterisk (*) on the screen, but appears in the data stream as X'1C'. It will be converted to a true * (X'5C').

Immediate Selector-Pen Data Stream

When a Read Modified command is executed for a display station as a result of an immediate detection by the selector pen, the resulting data stream consists of address strings that identify the fields on the screen that have the modified data tag set; no field data is transmitted in the data stream.

The data stream, ignoring the header information up to and including the AID character, appears as:

ſ	SBA	A1	A2	SBA	A1	A2	

If the operator keys into a field and an immediate selector field is selected, the keyed data is not transmitted. However, if keyed data is entered by the operator, delayed selector fields are selected, and the ENTER key or a PF key is pressed, then the address and data for all fields, whether selected or keyed, are included in the data stream.

You can use a subroutine to free the application program from determining which fields were selected on a panel. A table can be built that consists of the 3270 buffer addresses, giving the location of each selectable field on a panel. The mapping routine can then compare the addresses in the table and return to the application program a list of indicators identifying the selected fields.

The list of indicators can be returned to the application program. A string of 1-position fields can be used, and each position can indicate with a unique character that a field was selected. The first position in the returned list can be marked if a field in the data stream has the same address as the first element in the address table; the second position in the returned list can be marked if a field in the data stream has the same address as the second element in the address table. The application program can then determine which relative positions in the list have been marked to determine which fields have been selected by the operator.

Because the input from a display using selector-pen detection is a series of fixed-length addresses, the mapping routine can analyze the input stream and decode it.

For example, using the selector panel illustration in Figure 8-3, assume that the operator has selected the delayed-detectable fields located at row 5, column 10 and row 3, column 26 and the immediate-detectable field located at row 7, column 18. The input data stream transmitted in hexadecimal from the display would be:

11C1E911C2E911C4C1

Figure 8-3. Example of Selector-Pen Panel

Using the sample table in Figure 8-4, the mapping routine returns a list in hexadecimal to the application program:

406F40406F406F

This list indicates that the 2nd, 5th, and 7th fields were selected. Note that the addresses of the selected fields appear in the data stream in the same sequence that the fields appear in the display buffer. When a selector-pen panel is designed by columns, the address of the field selected from the first column may not occur before the address of the field selected from the second column in the input data stream.

You can write a macro instruction similar to the one used to build the table in Figure 8-2 to build the selector pen table:

MAP	NAME=SELTABLE,MODEL=1
MAP	ADD=(3,10)
MAP	ADD=(3,26)
MAP	ADD=(4,10)

SELTABLE	EQU	*	FOR MODEL 1 DISPLAY
	DC	X'C1D9'	ROW 3 COL 10
	DC	X'C1E9'	ROW 3 COL 26
	DC	X'C2C1'	ROW 4 COL 10
	DC	X'C2D1'	ROW 4 COL 26
	DC	X'C2E9'	ROW 5 COL 10
	DC	X'C2F9'	ROW 5 COL 26
	DC	X'C4C1'	ROW 7 COL 18
	DC	X'FF'	TABLE STOP INDICATOR

Figure 8-4. Sample Mapping Table

Mixed Read Modified Input Data Streams

When some keyed input and some delayed selector-pen detection occur in a panel during the same input operation from a display, you can use the table-driven mapping technique for non-selector-pen panels. Specify the table elements so that all delayed selector fields have a maximum length of 1 character. The mapping routine places the 1st character from the appropriate data stream field into the target field. The 1st character in a delayed selector-pen field that has been selected is always a (>); that is, X'6E'. The application program can examine the target buffer for that character in the proper target field to determine whether the field has been selected.

Building Output Data Streams

The 3270 requires specific bit patterns for order sequences, control characters, and buffer addressing. The data streams can be prepared in several different ways. A data stream to build a static panel (a panel that will always be displayed in exactly the same manner) can be assembled in an application program as a set of data constants. A semidynamic panel, which may occasionally be modified or added to, can have the static portion assembled in the application program and have the program dynamically modify or add to the data stream. A data stream for a dynamic panel (a panel with a high degree of change) must be created or assembled as a unit at execution. Following is a discussion of how to reduce the considerations of device-dependency required to support static, semidynamic, and dynamic output data streams.

Static Data Streams

You can write macro instructions to simplify the preparation of static data streams for the 3270. One approach is to write a set of macro instructions in which each macro instruction prepares a single-order sequence. Another approach is to write one macro instruction that can prepare all types of order sequences, but prepares only one sequence for each execution of the macro instruction in a program.

A sample macro instruction of the first type might be:

MOD MODEL = 1, 2

This macro instruction sets a global value so that the specified model number is used until another \$MOD macro instruction is encountered. The model number is required to calculate correctly the 3270 buffer addresses. The buffer address 'C2D5' represents column 4, row 30 for a Model 1 display, and column 2, row 70 for a Model 2 display.

The following are also examples of the first type of macro instruction:

\$SBA (1,10) generates the SBA order sequence X'1140C9'.

\$SF (PROT,NUM,SKIP,MDT,HI,DET,NONDISP)

generates an SF order (X'1D') followed by the appropriate attribute character defined by the options selected in parentheses. Notice that, if PROT is not specified, unprotected is assumed; if numeric is not specified, alphameric is assumed.

\$RA (1,10,'*') generates the RA order sequence X'3C40C95C'.

\$EUA (1,10) generates an EUA order sequence X'1240C9'.

\$WCC (RESET, RESTORE, ALARM, PRINT, 40CHAR, 64CHAR, 80CHAR, NL EM) generates the proper WCC, depending on the options selected in parentheses.

\$CCC (PRINT,40CHAR,64CHAR,80CHAR,ALARM,ATT,UNPROT,PROT,ALL)

generates the proper copy control character (CCC), depending on the options selected in parentheses. (The CCC identifies the type of data to be copied.)

\$IC generates X'13'.

\$KBD KEYBOARD = APL

is used with the Data Analysis feature to identify the keyboard providing 3277 Model 2 display input.

\$SI generates the Suppress Index character, valid for the 3288 Model 2 printer. Other printers receive 4 (the or bar) in place of the Suppress Index character.

After you have defined the macro instruction, the data stream required to build the sign-on panel shown in Figure 7-12 could be created as follows:

SIGNON	\$MOD	MODEL=1
	\$WCC	(RESET, RESTORE)
	\$SBA	(2,11)
	\$SF	(PROT)
	DC	C'SIGN-ON PROCEDURE'
	\$SBA	(4.2)
	\$SF	(PROT)
	DC	C'PLEASE ENTER YOUR SIGN-ON INFORMATION'
	\$SBA	(6.1)
	\$SF	(PROT.HI)
	DC	C'NAME:'
	\$SF	
	\$IC	
	\$SBA	(6.25)
	\$SF	(PROT.HI)
	DC	C'LOCATION:'
	\$SF	
	\$SBA	(7.1)
	\$SF	(PROT.HI)
	DC	C'SERIAL NUMBER:'
	\$SF	(NUM)
	\$SBA	(7.23)
	\$SF	(PROT)
	\$SBA	(10.4)
	\$SF	(PROT)
	DC	C'WHEN ALL ENTER KEY'

You could also write the second type of instruction, a single 3270 data-stream macro instruction, which might have the format:

[symbol] S	\$MAC	op-type	,(attributes) ,(row,column)	[,character]	,MODEL=	1 2 3 4
------------	-------	---------	--------------------------------	--------------	---------	------------------

symbol

specifies a symbol that refers to the data stream.

op-type

specifies the type of screen control operation to generate. Valid values are SF, SBA, IC, RA, EUA, WCC, and CCC.

(row, column)

specifies the row (1 to 24) and column (1 to 80) where the operation starts or ends (depending on the op-type). This parameter is required for op-types SBA, RA, and EUA.

(attributes)

indicates attributes or control bits for SF, WCC, and CCC:

Some valid values for SF are PROT, SKIP, NUM, MDT, HI, DET, and NONDISP.

Some valid values for WCC are RESET, RESTORE, ALARM, PRINT, 40CHAR, 64CHAR, 80CHAR, and NLEM.

Some valid values for CCC are PRINT, 40CHAR, 64CHAR, 80CHAR, ALARM, ATT, UNPROT, PROT, and ALL.

character

specifies the character used in the RA function.

MODEL=

indicates the model of 3270. This model number is used to calculate the buffer address. This parameter is specified only once in the first macro instruction of a data-stream series or whenever the data stream to be generated is for a different model than the preceding series.

After you have defined the macro instruction, the data stream required to create the sign-on panel shown in Figure 7-14 could be as follows:

\$MAC	WCC,(RESET,RESTORE),MODEL=1
\$MAC	SBA,(2,11)
\$MAC	SF,(PROT)
DC	C'SIGN-ON PROCEDURE'
\$MAC	SBA,(4,2)
\$MAC	SF,(PROT)
DC	C'PLEASE ENTER YOUR SIGN-ON INFORMATION'
\$MAC	SBA,(6,1)
\$MAC	SF,(PROT,HI)
DC	C'NAME:'
\$MAC	SF
\$MAC	IC
\$MAC	SBA,(6,25)
\$MAC	SF,(PROT,HI)
DC	C'LOCATION:'
\$MAC	SF
\$MAC	SBA,(7,1)
\$MAC	SF,(PROT,HI)
DC	C'SERIAL NUMBER:'
\$MAC	SF,(NUM)
\$MAC	SBA,(7,23)
\$MAC	SF(PROT)
\$MAC	SBA,(10,4)
\$MAC	SF,(PROT)
DC	C'WHEN ALL ENTER KEY'
	SMAC SMAC SMAC DC SMAC SMAC DC SMAC SMAC SMAC SMAC SMAC SMAC SMAC SMA

These two types of macro instructions can generate either a total static data stream or static sections of data streams that can be dynamically assembled at execution by the application program.

Semidynamic Output Streams

A semidynamic panel requires some dynamic modification. Perhaps an error message must be written to a particular part of the panel and the cursor must be moved to the input field in which an error was detected during editing. The application program can concatenate preassembled static data stream segments into the program, such as field error messages. The same macro instructions that build static data streams can build partial static streams. As the input from a panel is edited, the standard error message for each field can be assembled in the output buffer, thus allowing multiple brief messages to be sent to the display in one operation.

You may have to change one or two attribute characters from high intensity to low intensity and erase the unprotected fields on a display. For example, an error message segment may have changed a field to high intensity to call the operator's attention to the field; the operator has recognized the error and reentered the correct information. The display must now be made ready for the next input on the panel. Concatenate the order stream segments to change the attribute characters, and use the Erase Unprotected to Address (EUA) order to restore the panel; do not transmit all the data and orders to refresh the panel completely.

Dynamic Output Streams

It may become physically impossible to hold in main storage all possible output data and order stream combinations that could occur during the execution of an application. You can incorporate a subroutine into screen management to accept parameters from an application program to decode the parameters and to create the data stream. You can also write for the application program a macro instruction that builds a parameter list inline from entries you specify in the macro instruction, and then branches to the screenmanagement routine to build the required orders and data in the buffer area.

The macro instruction could appear as follows:

\$BUILD ADD=ADDFIELD,ATT=(R3),DATA=(R4),LEN=(R5)

The ADDFIELD contains the 3270 buffer address in either row-column format, binary offset, or 3270 address form. R3 contains the address of the attribute character, R4 contains the address of the data to be entered in the field, and R5 contains the length of the data. The attribute character parameter is optional.

The subroutine could convert row and column buffer addresses relative to 1 to decimal offsets relative to 0 with the following formula:

Model 1 Buffer: ((R-1)X40) + (C-1) Model 2 Buffer: ((R-1)X80) + (C-1)

If the row and column buffer addresses relative to 1 are in 2 single-byte areas in binary, the conversion to binary offsets relative to 0 can be coded as follows:

SR	R3,R3
IC	R3,COLUMN
BCTR	R3,0
SR	R4,R4
IC	R4,ROW
BCTR	R4,0
MH	R4,=H'40' USE VALUE OF 80 FOR MODEL 2
AR	R4.R3 RESULT IN R4

The following subroutine converts a binary halfword that represents the offset relative to 0 of a position in a 3270 buffer to an equivalent 2-character 3270 address. R3 is a work register, and R4 points to the binary halfword to be converted. The converted result is found at ANSWER.

LH	R3,0(R4)
STC	R3,ANSWER+1
SRL	R3,6
STC	R3,ANSWER
NI	ANSWER+1,X'3F'
TR	ANSWER(2),TAB
•	

	•	
ANSWE	ER DC	X'0000'
TAB	DC	X'40C1C2C3C4C5C6C7C8C94A4B'
	DC	X'4C4D4E4F50D1D2D3D4D5D6D7'
	DC	X'D8D95A5B5C5D5E5F6061E2E3'
	DC	X'E4E5E6E7E8E96A6B6C6D6E6F'
	DC	X'F0F1F2F3F4F5F6F7F8F97A'
	DC	X'7B7C7D7E7F'

Since buffer address wrapping is dependent on screen size, application programs should not depend on buffer wrap during write operations. In addition, field attributes must be appropriately placed to delimit the end of the screen image.

Copy Function for the 3271 and 3272

Many applications require complete and unaltered hard copy (printout) of the terminal's current screen contents for the display station operator. The printer on which the display contents are printed may support one or more display stations, depending on the 3270 configuration.

When using the copy function to obtain a printout on a 3288 Model 2 printer, remember that various print belts can be installed on the printer.

You should define a program-attention key so that a terminal operator can request hard copy on an assigned terminal printer. The screen-management program can be notified of the operator's request and perform the appropriate action.

When a data transfer to the computer occurs from pressing a program-attention key, a remote BSC 3277 or 3275 transmits AID and cursor address, and a local 3277 transfers only the AID character. The AID character identifies the key that transferred the data. No screen data is transmitted; so the program is notified of a specific request.

Once the request is identified by inspecting the AID character, the program must identify the type of unit that made the copy request. This can be done by examining the characteristics of the specific device in a terminal characteristics table that you can create. For example, depending on the type of device, the following procedures can be used to produce hard copy:

• To copy from a remote 3275 to the printer attached to the 3275, the program should send the WCC to the 3275. The WCC restores the keyboard, starts the printer, and prints 40 or 80 characters per line. Because the printer attached to the 3275 uses the same buffer as the display, all that is necessary to print the buffer (which contains the screen data) is the start-print bit in a WCC sent in a valid WRITE command sequence.

- To copy from a 3277 attached to a remote 3271 to a printer attached to the same 3271, the program should send the following data stream to the printer: STX, ESC, COPY command, CCC, from-device address, ETX. The CCC specifies start printer, the option to copy all data, and either 40 or 80 characters per line. A Model 2 display cannot be copied to a Model 1 printer, but all other copy combinations are valid. The device address following the CCC is a single-character address that identifies the device to be copied from and that is identical with the device address used to poll specifically the display requesting the copy function. The COPY command allows the buffer contents of a device attached to a 3271 to be copied to the buffer of another device attached to the same 3271, without moving the data to be copied to and from the computer. Once the prior data stream has been sent to the printer, the program should send the following data stream to the display station that requested the copy: STX, ESC, WRITE command, WCC, ETX. The WCC restores the keyboard. The operator has a positive response that the request has been honored, and the keyboard allows the operator to continue without manual intervention.
- To copy from a local 3277 to a local terminal printer, the program should execute a Read Buffer command to the display that made the copy request. The Read Buffer command is executed, and the display station transmits AID, a 2-byte cursor address, and the screen data to the computer. The program should then remove the AID character and the cursor address from the received data and, immediately preceding the remaining data, insert a WCC that specifies start printer and 40 or 80 characters per line. The altered data stream, beginning with WCC, should then be sent to the printer to copy the data. The program should then send a WCC with the restore keyboard option to the display that requested the copy function.

If the program determines that the receiving printer is busy, and the requested copy function cannot be immediately completed, one of the following actions should be taken:

- 3271: Notify the terminal operator of the situation, and ask the operator to wait or cancel the request.
- 3271 or 3272: Perform a Read Buffer to bring the screen data into the computer, where it can be queued until the printer is available, without delaying the operator.

The indicators and controls associated with each 3270 unit, except the 3287 Printer, are listed in Figure A-1 and described below (the indicators and controls associated with the 3287 Printer are described in Figure A-2):

OFF-PUSH: This triple-function concentric switch/control is used to control the application of power to the unit, and to control the brightness (outer knob) and contrast (inner knob) of the displayed image.

BIT RATE: This two-position toggle switch, added by the Dial feature, allows the 3275 Model 1 or 2 operator to select a transmission rate of 600 or 1,200 bps.

3270 0	Jnit						
3277	3275	3272	3271	3284, 3286	3288		
X	X						
	D						
	D						
X	X						
X	X						
X	X				X		
					x		
	X		X	1			
	X X		X	1			
	X		x		l .		
	S		s				
	S	1	S				
	D						
	x		x				
	X	1	x				
		x					
		x		1			
		X					
		x					
		x					
		x					
			x	x	x		
1.1					x		
1			[x		
1			1	1	x		
	l .				x		
		x					
					x		
					x		
x	x			x	x		
	3270 U 3277 X ~ X X X X	3270 Unit 3277 3275 X X D D X X X X X X X X X X X X X X X X X X X X X X X X	3270 Unit 3277 3275 3272 X X D D X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X	3270 Unit 3277 3275 3272 3271 X X D D X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X <tr< td=""><td>3270 Unit 3277 3275 3272 3271 3284, 3286 X X X X X 3284 X X X X 3284 X X X X 3284 X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X</td></tr<>	3270 Unit 3277 3275 3272 3271 3284, 3286 X X X X X 3284 X X X X 3284 X X X X 3284 X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X		

Key:

Ctl – Control

- Ind Indicator
- Pb Pushbutton
- Sw Switch
- X Basic
- D Dial Feature
- S SDLC

Figure A-1. Indicators and Controls

Note: 3287 controls and indicators are shown in Figure A-2.

DISCONNECT: This momentary-contact toggle switch, added to the 3275 Model 1 or 2 by the Dial feature, is used by the 3275 operator when terminating a call.

INSERT MODE: This indicator is turned on by the keyboard INS MODE key to show that the unit is in Insert Mode of operation. It is turned off by the keyboard RESET key.

INPUT INHIBITED: When lighted, this indicator shows that manual input to the unit from the keyboard, selector pen, or operator identification card reader is inhibited.

It is turned on by:

- Operation of any program-attention key.
- A selector-pen-attention operation that caused an I/O interruption to occur.
- An operator-identification-card-reader operation that caused an I/O interruption to occur.
- Turning of the Security Key Lock to the OFF position if the Security Key Lock feature is installed.
- Initiation of a printout at an unbuffered printer attached to the 3275 Display Station.
- A system-initiated I/O operation addressed to that unit.
- Operation of any alphameric key or the DUP, FIELD MARK, ERASE EOF, or DEL key when the cursor is in a protected field.
- Operation of any alphameric key not included in the numeric key grouping when the cursor is in a numeric field, without simultaneous operation of either the ALPHA or NUMERIC shift key, when the Numeric Lock special feature is installed.
- Detection of a parity or cursor check in the device buffer.

It is turned off by:

- Receipt and execution of a WCC with the keyboard-restore bit set.
- Receipt and execution of an Erase All Unprotected command.
- Turning of the Security Key Lock to the On position (if it was turned on because the Security Key Lock was in the Off position).
- Operation of the keyboard RESET key, with the following exceptions:
 - The device is selected and executing a command from the control unit.
 - The display station is in the process of reading a magnetic card from the operator identification card reader.
 - A printout is in process at the attached 3284 Printer Model 3.
 - A parity or cursor check has been detected.
- Termination of an unbuffered printer printout (if it was turned on because an unbuffered printer printout was initiated).
- Correction of a parity or cursor-check condition and resetting of the error status by a Write or Erase/Write command addressed to that device.

SYSTEM AVAILABLE (3275 Models 1 and 2 and 3277), Sys Avl (3288): When lighted, this indicator shows that the unit has had successful communication with the system and is available to accept an operator-initiated transmission to the system.

It is turned on by:

- Successful completion of a Write, Erase/Write, Erase All Unprotected, Copy, Read Modified, or Read Buffer command, in local or remote operation.
- On a 3275 (Models 1 and 2), receipt of an ACK from the TCU in response to an ETX at the completion of a General or Specific Poll sequence.

It is turned off by:

- Any operator-generated I/O interruption.
- A parity or cursor check and resulting I/O interruption.
- Turning of the Security Key Lock to the Off position.

SYSTEM READY: When lighted, this indicator shows that the Data Set carrier is on and that the TCU is online. With the Dial feature installed, this indicator lights when a transmission is first sent or received and extinguishes when a disconnect sequence is sent or received.

SYNC SEARCH (3271 and 3275 Models 1 and 2 only): When lighted, this indicator shows that the unit is attempting to establish line synchronization.

SELECTED (3271 and 3275 Models 1 and 2 only): When lighted, this indicator shows that the unit has been selected; that is, it is in the process of executing a command or a chain of commands.

CU ACTIVE (3271 and 3275 Models 11 and 12 only): This indicator lights after selection, and remains set until the operation is completed.

FLAG DETECT (3271 and 3275 Models 11 and 12 only): This indicator lights when a valid flag character (7E) is received.

OFF HOOK/AUTO ANSWER: This indicator replaces the SELECTED indicator when the IBM Line Adapter or external modem with Auto Answer feature is installed. When lit, it indicates that a communications link to the 3275 (Models 1 and 2) is active (that is, the data access arrangement is *off hook*). When the Auto Answer feature is not installed, the OFF HOOK/AUTO ANSWER indicator is always lit during unit operation.

TRANSMIT: When lighted, this indicator shows that the unit is transmitting to the TCU.

STATUS: When lighted, this indicator shows that an error-status condition exists within the unit.

POWER ON LOCAL MODE: This momentary-contact switch is used to turn on dc power for a 3272.

POWER OFF LOCAL MODE: This momentary-contact switch is used to turn off dc power for a 3272.

MAIN LINE ON/OFF: This two-position toggle switch is used to turn on and turn off ac power for the 3272.

LOC/REM: This two-position rotary switch on the 3272, when placed in the REM (remote) position, gives control of the power supply activation to the CPU to which the control unit is attached. When placed in the LOC (local) position, power is controlled at the 3272 by using the POWER ON LOCAL MODE and POWER OFF LOCAL MODE switches.

ON LINE/OFF LINE: This two-position toggle switch, when placed in the ON LINE position (the operating position), connects the 3272 to the channel interface.

I/O INTF DSBLD: This indicator lights when the ON LINE/OFF LINE switch on the 3272 is in the OFF LINE position.

POWER ON: When lighted, this indicator shows that power has been turned on for a 3272.

POWER ON/OFF: This two-position toggle switch is used to turn on and turn off power for 3271 control units and all printers.

Ready: When lighted, this indicator shows that the 3288 Line Printer is ready to receive transmissions from the contol unit. It is turned on after a successful power-on sequence, when the belt is up to speed and the printer is ready to print data.

It is turned off by:

- Open machine covers.
- Open print unit.
- Running out of forms.
- A paper motion failure (forms jam, torn forms, or missing feed holes).
- An overheated printer mechanism.
- A hardware failure requiring a repair action.

Ops Chk: When blinking, this indicator shows that the 3288 Line Printer not-ready condition (shown by the Ready indicator's being off) can be corrected by the operator.

It is turned on by:

- Open machine covers.
- Open print unit.

A-4

- Running out of forms.
- A paper motion failure.
- The TEST switch (on test switch panel) in other than the ON LN (On Line) position.

It is turned off when the condition that caused it to light is corrected.

Address Identification: Provision is made on each display station and printer to identify both the physical (hexadecimal) and symbolic addresses assigned to that unit at installation time.

VFC Selector: The VFC Selector switches on the 3288 Line Printer are set (00-99) by the operator to determine the number of lines skipped in a VFC operation.

Carriage Restore: The Carriage Restore pushbutton on the 3288 Line Printer advances the forms to a predetermined print line established by the initial forms positioning and the settings of the VFC selector switches.

Power On/Power Off (Coded | and O): This two-position rocker switch is used to control power to the 3288 Line Printer.

Start Test: This switch on the 3288 is used in conjunction with the test switches located on the test switch panel under the top cover to initiate offline test printouts.

Figure A-2 lists and explains the indicators and controls associated with the 3287 Printer.

Indicator/Control

Explanation

Ready

This light indicates that the printer is available to print the data received from the controller. It goes off under any of the following conditions:

- Hold Print condition
- Test mode
- Check conditions
- Power off
- The printer runs out of paper

This light blinks when the Hold Print light is on to indicate that SCS data is being processed.

Hold Print

CU Signal

8 LPI

Check

Double Space

n we staat National die geboord

Test

This light indicates that the hold-print or set-alternate condition has been entered. It remains on continuously in the hold-print condition and blinks in the set-alternate condition.

This light indicates that the 3287 is connected to a control unit and communication can take place. It goes off when the printer does not receive a signal from the control unit for 30 seconds or when the printer is in test mode.

This light indicates that vertical line-spacing of eight lines per inch is being performed by the printer. If 6 LPI is selected with the Change LPI switch, and the control unit specifies 8 LPI, this light comes on only when printing is performed. The light shows the setting of the Change LPI switch when the printer is in the hold-print condition.

This light indicates the detection of an error condition by the 3287. It goes off when all check conditions have been removed. The type of check condition is displayed in the Status indicator when the Check light comes on.

This light indicates that double line-spacing is being performed by the printer. If single space is selected by the Change Space switch and the control unit specifies double space, this light comes on only when printing is performed. When the printer is in the hold-print condition, this light shows the setting of the Change Space switch.

This light indicates that the automatic built-in tests are running in the 3287. It goes off at the error-free ending of all the tests.

Figure A-2 (Part 1 of 4). Indicators and Controls for 3287 Printer

Indicator/Control

Dual Case

Status

This light indicates that dual-case printing is being performed by the printer. If mono case (uppercase only) is selected by the Change Case switch and the control unit specifies dual case (both uppercase and lowercase), this light is on only when printing is being performed. When the printer is in the hold-print condition, this light shows the setting of the Change Case switch.

The Status indicator displays a two-digit code that represents the current status of the 3287, such as:

A check condition

Explanation

- An end-of-forms condition
- Printer Status Information
- The result of a test operation in which an error has been detected.

The *IBM 3287 Printer Problem Determination Guide*, GA27-3151, contains a list of all the error codes and the actions the operator is to take when a code appears.

Hold Print/Enable Print

Pressing this switch to the Hold Print position causes the 3287 to stop printing after it has completed the function in process. The print head moves to the leftmost position, the Hold Print light comes on, the Ready light goes off, and data is held in the printer buffer for additional printing.

The Set Alternate, Change LPI, Change Space, Change Case, Form Feed, Setup, Index, Cancel Print, Buffer Reprint, PA1, and PA2 switches are operational only when the printer is in the hold-print condition.

Selecting Enable Print causes the Hold Print light to go off and the Ready light to come on. Printing then continues, following the preceding print position.

Pressing the Hold Print switch on and off within 10 minutes does not have any effect on communication with the control unit.

If the operator leaves the printer in the hold-print condition for more than 10 minutes, an *Intervention Required* message is sent to the control unit. The operator must then press the Enable Print switch to return to normal operation.

This switch is used to select vertical line-spacing between lines. When either 6 or 8 LPI is selected by the switch, the LPI selection by the host or the control unit supersedes the switch selection.

If printing is being done in the 8 LPI format, or if the 8 LPI switch is pressed while the 3287 is not printing data, the 8 LPI light comes on. When a power-on reset is performed, the printer is initialized to the 6 LPI condition (the 8 LPI light is off). Reset has no effect on the switch setting. When the printer is operating in the SCS mode, it is initialized to the current switch setting.

Note: If the platen has been moved by hand, line-spacing from the first to the second print line may be out of specification since the platen does not have mechanical indexing, but all lines printed after the second line will be in specification. Care should be taken, therefore, when the platen is adjusted by hand to align first print line. Maladjustment can cause the first and second print lines to touch when the 8 LPI format is selected.

Figure A-2 (Part 2 of 4). Indicators and Controls for 3287 Printer

Change LPI

Indicator/Control Set Alternate/Set

Parameter/Reset

Alternate Switches

n a Mariana an Canada an Anna a Anna an Anna an

Change Space

Change Case

PA1 and PA2

n ser i an Shae Ruin an Shae Ruin an Anna

Form Feed

Buffer Reprint

Setup

Explanation

Pressing the Set Alternate switch when the printer is in the holdprint condition activates the alternate function for all the operator panel switches and causes the Hold print light to flash on and off.

An operator can enter the maximum print position (MPP), using the hundreds, tens, and units alternate function switches, when the 3287 is in the alternate function mode of operation. Each time the Tens or Units switch is pressed, the Status indicator is incremented by 10 or 1, respectively. Pressing the Hundreds switch causes the Status indicator to flash for a 1XX selection and to remain on, continuously, for a 0XX selection. Once the MPP has been entered, pressing the Set Parameter switch causes the MPP selection to be saved for future use and to enter a hold-print condition.

Pressing the Reset Alternate switch before pressing Set Parameter causes the printer to return to the primary functions of the switches in the hold-print condition without storing a newly set MPP value (the Hold Print light is on continuously). The MPP is initialized to 132 when a power-on reset is performed. Reset and test modes have no effect on the MPP selection. The MPP selection is valid only when processing information data.

This switch, when set to Double Space, causes the printer to perform double line-spacing during printing. When a power-on reset is performed, the printer is initialized to a single space condition (the Double Space light is off). Reset mode and test mode have no effect on the switch setting.

Selecting mono case with this switch causes the printer to print in uppercase characters only. Selecting dual case causes the printer to print in dual case (both uppercase and lowercase characters). The Dual Case light comes on for dual case printing. During a power-on reset, the printer is initialized to a mono case condition (the Dual Case light is off). Reset mode and test mode have no effect on the switch setting.

These switches are operational only when the SCS Support feature is installed. Pressing either switch causes the printer to send a control code to the control unit and to display a function code in the Status indicator. The control unit and the printer communicate with each other and perform the operation the host program has defined for the PA1 and PA2 switches. When this is completed, the Status indicator light goes off. These switches are active only when the Hold Print light is on and the printer is operating in SCS mode.

This switch is operational only if the Page Length Control feature or the SCS Support feature is installed, and it is active only in the holdprint condition. The page size is defined by the operator using the Selector switches or by the host program in SCS mode. The page size defined by the host program supersedes that defined by the Selector switches.

Pressing this switch causes the printer to advance the forms until the first print line of the next page is reached, if the forms have been properly aligned and its page size has been properly defined.

Not operational when attached to a 3271 or 3272.

This switch is used for forms alignment and can be activated only when the 3287 printer is in the hold-print condition. Pressing this switch causes the printer to print H characters continuously until the MPP is reached. The print head then returns to print position 1 without movement of the forms. When operating in SCS mode, the print head returns to the maximum print position.

Figure A-2 (Part 3 of 4). Indicators and Controls for 3287 Printer

Indicator/Control

Explanation

Index

Reset

Test

Power (I/O)

Selector

Cancel Print

Pressing the Index switch causes the printer to advance forms continuously.

This switch is used to reset a check condition and to turn off any error indications. The printer indexes one line and printing continues if allowed by the control unit.

This switch is operational only if the SCS Support feature is installed. Pressing this switch when the Hold Print light is on causes the printer to stop printing, to display a *cancel selected* code in the Status indicator, and to send a code for canceling the print operation to the control unit if the printer was processing an SCS message.

If the printer was not printing SCS data, pressing the Cancel Print switch causes an *operator check* code to be displayed in the Status indicator.

Pressing this switch causes the printer to enter test mode. When the 3287 is in test mode, it cannot communicate with the control unit.

The power switch controls power to the 3287. The I position is the *on* position, and the O is the *off* position.

The Selector switches are 2-digit, 10-position switches located on the operator's panel, used to specify the number of lines that can be printed on a form, from 00 through 99.

Forms feeding is performed when the Form Feed switch is pressed or a forms-feed control code is received in the data for the number of lines specified. The page-length value is read from the Selector switches during a power-on reset or when the Forms Feed switch is pressed while the 3287 is in the hold-print condition. The Page Length Control feature must be installed for these switches to be operational. These switches are not operable for SCS print operations.

Set Function

A-8

Reserved for future use.

Figure A-2 (Part 4 of 4). Indicators and Controls for 3287 Printer

Appendix B. Buffer Address I/O Interface Codes

40 (Col	80 (Col	Positio	1	Bufi	fer Address	(Hex)	•
R	<u>c</u>	R	<u>c</u>	Dec	Hex	EBC	DIC	ASC	
01	01	01	01	0000	000	40	40	20	20
01	02	01	02	0001	001	40	C1	20	41
01	03	01	03	0002	002	40	C2	20	42
01	04	01	04	0003	003	40	C3	20	43
01	05	01	05	0004	004	40	C4	20	44
01	06	01	06	0005	005	40	C5	20	45
01	07	01	07	0006	006	40	C6	20	46
01	08	01	08	0007	007	40	C7	20	47
01	09	01	09	0008	008	40	C8	20	48
01	10	01	10	0009	009	40	C9	20	49
01	11	01	11	0010	00A	40	4A	20	5B
01	12	01	12	0011	00B	40	4B	20	2E
01	13	01	13	0012	00C	40	4C	20	3C
01	14	01	14	0013	00D	40	4D	20	28
01	15	01	15	0014	00E	40	4E	20	2B
01	16	01	16	0015	00F	40	4F	20	21
. 01	17	01	17	0016	010	40	50	20	26
01	18	01	18	0017	011	40	D1	20	4A
01	19	01	19	0018	012	40	D2	20	4B
01	20	01	20	0019	013	40	D3	20	4C
01	21	01	21	0020	014	40	D4	20	4D
01	22	01	22	0021	015	40	D5	20	4E
01	23	01	23	0022	016	40	D6	20	4⊢ 50
01	24	01	24	0023	017	40	D7	20	50
01	25	01	25	0024	018	40	D8	20	51
01	20	01	20	0025	019	40	54	20	52
01	27	01	21	0020	018	40	58	20	24
01	20	01	20	0027	016	40	50	20	27 20
01	30	01	30	0020	010	40	5D	20	29
01	30	01	31	0030	01E	40	5E	20	3B
01	32	01	32	0031	01F	40	5F	20	5E
01	33	01	33	0032	020	40	60	20	2D
01	34	01	34	0033	021	40	61	20	2F
01	35	01	35	0034	022	40	E2	20	53
01	36	01	36	0035	023	40	E3	20	54
01	37	01	37	0036	024	40	E4	20	55
01	38	01	38	0037	025	40	E5	20	56
01	39	01	39	0038	026	40	E6	20	57
01	40	01	40	0039	027	40	E7	20	58
02	01	01	41	0040	028	40	E8	20	59
02	02	01	42	0041	029	40	E9	20	5A
02	03	01	43	0042	02A	40	6A	20	70
02	04	01	44	0043	028	40	60	20	20
02	05	01	40	0044	020	40	6D	20	20 5E
02	00	01	40	0045	025	40	6E	20	3E
02	08	01	48	0047	02E	40	6F	20	3F
02	09	01	49	0048	030	40	FO	20	30
02	10	01	50	0049	031	40	F1	20	31
02	11	01	51	0050	032	40	F2	20	32
02	12	01	52	0051	033	40	F3	20	33
02	13	01	53	0052	034	40	F4	20	34
02	14	01	54	0053	035	40	F5	20	35
02	15	01	55	0054	036	40	F6	20	36
02	16	01	56	0055	037	40	F7	20	37
02	17	01	57	0056	038	40	F8	20	38
02	18	01	58	0057	039	40	F9 74	20	39 2 A
02	19	01	59	0058	UJA	40	7A .	20	зA

	40 (Col	80 0	Col	Position	1	Buff	er Address (Hex)	
	<u>R</u>	<u>c</u>	R	<u>c</u>	Dec	Hex	EBC	DIC	ASC	:11
	02	20	01	60	0050	000	40	70	~~	
	02	20	01	60	0059	038	40	7B 70	20	23
	02	21	01	60	0060	030	40	70	20	40
	02	22	01	62	0061	030	40	70	20	27
	02	23	01	63	0062	03E	40	7E	20	3D
*	02	24	01	04	0063	03F	40	7F	20	22
	02	25	01	65	0064	040	01	40	41	20
	02	20	01	00 67	0065	041	C1		41	41
	02	27	01	60	0060	042	01	C2	41	42
	02	20	01	60	0007	043	C1	C3	41	43
	02	30	01	70	0000	045	C1	C5	41	44
	02	31	01	71	0070	046	C1	C6	41	46
	02	32	01	72	0071	047	C1	C7	41	47
	02	33	01	73	0072	048	C1	C8	41	48
	02	34	01	74	0073	049	C1	C9	41	49
	02	35	01	75	0074	04A	C1	4A	41	5B
	02	36	01	76	0075	04B	C1	4B	41	2E
•	02	37	01	77	0076	04C	C1	4C	41	3C
	02	38	01	78	0077	04D	C1	4D	41	28
	02	39	01	79	0078	04E	C1	4E	41	2B
	02	40	01	80	0079	04F	C1	4F	41	21
	03	01	02	01	0080	050	C1	50	41	26
	03	02	02	02	0081	051	C1	D1	41	4A
	03	03	02	03	0082	052	C1	D2	41	4B
	03	04	02	04	0083	053	C1	D3	41	4C
	03	05	02	05	0084	054	C1	D4	41	4D
	.03	06	02	06	0085	055	C1	D5	41	4E
	03	07	02	07	0086	056	C1	D6	41	4F
	03	08	02	08	0087	057	C1	D7	41	50
	03	09	02	09	0088	058	C1	D8	41	51
	03	10	02	10	0089	059	C1	D9	41	52
	03	11	02	11	0090	05A	C1	5A	41	5D
	03	12	02	12	0091	05B	C1	5B	41	24
	03	13	02	13	0092	05C	C1	5C	41	2A
	03	14	02	14	0093	05D	C1	5D	41	29
	03	15	02	15	0094	05E	C1	5E	41	3B
	03	16	02	16	0095	05F	C1	5F	41	5E
	03	17	02	17	0096	060	C1	60	41	2D
	03	18	02	18	0097	061	C1	61	41	2F
	03	19	02	19	0098	062	C1	E2	41	53
	03	20	02	20	0099	063	C1	E3	41	54
	03	21	02	21	0100	064	C1	E4	41	55
	03	22	02	22	0101	065	C1	E5	41	56
	03	23	02	23	0102	066	C1	E6	41	5/
	03	24	02	24	0103	067	C1	E/	41	58
	03	25	02	25	0104	068	01	E8	41	59
•	03	26	02	26	0105	069	01	E9	41	5A 70
	03	27	02	27	0106	06A		6A	41	70
	03	28	02	28	0107	068		6C	41	20
	03	29	02	29	0108	060			41	20
	03	30	02	30	0109	060	01	65	41	20
	03	31	02	31	0110	OGE	C1-	6E	A1	35
	03	32	02	32	0112	000	C1	EO	41	30
	03	33	02	24	0112	071	C1	F1	41	31
	03	34 25	02	36	0114	072	C1	F2	41	32
	03	30	02	30	0115	073	C1	F3	41	33
	03	30 27	02	30	0116	074	C1	F4	41	34
	03	31 20	02	20	0110	075	C1	F5	Δ1	35
	03	30 20	02	30 20	0112	076	C1	F6	41	36
	03	3 9 40	02	39	01 10	077	C1	F7	41	37
	03	-+0	02	40	0120	078	C1	F8	41	38
	04	02	02	42	0121	079	C1	F9	41	39
	04	52	52	76	V.21		51	· •		

40 Col	80 Col	Position	Buffer Address	; (Hex)
RC	RC	Dec Hex	EBCDIC	ASCII
-		· · · · · · · · · · · · · · · · · · ·		
04 03	02 43	0122 07A	C1 7A	41 3A
04 04	02 44	0123 07B	C1 7B	41 23
04 05	02 45	0124 07C	C1 7C	41 40
04 06	02 46	0125 07D	C1 7D	41 27
04 07	02 47	0126 07E	C1 7E	41 3D
04 08	02 48	0127 07F	C1 7F	41 22
04 09	02 49	0128 080	C2 40	42 20
04 10	02 50	0129 081	C2 C1	42 41
04 11	02 51	0130 082	C2 C2	42 42
04 12	02 52	0131 083	C2 C3	42 43
04 13	02 53	0132 084	C2 C4	42 44
04 14	02 54	0133 085	02 05	42 45
04 15	02 55	0134 080		42 40
04 10	02 50	0135 067		42 41
04 17	02 57	0137 089		42 40 A2 AQ
04 10	02 50	0138 084	C2 C3	42 49 42 58
04 79	02 59	0130 088	C2 C4	42 30
04 20	02 61	0140 080	C2 40	42 20
04 27	02 62	0141 080	C2 4D	42 28
04 22	02 63	0142 08E	C2 4E	42 2B
04 20	02 64	0143 08F	C2 4F	42 21
04 25	02 65	0144 090	C2 50	42 26
04 26	02 66	0145 091	C2 D1	42 4A
04 27	02 67	0146 092	C2 D2	42 4B
04 28	02 68	0147 093	C2 D3	42 4C
64 29	02 69	0148 094	C2 D4	42 4D
04 30	02 70	0149 095	C2 D5	42 4E
04 31	02 71	0150 096	C2 D6	42 4F
04 32	02 72	0151 097	C2 D7	42 50
04 33	02 73	0152 098	C2 D8	42 51
04 34	02 74	0153 099	C2 D9	42 52
04 35	02 75	0154 09A	C2 5A	42 5D
04 36	02 76	0155 09B	C2 5B	42 24
04 37	02 77	0156 09C	C2 5C	42 2A
04 38	02 78	0157 09D	C2 5D	42 29
04 39	02 79	0158 09E	C2 5E	42 3B
04 40	02 80	0159 09F	C2 5F	42 5E
05 01	03 01	0160 0A0	C2 60	42 2D
05 02	03 02	0161 0A1	C2 61	42 2F
05 03	03 03	0162 0A2	C2 E2	42 53
05 04	03 04	0163 0A3	C2 E3	42 54
05 05	03 05	0164 0A4	C2 E4	42 55
05 06	03 06	0165 0A5	C2 E5	42 56
05 07	03 07	0166 0A6	C2 E6	42 57
05 08	03 08	U167 0A7	C2 E7	42 58
05 09	03 09	0168 UA8	UZ EX	42 DY 42 EA
05 10	03 10	0109 UA9	UZ EY C2 64	42 54
05 11	03 11	0170 VAA	C2 60	42 70
05 12	03 12	0171 UAD	C2 00	42 25
05 13	U3 13 4	0172 UAC	C2 6D	42 5F
U5 14	U3 14	0174 0AF	C2 6F	42 3E
UD 15	UJ 15 02 16	0175 0AF	C2 6F	42 3F
UD 10 05 17	03 10	0176 OR0	C2 F0	42 30
UD 1/	03 17	0177 OR1	C2 F1	42 31
UD 10 05 10	03 10	0178 OR2	C2 F2	42 32
05 30	03 19	0179 OB3	C2 F3	42 33
05 20	03 20	0180 0B4	C2 F4	42 34
05 21	03 27	0181 085	C2 F5	42 35
05 22	03 23	0182 086	C2 F6	42 36
05 23	03 24	0183 OB7	C2 F7	42 37
JU 27	VV 47			

40 Col	80 Col	Position	Buffer Addre	Buffer Address (Hex)		
R C	RC	Dec Hex	EBCDIC	ASCII		
			· · · · · · · · ·			
05 25	03 25	0184 OB8	C2 F8	42 38		
05 26	03 26	0185 OB9	C2 F9	42 39		
05 27	03 27	0186 OBA	C2 7A	42 3A		
05 28	03 28	0187 OBB	C2 7B	42 23		
05 29	03 29	0188 OBC	C2 7C	42 40		
05 30	03 30	0189 OBD	C2 7D	42 27		
05 31	03 31	0190 OBE	C2 7E	42 3D		
05 32	03 32	0191 OBF	C2 7F	42 22		
05 33	03 33	0192 0C0	C3 40	43 20		
05 34	03 34	0193 0C1	C3 C1	43 41		
05 35	03 35	0194 OC2	C3 C2	43 42		
05 36	03 36	0195 0C3	C3 C3	43 43		
05 37	03 37	0196 0C4	C3 C4	43 44		
05 38	03 38	0197 0C5	C3 C5	43 45		
05 39	03 39	0198 0C6	C3 C6	43 46		
05 40	03 40	0199 0C7	C3 C7	43 47		
06 01	03 41	0200 0C8	C3 C8	43 48		
06 02	03 42	0201 009	C3 C9	43 49		
06 03	03 43	0202 0CA	C3 4A	43 58		
06 04	03 44	0203 0CB	C3 4B	43 2E		
06 05	03 45	0204 000	C3 40	43 30		
06 06	03 40	0205 005		43 20		
06 07	03 47	0200 000	C3 4E	43 28		
06 09	03 48	0207 001	C3 50	43 26		
06 10	03 50	0200 000	C3 D1	43 40		
06 11	03 51	0210 002	C3 D2	43 4B		
06 12	03 52	0211 0D3	C3 D3	43 4C		
06 13	03 53	0212 0D4	C3 D4	43 4D		
06 14	03 54	0213 0D5	C3 D5	43 4E		
06 15	03 55	0214 0D6	C3 D6	43 4F		
06 16	03 56	0215 0D7	C3 D7	43 50		
06 17	03 57	0216 0D8	C3 D8	43 51		
06 1	03 58	0217 0D9	C3 D9	32 52		
06 19	03 59	0218 0DA	C3 5A	43 5D		
06 20	03 60	0219 0DB	C3 5B	43 24		
06 21	03 61	0220 0DC	C3 5C	43 2A		
06 22	03 62	0221 0DD	C3 5D	43 29		
06 23	03 63	0222 ODE	C3 5E	43 3B		
06 24	03 64	0223 0DF	C3 5F	43 5E		
06 25	03 65	0224 0E0	C3 60	43 2D		
06 26	03 66	0225 0E1	C3 61	43 2F		
06 27	03 67	0226 0E2	C3 E2	43 53		
06 28	03 68	0227 OE3	C3 E3	43 54		
06 29	03 69	0228 OE4	C3 E4	43 55		
06 30	03 70	0229 0E5	C3 E5	43 56		
06 31	03 71	0230 OE6	C3 E6	43 57		
06 32	03 72	0231 0E7	C3 E7	43 58		
06 33	03 73	0232 0E8	C3 E8	43 59		
06 34	03 74	0233 0E9	C3 E9	43 5A		
06 35	03 75	0234 0EA	C3 6A	43 7C		
06 36	03 76	0235 OEB	C3 6B	43 2C		
06 37	03 77	0236 0EC	C3 6C	43 25		
06 38	03 78	0237 0ED	C3 6D	43 5F		
06 39	03 79	0238 0EE	C3 6E	43 3E		
05 40	03 80	0239 UEF	63 OF	43 JF 42 20		
	04 01	0240 000	C3 FU	43 3U A2 21		
07 02	04 02	0241 001	03 F1	ונ נ ד גי גע		
07 03	04 03	0242 072	C3 E2			
07 04	04 04	0243 UF3 0244 DEA	C3 F3	43 24		
07 09		0244 0F4	C3 F5	43 35		
0, 00	U U0	VETO UFO	00 10	40 00		

40 Col	80 Col	Position	Buffer Addre	ss (Hex)
RC	RC	Dec Hex	EBCDIC	ASCII
07 07	04 07	0246 OF6	C3 F6	43 36
07 08	04 08	0247 OF7	C3 F7	43 37
07 09	04 09	0248 0F8	C3 F8	43 38
07 10	04 10	0249 OF9	C3 F9	43 39
07 11	04 11	0250 OFA	C3 7A	43 3A
07 12	04 12	0251 OFB	C3 7B	43 23
07 13	04 13	0252 OFC	C3 7C	43 40
07 14	04 14	0253 0FD	C3 7D	43 27
07 15	04 15	0254 OFE	C3 7E	43 3D
07 16	04 16	0255 0FF	C3 7F	43 22
07 17	04 17	0256 100	C4 40	44 20
07 18	04 18	0257 101	C4 C1	44 41
07 19	04 19	0258 102	C4 C2	44 42
07 20	04 20	0259 103	C4 C3	44 43
07 21	04 21	0260 104	C4 C4	44 44
07 22	04 22	0261 105	C4 C5	44 45
07 23	04 23	0262 106	C4 C6	44 46
07 24	04 24	0263 107	C4 C7	44 47
07 25	04 25	0264 108	C4 C8	44 48
07 26	04 26	0265 109	C4 C9	44 49
07 27	04 27	0266 10A	C4 4A	44 5B
07 28	04 28	0267 10B	C4 4B	44 2E
07 29	04 29	0268 10C	C4 4C	44 3C
07 30	04 30	0269 10D	C4 4D	44 28
07 31	04 31	0270 10E	C4 4E	44 2B
07 32	04 32	0271 10F	C4 4F	44 21
07 33	04 33	0272 110	C4 50	44 26
07 34	04 34	0273 111	C4 D1	44 4A
07 35	04 35	0274 112	C4 D2	44 4B
07 36	04 36	0275 113	C4 D3	44 4C
07 37	04 37	0276 114	C4 D4	44 4D
07 38	04 38	0277 115	C4 D5	44 4E
07 39	04 39	0278 116	C4 D6	44 4F
07 40	04 40	0279 117	C4 D7	44 50
08 01	04 41	0280 118	C4 D8	44 51
08 02	04 42	0281 119	C4 D9	44 52
08 03	04 43	0282 11A	C4 5A	44 5D
08 04	04 44	0283 11B	C4 5B	44 24
08 05	04 45	0284 11C	C4 5C	44 2A
08 06	04 46	0285 11D	C4 5D	44 29
08 07	04 47	0286 11E	C4 5E	44 3B
08 08	04 48	0287 11F	C4 5F	44 5E
08 09	04 49	0288 120	C4 60	44 2D
08 10	04 50	0289 121	C4 61	44 2E
08 11	04 51	0290 122	C4 E2	44 53
08 12	04 52	0291 123	C4 E3	44 54
08 13	04 53	0292 124	C4 E4	44 55
08 14	04 54	0293 125	C4 E5	44 56
08 15	04 55	0294 126	C4 E6	44 57
08 16	04 56	0295 127	C4 E7	44 58
08 17	04 57	0296 128	C4 E8	44 59
08 18	04 58	0297 129	C4 E9	44 5A
08 19	04 59	0298 12A	C4 6A	44 7C
08 20	04 60	0299 12B	C4 6B	44 2C
08 21	04 61	0300 12C	C4 6C	44 25
08 22	04 62	0301 12D	C4 6D	44 5F
08 23	04 63	0302 12E	C4 6E	44 3E
08 24	04 64	0303 12F	C4 6F	44 3F
08 25	04 65	0304 130	C4 F0	44 30
08 26	04 66	0305 131	C4 F1	44 31
08 27	04 67	0306 132	C4 F2	44 32
08 28	04 68	0307 133	C4 F3	44 33

40 Col	80 Col	Positic	, n	Buf	fer Addr	ess (Hex))
<u>R</u> C	<u>R</u> C	Dec	Hex	EBO	CDIC	ASC	
00 05							
08 29	04 69	0308	134	C4	F4	44	34
08 30	04 70	0309	135	C4	F5	44	35
08 31	04 71	0310	136	C4	F6	44	36
08 32	04 72	0311	137	C4	F7	44	37
08 33	04 73	0312	138	C4	F8	44	38
08 34	04 74	0313	139	C4	F9	44	39
08 35	04 75	0314	13A	C4	7A	44	3A
08 36	04 76	0315	13B	C4	7B	44	23
08 37	04 77	0316	13C	C4	.7C	44	40
08 38	04 78	0317	13D	C4	7D	44	27
08 39	04 79	0318	13E	C4	7E	44	3D
08 40	04 80	0319	13F	C4	7F	44	22
09 01	05 01	0320	140	C5	40	45	20
09 02	05 02	0321	141	C5	C1	45	41
09 03	05 03	0322	142	C5	C2	45	42
09 04	05 04	0323	143	C5	C3	45	43
09 05	05 05	0324	144	C5	C4	45	44
09 06	05 06	0325	145	C5	C5	45	45
09 07	05 07	0326	146	C5	C6	45	46
09 08	05 08	0327	147	C5	C7	45	47
09 09	05 09	0328	148	C5	C8	45	48
09 10	05 10	0329	149	C5	C9	45	49
09 11	05 11	0330	14A	C5	4A	45	5B
09 12	05 12	0331	14B	C5	4B	45	2E
09 13	05 13	0332	14C	C5	4C	45	3C
09 14	05 14	0333	14D	C5	4D	45	28
09 15	05 15	0334	14E	C5	4E	45	2B
09 16	05 16	0335	14F	C5	4F	45	21
09 17	05 17	0336	150	C5	50	45	46
09 18	05 18	0337	151	C5	D1	45	4 A
09 19	05 19	0338	152	C5	D2	45	4B
09 20	05 20	0339	153	C5	D3	45	4C
09 21	05 21	0340	154	C5	D4	45	4D
09 22	05 22	0341	155	C5	D5	45	4E
09 23	05 23	0342	156	C5	D6	45	4F
09 24	05 24	0343	157	C5	D7	45	50
09 25	05 25	0344	158	C5	D8	45	51
09 26	05 26	0345	159	C5	D9	45	52
09 27	05 27	0346	15A	C5	5A	45	5D
09 28	05 28	0347	15B	C5	5B	45	24
09 29	05 29	0348	15C	C5	5C	45	2A
09 30	05 30	0349	15D	C5	5D	45	29
09 31	05 31	0350	15E	C5	55	45	38
09 32	05 32	0351	15F	C5	51	45	DE
09 33	05 33	0352	160	05	60	45	20
09 34	05 34	0353	101	65	01	45	25
09 35	05 35	0354	102	C5	E2	45	53
U9 36	05 36	0355	103	05	EJ	45	54 55
09 37	05 37	0356	164	05	E4	45	55
09 38	05 38	0357	105	05	ED	45	50
09 39	05 39	0350	100		20 27	40 #F	0/ E0
09 40	05 40	0359	107	65	E/	40	50
10 01	U5 41	0360	100	65	E0	40 45	59
10 02	05 42	0361	109	5	5	45	DAC
10 03	05 43	0302	100	U5 CE	0A CD	40 Ae	20
10 04	U5 44	0303	100	U5	00	40 45	20
10 05	05 45	0304	160	C5		40 AE	20 55
10 06	US 46	0365	100	65	6F	45 #F	9F
10 07	05 47	0366	IDE	65	OE	45	3E 25
10 08	05 48	0367	170	65	0F	40 AE	3F 20
10 09	05 49	0368	170	65	FU E1	40 AE	3U 24
10 10	U5 50	0369	171	60		45	31

40 Col	80 Col	Positio	n	Buffer Addre	ss (Hex)
<u>R</u> C	RC	Dec	Hex	EBCDIC	ASCII
10 11	05 51	0370	172	C5 F2	45 32
10 12	05 52	0371	173	C5 F3	45 33
10 13	05 53	0372	174	C5 F4	45 34
10 14	05 54	0373	175	C5 F5	45 35
10 15	05 55	0374	176	C5 F6	45 36
10 16	05 56	0375	177	C5 F7	45 37
10 17	05 57	0376	178	C5 F8	45 38
10 18	05 58	0377	179	C5 F9	45 39
10 19	05 59	0378	17A	C5 7A	45 3A
10 20	05 60	0379	17B	C5 7B	45 23
10 21	05 61	0380	17C	C5 7C	45 40
10 22	05 62	0381	17D	C5 7D	45 27
10 23	05 63	0382	17E	C5 7E	45 3D
10 24	05 64	0383	17F	C5 7F	45 22
10 25	05 65	0384	180	C6 40	46 20
10 26	05 66	0385	181	C6 C1	46 41
10 27	05 67	0386	182	C6 C2	46 42
10 28	05 68	0387	182	C6 C3	46 43
10 20	05 60	0300	100	C6 C4	40 45
10 20	05 09	0300	104	C0 C4	40 44
10 30	05 70	0389	185	00 00	40 40
10 31	05 71	0390	186		40 40
10 32	05 /2	0391	187	C6 C7	46 47
10 33	05 73	0392	188	C6 C8	46 48
10 34	05 74	0393	189	C6 C9	46 49
10 35	05 75	0394	18A	C6 4A	46 5B
10 36	05 76	0395	18B	C6 4B	46 2E
10 37	05 77	0396	18C	C6 4C	46 3C
10 38	05 78	0397	18D	C6 4D	46 28
10 39	05 79	0398	18E	C6 4E	46 2B
10 40	05 80	0399	18F	C6 4F	46 21
11 01	06 01	0400	190	C6 50	46 26
11 02	06 02	0401	191	C6 D1	46 4A
11 03	06 03	0402	192	C6 D2	46 4B
11 04	06 04	0403	193	C6 D3	46 4C
11 05	06 05	0404	194	C6 D4	46 40
11 06	00 00	0405	105	C6 D5	46 4E
11 00	06 07	0406	106	CG DG	40 4C
11 07	06 07	0400	107		46 50
11 06	06 08	0407	100		40 50
11 09	06 09	0400	190		40 51
11 10	06 10	0409	199		40 52
11 11	06 11	0410	19A	C6 5A	46 50
11 12	06 12	0411	19B	C6 5B	46 24
11 13	06 13	0412	19C	C6 5C	46 2A
11 14	06 14	0413	19D	C6 5D	46 29
11 15	06 15	0414	19E	C6 5E	46 3B
11 16	06 16	0415	19F	C6 5F	46 5E
11 17	06 17	0416	1A0	C6 60	46 2D
11 18	06 18	0417	1A1	C6 61	46 2F
11 19	06 19	0418	1A2	C6 E2	46 53
11 20	06 20	0419	1A3	C6 E3	46 54
11 21	06 21	0420	1A4	C6 E4	46 55
11 22	06 22	0421	1A5	C6 E5	46 56
11 23	06 23	0422	1A6	C6 E6	46 57
11 24	06 24	0423	1A7	C6 E7	46 58
11 25	06 25	0424	1A8	C6 E8	46 59
11 26	06 26	0425	1A9	C6 E9	46 5A
11 27	06 27	0426	144	C6 6A	46 7C
11 28	06 28	0427	1AB	C6 6B	46 20
11 20	06 20	0428	140	20 20	46 25
11 20	06 20	0420	140	C6 60	46 5F
11 00	06 21	0420	1/5	C6 65	46 25
11 20	00 31	0430	1/10		46 2E
11 32	00 32	0431	100		40 36
11 33	00 33	0432	180	CO FU	40 30

40 Col	80 Col	Positior	1	Buffer Address	(Hex)
<u>R</u> C	R C	Dec	Hex	EBCDIC	ASCII
11 34	06 34	0433	181	C6 F1	46 31
11 35	06 35	0434	182	C6 F2	46 32
11 36	06 36	0435	183	C6 F3	46 33
11 37	06 37	0435	184		46 34
11 30	06 30	0437	100		40 30
11 40	06 40	0430	187	C6 F7	40 30
12 01	06 41	0440	188	C6 F8	46 38
12 02	06 42	0441	189	C6 F9	46 39
12 03	06 43	0442	1BA	C6 7A	46 3A
12 04	06 44	0443	1BB	C6 7B	46 23
12 05	06 45	0444	1BC	C6 7C	46 40
12 06	06 46	0445	1BD	C6 7D	46 27
12 07	06 47	0446	1BE	C6 7E	46 3D
12 08	06 48	0447	1BF	C6 7F	46 22
12 09	06 49	0448	101	C7 40	4/ 20
12 10	06 50	0449	101		47 41
12 11	06 51	0450	102	C7 C3	47 42
12 12	06 53	0452	100	C7 C4	47 44
12 10	06 54	0453	105	C7 C5	47 45
12 15	06 55	0454	1C6	C7 C6	47 46
12 16	06 56	0455	1C7	C7 C7	47 47
12 17	06 57	0456	1C8	C7 C8	47 48
12 18	06 58	0457	1C9	C7 C9	47 49
12 19	06 59	0458	1CA	C7 4A	47 5B
12 20	06 60	0459	1CB	C7 4B	47 2E
12 21	06 61	0460	1CC	C7 4C	47 3C
12 22	06 62	0461	1CD	C7 4D	47 28
12 23	06 63	0462	10E	C7 4E	47 2B
12 24	06 64	0463	100	C7 50	47 21
12 25	00 00	0465	100	C7 D1	47 20
12 20	06 67	0466	1D2	C7 D2	47 4B
12 27	06 68	0467	1D3	C7 D3	47 4C
12 29	06 69	0468	1D4	C7 D4	47 4D
12 30	06 70	0469	1D5	C7 D5	47 4E
12 31	06 71	0470	1D6	C7 D6	47 4F
12 32	06 72	0471	1D7	C7 D7	47 50
12 33	06 73	0472	1D8	C7 D8	47 51
12 34	06 74	0473	1 D9	C7 D9	47 52
12 35	06 75	0474	1DA	C7 5A	47 5D
12 36	06 76	0475	1DB	C7 5B	47 24
12 37	06 77	0476		C7 50	47 ZA
12 38	06 78	0477	105	C7 5E	47 29 47 38
12 39	06 79	0478	1DE	C7 5E	47 5E
12 40	07 01	0480	1E0	C7 60	47 2D
	07 02	0481	1E1	C7 61	47 2F
1.0	07 03	0482	1E2	C7 E2	47 53
	07 04	0483	1E3	C7 E3	47 54
	07 05	0484	1E4	C7 E4	47 55
	07 06	0485	1E5	C7 E5	47 56
·	07 07	0486	1E6	C7 E6	47 57
	07 08	0487	1E7	C7 E7	47 58
	07 09	0488	168	U/ E8	4/ 59
	07 10	0489	150		47 5A
	07 10	0490	1ER	C7 68	47 20
	07 12	0492	1FC	C7 6C	47 25
	07 14	0493	1ED	C7 6D	47 5F
	07 15	0494	1EE	C7 6E	47 3E
2.00					

ł

80 C	Col	Positio	n	Buffer Address	(Hex)
R	C	Dec	Hex	EBCDIC	ASCII
07	16	0495	1EF	C7 6F	47 3F
07	17	0496	1F0	C7 F0	47 30
07	18	0497	1F1	C7 F1	47 31
07	19	0498	1F2	C7 F2	47 32
07	20	0499	1F3	C7 F3	47 33
07	21	0500	1F4	C7 F4	47 34
07	22	0501	1F5	C7 F5	47 35
07	23	0502	1F6	C7 F6	47 36
07	24	0503	1F7	C7 F7	47 37
07	25	0504	1F8	C7 F8	47 38
07	26	0505	1F9	C7 F9	47 39
07	27	0506	1FA	C7 7A	47 3A
07	28	0507	1FB	C7 7B	47 23
07	29	0508	1FC	C7 7C	47 40
07	30	0509	1FD	C7 7D	47 27
07	31	0510	1FE	C7 7E	47 3D
07	32	0511	1FF	C7 7F	47 22
07	33	0512	200	C8 40	48 20
07	34	0513	201	C8 C1	48 41
07	35	0514	202	C8 C2	48 42
07	36	0515	203	C8 C3	48 43
07	37	0516	204	C8 C4	48 44
07	38	0517	205	C8 C5	48 45
07	39	0518	206	C8 C6	48 46
07	40	0519	207	C8 C7	48 47
07	41	0520	208		48 48
07	42	0521	209		48 49
07	43	0522	20A	C8 4A	48 58
07	44	0523	208	C8 4B	48 2E
07	45	0524	200		40 30
07	40	0525	200	C8 40	40 20
07	47	0520	20E	C0 4E	40 ZD 19 21
07	.40	0527	206	C8 4F	40 21
07	49 50	0520	210	C8 D1	40 20
07	50	0525	211		40 4A
07	51	0530	212	C8 D3	48 40
07	52	0532	214	C8 D4	48 4D
07	53	0533	215	C8 D5	48 4E
07	04 ·	0524	216	C8 D6	48 4F
07	55	0534	217	C8 D7	48 50
07	50	0535	217	C8 D8	48 51
07	57	0537	210	C8 D9	48 52
07	59	0538	21A	C8 5A	48 5D
07	60	0539	21B	C8 5B	48 24
07	61	0540	21C	C8 5C	48 2A
07	62	0541	21D	C8 5D	48 29
07	63	0542	21E	C8 5E	48 3B
07	64	0543	21F	C8 5F	48 5E
07	65	0544	220	C8 60	48 2D
07	66	0545	221	C8 61	48 2F
07	67	0546	222	C8 E2	48 53
07	68	0547	223	C8 E3	48 54
07	69	0548	224	C8 E4	48 55
07	70	0549	225	C8 E5	48 56
07	71	0550	226	C8 E6	48 57
07	72	0551	227	C8 E7	48 58
07	73	0552	228	C8 E8	48 59
07	74	0553	229	C8 E9	48 5A
07	75	0554	22A	C8 6A	48 7C
07	76	0555	22B	C8 6B	48 2C
07	77	0556	22C	C8 6C	48 25

80 (Col	Position	1	Buffer Address	(Hex)
R	<u>c</u>	Dec	Hex	EBCDIC	ASCII
	70				
07	78	0557	22D	C8 6D	48 5F
07	/9	0558	225		48 3E
07	00	0559	225		48 JF 49 20
00	02	0561	230		40 30
08	03	0562	232	C8 F2	48 32
08	04	0563	233	C8 F3	48 33
08	05	0564	234	C8 F4	48 34
08	06	0565	235	C8 F5	48 35
08	07	0566	236	C8 F6	48 36
08	08	0567	237	C8 F7	48 37
08	09	0568	238	C8 F8	48 38
80	10	0569	239	C8 F9	48 39
08	11	0570	23A	C8 7A	48 3A
80	12	0571	23B	C8 78	48 23
80	13	0572	23C	C8 7C	48 40
08	14	05/3	230		48 27
00	10	0574	235		40 30
00	10	0575	235		40 22
08	18	0577	240	C9 C1	49 41
08	19	0578	242	C9 C2	49 42
08	20	0579	243	C9 C3	49 43
-08	21	0580	244	C9 C4	49 44
08	22	0581	245	C9 C5	49 45
80	23	0582	246	C9 C6	49 46
08	24	0583	247	C9 C7	49 47
80	25	0584	248	C9 C8	49 48
80	26	0585	249	C9 C9	49 49
80	27	0586	24A	C9 4A	49 5B
08	28	0587	248	C9 4B	49 2E
00	29	0500	240		49 30
08	31	0590	240 24F	C9 4E	49 20 49 28
08	32	0591	24C	C9 4F	49 21
08	33	0592	250	C9 50	49 26
08	34	0593	251	C9 D1	49 4A
08	35	0594	252	C9 D2	49 4B
80	36	0595	253	C9 D3	49 4C
08	37	0596	254	C9 D4	49 4D
80	38	0597	255	C9 D5	49 4E
80	39	0598	256	C9 D6	49 4F
08	40	0599	257	C9 D7	49 50
80	41	0600	258	C9 D8	49 51
80	42	0601	259		49 52 40 ED
08	43	0602	20A 25P	C9 5A	49 50
00	44	0603	250	C9 50	49 24 49 2A
00	46	0605	25D	C9 5D	49 29
08	47	0606	25E	C9 5E	49 3B
08	48	0607	25F	C9 5F	49 5E
08	49	0608	260	C9 60	49 2D
08	50	0609	261	C9 61	49 2F
80	51	0610	262	C9 E2	49 53
08	52	0611	263	C9 E3	49 54
08	53	0612	264	C9 E4	49 55
80	54	0613	265	C9 E5	49 56
80	55	0615	200	C9 E0 C9 E7	-13 2/ 40 ED
08	50 S	0616	268	C9 F8	49 50
00	58	0617	269	C9 E9	49 5A
08	59	0618	26A	C9 6A	49 7C
08	60	0619	26B	C9 6B	49 2C

80 Col	Position	Buffer Address	; (Hex)
<u>R</u> <u>C</u>	Dec Hex	EBCDIC	ASCII
08 61	0620 26C	C9 6C	49 25
08 62	0621 26D	C9 6D	49 5F
08 63	0622 26E	C9 6E	49 3E
08 64	0623 26F	C9 6F	49 3F
08 65	0624 270	C9 F0	49 30
08 66	0625 271	C9 F1	49 31
08 67	0626 272	C9 F2	49 32
08 68	0627 273	C9 F3	49 33
08 69	0628 274	C9 F4	49 34
08 70	0629 275	C9 F5	49 35
08 71	0630 276	C9 F6	49 36
08 72	0631 277	C9 F7	49 37
08 73	0632 278	C9 F8	49 38
08 74	0633 279	C9 F9	49 39
08 75	0634 27A	C9 /A	49 3A
08 76	0635 27B	C9 78	49 23
08 77	0636 270	C9 7C	49 40
08 78	0637 270	C9 70	49 27
08 /9	0638 27E	C9 /E	49 3D
08 80	0639 27F	C9 /F	49 22
09 01	0640 280	4A 40	58 20
09 02	0641 281	4A C1	58 41
09 03	0642 282	4A C2	58 42 50 42
09 04	0043 283	4A C3	5B 43
09 05	0645 285	4A C4	50 44 50 46
09 00	0045 265	4A C5	5B 45 5B 46
09 08	0647 287	44 00	58 40 58 47
09 00	0649 289	44 68	58 48
09 10	0649 289	44 (9	5B 40
09 11	0650 284	40 40	58 58
09 12	0651 28B	4A 4B	58 2E
09 13	0652 28C	4A 4C	5B 3C
09 14	0653 28D	4A 4D	58 28
09 15	0654 28E	4A 4E	5B 2B
09 16	0655 28F	4A 4F	5B 21
09 17	0656 290	4A 50	5B 26
09 18	0657 291	4A D1	5B 4A
09 19	0658 292	4A D2	5B 4B
09 20	0659 293	4A D3	5B 4C
09 21	0660 294	4A D4	5B 4D
09 22	0661 295	4A D5	5B 4E
09 23	0662 296	4A D6	58 4F
09 24	0663 297	4A D7	5B 50
09 25	0664 298	4A D8	5B 51
09 26	0665 299	4A D9	5B 52
09 27	0666 29A	4A 5A	58 5D
09 28	0667 29B	4A 5B	5B 24
09 29	0668 29C	4A 5C	58 2A
09 30	0669 29D	4A 5D	58 29
09 31	0670 29E	4A 5E	58 38
09 32	06/1 29F	4A 5F	58 5E
09 33	0672 2A0	4A 6U	58 2U
09 34	0673 2A1	4A 61	55 ZF
09 35	0675 2A2	4A EZ	50 5J
09 35	0676 2A3	4A E3	50 54 50 55
09 37	0677 2A4	4A E4 AA EE	50 50 50 50
00 20	0670 2A5	4A ED AA EG	50 50 50 57
09 39	0670 2A0	4A EV	50 57
09 40	0680 247	TA E/ 40 FR	58 50
09 42	0681 240	4A F9	58 5A
	2001 243		

80 Col		Positio	n ,	Buffer Address	(Hex)
R	C	Dec	Hex	EBCDIC	ASCII
09	43	0682	2AA	4A 6A	5B 7C
09	44	0683	ZAB	4A 6B	5B 2C
09	45	0684	240	4A 6C	58 25 50 55
09	40	0686	240	4A 6D	58 5F
09	48	0687	2AL 2AF	4A 0L 4A 6F	58 3E
09	49	0688	280	4A F0	5B 30
09	50	0689	2B1	4A F1	5B 31
09	51	0690	2B2	4A F2	5B 32
09	52	0691	2B3	4A F3	5B 33
09	53	0692	284	4A F4	5B 34
09	54	0693	2B5	4A F5	5B 35
09	55	0694	286	4A F6	5B 36
09	56	0695	2B7	4A F7	5B 37
09	57	0696	2B8	4A F8	5B 38
09	58	0697	2B9	4A F9	5B 39
09	59	0698	2BA	4A 7A	5B 3A
09	60	0699	288	4A 7B	5B 23
09	61	0700	ZBC	4A 7C	5B 40
. 09 .	62	0702	280	4A 70	58 27
09	63	0702	28C 20C	4A /E 1A 7E	58 JU
09	04	0703	200	4A /F	06 22 2⊑ 20
09	66	0705	200	4B C1	2E 20 2E 41
09	67	0706	2C2	4B C2	2E 42
09	68	0707	2C3	4B C3	2E 43
09	69	0708	204	4B C4	2E 44
09	70	0709	2C5	4B C5	2E 45
09	71	0710	2C6	4B C6	2E 46
09	72	0711	2C7	4B C7	2E 47
09	73	0712	2C8	4B C8	2E 48
09	74	0713	2C9	4B C9	2E 49
09	75	0714	2CA	4B 4A	2E 5B
09	76	0715	2CB	4B 4B	2E 2E
09	77	0716	2CC	4B 4C	2E 3C
09	78	0717	2CD	4B 4D	2E 28
09	79	0710	205	48 4E	25 28
09	. 80	0719	207	40 4F AR 50	25 21
10	02	0721	201	4B D1	2E 20
10	02	0722	2D2	4B D2	2E 4B
10	04	0723	2D3	4B D3	2E 4C
10	05	0724	2D4	4B D4	2E 4D
10	06	0725	2D5	4B D5	2E 4E
10	.07	0726	2D6	4B D6	2E 4F
10	08	0727	2D7	4B D7	2E 50
10	09	0728	2D8	4B D8	2E 51
10	10	0729	2D9	4B D9	2E 52
10	11	0730	2DA	4B 5A	2E 5D
10	12	0731	2DB	4B 5B	2E 24
10	13	0732	2DC	4B 5C	2E 2A
10	14	0733	200	48 5D	2E 29
10	15	0734	20E	48 5E	2E 3B
10	16	0735	201	40 SF AR 60	2E 3E 2E 2D
10	17	0730	2EU 2E1	40 OU 48 61	2E 2D 2F 2F
10	10	0732	2E1 2E2	4B F2	26 26 26 52
10	20	0739	2E3	4B E3	2E 54
10	20	0740	2E4	4B E4	2E 55
10	27	0741	2E5	4B E5	2E 56
10	23	0742	2E6	4B E6	2E 57
10	24	0743	2E7	4B E7	2E 58

B-12

80 Col		Positio	n	Buffer Address	(Hex)
R	c	Dec	Hex	EBCDIC	ASCII
10	25	0744	2E8	4B E8	2E 59
10	26	0745	2E9	4B E9	2E 5A
10	27	0746	2EA	4B 6A	2E 7C
10	28	0747	2EB	4B 6B	2E 2C
10	29	0748	2EC	4B 6C	2E 25
10	30	0749	2ED	4B 6D	2E 5F
10	31	0750	2EE	4B 6E	2E 3E
10	32	0751	266	48 6F	2E 3F
10	24	0752	2FU	4B FU 4D E1	25 30
10	35	0753	261	40 FT	25 31
10	36	0755	212	4B F3	25 32
10	37	0756	2F4	4B F4	2E 00
10	38	0757	2E5	4B E5	2E 35
10	39	0758	2F6	4B F6	2E 36
10	40	0759	2F7	4B F7	2E 37
10	41	0760	2F8	4B F8	2E 38
10	42	0761	2F9	4B F9	2E 39
10	43	0762	2FA	4B 7A	2E 3A
10	44	0763	2FB	4B 7B	2E 23
10	45	0764	2FC	4B 7C	2E 40
10	46	0765	2FD	4B 7D	2E 27
10	47	0766	2FE	4B 7E	2E 3D
10	48	0767	2FF	4B 7F	2E 22
10	49	0768	300	4C 40	3C 20
10	50	0769	301	4C C1	3C 41
10	51	0 770	302	4C C2	3C 42
10	52	0771	303	4C C3	3C 43
10	53	0772	304	4C C4	3C 44
10	54	0773	305	4C C5	3C 45
10	55	0774	306	4C C6	3C 46
10	56	0775	307	4C C7	3C 47
10	57	0776	308	4C C8	3C 48
10	58	0777	309	4C C9	3C 49
10	59	0778	30A	4C 4A	3C 5B
10	60	0779	30B	4C 4B	3C 2E
10	61	0780	300	4C 4C	30 30
10	62	0781	30D	4C 4D	30 28
10	63	0782	30E	4C 4E	3C 2B
10	64	0783	305	40 46	20 26
10	65	0784	211	40 50	30 20
10	60	0700	311	40 02	3C 4B
10	69	0780	313	4C D3	3C 4C
10	60	0788	314	4C D4	3C 4D
10	70	0789	315	4C D5	3C 4E
10	71	0790	316	4C D6	3C 4F
10	72	0791	317	4C D7	3C 50
10	73	0792	318	4C D8	3C 51
10	74	0793	319	4C D9	3C 52
10	75	0794	31A	4C 5A	3C 5D
10	76	0795	31B	4C 5B	3C 24
10	77	0796	31C	4C 5C	3C 2A
10	78	0797	31D	4C 5D	3C 29
10	79	0798	31E	4C 5E	3C 3B
10	80	0799	31F	4C 5F	3C 5E
11	01	0800	320	4C 60	3C 2D
11	02	0801	321	4C 61	3C 2F
11	03	0802	322	4C E2	3C 53
11	04	0803	323	4C E3	3C 54
11	05	0804	324	4C E4	3C 55
11	06	0805	325	4C E5	3C 56

80 Col	Position		Buffer Add	Buffer Address (Hex)		
RC	Dec	Hex	EBCDIC	ASCII		
- <u>.</u>				ainen taga, aini anna		
11 07	0806	326	4C E6	3C 57		
11 08	0807	327	4C E7	3C 58		
11 09	0808	328	4C E8	3C 59		
11 10	0809	329	4C E9	3C 5A		
11 11	0810	32A	4C 6A	3C 7C		
11 12	0811	32B	4C 6B	3C 2C		
11 13	0812	32C	4C 6C	3C 25		
11 14	0813	32D	4C 6D	3C 5E		
11 15	0814	32F	4C 6F	3C 3F		
11 16	0815	32F	4C 6E	30 3E		
11 17	0816	330	4C E0	30 30		
11 18	0817	331	4C F1	30 30		
11 10	0818	322	40 52	20 22		
11 20	0010	202	40 52	30 32		
11 20	0019	224	4C F3	30 33		
11 21	0820	225	40 55	30 34		
11 22	0021	330	40 50	30 39		
11 23	0822	207	40 50	30 30		
11 24	0823	337	40 F7	30 37		
11 25	0824	338	4C F8	30 38		
11 26	0825	339	4C F9	3C 39		
11 27	0826	33A	4C 7A	3C 3A		
11 28	0827	33B	4C 7B	3C 23		
11 29	0828	33C	4C 7C	3C 40		
11 30	0829	33D	4C 7D	3C 27		
11 31	0830	33E	4C 7E	3C 3D		
11 32	0831	33F	4C 7F	3C 22		
11 33	0832	340	4D 40	28 20		
11 34	0833	341	4D C1	28 41		
11 35	0834	342	4D C2	28 42		
11 36	0835	343	4D C3	28 43		
11 37	0836	344	4D C4	28 44		
11 38	0837	345	4D C5	28 45		
11 39	0838	346	4D C6	28 46		
11 40	0839	347	4D C7	28 47		
11 41	0840	348	4D C8	28 48		
11 42	0841	349	4D C9	28 49		
11 43	0842	344	4D 4A	28 5B		
11 44	0843	348	4D 4R	28 2F		
11 45	0844	340	40 40	28 30		
11 45	09/5	240		20 30		
11 40	0845	246	40 40	20 20		
11 47	0040	34E	4D 4E	20 20		
11 40	0847	345	4D 4F	20 21		
11 49	0848	350	4D 50	20 20		
11 50	0849	351	40 D1	28 4A		
11 51	0850	352	40 D2	28 4B		
11 52	0851	353	4D D3	28 4C		
11 53	0852	354	4D D4	28 4D		
11 54	0853	355	4D D5	28 4E		
11 55	0854	356	4D D6	28 4F		
11 56	0855	357	4D D7	28 50		
11 57	0856	358	4D D8	28 51		
11 58	0857	359	4D D9	28 52		
11 59	0858	35A	4D 5A	28 5D		
11 60	0859	35B	4D 5B	28 24		
11 61	0860	35C	4D 5C	28 2A		
11 62	0861	35D	4D 5D	28 29		
11 63	0862	35E	4D 5E	28 3B		
11 64	0863	35F	4D 5F	28 5E		
11 65	0864	360	4D 60	28 2D		
11 66	0865	361	4D 61	28 2F		
11 67	0866	362	4D E2	28 53		
11 68	0867	363	4D E3	28 54		

80 Col		Positio	n	Buffer Address	(Hex)
R	C	Dec	Hex	EBCDIC	ASCII
11	. 69	0868	364	4D E4	28 55
11	70	0869	365	4D E5	28 56
11	.71	0870	366	4D E6	28 57
11.	72	0871	367	4D E7	28 58
11	73	0872	368	4D E8	28 59
11	74	0873	369	4D E9	28 5A
11	75	0874	36A	4D 6A	28 7C
11	76	0875	36B	4D 6B	28 2C
11	77	0876	36C	4D 6C	28 25
11	78	0877	36D	4D 6D	28 5F
11	79	0878	36E	4D 6E	28 3E
11	80	0879	36F	4D 6F	28 3F
12	01	0880	370	4D F0	28 30
12	02	0881	371	4D F1	28 31
12	03	0882	372	4D F2	28 32
12	04	0883	373	4D F3	28 33
12	05	0884	374	4D F4	28 34
12	06	0885	375	4D F5	28 35
12	07	0886	376	4D F6	28 36
12	08	0887	377	4D F7	28 37
12	09	0888	378	4D F8	28 38
12	10	0889	379	4D F9	28 39
12	.11	0890	37A	4D 7A	28 3A
12	12	0891	37B	4D 78	28 23
12	13	0892	37C	4D 7C	28 40
12	14	0893	37D	4D 7D	28 27
12	15	0894	37E	4D 7E	28 3D
12	16	0895	37F	4D 7F	28 22
12	17	0896	380	4E 40	2B 20
12	18	0897	381	4E C1	28 41
12	19	0898	382	4E C2	2B 42
12	20	0899	383	4E C3	2B 43
12	21	0900	384	4E C4	2B 44
12	22	0901	385	4E C5	2B 45
12	23	0902	386	4E C6	2B 46
12	24	0903	387	4E C7	2B 47
12	25	0904	388	4E C8	2B 48
12	26	0905	389	4E C9	2B 49
12	27	0906	38A	4E 4A	2B 5B
12	28	0907	38B	4E 4B	2B 2E
12	29	0908	38C	4E 4C	2B 3C
12	30	0909	38D	4E 4D	2B 28
12	31	0910	38E	4E 4E	2B 2B
12	32	0911	38F	4E 4F	2B 21
12	33	0912	390	4E 50	2B 26
12	34	0913	391	4E D1	2B 4A
12	35	0914	392	4E D2	2B 4B
12	26	0915	393	4E D3	2B 4C
12	37	0916	394	4E D4	2B 4D
12	38	0917	395	4E D5	28 4E
12	39	0918	396	4E D6	2B 4F
12	40	0919	397	4E D7	2B 50
12	41	0920	398	4E D8	2B 51
12	42	0921	399	4E D9	2B 52
12	43	0922	39A	4E 5A	28 5D
12	44	0923	39B	4E 5B	2B 24
12	45	0924	39C	4E 5C	2B 2A
12	46	0925	39D	4E 5D	2B 29
12	47	0926	39E	4E 5E	2B 3B
12	48	0927	39F	4E 5F	28 5E
12	49	0928	3A0	4E 60	2B 2D
12	50	0929	3A1	4E 61	28 2F

80 Col		Position)	Buff	er Address (Hex)	
R	<u>c</u>	Dec	Hex	EBC	DIC	ASCII	
12	51	0930	3A2	4E	E2	2B 53	
12	52	0931	343	4E	E3	2B 54	
12	53	0932	245	4C AE	E4	28 55	
12	55	0933	345	40	ED	20 00	
12	56	0935	347	4E	E0 E7	20 57 28 58	
12	57	0936	348	4E	ER	20 JO	
12	58	0937	3A9	4E	F9	28 5A	
12	59	0938	3AA	4E	6A	2B 7C	
12	60	0939	3AB	4E	6B	2B 2C	
12	61	0940	3AC	4E	6C	2B 25	
12	62	0941	3AD	4E	6D	28 5F	
12	63	0942	3AE	4E	6E	2B 3E	
12	64	0943	3AF	4E	6F	2B 3F	
12	65	0944	3B0	4E	FO	2B 30	
12	66	0945	3B1	4E	F1	2B 31	
12	67	0946	3B2	4E	F2	2B 32	
12	68	0947	3B3	4E	F3	2B 33	
12	69	0948	3B4	4E	F4	2B 34	
12	70	0949	385	4E	F5	2B 35	
12	71	0950	386	4E	F6	2B 36	
12	72	0951	387	46	F/	28 3/	
12	73	0952	300	4C 4C	F0	20 30	
12	74	0953	384	46	74	20 JU 20 30	
12	75 76	0954	388	46	78	20 34	
12	70	0956	3BC	4E	70	2B 40	
12	78	0957	38D	4E	7D	2B 27	
12	79	0958	3BE	4E	7E	2B 3D	
12	80	0959	3BF	4E	7F	2B 22	
13	01	0960	3C0	4F	40	21 20	
13	02	0961	3C1	4F	C1	21 41	
13	03	0962	3C2	4F	C2	21 42	
13	04	0963	3C3	4F	C3	21 43	
13	05	0964	3C4	4F	C4	21 44	
13	06	0965	3C5	4F	C5	21 45	
13	07	0966	3C6	4F	C6	21 46	
13	08	0967	307	41	C7	21 4/	
13	09	0968	368	46		21 40	
13	10	0909	303	46	44	21 5 8	
13	12	0971	3CB	4F	4R	21 30 21 2E	
13	12	0972	300	4F	40	21 3C	
13	14	0973	3CD	4F	4D	21 28	
13	15	0974	3CE	4F	4E	21 2B	
13	16	0975	3CF	4F	4F	21 21	
13	17	0976	3D0	4F	50	21 26	
13	18	0977	3D1	4F	D1	21 4A	
13	19	0978	3D2	4F	D2	21 4B	
13	20	0979	3D3	4F	D3	21 4C	
13	21	0980	3D4	4F	D4	21 4D	
13	22	0981	3D5	4F	D5	21 4E	
13	23	0982	3D6	4F	D6	21 4F	
13	24	0983	3D7	4F	D7 · · · ·	21 50	
13	25	0984	308	41	08	21 51	
13	26	0985	309	4r 15	D9	21 52	
13	27	00007	200	4F AC	5A 5B	21 20	
13	28	0985	300	4F	50	21 2 4 21 24	
13	29 20	0966	300	46	5D	21 29	
13	30 31	0990	3DE	4F	5E	21 3B	
13	32	0991	3DF	4F	5F	21 5E	
	~~		-				
80	Col	Position		Buffer Address (Hex)			
----	----------	----------	-------------	----------------------	----------------	--	--
R	С	Dec	Hex	EBCDIC	ASCII		
			****		·····		
13	33	0992	3E0	4F 60	21 2D		
13	34	0993	3E1	4F 61	21 2F		
13	35	0994	3E2	4F E2	21 53		
13	36	0995	3E3	4F E3	21 54		
13	37	0996	3E4	4F E4	21 55		
13	38	0997	3E5	4F E5	21 56		
13	39	0998	3E6	4F E6	21 57		
13	40	0999	3E7	4F E7	21 58		
13	41	1000	3E8	4F E8	21 59		
13	42	1001	3E9	4F E9	21 5A		
13	43	1002	3EA	4F 6A	21 7C		
13	44	1003	3EB	4F 6B	21 2C		
13	45	1004	3EC	4F 6C	21 25		
13	46	1005	3ED	4F 6D	21 5F		
13	47	1006	3EE	4F 6E	21 3E		
13	48	1007	3EF	4F 6F	21 3F		
13	49	1008	3F0	4F F0	21 30		
13	50	1009	3F1	4F F1	21 31		
13	51	1010	3F2	4F F2	21 32		
13	52	1011	3F3	4F F3	21 33		
13	53	1012	3F4	4F F4	21 34		
13	54	1013	3F5	4F F5	21 35		
13	55	1014	3F6	4F F6	21 36		
13	56	1015	3F7	4F F7	21 37		
13	57	1016	3F8	4F F8	21 38		
13	58	1017	3F9	4F F9	21 39		
13	59	1018	3FA	4F 7A	21 3A		
13	60	1019	3FB	4F 7B	21 23		
13	61	1020	3FC	4F 7C	21 40		
13	62	1020	3ED	4F 7D	21 27		
13	63	1027	3FF	4F 7F	21 3D		
13	64	1022	366	4F 7E	21 22		
13	65	1023	400	50 40	26 20		
13	66	1024	400	50 40 50 C1	26 20		
13	67	1025	407	50 C7	26 47		
13	68	1020	402	50 C3	26 42		
13	69	1027	403	50 C3	26 40		
13	70	1020	404	50 C4	26 45		
12	70	1029	405	50 C5	20 45		
12	77	1030	400	50 C0	20 40		
12	72	1031	407	50 C7	20 47		
10	7.4	1032	406	50 C0	20 40		
10	74	1033	409	50 (9	20 49 26 50		
12	75	1034	40A 40B	50 4A	20 35		
10	70	1035	400	50 40	20 20		
12	79 78	1030	400	50 40	20 30		
10	70	1037	400 40E	50 40	20 20		
12	80	1030	40E	50 45	20 20		
1/	01	1039	40F //10	50 41	20 21		
14	07	1040	410	50 50 E0 D1	20 20		
14	02	1041	411	50 D1	20 4A		
14	03	1042	412 /112		20 40		
14	05	1043	413	50 03	20 40		
14	05	1044	414 415		20 4D 26 4⊑		
14	00	1045	410	50 D5	20 4E 26 4E		
14	07	1046	410		20 45		
14	00	1047	41/	50 D7	20 00		
14	10	1048	41ŏ 410	50 08	20 01		
14	10	1049	419	50 DA	20 02		
14	11	1050	41A 41D		20 50		
14	12	1051	41B 410	50 58 J	20 24		
14	13	1052	41C	50 50 E0 ED	20 2A		
14	14	1053	410	50 5D	20 29		

BU Col Pesition Buffer Address (Hex) R C Dec Hax ESCDIC ASE 14 15 1054 41E 50 5E 26 3 14 17 1056 420 50 60 26 25 14 19 1058 422 50 E3 26 53 14 20 1059 423 50 E5 26 56 14 21 1060 424 50 E5 26 56 14 22 1061 425 50 E5 26 56 14 23 1062 426 50 E6 67 26 50 E5 26 50 E5 26 58 51 E4 20 50 E9 26 54 54 54 50 E5 26 56 57 54 50 E5 26 50 <		0 0 - ·		_ •• • • •	<i></i> .
n c text next text text <thtext< th=""> text text<!--</td--><td></td><td>SU Col</td><td>Position</td><td>Buffer Addres</td><td>s (Hex)</td></thtext<>		SU Col	Position	Buffer Addres	s (Hex)
14 15 1054 41E 50 5E 26 3B 14 17 1056 420 50 61 22 51 14 18 1057 421 50 61 22 53 14 20 1068 422 50 E3 26 54 14 21 1061 428 50 E5 26 56 14 22 1061 428 50 E5 26 57 14 24 1063 427 50 E5 26 57 14 26 1066 428 50 68 26 56 14 27 1068 420 50 60 26 56 14 30 1077 433 50 F1 26 31 14 32 1071 425 50 65 26 35 14 31 1077 433 50 F3 26 31 14 40 <td></td> <td></td> <td></td> <td></td> <td>A3011</td>					A3011
14 16 1055 41F 50 60 26 20 14 18 1057 421 50 61 26 25 14 19 1058 422 50 62 26 54 14 20 1059 423 50 65 54 26 56 14 21 1060 424 50 64 28 56 <t< td=""><td></td><td>14 15</td><td>1054 41E</td><td>50 5E</td><td>26 3B</td></t<>		14 15	1054 41E	50 5E	26 3B
14 17 1056 420 50 60 26 2F 14 18 1058 422 50 E2 26 54 14 20 1058 422 50 E3 26 54 14 21 1060 424 50 E5 26 56 14 23 1062 426 50 E5 26 57 14 26 1065 429 50 E5 26 56 14 26 1065 429 50 69 26 56 14 27 1068 420 50 60 26 25 14 30 1070 422 50 60 26 35 14 31 1070 424 50 67 26 35 14 32 1071 432 50 F3 26 36 14 32 1071 433 50 F3 26 36 14 32 <td></td> <td>14 16</td> <td>1055 41F</td> <td>50 5F</td> <td>26 5E</td>		14 16	1055 41F	50 5F	26 5E
14 18 1057 421 50 61 26 55 14 19 1058 422 50 62 22 26 53 14 20 1060 424 50 64 26 55 14 22 1061 425 50 65 26 57 14 24 1062 426 50 66 26 57 14 25 1064 428 50 68 26 57 14 26 1066 429 50 68 28 57 14 27 1066 420 50 68 28 57 14 29 1068 420 50 68 28 38 14 30 1071 425 50 68 28 30 14 31 1073 431 50 73 26 33 14 35 1074 432 50 74 28 34 14 <td></td> <td>14 17</td> <td>1056 420</td> <td>50 60</td> <td>26 2D</td>		14 17	1056 420	50 60	26 2D
14 19 1058 422 50 E2 26 53 14 20 1069 423 50 E4 26 55 14 22 1061 425 50 E5 26 56 14 23 1062 426 50 E5 26 57 14 25 1064 428 50 E8 26 59 14 25 1066 428 50 68 26 7C 14 28 1067 428 50 6A 26 7C 14 29 1068 42C 60 6C 26 3F 14 31 1070 428 50 F0 26 3F 14 32 1071 435 50 F1 26 31 14 33 1072 430 50 F3 26 32 14 39 1078 436 50 F3 26 33 14 39 <td></td> <td>14 18</td> <td>1057 421</td> <td>50 61</td> <td>26 2F</td>		14 18	1057 421	50 61	26 2F
14 20 1050 42.3 50 E4 26 56 14 22 1061 425 50 E6 26 56 14 23 1062 426 50 E6 26 57 14 24 1063 427 50 E7 26 58 14 26 1064 428 50 E8 26 57 14 26 1066 420 50 68 26 22 57 14 28 1067 428 50 68 28 22 21 14 30 1068 420 60 66 28 32 31 31 107 431 50 F1 28 30 31 31 30 50 F3 26 32 32 34 33 1072 433 50 F3 26 32 34 34 30 107 435 50 F5 26 36 34 34 30 50 F3 <		14 19 14 20	1058 422	50 E2	26 53
1 1.00 1.20 <t< td=""><td></td><td>14 20</td><td>1059 423</td><td>50 E3 50 E4</td><td>20 54</td></t<>		14 20	1059 423	50 E3 50 E4	20 54
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		14 22	1061 425	50 E5	26 56
14 24 1063 427 50 E7 28 59 14 25 1064 428 50 E8 28 54 14 27 1066 428 50 E8 28 52 14 28 1067 428 50 68 28 22 14 29 1068 420 50 66 28 55 14 31 1070 428 50 6F 28 37 14 32 1071 427 50 6F 28 37 14 33 1072 430 50 F2 28 32 14 36 1074 432 50 F4 28 34 14 38 1077 435 50 F8 28 38 14 40 1079 437 50 F8 28 38 14 4		14 23	1062 426	50 E6	26 57
14 25 1064 428 50 E8 26 5A 14 26 1066 429 50 6A 28 7C 14 28 1067 428 50 6B 28 7C 14 29 1068 420 50 6D 28 25 14 30 1069 420 50 6D 26 38 14 31 1070 428 50 6E 26 32 14 32 1071 42F 50 6F 28 32 14 34 1073 431 50 F4 28 33 14 35 1074 432 50 F5 26 35 14 39 1078 436 50 F6 28 34 14 41 1080 438 50 F8 26 38 14 42 1081 439 50 F8 26 35 14 42 <td></td> <td>14 24</td> <td>1063 427</td> <td>50 E7</td> <td>26 58</td>		14 24	1063 427	50 E7	26 58
14 26 1066 429 50 E9 26 5A 14 28 1067 428 50 6A 26 7C 14 29 1068 42C 60 6C 28 2C 14 30 1069 42C 50 6E 26 3F 14 31 1070 42E 50 6E 26 31 14 32 1071 432 50 F1 26 31 14 35 1074 432 50 F2 26 32 14 36 1075 433 50 F3 26 33 14 36 1079 437 50 F6 26 36 14 40 1079 437 50 F8 28 38 14 41 1080 438 50 78 26 23 14 42 1084 432 50 76 26 22 39 14 <td></td> <td>14 25</td> <td>1064 428</td> <td>50 E8</td> <td>26 59</td>		14 25	1064 428	50 E8	26 59
14 27 1066 42A 50 6A 26 2C 14 29 1068 42C 60 6C 26 25 14 30 1069 42D 50 6D 226 35 14 31 1070 42E 50 6F 28 32 14 32 1071 42F 50 6F 28 32 14 32 1074 432 50 F1 28 32 14 36 1075 433 50 F2 28 32 14 37 1076 434 50 F4 28 33 14 37 1076 438 50 F6 26 35 14 39 1078 436 50 F8 26 33 14 41 1080 438 50 78 26 37 14 42 1081 439 50 70 26 32 14 42 </td <td></td> <td>14 26</td> <td>1065 429</td> <td>50 E9</td> <td>26 5A</td>		14 26	1065 429	50 E9	26 5A
14 28 1067 428 50 68 26 25 14 30 1069 420 50 66 26 57 14 31 1070 425 50 66 26 35 14 32 1071 427 50 67 26 37 14 33 1072 430 50 F1 26 33 14 35 1074 432 50 F2 26 32 14 35 1074 433 50 F4 26 34 14 37 1076 434 50 F4 26 35 14 39 1078 436 50 F8 26 35 14 40 1079 437 50 F8 26 38 14 42 1081 438 50 78 26 38 14 42 1081 438 50 77 26 37 14 43 <td></td> <td>14 27</td> <td>1066 42A</td> <td>50 6A</td> <td>26 7C</td>		14 27	1066 42A	50 6A	26 7C
14 29 1088 42C 60 6C 26 25 14 31 1070 42E 50 6F 26 35 14 32 1071 42F 50 6F 26 35 14 33 1072 430 50 F0 26 30 14 34 1073 431 50 F1 26 31 14 36 1076 433 50 F3 26 33 14 38 1077 435 50 F5 26 35 14 39 1078 436 50 F7 26 37 14 41 1080 438 50 F8 26 38 14 43 1082 43A 50 7A 26 32 14 44 1083 436 50 7E 26 32 14 43 1082 43A 50 7F 26 32 14 45 <td></td> <td>14 28</td> <td>1067 42B</td> <td>50 6B</td> <td>26 2C</td>		14 28	1067 42B	50 6B	26 2C
14 30 1009 42D 50 6D 26 58 14 32 1071 42E 50 6F 26 35 14 33 1072 430 50 F0 26 32 14 35 1074 432 50 F2 26 32 14 35 1074 432 50 F4 26 33 14 37 1076 434 50 F5 26 35 14 39 1078 436 50 F5 26 35 14 40 1079 437 50 F7 26 37 14 41 1080 438 50 78 26 23 14 42 1081 439 50 77 26 37 14 43 1082 430 50 77 26 37 14 43 1084 432 50 77 26 22 14 45 <td></td> <td>14 29</td> <td>1068 42C</td> <td>60 6C</td> <td>26 25</td>		14 29	1068 42C	60 6C	26 25
14 32 1071 422 50 6F 26 3F 14 34 1073 431 50 F1 26 31 14 34 1073 431 50 F2 26 32 14 36 1076 432 50 F2 26 32 14 36 1076 434 50 F4 26 34 14 37 1076 434 50 F5 26 35 14 39 1078 436 50 F6 26 36 14 40 1079 437 50 F7 26 37 14 41 1080 438 50 78 26 38 14 42 1084 430 50 77 26 37 14 41 1086 430 50 77 26 27 14 45 1084 430 50 77 26 22 14 45 <td></td> <td>14 30</td> <td>1009 42D</td> <td>50 6D</td> <td>20 5F 26 2E</td>		14 30	1009 42D	50 6D	20 5F 26 2E
1433107243050F026301434107343150F126311435107643250F226321436107543350F326331437107643450F426341438107743550F526351440107943750F726371441108043850F826381442108143950F926391443108243850782632144410834385078263514441083438507726371444108443C507C262714471086432507F26351448108743F507F263514491088440D1404A2014491088440D14A4114511090442D1C14A14451093444D1C44A14531092444D1C44A14551094446D1C54A </td <td></td> <td>14 31</td> <td>1070 42E</td> <td>50 BE</td> <td>20 JE 26 JE</td>		14 31	1070 42E	50 BE	20 JE 26 JE
143410734315556F126311435107443250F226321436107743350F326331437107643450F426341438107743550F526351439107843650F626361440107943750F726371441108043850F826381442108143950F926391443108243A507A263A1444108543B507E26271447108643E507E26221446108543D507F26221448108743F507F262214491088440D1404A2014501099441D1C14A4114511090442D1C24A4214521091443D1C44A4414551094446D1C44A4414551095444D1C44A451456	•	14 33	1072 430	50 F0	26 30
14 35 1074 432 50 F2 26 32 14 36 1075 433 50 F3 26 33 14 37 1076 434 50 F4 26 34 14 38 1077 435 50 F5 26 35 14 40 1079 437 50 F7 26 37 14 41 1080 438 50 F8 26 38 14 42 1081 439 50 F9 26 33 14 43 1082 43A 50 7A 26 37 14 44 1083 43E 50 7D 26 23 14 48 1087 43F 50 7F 26 3D 14 48 1087 43F 50 7F 26 3D 14 48 1087 43F 50 7F 26 3D 14 50 <td></td> <td>14 34</td> <td>1073 431</td> <td>50 F1</td> <td>26 31</td>		14 34	1073 431	50 F1	26 31
14 36 1075 433 50 F3 26 33 14 37 1076 434 50 F5 26 35 14 39 1078 436 50 F6 26 35 14 39 1078 436 50 F6 26 35 14 40 1079 437 50 F7 26 37 14 41 1080 438 50 F8 26 38 14 42 1081 439 50 F8 26 34 14 42 1081 432 50 7A 26 32 14 44 1083 43E 50 7E 26 32 14 45 1084 43C 50 7E 26 32 14 46 1087 43F 50 7E 26 32 14 50 1089 441 D1 C1 4A 41 14 52 <td></td> <td>14 35</td> <td>1074 432</td> <td>50 F2</td> <td>26 32</td>		14 35	1074 432	50 F2	26 32
14 37 1076 434 50 F4 26 34 14 38 1077 435 50 F5 26 35 14 40 1079 437 50 F7 26 37 14 41 1080 438 50 F8 26 38 14 42 1081 439 50 F8 26 39 14 43 1062 43A 50 7A 26 39 14 44 1083 438 50 7B 26 23 14 45 1084 43C 50 7E 26 30 14 46 1085 43D 50 7E 26 32 14 47 1086 43C 50 7E 26 32 14 47 1086 43E 50 7E 26 32 14 50 1089 441 D1 C1 4A 41 14 50 <td></td> <td>14 36</td> <td>1075 433</td> <td>50 F3</td> <td>26 33</td>		14 36	1075 433	50 F3	26 33
14 38 1077 435 50 F5 26 36 14 39 1078 436 50 F6 26 36 14 40 1079 437 50 F7 26 37 14 41 1080 438 50 F8 26 38 14 42 1081 439 50 78 26 33 14 44 1083 438 50 76 26 34 14 44 1085 430 50 76 26 22 14 45 1086 430 50 77 26 22 14 47 1086 432 50 77 26 22 14 49 1088 440 D1 40 4A 42 14 50 1089 441 D1 C3 4A 42 14 51 1091 443 D1 C3 4A 44 14 52 <td></td> <td>14 37</td> <td>1076 434</td> <td>50 F4</td> <td>26 34</td>		14 37	1076 434	50 F4	26 34
14 39 1078 436 50 F6 26 36 14 40 1079 437 50 F7 26 37 14 41 1080 438 50 F8 26 38 14 42 1081 438 50 7A 26 3A 14 43 1082 43A 50 7B 26 32 14 44 1083 438 50 7B 26 32 14 45 1084 43C 50 7E 26 3D 14 46 1085 43D 50 7E 26 3D 14 47 1086 43E 50 7F 26 3D 14 50 1089 441 D1 C1 4A 41 14 51 1090 442 D1 C2 4A 42 14 52 1091 443 D1 C4 4A 44 14 56 <td></td> <td>14 38</td> <td>1077 435</td> <td>50 F5</td> <td>26 35</td>		14 38	1077 435	50 F5	26 35
14 40 1079 437 50 F7 26 37 14 41 1080 438 50 F8 26 38 14 42 1081 439 50 F9 26 39 14 44 1083 438 50 7A 26 34 14 44 1083 438 50 7C 26 40 14 45 1084 43C 50 7D 26 27 14 46 1085 43D 50 7F 26 22 14 49 1088 440 D1 40 4A 20 14 49 1088 440 D1 C2 4A 42 14 52 1091 443 D1 C2 4A 42 14 52 1091 443 D1 C5 4A 44 14 52 1093 445 D1 C5 4A 45 14 54 <td></td> <td>14 39</td> <td>1078 436</td> <td>50 F6</td> <td>26 36</td>		14 39	1078 436	50 F6	26 36
1441108043850F826381442108143950F926391443108243A507A263A1445108443C507C26401446108543D507D26271447108643E507F26221448108743F507F262214491088440D1404A2014501099441D1C14A4114511090442D1C24A4214531092444D1C44A4414531092444D1C64A4514561095447D1C64A4614561095447D1C64A4814571096448D14A4814571096448D14A421460109944ED14A421461110044CD14A421463110244ED14A421461110044CD14A421461110044CD14A4214 <td></td> <td>14 40</td> <td>1079 437</td> <td>50 F7</td> <td>26 37</td>		14 40	1079 437	50 F7	26 37
14 42 1081 439 50 $F9$ 26 39 14 43 1082 $43A$ 50 $7A$ 26 23 14 44 1083 $43B$ 50 $7B$ 26 23 14 45 1084 $43C$ 50 $7C$ 26 40 14 46 1085 $43D$ 50 $7E$ 26 $3D$ 14 47 1086 $43E$ 50 $7E$ 26 $3D$ 14 47 1086 $43E$ 50 $7F$ 26 22 14 49 1088 440 $D1$ 40 $4A$ 20 14 51 1090 442 $D1$ $C1$ $4A$ 41 14 51 1090 442 $D1$ $C2$ $4A$ 42 14 52 1091 443 $D1$ $C3$ $4A$ 42 14 53 1092 444 $D1$ $C4$ $4A$ 44 14 55 1094 446 $D1$ $C6$ $4A$ 45 14 55 1094 446 $D1$ $C6$ $4A$ 46 14 56 1095 447 $D1$ $C7$ $4A$ 47 14 59 1098 $44A$ $D1$ $4A$ 48 14 60 1099 448 $D1$ $4A$ 48 14 61 1100 $44C$ $D1$ $4A$ 2		14 41	1080 438	50 F8	26 38
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		14 42	1081 439	50 F9 50 74	20 39 26 24
144410634365070264014461085430507D26271447108643E507E263D1448108743F507F262214491088440D1404A2014491088440D1404A2014501089441D1C14A4114511090442D1C24A4214521091443D1C34A4314531092444D1C44A4414541093445D1C64A4614551094446D1C64A4614571096448D1C84A4814581097449D1C94A491469109844AD14A4A581462110144DD14A22241462110144CD14A281463110244ED14A281464110344FD14A2814661106452D1D14A4A14681107453D1D3 </td <td></td> <td>14 43</td> <td>1002 43A</td> <td>50 7A 50 7P</td> <td>20 JA 26 22</td>		14 43	1002 43A	50 7A 50 7P	20 JA 26 22
14451054455507026271447108643E507E263D1448108743F507F262214491088440D1404A2014501089441D1C14A4114511090442D1C24A4214521091443D1C34A4314531092444D1C44A4414551094446D1C64A4614561095447D1C74A4714571096448D1C84A4814601099448D14A481461110044CD14A481463110244ED14A281463110244ED14A2814651104450D1504A2614661105451D1D1AA4A14671106452D1D24A4B14661107453D1D34A4A14671106452D1D1AA4A14681107453D1D44A </td <td></td> <td>14 44 14 45</td> <td>1084 430</td> <td>50 76</td> <td>20 23 26 40</td>		14 44 14 45	1084 430	50 76	20 23 26 40
1447108643E507E263D1448108743F507F262214491088440D1404A2014501089441D1C14A4114511090442D1C24A4214521091443D1C34A4314531092444D1C44A4414541093445D1C54A4514551094446D1C64A4614561095447D1C74A4714571096448D1C84A491459109844AD14A4A5B14601099448D14A4A2E1461110044CD14C4A2E1461110044CD14C4A2B1461110244ED14C4A2B1463110244ED14A2B14661105451D1D14A4A14661105451D1D14A4A14661105451D1D14A4A14671106		14 40	1085 430	50 7C	26 27
1448108743F507F262214491088440D1404A2014501089441D1C14A4114511090442D1C24A4214521091443D1C34A4A14531092444D1C44A4414531092444D1C44A4414541093445D1C54A4514551094446D1C64A4614561095447D1C74A4714571096448D1C84A4814581097449D1C94A491459109844AD14A4B4A14601099448D14A2E1461110044CD14D4A2B1462110144DD14D4A2B14661105451D1D14A4A14661105451D1D14A4A14661105451D1D14A4A14661105451D1D14A4A14661105451 </td <td></td> <td>14 47</td> <td>1086 43E</td> <td>50 7E</td> <td>26 3D</td>		14 47	1086 43E	50 7E	26 3D
14491088440D1404A2014501089441D1C14A4114511090442D1C24A4214521091443D1C34A4314531092444D1C44A4414541093445D1C64A4614551094446D1C64A4614551094446D1C84A4714571096448D1C84A4814581097449D1C84A4814581097449D1C84A481459109844AD14A4A581460109944BD14A4A2E1461110044CD14A281462110144DD14D4A281463110244ED14E4A2814661105451D1D14A4A14671106452D1D24A4B14671106452D1D24A4B14681107453D1D44A4C14681107455 </td <td></td> <td>14 48</td> <td>1087 43F</td> <td>50 7F</td> <td>26 22</td>		14 48	1087 43F	50 7F	26 22
14501089441D1C14A4114511090442D1C24A4214521091443D1C34A4314531092444D1C54A4414541093445D1C54A4514551094446D1C64A4614561095447D1C74A4714571096448D1C94A4814581097449D1C94A481459109844AD14A4A5814601099448D14A4A2E1461110044CD14C4A281462110144DD14D4A281463110244ED14A4A14651104450D1504A2614661105451D1D14A4A14671106452D1D34A4A14681107453D1D34A4E14711106452D1D34A4E14691108454D1D44A4D14681107455 <td></td> <td>14 49</td> <td>1088 440</td> <td>D1 40</td> <td>4A 20</td>		14 49	1088 440	D1 40	4A 20
14511090442D1C24A4214521091443D1C34A4314531092444D1C44A4414541093445D1C54A4514551094446D1C64A4614561095447D1C74A4714571096448D1C84A4814581097449D1C94A491459109844AD14A4A5B1460109944BD14A4A2E1461110044CD14D4A281463110244ED14A281463110244ED14A2814661105451D1D14A4A14661105451D1D14A4A14661105451D1D14A4A14671106452D1D24A4B14681107453D1D34A4C14691108454D1D44A4D14701109456D1D64A4E14721110456D1 <td></td> <td>14 50</td> <td>1089 441</td> <td>D1 C1</td> <td>4A 41</td>		14 50	1089 441	D1 C1	4A 41
14521091443D1C34A4314531092444D1C44A4414541093445D1C54A4514551094446D1C64A4614561095447D1C74A4714571096448D1C84A4814581097449D1C94A491459109844AD14A4A5B14601099448D14A422E1461110044CD14A4A2B1462110144DD14D4A2B1463110244ED14E4A2B1463110244ED14F4A2B1464110344FD14F4A2614651106451D1D14A4A14671106452D1D14A4A14681107453D1D34A4C14691108454D1D44A4E14691108454D1D54A4E14701109455D1D54A4E14711110 <td></td> <td>14 51</td> <td>1090 442</td> <td>D1 C2</td> <td>4A 42</td>		14 51	1090 442	D1 C2	4A 42
14531092444D1C44A4414541093445D1C54A4514551094446D1C64A4614561095447D1C74A4714571096448D1C84A4914581097449D1C94A491459109844AD14A4A5B1460109944BD14B4A2E1461110044CD14D4A281462110144DD14D4A281463110244ED1504A2614661105451D1D14A4A14661105451D1D14A4A14671106452D1D24A4B14681107453D1D34A4C14691108454D1D44A4D14711110456D1D64A4F14721111457D1D74A5014731112458D1D84A5114741113459D1D94A5214751114 <td></td> <td>14 52</td> <td>1091 443</td> <td>D1 C3</td> <td>4A 43</td>		14 52	1091 443	D1 C3	4A 43
14541093445D1C54A4514551094446D1C64A4614561095447D1C74A4714571096448D1C84A4814581097449D1C94A491459109844AD14A4A581460109944BD14B4A2E1461110044CD14D4A281462110144DD14D4A281463110244ED14E4A2114651104450D1504A4814661105451D1D14A4A14661105451D1D14A4A14661105451D1D14A4A14661105451D1D34A4C14691108454D1D44A4D14701109455D1D54A4E14711110456D1D64A4F14721111457D1D74A5014731112458D1D84A5114751114 <td></td> <td>14 53</td> <td>1092 444</td> <td>D1 C4</td> <td>4A 44</td>		14 53	1092 444	D1 C4	4A 44
14551094446D1C64A4614561095447D1C74A4714571096448D1C84A4814581097449D1C94A491459109844AD14A4A5B1460109944BD14B4A2E1461110044CD14D4A281462110144DD14D4A281463110244ED14F4A2114651104450D1504A4614661105451D1D14A4A14671106452D1D24A4B14681107453D1D34A4C14691108454D1D44A4D14701109455D1D54A4E14711110456D1D64A4F14721111457D1D74A5014731112458D1D84A5114741113459D1D94A5214761115458D15A4A5D		14 54	1093 445	D1 C5	4A 45
14561095447D1C74A4714571096448D1C84A4814581097449D1C94A491459109844AD14A4A5B1460109944BD14B4A2E1461110044CD14D4A281462110144DD14D4A281463110244ED14F4A211463110344FD14F4A2614661105451D1D14A4A14661106452D1D24A4B14691108454D1D44A4C14691108455D1D54A4E14701109455D1D64A4F14721111456D1D64A4F14721111457D1D74A501475111445AD15A4A5D14761115458D15B4A24		14 55	1094 446	D1 C6	4A 46
14571096448D1C84A4814581097449D1C94A491459109844AD14A4A5B1460109944BD14B4A2E1461110044CD14C4A3C1462110144DD14D4A2B1463110244ED14E4A2B1464110344FD14F4A2614651104450D1504A2614661105451D1D14A4A14671106452D1D24A4B14681107453D1D34A4C14691108454D1D44A4D14701109455D1D54A4E14711110456D1D64A4F14721111457D1D74A5014731112458D1D84A511475111445AD15A4A5D14761115458D15B4A24		14 56	1095 447	D1 C7	4A 47
14581097449D1C94A491459109844AD14A4A5B1460109944BD14B4A2E1461110044CD14D4A281462110144DD14D4A281463110244ED14E4A2114651104450D1504A2614661105451D1D14A4A14661105451D1D14A4A14661105451D1D14A4A14661105451D1D14A4A14661105451D1D14A4A14661105451D1D14A4A14681107453D1D34A4C14691108454D1D44A4D14701109455D1D54A4E14711110456D1D64A4F14721111457D1D74A5014731112458D1D84A511476111545BD15A4A5D14761115 <td></td> <td>14 57</td> <td>1096 448</td> <td>D1 C8</td> <td>4A 48</td>		14 57	1096 448	D1 C8	4A 48
1455105644AD14A4A5B1460109944BD14B4A2E1461110044CD14C4A3C1462110144DD14D4A281463110244ED14E4A2B1463110244ED14F4A2114651104450D1504A2614661105451D1D14A4A14671106452D1D24A4B14681107453D1D34A4C14691108454D1D44A4D14701109455D1D54A4E14711110456D1D64A4F14721111457D1D74A5014731112458D1D84A5114761115458D15A4A5D14761115458D15B4A24		14 58	1097 449		4A 49 11 FP
14601035446D14544A2E1461110044CD14C4A3C1462110144DD14D4A281463110244ED14E4A2B1464110344FD14F4A2114651104450D1504A2614661105451D1D14A4A14671106452D1D24A4B14681107453D1D34A4C14691108454D1D44A4D14701109455D1D54A4E14711110456D1D64A4F14721111457D1D74A5014731112458D1D84A5114761115458D15A4A5D14761115458D15B4A24		14 59	1095 44A		44 00 44 2F
14 01 1100 440 01 40 4A 28 14 62 1101 44D 01 4D 4A 28 14 63 1102 44E 01 4E 4A 28 14 63 1102 44E 01 4E 4A 28 14 64 1103 44F 01 4E 4A 28 14 64 1103 44F 01 4F 4A 21 14 65 1104 450 01 50 4A 26 14 66 1105 451 01 01 4A 4A 14 67 1106 452 01 02 4A 4B 14 67 1106 452 01 03 4A 4C 14 68 1107 453 01 03 4A 4C 14 69 1108 454 01 04 4A 4D 14 70 <td></td> <td>14 00</td> <td>1100 440</td> <td></td> <td>4A 3C</td>		14 00	1100 440		4A 3C
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		14 01	1101 440	D1 4D	4A 28
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		14 63	1102 44E	D1 4E	4A 2B
14651104450D1504A2614661105451D1D11A4A14671106452D1D24A4B14671106452D1D34A4C14691108454D1D44A4D14691109455D1D54A4E14701109455D1D64A4F14711110456D1D64A4F14721111457D1D74A5014731112458D1D84A511475111445AD15A4A5D14761115458D15B4A24		14 64	1103 44F	D1 4F	4A 21
14661105451D1D14A4A14671106452D1D24A4B14681107453D1D34A4C14691108454D1D44A4D14701109455D1D54A4E14711110456D1D64A4F14721111457D1D74A5014731112458D1D84A511475111445AD15A4A5D14761115458D15B4A24		14 65	1104 450	D1 50	4A 26
14671106452D1D24A4B14681107453D1D34A4C14691108454D1D44A4D14701109455D1D54A4E14711110456D1D64A4F14721111457D1D74A5014731112458D1D84A5114741113459D1D94A521475111445AD15A4A5D1476111545BD15B4A24		14 66	1105 451	D1 D1	4A 4A
14681107453D1D34A4C14691108454D1D44A4D14701109455D1D54A4E14711110456D1D64A4F14721111457D1D74A5014731112458D1D84A5114741113459D1D94A521475111445AD15A4A5D1476111545BD15B4A24		14 67	1106 452	D1 D2	4A 4B
14691108454D1D44A4D14701109455D1D54A4E14711110456D1D64A4F14721111457D1D74A5014731112458D1D84A5114741113459D1D94A521475111445AD15A4A5D1476111545BD15B4A24		14 68	1107 453	D1 D3	4A 4C
14701109455D1D54A4E14711110456D1D64A4F14721111457D1D74A5014731112458D1D84A5114741113459D1D94A521475111445AD15A4A5D1476111545BD15B4A24		14 69	1108 454	D1 D4	4A 4D
14711110456D1D64A4F14721111457D1D74A5014731112458D1D84A5114741113459D1D94A521475111445AD15A4A5D1476111545BD15B4A24		14 70	1109 455	D1 D5	4A 4E
14721111457D1D74A5014731112458D1D84A5114741113459D1D94A521475111445AD15A4A5D1476111545BD15B4A24		14 71	1110 456	D1 D6	4A 4F
14 73 1112 458 D1 D8 4A 51 14 74 1113 459 D1 D9 4A 52 14 75 1114 45A D1 5A 4A 5D 14 75 1114 45A D1 5A 4A 5D 14 76 1115 45B D1 5B 4A 24		14 72	1111 457		4A 5U
14 74 1113 459 D1 D9 4A 52 14 75 1114 45A D1 5A 4A 5D 14 76 1115 45B D1 5B 4A 24		14 73	1112 458		4A 51 4A 52
14 76 1115 45B D1 5B 4A 24		14 /4	1113 459		4A 52 4A 6D
		14 /5	1114 40A	D1 58	4A 24
		01 11	1110 400		·/ · · · · · ·

B-18	
------	--

80 (Coł	Positio	n	Buffer Address	(Hex)
R	<u>c</u>	Dec	Hex	EBCDIC	ASCII
		1110	450	D1 60	44 04
14	78	1110	450	D1 50	4A 2A 4A 2Q
14	70 79	1118	45E	D1 5E	4A 3B
14	80	1119	45F	D1 5F	4A 5E
15	01	1120	460	D1 60	4A 2D
15	02	1121	461	D1 61	4A 2F
15	03	1122	462	D1 E2	4A 53
15	04	1123	463	D1 E3	4A 54
15	05	1124	464	D1 E4	4A 55
15	06	1125	465	D1 E5	4A 56
15	07	1126	466	D1 E6	4A 5/
15	08	1127	407		4A 50 11 50
15	10	1120	400		4A 59 4A 5A
15	11	1130	464	D1 6A	4A 7C
15	12	1131	46B	D1 6B	4A 2C
15	13	1132	46C	D1 6C	4A 25
15	14	1133	46D	D1 6D	4A 5F
15	15	1134	46E	D1 6E	4A 3E
15	16	1135	46F	D1 6F	4A 3F
15	17	1136	470	D1 F0	4A 30
15	18	1137	471	D1 F1	4A 31
15	19	1138	472	D1 F2	4A 32
15	20	1139	473	D1 F3	4A 33
15	21	1140	474	D1 F4	4A 34
15	22	1141	475	D1 F5	4A 35
15	23	1142	4/6	D1 F6	4A 30
15	24	1143	4//		4A 37 4A 28
15	20	1144	470		4A 30
15	20	1146	475 476		4A 3A
15	28	1147	47B	D1 7B	4A 23
15	29	1148	47C	D1 7C	4A 40
15	30	1149	47D	D1 7D	4A 27
15	31	1150	47E	D1 7E	4A 3D
15	32	1151	47F	D1 7F	4A 22
15	33	1152	480	D2 40	4B 20
15	34	1153	481	D2 C1	4B 41
15	35	1154	482	D2 C2	4B 42
15	36	1155	483	D2 C3	4B 43
15	37	1156	484	D2 C4	48 44 AD 45
15	38	1157	460	D2 C5	4D 40 AR A6
15	39	1150	400	D2 C0	40 40 4R 47
15	40	1160	488	D2 C8	4B 48
15	42	1161	489	D2 C9	4B 49
15	43	1162	48A	D2 4A	4B 5B
15	44	1163	48B	D2 4B	4B 2E
15	45	1164	48C	D2 4C	4B 3C
15	46	1165	48D	D2 4D	4B 28
15	47	1166	48E	D2 4E	4B 2B
15	48	1167	48F	D2 4F	4B 21
15	49	1168	490	D2 50	4B 26
15	50	1169	491	D2 D1	4B 4A
15	51	1170	492	D2 D2	48 4B
15	52	1171	493		
15	53	1172	494 105		40 40 48 45
15	54	1173	490 496	D2 D5	48 4F
15	55	1175	497	D2 D7	4B 50
15	57	1176	498	D2 D8	4B 51
15	58	1177	499	D2 D9	4B 52

.

80 C	80 Col Position		1	Buffer Address (Hex)				
R	<u>c</u>	Dec	Hex	EBC	DIC	ASC	11	
						•		
15	59	1178	49A	D2	5A	4B	5D	
15	60	1179	49B	D2	5B	4B	24	
15	61	1180	49C	D2	5C	4B	2A	
15	62	1181	49D	D2	5D	4B	29	
15	63	1182	49E	D2	5E	4B	3B	
15	64	1183	49F	D2	5F	4B	5E	
15	65	1184	4A0	D2	60	4B	2D	
15	66	1185	4A1	D2	61	4B	2F	
15	67	1186	4A2	D2	E2	4B	53	
15	68	1187	4A3	D2	E3	4B	54	
15	69	1188	4A4	D2	E4	4B	55	
15	70	1189	4A5	D2	E5	4B	56	
15	71	1190	4A6	D2	E6	4B	57	
15	72	1191	4A7	D2	E7	4B	58	
15	73	1192	4A8	D2	E8	4B	59	
15	74	1193	4A9	D2	E9	4B	5A	
15	75	1194	4AA	D2	6A	4B	7.C	
15	/6	1195	4AB	D2	6B	4B	2C	
15	77	1196	4AC	D2	6C	4B	25	
15	78	1197	4AD	D2	6D	4B	5F	
15	79	1198	4AE	D2	6E	4B	3E	
15	80	1199	4AF	D2	6F	4B	3F	
16	01	1200	480	D2	FO	4B	30	
16	02	1201	481	D2	F1	4B	31	
16	03	1202	482	D2	F2	4B	32	
10	04	1203	483	D2	F3	4B	33	
10	05	1204	484	D2	F4	4B	34	
10	00	1205	485	D2	F5	48	35	
10	07	1206	486	D2	F6	4B	36	
10	00	1207	487	DZ	F/	4B	37	
10	10	1208	488	D2	F8	4B 4D	38	
16	10	1209	4D9 4DA		гэ 7 л	4D //D	39	
16	12	1210	488	D2	7R	4D 4R	22	
16 ·	13	1212	480	02	70	4B	40	
16	14	1213	480	02	70	40 4R	27	
16	15	1214	48F	D2	7E 7E	4R	3D	
16	16	1215	4BE	D2	7E	4B	22	
16	17	1216	400	D3	40	4C	20	
16	18	1217	4C1	D3	C1	4C	41	
16	19	1218	4C2	D3	C2	4C	42	
16	20	1219	4C3	D3	C3	4C	43	
16	21	1220	4C4	D3	C4	4C	44	
16	22	1221	4C5	D3	C5	4C	45	
16	23	1222	4C6	D3	C6	4C	46	
16	24	1223	4C7	D3	C7	4C	47	
16	25	1224	4C8	D3	C8	4C	48	
16	26	1225	4C9	D3	Č9	4C	49	
16	27	1226	4CA	D3	4A	4C	5B	
16	28	1227	4CB	D3	4B	4C	2E	
16	29	1228	4CC	D3	4C	4C	3C .	
16	30	1229	4CD	D3	4D	4C	28	
16	31	1230	4CE	D3	4E	4C	2B	
16	32	1231	4CF	D3	4F	4C	21	
16	33	1232	4D0	D3	50	4C	26	
16	34	1233	4D1	D3	D1	4C	4A	
16	35	1234	4D2	D3	D2	4C	4B	
16	36	1235	4D3	D3	D3	4C	4C	
16	37	1236	4D4	D3	D4	4C	4D	
16	38	1237	4D5	D3	D5	4C	4E	
16	39	1238	4D6	D3	D6	4C	4F	
16	40	1239	4D7	D3	70	4C	50	

80 (Col	ol Position		Buffer Address	(Hex)
R	С	Dec	Hex	EBCDIC	ASCII
16	41	1240	4D8	D3 D8	4C 51
16	42	1241	4D9	D3 D9	4C 52
16	43	1242	4DA	D3 5A	4C 5D
16	44	1243	4DB	D3 5B	4C 24
16	45	1244	4DC	D3 5C	4C 2A
10	40	1245	400	D3 5D	4C 29
10	47 70	1240	4DE	D3 5E	40 55
16	40	1247	407	D3 5F	40 20
16	50	1240	4E0 4F1	D3 61	4C 2E
16	51	1250	4F2	D3 F2	4C 53
16	52	1251	4E3	D3 E3	4C 54
16	53	1252	4E4	D3 E4	4C 55
16	54	1253	4E5	D3 E5	4C 56
16	55	1254	4E6	D3 E6	4C 57
16	56	1255	4E7	D3 E7	4C 58
16	57	1256	4E8	D3 E8	4C 59
16	58	1257	4E9	D3 E9	4C 5A
16	59	1258	4EA	D3 6A	4C 7C
16	60	1259	4EB	D3 6B	4C 2C
16	61	1260	4EC	D3 6C	4C 25
16	62	1261	4ED	D3 6D	4C 5F
16	63	1262	4EE	D3 6E	4C 3E
16	64	1263	4EF	D3 6F	4C 3F
16	65	1264	4F0	D3 F0	4C 30
16	66	1265	4F1	D3 F1	4C 31
16	67	1266	4-2	D3 F2	40 32
16	68	1267	4-3	D3 F3	40 33
16	69 70	1200	464	D3 F4 D3 E5	40 34
10	70	1209	46	D3 F5	40 36
16	72	1270	467	D3 F7	40 37
16	73	1272	4F8	D3 F8	4C 38
16	74	1273	4F9	D3 F9	4C 39
16	75	1274	4FA	D3 7A	4C 3A
16	76	1275	4FB	D3 7B	4C 23
16	77	1276	4FC	D3 7C	4C 40
16	78	1277	4FD	D3 7D	4C 27
16	79	1278	4FE	D3 7E	4C 3D
16	80	1279	4FF	D3 7F	4C 22
17	01	1280	500	D4 40	4D 20
17	02	1281	501	D4 C1	4D 41
17	03	1282	502	D4 C2	4D 42
17	04	1203	503	D4 C3	
17	05	1204	504	D4 C4	40 45
17	00	1200	505	D4 C6	4D 46
17	02	1287	507	D4 C7	4D 47
.17	00	1288	508	D4 C8	4D 48
17	10	1289	509	D4 C9	4D 49
17	11	1290	50A	D4 4A	4D 5B
17	12	1291	50B	D4 4B	4D 2E
17	13	1292	50C	D4 4C	4D 3C
17	14	1293	50D	D4 4D	4D 28
17	15	1294	50E	D4 4E	4D 2B
17	16	1295	50F	D4 4F	4D 21
17	17	1296	510	D4 50	4D 26
17	18	1297	511	D4 D1	4D 4A
17	19	1298	512	D4 D2	4D 4B
17	20	1299	513	D4 D3	4D 4C
17	21	1300	514	D4 D4	40 40
17	22	1301	515	U4 U5	40 4E

80 0	D Col Position		1	Buffer Address (Hex)			
R	C	Dec	Hex	EBCDIC	ASCII		
17	23	1302	516	D4 D6	4D 4F		
17	24	1303	517	D4 D7	4D 50		
17	25	1304	518	D4 D8	4D 51		
17	20	1305	519	D4 D9	40 52		
17	27	1307	51B	D4 58	40 30		
17	29	1308	51C	D4 5C	4D 2A		
17	30	1309	51D	D4 5D	4D 29		
17	31	1310	51E	D4 5E	4D 3B		
17	32	1311	51F	D4 5F	4D 5E		
17	33	1312	520	D4 60	4D 2D		
17	34	1313	521	D4 61	4D 2F		
17	35	1314	522	D4 E2	4D 53		
17	36	1315	523	D4 E3	4D 54		
17	37	1316	524	D4 E4	4D 55		
17	38 20	1317	525	D4 E5	40 50		
17	3 9 40	1310	520	D4 E7	40 57		
17	40	1320	528	D4 E8	4D 59		
17	42	1321	529	D4 E9	4D 5A		
17	43	1322	52A	D4 6A	4D 7C		
17	44	1323	52B	D4 6B	4D 2C		
17	45	1324	52C	D4 6C	4D 25		
17	46	1325	52D	D4 6D	4D 5F		
17	47	1326	52E	D4 6E	4D 3E		
17	48	1327	52F	D4 6F	4D 3F		
17	49	1328	530		40 30		
17	50	1329	532		40 31		
17	52	1331	533	D4 F3	4D 33		
17	53	1332	534	D4 F4	4D 34		
17	54	1333	535	D4 F5	4D 35		
17	55	1334	536	D4 F6	4D 36		
17	56	1335	537	D4 F7	4D 37		
17	57	1336	538	D4 F8	4D 38		
17	58	1337	539	D4 F9	4D 39		
17	59	1338	53A	D4 7A	4D 3A		
17	61	1339	530	D4 76	40 23		
17	62	1341	53D	D4 70	4D 27		
17	63	1342	53E	D4 7E	4D 3D		
17	64	1343	53F	D4 7F	4D 22		
17	65	1344	540	D5 40	4E 20		
17	66	1345	541	D5 C1	4E 41		
17	67	1346	542	D5 C2	4E 42		
17	68	1347	543	D5 C3	4E 43		
17	69	1348	544	D5 C4	4E 44		
17	70	1349	545	D5 C5	4E 45		
17	/1	1350	540	D5 C0	4C 40 AF 47		
17	72	1352	548	D5 C8	4E 48		
17	74	1353	549	D5 C9	4E 49		
17	75	1354	54A	D5 4A	4E 5B		
17	76	1355	54B	D5 4B	4E 2E		
17	77	1356	54C	D5 4C	4E 3C		
17	78	1357	54D	D5 4D	4E 28		
17	79	1358	54E	D5 4E	4E 2B		
17	80	1359	541		45 21		
18	02	1360	551	05 00	45 20 AF AA		
10 19	02	1362	552	D5 D2	4E 4R		
18	03	1363	553	D5 D3	4E 4C		
18	05	1364	554	D5 D4	4E 4D		

80	80 Col Position		n	Buffer Address (Hex)			
<u>R</u>	<u>c</u>	Dec	Hex	EBCDIC	ASCII		
18	06	1365	555	D5 D5	4E 4E		
18	07	1366	556	D5 D6	4E 4F		
18	08	1367	557	D5 D7	4E 50		
18	09	1368	558	D5 D8	4E 51		
18	10	1369	559	D5 D9	4E 52		
18	11	1370	55A	D5 5A	4E 5D		
18	12	1371	55B	D5 5B	4E 24		
18	13	1372	55C	D5 5C	4E 2A		
18	14	1373	55D	D5 5D	4E 29		
10	15	1374	55E	D5 5E	4E 3B		
10	17	13/5	50F	D5 5F	46 20		
18	18	1277	561	D5 61	46 20		
18	19	1378	562	D5 F2	4E 53		
18	20	1379	563	D5 E3	4E 54		
18	21	1380	564	D5 E4	4E 55		
18	22	1381	565	D5 E5	4E 56		
18	23	1382	566	D5 F6	4E 57		
18	24	1383	567	D5 E7	4E 58		
18	25	1384	568	D5 E8	4E 59		
18	26	1385	569	D5 E9	4E 5A		
18	27	1386	56A	D5 6A	4E 7C		
18	28	1387	56B	D5 6B	4E 2C		
18	29	1388	56C	D5 6C	4E 25		
18	30	1389	56D	D5 6D	4E 5F		
18	31	1390	56E	D5 6E	4E 3E		
10	32	1391	501	D5 6F	4E 3F		
18	33	1392	570	D5 F0	46 30		
18	35	1394	572	D5 F2	4E 32		
18	36	1395	573	D5 F3	4E 33		
18	37	1396	574	D5 F4	4E 34		
18	38	1397	575	D5 F5	4E 35		
18	39	1398	576	D5 F6	4E 36		
18	40	1399	577	D5 F7	4E 37		
18	41	1400	578	D5 F8	4E 38		
10	42	1401	579	D5 F9	4E 39		
18	43	1402	57A	D5 7A	45 34		
18	45	1403	57C	D5 70	4E 40		
18	46	1405	57D	D5 7D	4E 27		
18	47	1406	57E	D5 7E	4E 3D		
18	48	1407	57F	D5 7F	4E 22		
18	49	1408	580	D6 40	4F 20		
18	50	1409	581	D6 C1	4F 41		
18	51	1410	582	D6 C2	4F 42		
18	52	1411	583	D6 C3	4F 43		
18	53	1412	584	D6 C4	41- 44		
10	55	1413	500	D6 C6	4F 45 4F 46		
18	56	1414	587	D6 C7	4F 47		
18	57	1416	588	D6 C8	4F 48		
18	58	1417	589	D6 C9	4F 49		
18	59	1418	58A	D6 4A	4F 5B		
18	60	1419	58B	D6 4B	4F 2E		
18	61	1420	58C	D6 4C	4F 3C		
18	62	1421	58D	D6 4D	4F 28		
18	63	1422	58E	D6 4E	4F 2B		
18	64 65	1423	58F		4F 21		
10	66	1424	590		4F 20		
	~~						

80 C	ol	Position	1	Buff	er Address (Hex)	4 - ¹⁴ - 17
<u>R</u>	<u>C</u>	Dec	Hex	EBC	DIC	ASC	
18	67	1426	592	D6	D2	4F	4B
18	68	1427	593	D6	D3	4F	4C
18	69	1428	594	D6	D4	4F	4D
18	70	1429	595	D6	D5	4F	4E
18	71	1430	596	D6	D6	4F	4F,
10	12	1431	597	D6	D7	4F	50
10	73	1432	598	Do	08	41	51
10	75	1433	599	00	D9.	45	52
18	76	1434	59A		5A 5B	46	24
18	77	1436	590		50	45	24
18	78	1437	59D	D6	50	4F	29
18	79	1438	59E	D6	5E	4F	38
18	80	1439	59F	D6	5F	4F	5E
19	01	1440	5A0	D6	60	4F	2D
19	02	1441	5A1	D6	61	4F	2F
19	03	1442	5A2	D6	E2	4F	53
19	04	1443	5A3	D6	E3	4F	54
19	05	1444	5A4	D6	E4	4F	55
19	06	1445	5A5	D6	E5	4F	56
19	07	1446	5A6	D6	E6	4F	57
19	08	1447	5A7	D6	E7	4F	58
19	09	1448	5A8	D6	E8	4F	59
19	10	1449	5A9	D6	E9	4F	5A
19	11	1450	5AA	D6	6A	4F	7C
19	12	1451	5AB	D6	6B	4F	2C
19	13	1452	5AC	D6	6C	4F	25
19	14	1453	5AD	D6	6D	4F	5F
19	15	1454	5AE	D6	6E	4F	3E
19	16	1455	5AF	D6	6F	4F	3F
19	17	1456	580	D6	FO	4F	30
19	18	1457	5B1	D6	F1	4	31
19	19	1458	5B2	D6	F2	41	32
19	20	1459	583	00	F3	46	33
19	21	1400	505	00	F4 E6	4F	34 25
10	22	1401	586		FS	46	36
10	23	1402	587		F7	46	37
19	25	1464	588	D6	F8	4F	38
19	26	1465	589	D6	F9	4F	39
19	27	1466	5BA	D6	7A	4F	3A
19	28	1467	5BB	D6	7B	4F	23
19	29	1468	5BC	D6	7C	4F	40
19	30	1469	5BD	D6	7D	4F	27
19	31	1470	5BE	D6	7E	4F	3D
19	32	1471	5BF	D6	7F	4F	22
19	33	1472	5C0	D7	40	50	20
19	34	1473	5C1	D7	C1	50	41
19	35	1474	5C2	D7	C2	50	42
19	36	1475	5C3	D7	C3	50	43
19	37	1476	5C4	D7	C4	50	44
19	38	1477	5C5	D7	C5	50	45
19	39	1478	5C6	D7	C6	50	40
19	40	1479	5C7	D7	C/	50	4/
19	41	1480	508	07	60	50	40
19	42	1481	509	07	C9	50	49 50
19	43	1482	SCR SCR	1.01	4A AD	50	25
19.	44 AE	1405	500	יט	+D 4C	50	2 E 3 C
19	40 46	1404	SCD	יט קח	40	50	28
19	40 47	1400	SCD	יט	40 45	50	20 28
10	47 18	1400	5CE	57	4F	50	21
13	-0	1407		01	71	55	- 1 , 1

B-24 Constant of The Apple with the second

•

80 (Col	Position		Buffer Address (Hex)			
R	<u>c</u>	Dec	Hex	EBCDIC	ASCII		
. •							
19	49	1488	5D0	D7 50	50 26		
19	50	1489	5D1	D7 D1	50 4A		
19	51	1490	5D2	D7 D2	50 4B		
19	52	1491	5D3	D7 D3	50 4C		
19	53	1492	5D4	D7 D4	50 4D		
19	54	1493	5D5	D7 D5	50 4E		
19	55	1494	5D6	D7 D6	50 4F		
19	56	1495	5D7	D7 D7	50 50		
19	5/	1496	5D8	D7 D8	50 51		
19	58	1497	5D9	D7 D9	50 52		
19	59	1498	5DA	D7 5A	50 5D		
10	61	1499	508	D7 5B	50 24		
10	67	1500	500	D7 5C	50 ZA		
19	63	1501	500	D7 55	50 29 50 38		
19	64	1502	505	D7 5E	50 5E		
19	65	1504	560	D7 60	50 2D		
19	66	1505	5E1	D7 61	50 2F		
19	67	1506	5E2	D7 E2	50 53		
19	68	1507	5E3	D7 E3	50 54		
19	69	1508	5E4	D7 E4	50 55		
19	70	1509	5E5	D7 E5	50 56		
19	71	1510	5E6	D7 E6	50 57		
19	72	1511	5E7	D7 E7	50 58		
19	73	1512	5E8	D7 E8	50 59		
19	74	1513	5E9	D7 E9	50 5A		
19	75	1514	5EA	D7 6A	50 7C		
19	76	1515	5EB	D7 6B	50 2C		
19	77	1516	5EC	D7 6C	50 25		
19	78	1517	5ED	D7 6D	50 5F		
19	79	1518	5EE	D7 6E	50 3E		
19	80	1519	5EF	D7 6F	50 3F		
20	01	1520	5F0	D7 F0	50 30		
20	02	1521	5F1	D7 F1	50 31		
20	03	1522	5F2	D7 F2	50 32		
20	04	1523	5F3	D7 F3	50 33		
20	05	1524	5F4	D7 F4	50 34		
20	06	1525	5F5	D7 F5	50 35		
20	07	1526	5F6	D7 F6	50 36		
20	08	1527	5F7	D7 F7	50 37		
20	09	1528	5F8	D7 F8	50 38		
20	10	1529	5-9	D7 F9	50 39		
20	10	1530	5FA	D7 78	50 JA		
20	12	1531	5FB		50. 23		
20	14	1532	5FC	07 70	50 40		
20	15	1533	5FD 6EE	D7 7E	50 27		
20	16	1534	SEE	D7 7E	50 22		
20	17	1535	600	D8 40	51 20		
20	18	1537	601	D8 C1	51 41		
20	19	1538	602	D8 C2	51 42		
20	20	1539	603	D8 C3	51 43		
20	21	1540	604	D8 C4	51 44		
20	22	1541	605	D8 C5	51 45		
20	23	1542	606	D8 C6	51 46		
20	24	1543	607	D8 C7	51 47		
20	25	1544	608	D8 C8	51 48		
20	26	1545	609	D8 C9	51 49		
20	27	1546	60A	D8 4A	51 5B		
20	28	1547	60B	D8 4B	51 2E		
20	29	1548	60C	D8 4C	51 3C		
20	30	1549	60D	D8 4D	51 28		

80 Col		Position		Buffer Address (Hex)				
R	C	Dec	Hex	EBC	DIC	ASC	11	
20	31	1550	60E	D8	4E	51	2B	
20	32	1551	60F	D8	4F	51	21	
20	33	1552	610	D8	50	51	26	
20	34	1553	611	D8	D1	51	4A	
20	35	1554	612	D8	D2	51	4B	
20	36	1555	613	D8	D3	51	4C	
20	37	1556	614	D8	D4	51	4D	
20	38	1557	615	D8	D5	51	4E	
20	39	1558	616	D8	D6	51	4F	
20	40	1559	617	D8	D7	51	50	
20	41	1560	618	08	D8	51	51	
20	42	1561	619	08	D9	51	52	
20	43	1562	61A	08	5A	51	5D	
20	44	1563	618	08	58	51	24	
20	45	1564	610	08	50	51	2A	
20	46	1565	61D	08	5D	51	29	
20	4/	1566	61E	08	5E	51	38	
20	48	1567	61F	08	5-	51	5E	
20	49	1568	620	08	60	51	2D	
20	50	1569	621	D8	61	51	2F	
20	51	1570	622	08	E2	51	53	
20	52	15/1	623	08	E3	51	54	
20	53	10/2	624	08	E4 CE	51	55	
20	54	1573	625	08	ED	51	50	
20	55	1574	627	08	E0 E7	51	57	
20	56	15/5	627	08	E/	51	50	
20	5/	15/0	620			51	59	
20	58	1577	629	00	69	51	5A 7C	
20	59	1570	02A 62D	00	6P	51	20	
20	60	15/9	02B 62C	00	6C	51	26	
20	61	1500	620			51 E1	20	
20	62	1501	620	00	65	51	36	
20	64	1502	02E		65	51	35	
20	04 65	1583	620	00	EO	51	30	
20	66	1504	631	00	F1	51	31	
20	67	1586	637	00	F2	51	32	
20	60	1597	622	00	F3	51	33	
20	60	1588	634	00	F4	51	34	
20	70	1589	635	80	F5	51	35	
20	70	1590	636	08	F6	51	36	
20	72	1591	637	08	F7	51	37	
20	73	1592	638	D8	F8	51	38	
20	74	1593	639	D8	F9	51	39	
20	75	1594	63A	D8	7A	51	3A	
20	76	1595	63B	D8	7B	51	23	
20	77	1596	63C	D8	70	51	40	
20	78	1597	63D	D8	7D	51	27	
20	79	1598	63E	D8	7E	51	3D	
20	80	1599	63F	D8	7F	51	22	
21	01	1600	640	D9	40	52	20	
21	02	1601	641	D9	C1	52	41	
21	03	1602	642	D9	C2	52	42	
21	04	1603	643	D9	C3	52	43	
21	05	1604	644	D9	C4	52	44	
21	06	1605	645	D9	C5	52	45	
21	07	1606	646	D9	C6	52	46	
21	08	1607	647	D9	C7	52	47	
21	09	1608	648	D9	C8	52	48	
21	10	1609	649	D9	C9	52	49	
21	11	1610	64A	D9	4A	52	5B	
21	12	1611	64B	D9	4B	52	2E	

80 0	Col	Positio	n	But	fer Ac	idress (Hex). :
R	c	Dec	Hex	EB	CDIC	AS	
~	4.0	1610	640	00	40	50	30
21	13	1612	64D	09	40	52 52	28
21	14	1614	64F	09	4F	52	20 28
21	10	1615	64E	00	4F	52	21
21	17	1616	650	00	50	52	26
21	10	1617	651	D9	D1	52	4A
21	19	1618	652	D9	D2	52	4B
21	20	1619	653	D9	D3	52	4C
21	21	1620	654	D9	D4	52	4D
21	22	1621	655	D9	D5	52	4E
21	23	1622	656	D9	D6	52	4F
21	24	1623	657	D9	D7	52	50
21	25	1624	658	D9	D8	52	51
21	26	1625	659	D9	D9	52	52
21	27	1626	65A	D9	5A	52	5D
21	28	1627	65B	D9	5B	52	24
21	29	1628	65C	D9	5C	52	2A
21	30	1629	65D	D9	5D ·	52	29
21	31	1630	65E	D9	5E,	. 52	3B
21	32	1631	65F	D9	5F	52	5E
21	33	1632	660	D9	60	52	20
21	34	1633	661	_D9	51	52	21
21	35	1634	662	D9	E2	52	53
21	36	1635	664	09	E3	52	55
21	37	1630	665	09	E5	52	56
21	38	1638	666	- 09	E6	52	57
21	39	1639	667	- D9	E7	52	58
21	40	1640	668	D9	E8	52	59
21	42	1641	669	D9	E9	52	5A
21	43	1642	66A	D9	6A	52	7C
21	44	1643	66B	D9	6B	52	2C
21	45	1644	66C	D9	6C	52	25
21	46	1645	66D	D9	6D	52	5F
21	47	1646	66E	D9	6E	52	3E
21	48	1647	66F	D9	6F	52	3F
21	49	1648	670	D9	F0	52	30
21	50	1649	671	D9	F1	52	31
21	51	1650	672	D9	F2	52	32
21	52	1651	673	D9	F3	52	33
21	53	1652	675	D9	F4.	52	34
21	54	1653	676	09	FS	52	36
21	55	1655	677	- 00	F7.	52	37
21	50	1656	678	00	F8	52	38
21	57	1657	679	D9	F9	52	39
21	50	1658	67A	D9	7A	52	3A
21	60	1659	67B	D9	7B	52	23
21	61	1660	67C	D9	7C	52	40
21	62	1661	67D	D9	7D	52	27
21	63	1662	67E	D9	7.E	52	3D
21	64	1663	67F	D9	7F,	52	22
21	65	1664	680	5A	40	5D	20
21	66	1665	681	5A	C1	5D	41
21	67	1666	682	5A	C2	5D	42
21	68	1667	683	5A	C3	5D	43
21	69	1668	684	5A	C4	5D	44
21	70	1669	685	5A	C5	5D	45
21	71	1670	686	5A	C6	5D	46
21	72	1671	600	5A = ^	0/	50	47 20
21	73	1672	000	AC 6 A	CO	06	40 <u>4</u> 0
21	/4	10/3	009	- 5A	00		

80 Col		Position	1	Buffer Address (Hex)					
R	С	Dec	Hex	EBCDIC	ASCII				
	-		<u></u>	· · · · ·					
21	75	1674	68A	5A 4A	5D 5B				
21	76	1675	68B	5A 4B	5D 2E				
21	77	1676	68C	5A 4C	5D 3C				
21	78	1677	68D	5A 4D	5D 28				
21	79	1678	68E	5A 4E	5D 2B				
21	80	1679	68F	5A 4F	5D 21				
22	01	1680	690	5A 50	5D 26				
22	02	1681	691	5A D1	5D 4A				
22	03	1682	692	5A D2	5D 4B				
22	04	1683	693	5A D3	5D 4C				
22	05	1684	694	5A D4	5D 4D				
22	06	1685	695	5A D5	5D 4E				
22	07	1686	696	5A D6	5D 4F				
22	08	1687	697	5A D7	5D 50				
22	09	1688	698	5A D8	5D 51				
22	10	1689	699	5A D9	5D 52				
22	11	1690	69A	5A 5A	5D 5D				
22	12	1691	69B	5A 5B	5D 24				
22	13	1692	69C	5A 5C	5D 2A				
22	14	1693	69D	5A 5D	5D 29				
22	15	1694	69E	5A 5E	5D 3B				
22	16	1695	69F	5A 5F	5D 5E				
22	17	1696	6A0	5A 60	5D 2D				
22	18	1697	6A1	5A 61	5D 2F				
22	19	1698	6A2	5A E2	5D 53				
22	20	1699	6A3	5A E3	5D 54				
22	21	1700	6A4	5A F4	5D 55				
22	22	1701	6A5	5A E5	5D 56				
22	23	1702	6A6	5A E6	5D 57				
22	24	1703	6A7	5A E7	5D 58				
22	25	1704	6A8	5A E8	5D 59				
22	26	1705	6A9	5A E9	5D 5A				
22	27	1706	6AA	5A 6A	5D 7C				
22	28	1707	6AB	5A 6B	5D 2C				
22	29	1708	6AC	5A 6C	5D 25				
22	30	1709	6AD	5A 6D	5D 5F				
22	31	1710	6AE	5A 6E	5D 3E				
22	32	1711	6AF	5A 6F	5D 3F				
22	33	1712	680	SA FU	5D 30				
22	34	1714	081	DA FI	50 31				
22	35	1714	682		5D 32				
22	36	1716	684		5D 33 5D 24				
22	3/	1717	685	5A F4	50 34				
22	20	1718	686	5A F6	5D 36				
22	39	1710	6B7	54 F7	50 30				
22	40	1720	689	54 59	50 37				
22	41	1720	680	5A F0	50 30				
22	42	1721	68.4	50 70	50 33				
22	43	1722	6BB	50 7R	50 23				
22	44 16	1724	6BC	5A 7C	5D 40				
22	40	1725	6BD	5A 7D	5D 27				
22	-+U A7	1726	6BF	5A 7E	5D 3D				
22	47 49	1727	6BE	5A 7E	5D 22				
22	-+0 /0	1728	600	5B 40	24 20				
22	49 60	1729	6C1	5B C1	24 41				
22	51	1730	602	5B C2	24 42				
22	57	1731	603	5B C3	24 43				
22	52	1732	6C4	5B C4	24 44				
22	53	1733	605	5B C5	24 45				
22	55	1734	6C6	5B C6	24 46				
22	56	1735	6C7	5B C7	24 47				

80 (Col	Positio	n	Buffer Addr	ess (Hex)
R	С	Dec	Hex	EBCDIC	ASCII
22	57	1736	6C8	5B C8	24 48
22	58	1/3/	609	5B C9	24 49
22	59	1738	6CA	58 4A	24 58
22	60	1739	6CB	58 4B	24 2E
22	60	1740		5B 4C	24 30
22	62	1741	60D	5B 4U	24 20 24 28
22	63	1742	BCE	50 4C	24 2B 24 21
22	65	1743	600	58 50	24 21
22	66	1745	6D1	5B D1	24 20 24 4A
22	67	1746	602	58 D2	24 4A
22	68	1747	6D3	5B D3	24 4C
22	69	1748	6D4	5B D4	24 4D
22	70	1749	6D5	5B D5	24 4E
22	71	1750	6D6	5B D6	24 4F
22	72	1751	6D7	5B D7	24 50
22	73	1752	6D8	5B D8	24 51
22	74	1753	6D9	5B D9	24 52
22	75	1754	6DA	5B 5A	24 5D
22	76	1755	6DB	5B 5B	24 24
22	77	1756	6DC	5B 5C	24 2A
22	78	1757	6DD	5B 5D	24 29
22	79	1758	6DE	5B 5E	24 3B
22	80	1759	6DF	5B 5F	24 5E
23	01	1760	6E0	5B 60	24 2D
23	02	1761	6E1	5B 61	24 2F
23	03	1762	6E2	5B E2	24 53
23	04	1763	6E3	5B E3	24 54
23	05	1764	6E4	58 E4	24 55
23	06	1765	665	5B E5	24 55
23	07	1766	020	58 E0 E0 E7	24 57
23	08	1769	659	58 E2	24 58
23	10	1769	659	58 F9	24 50 24 5A
23	11	1770	6EA	5B 6A	24 7C
23	12	1771	6EB	5B 6B	24 2C
23	13	1772	6EC	5B 6C	24 25
23	14	1773	6ED	5B 6D	24 5F
23	15	1774	6EE	5B 6E	24 3E
23	16	1775	6EF	5B 6F	24 3F
23	17	1776	6F0	5B F0	24 30
23	18	1777	6F1	5B F1	24 31
23	19	1778	6F2	5B F2	24 32
23	20	1779	6F3	5B F3	24 33
23	21	1780	6F4	5B F4	24 34
23	22	1781	6F5	5B F5	24 35
23	23	1782	6F6	5B F6	24 36
23	24	1783	6F7	5B F7	24 37
23	25	1784	6F8	5B F8	24 38
23	26	1785	6F9	5B F9	24 39
23	27	1786	6FA	5B 7A	24 3A
23	28	1787	6FB	5B 7B	24 23
23	29	1788		58 /C	24 40
23	30	1700	0FU 655	50 /U	24 27
23	31	1701	6FE	58 7E	24 30
23	32 22	1707	700	5C 40	24 22
23	33 34	1793	701	5C C1	2A 41
20	35	1794	702	5C C2	2A 42
23	36	1795	703	5C C3	2A 43
23	37	1796	704	5C C4	2A 44
23	38	1797	705	5C C5	2A 45

80	Col	Positio	n	Buffer Address	(Hex)
R	C	Dec	Hex	EBCDIC	ASCII
				·	
23	39	1798	706	5C C6	2A 46
23	40	1799	707	5C C7	2A 47
23	41	1800	708	5C C8	2A 48
23	42	1801	709	5C C9	2A 49
23	43	1802	70A	5C 4A	2A 5B
23	44	1003	708	5C 4B	
23	45	1004	700	5C 4C	2A 3C
23	40	1805	705	5C 4D	2A 20 2A 2B
23	48	1807	70E	5C 4E	2A 2B 2A 21
23	49	1808	710	50 50	24 26
23	50	1809	711	5C D1	2A 4A
23	51	1810	712	5C D2	2A 4B
23	52	1811	713	5C D3	2A 4C
23	53	1812	714	5C D4	2A 4D
23	54	1813	715	5C D5	2A 4E
23	55	1814	716	5C D6	2A 4F
23	56	1815	7,17	5C D7	2A 50
23	57	1816	718	5C D8	2A 51
23	58	1817	719	5C D9	2A 52
23	59	1818	71A	5C 5A	2A 5D
23	60	1819	71B	5C 5B	2A 24
23	61	1820	71C	5C 5C	2A 2A
23	62	1821	71D	5C 5D	2A 29
23	63	1822	71E	5C 5E	2A 3B
23	64	1823	71F	5C 5F	2A 5E
23	65	1824	720	5C 60	2A 2D
23	66	1825	721	5C 61	2A 2F
23	67	1826	722	5C E2	2A 53
23	68	1827	723	5C E3	2A 54
23	69	1828	724	5C E4	2A 55
23	70	1029	725	5C E5	2A 50 2A 57
23	71	1831	720	5C E0	2A 57 2A 58
23	72	1832	728	5C E8	2A 50 2A 59
23	74	1833	729	50 E0 50 E9	2A 50
23	75	1834	72A	5C 6A	2A 7C
23	76	1835	72B	5C 6B	2A 2C
23	77	1836	72C	5C 6C	2A 25
23	78	1837	72D	5C 6D	2A 5F
23	79	1838	72E	5C 6E	2A 3E
23	80	1839	72F	5C 6F	2A 3F
24	01	1840	730	5C F0	2A 30
24	02	1841	731	5C F1	2A 31
24	03	1842	732	5C F2	2A 32
24	04	1843	733	5C F3	2A 33
24	05	1844	734	5C F4	2A 34
24	06	1845	735	5C F5	2A 35
24	07	1846	736	5C F6	2A 36
24	08	1847	737	5C F7	2A 37
24	09	1848	738	5C F8	2A 38
24	10	1849	739	5C F9	2A 39
24	11	1850	73A	5C 7A	2A 3A
24	12	1851	/3B	5C 7B	2A 23
24	13	1852	730	5C 7C	2A 40
24	14	1853	730	5C /D	ZA 2/
24	15	1054	/ JE 72E	50 /E	2A 3D
24	10	1000	740	50 /F	20 20
24	12	1257	740	50 40	29 20
24 24	10	1858	742	5D C2	29 42
24	20	1859	743	5D C3	29 43
e. 1	~~		· · -		

80 (Col	Position	ו	Buffer Address (Hex)					
R	С	Dec	Hex	EBC	DIC	ASC			
24	21	1860	744	5D	C4	29	44		
24	22	1861	745	5D	C5	29	45		
24	23	1862	746	5D	C6	29	46		
24	24	1863	747	5D	C7	29	47		
24	25	1864	748	5D	C8	29	48		
24	26	1865	749	5D	C9	29	49		
24	27	1866	74A	5D	4A	29	5B		
24	28	1867	74B	5D	4B	29	2E		
24	29	1868	74C	5D	4C	29	3C		
24	30	1869	74D	5D	4D	29	28		
24	31	1870	74E	5D	4E	29	2B		
24	32	1871	74F	5D	4F	29	21		
24	33	1872	750	5D	50	29	26		
24	34	1873	751	5D	D1	29	4A		
24	35	1874	752	5D	D2	29	4B		
24	36	1875	753	5D	D3	29	4C		
24	37	1876	754	5D	D4	29	4D		
24	38	1877	755	5D	D5	29	4E		
24	39	1878	756	5D	D6	29	4F		
24	40	1879	757	5D	D7	29	50		
24	41	1880	758	5D	D8	29	51		
24	42	1881	759	5D	D9	29	52		
24	43	1882	75A	5D	5A	29	5D		
24	44	1883	75B	5D	5B	29	24		
24	45	1884	75C	5D	5C	29	2A		
24	46	1885	75D	5D	5D	29	29		
24	47	1886	75E	5D	5E	29	3B		
24	48	1887	75F	5D	5F	29	5E		
24	49	1888	760	5D	60	29	2D		
24	50	1889	761	5D	61	29	2F		
24	51	1890	762	5D	E2	29	53		
24	52	1891	763	5D	E3	29	54		
24	53	1892	764	5D	E4	29	55		
24	54	1893	765	5D	E5	29	56		
24	55	1894	766	5D	E6	29	57		
24	56	1895	767	5D	E7	29	58		
24	57	1896	768	5D	E8	29	59		
24	58	1897	769	5D	E9	29	5A		
24	59	1898	76A	5D	6A	29	7C		
24	60	1899	76B	5D	6B	29	2C		
24	61	1900	76C	5D	6C	29	25		
24	62	1901	76D	5D	6D	29	5F		
24	63	1902	76E	5D	6E	29	3E		
24	64	1903	76F	5D	6F	29	3F		
24	65	1904	770	5D	FO	29	30		
24	66	1905	771	5D	F1	29	31		
24	67	1906	772	5D	F2	29	32		
24	68	1907	773	5D	F3	29	33		
24	69	1908	774	5D	F4	29	34		
24	70	1909	775	5D	F5	29	35		
24	71	1910	776	5D	F6	29	36		
24	72	1911	777	5D	F7	29	37		
24	73	1912	778	5D	F8	29	38		
24	74	1913	779	5D	F9	29	39		
24	75	1914	77A	5D	7A	29	3A		
24	76	1915	77B	5D	78	29	23		
27	77	1916	77C	5D	70	29	40		
27	78	1917	770	5D	7D	29	27		
27	70	1918	77E	5D	7E	29	3D		
24	80	1919	77F	5D	7F	29	22		
∠+	00		· · ·		• •				

na in the second se

Appendix C. Katakana Feature

This appendix contains Katakana unique information interface codes and the keyboard shift operations.

Interface Codes

																		n Bits
			0	0			(01			1	0			1	1		-0,1
	Hex 1	00	01	10	11	00	01	10	11	00	01	10	11	00	01	10	11	-2,3
Bits 4567	ļ	0	1	2	3	4	5	6	7	8	9	A	в	с	D	E	F	Hex 0
0000	0	NUL				SP	&	-		l –	У				Í	\$	0	1
0001	1	1	SBA				I	/		P	3		I	A	J		1	1
0010	2		EUA			Г	*			1	Ŧ	\uparrow		в	к	S	2]
0011	3		IC IC	1		ر	4			ゥ	ッ	ホ		С	L	т	3]
0100	4		1	1		`	2			I	,	7		D	м	U	4	1
0101	5	РТ	NL	[·	э			x	٢	Ξ		E	N	V	5]
0110	6					Э	ש			ħ	J	6		F	0	w	6]
0111	7	Ι	[Ι	P		L		+	=	×		G	Р	X	7]
1000	8					1	-		Ι	2	R	ŧ		H.	۵	Y	8	
1001	9		EM			ゥ				7	7	4		1	R	z	9]
1010	A				I				:)	1	V]
1011	В						¥		#				D]
1100	С		DUP		RA	<	•	%	@	IJ		Э	2]
1101	D		SF			()	_	•	5	N	5	2					1
1110	E		FM	1	1	+	;	>	=	7	t	IJ	"			1	1	1
1111	F		1		SUB		-	7		. †>	7	:1	•			1	1	1

Figure C-1 show the Japanese Katakana EBCDIC interface codes. It corresponds to Figure 2-5 for U.S. codes.

Notes:

- 1. Character code assignments other than those shown within all outlined areas of this chart are undefined. If an undefined character code is programmed, the character that will be displayed or printed is not specified. The character displayed by the 3277 or 3275 for a given undefined character code may be different for other devices. IBM reserves the right to change at any time the character displayed for an undefined character code.
- 2. Hex codes 4A, 5A, 6A, and 7F are used for CU addressing, device addressing, buffer addressing, and control purposes (for example, WCC and CCC), but have no associated graphic characters.
- 3. The DUP and FM control characters are displayed or printed as * and; respectively.
- 4. NL and EM are stored in the buffer in two character locations. The Katakana hardware expands the NL and EM characters received from the program to the required 2-byte sequence. It also contracts the 2-byte buffer sequence to the single-byte EBCDIC NL or EM code on a subsequent read operation.

NL and EM display or print as blank 5 and blank 9 respectively, except for a printer not operating under format control, which executes NL and EM and prints blank blank.

- 5. For AID, attribute, write control (WCC), copy control (CCC), CU and device address, buffer address, sense, and status characters, bits 0 and 1 are assigned so that each character can be represented by a graphic character in Figure 2-7.
- 6. For BSC data-link control characters, see Chapter 5.

Figure C-1. Japanese Katakana EBCDIC I/O Interface Code

Keyboard Shift Operations: LATIN SHIFT and KANA SHIFT Keys

lesis i secti e Commercia

The shift operations of the Katakana keyboards are different from those of the other EBCDIC keyboards described in Chapter 2. The following paragraphs discuss the unique keys and operations.

To place the keyboard in the lower shift of either Latin or Katakana (Kana) mode, press and release the desired mode shift key. This enables the characters on the lower portion of each character key to be generated. Holding the shift key depressed while operating the character keys causes the upper-shift characters of the selected mode to be generated.

In addition, a single depression of the Lock key locks the keyboard in the upper shift of the selected mode. A second depression of the Lock key returns the keyboard to the lower shift of the selected mode.

With two exceptions, once a mode is selected, the keyboard remains in that mode until the operator changes the mode by operating the Alternate Shift key. The exceptions are as follows:

• When power is initially applied, the keyboard is automatically placed in Latin mode.

• (Data entry keyboards only) – When the cursor enters a numeric field, the data entry keyboard is automatically placed in upper-shift Latin mode. Only 0–9, minus (-), decimal sign, and DUP may be entered when in this mode.

While the cursor remains in the numeric field, the upper-shift Latin mode can be overridden, one character at a time, by pressing the appropriate shift key as follows:

Upper-shift Kana mode – While holding the KANA SHIFT key depressed, press the selected character key.

Lower-shift Kana mode – Press and release the KANA SHIFT key; then press the selected character key.

Upper-shift Latin mode – While holding the LATIN SHIFT key depressed, press the selected character key. This permits keying in uppper-shift Latin mode characters other than 0-9, minus (-), decimal sign, and DUP.

Lower-shift Latin mode – Press and release the LATIN SHIFT key; then press the selected character key.

In all cases, when the selected character has been entered and the key (or keys) released, the keyboard returns to upper-shift Latin mode.

When the cursor leaves the numeric field, the keyboard returns to lower shift of the most recent Latin or Kana mode used by the operator. This is independent of whether the last mode was caused by an override by the operator or the mode being used just prior to entry of the cursor into the numeric field.

Appendix D. Data Analysis – APL Feature

Figure D-1 shows the Data Analysis – APL feature and associated features; Figure D-2 shows the interface codes.

Figure D-1. Data Analysis - APL Feature and Associated Features

, j		r				1			<u> </u>	r				r				Bits
		ļ	0 	0	.	ļ	((D1	·		1	0			·	11 T		0,1
	Hex 1	00	01	10	11	00	01	10	11	00	01	10	11	00	01	10	11	-2,3
Bits 4567		0	1	2	3	4	5	6	7	8	9	A	В	С	D	E	F	Hex 0
0000	0					SP	&	-				-	α		, ,		0	
0001	1							- 1		a	j		ε	A	J		1]
0010	2									Ь	k	S	ı	В	к	s	2	1
0011	3								1	c	1	t	ρ	с	L	т	3	1
0100	4									d	m	u	ω	D	M	U	4	1
0101	5						1			e	n	v		E	N	V	5	1
0110	6									f	o	w	×	F	0	w	6	
0111	7									9	р	×	ι, Ν	G	P	×	7	
1000	8								1	h	q	Y	· •	н	٩	Y	8	
1001	9									i	r	z		1	R	z	9	4.
1010	A					¢	!		:	†	Э	, n	V					
1011	В				Ι		\$,	#		c	U	Δ					
1100	с					<	+	%	ø	≤		1	Т					
1101	D					(1	Г	0	[]					
1110	E					+	;	>	=	L		2	×			Ī		
1111	F					1	-	7	"	· →	+	• •	ł					

1. NL, EM, DUP, and FM control characters are displayed or printed as 5, 9, *, and; characters, respectively, except by the printer under format control, in which case NL and EM do not result in a character's being printed.

2. The 89-character dual-case EBCDIC character set is shown within the bold outlines. All codes shown can be directly entered from the APL keyboard.

Legend:

Codes that cannot be entered from the text keyboard.

Codes transmitted are unique to the APL keyboard. (See Part 2.)

Figure D-2 (Part 1 of 2). Data Analysis – APL Interface Codes

			C	0			(01			1	0				11		0,1
Bits	Hex 1	00	01	10	11	00	01	10	11	00	01	10	11	00	01	10	11	2,3
4567		0	1	2	3	4	5	6	7	8	9	A	В	С	D	E	F	Hex (
0000	0										{	}	0					
0001	1									A	<u>J</u>	0	1					
0010	2									B	<u>K</u>	<u>s</u>	2	+	I	θ		1
0011	3									<u>c</u>	Ŀ	<u>T</u>	3		!	•		1
0100	4									D	M	<u>u</u>	4					
0101	5		5							Ē	N	V						
0110	6					,				Ē	<u>0</u>	W	6	₩	¥	क		1
0111	7				2					G	<u>P</u>	<u>X</u>	7	۲	4	2		
1000	8									<u>H</u>	2	<u> </u>	8					1
1001	9		9							<u><u>I</u></u>	<u> </u>	<u>z</u>						
1010	A	×				ñ		A -		1	11 JZ	3	- n					
1011	В					$\tilde{\mathbf{v}}$	A	v	~		п	L						
1100	с	i.								-		Г	٦					
1101	D								1	())	-	Т					1
1110	E		±			ф	+			+			T	1			1	
1111	F					Q	4			+		•	-]

1. These codes, preceded by a hex 1D control character, transmit the graphics shown.

2. Codes B5, B9, and 9E or codes 15, 19, and 1E can be used in program-to-terminal messages - characters 5, 9, and ±.

Legend:

Codes that cannot be entered from the text keyboard.

Codes that are not directly entered from the APL keyboard (APL characters are shown within the bold outline).

Codes transmitted are unique to the text keyboard. (See Part 1.)

Figure D-2 (Part 2 of 2). Data Analysis – APL Interface Codes

APL Keyboard Special Feature Operation (3277 Display Station Model 2)

The APL keyboard (Figure D-3) allows the direct entry and display of the 133-character APL character set (Figure D-4). [For the Technical Notation (TN) character set, see Figure D-5.] In addition, this keyboard changes two standard typewriter keys: Back-space key to APL ON/OFF key, and Backtab key to Backtab/APL ALT key.

APL ON/OFF Key

At initial power-on, the keyboard operates as a typewriter keyboard. Pressing the APL ON/OFF key once invokes the APL keyboard graphics. When the APL ON/OFF key is pressed once more, the keyboard reverts to the U.S. EBCDIC character set and standard operation. Keyboard status may be determined by pressing an APL character key; it will cause that character to be displayed only if APL is on. If the standard keyboard character is displayed, APL is off.

APL ALT Key

In APL-ON status, the APL ALT key serves as an additional shift key. Holding it down while pressing a key that has a compound APL symbol on the front produces the corresponding character and output code. Holding down APL ALT while pressing an alphabetic character key produces an underscored uppercase character. In APL-OFF status, the APL ALT key retains its original backtab function.

Legend:

Typamatic Keys

APL Off		APL On		
Lowercase Shift	Uppercase Shift	Lowercase Shift	Uppercase Shift	APL On with APL ALT
а	А	A	α (alpha)	A
b	B	В	⊥ (base)	В
С	C	C	n (cap)	C
d	D	D	(downstile)	D
е	E	E	∈ (epsilon)	E
f	F	F	(underbar)	F
9	G	G	√ (del)	Ġ
h	н	н	∆ (delta)	H
i	a t a sa ta sa	1	າ (iota)	Ī
j	J · ·	J	o (null)	1 J
k in the second secon	ĸ	K	t (quote)	K
	L	L	🗌 (quad)	L
m	м	м	(stile)	M
n	N	N	T (top)	N A A
• • •	0.	0	O (circle)	ō
р	Ρ	P	* (star)	Р
q	Q	Q	? 🦲 (query)	a
r	R	R	ρ (rho)	<u>R</u>
s	S	S	[(upstile)	S
t	Т	Т	\sim (tilde)	T
u	U	U	↓ (down)	<u>u</u>
v	V	V	∪ (cup)	V
w	W	w	ω (omega)	W
×	х	X	⊃ (close shoe)	X
У	Y	Y	∱ (up)	<u> </u>
z	Z	Z	⊂ (open shoe)	Z
1	,i	1	(dieresis)	I (I-beam)
2	@	2	(overbar)	🖓 (del tilde)
3	#	3	< (less)	🖞 (del stile)
4	\$	4	\leq (not greater)	🛕 (delta stile)
5	%	5	= (equal)	ϕ (circle stile)
6	¢	6	\geq (not less)	Q (circle slope)
7	&	7	> (greater)	⊖ (circle bar)
8	* (asterisk)	8	≠ (not equal)	🛠 (log)
9	(9	∨ (OR)	
0)	0	A (AND)	A (NAND)
-		+	(bar)	! (quote dot)
=	+	×	÷ (divide)	🗄 (domino)
¬	ļ	←	→ (right)	(quote quad)
;	:		((open paren)	👲 (base null)
1 '	"	1) (close paren)	क (top null)
,	<		; (semicolon)	A (cap null)
•	>	•	: (colon)	+ (slope bar)
/	?	/	\ (slope)	✓ (slant bar)

Figure D-4. APL Keyboard Feature Character Set

TN Character	Keyboard Substitute (All with APL On)			Character	Keyboard Substitute (All with APL On)				
Subscript 1	L 1	(APL downstile + digit)	٥	(degree)	0	(APL null)			
Subscript 2	L 2	(APL downstile + digit)	±	(plus or minus)	ቋ	(APL base null)			
Subscript 3	ĹЗ	(APL downstile + digit)	((left brace)	∇	(APL del)			
Subscript n	ĹΝ	(APL downstile + char.))	(right brace)	Δ	(APL delta)			
Superscript 0	Γo	(APL upstile + digit)	п	(lozenge)		(APL quad)			
Superscript 1	∏ 1	(APL upstile + digit)		(histogram)	•	(APL domino)			
Superscript 2	2	(APL upstile + digit)	٠	(bullet)	⊗	(APL log)			
Superscript 3	[3	(APL upstile + digit)	٦	(upper right corner)	\supset	(APL close shoe)			
Superscript 4	۲4	(APL upstile + digit)	F	(upper left corner)	\cap	(APL cap)			
Superscript 5	Γ5	(APL upstile + digit)	. L	(lower left corner)	С	(APL open shoe)			
Superscript 6	[6	(APL upstile + digit)		(lower right corner)	U	(APL cup)			
Superscript 7	٢7	(APL upstile + digit)	т	(top junction)	т	(APL top)			
Superscript 8	8]	(APL upstile + digit)	⊢	(left junction)	7	(APL slant bar)			
Superscript 9	[9	(APL upstile ⁺ + digit)	T	(bottom junction)	T	(APL base)			
Superscript ()]	(APL upstile + char.)		(right junction)	£	(APL slope bar)			
Superscript +	Γ+	(APL upstile + char.)	+	(DA cross)	÷	(APL divide)			
Superscript)	٢)	(APL upstile + char.)	-	(extended dash)	-	(APL overbar)			
Superscript -	٢-	(APL upstile + char.)							

- The 3270 with the Data Analysis APL feature provides the capability of screen display and printer output of the TN character set and certain other special characters not shown in Figure D-3. In addition, most of the TN characters may be directly entered from the 3270 APL keyboard. Characters that compose the total TN character set are shown above. along with the means of directly entering each character or a recommended substitution of one or two characters to be used for each character.
- 2. The following subset of TN characters may be directly entered on the keyboard (see Figure D-3 of this appendix for proper setting of shift or APL ON/OFF keys).

space	1
A-Z (uppercase)	26
a—z (lowercase)	26
0–9 (numeric)	10
$\downarrow \uparrow \leq \geq \neq$ [] $\leftarrow \rightarrow \setminus$ (APL special characters)	11
-=¬;',./\$%c&*()-+1:''<>?	
(non-APL special characters)	23

3. The subset of 35 TN characters, shown above, though they may not be directly entered, may be entered through use of the recommended substitution of APL characters not used in Note 2. Note that a user's application program would have the responsibility of decoding these substitutions. (Refer to Figure D-2, Data Analysis – APL Interface Codes.)

Figure D-5. APL Keyboard TN Character Availability

Text Keyboard Special Feature Operation (3277 Display Station Model 2)

The text keyboard (Figure D-6) contains 78 keys that permit direct entry and display of the 151-character text keyboard character set (Figure D-7) when the appropriate shift is used. This keyboard also contains a shift indicator light to simplify operator control over shift modes. The text keyboard has changes to six normal typewriter keyboard control keys: RESET and ENTER keys have been repositioned to reduce confusion with the uppercase/lowercase SHIFT keys, the Backspace key is the ALT ON/OFF key, the TEST REQ key is the CODE key, the ERASE EOF key is the ERASE EOF/TEST REQ key, and the New Line key is both a character and function key.

Legend:

Typamatic keys

Figure D-6. Text Keyboard

ALT ON/OFF Key

At initial power-on, alternate mode is inactive and the ALT indicator (above the ALT ON/OFF key) is off. This allows the dual-case EBCDIC character set to be entered. (See Alternate Mode in Figure D-7.) Pressing the ALT ON/OFF key once turns on alternate mode and the ALT indicator and allows the characters in the center column of Figure D-7 to be entered and displayed. When the ALT ON/OFF key is pressed again, the ALT indicator is turned off and alternate mode becomes inactive.

When alternate mode is inactive and the keyboard is in lowercase (SHIFT key inactive) shift, the character in the lower left or the lowercase of the character in the center of the appropriate keytop can be entered. When alternate mode is inactive and the keyboard is in uppercase shift, the character in the upper left or the uppercase of the character in the center of the appropriate keytop can be entered.

When alternate mode is active and the keyboard is in lowercase (SHIFT key inactive), the character in the lower right or the lowercase of the character in the center of the appropriate keytop can be entered. When alternate mode is active and the keyboard is in uppercase, the character in the upper right or the uppercase of the character in the center of the appropriate keytop can be entered.

CODE Key

When the CODE key is held down, code shift is active in both ALT ON and ALT OFF conditions. Code shift active allows the character on the front face of each key to be entered and displayed. (See the column on the right side of Figure D-7.) Code shift becomes inactive when the CODE key is released.

ERASE EOF/TEST REQ Key

When this key is pressed and the code shift is inactive, the erase EOF function is inputted. When this key is pressed and the code shift is active, the test request function is inputted. The ERASE EOF and TEST REQ keys are described in Chapter 2 under "Keyboard Operations."

Standard Mod	le	Alternate Moo	le				
Lowercase	Uppercase	Lowercase	Uppercase				
Shift	Shift	Shift	Shift	Code Mode			
а	Α	а	Α	- (left junction)			
ь	в	b	В	• (bullet)			
С	С	С	С	(lower right corner)			
d	D	d	D	- (right junction)			
е	E	е	E	(upper right corner)			
f	F	f	F	Δ (delta)			
g	G	g	G	∇ (del)			
h	н	h	н	 (histogram) 			
i	I	i	I.	(upstile)			
j	J	j	J	🛕 (delta stile)			
k	к	k	к	🔯 (del stile)			
1	L	1	L	ц (lozenge)			
m	м	m	м	< (less)			
n	N	n	N	n (subscript)			
.0	0	o	0	(downstile)			
р	Р	р	Р	Δ (delta underscore)			
q	Q	q	Q	(upper left corner)			
r	R	r	R	Λ (AND)			
S	S	S	S	+ (DA cross)			
t	Т	t	т	v (OR)			
u	U	u	U	→ (right)			
v	V	v	V	⊛ (log)			
w	W	w	W	T (top junction)			
x	х	×	х	⊥ (bottom junction)			
y i	Y	y	Y	← (left)			
z	Z	Z	Z	(lower left corner)			
1	1	1	/ 1	(1			
2	@	2	2	subscript { 2			
3	#	3	3	3			
4	\$	4	4	(stile)			
5	%	5 super-	/ 5	(quad)			
6	[6 script)6	↓ ↓			
7	&	7	7	1 (up)			
8	*	8	8) ↓ (down)			
9	(9	9	() (superscript)			
0)	0	\0.				
- (hyphen)	-	 – (extended 	- } (super-				
=	+	≠ dash)	+ } script)	±			
1]	!	-1	☆ (del tilde)			
;	:		:	¥ ·			
, .	.,	{)	+			
,	•		,				
•	·	;	•				
/	?	١	?	>			
(domino)	•	•	•	▼ (top null)			
				<u>∳</u> (base null)			

Figure D-7. Text Keyboard Feature Character Set

New Line Key

Pressing the New Line key (with alternate mode either ON or OFF) causes the new line character, :, to display and the new line function (index and cursor return to left margin) to occur. In code shift, the New Line key only enters the domino; the new line function is provided by the cursor left key in code shift only. The New Line key is not typamatic on the text keyboard.

Tab and Backtab Functions

The Tab and Backtab keys on the text keyboard operate in the same way as those on the typewriter keyboard. (See "Keyboard Operations" in Chapter 2.) In code shift, however, the functions are not performed; instead, the tab (Φ) and backtab (Φ) symbols are entered and displayed for text application programs to format printed output. The Tab key is not typamatic in code shift.

3288 Printer/Text Print Feature

Figures D-8, D-9, and D-10 note the characters available for printing on the 3288 under various print modes.

Characters p	rovided on	the 120-character	TN print belt:
	Se	e Note	
а	A		≤
b	В	•	{
c	С	<	Ť
d	D	(п
е	E	+	}
f	F	- I	
9	G	3	
h	н	!	<u>+</u>
I	· • •	\$	Ļ
) -	J	* .	
ĸ	K)	
m	L M		-
n .	N	1	
0	0	1	-
a a	P	,	*
q	Q	%	j
r	R	· ·	E .
s	S	>	L
t	Т	?	
u	U	:	
v	V	#	
w	W	@	
Χ	х	1	
Y	Y	=	
Z	Z		
$\frac{1}{2}$	1	(see No	te)
2	2		
3	3		
5	5		
6	6		
7 Superscripte	7		
8	8		
9	9		
0	0		
(
)]			
+ /			

Note: The characters listed in the second and third columns constitute the character set for the (optional) 64-character EBCDIC print belt. The broken vertical bar $\begin{pmatrix} 1 \\ 1 \end{pmatrix}$ is not on the 120-character TN print belt and cannot be entered from the text keyboard.

Figure D-8. Text Print Character Set for 3288 Printer Model 2

	н		C	00			01				10				11			
	e x	00	01	10	11	00	01	10	11	00	01	10	11	00	01	10	11	4 - 2,3
Bits 4567	1 ♥	0	1	2	3	4	5	6	7	8	9	А	в	с	D	E	F	- Hex O
0000	0					SP	&	-	1. L		5	-	0				0	1
0001	1							1		а	j	0	1	А	J		1	
0010	2									b	k	s	2	в	к	S	2	1
0011	3				†					с	1	t	3	с	L	т	3	а 1
0100	4				1					d	m	u	4	D	м	υ	4	
0101	5								1	е	n	v		E	N	v	5	
0110	6									f	0	w	6	F	0	w	6	
0111	7								1	g	р	×	7	G	Р	x	7	1
1000	8									h	q	У	8	н	٥	Y	8]
1001	9									i	r	z		I,	R	z	9	
1010	А					¢	1	9	:	<	ц	±	-					
1011	в						\$,	#	(}	L						
1100	с					<	*	%	@			Г	7					
1101	D					(· _	•)	L.,]					
1110	E			[· · ·		+	;	>	=	• +		≥	¥	. '	1.1	· .	an an	1
1111	F					1		?		+		•	SI					

1. Only those data characters shown within the bold outlines can be printed by the 3288 printer with the Text Print feature installed, using the 64-character EBCDIC print belt.

2. NL (hex 15), EM (hex 19), DUP (hex 1C), FM (hex 1E), and NUL (hex 00), and SI control characters are printed as 5, 9, *, ; and space characters, respectively, except when line length format is not specified, in which case NL and EM do not result in a character's being printed.

3. Hex 6A, superscript 9 shown above, causes a broken vertical bar (]) to be printed when using the 64-character EBCDIC print belt.

4. SI (BF) is suppress index.

Figure D-9. 3288 Variant of EBCDIC for Text Print Feature

1. During execution of a Copy command, only the characters shown above are printed by the 3288 equipped with the Text Print feature and using the 120-character TN print belt.

2. If the 120-character TN print belt is replaced with a 64-character EBCDIC print belt, only the characters in the first 3 columns are printed.

3. The control codes NULL, FF, DUP, FM, NL, and EM are printed as space, <, *, ;, 5 and 9, respectively, regardless of which print belt is installed.

4. When additional character and control codes not shown above appear in the data stream, printing of undefined characters or erroneous printer operation results.

Figure D-10. 3288 Text Print Restricted Character Set (Copy Command)

1 hand a regulation

Appendix E. Abbreviations

A. Attention.
ACK. Positive acknowledge.
AID. Attention identification.
ALPHA. Alphameric.
A/N. Alphameric (alphabetic/numeric)
ASCII. American Standard Code for Information Interchange.
async. Asynchronous.
atb. Attribute.

B. Busy.
BB. Begin bracket.
BCC. Block check character.
BIU. Basic information unit.
BOC. Bus out check.
bps. Bits per second.
BSC. Binary synchronous communications.
BTAM. Basic telecommunications access method.

C. Column. CAW. Channel address word. CC. Chain Command (flag), control check. CCC. Copy control character. CCW. Channel control word. CE. Channel end. char. Character. cmd. Command. cncl. Cancel. cps. Characters per second. CPU. Central processing unit. CR. Command Reject. CRT. Cathode-ray tube. CSW. Channel status word. ctl. Control. CU. Control unit. CUE. Control Unit End.

D. Display.
DAA. Data access arrangement.
DB. Device busy.
DC. Data check.
DE. Device end.
dec. Decimal.
del. Delete.
disc. Disconnect.
DLE. Data link escape.
DR. Definite response.
dup. Duplicate.

EAU. Erase All Unprotected.
EB. End brackets.
EBCDIC. Extended binary-coded-decimal interchange code.
EC. Equipment check.
FEL expedited flow indicator

EC. Equipment check.
EFI. expedited flow indicator.
EM. end of message.
ENQ. enquiry.
EOF. end of field.
EOI. end of inquiry.
EOR. end of record.
EOT. end of transmission.
ERP. error-recovery procedure.
ESC. escape.
ETB. end of transmission (block).
ETX. end of text.

EUA. Erase Unprotected to Address. EX. Exception (response) FF. Forms feed. FID. Format identifier. FIE. Function interpret error. FM. Field mark, function management. GP. General Poll. hex. Hexadecimal. Hz. Hertz. I. Information (format). IC. Insert Cursor. ID. Identity. ident. Identification. ind. Indicator. INS. Insert. I/O. input/output. IOS. Input/Output Supervisor. IR. Intervention Required. ITB. Intermediate transmission block. kbd. Keyboard. LRC. Longitudinal redundancy check. LU/SSCP. Logical unit/system services control point. MDT. Modified data tag. NA. Not applicable. NAK. Negative acknowledgment. NCP. Network control program. NL. New Line. NS. Nonsequenced (format).

OC. Operation Check. OICR. Operator identification card reader.

NSA. Nonsequenced acknowledgment.

NUL. Null.

P. Printer, protected.
PA. Program access.
PF. Program function.
PSI. Primary to secondary indicator.
PT. Program tab.

R. Row.
RA. Repeat to Address.
Rd Mod. Read Modified.
req. Request.
RH. Request/response header.
RNR. Request not ready.
ROL. Request online.
R/R. Request/response.
RR. Request ready.
RU. Request ready.
RU. Request response unit.
RVI. Reverse interrupt.

S. Sequenced (format).SA. Selection addressing.SBA. Set Buffer Address.

SDLC. Synchronous data link control.
SF. Start Field.
SIOF. Start I/O Fast Release.
SM. Status modifier.
SNA. Systems network architecture.
SNRM. Set Normal Response Mode.
SOH. Start of heading.
SOR. Start of record.
SP. Space, Specific Poll
SPD. Selector-pen detect.
S/S. Status and sense.
STX. Start of text.
SUB. Substitute.
sw. Switch.
SYN. Synchronous idle.

TC. Transmission check. TCU. Transmission control unit. TH. Transmission header. TTD. Temporary text delay.

U. Unpotected.UC. Unit check.UE. Unit exception.US. Unit specify.

V. VoltsVFC. Vertical forms control.VTAM. Virtual telecommunications access method.

WACK. Wait before transmit positive acknowledgment. WCC. Write control character. WT. World Trade.

Appendix F. Glossary

This glossary defines data processing and communication terms used in this publication and other terms as they apply to the 3270 Information Display System. For definitions of terms not included in this glossary, see *IBM Data Proces*sing Glossary, GC20-1699.

access method. A technique for moving data between main storage and input/output devices.

AID. See attention identifier.

alphameric field. A field that may contain any alphabetic, numeric, or special character that is available on any of the 3270 keyboards.

alphameric keyboard. A typewriter-like keyboard used to enter letters, numbers, and special characters into a display station buffer; also used to perform special functions (such as backspacing) and to produce special control signals.

attention. An occurrence, external to an operation, that would cause an interruption of the operation.

attention identifier (AID). A code that is recorded in the display station when the operator takes an action that produces an interruption.

attribute. A characteristic of a display field. The attributes of a display field include protected or unprotected (against manual input and copy operations); numeric-only or alphameric input control: displayed, nondisplayed, display-intensified; selector-pen-detectable or -nondetectable; and modified or not modified.

attribute character. A code that defines the attributes of the display field that follows. An attribute character is the first character in a display field, but it is not a displayable character.

audible alarm. An alarm that is activated when predetermined events occur that require operator attention or intervention or system operation.

auto-poll. A machine feature of a transmission control unit that permits it to handle negative responses to polling without interrupting the processing unit.

automatic polling. See auto-poll.

automatic skip. After entry of a character into the last character position of an unprotected display field, automatic repositioning of the cursor from a protected and numeric field to the first character position of the next unprotected display field.

automatic upshift. Automatic shift of the Data-Entry Keyboard when the cursor enters an unprotected numeric field to allow entry of only the upper symbols on dual-character keys.

available/unavailable. A device is available for CU-channel operation if (1) ac power is on at the device, (2) it is online, (3) it is physically attached to the CU, and (4) its security lock is turned on. The device is unavailable if any one of these conditions does not exist.

basic mode. A set of facilities (including the macro instructions needed to use them) that enable the application program to

communicate with BSC and start-stop terminals, including the locally attached 3270 Information Display System. READ, WRITE, SOLICIT, RESET, DO, and LDO macro instructions are basic-mode macro instructions.

basic telecommunications access method (BTAM). An access method that permits read/write communications with remote devices.

binary synchronous communications (BSC). Communication using binary synchronous transmission.

bracket. In VTAM, an exchange of data between an application program and a logical unit that accomplishes some task defined by the user as uninterruptible.

BSC. See binary synchronous communications.

BTAM. See basic telecommunications access method.

buffer. The hardware portion of a display station, control unit, or buffered printer in which display or print data is stored.

buffer address. The address of a location in the buffer at which one character can be stored.

busy/not busy. The CU considers a device busy if (1) it is performing an operation initiated by the CU (namely, an erase-all-unprotected operation or a printing operation) or (2) the CU attempted to perform a command with the device but found the device busy executing a manually initiated operation. A manual operation can be initiated at the keyboard, operator identification card reader, or selector pen.

cathode-ray tube (CRT). A vacuum tube in which a slender beam of electrons is projected upon a fluorescent screen to produce a luminous glow corresponding to the path of the beam.

CCC. See copy control character.

character addressing. The capability of gaining access to any character position in the buffer by using an address.

character generator. A hardware unit contained in each 3275, 3277, and printer. It converts the digital code for a character into signals that cause the character to be printed or displayed.

character position. A location on the screen at which one character can be displayed; also, an addressed location in the buffer at which one character can be stored.

clear indicator. In VTAM, a SESSIONC indicator sent by one node to another that prevents the exchange of messages and responses.

cluster control unit. (1) A device that can control the input/output operations of more than one device. A remote cluster control unit can be attached to a host CPU only via a communication controller. A cluster control unit may be controlled by a program stored and executed in the unit, or it may be controlled entirely by hardware. (2) See also communication controller.

command. A request from a terminal for the performance of an operation or the execution of a particular program.

communication controller. (1) A type of communication control unit whose operations are controlled by a program stored and executed in the unit. Examples are the IBM 3704 and 3705 Communications Controllers. (2) See also cluster control unit.

communication facilities. Any media, such as a telephone circuit, that connects a remote 3270 unit (3271 or 3275) with a computer.

connection. In VTAM, in response to a request from an application program, the linking of VTAM control blocks in such a way that the program can communicate with a particular terminal. The connection process includes establishing and preparing the network path between the program and the terminal.

control character. A character whose occurrence in a particular context initiates, modifies, or stops a control operation.

conventional 3270. A locally attached 3270 terminal or a remotely attached 3270 terminal that uses the BSC line discipline.

copy control character (CCC). A character used in conjunction with the Copy command to specify the type of data to be copied.

copy operation. An operation that copies the contents of the buffer from one display station or printer to another display station or printer attached to the same control unit.

cursor. A visible, movable mark used to indicate a position on a display surface.

cursor check. An error condition that occurs when 3275 or 3277 circuitry detects no cursor or more than one cursor in the display buffer.

Data-Entry Keyboard. A standard typewriter keyboard on which the numeric keys are grouped in a format similar to the numeric keys on a card punch keyboard (to facilitate entry of numeric data). Other features include (1) automatic upshift of the keyboard when the cursor enters a numeric-only display field and (2) automatic prevention of entry of nonnumeric characters into a numeric-only display field, when the special Numeric Lock feature is installed.

data set. See modem.

data stream. All data transmitted through a channel in a single read cr write operation to a display station or printer.

data transfer. In data communications, the sending of data from a data source and the receiving of the data at a data sink.

data-transfer mode. (1) A set of facilities (including the macro instructions needed to use them) that enable the application program to communicate with terminals. (2) See also basic mode and record mode.

definite response 1. In VTAM, a response that indicates whether its associated message was successfully forwarded to its final destination (such as the display screen of an output device).

definite response 2. In VTAM, a response that indicates that the node sending the response has accepted recovery responsibility for the associated message.

definition statement. In VTAM, the means of describing an element of the telecommunication system.

designator character. A character that immediately follows the attribute character in a selector-pen-detectable field. The designator character controls whether a detect on the field will or will not cause an attention. For a nonattention-producing field, the designator character also determines whether the modified data tag for the field is to be set or reset as the result of a selector-pen detect.

detect. See selector-pen detect.

detectable. An attribute of a display field; determines whether the field can be sensed by the selector pen.

disconnection. In VTAM, the disassociation of VTAM control blocks in such a way as to end communication between the program and a connected terminal. The disconnection process includes suspending the use of the network path between the program and the terminal.

display field. An area in the display buffer, or on a screen, that contains a set of characters, manipulated or operated upon as a unit.

display operator. A person who uses the keyboard to perform operations at a display station.

erase all unprotected (EAU) command. A command that clears all unprotected fields to nulls, resets modified data tags in all unprotected fields, unlocks the keyboard, resets the attention identifier, and repositions the cursor to the first character of the first unprotected field.

erase unprotected to address (EUA) order. An order that erases all unprotected positions (inserts nulls) from the current buffer address up to, but not including, the specified stop address.

escape command sequence. A 2-character sequence used in remote operations that consists of ESC (27 hex in EBCDIC and 1B hex in ASCII) and the command character that follows and specifies the 3270 command.

field. See display field.

FME response. See definite response 1.

formatted display. A screen display in which a display field, or fields, has been defined as a result of storing at least one attribute character in the display buffer.

general polling. (1) An input technique for remote 3270 devices in which special invitation characters are sent to a device control unit instructing that control unit to begin transmission from all devices ready to enter data. (2) See also polling and specific polling.

incoming group. (1) In systems with TCAM, that portion of a message handler designed to handle messages arriving for handling by the message control program. (2) See also outgoing group.

input field. An unprotected field in which data can be entered, modified, or erased manually.

insert cursor (IC). An order that moves the cursor, if necessary, to the current buffer address.

intensified display. An attribute of a display field; causes data in that field to be displayed at a brighter level than other data displayed on the screen.

intensified field. Data in a field displayed at a brighter level than that for a nonintensified field.

interpret table. In VTAM, an installation-defined correlation list that translates an argument into a string of 8 characters. Interpret tables can be used to translate a logon message into the name of an application program for which the logon request is intended.

invitation list. In systems with the telecommunications access method (TCAM), a sequence of polling characters or identification sequences associated with the stations online; the order in which the characters are specified determines the order in which the stations are invited to enter a message.

I/O pending. The condition that results (1) in the generation of the attention status in a locally attached display station and (2) in a response to a polling operation in a remotely attached display station.

keyboard numeric lock. A special feature that allows entry of 0-9, minus (-), period (.), or DUP only; otherwise, the keyboard will be disabled.

leased line. See nonswitched line.

line adapter. 1200-bps Integrated Modem.

line control characters. Characters that regulate the transmission of data over a line; for example, delimiting messages, checking for transmission errors, and indicating whether a station has data to send or is ready to receive data.

line group. One or more communication lines, of the same type, that can be activated and deactivated as a unit.

local. Pertaining to the attachment of devices directly by channels to a host CPU. Contrast with *remote*.

logical unit. The combination of programming and hardware of a teleprocessing subsystem that constitutes a terminal for VTAM.

logoff. In VTAM, a request from a terminal to be disconnected from an application program.

logon. In VTAM, a request by or on behalf of a terminal to be connected to an application program.

logon message. In VTAM, the data that can accompany a logon request received by the application program to which the request is directed.

major node. A set of one or more minor nodes represented by a single symbolic name. A major node can be a set of local terminals, a set of application programs, or a network control program.

MCP. See message control program.

MDT. See modified data tag.

message control program (MCP). In TCAM, a program that is used to control the sending or receiving of messages to or from remote terminals.

message handler. In systems with the telecommunications access method (TCAM), a sequence of user-specified macro instructions that examine and process control information in message headers, and that perform functions necessary to prepare message segments for forwarding to their destinations. One message handler is required for each line group having unique message-handling requirements.

modem. A device that modulates and demodulates signals transmitted over communication facilities.

modified data tag (MDT). A bit in the field attribute of a display field, which, when set to 1, causes that field to be transferred to the host during a read modified operation.

multidrop. A line or circuit interconnecting several stations; synonymous with *multipoint line*.

NIB. See node initialization block.

node. A point in a telecommunication system defined to VTAM by a symbolic name. See also major node.

node initialization block (NIB). In VTAM, a control block, associated with a particular node, that contains information used by the application program to identify a node and indicate how communication requests directed at the node are to be implemented.

nonswitched line. A connection that does not have to be established by dialing.

null character. An all-0 character that occupies a position in the storage buffer and is displayed as a blank.

null suppression. In reading the contents of the buffer for a display or printer, the bypassing of all null characters in order to reduce the amount of data to be transmitted or printed.

order code. A code that may be included in the write data stream transmitted for a display station or printer; provides additional formatting or definition of the write data.

order sequence. A sequence in the data stream that starts with an order code and includes a character address and/or data characters related to the order code.

outgoing group. (1) In systems with TCAM, that section of a message handler that manipulates outgoing messages after they have been removed from their destination queues. (2) See also incoming group.

parity check. An error condition that occurs when 3270 system circuitry detects one or more characters with bad parity in a 3270 unit buffer.

PCI. See program-controlled interruption.

polling. A technique by which each of the terminals sharing a communication line is periodically interrogated to determine whether it requires servicing.

printer hang (3284/3286 only). This condition exists when the print mechanism is unable to advance successfully. This condition can occur at any time during a printout through to, and including, the carriage return and new line advance. The printer will try to recover, that is, mechanically restore its print mechanism to the starting position. This hang condition may be caused by a mechanical malfunction or by loss of ac power at the carriage motor.

program access (PA) key. A program attention key that may be defined to solicit program action that does not require data to be read from the buffer of the display station. If a Read Modified command is issued in response to the program-attention-key interruption, only the attention identification (AID) character is transferred to the program; no data from the buffer is transferred.

program attention key. On a display keyboard, a key that produces an interruption to solicit program action.

program-controlled interruption (PCI). An interruption that allows buffers to be deallocated continuously, replenishing the available unit pool.

program function (PF) key. On a display keyboard, a key that passes a signal to a program to solicit a particular program operation.

Program Tab (PT). An order that advances the current buffer address to the address of the first character location of the next unprotected field.

protected field. A display field for which the display operator cannot use the keyboard or operator identification card reader to enter, modify, or erase data.

read-modified operation. An operation in which only those display fields in which the modified data tag is set are read.

ready/not ready. The only devices that can be *not ready* are the attached printers. Thus, a printer is not ready to operate with the CU when (1) the printer's cover is open, (2) it is out of paper, or (3) a *hang* condition exists in the printer. (See Printer Hang.)

record mode. A set of facilities (and the macro instructions needed to use them) that enable the application program to communicate with logical units or with the locally or remotely attached 3270 Information Display System. SEND and RECEIVE are recordmode macro instructions.

remote. Pertaining to the attachment of devices to a central computer through a communication control unit. Contrast with *local*.

Repeat to Address (RA). An order that stores a specified alphameric or null character, starting at the current buffer address and ending at, but not including, the specified stop address.

request parameter list (RPL). In VTAM, a control block that contains the parameters necessary for processing a request for connection or communication, or a request for an operation related to connection or communication.

RPL. See request parameter list.

RRN response. See definite response 2.

SDLC. Synchronous data link control.

security key lock. A special feature that disables all input functions and blanks the display, except when the key is inserted in the lock and turned. selector pen. A pen-like instrument that may be attached to the display station as a special feature. When pointed at a detectable portion of an image and then activated, the selector pen senses the presence of light at a display field and produces a selector-pen detect.

selector-pen attention. An interruption generated when a selectorpen detect occurs on a display field that has a null or space designator character. The attention concludes the selector-pen operation.

selector-pen detect. The sensing by the selector pen of the presence of light from data in a display field that has the detectable attribute. Depending on the designator character of that display field, the detection and location information is identified on the screeen (and stored in the buffer) or may produce an interruption that is transmitted to the CPU.

SESSIONC indicators. In VTAM, indicators that can be sent from one node to another without using SEND or RECEIVE macro instructions. SDT, clear, and STSN are SESSIONC indicators. All SESSIONC indicators are sent with a SESSIONC macro instruction.

Set Buffer Address (SBA). An order that sets the buffer address to a specified location.

Short Read. A Read Modifed command sent in reply to depression of the CLEAR CNCL key or of a PA key at a display station. Only an AID byte is transferred to main storage.

SNA 3270. A 3270 terminal that uses synchronous data link control (SDLC) and is treated as a logical unit by VTAM.

specified polling. (1) A polling technique that sends invitation characters to a device to find out whether the device is ready to enter data. (2) *See also* general polling and polling.

Start Field (SF). An order that defines the start of a data field for display or printing.

Structured Data, 6-Bit. The low-order, 6-bit, binary-coded characters used internally by the CU. The 6-bit code is applicable to all characters received by the CU: graphic, AID, attribute, write control (WCC), copy control (CCC), CU and device address, buffer address, status and sense.

suppress index (SI) order. An order that generates the suppress index character, valid only for the 3288 Printer Model 2 (other printers receive I, an OR bar). This character inhibits a line index to allow overprinting.

switched line. A communication line in which the connection between the computer and a remote terminal is established by dialing.

TCAM. See telecommunications access method.

telecommunication network. In a telecommunication system, the combination of all terminals and other telecommunication devices and the lines that connect them.

telecommunications access method (TCAM). A method used to transfer data between main storage and remote or local terminals. Application programs use either GET and PUT or READ and WRITE macro instructions to request the transfer of data, which is performed by a message-control program.
terminal. (1) *A point in a system or communication network at which data can either enter or leave. (2) Any device capable of sending and receiving information over a communication channel.

terminal-initiated logon. A logon request that originates from the terminal.

Test Request Read. A Read Modified command resulting from the operator's pressing the TEST REQ key to allow entry of a predefined test-request data format.

unformatted display. A screen display in which no attribute character (and, therefore, no display field) has been defined.

unprotected field. A display field for which the display station operator can manually enter, modify, or erase data.

virtual telecommunications access method (VTAM). A set of IBM programs that control communication between terminals and application programs running under DOS/VS, OS/VS1, and OS/VS2.

VTAM. See virtual telecommunications access method.

*American National Standards Institute (ANSI), American National Dictionary for Information Processing. VTAM definition library. The DOS/VS files or OS/VS data sets that contain the VTAM definition statements filed during VTAM definition. These statements describe the telecommunication system to VTAM and can be used to tailor VTAM and the system to suit the needs of the installation.

WCC. See write control character.

wraparound. The continuation of an operation (for example, a read operation or a cursor movement operation) from the last character position in a buffer to the first character position in the buffer.

write control character (WCC). A character used in conjunction with a Write-type command to specify that a particular operation, or combination of operations, is to be performed at a display station or printer.

1200-bps Integrated Modem. A feature for the 3275 that provides a modem capable of operating at a speed of 1,200 bps over nonswitched communication facilities, or at speeds of 600/1,200 bps over switched communication facilities via a similarly equipped 2701 or 3705.

Index

ACK 0 (Even Acknowledge) 5-5 ACK 1 (Odd Acknowledge) 5-5 address, buffer buffer address I/O interface codes B-1 buffer concepts 2-1 relationship to character position on display screen 2-3 relationship to printed data 2-27 addresses, 3270 units remote (poll and selection) 5-12 3272 and device (local) 4-3 AID (*see* attention identifier) alphameric field 2-9 APL feature D-1 ASCII characters, code chart 2-6 interface code 1-8 asynchronous status and sense conditions (local) 4-6, 4-8 attention identifier (AID) configurations 7-26 general 7-25 attribute characters bit assignments 2-9 bit definition 7-21 description 7-2 general 2-7 automatic skip 2-12

Backtab key 2-13 bid sequence 5-29 binary synchronous communications (BSC) description 1-6 operation 5-1 block check character (BCC) 5-3 blocking, text 5-1 BSC 1-6, 5-1 buffer addresses addressing layout 2-4 buffer address I/O interface codes B-1 relationship to character positions on display screen 2-3 relationship to printed data 2-27 buffer control orders (see orders) buffer size 2-31 buffer size 2-31

card reader, operator identification 2-19 cathode-ray tube 2-2 CCC (copy control characters) 3-10, 3-11 chaining command 2-31 local 4-4 remote 5-8 channel-detected errors 4-11 channel program concepts, remote operations (BSC) 5-1 character codes ASCII 2-6 EBCDIC 2-5 character generator, printer errors 2-30 character oriented keys 2-12 character positions on display 2-3 character set 2-21 character set 2-21 characters, data-link control (BSC) 5-4 checking, redundancy (BSC) 5-3 codes buffer address I/O interface codes B-1 character ASCII 2-6 EBCDIC 2-5 code structures, remote interface (BSC) 5-1 coding the panel 7-19 command byte (SDLC) 6-8

commands 3-1 data-link control character 2-5, 2-6 operator identification card 2-19 order, buffer control 2-5, 2-6, 7-15 commands Control-type BSC 5-10, 5-16 general 3-10 SDLC 6-8, 6-14, 6-16 SDLC 6-8, 6-14, 6 Copy BSC 5-16, 5-18 general 3-10 SDLC 6-9, 6-16 Erase All Unprotected BSC 5-16, 5-18 general 3-12, 7-36 SDLC 6-8 Erase Write Erase Write BSC 5-16, 5-18 general 3-10 SDLC 6-8, 6-16 No Operation 3-13 Read Buffer Read Buffer BSC 5-16, 5-20 general 3-3 SDLC 6-8, 6-14 Read Modified BSC 5-16, 5-20 general 3-4 SDLC 6-8, 6-14 Select 3-12 Sense 3-13 Write Write Write BSC 5-16, 5-18 general 3-8 SDLC 6-8, 6-16 components, display system 1-1 computer-initiated call 5-29 concepts, system 1-7 control characters, data-link (BSC) 2-5, 2-6, 5-4 control functions (SDLC) 6-11 control mode (remote BSC) 5-3 control-type command description 3-10 sequence/response diagram remote BSC 5-18 remote SDLC 6-16 sequences (remote BSC) 5-16 control unit 3271 1-1 3272 1-1 control unit responses (SDLC) 6-8 controls and indicators A-1 Copy command 3-10 copy control character (CCC) 3-10, 3-11 copy function 8-12 cursor 2-10 cursor check 2-10

data entry keyboard 2-11 data flow (local and remote) 2-1 data-link control (switched line BSC) 5-28 data-link control characters (BSC) 5-4 data link escape (DLE) 5-5 data set (see modem) data stream 1-8 data streams building output 8-8 dynamic output 8-11 immediate selector-pen 8-6 mixed Read Modified input 8-8 non-selector-pen 8-3 semidynamic output 8-11 static 8-8 data transmissions by the 3270 CU 6-10 decoding and generating data streams 8-1 defining the purpose of panels 7-12 Delete (DEL) key 2-14 designator characters 2-17, 7-29 device addressing local 4-3 remote 5-12, 6-6 Dial feature 5-1 disabled keyboard, causes 2-15 disconnection 5-30 display character positions 2-2, 2-3 fields 2-7 formatted 2-3 images 2-2 operations 2-2 stations 1-2 unformatted 2-3 display system components 1-1 configurations 1-3 local attachment 1-3, 1-6 remote attachment 1-3, 1-6 Duplicate (DUP) key 2-14

EBCDIC characters, code chart 2-5 EM, NL, and FF printer orders 2-26 end of intermediate transmission block (ITB) 5-7 end of transmission (EOT) 5-7 end of transmission block (ETB) 5-7 ending status and sense conditions (local) 4-8 Enquiry 5-6 Erase All Unprotected (EAU) command 3-12, 7-35 ERASE EOF key 2-13 ERASE INPUT key 2-13 Erase Unprotected to Address (EUA) order 3-16, 7-34 Erase/Write command description, functional 3-10 operational sequences remote BSC 5-7, 5-18 remote SDLC 6-12, 6-16 error conditions operator identification card reader 2-25 printer 2-30 error-recovery procedures local 4-11 remote BSC 5-17 SDLC 6-21 error status and sense responses, remote BSC 5-22 SDLC 6-19 Escape (ESC) 5-7 examples of display image fields 2-4

features APL D-1 general 1-7 Katakana C-1 FF, EM, and NL printer orders 2-26 field concept 7-1 definition 7-4 display 2-7 selector-pen 2-17 field attributes character content 7-2 protection 7-2 transmission 7-3 visibility and detectability 7-3 FIELD MARK key 2-14 format CCC byte 3-10 display image 2-3, 2-4 operator identification card 2-19 print line 2-26 selector-pen field 2-17, 7-28 sense byte BSC 5-22 SDLC 6-12 WCC byte 3-8, 3-9

General Poll addresses 5-12 description 5-8 sequence/response diagram 5-10, 5-13 graphic characters AID codes 3-4 ASCII code chart 2-6 EBCDIC code chart 2-5 local and remote command codes 3-1 operator identification card codes 2-19 remote CU and device addressing BSC 5-12 SDLC 6-6 test request read heading 3-7

hex codes ASCII 2-6 EBCDIC 2-5 how fields are defined 7-1

immediate selector-pen data streams 8-6 indicators and controls 2-16, A-1 information (I) field 6-3 initial selection (local) 5-9 initial status and sense conditions (local) 4-6 input data 7-25 Insert Cursor (IC) order 3-15 Insert Mode key 2-13 interface codes 1-8 interface operations local 1-8 remote BSC 5-2 SDLC 6-1

Katakana feature C-1 key functions 2-12, 2-13 keyboard basic 2-11 disabling conditions 2-15 key functions 2-12 to 2-15 operations 2-9 types 2-10 United States 2-11 keys character-oriented 2-12 field-oriented 2-12

laying out a panel 7-13 link test command/response 6-3 local attachment of display system 1-3 local operations 1-8, 4-1

magnetic stripe format 2-21 modem 1-7 modes of operation, remote (BSC) 5-2 modifying panels 7-30 multipoint data link control BSC 5-2 SDLC 6-1

NAK (Negative Acknowledgment) 5-5 New Line key 2-13 NL, FF, and EM printer orders 2-26 No Operation command 3-13 non-selector-pen data streams 8-3 not-ready condition, printer 2-30 Numeric Lock feature 2-15

operational differences 2-21 operational sequences remote nonswitched line BSC 5-7 SDLC 6-1 remote switched line, BSC 5-29 operations display 2-2 keyboard 2-9 local interface 4-1 printer 2-26 Read Modified 3-5 remote interface BSC 5-1 SDLC 6-1 selector pen 2-16 operator console keyboard 2-10 operator identification card reader 2-19 operator's response 7-24 orders adding to panel layout sheet 7-15 general 3-14, 7-15 printer 2-26 relationship to Write command 3-8 relationship to write command 5 5 orders, buffer control Erase Unprotected to Address (EUA) 3-16, 7-34 Insert Cursor (IC) 3-15 Program Tab (PT) 3-15, 7-37 Repeat to Address (RA) 3-16, 7-22 Set Buffer Address (SBA) 3-15 Start Field (SF) 3-14

pad 5-5 page length control 2-29 panel layout sheet 7-12 panel sequences example 7-7 planning 7-11 parity error, printer 2-31 point-to-point (switched line) data link control 5-28 Poll sequences, General and Specific addresses 5-9 description 5-8 sequence/response diagram 5-10, 5-13, 5-14 printer error conditions 2-30 format 2-26 operations 2-26, 2-28 orders 2-26 3284 1-2 3286 1-2 3287 1-3 Program Attention (PA) key 2-15, 7-27 Program Function (PF) keys 7-28 Program Tab (PT) order 3-15, 7-39

Read Buffer command BSC 5-16 general 3-3 Read commands 3-2 Read Modified command 3-4 Read Modified operation 3-5 Read-Type command sequences (remote) description BSC 5-16 SDLC 6-10 sequence/response diagram BSC 5-20, 5-32 SDLC 6-14 reader, operator identification card 2-19

recovery procedures, error local 4-11 BSC 5-17 SDLC 6-21 redundancy checking (remote) BSC 5-3 SDLC 6-2 remote attachment remote BSC remote attachment of display system 1-3, 1-6 remote chaining 5-8 remote code structures 5-1 remote error-recovery procedures BSC 5-17 local 4-11 SDLC 6-21 remote error status and sense responses BSC 5-22 SDLC 6-12 remote operational sequences BSC nonswitched line 5-7 BSC switched line 5-29 remote operations BSC 5-1 SDLC 6-1 remote status and sense (S/S) bytes BSC 5-22 SDLC 6-12 Repeat to Address (RA) order 3-16 repetitive output 7-37 request/response header (RH) 6-5 RESET key 2-14 reverse interrupt (RVI) 5-6

SBA codes 7-27 screen design 7-1 screen management 8-1 Security Key Lock 2-19 Select command 3-12 selection, initial (local) 4-1 selection addressing sequence (remote BSC) addresses 5-12 description 5-9 sequence/response diagram 5-14 selector pen field format 2-17, 7-28 input and output 7-28 operations 2-16 semidynamic output data streams 8-11 sense byte asynchronous status and sense conditions 4-7, 4-9 bit description 3-13, 5-22 ending status and sense conditions 4-7, 4-8 initial status and sense conditions 4-7, 4-8 initial status and sense conditions 4-6 Sense command 3-13 sequence/response diagrams remote BSC control-type commands 5-18 description of operational sequences (nonswitched line) 5-7 description of operational sequence (switched line) 5-31 example of maintained connection 5-36 Poll sequences, General and Specific 5-10 read-type commands 5-13, 5-20 selection addressing sequence 5-14, 5-20 status message transmission 5-34 3275-initiated transmission 5-34 3275-initiated transmission 5-32 write-type command 6-14 write-type command 6-16 Set Buffer Address (SBA) order 3-15 Short Read operation 3-6 SKIP key 2-13 Specific Poll addresses 5-9 description 5-8 sequence/response diagram 5-10, 5-13 Start Field (SF) order 3-14 start of heading (SOH) 5-6 start of text (STX) 5-6 static data streams 8-8 status and sense (S/S), remote conditions BSC 5-17 SDLC 6-12 definition of bits BSC 5-22 SDLC 6-18 error responses BSC 5-23 SDLC 6-19 status (local) asynchronous status and sense conditions 4-7, 4-9 ending status and sense conditions 4-7, 4-8 general description 4-4 initial status and sense conditions 4-6 status bit assignments 4-5 switched line operational sequences 5-29 point-to-point data link control 5-28 sync check 2-31 synchronous data link control (SDLC) description 1-6 operation 6-1 synchronous idle 5-5 system concepts 1-7

Tab key 2-12 TCU (transmission control unit) 1-5, 5-1 teleprocessing networks and modems 1-7 temporary text delay (TTD) 5-7 Test Request Read operation 3-7 text blocking 5-1 Text mode (remote) 5-3 timing considerations 3-1 transmission 7-3 transmission blocks (SDLC) 6-2 transmission blocks (SDLC) 6-2 transmission Header (TH) 6-4 transmitted codes – EBCDIC/ASCII 2-8 Transparent-Monitor mode (remote) 5-3 Typamatic Keyboard keys 2-11 Typewriter keyboard 2-11

unbuffered printer operations 2-28 United States I/O interface code charts 2-5, 2-6 keyboards 2-11

vertical bar character 2-31 Vertical Forms Control (VFC) feature 2-29 visibility and detectability 7-2

Wait before Transmit (WACK) 5-6 WCC (see write control character) Write command 3-8 write commands 3-7 write control character (WCC) 3-8, 3-9, 7-23, 7-32 write-type command sequences (remote) description BSC 5-16 SDLC 6-12 sequence/response diagram BSC 5-18 SDLC 6-16 write-type commands BSC 5-16 general 3-7 SDLC 6-8

X-Error Print feature 2-31

6-bit structured data 2-8 10-character set 2-21

IBM 3270 IDS 3271, 3272, 3275 Description and Programmer's Guide (File No. S360/S370/S3/4300-09) Printed in U.S.A. GA23-0060-0

IBM 3270 Information Display System 3271 Control Unit, 3272 Control Unit, 3275 Display Station Description and Programmer's Guide

Order No. GA23-0060-0

This manual is part of a library that serves as a reference source for systems analysts, programmers, and operators of IBM systems. This form may be used to communicate your views about this publication. They will be sent to the author's department for whatever review and action, if any, is deemed appropriate. Comments may be written in your own language; use of English is not required.

IBM may use or distribute any of the information you supply in any way it believes appropriate without incurring any obligation whatever. You may, of course, continue to use the information you supply.

Note: Copies of IBM publications are not stocked at the location to which this form is addressed. Please direct any requests for copies of publications, or for assistance in using your IBM system, to your IBM representative or to the IBM branch office serving your locality.

How did you use this publication?

As an	introduction
-------	--------------

As a reference manual

As a text (student)
As a text (instructor)

For another purpose (explain)

Is there anything you especially like or dislike about the organization, presentation, or writing in this manual? Helpful comments include general usefulness of the book; possible additions, deletions, and clarifications; specific errors and omissions.

Page Number:

Comment:

What is your occupation?

Newsletter number of latest Technical Newsletter (if any) concerning this publication: ____

If you wish a reply, give your name and address:

IBM branch office serving you _____

Thank you for your cooperation. No postage stamp necessary if mailed in the U.S.A. (Elsewhere, an IBM office or representative will be happy to forward your comments or you may mail directly to the address in the Edition Notice on the back of the title page.)

ł

1

I

1

ſ

Reader's Comment F	orm			
Header 3 Comment				
E Maradana	Diana Da Nati	Sa1a	فرابا م	
Foid and tape	Please Do Not	5tapie		
			NO	POSTAGE
		1 11 11 1	IF	MAILED
			UNIT	ED STATE
г				
	BUSINESS RE	EPLY MAIL		
	FIRST CLASS PERMIT NO.	40 ARMONK, N.Y.		
	POSTAGE WILL BE PAID BY ADD	RESSEE:		
	International Rusiness Mach	ines Corporation		وری از این این این ایس می این این این
	Department 52Q			
	Neighborhood Road			
	Kingston, New York 12401			

Fold and tape

Please Do Not Staple

Fold and tape

1

1

1

(

IBM 3270 Information Display System 3271 Control Unit, 3272 Control Unit, 3275 Display Station Description and Programmer's Guide

READER'S COMMENT FORM

Order No. GA23-0060-0

1

1

1

I

1

ł

I

1

or other gummed tape to seal this form

sensitive

This manual is part of a library that serves as a reference source for systems analysts, programmers, and operators of IBM systems. This form may be used to communicate your views about this publication. They will be sent to the author's department for whatever review and action, if any, is deemed appropriate. Comments may be written in your own language; use of English is not required.

IBM may use or distribute any of the information you supply in any way it believes appropriate without incurring any obligation whatever. You may, of course, continue to use the information you supply.

Note: Copies of IBM publications are not stocked at the location to which this form is addressed. Please direct any requests for copies of publications, or for assistance in using your IBM system, to your IBM representative or to the IBM branch office serving your locality.

How did you use this publication?

- As an introduction
 As a reference manual
 - For another purpose (explain)

As a text (student)
As a text (instructor)

Is there anything you especially like or dislike about the organization, presentation, or writing in this manual? Helpful comments include general usefulness of the book; possible additions, deletions, and clarifications; specific errors and omissions.

Comment:

A service in the **Page Number:** A representation of the service is a service service of the service is a service service of the service service of the service service service of the service service is a service service of the service is a service service service service service service is a service service service service service service is a service service

[]

What is your occupation? ____

Newsletter number of latest Technical Newsletter (if any) concerning this publication: ____

If you wish a reply, give your name and address:

IBM branch office serving you ____

Thank you for your cooperation. No postage stamp necessary if mailed in the U.S.A. (Elsewhere, an IBM office or representative will be happy to forward your comments or you may mail directly to the address in the Edition Notice on the back of the title page.)

Reader's Comment Form

Fold and tape

Please Do Not Staple

Fold and tape

NO POSTAGE NECESSARY IF MAILED IN THE UNITED STATES Cut or Fold Along Line

BUSINESS REPLY MAIL ARMONK, N.Y.

PERMIT NO. 40 FIRST CLASS

POSTAGE WILL BE PAID BY ADDRESSEE:

International Business Machines Corporation Department 52Q Neighborhood Road Kingston, New York 12401

Fold and tape

Please Do Not Staple

Fold and tape

