
SE 390: Series 300 oHP-UX Internals

Introduction

Greeting & Introductions

Your Expectations

My Expectations

- This class must be SE-driven.

This class must be practical.

This class must keep evolving.

- We are *very*ointerested in constructive criticism and suggestions.
As much as possible, put your comments in writing on the module
evaluations or the end-of-class evaluation.

- Please work in pairs, and work,on the same machine all week long.

- if you trash your disk, you need to fix it

- we will be doing detailed work, which goes
faster with two people

overview of the Kernel - What's the Big Picture?

- What is it there for?

- What are the chief components?

SE 390: Series 300 HP-UX,Internals

Introduction

'The "Big Picture" of the Kernel

- What is it there for?

- manage resources

- make life easier for the programmer

- What are the major components?

- process management

- memory management

- file system

- I/O system

- diskless nodes

- access to the system

- fundamental kernel data structures and library routines

The $350* Onion

User Commands

Hardware

* . . Single-user AXE

HP-UX The Big Plcture

D - memory

o
00
00

system
process

D
2393A

0 user
process

DD
DD
DD
"DD
DD
DD
DD
DD

startup - starting 6. "s, enabl ing O's, mappi'ng 0
shutdown - eras i ng 6." sand 0" s; f' 1 ush i ngD to disk

I/O - send i ngstuf'f' between. 0 and 7935, 2393

Memo ry Man agement - how we all oc ate and map 0
Process Management - how we control O"S

IPC - how O"s talk to each other

f'ilesystem - how we use and map the 7935

'Process Management

SE 390: Series 300 HP-UX Internals

Introduction

- creation of processes.

- Deletion of processes.

- Inter-process communication.

- CPU Scheduling.

Memory Management

SE 390: Series 300 HP-UX Internals

Introduction

- Allocating memory.

- Freeing memory, voluntarily or otherwise.

- voluntarily

- pager

- swapper

- Physical vs. virtual memory.

- Sharing of memory among many competing proces~es.

File System

SE 390: Series 300 HP-UX Internals

Introduction

- The Vnode layer.

- caching.

- The HFS/Berkeley/McKusick filesystem.

- Examples:

- open(2)

- write(2)

I/O System

- Block devices.

SE 390: Series 300 HP-UX Internals

Introduction

- Character devices.

- Buffering.

- Outline of driver structure.

- Flow of control in the I/O system.

Diskless Nodes

SE 390:. Series 300 HP-UX Internals

Introduction

- "Look Ma, no disk!"

- Diskless protocol.

- Vnode layer in the filesystem.

- Sharing: pids, file locking, swap space.

'SE 390: series 300 HP-UX Internals

Introduction

Access to the Kernel

- System calls.

front ends in libc

- change modes with TRAP

- trap handler calls syscall ()

- actual system call code is called indirectly

- The assembly-level debugger, adb(l).

- calls to nlist(3).

- YOU ARE ON YOUR OWN

- call nlist(3) to get address of kernel symbol

- open /dev/kmem and seek to address

- read information

- YOU ARE ON YOUR OWN - KERNEL DATA STRUCTURES
CHANGE FROM RELEASE TO RELEASE!

SE 390: Series 300 HP-UX Internals·

Introduction

Fundamental Kernal Data structures And Library Routines
[Note that this is not meant to be complete.]

- Core map ("cmap") - has an entry for each "normal" page of physical
memory. It is used by the .pageout daemon.

Resource maps - each of these is a list of {address, size} pairs
that keeps track of some kernel resource.

- swapmap - used to keep track of free swap space.

- kernelmap - keeps track of space for page tables

- proc table - there's an entry in this for each process.

- text table - has an entry for each shared-text program.

- file table· - an entry for each open file.

- inode table - used for inode caching.

- mount table - has an entry for each mounted volume.

swap device table - has an entry for each device that is supposed
to have swap space on it.

- sleep()/wakeup() - used to wait for something to become available.
If a process needs some resource (like a driver or chunk of memory),
it will request it and then sleep on the address of that resource.
When whoever is using that resource is done, it will do a wakeup()
on the address of the resource, causing all processes that were
waiting to wake up. One of them will get the resource, and the
others will go back to sleep.

- rminit()/rmfree()/rmalloc() - used to allocate things from the
resource maps mentioned above.

- spl?() - used to change processor level. If the kernel needs
to fool with a sensitive data structure, it will do an spl6()
to block out interrupts, fool with it, and then set the priority
back down with spIO() or splx(old-priority).

- copyin()/copyout() - used to move things between user space and
kernel space.

- fuword()/suword()/fubyte()/subyte() - used to fool with a single
byte or word in user space.

SE 390: Series 300 HP-UX Internals

Introduction

Glossary Of Terms

pte - page table entry

zombie - process that has exited, but hasn't been wait(2)ed for yet

kluster - group of adjacent pages that are put out to swap space
together

cluster - group of hardware pages that are grouped together for
efficiency. On the 300 this isn't done since the hardware
page size is 4K.

click - on the 300, a page

"push a page" - kick it out to swap space

poip - "page out in progress"

SE 390: Series· 30.0 HP-oX Internals

Module Evaluation

INTRODUCTION

On a scale of 1-10, 1 being bad, 5 being OR/don't care/irrelevant, 10
being good, please rate" the following. If you have particular comments,
please write them in. Thank you!

1. Clarity of presentation:

2. Depth/complexity (1 - material was too easy, 10 - it was too hard) :

3. Usefulness/applicability/relevance of material presented:

4. Speed of presentation (1 - too slow, 10 - too fast):

5 •. How good was the material (slides, notes, etc)?

6 • How good was the instructor?

Ways this could be improved (please be specific):

General Connnents:

SE 390: Series 300 HP-UX Internals

System startup

The Big Picture

- How do we get from a doing-nothing system to a system running HP-UX?

The ~ttle Pictures

- What is the correspondence between things being accomplished and
things being printed on the console's screen?

- Configuring the virtual-memory subsystem.

- Allocating and initializing kernel data structures.

- Preparing for I/O.

- Kicking off the first three processes.

System Startup

set up mem. map
allocate RAM
inventory hardware

set up process 0

start clock

init. root device
set up TS caching

j,,.--_-------fCOnT i gure swapping

pageout
daemon [I imited csp)] r 'v >-

I become sUJapper a..------.....,l

roundrobin
schedulir'!g

SE 390: Series 300 HP-UX Internals

System Startup

lternal Actions .vs •. External Signs.

- "booting /hp-ux"

set up kernel page table [s200/locore.s: start()]
get infonnation from bootrom: processor type, amount of RAM, •••
initialize the run queues [sys/kern synch.c: rqinit()]
allocate memory for DOS coprocessor-[s200/machdep.c: startup()]
allocate memory for the buffer cache, core map, inode table,

file table, callout table, and other structures
clear out memory and decide if we have enough to continue
initialize 68881
call device driver link routines (array of pointers to them

is set up in /etc/conf/conf.c)
look for ttys, init. console [s200io/kernel.c: tty_init()]

- "Console is ITE"
"ITE + 0 ports"
"680xO processor"
"MC68881 coprocessor"

enable parity detection [s200/machdep.c: parity_init()]
look for I/O cards

- "xxxxx at select code yy" - for each card found
"real mem = xxxxxxxx"
"mem reserVed for dos = xxxxxxx"
"using xxx buffers containing yyyyyy bytes of memory"

twiddle data structures to reflect process 0 [sysjinit main.c]
start clock (s200jclocks.s startrtclock()] -
initialize root device [s200jmachdep.c:'rootinit()]
initialize diskless

- "Local link is xxxxxxxxx"
"Server link is yyyyyyyyU
"Swap site is nnu

"Root device major is xx, minor is yyyy [root site is xx]"

set up for inode hashing [sysjufs inode.c: ihinit()]
set up for block hashing [sysjinit main.c: bhinit()]
initialize buffer cache [sysjinit_main.c: binit()]

- "Swap device table: (start and size •••)"
" (line for each entry) •••• "

\ these are present
/ only if local swap

configure swap devices [conf/swapconf.c: swapconf()]
mount root filesystem
start up CPU roundrobin scheduling
st?rt up paging subsystem
start up limited CSP

- "avail mein = xxxxxxxx"
"lockable mem = xxxxxxx"
<copyright & restricted rights leg~d>

fork init
~c~me the swapper

<any further (nonnal) messages will be from init or its children>

SE ~90: series 300 HP-UX Internals

System Startup

~tarting Up The virtual Memory System

- Set up the kernel page table such that
the kernel can fool with it.

- Reserve memory for the DOS coprocessor if
dos_mem_byte was specified.

- Initialize kernel memory map.

- See what swap devices are available.

- Fork process 2 to be the pageout daemon.

- Enter swap scheduling loop.

SE 390: Series 300 HP-UX Internals

Sy.stem startup

lllocating And Initializing Kernel Data structures

- Figure out how much RAM we have, what model we are, etc.

- Allocate space for the buffer cache, proc table,
in ode table, file table, callout table, and various
other things.

- Initialize queues and tables to be empty.

- Construct process 0 by hand -we are running as if
this was a single-tasking machine, so we just put
values into data structures to reflect what we're
doing. "It is often easier to obtain forgiveness
than permission. It

- Mount the root file system and g~t root inode.

~eparing For I/O.

SE 390: Series 300 HP-UX Internals

System startup

- Call device driver initialization routines.

- See what cards are installed.

- Look for a console.

SE 390: Series 300 HP-UX-Internals

. System startup

'tarting The First Processes

- Build process 0 by hand; it will become the swapper.

- start roundrobin scheduling. This isn't really a process, but
sort of acts like one. What we actually do is arrange for a routine
to be called every <timeslice> cpu ticks.

- Fork process 2 to become the pageout daemon.

- Fork process 1 to become init. We actually do some stuff to set
this up as a user process so that when /etc/init is exec(2)ed,
it is a normal user process. It is somewhat special, however,
because_ the kernel sort of looks out for it in a few areas (such
as not letting someone send SIGKILL to it, panic()ing if it
exit(2)s, etc).

- start CSP if we are in a diskless cluster.

SE .390: Series 300 HP-UX Internals

M9dule Evaluation

SYSTEM STARTUP

On a scale of 1-10, 1 being bad, 5 being OK/don't care/irrelevant, 10
being good, please rate the following. If you have particular comments,
please write them in. Thank you!

1. Clarity of presentation:

2. Depth/complexity (1 - material was too easy, 10 - it was too hard) :

3. Usefulness/applicability/relevance of material presented:

4. Speed of presentation (1 - too slow, 10 - too fast):

5. How good was the material. (slides, notes, etc)?

6. How good was the instructor?

Ways this could be improved (please be specific):

General Connnents:

~e Big Picture

SE 390: .series· 300 HP-UX Internals

Process Management

- How does HP-UX share system resources among competing processes?

The Little Picture(s)

- Process creation/deletion.

- Fork - duplicate current process.

- Exec - replace current program with another.

- Work done on behalf of processes (system calls, interrupt handling).

- Context switching.

- Important data structures.

- Signals & IPC.

- Process states.

- Tunable parameters.

SE 390: Series-300 HP-UX Internals

Process Management -

tocess Creation/Deletion-

- Created by fork(2).

- most things are exactly duplicated

- things like pid, ppid, etc. are different

- stdio buffers are duplicated

- vfork(2) is a fast version - it does NOT cppy the stack
and data - it trusts the child to do an exec

- Deleted by exit(2) (voluntary), or most signals (involuntary).

- CUrrently-running program replaced by exec(2).

- things like file descriptors are preserved

- things like "when this signal comes in, call this
routine" are NOT preserved

SE 390: series 300 HP-UX Internals

Process Management

'-hat Happens When Fork(2) Is Called

- If not vfork, get * swap * space.

- Get a PID.

- Be sure there is a proc table entry and we can have it.

- If vfork and process is plocked, get lockable memory for u area
and page tables.

- Copy proc table entry, changing fields where appropriate.

- Get page tables for the child.

- Copy u area, changing where appropriate.

- Clear interval timers in the child.

- If vfork, give virtual memory to child.

- Attach to text segment.

- If fork, copy virtual memory.

- Put child on run queue.

- If vfork, wait for child to exit(2) or exec(2).

SE 390: Series 300 HP-UX Internals

Process Management

,hat-Happens When Exec(2) Is Called

- Check modes: execute bits, set[ug]id bits, etc.

- Read in first few bytes to see what kind of file it is.

- If it is non-shared, lump the data and text together as data.

- If it is a n#!n script, loop to get the real executable file.

- Be sure the file is as big as the header claims.

- ,Be sure it's a normal S300 object file or an old S200 one.

- Copy arguments to swap space (this is what the kernel parameter
argdevnblks is all about).

- Be sure the file is big enough to have text, data, etc.

- If it's the old object format, pad it to 1/2 MB boundaries and
move it up to start at BK.

- Be sure text isn't busy: ptrace (2), open for write, etc.

- Be sure it's not too big - we can't exec a 16 GB file.

- Get *swap* space.

- Release any loc~ed memory.

- If we are a "vfork child", give memory back to t~e parenti
otherwise, release memory.

- Get virtual memory (actually just initialize page tables to
the appropriate thing - usually zero-fill-on-demand).

- Read data (and text if non-shared) in. '

- Attach to text, reading it in if necessary.

- set uid/gid.

- Get proper sysent table (there's a "compatibility" set of system
calls for running old S200 executable files).

- Copy arguments from swap space to stack.

Set registers (mostly clear them, but one is used to tell if we'
have a floating point card and one is used to indicate processor
type) •

Reset caught signals - there's nothing to catch them anymore!

- Close close-on-exec files.

SE 390: Series 300 HP-UX Internals

Process Management

~rk Done by the System For the Processes

- System calls - similar to library functions, but differ in
important ways:

- run on the kernel stack

- have access to system data structures

- provide protected way of getting at shared resources

- Interrupt handling

- transparent to user

- run in supervisor mode

Signal sending and receiving

- crude form of IPC

- can be controlled ~omewhat with sig*(2)

- makes use of fields in proc table entry,

SE 390: Series 300 HP-UX Internals

. Process Management

~ntext switching - Priorities

- p cpu is decayed once per second, and all process priorities are
recalculated:

- p_cpu = p_cpu*(2*load_ave)/(2*load_ave + 1) + nice value

- p_usrpri is computed every four clock ticks for the current process

- p_usrpri = POSER + p_cpu/4 + 2*nice_value

- If process has been rtprio() 'ed, .forget the 2nd part .•.•

- When some process becomes more important than the current one,
a context switQh is requested. The switch won't actually happen
until we are ready to go back into user mode.

SE 390: Series 300 HP-UX Internals

Process Ma~agement

'OHt:.ext switching - Mechanics

- can only happen when

- process blocks by calling sleep() (in the kernel);

- process is about to return to user mode from kernel mode;
this could be a return from an interrupt or exception handler
or a system call. This case only happens when someone else
becomes more important to run and the system has noticed.

- Save current context irito u area, which is mapped into the top of
the process' address space.

- Restore other process' context from its u area.

- Resume execution.

Time

Context SWitchlng

Process R

I

1

B

sys. ca 1 1

interrupt

J

1
proc.

c D

SE 390: Series 300 HP-UX Internals

Process'Management

~e Coptext of a Process

- Stack, text, and data areas.

- Registers, stack pointer, program counter, etc.

- Segment and page tables.

- The u area - defined in /usr/include/sys/user.h.

- available when process is in memory - won't be paged out,
but can be swapped with the process

- has stuff like arguments to system calls, kernel stack; etc.

- The proc table entry - defined in /usr/include/sys/proc.h

- stuff that needs to 'always be available - priority, PID,
signal masks, etc.

Signal Handling

SE 390:·Series 300 HP-UX Internals

ProCess Management

- Signal sending

- crude form of IPC

- accomplished with kill(2)

- SIGUSR[12] are available for cooperating processes

Signal receiving or "catching"

- can be controlled somewhat with sig*(2)

can specify a procedure to call when a given
signal comes in

- can specify an alternate signal stack

- if a non-default handler is specified, it will be called
in such a way that it appears to be a normal procedure call

- SIGKILL (as in "kill -9") can NOT be caught or ignored

- special case for ini~{1m) - kill(2) will refuse
to send SIGKILL to PID 11

SE 390: Series 300 HP-UX Internals

Process Management

Signal Implementation

- Signal sending

- set a bit in the proc table entry of the receiving process

- mark receiving process as runnable

- Signal receiving

- check to see if we have signal(s) pending whenever we're
about to return to user mode from kernel mode and whenever
we block in the kernel (by calling sleep(».

- if we do, handle them or,core dump or exit or whatever

- if we were in the middle of a system call, we may restart
it or we may return an error - depends on what user asked
for.

SE 390: Series 300 HP-UX Internals

Process Management

Process States

- Running - we are the currently executing process.

- Runnable - we are ready to run, and are waiting for the processor.

- in a run queue based on our priority

- Sleeping - we are waiting for a resource.

- in a sleep queue

- Zombie - we've exited, but parent hasn't done a wait(2) on us yet.
All that's left is the proc table entry.

Process -St ates

SE 390: Series 300 HP-UX Internals

Process Management

~able Parameters

- argdevnblk - limits number of exec()s that can happen concurrently

- each exec takes about 12K of swap space for arguments

- maxuprc - number of processes a single user (UID) can have

- setting it high allows a single user to take lots of the
system's resources

- setting it low can cause users to get angry

- nproc - maximum number of processes on the system at any given time

- this is used to size a static array, the proc table

- timeslice - length of timeslice for round-robin CPU scheduling

- normally 5 clock ticks, which is lOOms

- setting it too low makes us spend more of our
time switching, less of it working

setting it too high means interactive response is bad

highest address-..

System Overhead

Stack)
- - i -

size limited by maxssiz

l Unused <>
1 ~ shmmaxaddr - highest address to

attach a shared memory segment.

<

dynamic dato area grows by calls 1
to brk(2). sbrk(2) or malloc(3)

address 0-..

L J
- - -

t
Dynamic Dato

Static Dato

..
Code)0

data area limited by maxdsiz
or by the lowest allocated
shared memory segment

code size limited by maxtsiz

.shared memory segments can be attached at
addresses ranging from current top of data
(retumed by sbrk(O» to shmmaxoddr

Figure 2-10. User Process Logical Address Space

Physical Memory Utilization
TIw maximum amount of physical memory you can install on your Series 300 comput<'T
is ilh Megabytes for Models 310 and 320. 4 Mhytes for the Model 318. 16 Mbytes for the>
Mode>l 319. 8 Mbytes for the Mode>l 330. and 32 Mbytes for Model 350. The minimum
amount of RAM for a non-networked singlE>-user Series 300 HP-UX system is 2 Mbytes.
The minimum amount of RAM for a Series 300 acting as the root server for an HP-UX
cluster is 3 Mbytes. As more users are adde>d on a multi-user system, more memory may
be> required for adequate performance>. The computer's performance will also deprIld on
thr applications you run and on the peripheral devices attached to the system.

System Management Conce>pts 61

SE 390: Series 300 HP-UX Internals

Module Evaluation

PROCESS MANAGEMENT

On a scale of 1-10, 1 being bad, 5 being OK/don't care/irrelevant, 10
being good, please rate .the following. If you have particular comments,
please write them in. Thank you!

1. Clarity of presentation:

2. Depth/complexity (1 - material was too easy, 10 - it was too hard) :

3. Usefulness/applicability/relevance of material presented:

4. Speed of presentation (1 - too slow, 10 - too fast):

5. How good was the material (slides, notes, etc)?

6. How good was the instructor?

Ways this could be improved (please be specific):

General Connnents:

'The Big Picture

SE 390: Series 300 HP~UX Internals

Memory Management

- How does HP-UX distribute and control physical and virtual memory?

The Little Picture(s)

- Physical <---> virtual memory.

- Paging

- swapping

- Important data structures.

- Tunable parameters.

v::trtual Memory

Why?

How?

SE 390: Series 300 HP-UX Internals

Memory Management

- allow all programs to think they are running by themselves

- allow for (fairly) efficient stretching of memory

- virtual address translation

- 32 bit address

- 10 bits tell which segment table entry

- 10 more tell which page table entry (pte)

- 12 bits for offset into 4k page

- pte has 20 bit physical address (of 4k page) and
has 12 bits left over for protection information,
flags, etc.

- Pageout daemon kicks out pages if we're running short and
they aren't being referenced often enough.

- A process always has enough swap space to hold whatever it
is doing; it mayor may riot have enough physical pages for
everything.

Virtual Rddress Translation

32 bit virtual address

I 10 bits I 10 bits I 12 bits I
1

segment tab le pagel table

- 20 bit. I 12 btt. t.;-

"'
~ -

4kb ,
If

page

of'f'set into page
~

SE 390: Series 300 HP-UX Internals

Memory Management

./he Paging Game

- A (somewhat) graceful way of stretching the amount of
available memory.

- Implemented with a clock algorithm:

- "hand" goes around at a calculated rate, marking pages

if a marked page is referenced, a "soft~' page fault
occurs and the mark is erased

- Speed of hand is calculated to keep overhead <= 10% of CPU time.

- Pageout daemon is process 2: doesn't run at all if more than
"lotsfree" memory available.

SE 390: Series 300 HP-UX -Internals

Memory Management

~ocess 2: The Pageout Daemon

loop:

top:

~kip:

free pages that have been written out

sleep until somebody needs us and wakes us up

while (we haven't scanned too many pages) and (free_mem < lotsfree) {

grab coremap entry for page

}

if it's free, locked, or a system page
goto s-kip

if reference bit is set
clear it

else {

}

take page if process has too many

if process isn't using many pages
goto skip

if page is dirty {

}

if we're pushing pages too fast
goto skip

if process is exiting or being swapped
goto skip

free pages that have been written out

if we're -out of swap headers
goto top

lock page

adjust ptes, poip counts, etc.

"kluster" adjacent pages together

write page(s) out

goto skip

decrement count of pages process has in memory
free the page

check to make sure wheels aren't spinning; if they are,
wait until next clock tick

goto loop

Page Replacement

~en To Do What

SE 39Q: series 300 HP-UX Internals

Memory Management

Available Memory

+---------------------------------------+

min(256K, 25% of user memory)
lots free +---------------------------------------+

I pageout daemon runs below here I
I I
I I
I I
I I
I min(200K, -12.5% of user memory) I

desfree +---~-------------------------------~---+
I swapper will run below here I
I I
I min (64K, desfree/2) I

minfree +---------------------------------------+
I swapper will force active processes I
lout below here I
I I
+---------------------------------------+

SE 390: Series 300 HP-UX Internals

. Memory ~anagement

'5wapping

- A cumbersome way of stretching the amount of available memory.

- Can consume lots of the system's resources.

- Kick out whole process at a time, not just part of it.

- Space is allocated in chunks of at least dmmin, but <= dmmax.

- Only happens when we are really worried about the amount of
memory available.

SE 390: Series 300 HP-UX.lnternals

Memory Management

Process 0: The Swapper

loop:
if (want kernelmap) or ({>= 2 runnable procs) and (very short of RAM)

goto hardswap

walk through proc table, switching 'on p_stat {

case runnable but swapped out:

}

if this guy is the highest priority we've seen so far
remember him

case sleeping or stopped:
if this guy is dead in the water

kick him out

if nobody wants in
sleep until we're needed

if it's not critical to bring someone in
wait awhile
goto loop

·\rdswap:
walk through proc table {

}

if process isn't swappable or is a zombie
skip it

if process is currently being swapped out or has shrn locked
skip it

if (proc. is stopped) or (has slept awhile at int'ible pri.)
if it has slept longer than anyone we've seen

remember it
else if (don't have sleeper yet) and (it's runnable or asleep)

see how it is
if it's one of the piggest we've seen

remember it

if we didn't find a long sleeper
pick "oldest" job (based on nice value and time since swapin)

if (found a sleeper) or (desperate and found *someone* to swap out) or
(someone needs in and someone else has been in for awhile) {

}

if we're desperate
fake like we're still short on memory

try to swap this guy out (will usually succeed)
goto loop

wait awhile
goto loop

SE 390: Series 300 HP-UX Internals

Memory Management

1mportant Data Structures

- Core map - used for paging. There's an entry in it for each page
of non-kernel memory.

- Swap map - used for mapping the swap space. Allocated in chunks
of dmmin <= size <= dmmax.

- Segment table - one for each process. Each table has 1024 entries,
each of which points at a page table.

- Page table - 1024 entries, each of which points to a 4kb page.

SE 390: Series 300 HP-UX Internals

Memory Management

Tunable Parameters

- dos_mem_byte - allocates memory for the DOS Coprocessor's use

maxdsiz - maximum size of the data segment for an executing process

- maxssiz - maximum size of the stack segment for an executing process

- maxtsiz - maximum size of the text segment for an executing process

- minswapchunks - minimum amount of swap for a diskless node. It is
always allocated to the node.

- maxswapchunks - maximum amount of swap space a n"ode is allowed to
allocate.

- unlockable mem - amount of RAM that can not be locked

dmmin - minimum size of chunk that can be allocated from swap area

- dmmax - maximum size of chunk that can be allocated from swap area

- dmtext - maximmn amount of swap space that can be allocated for
text (code) in a single request

- dmshm - maximmn amount of swap space that can be allocated for
System V shared memory usage in a single request

SE 390: Series 300 HP-UXInternals

Module Evaluation

MEMORY MANAGEMENT

On a scale of 1-10, 1 being bad, 5 being OK/don't care/irrelevant, 10
being good, please rate the following. If you have particular comments,
please write them in. Thank you!

1. Clarity of presentation:

2. Depth/complexity (1 - material was too easy, 10 - it was too hard) :

3. Usefulness/applicability/relevance of material presented:

4. Speed of presentation (1 - too slow, 10 - too fast):

5. How good was the material (slides, notes, etc)?

6. How good was the instructor?

Ways this could be improved (please be specific):

General Comments:

SE 390: Series 300 HP-UX Internals

System Shutdown

~e Big Picture

- How do we (gracefully) go from a running system to a halted one?

The Little Pictures

- What is the correspondence between things being accomplished and
things being printed on the console's screen?

- Updating the file system.

- Halting, gracefully or ungracefully.

- Interpreting panic dumps.

·SE 390: Series 300 HP-UX Internals

System Shutdown

Internal Actions vs. External Signs

- "Shutdown at <time>"

mask signals (SIGINT, SIGQUIT, SIGHUP)

- "System going down ••• "
"System shutdown time has arrived."

idle init process by sending it a signal
update file system

- "Syncing disks ••• "

- "done"

close file systems

mask interrupts
[dump stack and uts info]
[symbolic traceback if >= 6.0]

- "halted"

SE 390:-Series 300 HP-UX Internals_

System Shutdown

~dating the File System

- write back modified superblock and cylinder group
summary information.

- write out inodes.

- write out delayed-write blocks in the buffer cache.

~alting the System

SE 390: Series "300 HP-UX Internals

System Shutdown

- Unmount all file systems after updating them.

- Print kernel stack to console if we're panicking.

- If we're panicking and running 6.0 or later, do symbolic traceback.

- If we're rebooting, copy boot code and jump to it.

- loop on a "stop" instruction, waiting .for something to happen.

SE 390: Series 300 HP-UXlnternals

System Shutdown

interpreting Panic Dumps

- First column consists of stack addresses.

- Numbers in the other columns that are in the first one or
sandwiched by numbers in the first one are probably frame pointers.

- Find first appropriate address (frame pointer).

- Trace linked list of frame pointers.

- Numbers just to the right of the frame pointers are return addresses.

- Feed return addresses to adb(l) to see who called who.

SE 390: Series 300 HP-UX Internals'

System Shutdown

(Hopefully un)Common Kinds of Panics

- Parity error - sometimes this can be helped (concealed :-» by
changing the kernel parameter parity_option.

- Freeing free {inode, frag} - usually caused by mounting a corrupt
disk. Pay attention w~en the system tells you to fsck!

{file,callout,text, ••• }: table is full - some kernel table is
full. These can often be fixed by adjusting a kernel parameter.

- Bus error - often indicates a hardware problem. If it happens to
a user, he is sent a signal. It should never happen in the kernel,
and if it does the system will panic. It could also come from a
kernel bug, but most of the ones we've seen have been due to
hardware problems.

Reading Series 300 Panic Dumps

When in the course of human events an HP-UX system can't figure out what I s
~oing on, it throws up its hands and decides to reboot and try again. When
.his happens, it is mown' as a· "panic", and the system tries to be helpful

by printing out the contents of the kernel stack as it dies. Here is part
of one:

97bdaa: 00051c90 000ffe01 ffe79405 ffe79401 00000000 00979018 000ec7fa 000ec7fa
97bdca: 0006889a 00000000 OOOOeOOO 0006f66c 0097be26 00015314 000ec7fa 00000184
97bdea: 00000000 OOOOeOOO 00000000 00000000 03000000 00000000 00000000 00000000

The first column consists of stack addresses. The stack grows down in memory,
s6 the top line is the stuff that has been put on the stack most recently. The
trace goes from left to right, so the lowest address (most recently pushed) is
at the top left; the highest is at the bottom right.

The last eight columns are the actual contents of the stack. There are several
kinds of things on it: .

- arguments to functions
- return addresses
- frame pointers
- local variables for functions
- saved copies of registers that will be trashed in the called function
- exception information (stuff put there in case of divide by 0, etc)

junk
It would be nice if the last item didn't have to be there, but· it does. This
is because not all code uses the conventions established by the HP-UX C
~mpiler. This will be dealt with a bit later.

The second item in the list above is a very important one - it is the key to
our ability to trace back through the dump. When a procedure is called, it
pushes the frame pointer (register a6 on the 680xO) onto the stack and then
copies the stack pointer into the frame pointer. It then subtracts from the
stack pointer (remember that the stack grows down) to make rOQm for local
variables. The fact that the old frame pointer is pushed each time a
procedure is called is what enables us to "walk" or "unwind" the stack.

Since the frame pointers are stack addresses,· the basic idea is to look
through columns 2-9 for a number that either appears in column lor is
sandwiched by two numbers in column 1. An important thing to remember is that
the addresses may be misaligned by two bytes. An example may help here:

98c9da: 00234567 0098c9fa 00034562 ••••
98c9fa: •••••

The "0098c9fa" was properly aligned, but if the line had read

98c9da: 00234567 89ab0098 c9fa0003 ••••

that would have been OK too. . Once the first address has been found, others
can be found by treating each one as a pointer; i.e., the frame pointers form
a linked list.

Surrounding each frame pointer is some interesting information. It is o~ten
~ferred to as an "activation record". The first part of the record will be

.rguments for the called procedure (keep in mind that these are treated as
local variables by the called procedure and·thus may have been modified by
it). Next, a return address for the calling procedure. Third, the saved
frame pointer. Next, space for local variables in the called procedure.
Last, space f9r registers that the calleq routine wan~s to use.

consider the following example. The lines of the dump have been split apart
and directional lines have been drawn to show the linked list structure.

panic: init died
~nic: sleep

97be4a: 0007ff24 00000001 0000800a 0124a6aa 0124a6aa-0097be76 000107ca 0124a6aa
·v

/-----------------/
v

97be6a: 00000094 0124a6aa 00000000 0097be8a 00010062 0124a6aa 00000080 01242000
v

/--------------------------/
v

97be8a: 0097beb2 0001450a 0124a6aa 0009ce08 0125f280 OOOOOOOa OOOOOOOa 0008022b
v
\-----------------\

v
97beaa: 0097bec2 00024186 0097beca 00016cc8 0009ce08 ffff7dfc 0125f280· 01242000

v
/-----------------/
v

97beca: 0097bf02 000099f4 00000000 000ffc01 ffcb0405 ffcb0401 00000001 0000003c
v
\---\ v

97beea: ffff7dfc 0125babc 0000a830 00080221 00000003 00000000 0097bf4a 0000ac8c
v

/------------~--I
1

97bfOa:100000080 0097bf52 0007f8fc ffff7dfc 0125babc 00000002 00000001 0097bf46
.1
L

97bf2a:I0001dd7c 00989feO 00000003 0125babc 00000003 OOOOOOOb 0000003c 00000080
1

\---\ /---\ v A v
97bf4a: 0097bf66 00004ae4 0007febc 00000004 ffff7dfc 00979018 00000000 0097bf76

v
/-----------------------------------/
v

97bf6a: 00004904 00000000 0097bfaa 0097bfge OOOOebdc 00000031 00000040 ffcab004
v
\-----------------\

v
97bf8a: fffffa28 0001alb4 00000000 ffff7f98 00000007 ffff7eOO 00000458 0097bfaa

The buck stops here - this address isn't close to what's in the left column.

97bfaa: 00000005 00000001 00000001 00000020 000ffc01 ffcb0405 ffcb0401 00000700

97bfca: 00000031 00000040 00012016 0001a100 ffcab004 fffffa28 0001a1b4 00000000

97bfea: ffff7eOO ffff7df8 00000000 00011acc 0080000f fcb1

It is important to remember that much of this is dependent on routines using .
the nonnal calling convention. There will be exceptions to this. If someone
~ites a routine in assembly language and doesn't bother to save the frame

Jointer, this will mess things up a bit. The frame pointers will be good, but
one of the activation records will have a return address that doesn't maKe too·
much sense, because there is not a matching frame pointer. The same thing
will happen if an exception (such as a bus error) is encountered in kernel
mode •. Note that either of these things can-cause small.glitches in. the trace,

. but they don't necessarily mean the end of the ~unt.

A third oddity is introduced when a routine is called indirectly. Probably
the most common example of this is a kernel routine named syscall()~ it calls
the actual code for a given- system call by jumping indirectly. Indirect calls
don't automatically end the trace, but the one in syscall() often does. The

)·~ason is-that the stack that is dumped out is the *kernel* stack - we can't
.ilk back into user land on the kernel stack. One thing that an indirect call

will always do is make things a bit less clear later on when we are trying to
figure out who called wham. .-

Once the stack has been unwound, how do we find out what the numbers mean? The
easiest way is probably to use the assembly level debugger, adb(l). If adb(l)
is run on the kernel that panicked (or one that is the same version and has
been configured IDENTICALLY), it will translate absolute addresses into
symbolic ones. By giving each address to adb(l) and doing a bit of
interpretation, a symbolic traceback can be constructed. It will usually have
things like boot () and panic () at the top and things like read () or setuid ()
at the bottom. The important stuff will be in the middle.

To start, use a command something like this:

$ adb /hp-ux

Once adb(l) has started up, you can get it to do things like tie absolute
addresses to known symbols or disassemble parts of the code. The fundamental
command we will use will be of this form:

<address>?<n>i as in 32cea?20i

The address is typically an absolute hexadecimal number, the question mark
says to print out what that address is, <n> is the number of times to do it,
and "i" tells it to interpret the stuff as instructions. It can safely be

) ~id that adb(l) is not one of the friendlier HP-UX utilities. For
.&1stance: there is no prompt, and the conunands (as seen above) are a bit

cryptic. ,-Note that to exit you have two choices: "$q" or the old standby,
CI'RL-d. And now back to our story ••••

Since we know that the return address is just to the right in the printout
(was pushed just before the frame pointer), we can take this number and feed
it to adb(l) to find out what routine made the call. In-the 2nd example, the
return address was 00034562. To find out what routine that is in, we might
use this:

34562?i

To see a bit of context, we would do something like this:

34550?20i

There is a catch with this. This is because instructions will sometimes be
aligned on even byte (word) boundaries, not on 4 byte (longword) boundaries.
Thus, if you tell adb(l) to start disassembling at an address that is halfway
through an instruction, you will get a bogus list of instructions. One way of
detecting this is to look and see if there is some kind of call instruction in
the disassembly listing - if there isn't, chances are *excellent* that the
disassembly is misaligned.

For an example, we'll look at the addresses in the stack tracing example
above. Just to the right of each frame pointer is the return address fOl:: that
~1ll. By feeding these to adb(l), we can figure out who called whom. What
,~llows is a logfile of a session with adb(l), with three things done to:it:
l)blarik lines have been inserted for clarity; 2) most of the tries that
yielded misaligned results have been eliminated; 3) comments have been added;
they start with "#".

$ adb /hP-ux
executable file = /hp-ux
core file = core
ready

,)7ca?i
jiowait+Ox22:

l07af?lOi
biowait+Ox7:

l07bO?lOi
biowait+Ox8:

1062?i
Dwrite+Ox92:

l0050?lOi·
bwrite+Ox80:

1450a?i
sbupdate+Ox4C:

I44fO?lOi
_sbupdate+Ox32:

;6cc8?i
update+OxD4:

I6cbO?lOi
_update+OxBC:

addq.w·

bgt.w
eor.b
ori.b
mov
fsun
movq
sub.w
subq.w
eor.b
ori.w

ori.b
ori.b
mov.l
bra.b
pea
pea
jsr
addq.w
mov.1
movq

mov.!

jsr
addq.w
btst
bne.b
pea
jsr
mov.l
jsr
addq.w
bra.b

mov.1

mov.l
mov.l
pea
jsr
lea
pea
jsr
mov.!
mov.1
subq.l

addq.w

clr.b
mov.l
mov.!

&Ox8,%a7

_bmap+Ox523
'%d4,%dO
&OxFFFFEC2D,%al
%sr,???
-(%aO)
&OxO,%d4
%aO,%d2
&Ox2,%a6
%d4,%dO
&OxlC50,???

&Ox4EB9,%aO
&Ox9EC,%dO
%dO,-Ox4(%a6)
biowait+Ox24

Ox94.w
(%a5)
_sleep
&Ox8,%a7
(%a5),%dO
&Ox2,%dl

%a5, (%a7)

(%aO)
&Ox4,%a7
&Ox8,%d7
bwrite+Ox9E

(%a5)
biowait

%a5, (%a7)
bre!se

.&Ox4,%a7
bwrite+OxAE

Ox34'(%a5) , (%a7)

%dO,-(%a7)
Ox22(%a4),-(%a7)
(%a5)
bcopy

OXC(%a7),%a7
(%a4)
bwrite

Ox34(%a5), (%a7)
Ox34(%a5),%dO
&Oxl,%dO

&Ox4,%a7

OxDO(%aO)
-Ox4(%a6),%aO
_time, Ox20 (%aO)'

not looking good

should be a call to sleep
in here somewhere

try again!

now we're talking .•.
pop 8 bytes of args off stack

pea (%a4)
jsr _sbupdate
addq.w· &Ox4,%a7
lea '. OxlS (%a4) , %a4 ..

cmp.l %a4,&Ox9CFES
bcs.w update+Ox42
mov.l _ inode., %a5

99f4?i
boot+OxSA: addq.w &Ox4,%a7

9ge6?10i
boot+Ox7C: beq.w boot+Ox90

pea OxO.w
jsr _update # this is the one
addq.w &Ox4,%a7
bra.w boot+Ox9C
pea Oxl.w
jsr _update
addq.w &Ox4,%a7
pea _r~oot_after-panic+ox1EO
jsr -pr1ntf .

acSc?i
-panic+OxC4 :
ac7c?6i

addq.w &OxS,%a7

-panic+OxB4 : ??? (6SSS1)
pea OxS(%a6)
mov.l -Ox4(%a6),-(%a7)
jsr boot
addq.w &OxS,%a7
bra.w -panic+oxC6

\e4?i
.=xit+OxlDS: addq.w &Ox4,%a7

4adO?lOi
exit+Ox1C4: or.l %d4,%d6

cmp.w %dO,Ox2A(%a5)
bne.b exit+OxlDA
pea -nsysent+oxsS
jsr - . -pan1c
addq.w &Ox4,%a7
mov.w OxA(%a6),Ox52(%a5)
mov.l u+OxS4E,Ox9C(%a5)
mov.l =U+OXS4A,(;){9S(%a5)
mov.l _u+Ox846,Ox94 (%a5)

4904?i
rexit+Ox20: addq.w &Ox4,%a7

48f4?10i
rexit+OxlO: . andi.l &OxFF,%dO

asl.l &OxS,%dO
mov.l %dO,-(%a7)
jsr exit
addq.w &OX4,%a7
mov.l. (%a7),%a5
unlk %a6
rts
link.w %a6,&OxFFFFFFFO
mOVIn.l &<%d7,%a4,%a5>,(%a7)

...J:>dc?i
syscall+Ox15E: lea _u+Ox7S,%aO

et>c8?lOi
_syscall+Ox14A: sub. 1 %d2,%dO

. mov.b &Oxl, (%aO)
lea _u+Ox9FA,%aO

$q

cir.w
mov.l

. jsr
lea
tst~b
beq.b
lea

(%aO) .
Ox4(%a3),%aO
(%aO) # note indirect call
u+Ox78, %aO.

(%aO) .
syscall+OX186
u+Ox9FA,%aO

By looking at this bottom-up, we can see that the order of calls was like this:
syscall()
rexit()
axite)
panic()
boot()
update()
sbupdate()
bwrite()
biowait()

Note that we didn't see a "jsr _rexit" in syscall(); we just looked at where
we had been before.

What can we learn from all of this? That depends. It is conceivable that
this kind of information could help track down a kernel bug. It is also
possible that it could satisfy a customer's curiosity. One nice thing to know
is that as of 6.0, the kernel will construct a sybolic traceback complete with
the arguments to the calls - this will be printed on the screen just below the
stack dump.

SE 390: Series 300 HP-UX Internals

Module Evaluation

·SYSTEf·1 SHUTDOWN

On a scale of 1-10, 1 being bad, 5 being OK/don't care/irrelevant, 10
being good, please rat~ the fOllowing. If you have particular comments,
please write them in. Thank you!

1. Clarity of presentation:

2. Depth/complexity (1 - material was too easy, 10 - it was too hard):

3. Usefulness/applicability/relevance of material presented:

4. Speed of presentation (1 - too slow, 10 - too fast):

5. How good was the material (slides, notes, etc)?

6. How good was the instructor?

Ways this could be improved (please be specific):

General Comments:

SE 390: Series 300 HP-UX Internals

Obsc~e Conunands

~le Big Picture

- What are some of the obscure but important commands and how
do they'work?

The Little Pictures

- Init(lm).

- Config (1m) •

- Cluster(lm).

- Mkfs(lm).

- Getty(lm).

- wgin(l).

pit (1m)

SE 390: Series 300 HP-UX internals

Obscure Commands

PIO 1; started by kernel after we're up and running.

- Parent of all user processes.

Reads table to find out what it is supposed to do.

Is a state machine - when it is in state n, it decides what needs
to be happening by looking in /etc/inittab for entries with n listed
as the state. It starts up those conunands, and. if they are marked
"respawn" it keeps starting them up whenever they die.

- When you launch a 2nd init(lm) or do a tel in it (1m) , it looks to see
what PIO it is; if it is not 1, it will take the parameter from the
command line and send that as a signal to PIO 1. Thus,

$ telinit 3
sends signal #3 to PIO 1, which is the real init(lm).

- Init(lm) acts as a cleaner-upper - it arranges to catch SIGCHLD
whenever it fork/execs a new process. It also inherits children
when parents die without wait(2)ing for their children.

SE 390: Series 300 HP-UX Internals

Obscure Conunands

ronfig(1m)

i (

deal with arguments

open files (default: conf.c, /etc/master, config.mk, mkdev)

read master file to get
1) list of devices, handlers, major & minor numbers, etc
2) aliases for the above (such as 7914 --> cs80)"
3) tunable parameters and default values

while there's another line in the dfile {

),

case line of

"root" record major and minor number

"swap" add entry to swdevt []

"swapsize" : set sizes for all swap entries so far

tunable parameter : record value

otherwise:
look it up in master list
be sure user specified minor# if not a card
be sure it's a legal address
add to list of devices on the system

set defaults for tunable parameters that weren't set

be sure all required devices are in list

write out the config file

'write out the makefile

* HPUX 10: _ @(4I)dfile.full.lan 15.1 86/12/09
*.This-is the configuration file for a full system, with LAN
* ·drivers
cs80

. amigo
. tape
printer
stape
srm
ptymas
ptyslv
ieee802
ethernet
hpib
gpio
ciper
rje
* cards
98624
98625
98626
98628
98642
* Tunable parameters
num Ian cards 2

* HPOX ID: @(#)master 4·9.10
*

87/11/18

* The following devices are those that can be specified in the system
* description file •. The name specified must agree. with the name shown,

- * or with an alias.
* * name

cs80
scsi
flex
amigo
rdu
tape
printer
stape
snn
plot. old
rje
ptymas
ptyslv
lla
lan01
hpib
gpio
ciper
nsdiagO
snalink
dos
vme
vme2
dskless
rfa
nfs
ramdisc
*

handle

cs80
scsi
mf
amigo
rdu
tp
Ip
stp
snn629
pt
rje
ptym
ptys
lla
lla
hpib
hpib
ciper
nsdiagO
snalink
dos
vme
stealth
dskless
rfai
nfsc.
ram

type

3
3
3
3
B
1
1
1
1
1
1
9
9
9
9
1
1
1
9
1
1
1
1
18
10
10
3

mask

3FB
3FB
1FA
3FB
3C
FA
DA
FA
1F2
F2
1FA
FC
1FD
1FD
OFD
FB
1FB
DA
EA
1CO
F9
1F8
1C8
100
100
100
FB

block char

o 4
7 47
1 6
2 11
6 45
-1 5
-1 7
-1 9
-1 13
-1 14
-1 15
-1 16
-1 17
-1 18
-1 19
-1 21
-1 22

-1 26
-1 46
-1 36
-1 27
-1 32
-1 44
-1 -1
-1 -1
-1 -1
4 20

* The following cards are those that can be specified in the system
* description file. The name specified must agree with the name shown,
* or with an alias.
* * name handle type
* 98624
98625
98626
98628
98642
*

ti9914 10
simon 10
sio626 10
sio628 10
sio642 10

mask

100
100
100
100
100

block char

-1 -1
-1 -1
-1 -1
-1 -1
-1 -1

* The following devices must not be specified in the system description
* file. They are here to supply infonnation to the config program.
* * name
swapdev
swapdev1
console
ttyXX
tty
mem
swap
iomap
graphics
r8042
hil
nimitz
ite
$$$

handle
swap
swap 1

. cons
tty
sy
rom
swap
iomap
graphics
r8042
hil
nimitz
·ite200

type
E
E
D
D
D
D
D
D
5
D
D
D
1C

mask
o
o
FD
FD
FD
32
30
F9
1F9
C8
EC
E4
100

block
3
5
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1

char
-1
-1
o
1
2
3
8
10
12
23
24
25
~1

* * The following entries form the alias table.
* field 1: product #. field 2: driver name
* [bunch of stuff deleted here and following]
7935 cs80 -
ct cs80
7906 amigo
7925 amigo
9133V amigo
9895 amigo
int flex
fd flex
7971 tape
mt tape
7974 stape
7978 stape
lp printer
2225 printer
2227 printer
2934 printer
* * Several printers listed below can also be
* supported on hpib and RS-232
* 2563
98629
98641
98643
*

ciper
srm
rje

_ lla

* Plotters can also be supported on RS-232
* pIt hpib
7 p5 0 - hpD:>
inthpib 98624
ti9914 98624
simon 98625
98644 98626'
sio626 98626
sio628 98628
sio642 98642
mux 98642
98577 vme2
stealth vme2
ieee802 lla
ethernet lanO-1
$$$
* * The following entries form the tunable parameter table.
* maxusers
t imez one
dst
nproc

MAXUSERS 8
TIMEZONE 420
DST 1
NPROC (20+8*MAXUSERS+(NGCSP»

o
o
o

, NUM CNODES 0 0
DSKLESS NODE 0 0
SERVER NODE 0 0

6
num cnodes
dskless node
server node
ninode- NINODE
nfile
argdevnblk
nbuf

«NPROC+16+MAXUSERS)+32+(2*NPTY)+SERVER NODE*18*NUM CNODES)
NFlLE (16*(NPROC+16+MAXUSERS)710+32+(2*NPrY)) 14

dos mem byte
ncaIlout
ntext
unlockabl~ mem
nflocks

ARGDEVNBLK 0 0 ~
NBUF 0 0
DOS MEM BYTE 0 0
NcAELotiT (16+NPROC+USING ARRAY SIZE+SERVING ARRAY SIZE) 6
NTEXT (40+MAXUSERs) - 10. - -
tmIPCKABLE MEM 102400 0
NFLOCKS -200 2

npty NPrY 82 1
maxuprc MAXUPRC 25 3
dmmin DMMIN 16 16
dmmax- DMMAX 512 256
dmtext DMTEXT 512 ·256
dmshm DMSHM 512 256
maxdsiz MAXDSIZ Ox01000000 Ox00040000
maxssiz MAXSSIZ - Ox00200000 Ox00040000
maxtsiz MAXTSIZ Ox01000000 Ox00040000
shmmaxaddr SHMMAXADDR Ox01000000 Ox00040000
parity option PARITY OPTION 2 0
timeslIce TIMESLlCE 0 -1
acctsuspend ACCTSUSPEND 2 -100
acctresume ACCTRESUME 4 -100
ndilbuffers NDILBUFFERS 30 1
fiIesizeIimit FILES I ZELIMIT Ox1fffffff Ox00000010
dskless mbufs DSKLESS MBUFS «(SERVING ARRAY SIZE+(2*USING ARRAY SIZE))/32)+1
dskless-cbufs DSKLESS CBUFS (DSKLESS MBUFS*2j 6 - -
using array size -USING ARRAY SIZE (NPROC) 1
serving array size SERVING ARRAy SIZE (SERVER NODE*NUM CNODES*MAXUSERS+2*MAXU
dskless-fsbufs DSKLESS FSBUFS (SERVING ARRAY-SIZE) 0
selftest-period SELFTEST_PERIOD-120 0 - -

* * The next two parameters, check_alive~ri~ ~n~ retry_alive-period, sh?uld
* never.be changed by a customer. Only a qual1f1ed Hewlett-Packard servlce
* engineer should change these parameters. Diskless node crashes could occur
* if either of these parameters is changed improperly!
*
check_al~ve-per~od CHECK ~ PERIOD
retry_aI1ve-per1od RETRY_~VE PERIOD
maxswapchunks MAXSWAPCHUNKS 512- 1
minswapchunks MINSWAPCHUNKS 4 1
num Ian cards NUM LAN CARDS 2
n~tmemmax NETMEMMAx 250000
netmemthresh NETMEMTHRESH 100000
ngcsp NGCSP (8*NUM CNODES)
scroll lines SCROLL LINES 100 -
*

4
21

* Messages, Semaphores, and Shared Memory Constants
mesg MESG 1 0
msgmap MSGMAP (MSGTQL+2) 3
msgmax MSGMAX 8192 0
msgmnb MSGMNB 16384 0
msgmni MSGMNI 50 1
msgssz MSGSSZ 1 1
msgtql . MSGTQL 40 1
msgseg MSGSEG 16384 1
sema SEMA 1 0
senunap SEMMAP (SEMMNI+2) 4
semmni SEMMNI 64 2
semmns SEMMNS 128 2
semmnu SEMMNU 30 1
semume SEMUME 10 1
semvmx SEMVMX 32767 1
semaem SEMAEM . 16384 0
shmem SHMEM 1 0
shmmax SHMMAX Ox00600000 Ox00200000
shmmin SHMMIN 1 1
shmmni· SHMMNI 30 1
sl?-mseg SHMSEG 10 1
shmbrk SHMBRK 16 0
shInall SHMALL 2048 2048
fpa FPA 1 0

4
21

o
75000
-1
o
100

SE- 390: Series 300 IW-UX Internals

Module Evaluation

COMMANDS

On a scale of 1-10, 1 being bad, 5 being OK/don't care/irrelevant, 10
being good, please rate the following. If you have particular comments,
please write them in. Thank you!

1. Clarity of presentation:

2. Depth/complexity (1 - material was too easy, 10 - it ~as too hard) :

3. Usefulness/applicability/relevance of material presented:

4. Speed of presentation (1 - too Slow, 10 - too fast):

5. How good was the material (~lides, notes, etc)?

6. How good was the instructor?

Ways this could be improved (please be specific):

General comments:

The Big Picture

SE 390: Series 300 HP-UX Internals

File System

How does HP-UX organize disks and access files?

The Ldttle Pictures

- The Vnode layer.

- caching: buffers, inodes, and directory names.

- The HFS/Berkeley/McKusick filesystem.

- History and layout.

- Allocation policies.

- lDcking.

- Recovering from messes.

- Examples:

- open(2)

- write(2)

1
1

tJ~-t~C(!<

~erl\e'

l 'J "0 rJ.. ~
1 ~.s. 'Ii! r
- T

, I , .

L-,--.--......

.,
i
~ , .. -~ • 'It

f'
.... (~
~.~-., •

..
~

...
1

~
.4. . .,,""'.' _.",~

t.~ -"~;. ':f .~.~ ;

~~"""".- .~ ,.. ... ~ •. I.Q···"" ~

~ID ___ H_P_-U __ X_F_il_e_S_y_s_te_m __ o_v_e_rv_l_e_w _________ 11_D _______ N_ot_e_s ____ _

The Big Picture
system call interface

file subsystem

I
~

buffer cache

character : block

device drivers

1
hardware control

uta 1 :2

Page 1-3a

.......... ;:: : .. ' '.;' ..
.. "

..... 1 D __ H_P_-_U_X_F_I_le_S_y_s_t_e_m_o_ve_r_v_le_w ____ ----'11 0 Notes

Kernel Structure Overview
Kernel Space ..

Page 1-58

Disk
Space :

I

The Vnode layer

- Why?

- How?

SE 390: Series 300 HP-UX Internals

File System

- To allow the system to access files that are on a remote
machine, or that are on a disk that isn't HFS.

- To be compatible with the industry

- Most filesystem activity revolves around "vnodes", which
are like inodes but are not implementation dependent.

- The vnode layer is object-oriented in the sense that a
vnode carries around a list of operations that can be
done on it. If the system wants to read from a file
represented by (struct vnode *)vp, it will do something
like this (this is not actual code):

(vp->v op->vn read}(vp, rwflag, buf, size)
This will call a routine to read from the file, whether
the file is local, remote, on a PC, or whatever.

- The function namei () has been replaced by lookupname (). It
returns a pointer to a locked vnode. This function is
called whenever the system needs to translate a pathname
like "/usr/mail/fred" to something that will let it get at
the stuff in the file. In the case of 5.5/namei(), this
was a pointer to an inode. Now it is a vnode pointer.

caching

SE 390: Series 300 HP-UX Internals

File System

- The buffer cache - used to avoid reading things that were read
"recently" and to keep from having to write stuff out if it's just
going to get trashed shortly. Buffers are also available for use
as scratch space if drivers need to use them.

- The inode cache - used to keep track of inodes so that we don't
always have to get them off of the disk. Pathname translation
boils down to accessing lots of inodes, so the less often we have
to get them from disk the better.

- Directory name cache - used to keep us from having to always
translate pathnames. If we just accessed a particular path, we' 11
keep the name around since there is a fair chance we'll want it
again.

SE 390: Series 300 HP-UX Internals

File System

The original UN*X file system

- Superblock (single copy on disc)

- I-nodes (grouped together)

- Data blocks (small size = 512 bytes)

- Advantages:

* handles large numbers of small files efficiently

* no alignment constraints on data transfers

* easy to implement

- Disadvantages:

* limited file I/O throughput

* lack of locality on disk

* lack of robustness

* designed for "small" systems/disks

SE 390: Series 300 ~UX Internals

File system

Picture of a Bell file system

Boot
Block

(BB)

Super
Block

(SB)

I-nodes

(I-n)

Data
Blocks

(DB

SE 390: Series 300 HP-UX Internals

File System

The Berkeley/McKusick file system (aka "HF'S")

- retains advantages of the original Bell design

- includes remedies for most problem areas

* throughput: larger block size (4/8 Kbytes)

* locality: introduction of "cylinder groups"
(each resembles a Bell file system)

* robustness: superblock i~ replicated in each group

staged modifications to file system

* extensible: can access files of 4+ Gbytes
(theoretical maximum - 4 Tbytes)

parameterizes disk features

- HP-UX extensions:

* fs_clean flag

- what s300 HP-UX does not include (as of now)

* partitions (aka "disk sections")

* long file names (coming soon to a filesystem near you :-))

* disk quotas

: •.•... ":.' :.:-:

I~O __ H_P_-_U_X __ F_lIe __ S_ys_t_e_m_o_v_e_r_v_'e_w ________ ~llo

CYLINDER
GROUP

o

CYLINDER
GROUP

1

CYLINDER
CROUP

2

CYLINDER
GROUP

X

o HP-UX File System

lOOT "'~ ft£DUNOlNT eruNDtft
II..OCK SUItt" sum GROUP INOO[S ~TA
c-mr» IU)()(&OCK 8LOOC
Ik

CGOrF'S[T

.... ~ CVUNO£R
,. suPtR CROUP INODES DIl'TA

.. OCK kOCK

(~TA)

c::GOfTS[T RtDUfCWIT C"tUNDER

:>
SLPtR GROllP INOOES DlTA
BLOCK 8I.OOC

(Dt-TtV

CGom;[T REDUNDANT C'ruNOtJl
SuPER ~OUP INODES OlTA

) BLOCK BLOCK

(Dt-TA)

CGOrF'SCT R£DU~N'1 CYUNDER

:> SUP~ CROUP INOOCS DIllA
II~OCt(LOCK

(DlTtV

Page 1-161

. "': ':: .. ,,":' I
Notes

SE 390: Series 300 HP-UX Internals

File system

Picture of a Berkeley file system

cylinder group 0:

BB SB SB CGB I-n DB

cylinder group 1:

DB SB CGB I-n DB

cylinder group 2:

DB SB CGB I-n DB

etc.

File Locking

SE 390: Series 300 HP-UX Internals

File System

- Byte oriented - process can lock any part of a file.

- For enforcement mode locking to work, the setgid bit MUST be on
and the group execute bit MUST be off.

- Enforcement locking is provided in 6.0 - this is possible with a
stateful system like our Diskless system, but difficult/impossible
with a stateless system like NFS. .

- Does not work at all for device files. It would not be good to
lock /dev/dsk/* :-)

- Implemented with a locklist that is kept in each inode. The list
has an entry for each lock, and is sorted by PlD and starting offset
in the file. When a user wants to lock a chunk of a file, the
system will walk through the list and make sure that no other
process has a lock on a section that overlaps or includes the one
being requested.

- There is code to check for deadlock. Suppose that process A is
waiting on something that process B has locked, and process B is
doing the same with process C. We do not want to let C wait on A!

Recovering From Messes

SE 390: Series 300 HP-UX Internals

File System

- fsck(lm) - this will fix most problems, but not all.

- fsdb(lm) - this is capable of doing most anything in the hands
of a skilled operator, but they are rare : -)

- disked(lm) - roughly equivalent to fsdb(lm) in power, but has a
MUCH nicer user interface. Unfortunately, it's not supported.

An Example:

SE 390: Series 300 HP-UX Internals

File System

fd = open ("/usr/mail/fred" , 0 ROONLY) :

- put "open" code on stack and trap to get into the kernel's syscall ()

- allocate slots in system and user open file tables

- if there's not a user entry, user has exceeded limit of 60

- if there's not a system entry, will get a "tablefull"
message on the console

- look up the name and get a vnode pointer - this will involve
interaction with the remote server, local HFS filesystem, etc to
do the actual looking through directories

- check file permissions and accessability of filesystem

- if filesystem is mounted readonly, we can't let user write

Example 2:

SE 390: Series 300 HP-UX Internals

File System

n = write(fd, buf, buflen);

- Put "write" code on stack and trap to get to kernel's syscall().

- Generic write() will package up the parameters, do checking, etc
with the help of some other routines.

- The file structure "knows" what functions should be called to do
particular things to it, so the system jumps to the appropriate
one.

- IDck the inode.

- call the driver (if it's a character device) or go through the
buffer cache or whatever is appropriate.

- since we are writing, the system must check to see if there is
enough space in the block(s) that is/are presently allocated to the
file; if not, allocate more according to the rules mentioned
previously.

- Update and unlock the inode.

1* @(t) $Revision: 56.1 $ *1
1* * Each disk drive contains some number of file systems •
.. A file system consists of a number of cylinder groups •
.. Each cylinder group has inodes and data.

'* .. A file system is described by its super-block, which in turn
'* describes the cylinder groups. The super-block is critical
* data and is replicated in each cylinder group to protect against
'* catastrophic loss. This is done at mkfs time and the cri tical
.. super-block data does not change, so the copies need not be
'* referenced further unless disaster strikes.
'* * For file system fs, the offsets of the various blocks of interest
'* are given in the super block as:
'* [fs->fs sblkno] SUper-block
* [fs->fs-cblkno] Cylinder group block
'* [fs->fs-!blkno] Inode blocks
* [fs->fs-dblkno] Data blocks
'* The beginning of cylinder group cq in fs, is given by
'* the "cgbase(fs, cg)" macro.
'* * The first boot and super blocks are given in absolute disk addresses.
*1

#define BBSIZE
#define SBSIZE
#define BBLOCK
#define SBLOCK

1*

8192
8192
«daddr t) (0»
«daddr:t) (BBLOCK + BBSIZE I DEV_BSIZE»

* Addresses stored in inodes are capable of addressing fragments
* of 'blocks'. File system blocks of at most size MAXBSIZE can
* be optionally broken into 2, 4, or 8 pieces, each of which is
* addressible; these pieces may be DEV BSIZE, or some multiple of
'* a DEV BSIZE unit. -
* * Large files consist of exclusively large data blocks. To avoid
'* undue wasted disk space, the last data block of a small file may be
* allocated as only as many fragments of a large block as are
'* necessary. The file system format retains only a single pointer
* to such a fragment, which is a piece of a single large block that
* has been divided. The size of such a fragment is determinable from
* information in the in ode , using the "blksize(fs, ip, Ibn)" macro.
* '* The file system records space availability at the fragment level;
'* to detennine block availability, aligned fragments are examined.

'* *1

1* * Cylinder group related limits.
* * For each cylinder we keep track of the availability of blocks at different
* rotational positions, so that we can layout the data to be picked
* up with minimum rotational latency. NRPOS is the number of rotational
* positions which we distinguish. With NRPOS 8 the resolution of our
* summary information is 2ms for a typical 3600 rpm drive.
*1 .

#define NRPOS 8 1* number distinct rotational positions */

1* * MAXIPG bounds the number of inodes per cylinder group, and
'* is needed only to keep the structure simpler by having the
'* only a single variable size element (the free bit map).
'* * N.B.: MAXIPG must be a multiple of INOPB(fs).

*1
#define MAXIPG 2048 1* max number inodes/cyl group */

/*
* MINBSIZE is the smallest allowable block size.
* In order to insure that it is possible to create files of size
* 2~32 with only two levels of indirection, MINBSIZE is set to 4096.
* MINBSIZE must be big enough to hold a cylinder group block,
* thus changes to (struct 09) must keep its size within MINBSIZE.
* MAXCPG is limited only to dimension an array in (struct cg) ;
* it can be made larger as long as that structures size remains
.. within the bounds dictated by MINBSIZE •
.. Note that super blocks are always of size MAXBSIZE,
* and that MAXBSIZE must be >= MINBSIZE.
*/

tdefine MINBSIZE 4096
tdefine MAXCPG 32 /* maximum fs_cpg */

/* MAXFRAG is the maximum number of fragments per block */
'define MAXFRAG 8

#ifndef NBBY
#define NBBY

#endif

1*

8 1* number of bits in a byte *1
1* NOTE: this is also defined *1
1* in param.h. So if NBBY gets *1
1* changed, change it in *1
/* param.h also *1

* The path name on which the file system is mounted is maintained
.. in fS_fsmnt. MAXMNTLEN defines the amount of space allocated in
* the super block for this name.
* The linlit on the amount of summary information per file system
* is defined by MAXCSBUFS. It is currently parameterized for a
* maximum of two million cylinders.
*1

#define MAXMNTLEN 512
#define MAXCSBUFS 32

1* * Per cylinder group information; summarized in blocks allocated
* from first cylinder group data blocks. These blocks have to be
* read in from fs csaddr (size fs cssize) in addition to the
* super block. - , -
* * N.B. sizeof(struct csum) must be a power of two in order for
* the ., fs cs" macro to work (see below) •
*1 -

struet csum {
long
long
long
long

} ;

1*

cs ndir;
cs-nbfree;
cs-nifree;
cs-nffree;

1* number of directories *1
1* number of free blocks * 1
1* number of free inodes *1
1* number of free frags *1

* Super block for a file system.
*1

#define FS_MAGIC oxOl1954

#define FS CLEAN ox17
#define FS-OK Ox53
#define FS=NOTOK Ox31

struet fs

{
struct fs *fs link; 1* linked list of file systems *1
struct fs *fs-rlink; 1* used for incore super blocks *1
daddr t fs sblkno; 1* addr of super-block in filesys *1
daddr-t fs-cblkno; 1* offset of cyl-block in filesys *1
daddr-t fs-!blkno; 1* offset of inode-blocks in filesys *1
daddr-t fs-dblkno; 1* offset of first data after eg */
long - fs~cgoffset; 1* cylinder group offset in cylinder */
long fs-cgmask; 1* used to calc mod fs ntrak *1
time t fs-time; 1* last time written *7
long- fs-size; 1* number of blocks in fs *1
long fs - dsize; 1* number of data blocks in fs * /
long fs-neg; 1* number of cylinder groups */
long fs-bsize; 1* size of basic blocks in fs */
long fs-fsize; 1* size of frag blocks in fs *1
long fs-frag; 1* number of frags in a block in fs */

1* these are configuration parameters *1
long fs minfree; 1* minimum percentage of free blocks */
long fs-rotdelay; 1* num of ms for optimal next block */
long fs-rps; 1* disk revolutions per second *1

1* these fields can be computed from the others *1
long fsbmask; 1* "blkoff" calc of blk offsets *1
long fs-fmask; 1* "fragoff" calc of frag offsets */
long fs -bshift; 1* I 'lblkno" calc of logical blkno * /
long fs-fshifti 1* "numfrags" calc number of frags */

1* these are configuration parameters *1
long fs maxcontigi 1* max number of contiguous blks */
long fs-maxbpgi 1* max number of blks per cyl group */

1* these fields can be computed from the others *1
long fs fragshift; 1* block to frag shift *1
long fs-fsbtodb; 1* fsbtodb and dbtofsb shift constant */
long fs-sbsize; 1* actual size of super block */
long fs-csmask; 1* csum block offset *1
long fs-csshift; 1* csum block number *1

(long fs-nindir; 1* value of NINDIR *1
,long fs-inopb; 1* value of INOPB *1
long fs-nspf; 1* value of NSPF *1
long fs=id[2]; 1* file system id *1
long fs sparecon[4); 1* reserved for future constants *1

1* sizes determined by number of cylinder groups and their sizes *1
daddr t fs csaddr; 1* blk addr of cyl grp summary area */
long - fs=cssize; 1* size of cyl grp summary area */
long fs cgsize; 1* cylinder group size */

1* these fields should be derived from the hardware */
long fs ntrak; , 1* tracks per cylinder *1
long fs-nsect; 1* sectors per track *1
long fs-spe; 1* sectors per cylinder *1

1* this comes from-the disk driver partitioning */
long fs ncyl; 1* cylinders in file system *1

1* these fields can be computed from the others *1
long fs cpg; 1* cylinders per group *1
long fs-ipg; 1* inodes per group */
long fs-fpg; 1* blocks per group * fs frag *1

1* this data must be re-computed after crashes */ -
struct csum fs cstotal; 1* cylinder summary information *1

1* these fields are cleared at mount time *1
char fs fmod; 1* super block modified flag */
char fs=clean; 1* file system is clean flag */
char fs_ronly; 1* mounted read-only flag *1
char fs_flags; 1* currently unused flag *1
char fs fsmnt[MAXMNTLEN); 1* name mounted on *1

1* these fields retain the current block allocation info */
long fs cgrotor; 1* last eg searched *1
struct csUm *fs csp[MAXCSBUFS] ;1* list of fs cs info buffers */
long fs_cpc; - 1* cyl per cycle in posthl */
short fs-postbl[MAXCPG][NRPOS);I* head of blocks for each rotation */

long fs_maqic;
char fs_fname[6]:
char fs_fpack[6]:
u char fs rotbl[l):

1* actually longer-*I
} :

1* magic number *1
1* file system name *1
1* file system pack name *1
1* list of blocks for each rotation */

1/*
* Convert cylinder group to base address of its global summary info.
* * N.B. This macro assumes that sizeof(struct csum) is a power of two.
*1

#define fs cs(fs, indx) \
fs-csp[(indx) » (fs)->fs_csshift][(indx) & -(fs)->fs_csmask]

1* * MAXBPC bounds the size of the rotational layout tables and
* is limited by the fact that the super block is of size SBSIZE.
* The size of these tables is INVERSELY proportional to the block
* size of the file system. It is aggravated by sector sizes that
* are not powers of two, as this increases the number of cylinders
* included before the rotational pattern repeats (fs cpc).
* Its size is derived from the number of bytes remaining in (struct fs)
*/

#define MAXBPC (SBSIZE - sizeof (struct fs»

1* * Cylinder group block for a file system.
*/

#define CG MAGIC
struct cg-{

Ox090255

struct cg *09 link;
struct 09 *09-rlink;
time t 09 time;

(long - 09_ cgx ;
'short 09 neyl;
short O9-niblk;
long O9=ndblk;
struct csum cg cs;
long cg rotor;
long cg-frotor;
long O9-irotor;
long O9=frsum[MAXFRAG];
long cg_btot[MAXqPG);
short cg b[MAXCPGj [NRPOS);
char cg-iused[MAXIPG/NBBY];
long cg=magic;
u_char cg_free[l];

1* actually longer *1
} ;

1*

1* linked list of eyl groups *1
1* used for incore cyl groups */
1* time last written */
/* we are the ogx'th cylinder group */
1* number of cyl's this cg */
1* number of inode blocks this cg */
1* number of data blocks this cg * /
1* cylinder summary information */
1* position of last used block * /
1* position of last used frag */
1* position of last used inode */
1* counts of available frags */
1* block totals per cylinder */
/* positions of free blocks */
1* used inode map *1
1* magic number */
1* free block map */

* MAXBPG bounds the number of blocks of data per cylinder group,
* and is limited by the fact that cylinder groups are at most one block.
* Its size is derived from the size of blocks and the (struct cg) size,
* by the number of remaining bits.
*/

#define MAXBPG(fs) \
(fragstoblks«fs), (NBBY * «fs)->fs~size - (sizeof (struct cg))))))

1* * Turn file system block numbers into disk block addresses.
* This maps file system blocks to device size blocks.
*/

#define fsbtodb(fs, b) «b)« (fs)->fs fsbtodb)
#define dbtofsb(fs, b) «b»> (fs)->fs=fsbtodb)

1* * Cylinder group macros to locate thinqs in cylinder groups.
* They calc file system addresses of cylinder group data structures.
*1

#define cgbase(fs, c) «daddr t)«fs)->fs ~ * (c»)
#define cgstart(fs, c) \ - -

(cgbase(fs, c) + (fs)->fs cgoffset * «e) & -«fs)->fs egmask»)
tdefine cgsblock(fs, c) (cgstart(fs, c) + (fs) ->fs sblkno) - 1* super blk */
#define cgtod(fs, c) (cgstart(fs, c) + (fs)->fs-cblkno) 1* cg block */
#define cgimin(fs, c) (cgstart(fs, c) + (fs)->fs=iblkno) 1* inode blk */
#define cgdmin(fs, c) (cgstart(fs, c) + (fs)->fs_dblkno) 1* 1st data */

1* * Give cylinder group number for a file system block.
* Give cylinder group block number for a file system block.
*1

#define dtog(fs, d) «d) I (fs)->fs ~)
«d) % (fs)->fs-fpg) #define dtogd(fs, d)

1*
* Extract the bits for a block from a map.
* Compute the cylinder and rotational position of a cyl block addr.
*1

#define blkmap(fs, map, loc) \
«(map) [loe I NBBY] » (loc % NBBY» & (Oxff» (NBBY - (fs)->fs_frag»)

#define cbtocylno(fs, bno) \
«bno) * NSPF(fs) I (fs)->fs spc)

#define cbtorpos(fs, bno) \ -
«bno) * NSPF(fs) % (fs)->fs nsect * NRPOS I (fs)->fs_nsect)

1* * The following macros optimize certain frequently calculated
* quantities by using shifts and masks in place of divisions
* mod~os and multiplications.
*1 .'

tdefine blkoff(fs, loc) 1* calculates (loc % fs->fs_bsize) *1 \
«loc) & -(fs)->fs bmask)

#define fragoff(fs, loc) - 1* calculates (loc % fs->fs_fsize) *1 \
«loc) & -(fs)->fs £mask)

#define lblkno(fs, loc) - 1* calculates (loc I fs->fs_bsize) *1 \
«loe) » (fs)->fs bshift)

#define numfrags(fs, loc) - 1* calculates (loc I fs->fs_fsize) */ \
«loe) » (fs)->fs fshift)

#define blkroundup(fs, size)' /* calculates roundup(size, fs->fs_bsize) */ \
«(size) + (fs)->fs bsize - 1) & (£s)->fs bmask)

#define fragroundup(fs, size) 1* calculates roundup(size, fs->fs_fsize) */ \
«(size) + (fs)->fs fsize - 1) & (fs)->fs fmask)

#define fragstoblks(fs, frags) 1* calculates (frags I fs->fs frag) */ \
«frags) » (fs)->fs fragshift) -

#define bikstofrags(fs, bIks) 1* calculates (biks * fs->fs_frag) */ \
«blks) « (fs)->fs fragshift)

#define fragnum(fs, fsb) - 1* calculates (fsb % fs->fs_frag) */ \
«fsb) & «fs)->fs frag - 1»

#define blknum(fs, fsb) - 1* calculates rounddown(fsb, fs->fs_frag) */ \
«fsb) &- «fs)->fs frag - 1»

1*
* Determine the number of available frags given a
* percentage to hold in reserve
*1

#define freespaee(fs, pereentreserved) \

1*

(bikstofrags«fs), (fs)->fs estotal.cs nbfree) + \
(fs}->fs_estotal.cs_nffree = «fs)->fs=dsize * (percentreserved) / lOb»)

(
I

* Determining the size of a file block in the file system.
*1

#define blksize(fs, ip, Ibn) \
« (lbn) >= NDADDR II (ip)->i size)Ie «Ibn) + 1) « (fs) ->fs bshift) \

? (f8)->f8 bsize \ -
: (fragroundup(fs, blkoff(fs, (ip)->i size»»

fdefine dblksize(fs, dip, Ibn) \ -
«(Ibn) >= NDADDR II (dip)->di size >= «lbn) + 1) « (fs)->fs_bshift) \

? (fs)->fs bsize \ -
: (fragrouiidup (fs, blkoff (fs , (dip) ->di _size))))

1* * Number of disk sectors per block: assumes DEV BSIZE byte sector size.
*1 -

fdefine NSPB(fs) «fs)->fs nspf « (fs)->fs fraqshift)
fdefine NSPF(fs) «fs)->fs=nspf) -

SWAPPING

ce.~()ce~.O\tke.SW4P ~~e W4S
-

n\.MtLee4 . ~,... -tL IDe .. ! SySTtll\ IAS''''\

-t"-~ §WO-f ~~.

~ wa.p ~4.p I~ 4,,,

ArcA" 0.(' A tU.r~~, St"l.e

P4.l,., wk~,~ e..,t" el'-try

oLe +ll\f S 4" Cl~tl,la.&,'t.

Ot4t . at ~WCLp o.rtA.

1-

AtUc' S ... ~I

~~r; s.u~

AJ.tl~! S,If.!

As ~W4.p S (JfUl. IS C"e,u. "~d. b~ ~
pcoe.ess. • IS ... &Jc~" .pro,.,.. tl-.e :SWap fIAA-P.
TA.! u.olcess, S''Lt J.,. ... tA .s "-ptJ.4:tetJ.

_ SE- S-1alA-P' -1-

'.

· .

SWt1f W\00p e ~ -t. c y .

UiJ ct~ te4i s&a)G.p M(lP [10' I '66 1

TI\e. ioeo.i..01\ o~ -t~t S~G.p spCl.ee. II\. C4.se
by pc-04ess A t-$ k~pt. ,t\ -tkt. pe.r prcse.es.s
t"e.8'o~ -teL!.l&. e~ -tke fC"oeess's U o.rtCl. '

wk.e.", -t~t. pco-ess -t.f.("'I tes I -tk.~ 8fA)<1P

5p4.!~ -...11 "e. re.t~r"ecat +0 ... ke. ~WCLp"'o...p.
A,.. 4.tt~l'Lp-t WI'I lot' ~'-o.Dl!. -to ~oo lest!e. -t"-e
t"e leD-seal Sptl.e.f. ~, .. k 4.1'- e.'l/st'll~ $Wo..plk4{J
el\.try.

· [101 1 9"0]-

Process -S requests. .2"0 by't~s ~wG.p

,
I IbO I

-
"61 I '!tJO I

l .

:rt w4~ f\ot fOSS. b/e -to ~6(lleste.. .,.,,~
~ree tt spGee.. If ,,~~ a.cro.y b:tc-y ,.HlS

e.C'"ea.te~ •. Tk.f s\ot)CLp 4.~e4 ~s loe4o-.e
~to.8",,(.. t e~. I.r t"'es~ 4,reu SitU ~te.
w"tr-. pC"4e~s s --S -t'ec..,.,~ .. tl', ~t S/(1~e
11'111 J,L ~C'gec:t 104d.~ .",to (1 ~1t\.~lt
~Wc:Lp~Clp · ~ •• .'tr't.

se -5WAP."-3

A~tt("I..O .C"tlu.se. sys-t(lt\t wkte.k.
! ho."e, 100.ca.1 s~Q.f olt~ .aes\,u.,\ ol 0..

. ~Lu\kmQ..p6:t locSO"l.&A.f. Tk.as,·l\d '&-lot~.r
, st(lt\Dl~ lo"e., 5ysttM.S, C"&ot s~~"~rs. ~

oLtstlus t\oole s W I+k.. 10 1 SW4.f·

EM'" ek.lU.k b\4.p el\.try

~6r"es ~d.s .,. 0

C.h.m.dP

-
1:>M1'1 A'J. w. I 0:1. 'I by.,., S

6~ SuUlP ap4e.e.

(btf • .,.lt l>IW\M ~ c 51:! \

-A ""'-"",,-k. h\ 0 ~ ,'- f\.~ "''-.''t d ~
Q. oLlsaless ~6cle. wlt.... ,,0 loe-a. ("WCLP
ol'Rs.

5£- swA P-I./

•

:t~ .. SV~Te~. k4S IAwt'p/e $1AJ4p d.t!~/(!t!S
, e.o,,:f,~CA.~e.__ III -tke kecI\e (~ . o,k&A.A.1c M4.p

. e~t.r,e$ t.r eG.Q.k. cst +k~ cJ..t~,etls 1$

.. ,.tee- IUv'eDl ,'" .. e\rt.kla,. ~ .. s,,'o"'.

T"-t \Q.$t, e,,,,tcy ~or 4tQ.~k.. swa.p rJ..e.~ ,ae
rt\4'f Joe. l~ss l' "-4f'. DM.m~rX ... 10:2. 'I.

!:lltC'tes . -Por "d'S4 s()'tA.(!(' .,.klJ.l\. T"-t.

ale -kA..Jt Swap t:l.etllf!~ Ct4./y he~dlt4-e vtL/,1Il

(I. +-t e (' Sw ... p d -- ku h! u e"1- tc,1A. t eJ. •

... S£-SWAP .. 5·

SW.APPIN ~

All SY.1"e~s, kose l'kAt s\lJQ.f ("t o1.',
(l.t\.~ 1"k.o~e +ut· ~p 0,... lae. .. 1 d,&&s,

0-(' tOot! G- (!'la-\L,,-k tCllolt. (j.\d.. Q .sW4.ptN1p.

ewQ.plkA.p

•

• •
•

- I •

~

ek t,1o I ·1$ tt, ft\.et\.s ",-etJ. .QC"'
M4.'"t.~MOles",H!.k\L"~s ~i.t,ts. 'I-t: 's I.A.sf.a

to keff trt.ld~c~ ~W4.~ e~\A."'~S Q.\louted
.+rON- i' ke . Q.l\A.~1c ~4.p. .

T"~ ~wG.~ ~A.p .s lA.se~ 4S l~ t:.X-,
Syste-.t.

SWAPPINQ'
~"'tb I ..

/"
~ •

it
.~

-
II -

l j

As SklO.p espo.'e I~ teq&,UreJ., A' ~e'lu.e~ t IS

, - o.cLe, -t.,. o.fid..fl6,..tll St.tJCLp Spo.4~.

A I\. t.~.:t: C''f '" 1" ~t e.."\A.~ lr.. ~ 0. P • s 4.11 0 ~4. f tole

A" e.", t ~y '''' 1'k.~ e,l.,."",k -toJo Ie. ,,. ~olf to
ke~ p -t.C'cl~ k. o~ ... ""e. elv.t-k o~ . awo.p sp44e
CLII oe.Q.1'~ d. .

Nttlol e .. -t ttt.s ,~iIL. ~WQ.p r-.tl.p 4re ClreCl:teo('
t6 SkOlN, -t"'e ,..t.~ tlV411Q.101~ .:swa.p ~pc2.4e.

SE "SWAP-'7

\SWAP P I f\J G:

1),~~ess ~ocle- 4t~ . ~oot. . Se(' t"Je r

5~'MtAf' ek tt.l ek .. ~p e,ktfol S~-'AP
-- I .. • ~ IP' \ ,

\

L-

Tlt e.lCA.1I..1c ~ ,~tJ..Sf.tJ TO ~~(. -t:.ke
.. ,/,/"(1.1 ~Lt(t.tJ .sW¥ S(JIj.!t- "'" -tkt ~odl'
.!e.rvtC-.

TA..~re IS (l. t!Md..e. :I.b ~IflJ '''' -tkf. U,..,.,1c..
'lK.4.p ~t,.)" .,.~ re.eo~t/. lAJl\a:t ~lto(J/.t IS CAS""·e
e.4.t!.A eAlA.Ak. or ~W4P SfJAl.t •.

bJltll 11 (!Aode .r.../.s. -tke e,A",.lt-1: IfU.po 1.3

S~tUVlttJ. -t:~ ~J.IA.~lcs (JI/6Utetl f~ -tAt.. -Ptf,lea'
e,A.tJtJe. 7A-t~t ull.14ks 4t.r~ {}ttd fU\.J retCA..C"l\eaf

"0 ~I dl II,,'IJ.I/fllole eAlA.A..ks.

SWAPPI/J~
~k~o.p . . o,k.tCl .

A ke,c At I d..tJ.elAOI\. rlAns e\le ry '. 90 _~Cf'."s

01\ 4!.,ef~ e,"oole. 10 ~4k .Q;, e.l~s o~ slMG.{J
~(J4~e. -tkA.t "*1 Jr,& ('c!twt\tGi to tl~ t eb41

001.
~

:r~ 4. e.k.-.""k. ~ SW4.p .S I\ot be''''8 CAStel, +J..e
·e~:tl(~ ~1J..,Jc .. ,/1 h~ III .,/t~~w4f'l'M.4f1.

. -rA..!. ~wop (/.4elltOJ4.. ~III -set II- reftrel\4t Jolt
,'" efte. ~,J: T4lJe. eAt~y ~r 4tty aJuA.I'.1c Il«
be.,"-t CA.sed. I"~ t'k.s ek."'-I\.k IS st. II UA'-lSeol
+Le M'Xt +,~e. ","t. d..D. !.Mot\. (""'''S, .,..s..t
Sc.ua.p Dp e~t('.es wIll b~ ~e.~ .. e.Dl ~ t"~
~ u r-k w' ((£:ae ~e.ed.

SWAPPING

DMMAX

Must be same for all nodes swapping on
Root Server

Swap space. partitioned in chunks of
DMMAX * 1024

DMMAX on Root Server used by all nodes
swapping on Server

. DMSHM and DMTEXT
Not forced to be same as Root Server
Not allowed to exceed DMMAX

SE-SWAP - 11 .

SWAPPING

maxswapchunks

Configurable kernel parameter

Number of DMMAX * 1024 chunks that
a node may allocate

Defaults to 512

May be used to restrict swap space
allowed to a node

SE-SWAP - 12

SWAPPING

minswapchunks

Configurable kernel parameter

Number of DMMAX * 1024 chunks
allocated to node at bootup

Node always retains this minimum
amount of swap

Defaults to 4

SE-SWAP - 13

Discless Network 'Protocol

Discless Network Protocol

• Better Performance than' Existing Protocols

• Used only by Discless Kernel

• Communication on a Single L,t,I\J only

• Does N·ot support Gate'A'ays

• Co-Exists \",ith other t·~etworki.n~J Services

I
I
i L __ .. _______ - --- _____ . ______________ . .-___ . _______ ... ___ .

1 . I

-I
I
I

,.
i
I

I
I
I

i
1-. '

,

I
-, ,
!.
I

j

NF " Q 1981 Hewlett-Packard Company

'***** •••
The S300 discless workstation implementation does not use any of the standard

networking protocols such as TCP/IP, LLA or UDP. The Discless protocol is a
. ~ecial HP.proprietary protocol that has been designed for optimum performance

a discless environment.

I This protocol is only used by the HP-UX kernel in support of discless
workstations. At the 6.0 release, it supports communication between a root
seIVer and its discless nodes over a single IAN only. Because this is not an
IP protocol, it is not supported across an IP qateway.

The discless protocol co-exists with the other HP supported networking
services. Both the server and discless nodes may use NS and ARPA/Berkeley
services to· communicate with systems outside the cluster as well as inside
the cluster. NFS may be used by both the server and discless nodes to access
files systems outside the cluster.

r - - ... _ , _... -• - - ..•.. __ . "- _ ... -...... - _--... _ .. _- -.----- "---'. ' .•. '"

I I
I

I Allows Use of a Simple, Protocol
I

I
!

i
I
I
I ,

I

• tvlessages rarely L.ost in a l_/\t~

• No ·need to copy Data bet\tveen Buffers

• Certain Requests are Idempotent

• Preallocates space for Reply ~\jlessage

• ~,'c)t for Gen(~ral F)urpose Cc)mmunication

L ____ .. __ .. _. ______ . __ " . __ ._ ._._ .. __ " __ . _____ . __ .-. ______ . ___________ .. __ . _____ . ____ ... ______ .
(0~

I
I

I .
I .
I
j

. ,
--.-J

Hewlett-Packard Company

.Because the discless protocol is limited to a single IAN, certain .assumptions
ay be made which allow for a 'simple protocol. These include:

Messages are rarely lost in a single IAN

Significant time is lost in copying data between network buffers and user
buffers. Therefore, the discless protocol copies directly from the LAN
card into the discless netbufs.

Certain requests are idempotent - this means that these requests may be
re-executed with no change in effect. An example of such a request would be
a sync. Idempotent requests do not require acknowledgement.

Perfor.mance can be improved by preallocatinq space for the reply message
before the request is sent out.

Since this protocol is not designed for general purpose conununication, it
may be tailored to the specific requirements of the cluster.

r-' -.--.,-- -- -. -.---- .. ---.. --------.. -.. --.. -------.- -.- .. -----.- .. "--' - --, ._--:--_ ... -. '--- --._-. -'--'-----'-'-. - ------ ----.-----.... - .. ------..... -. --I
t ,

Discless Network Protocol

~\ernel
/r-..

Discless ,~

~~essage

Interface \)
~

Buffers

~ \v
Discless Protocol Layer

-------------------- .. _---- ---------_._-------_._._-_ .. _------_._--
(

N'-:1IT.02 G 1987 Hewlctt--Packard Company

, This diagram shows how the discless message interface provides for

communication between the kernel and the Discless Protocol Layer. The Discless
Protocol, Layer interfaces directly with the LAN ~rdware. The protocol and
uffer management are hidden 'from the kernel.

Inbound messages are passed to the Discless Protocol Layer by the
LAN Software ISR while OUtbound messages are passed directly to the LAN
Hardware ISR.

o
. .

Discless Network· Protoco·l.

The Discless protocol is a Request/Reply protocol.

Non-Idempotent Request

Non-Idempotent requests mu~t be executed .only once
so these requests must be acknowledged. A~ example
of such a request is a file open request.

Requestor Receiver
(Server)

------request----- --___ -_>

. <--------reply--------

-acknowledge------·-->

. The serving node will continue to transmit the reply until
an acknowledge is received.

If the -requestor does ".ot receive the reply
within a timeout period, the request will be sent again ..
The server will ignore duplicate requests. .

~ROTOCOL - 4

Discless Network Protocol

I'dempotent Request

Requestor, Receiver'

_. ·----request-·-· •• >

<-··----reply-----------

Idempotent requests are requests which produce the
same effect when executed multiple times - such as
a sync request. Such requests do not need to be
acknowledged.

If no reply is received by. the requestor within a
timeout period, the request will be sent again.
Even if the request has already been executed, it
will be executed again.

PROTOCOL - 5

Discless Network Protocol

"Slow Requests"

Some requests may take an indefinitely long time to
complete - such as a request to write to a file which
is locked.

Requestor Server

-----request---------->

(timeout expires)

--duplicate request-------->

<-lIthis is a slow requestll--

(request is completed)

<-----re p Iy-------------------
--acknowledge------------->

When a duplicate request is received· by the server
and the server has not been able to service the
request, the server will send ,an acknowledgement
to the requ~stor indicating this is a "slow
requestll. The requestor will then stop repeating
requests and wait for the reply.

PROTOCOL - 6

r' --- -... '--... ---.- ' .. _ .. --_ ... -- --- .----- _ ... - .. --.-., -.-.... --_. . ---. -.'" .

I
i ,

I Datagram Messages
. I

• F-or ,L\cc(~ssin~J f"i(~t\:vork with tv1inimal Overhead

• '[)atagrams not QlJeUld, t\jetwcJrl~ Driver caned directly I

I
I
I

• Single Packet Fiequest or Repi)'

• t'Jo J\cJ\novvledgcmen~ or Reply Fiequlred

L _____ .. _. __ ._ .. __ ._ ... __ _. __________ .. _ .. ___ . __ .---- ---- --.--.. -----... -.-.----.--------.-.-.. - .. ---'--
, 0~

i
I
I

Hewlett-Packard Company

f ._.

I

I· Datagram Messages
I
I
I

I
I

• Used for these Types of ~/1essage~

Clocksync

N/\J,,' s

I'm I\live

Broadcast -F-'ailure

• These meSS"21ges use Statically allocated mbufs

to Increase Probability of being rJelivered

I
I .'
I .
I .

i·

..... __ .. ______ . __ . ___ .. __ . _____ _. __ ._ __ . _._ .. _ ... _._ .. _._ .. ____ ._ ________ ._._ -_.·0 __ .. 0._._._---- __ ____
G> 1981 Hewlett-·Packard Company.

---'--'--- -..... -.. -.-------.. - .. ---- -'-'-'-'---'-'" -... -.- -----------..... ----.------.----------.-- 1

mbufs

• For Discless '~/1essage ~~eaders I .

• 128 Byte Buffers I'
I

• Allocated at Cluster Time

• Required for each ~Aessage

• Configured by dskless_mbufs

• dskless ___ ITlbufs := ~,Iumber of pages of mbufs

-- ----_._----_. __ ._--- ----_._._._---
G 1987 t-k.wlett·-Packard Company

mbufs are a linked list of 128 bYte buffers· allocated at cluster time. Pages

. 'of memory, are allocated and "chopped" into 128 byte' pieces which are linked
.... ogether.

The kernel parameter maxdiscless mbufs is a number ~f memory pages to be.
'&ed for mbufs - 32 mbufs Per page 'Of memory.

If a system has insufficient mbufs allocated, look for "Cannot allocate
message buffer" messages. The mbuf utilization may be checked using the M
screen of the 6.0 version of monitor.

r- ' - ' ... -- - ---'---"'--'-'" --... -.. - .- .. - ... ---.... - -.. . _...... . . - .. _--- .. -.- ~-. ~.. --~ ---.-.---..... '.--"~-'.--- -.---....... - ~- . '-, ,
I .
I .
I
I cbufs

I
L-.. _._._

• For Discless ~~essage Data

• 1024 Byte Buffers

• Allocated at Cluster Time

• Required if e~tire ~/1essage does not fit in an mbuf

• Configured by dsl<.less_cbufs

• ciskless ___ cbufs = i'Jumber of pages of cbufs

• If entire tvlessage does not fit in a cbuf, file system

Buffer is allocated ! . ,
I
I : . ,

.- ---_._.- --_ •. _--_ .. -. -_. --------_ .. - --".'-' - __ J
/ o 1987 Hewlett·-Packard Company

cbuf are a'linked list of' 1024 byte buffers allocated at clust~r time.

Pages of memorY: are' allocated and "chopped" into 1024 byte .pieces which are
linked together~ ., . . .

The kernel parameter maxdiscless clusters determines the number of memory
].1ges to be allocated for cbufs - cbufs per page 'of memory. The .

aefault value of maxdiscless_clusters is 1111

If the system runs out of the preallocated pool of cbufs, more pages of
memory will be taken from the page pool and used forcbufs. Once these
buffers have been freed, the pages will be returned to the page pool. The
cbuf utilization may be checked using the M screen of the 6.0 version of
monitor.

Performance considerations:

If the root server system is going to be used as a server only, it is a
good idea to allocate more than sufficient memory to the discless protocol.
If the server' is not being used as a workstation it does not make sense to
be dropping messages due to lack of protocol buffer resou

1'--' . -. "'- - - . ----- --" -.. , ... _--- _. _ .. - _. '.-' - _.... _.- --.. ----.--.. -.. ---- --._ ,. -- --, - - . -i

. I

Discless Outgoing Messages I·

,~ mbuf

B mbuf

mbuf

~.-

• I

~') -- ' /

' ----- '\ _ ... _/

I
I

I
cbuf I

\~ile System
---"--' ~! --- -"~' / Buffer

cbuf

---'-'- .- ... "-' - .. -- ... _._------------_._ ... _ - ----_. __ . -.-- --' .-.. -.-... - ... ----.... ----.---,----.-~
I

@ 1~87 Hewlr.tt-Packard Company

** •• ****

OUtgoing messages may be of varying· sizes. A message may require only an
mbuf which means that the message is just a header with the information
encoded in fields of the header. Examples of this type of message are
'carid Alive requests, Itllm .Alive" messages, etc.

~ For longer messages, an cbuf is also used. The mbuf is still required
build the header and the additional message data is stored in the cbuf.

The mbuf contains a pointer which points to the cbuf buffer.

. Very long messages, such as file system buffer write requests, will require
more space than the mbuf and cbuf combined. For these requests, file
system buffers are allocated. The file system buffers may be either 4K bytes
or 8K bytes. The following combinations are possible for these long messages

mbuf + 4K File System Buffer - 128 + 4096

mbuf + 8K File System Buffer - 128 + 8192

mbuf + Cbuf + 4K File System Buffer - 128 + 1024 + 4096

mbuf + cbuf + 8K File system Buffer = 128 + 1024 + 8192

.,
I

Network Buffers

• Prealic)cateeJ 1')001 of F~'i:e 'System 8uffers

• j\vailable to ~<ernel under Int(;rrupt

• lJsed to Receive Incoming Request Message

• rJrevents having to Copy Data to a File System Buffer

I

I
. i
I

.j ,
·l ___ ._ .. _ ... _ _. __ . ___ .. -___ ._ _ .. __ ----.. --- .. -- . _____ .

i
. _______ _ ---I .

NF11l.0? Q 1987 Hewlett-·Packard Company

•••••• **
These is also a preallocated pool of" Network Buffers called Netbufs.

Netbufs are a pool'of file system buffers ailocated at "cluster time which
.... e available to the kernel to be used under" interrupt when rec~iving a request ...
is is done so that when requests are received under interrupt, the kernel
~es not have to wait for a buffer to be allocated.

When a request is received, the message is copied directly from the hardware
buffer into a netbuf for processing. The use of netbufs prevents having to
copy the data into file system buffers. Since netbufs are preallocated file
system buffers they can be used directly by the file system by exchanging
pointers.

If a system is out of available netbufs at the time a request is received,
the request must be dropped. A NAK will be sent to the requesting node. You
may look at netbuf utilization by checking the M screen of the 6.0 version of
monitor. '

FSBUFS - This is the number of netbuf headers allocated

FSPAGES - This is the number of memory pages used for netbuf data
buffers allocated.

FSPAGES will probably be greated' than FSBUFS because some messages will
require more than 4K for data space.

. -

. Discless. Network· Protocol·

When Sending a Discless Request

- mbuf, cbuf or file system buffer is
used to build the request message

- Buffer space for the reply message is
preallocated from the mbufs and

. file system buffers

- The message is placed in the Discless
message queue. In the interest of
performance, the Discless protocol message
takes precedence over other protocols.

- When the message is sent out, data is
copied directly from the Discless buffers
into the hardware buffer.

PROTOCOL - 11

Discless Netwo'rk Protocol

Requestor

I
I

V

Get Buffers for Request
Preallocate buffers for

reply

I
I

V

Give Message to Discless
Message Layer

I
I

V

Pass message off to
Protocol Layer by
placing on queue
(Using_Array)

I
I

V
Message is put on
Network:

Server

/ \
I
I

Request handled under
interrupt or given to
gcsp/ucsp/lcsp

/ \
I
I

Request handled by Protocol
Layer

/ \
I
I

Request is received by
Discless Receive Routines

(Serving Array)

/ \
I
I

LAN H/W ISR

/ \
1 _____________________________ 1

PROTOCOL - 12

Dis'cless 'N·etwork Protocol

All cluster nodes maintain a usin9_arra,y and
a serving_array.

using_array Keeps track of
outstanding/active requests ,
made by the local node.

serving_array Keeps track of
received requests which
are being serviced.

Root Server Needs small using_array
Needs large serving_array

Discless Node Needs large using_array
Needs small serving_array

The sizes are determined' by

using_array_size

serving_array _size

PROTOCOL - 13

KERNEL . PARAMETERS'

New Configurable Kernel Parameters

For new libraries:

dskless - brings in libdskless.a
routines required to run discless
Discless protocol, Clock Sync,
Crash Recovery, esP's
Also lan, rdu, nsdiag

rfa - brings in librfa.a
NS and RFA routines

lIa and/or lan01
brings in liblan.a
LAN drivers and 4.2
convergence networking code .

nfs - brings in libnfs.a
NFS routines

PROTOCOL - 14 .

1
i
b
d
s
Ie
1
e
s
s

a

The ConfigurableKernel Pieces

6.0 I 6.0 I
IConfigurablel I Kernel I

Device 1<->1 HP-UX I
Drivers I I(Base) I --------------

I I I ---- I I NFS
-----------------1 I
I Discless I I I (libnfs.a)
I Kernel I 1<------------>1
I Resident ISystem I --->1 ___ _
I (libserver.a) I Calls I I
I I I UDP I --------------

7 \ 7 \ I I

DM Layer

II . II I_lIND
4.2

I I Convergence
I I Networking
I I

cspts I
recovery I

clocKsync I
cluster I
mbufs 1

(1 i bl an.a)

--______ 1

Protocol

Layer

I \
I
1 ___ -

LAN S/W ISR

LAN H/W ISR
------.1

PROTOCOL - 15

1
I. RFA
1 Server

<--->1
1 (librfa.a)
1
1 ___ -

KERNEL PARAMETERS.

Drivers:

nsdiag - LAN diagnostics

rdu - Driver used in reniote
swapping

fpa - Dragon floating pOint
accellerator support

vme - vrne support

stealth· _. vme backplane support

dos - DOS card support

scsi - Small computer system
interface driver"

.PROTOCOL - 16

LAN:

Kernel Parameters

num Ian cards - .

netmemmax
netmemthresh

- Number of LAN cards
to b~ supported on system
default = 2

- Since npowerup command
has been replaced by
ifconfig, these parameters
are used to allocate
sufficient memory buffers
for networking ..

PROTOCOL - 17

KERNEL PARAMETERS

Discless:

num cnodes -
Limiter for discless resource allocation
Similar to maxusers. Does not limit the
number of cnodes supported 'by the server.

Used in sizing NINODE, NGCSP,
serving_array_size, nurn_retry_reply,
nurn_retry _request

dskless node -
, .

Value should be set to 1 for discless
node and set to 0 for the root server.
Used in sizing the using_array. . .

server node -
Value should be set to 1 for root
server and set to 0 for a discless
node. Used in sizing the
serving_array. .

PROTOCOL - 18

KERNEL PARAMETERS

Discless:

using_array _size

Determines size of the using_array.

Default: NPROC

• • serving_array _size

Determines size of the serving_array

Default:

(se~er_node * num_cnodes * maxusers}+(2 * maxusers)

dskless fsbufs

Determines the size of the pool of netbufs

Default =

PROTOCOL - 19

KERNEL PARAMETERS

Discless:

dskless mbufs

Numbers of mbufs to allocate at cluster time.

Default =
«(serving_array_size + (2 * usin9_array_size»/32) + 1)

dskless cbufs

Number of cbufs to . allocate at cluster time.

Default = dskless mbufs * 2

ngcsp

Determines number of general esP's
that may run on a system

Default = 4 * nurn cnodes

PROTOCOL - 20

KER'NEL PARAMETERS.

Discless:

maxswapchunks

·Determines size of the Swap Space
Chunk Table. Default is 512.

minswapchunks

Size of Swap Area always allocated
to a node. Default is Default = 4 chunks.

PROTOCOL - 21

. Kernel Parameters.

Discless:

selftest_period

Period in seconds between executions
of kernel selftest routine.

Default - 140 sec-

Maximum - 300 sec

If set to 0, turns off selftest.

check_~live_period

Period in seconds between executions
of Check Alive routine.

Default - 10 sec

Minimum - 10 sec

. PROTOCOL - 22

KERNEL PARAMETERS

Number of times to retry Send Alive
messages to a site before executing
Cable Break detection routine.

Default - ·20 sec

Minimum - 10 sec

Selftest retry period if selftest
detects a failure.

Default - 4 sec

Maximum - 1/2 selftest_period

PROTOCOL - 23 .

SE390: Series -300 HP-UX Internals

Module Evaluation

DISKLESS

On a scale of 1-10, 1 being bad, 5 being OK/don't care/irrelevant, 10
being good, please rate the following. If you have particular comments,
please write them in. Thank you!

1. Clarity of presentation:

2. Depth/complexity (1 - material was too easy, 10 - it was too hard):

3. Usefulness/applicability/relevance of material presented:

4. Speed of presentation (1 - too slow, 10 - too fast):

5. How good was the material (slides, notes, etc)?

6. How good was the instructor?

Ways this could be improved (please be specific): 4

General Comments:

I/O section - Intro

I. Overview
A. What is a driver?
~. Types of drivers? .

)
. How is the driver accessed?

'. How a driver is configured into the kernel

II. Review a simple driver (RAM Disc driver)
A. What the Kernel does for you
B. What the driver does for you

1. Block device routines
2. Character device routines

III. Review a "real" driver (gpio card)
A. Walk thru an open call
B. Walk thru a read system call

1. not using DMA
2. using DMA

IV. RS-232 drivers
A. Use of buffers
B. What is "canonical processing?"

Feb 09 13:13 1988 Overview (I/O) Page 1

Types of Drivers

Block Mode - uses a buffer cache that is maintained by the File System
- usually associated with the File System, and deals with

blbcks of data of the same size
- used with devices that have random access.
- ideal for using DMA type transfers

Character Mode - usually sequential devices (e.g. printers, terminals, tapes)
- deals with "variable" lengths of data
- Character Mode does not mean it deals only with "Characters"
- may use DMA transfers, or may be solely CPU (interrupt) transfers

Character Mode Drivers fall into three main types:

1) Very similar to the Block Mode driver. For example, the csao
driver uses much of the same code for its block & character mode
access. The driver uses a buffer header like the block mode
driver, and may actually "borrow" one from the buffer cache.
The buffer space is (usually) the user's buffer, which is mapped
into the kernel space. This method does not require copying data
from users space to a kernel buffer. Used with drivers that perform
large transfers and DMA capable.

2) Serial drivers use internal buffers (Clists/Cblocks) for holding
the data for transfer. They (can) perform processing of the data
using canonical processing (e.g. ERASE, KILL, etc.). Data is
transfered between these buffers and the user's buffers. They
usually deal with small/slow transfers.

3) The third type contains internal buffers (like serial drivers) and
transfers the data between the user's space and kernel space for
the I/O transfers. It will use the CPU (via interrupts) to
transfer the data. An example of this type of driver is the rje
driver. This type does not use OMA for transfers.

OIL added another type of driver, which is CP~ intensive. It uses the
IOMAP facility to map the I/O card into the users address space and
then copies data directly between the user's buffer and the card.

Feb 09 13:13 1988 Overview (I/O) Page 2

How Drivers are Accessed

- I/O to/from devices are accessed using the same semantics as
normal files in the file system. By using this method, a program
does not have to treat access to a file or a device any differently.

- All I/O starts with accessing the File System (during the open).
The "open" system call accesses the file system and puts the device
file info into the file descriptor table. It also will perform
any necessary device dependent operations.

- I/O Reads/writes follow the same path as used to read and write
files in the upper levels of the kernel. This is also true for
Pipes (FIFOS), Directories, Networked Special Files, Symbolic
Links. At this point in the kernel, we diverge to the different
areas in the kernel (drivers for I/O).

Feb 09 13:13 1988 Overview (I/O) Page 3

What is a Driver?

Provides the window to interface to the outside world

Provides the hardware specific routines

Provides a common interface to the kernel

Feb 09 13:13 1988 Overview (I/O) Page 4

How A Driver Is Configured?

- /etc/master contains the information on drivers. There are two
types of "driver" entry. There is the upper-level (device) drivers
(e.g cs80, tty, etc) and the lower-level (interface or card) drivers'
(e.g. 98642). Some drivers may combine both, as in the gpio
driver.

- The driver information in /etc/master tells "config" what entries
to make in the conf.c file created. The following gives examples
of these entries.

* * name handle type mask block char

* cs80 cs80 3 3FB 0 4
tape tp 1 FA -1 5
ramdisc ram 3 FB 4 20

* * name handle type mask block char

* 98624 ti9914 10 100 -1 -1
98625 simon 10 100 -1 -1
98626 sio626 10 100 -1 -1
98628 sio628 10 100 -1 -1
98642 sio642 10 100 -1 -1

* * name handle type mask block char

* tty sy D FD -1 2

Feb 09 13:13 1988 Overview (I/O) Page 5

- A description of the fields are:

name - the name used in the "dfile" signifying the requested driver
handle - the "handle" actually used for the subroutine calls in the

kernel (e.g. for tty driver, the open routine would be sy_open)
type - 5-bit attribute flag indicating "type" of driver:

43210

I I \- character device
\--- block device

\----- required driver
\------- specified only once

\--------- card
mask - 10-bit driver routine flag; tells config what routines to

include in conf.c for the driver
987 654 3 2 1 0

I t-~=
\-----

\-------
\--------\----------\------------\--------------\-----------------

C ALLCLOSES flag
seltrue handler (always TRUE for select)
select handler
ioctl handler
write handler
read handler
close handler
open handler
link routine (links interrupt handler -
found in all interface drivers)

\------------------- size handler (in disc-type drivers)
block - major number for block device driver
char - major number for character device driver

The major (or driver) number indicates the array offset for the
routine entries in a device switch table.

Examples from conf.c for the routines "brought in" by the "type" &
"mask" values above are as follows:

extern cs80 open(), cs80 close(), cs80 read(), cs80 write(),
cs80 ioctl(), cs80 sIze(), cs80 link(), cs80 strategy();

extern sy open(), sy close(), sy read(), sy write(), sy ioctl(),
sy seT ect () ; - - - -

extern-ti9914_link();

Feb 09 13:13 1988 Overview (I/O) Page 6

Following are exerpts from the bdev/cdev switch tables. It is via
these two tables that the proper subroutine calls are made for the
apporpriate driver. By modifying /etc/master's driver numbers, you
can change the "major" numbers for your drivers.

struct bdevsw bdevsw[] = {
/* 0*/ cs80 open, cs80 close, cs80 strategy, CS80_size, C_ALLCLOSES,
/* 1*/ nodev, nodev, nodev, nodev,-O,

} ;

· · · ·

struct cdevsw cdevsw[] = {
· ·

/* 2*/ sy open, sy close, sy read, sy_write, sy_ioctl, sy_select,
C_ALLCLOSES~ -

· · /* 4*/ cs80 open, cs80 close, cs8o_read, cs80_write, cs80_ioctl,
seltrue, C_ALLCLOSES,

· ·
/*43*/ nodev, nodev, nodev, nodev, nodev, nodev, 0,

} ;

This structure is used during the startup to allow for linking of
"make_entry" routines for the drivers.

The make entry() routine for each driver is called during startup
of the system. For each card found during bootup, the kernel calls
the make entry routines. These routines check to see if the card
is theirs. If so, it may perform some initializations and it
reports finding the card. If not, the make entry() routine will
call the next make entry() routine. There Is always a dummy routine
at the end of the list that will report no driver found for the
card.

int (*driver_Iink[]) () =
{

cs80 link,
amigo link,
scsi link,
graphics link,
srm629 lInk,
rje link,
ptys link,
lla link,
hpib link,
vme link,
stealth link,
rfai_Iink,

Feb 09 13:13 1988 Overview (I/O) Page 7

} ;

ti9914 link,
simon link,
sio626 link,
si062S-link,
si0642-link,
ite200-link,
(int (*) (»O

Feb 09 13:13 1988 Overview (I/O) Page 8

*t:lbx 10: @(#)dfile.full.lan 49.3
* dfile.full.lan

*

87/09/28

* This is the configuration file for a full system, with LAN

* * DEVICE DRIVERS
* disc drivers
cs80
scsi
amigo
* tape drivers
tape
stape
* printer drivers
printer
ciper
* shared resource management driver
srm
* pseudo terminal drivers (needed for windows)
ptymas
ptyslv
* dil hpib driver (includes plotters)
hpib
* dil gpio driver
gp'iS)
* note job entry

;C:> 98286 DOS Coprocessor driver (see dos_mem_byte parameter)
dos
* HP 98646 VME driver
vme
* HP 98577 VME expander
vme2
* If you want to run NFS, uncomment the following line.
*nfs
* Ian drivers (formerly: ieee802 & ethernet drivers)
lla
lan01
nsdiagO
* RFA server code
rfa
* CARDS
* HP-IB interface
98624
* high speed HP-IB interface
98625 -
* RS-232 serial interface
98626
* RS-232 datacomm interface
98628
* RS-232 multiplexer
98~A.2

Feb 09 13:13 1988 Overview (I/O) Page 9

,0
* Configuration information
*/

#define MAXUSERS 8
#define TIMEZONE 420
#define DST 1
#define NPROC (20+8*MAXUSERS+(NGCSP»
#define NUM CNODES 0
#define DSKLESS NODE 0
#define SERVER NODE 0
#define NINODE- «NPROC+16+MAXUSERS)+32+(2*NPTY)+SERVER NODE*18*NUM CNODES)
#define NFILE (16*(NPROC+16+MAXUSERS)/10+32+(2*NPTY»- -
#define ARGDEVNBLK 0
#define NBUF 0
#define DOS MEM BYTE 0
#define NCALLOUT (16+NPROC+USING ARRAY SIZE+SERVING ARRAY SIZE)
#define NTEXT (40+MAXUSERS) - - --
#define UNLOCKABLE MEM 102400
#define NFLOCKS 200
#define NPTY 82
#define MAXUPRC 25
#define DMMIN 16
#qpfine DMMAX 512
#CC ine DMTEXT 512
'ine DMSHM 512
ine MAXDSIZ Ox01000000
#define MAXSSIZ Ox00200000
#define MAXTSIZ Ox01000000
#define SHMMAXADDR Ox01000000
#define PARITY OPTION 2
#define TIMESLlcE 0
#define ACCTSUSPEND 2
#define ACCTRESUME 4
#define NDILBUFFERS 30
#define FILESIZELIMIT Ox1fffffff
#define DSKLESS MBUFS «(SERVING ARRAY SIZE+(2*USING ARRAY SIZE»/32)+1)
#define DSKLESS-CBUFS (DSKLESS MBUFS*2) --
#define USING ARRAY SIZE (NPROC)
#define SERVING ARRAy SIZE (SERVER NODE*NUM CNODES*MAXUSERS+2*MAXUSERS)
#define DSKLESS-FSBUFS (SERVING ARRAY SIZE) -
#define SELFTEST PERIOD 120 - -
#define CHECK ALIVE PERIOD 4
#define RETRY-ALIVE-PERIOD 21
#define MAXSWAPCHUNKS 512
#define MINSWAPCHUNKS 4
#define NUM LAN CARDS 2
#define NETMEMMAX 250000
#define NETMEMTHRESH 100000
#define NGCSP (8*NUM CNODES)
#dprine SCROLL LINES - 100
#DfC , ~ne MESG 1
'ne MSGMAP (MSGTQL+2)
ine MSGMAX 8192

Feb 09 13:13 1988 Overview (I/O) Page 10

16384
50
1
40
16384

0' ~ne MSGMNB
1ne MSGMNI

#define MSGSSZ
#define MSGTQL
#define MSGSEG
#define SEMA
#define SEMMAP
#define SEMMNI
#define SEMMNS
#define SEMMNU
#define SEMUME
#define SEMVMX
#define SEMAEM
#define SHMEM
#define SHMMAX
#define SHMMIN
#define SHMMNI
#define SHMSEG
#define SHMBRK
#define SHMALL
#define FPA

1
(SEMMNI+2)
64
128
30
10
32767
16384
1
Ox00600000
1
30
10
16
2048
1

#include
#include
#include
#i-nclude
~IUde

"Vlude

"/etc/conf/h/param.h"
"/etc/conf/h/systm.h"
"/etc/conf/h/tty.h"
"/etc/conf/h/space.h"
"/etc/conf/h/opt.h"
"/etc/conf/h/conf.h"

#define ieee802 open
#define ieee802-close
#define ieee802-read
#define ieee802-write
#define ieee802-link
#define ieee802-select
#define ethernet open
#define ethernet-close
#define ethernet-read
#define ethernet-write
#define ethernet-link
#define ethernet-select
#define hpib link
#define lla link
#define lanOI link

Ian open
lan-close
lan-read
lan-write
lan-link
lan-select
lan-open
lan-close
lan-read
lan-write
lan-link
lan-select
gpio link
Ian link
lan-link

extern nodev(), nulldev();
extern seltrue();

extern
extern
extern
extern
ex+-~rn

e" t:"n

:Q~

cs80 open(), cs80 close(), cs80 read(), cs80 write(), cs80 ioctl(), cs80
amigo open(), amigo close(), amIgo read(), amigo write(), amigo ioctl(),-
swap strategy () ; - - - -
swapl strategy();
scsi open(), scsi close(), scsi read(), scsi write(), scsi ioctl(), scsi
cons-open(), cons-close(), cons-read(), cons-write(), cons-ioctl(), cons
tty open(), tty close(), tty read(), tty write(), tty ioctI(), tty select
sy_open(), sy_close(), sy_read(), sy_write(), sy_ioctI(), sy_select();

Feb 09 13:13 1988 Overview (I/O) Page 11

~rn
~rn
extern
extern
extern
extern
extern
extern
extern
extern
extern
extern
extern
extern
extern
extern
extern
extern
extern
extern
extern
extern
extern

extern
e~i-.erri

n'. rn
rn

e rn
extern
extern

struct
/* 0*/
/* 1*1
/* 2*1
/* 3*/
1* 4*1
/* 5*1
/* 6*1
1* 7*1
} ;

struct
/* 0*/
/* 1*1
/* 2*1
1* 3*1
1* 4*1
1* 5*/
1* 6*/
/* 7*1
1* 8*/

IQ*I / 1
/ */

mm read(), rom write();
tp=open(), tp-close(), tp read(), tp write(), tp ioctl();
Ip open(), Ip-close(), lp-write(), Ip ioctl();
swap read(), swap write(): -
stp_open(), stp close(), stp read(), stp write(), stp ioctl();
iomap open(), iomap close(),-iomap reader, iomap write(), iomap ioctl();
graphIcs_open(), graphics close(),-graphics readT), graphics wrIte(), gra
srm629 open(), srm629 close(), srm629 reader, srm629 write()~ srm629 link
rje open(), rje closeT), rje read(), rje write(), rje ioctl(), rje lInk()
ptym open(), ptym close(), ptym read(), ptym write(),-ptym ioctl()~ ptym
ptys-open(), ptys-close(), ptys-read(), ptys-write(), ptys-ioctl(), ptys
lla open(), lla close(), lla read(), lla write(), lla ioctl(), lla select
lla-open(), lla-close(), lla-read(), lla-write(), lla-ioctl(), lla-select
hpib open(), hpTb close(), hpib read(), hpib write(),-hpib ioctl()T
hpib-open(), hpib-close(), hpib-read(), hpib-write(), hpib-ioctl(), hpib_
rS042 open(), rS042 close(), rS042 ioctl(); - -
hil open(), hil close(), hil reader, hil ioctl(), hil select():
nimItz open(), nimitz close(), nimitz read(), nimitz select();
ciper open(), ciper close(), ciper wrIte(), ciper ioctl():
dos open(), dos close(), dos reader, dos write(),-dos ioctl();
vme-open(), vme-close(), vme-read(), vme-write(), vme-ioctl(), vme link()
stealth open() ,-stealth close(), stealth-ioctl(), stealth link(): -
nsdiago=open(), nsdiago=close(), nsdiago=read(), nsdiago_Ioctl(): .

rfai link();
ti9914 link();
simon link():
sio626 link():
sio628-1ink();
sio642-link() ;
ite200=link():

bdevsw bdevsw[] = {
csSO open, csSO close, csSO strategy, csso size, C ALLCLOSES,
nodev, nodev, nodev, nodev,-O, --
amigo open, amigo close, amigo strategy, amigo_size, C_ALLCLOSES,
nodev~ nodev, -swap strategy, O~ 0,
nodev, nodev, nodev, nodev, 0,
nodev, nodev, swapl strategy, 0, 0,
nodev, nodev, nodev~ nodev, 0,
scsi_open, scsi_close, scsi_strategy, scsi_size, C_ALLCLOSES,

cdevsw cdevsw[] = {
cons open, cons close, cons read, cons write, cons ioctl, cons select, C
tty open, tty close, tty read, tty write, tty ioctl, tty select, C ALLCL
sy open, sy close, sy read, sy write, sy ioctl, sy select, C ALLCLOSES,
nUlldev, nUlldev, rom-read, rom-write, nOdev, seltrue, 0, -
csSO open, csSO close~ csSO read, csSO write, csSO ioctl, seltrue, CALL
tp open, tp close, tp read,-tp write, tp ioctl, seltrue, 0,
nodev, nOdev, nodev, nodev, nodev, nodev~ 0,
lp open, lp close, nodev, lp write, lp ioctl, seltrue, 0,
nUlldev, nulldev, swap read~ swap write, nodev, nodev, 0,
stp open, stp close, stp read, stp-write, stp ioctl, seltrue, 0,
iomap open, iomap close,-iomap read, iomap wrIte, iomap ioctl, nodev, C
amigo=open, amigo=close, amigo=read, amigo=write, amigo=ioctl, seltrue,

Feb 09 13:13 1988 Overview (I/O) Page 12

~o· */
/ . */
/*14*/
/*15*/
/*16*/
/*17*/
/*18*/
/*19*/
/*20*/
/*21*/
/*22*/
/*23*/
/*24*/
/*25*/
/*26*/
/*27*/
/*28*/
/*29*/
/*30*/
/*31*/
/*32*/
/*33*/
/*34*/
/*35*/
/*36*/
/*,_37* /

/0' */
~ */
/ */
/*41*/
/*42*/
/*43*/
/*44*/
/*45*/
/*46*/
/*47*/
} ;

int
int

dey t

graphics open, graphics close, graphics read, graphics write, graphics i
srm629 open, srm629 close, srm629 read,-srm629 write, nodev, seltrue, 0,
nodev,-nodev, nodev~ nodev, nodev~ nodev, 0, -
rje open, rje close, rje read, rje write, rje ioctl, seltrue, 0,
ptym open, ptym close, ptym read, ptym write,-ptym ioctl, ptym select, 0
ptys-open, ptys-close, ptys-read, ptys-write, ptys-ioctl, ptys-select, C
lla open, lla close, lla read, lla write, lla ioctl, lla select, C ALLCL
lla-open, lla-close, lla-read, 1 la-write , lla-ioctl, lla-select, C-ALLCL
nOdev, nodev,-nodev, nodev, nodev,-nodev, 0, - - -
hpib open, hpib close, hpib read, hpib write, hpib ioctl, seltrue, CALL
hpib-open, hpib-close, hpib-read, hpib-write, hpib-ioctl, seltrue, C-ALL
r8042 open, r8042 close, nodev, nodev,-r8042 ioctl~ nodev, 0, -
hil open, hil close, hil read, nodev, hil ioctl, hil select, 0,
nimItz open, nimitz close, nimitz read, nodev, nodev~ nimitz select, 0,
ciper open, ciper close, nodev, cIper write, ciper ioctl, seltrue, 0,
dos open, dos close, dos read, dos wrIte, dos ioctI, nodev, C ALLCLOSES,
nodev, nodev,-nodev, nOdev, nodev,-nodev, 0, - -
nodev, nodev, nodev, nodev, nodev, nodev, 0,
nodev, nodev, nodev, nodev, nodev, nodev, 0,
nodev, nodev, nodev, nodev, nodev, nodev, 0,
vme open, vrne close, vme read, vme write, vme_ioctl, nodev, 0,
nOdev, nodev,-nodev, nOdev, nodev,-nodev, 0,
nodev, nodev, nodev, nodev, nodev, nodev, 0,
nodev, nodev, nodev, nodev, nodev, nodev, 0,
nodev, nodev, nodev, nodev, nodev, nodev, 0,
nodev, nodev, nodev, nodev, nodev, nodev, 0,
nodev, nodev, nodev, nodev, nodev, nodev, 0,
nodev, nodev, nodev, nodev, nodev, nodev, 0,
nodev, nodev, nodev, nodev, nodev, nodev, 0,
nodev, nodev, nodev, nodev, nodev, nodev, 0,
nodev, nodev, nodev, nodev, nodev, nodev, 0,
nodev, nodev, nodev, nodev, nodev, nodev, 0,
stealth open, stealth close, nOdev, nodev, stealth ioctl, nodev, 0,
nodev, nOdev, nodev, nOdev, nodev, nodev, 0, -
nsdiagO open, nsdiagO close, nsdiagO read, nodev, nsdiagO ioctl, seltrue
scsi_open, scsi_close~ scsi_read, scsi_write, scsi_ioctl,-seltrue, C_ALL

nblkdev = sizeof (bdevsw) / sizeof (bdevsw[O);
nchrdev = sizeof (cdevsw) / sizeof (cdevsw[O);

rootdev = makedev(-1,OxFFFFFF);

/* The following three variables are dependent upon bdevsw and cdevsw. If
either changes then these variables must be checked for correctness */

dey t
int-
int

swapdevl = makedev(5, ,OxOOOOOO);
brmtdev = 6;
crmtdev = 45;

struct swdevt swdevt[) = {

}

{ makedev(-l,OxFFFFFF), 0, -1, 0 },
{ 0, 0, 0, 0 }

Feb 09 13:13 1988 Overview (I/O) Page 13

} ;

es80 link,
amigo link,
scsi link,
graphics link,
srm629 lInk,
rje link,
ptys link,
lla link,
hpib link,
vme link,
stealth link,
rfai link,
ti9914 link,
simon link,
sio626 link,
si0628-link,
si0642-link,
ite200-link,
(int (*) ()) 0

Feb 09 13:13 1988 Overview (I/O) Page 14

#1
HP-UX System Makefile

.SILENT
IDENT = -Dhp9000s200 -DKERNEL -Dhpux -DLOCKF -DHFS
REALTIME = -DRTPRIO -DPROCESSLOCK

CC = /bin/cc +X
AS = /bin/as
LD = /bin/Id
SHELL = /bin/sh

LIBSERVER = 'if [-f /etc/conf/Iibserver.a]i then echo /etc/conf/Iibserver.ai f

LIBDSKLESS = 'if [-f /etc/conf/libdskless.a]i then echo /etc/conf/libdskless.a

LIBLAN = 'if [-f /etc/conf/liblan.a]; then echo /etc/conf/liblan.ai fi'

LIBS = -Ic
LIBS! = /etc/conf/libkreq.a\

/etc/conf/Iibdreq.a\
/etc/conf/libsysV.a\
/etc/conf/libmin.a\
/etc/conf/Iibdevelop.a\
/etc/conf/Iibdil srm.a\
$ (LIBNFS)\ -
$ (LIBSERVER)\
$ (LIBDSKLESS)\
$ (LIBLAN)

CFLAGS = -0 -Wc,-Nd3500,-Ns3500
COPTS = $(IDENT) $ (REALTIME) -DWOPR

all: hp-ux

hp-ux: conf.o

conf.o:

rm -f hp-ux
ar x /etc/conf/libkreq.a locore.o vers.o name.o funcentry.o
@echo 'Loading hp-ux ... '
$(LD) -m -n -0 hp-ux -e start -x \

locore.o vers.o conf.o name.o funcentry.o \
$(LIBS!) $(LIBS)

rm -f locore.o vers.o name.o funcentry.o
chmod 755 hp-ux

@echo 'Compiling conf.c '
$(CC) $ (CFLAGS) $ (COPTS) -c conf.c

Feb 09 13:06 1988 RAMdisk Page 1

RAMdisk Open

An open routine typically performs some driver specific operations. It may
be a driver that supports exclusive open (only one open at a time), so
returns an error for any additional opens. It may allocate buffer space (if
not already allocated). Also, it may perform card reset (e.g. the gpio
card) .

The RAM driver will allocate memory if it is the first open (that is, there
is presently no memory allocated for it). The open also ensures the
requested device is in the range (and size) of the driver. The information
on the device (drive number and size) is packed into the minor number. The
macros in ram.h are written to pullout the pertinent information. The
kernel provides similar type macros for extracting major, minor, selcode,
volume, & unit numbers from the "dev" value passed to the driver. The major
and minor number are packed into the 32bit value, with 8 bits for major
number and 24bits for the minor number.

1* max ram volumes cannot exceed 16 */
#define RAM MAXVOLS 16

1* io mapping minor number macros */
1* up to 1048575 - 256 byte sectors */
#dpfine RAM_SIZE(x) «x) & Oxfffff)

I~ 16 disc allowed */
#~ine RAM DISC (x) « (x) » 20) & Oxf)
#define RAM=MINOR(X) «x) & Oxffffff)

/* XXX */

/* XXX */
/* XXX */

#define LOG2SECSIZE 8 /* (256 bytes) "sector" size (10g2) of the ram discs */

struct ram_descriptor {
char *addr; /* "disc space" in RAM */
int size; /* size of RAM disc */
short opencounti /* number of opens */
short flag;
int rdlk; /* Stats for lk reads */
int rd2k: /* Stats for 2k reads */
int rd3k; /* Stats for 3k reads */
int rd4ki /* Stats for 4k reads */
int rd5k; /* Stats for 5k reads */
int rd6k; /* Stats for 6k reads */
int rd7k; /* Stats for 7k reads */
int rd8k; 1* Stats for 8k reads */
int rdother; 1* stats for other reads *1
int wt1k; 1* stats for lk writes */
int wt2k; 1* stats for 2k writes *1
int wt3k; 1* stats for 3k writes */
int wt4k; 1* stats for 4k writes */
int wt5k; 1* Stats for 5k writes */
int wt6k: /* Stats for 6k writes */
int wt7k; /* Stats for 7k writes */
int wt8k; 1* stats for 8k writes */
int wtother: 1* stats for other writes */

Feb 09 13:06 1988 RAMdisk Page 2

}<:)m_deViCe[RAM_MAXVOLS],

Feb 09 13:06 1988 RAMdisk Page 3

/.
** Open the ram device.
*/
ram open (dev, flag)
dev-t dev;
int~flag;
{

}

register unsigned long size;
register struct ram_descriptor *ram_des_ptr;

1* check if this is status open *1
if (RAM MINOR(dev) == 0)

-return(o);

1* check if this device is greater than max number of volumes */
if «size = RAM DISC(dev» > RAM_MAXVOLS)

return(EINVAL);

ram_des_ptr = &ram_device[size];

1* check the size of the ram disc less than 16 sectors */
if «size = RAM SIZE(dev» < 16)

return(EINVAL):

1* check if already allocated */
if (ram_des_ptr->addr != NULL) {

1* then check if size changed; must be the same size */
if (ram des ptr->size 1= size)

-return(EINVAL};

1* bump open count */
ram des ptr->opencount++;

} else { - -
1* allocate the memory for the ram disc *1
if «ram des ptr->addr =

(char *)sys memall(size«LOG2SECSIZE» -- NULL) {
return (ENOMEM) ;

}
1* save size in 256 byte "sectors" */
ram_des_ptr->size = size;

1* open count should be zero */
if (ram des ptr->opencount++) {

-panIc(ffrarn_open count wrong\n"};
}

}
return(O);

Feb 09 13:06 1988 RAMdisk Page 4

RAMdisk Read/Write routines

This is a "typical" read & write routine for drivers that have a block driver
as well, or that will use a common read/write "strategy" routine and buffer
headers. The physio() routine will take the information from the uio and
dey variables and construct abuf structure that contains the information
necessary for the strategy routine to perform the I/O. Physio() will break
up the transfers into small enough transfers for the strategy routine to
handle. The parameters to physio() are:

strategy
bp

dey
rw
mincnt

uio

address of the strategy() routine physio will call
pointer to a buf structure for physio to use; if
NULL, then physio will get one from the buffer cache
the packed device info obtained when device opened
either B READ or B WRITE, indicating transfer type
address of mincnt() routine, a routine that
determines the max transfer size (usually the kernel
provided minphys() routine (xfer size = 64k)
uio structure containing info about the user and
the I/O request (size & direction of transfer,
pointers to user's buffers for the I/O, etc.)

In the RAM disk driver, the read & write routines have the physio() routine
r~uest a buf structure from the file system's buffers. It uses the
~l's minphys() routine, so strategy will break up the transfers to a
~L~Uum of 64k transfers.

ram read(dev, uio)
dev-t dey;
struct uio *uio;
{

return physio(ram_strategy, NULL, dey, B_READ, minphys, uio);
}

ram write(dev, uio)
dev-t dey;
struct uio *uio;
{

return physio(ram_strategy, NULL, dey, B_WRITE, minphys, uio);
}

Feb 09 13:06 1988 RAMdisk Page 5

RAMdisk strategy

This routine will actually perform the "I/O" to the RAM disc. The buf
structure passed to the strategy routine contains the necessary information
for the transfer. This info is filled in by kernel routines. In the case
of a character device, physio() performs this task; for block devices, the
file system takes care of filling in the data.

ram strategy (bp)
regIster struct buf *bp;
{

register block d7;
register char *addr;
register struct ram_descriptor *ram_des_ptr;

/* check if this is a status request, return the ram device structure */
if (RAM MINOR(bp->b dev) == 0) {

-if «bp->b flags & B PHYS) && /* must be char (raw) device*/
(b~->b flags-& BREAD) -&&

}

} else {

}

(bp->b-bcount ==-sizeof(ram device») (
bp->b_resid = bp->b_bcount;-/*normally done by bpcheck*/

/* return the "ram device" structure to the caller */
bcopy(&ram device[O], bp->b un.b addr,

sizeof(ram_device»; -

bp->b error = EIO;
bp->b=flags = B_ERROR;

goto done;

/* do the normal reads and writes to ram disc */
ram_des_ptr = &ram_device[RAM_DISC(bp->b_dev)];

/* sanity check if we got the memory */
if «addr = ram des ptr->addr) == NULL) {

panic(lIno memory in ram_strategy\n") ;
}
/* make sure the request is within the domain of the "disc" */
if (bpcheck(bp, ram des ptr->size, LOG2SECSIZE, 0»

return; - -

/* calculate address to do the transfer */
addr += bp->b_un2.b_sectno«LOG2SECSIZE;

/* for debugging file system only */
block d7 = bp->b_un2.b_sectno»2;

Feb 09 13:06 1988 RAMdisk Page 6

done:

}

if (bp->b flags & BREAD) {
pbcopy(addr~ bp->b un.b addr, bp->b~bcount);
switch (bp->b bcount/1024) {
case 1: ram des ptr->rdlk++;

break; -
case 2: ram des ptr->rd2k++;

break; -
case 3: ram des ptr->rd3k++;

break; -
case 4: ram des ptr->rd4k++;

break; -
case 5: ram des ptr->rd5k++;

break; -
case 6: ram des ptr->rd6k++;

break; -
case 7: ram des ptr->rd7k++;

break; -
case 8: ram des ptr->rd8k++;

break; -
default: ram des ptr->rdother++;
} - -

} else { /* WRITE */

}

pbcopy(bp->b un.b addr, addr, bp->b_bcount);
switch (bp->b bcount/1024) {
case 1: ram des ptr->wtlk++;

break; -
case 2: ram des ptr->wt2k++;

break; -
case 3: ram des ptr->wt3k++;

break; -
case 4: ram des ptr->wt4k++;

break; -
case 5: ram des ptr->wt5k++;

break; -
case 6: ram des ptr->wt6k++;

break; -
case 7: ram des ptr->wt7k++;

break; -
case 8: ram des ptr->wt8k++;

break; -
default: ram des ptr->wtother++;
} - -

bp->b resid -= bp->b_bcount;
biodone(bp);

Feb 09 13:06 1988 RAMdisk Page 7

/~his routine is put in here because I want it to be in the profiles */
J* bcopy could just as well be used if profiling is not used */

asmC" global
asm C II pbcopy:
asm (,,- movm.l
asm(" exg
asm (" subq.l
asm(" bIt
asm(" ror.l
asm (" bra
asm (lfLlpcopy1:
asm(1f mov.l
asm("Llpcopy2:
asm(tI dbra
asm(1f swap
asm(" rol.w
asm(lfLlpcopy3:
asm (" mov. b
asm(1f dbra
asm (lfLlpcopy4:
asmC" rts

_pbcopy

4(%sp),%dO/%aO-%al
%dO,%a1
&1,%dO
Llpcopy4
&2,%dO
Llpcopy2

(%al)+,(%aO)+

%dO,Llpcopyl
%dO
&2,%dO

(%al)+, (%aO)+
%dO,Llpcopy3

physio enforces word alignmemt! "):
0 thru 256 Kbytes!!! "):
dO = src: aO = dst; al = cnt I);
dO = cnt: a1 = src):
make a counter):
less or = zero?);

move 4 bytes at a time

move large block

get remaining bytes
position to low bits

1 to 4 bytes last bytes

) :
) :
) : ..) :

") :
") : ..) :
") :
") : ..) :
") :
") :
") -:

Feb 09 13:06 1988 RAMdisk Page 8

RAMdisk roctl

The ioctl routine:
executed via ioctl(2)i
purpose:

handles commands passed to it via ioctl
implement the various ioctls by including statements of the
following form:

#define CMD task(t, n, arg)
where:

CMD command name
t arbitrary letter
n sequential number (unique for each ioctl define for a

given ioctl routine)
arg optional arg for command

"task" is one of the following (task is a macro defined in sys/ioctl.h
ro no arg

-rOR user reads info from the driver into arg
-row user writes info to driver from data in (or pointed to by)

arg
lOWR both lOR and row

There are two ioctl's defined for the RAM disc driver. They are as follows:

I~ctl to deallocate ram volume *1
#~ne RAM_DEALLOCATE _lOWeR, 1, int)

1* ioctl to reset the access counter to ram volume *1
#define RAM RESETCOUNTS _lOWeR, 2, int)

Feb 09 13:06 1988 RAMdisk Page 9

r~ioctl(dev, cmd, addr, flag)
dev-t dev;
int-cmd;
caddr t addr;
int flag;
{

register struct ram descriptor *ram_des_ptr;
register volume; -

1* check if dev is the status dev *1
if (RAM MINOR(dev) != 0)

-return(EIO);

/* check if 0 - 15 disc volume *1
volume = *(int *)addr;
if «volume % RAM MAXVOLS) != volume)

return(EIO);

/* calculate which ram volume it is *1
ram_des_ptr = &ram_device[volume];

/* if not allocated, then return error *1
if (ram des ptr->addr == NULL) {

-return(ENOMEM);
}
switch (cmd) {

1* mark for memory release on last close *1
case RAM DEALLOCATE:

ram des ptr->flag = RAM RETURN;
break; - -

1* clear out access counts */
case RAM RESETCOUNTS:

ram des ptr->rd8k = 0;
ram-des-ptr->rd7k = 0;
ram-des-ptr->rd6k = 0;
ram-des-ptr->rd5k = 0;
ram-des-ptr->rd4k = 0;
ram-des-ptr->rd3k = 0;
ram-des-ptr->rd2k = 0;
ram-des-ptr->rd1k = 0;
ram-des-ptr->rdother = 0;
ram-des-ptr->wt8k = 0;
ram-des-ptr->wt7k = 0;
ram-des-ptr->wt6k = 0;
ram-des-ptr->wt5k = 0;
ram-des-ptr->wt4k = 0;
ram-des-ptr->wt3k = 0;
ram-des-ptr->wt2k = 0;
ram-des-ptr->wt1k = 0;
ram-des-ptr->wtother = 0;
break; -

default:
return(EIO);

Feb 09 13:06 1988 RAMdisk Page 10

}

}
return(O);

Feb 09 13:06 1988 RAMdisk Page 11

RAMdisk Close

The close routine may typically perform some driver specific operations. It
may flush buffers if the device supports asyncronous I/O (e.g. tty driver).
It will usually decrement an "open" counter and may release I/O buffers,
etc. on close.

The RAM disk driver just decrements an open count and will release memory on
last close if the RAM RETURN flag has previously been set by an ioctl call.

#define RAM_RETURN 1

struct ram descriptor {
char *addr;
int size;
short opencount;
short flag;
int rdlk;

. .
} ram_device[RAM_MAXVOLS);

ra)'ll_ .close (dev)
d t dey;
{

}

register struct ram descriptor *ram des ptr;
register i; - - -

/* check if this is status close */
if (RAM MINOR(dev) != 0) {

-ram_des_ptr = &ram_device[RAM_DISC(dev»);

if (--ram des ptr->opencount < 0)
. panic(lfram_close count less than zero\n");

}

/* free all ram volumes with flag set and open count = 0 */
/* RAM RETURN flag is set by an ioctl call */

ram des ptr = &ram device[O);
for-(i ~ 0; i < RAM MAXVOLS; i++, ram des ptr++) {

if «ram des ptr->flag & RAM RETURN) == 0)
contInue; . - .

if (ram des ptr->opencount != 0)
-continue;

/* release the system memory */
sys_memfree(ram_des_ptr->addr, ram_des_ptr->size«LOG2SECSIZE);

1* zero the whole entry */
bzero«char *)ram_des_ptr, sizeof(struct ram_descriptor»;

}

Feb 09 13:06 1988 RAMdisk Page 12

)(:lPUX_ID: @(#)ram.h

#include <sys/ioctl.h>

49.1 87/08/21 */

/* max ram volumes cannot exceed 16 */
Idefine RAM_MAXVOLS 16

1* ioctl to deallocate ram volume *1
#define RAM_DEALLOCATE _lOW(R, 1, int)

1* ioctl to reset the access counter to ram volume */
#define RAM_RESETCOUNTS _lOW(R, 2, int)

1* io mapping minor number macros */
/* up to 1048575 - 256 byte sectors */
#define RAM_SlZE(x) «x) & Oxfffff)

/* up 16 disc allowed */
#define RAM DlSC(x) «(x) » 20) & Oxf)
#define RAM=MlNOR(X) «x) & Oxffffff)

/* xxx */

/* XXX */
/* XXX */

#define LOG2SECSlZE 8

#define RAM RETURN 1

/* (256 bytes) "sector" size (10g2) of the ram discs */

s' ct ram descriptor {
char *addri
int sizei
short opencounti
short flag;
int rd1k;
int rd2k;
int rd3k;
int rd4k;
int rd5k;
int rd6k;
int rd7ki
int rd8k;
int rdother;
int wt1k;
int wt2k;
int wt3k;
int wt4k;
int wt5k;
int wt6k;
int wt7k;
int wt8k;
int wtother;

} ram_device[RAM_MAXVOLS];

Feb 09 13:06 1988 RAMdisk Page 13

49.1 87/08/21 */

/**/
/* This driver allows you to create up to 16 "ram disc" volumes, doing a */
/* "mkfs" on them and then "mount"ing them as a fIle system. Be careful to */
/* not use up too much ram on the "disc". You still must have some left for */
/* running normal processes. */
1* System Software operation */
1* Fort Collins, Co 80526 *1
/* Oct 14, 1986 */
/* Note: * /
/* There is a bug in 5.2 and earlier systems. The "special" dev is left */
/* open if there is an error during a "mount" command. This will make it */
/* impossible to deallocate a disc volume if a "mount" error occurs. So */
/* be carefull to do a "mkfs" on the disc volume before trying to mount it.*/
/* */
/* Revision History: */
/* 11-21-86 added the status request */
/* 12-09-86 changed the ramfree request */
/* */
/**/
/*
****** STEPS TO ADD THE RAM DISC DRIVER TO YOUR KERNEL
*
SO'l) Login as "root"

cd /etc/conf

STEP 2) make a mod to the "/etc/master" file as follows:

* HPUX_ID: @(#)master 10.3 85/11/14
* * The following devices are those that can be specified in the system
* description file. The name specified must agree with the name shown,
* or with an alias.

* * name

* c:=s80

ramdisc

handle

cs80

ram

type

3

3

mask block char

3FB o 4

FB 4 20

Note: Major number 4 for block device and 20 for char (raw) device may
need to be different on your system. Reflect these different
numbers in the "mknod" command below.

STEP 3) modify the "/etc/conf/dfile ... your favorite" with the addition of
"ramdisc" -

:0 4) # ar -rv libmin.a ram disc.o

5) # config dfile ..• your_favorite

Feb 09 13:06 1988 RAMdisk Page 14

STEP 6) # make -f config.mk

STEP 7) # mv /hp-ux /SYSBCKUP
mv ./hp-ux /hp-ux

STEP 8) # reboot
and login as "root"

STEP 9) # /etc/mknod /dev/ram b 4 OxVSSSSS (block device)
/etc/mknod /dev/rram c 20 OxVSSSSS (char device)

Where V = volume number 0 - F (0 - 15)
Where SSSSS = number of 256 byte sectors in volume (in hex).

I.E.
/etc/mknod /dev/ramI28K b 4 OxOO0200 (block 128Kb ram volume)
/etc/mknod /dev/rramI28K c 20 OxOO0200 (char 128Kb ram volume)

/etcjmknod /dev/ramlM b 4 Ox101000 (block 1Mb ram volume)
/etcjmknod /dev/rramlM c 20 Oxl01000 (char 1Mb ram volume)

/etc/mknod /dev/ram2M b 4 Ox202000 (block 2Mb ram volume)
/etc/mknod /dev/rram2M c 20 ox202000 (char 2Mb ram volume)

/etc/mknod /dev/ram4M b 4 Ox404000 (block 4Mb ram volume)
jetc/mknod /dev/rram4M c 20 Ox404000 (char 4Mb ram volume)

/etcjmknod /dev/ramAM b 4 OxAOAOOO (block 10Mb ram volume)
/etcjmknod /devjrramAM c 20 OxAOAOOO (char 10Mb ram volume)
(Note: I don't know if this works yet - don't have this much mem)

STEP 10)# mkfs /devjraml28K 128 8 8 8192 1024 32 0 60 8192

STEP

STEP

(mkfs for 128Kb volume)
mkfs /dev/ram1M 1024
mkfs /dev/ram2M 2048
mkfs jdev/ram4M 4096

11)# mkdir /raml28K
mount /dev/ram128K /ram128K

mkdir /ramlM
mount /dev/ramlM /ramlM

mkdir jram2M
mount /dev/ram2M /ram2M

mkdir /ram4M
mount /dev/ram4M /ram4M

12) To unmount volume
umount /dev/ramlM

To make the control /dev for "ramstat".
/etc/mknod /dev/ram c 20

(make file system for 1Mb volume)
(make file system for 2Mb volume)
(make file system for 4Mb volume)

(mount 128K ram volume)

(mount 1Mb ram volume)

(mount 2Mb ram volume)

(mount 4Mb ram volume)

OxO (status is raw dev only)

O. elease memory of disc #1 (and destroying all files on volume)
ramstat -d 1 /dev/ram

Feb 09 13:06 1988 RAMdisk Page 15

-or- if you use the above /dev/ram convention.
rams tat -d 1

To get a status of all memory volumes
ramstat /dev/ram

-or-
ramstat

To reset the access counters of a memory volume # 1.
ramstat -r 1 /dev/ram

-or-
ramstat -rl

***/

#ifdef KERNEL
#include " •• /h/param.h"
#include " •• /h/errno.h"
#include " •• /h/buf.h tl

#include " •• /s200io/ram.h"
#else
#include <sys/param.h>
#include <sys/errno.h>
unsigned minphys(); /* xxx needed only with user version of buf.h */
#include <sys/buf.h>
#include "ram.h"
#~ndif

~open the ram device.
*/
ram open(dev, flag)
dev-t dev;
int-flag;
{

register unsigned long size;
register struct ram_descriptor *ram_des_ptr:

/* check if status open */
if (RAM MINOR(dev) == 0)

-return(O);

/* check if greater than max number of volumes */
if «size = RAM DISC(dev» > RAM_MAXVOLS)

return (EINVAL) ;

ram_des_ptr = &ram_device[size];

/* check the size of the ram disc less than 16 sectors */
if «size = RAM SIZE(dev» < 16)

return (EINVAL) ;

/* check if already allocated */
if (ram_des_ptr->addr != NULL) {

/* then check if size changed */
if (ram_des_ptr->size != size)

Feb 09 13: 06 1988 ~·RAMdisk Page 16

}

return (EINVAL) ~

1* bump open count */
ram des ptr->opencount++;

} else { - -
1* allocate the memory for the ram disc */
if «ram des ptr->addr =

(char *)sys memall(size«LOG2SECSIZE» -- NULL) {
return (ENOMEM) ~

}
1* save size in 256 byte "sectors" */
ram des_ptr->size = size;

1* open count should be zero */
if (ram des ptr->opencount++) {

-panTc("ram_open count wrong\n")~
}

}
return(O);

ram close(dev)
dev-t dey;
{

register struct ram descriptor *ram_des_ptr;
,#'----- register i; -

/*

*/

/* check if status open */
if (RAM MINOR(dev) 1= 0) {

-ram_des_ptr = &ram_device[RAM DISC(dev)];

if (--ram des ptr->opencount < 0)
panic(flram_close count less than zero\nn);

}

NOTE: 5.2 9000/300 and earlier systems may have a bug that the memory
cannot be released if there was ever a "mount" error because the open
count will never reach zero -- so be carefull to do a "mkfs" before
a "mount".

I

/* free all ram volumes with flag set and open count = 0 */
ram des ptr = &ram device[O];
for-(i ~ 0; i < RAM MAXVOLS; i++, ram des ptr++) {

if «ram des ptr->flag & RAM RETURN) == 0)
contInue; -

if (ram des ptr->opencount 1= 0)
-continue;

1* release the system memory */
sys_memfree(ram_des_ptr->addr, ram_des_ptr->size«LOG2SECSIZE);

1* zero the whole entry */
bzero«char *)ram_des_ptr, sizeof(struct ram_descriptor»;

}

r~strategy(bp)

Feb 09 13:06 1988 RAMdisk Page 17

rO .. i?ter struct buf *bp;
{ ",

register block d7;
register char *addr;
register struct ram_descriptor *ram_des_ptr;

/* check if status request, return the ram device structure */
if (RAM MINOR(bp->b dev) == 0) { -

}

-if «bp->b flags & B PHYS) && /* must be char (raw) device */
(bp->b flags-& BREAD) &&
(bp->b-bcount ==-sizeof(ram device») {
bp->b_resid = bp->b_bcount;-/*normally done by bpcheck*/

/* return the "ram device" structure to the caller */
bcopy(&ram device[O], bp->b un.b addr,

sizeof(ram device»; -
} else { -

}

bp->b error = EIO;
bp->b=flags = B_ERROR;

goto done;

/* do the normal reads and writes to ram disc */
ram_des_ptr = &ram_device[RAM_DISC(bp->b_dev»);

1* sanity check if we got the memory *1
if «addr = ram des ptr->addr) == NULL) {

panic(nno memory in ram_strategy\n lf
) ;

}
1* make sure the request is within the domain of the "disc" *1
if (bpcheck(bp, ram des ptr->size, LOG2SECSIZE, 0»

return; - -

/* calculate address to do the transfer *1
addr += bp->b_un2.b_sectno«LOG2SECSIZE;

1* for debugging file system only */
block_d7 = bp->b_un2.b_sectno»2;

if (bp->b flags & BREAD) {
pEcopy(addr~ bp->b un.b addr, bp->b_bcount);
switch (bp->b bcount/1024) {
case 1: ram des ptr->rdlk++;

break; -
case 2: ram des ptr->rd2k++;

break; -
case 3: ram des ptr->rd3k++;

break; -
case 4: ram des ptr->rd4k++;

break; -
case 5: ram des ptr->rd5k++;

break; -
case 6: ram des ptr->rd6k++;

break; -
case 7: ram des ptr->rd7k++;

break; -

Feb 09 13:06 1988 RAMdisk Page 18

}

case 8: ram des ptr->rd8k++;
break; -

default: ram des ptr->rdother++;
} - -

} else { /* WRITE */

}

pbcopy(bp->b un.b addr, addr, bp->b_bcount);
switch (bp->b bcount/1024) {
case 1: ram des ptr->wtlk++;

break; -
case 2: ram des ptr->wt2k++;

break; -
case 3: ram des ptr->wt3k++;

break; -
case 4: ram des ptr->wt4k++;

break; -
case 5: ram des ptr->wt5k++;

break; -
case 6: ram des ptr->wt6k++;

break; -
case 7: ram des ptr->wt7k++;

break; -
case 8: ram des ptr->wt8k++;

break; -
default: ram des ptr->wtother++;
} - -

bp->b resid -= bp->b_bcount;
biodone(bp);

/* this routine is put in here because I want it to be in the profiles */
1* bcopy could just as well be used if profiling is not used */

asm (" global _pbcopy # physio enforces word alignmemt! ") ;
asm ("_pbcopy : # o thru 256 Kbytes!!! ") ;
asm (" movm.l 4(%sp),%dO/%aO-%al # dO = src; aO = dst; al = cnt ') ;
asm (" exg %dO,%al # dO = cnt; al = src) ;
asm(" subq.l &1,%dO # make a counter) ;
asm (" bIt Llpcopy4 # less or = zero?) ;
asm (" ror.l &2,%dO) ;
asm (" bra Llpcopy2 # move 4 bytes at a time) ;
asm ("Llpcopyl:) ;
aSIn (" mov.l (%al)+, (%aO)+ # move large block) ;
asm("Llpcopy2: ') ;
asm(" dbra %dO,Llpcopyl ") ;
asm(" swap %dO # get remaining bytes ") ;
asm(" rol.w &2,%dO # position to low bits ") ;
asm ("Llpcopy3: ") ;
asm(" mov.b (%al)+, (%aO)+ # 1 to 4 bytes last bytes ") ;
asm (" dbra %dO,Llpcopy3 ") ;
asm ("Ll peopy 4 : ") ;
as:rnfll rts If) ;

rOead(deV, uio}
d _ dev;

Feb 09 13:06 1988 RAMdisk Page 19

uio *UiOi

return physio(ram_strategy, NULL, dev, B_READ, minphys, uio) i

ram write(dev, uio)
dev-t dev;
struct uio *UiOi
(

return physio(ram_strategy, NULL, dev, B_WRITE, minphys, uio);
}

ram ioctl(dev, cmd, addr, flag)
dev-t devi
int-cmd;
caddr t addri
int flagi
{

register struct ram descriptor *ram des ptr;
register volume; - - -

1* check if dev is the status dev */
if (RAM MINOR(dev) 1= 0)

-return(EIO)i

1* check if 0 - 15 disc volume */
volume = *(int *)addr;
if «volume % RAM MAXVOLS) != volume)

return(EIO);

/* calculate which ram volume it is */
ram_des_ptr = &ram_device[volume);

1* if not allocated, then return error */
if (ram des ptr->addr == NULL) {

-return(ENOMEM);
}
switch (cmd) {

1* mark for memory release on last close */
case RAM DEALLOCATE:

ram des ptr->flag = RAM RETURN;
break; - -

/* clear out access counts */
case RAM RESETCOUNTS:

ram_des_ptr->rd8k = Oi
ram_des_ptr->rd7k = 0;
ram_des_ptr->rd6k = 0;
ram_des_ptr->rd5k = 0;
ram des _ptr->rd4k = 0;
ram=des_ptr->rd3k = 0;
ram_des_ptr->rd2k = 0;
ram des _ptr->rdlk = 0;
ram=des_ptr->rdother = 0;
ram_des_ptr->wt8k = 0;

Feb 09 13:06 1988 RAMdis~ Page 20

}

ram des ptr->wt7k =
ram-des-ptr->wt6k =
ram-des-ptr->wt5k =
ram-des-ptr->wt4k =
ram-des-ptr->wt3k =
ram-des-ptr->wt2k =
ram-des-ptr->wt1k =
ram-des-ptr->wtother
break; -

default:
return(EIO)~

}
return(O) ~

0;
0;
0;
0;
0;
0;
0;

= 0;

Feb 11 08:2.4 1988 Gpio Driver Page 1

Read System Call

The read(2) system call is a very short assembly language stUb. It puts
into register dO what the system call is (3 for read) and performs a trap o.
Upon return, it checks what the status is and jumps to an error routine if
a -1 is returned.

example call:
read(fd,buff,10);

KLEENIX 1D @(#)read.s 49.1 86/12/18
C library -- read

nread = read(file, buffer, count);
nread ==0 means eof; nread == -1 means error

read:

set . READ, 3
global read
global cerror

ifdef('PROFILE','
mov.l &p read,%aO
jsr mcount ,)
movq &READ,%dO
trap &0
bcc.b noerror
jmp cerror

noerror:
rts

ifdef('PROFILE','
data

p_read: long 0 ,)

Feb 11 08:24 1988 Gpio Driver 'Page 2

Xsyscall (kernel)

Xsyscall is the code executed (in the kernel) due to recelvlng a trap o. It
saves the registers and the pointer to the user's stack onto the kernel
stack. Then we jump to the syscall (C) routine , the system call "gateway"
routine. Upon return from the system call, we restore the user's stack
pointer and other register values from kernel stack, and return from
execption.

I HPUX_ID: @(I)locore.s 49.3 87/10/01

ICc) Copyright 1983, 1984, 1985, 1986, 1987 Hewlett-Packard Company.
ICc) Copyright 1979 The Regents of the University of Colorado,a body corporate
ICc) Copyright 1979, 1980, 1983 The Regents of the University of California
ICc) Copyright 1980, 1984 AT&T Technologies. All Rights Reserved.
#The contents of this software are proprietary and confidential to the Hewlett
#Packard Company, and are limited in distribution to those with a direct need
Ito know. Individuals having access to this software are responsible for main
#taining the confidentiality of the content and for keeping the software secure
#when not in use. Transfer to any party is strictly forbidden other than as
#expressly permitted in writing by Hewlett-Packard Company. Unauthorized trans
#fer to or possession by any unauthorized party may be a criminal offense.

~

RESTRICTED RIGHTS LEGEND

Use, duplication, or disclosure by the Government is
subject to restrictions as set forth in subdivision (b)
(3) (ii) of the Rights in Technical Data and Computer
Software clause at 52.227-7013.

HEWLETT-PACKARD COMPANY
3000 Hanover st.

Palo Alto, CA 94304

global _xsyscall,_syscall

xsyscall:
- movm.l

mov.l
mov.l

%dO-%d7/%aO-%a7,-(%sp)
%usp,%aO
%aO,60(%sp)

jsr syscall

#save all 16 registers

#save usr stack ptr
pass exception frame
IC handler for syscalls

fall into xreturn code

xreturn:
mov.l
mov.l
movm.l
addq.l
addq.l
bclr
bne.b
rte

60(%sp),%aO
%aO,%usp #restore usr stack ptr
(%sp)+,%dO-%d7/%aO-%a6 #restore all other registers
&4,%sp # and pop off sp
&6,%sp #sp and alignment word
&POP STACK BIT, u+PCB FLAGS
xreturnl - - -

Feb 11 08:24 1988 Gpio Driver Page 3

Feb ~1 08:24 1988 Gpio Driver Page 4

Syscall Kernel Routine

The syscall routine is passed the address of the execption stack, the values
in the user's registers ,at the time of the trap. The syscall routine
removes from the stack the system call number (3 for a read). This number
is used in a table lookup to determine what system routine to call and how
many parameters were put onto the user's stack. These parameters are then
copied from the user's stack into the process's u area. After setting up
the u area with the system call information, we call the routine pointed to
by the system call number (the kernel read routine in this case).

Upon return from the read routine, syscall checks what the error value is in
the u area.

If there was an error, the error value is put into register dO
(on the exception stack).

If the read routine successfully completed (no interrupt), the return
value in the u area is put into register dO (on the exception
stack) • -

If the call was interrupted (for any reason) and the system call is
set up for RESTART, then the PC in the exception stack is backed
up two instructions (back to the trap 0 statement in read(2».

We then update the u area, and check the "runrun" flag to see if another Pi:)"SS has a higher-priority than we have. If there is, we let the system
s ~h to that process. If not, then we return to xsyscall, then back to
" . rland".

Feb 11 08:24 1988 Gpio Driver Page 5

Read Kernel Routine

The read kernel routine sets up a "uap" structure that will contain the
information necessary for the I/O. It contains the file descriptor, address
of the user's buffer, and count (retrieved from the u area). It takes this
information and puts it into an iovec structure, containing the buffer
location and count. The iovec struct is placed into a "uio" structure along
with the number of iovec structures (1 for a read, greater than 1 for
readv). Read then calls rwuio() with the "uio" structure and a flag
indicating "read".

49.1 87/08/21 */

/*
(c) Copyright 1983, 1984, 1985, 1986, 1987 Hewlett-Packard Company.
(c) Copyright 1979 The Regents of the University of Colorado, a body corporate
(c) Copyright 1979, 1980, 1983 The Regents of the University of California
(c) Copyright 1980, 1984 AT&T Technologies. All Rights Reserved.
The contents of this software are proprietary and confidential to the Hewlett
Packard Company, and are limited in distribution to those with a direct need
to know. Individuals having access to this software are responsible for main
taining the confidentiality of the content and for keeping the software secure
when not in use. Transfer to any party is strictly forbidden other than as
expressly permitted in writing by Hewlett-Packard Company. Unauthorized trans
f('=-to or possession by any unauthorized party may be a criminal offense.

*/

RESTRICTED RIGHTS LEGEND

Use, duplication, or disclosure by the Government is
subject to restrictions as set forth in subdivision (b)
(3) (ii) of the Rights in Technical Data and Computer
Software clause at 52.227-7013.

HEWLETT-PACKARD COMPANY
3000 Hanover st.

Palo Alto, CA 94304

/* Read system call. */
read ()
{

register struct a {
int fdes;
char *cbuf;
unsigned count;

} *uap = (struct a *)u.u ap;
struct uio auio; -
struct iovec aiovi

aiov.iov base = (caddr t)uap->cbuf;
aiov.iov-Ien = uap->count:
auio.uio-iov = &aiov;
auio.uio-iovcnt = 1;
rwuio(&auio, UIO_READ);

Feb 11 08:24 1988 Gpio Driver Page 6

Feb 11 08:24 1988 Gpio Driver Page. 7

Rwuio Kernel Routine

The rwuio routine determines from the file descripter what file we are
dealing with. It ensures that we have permission to execute the request (we
have '''read'' permission on the file). It sets up some of the uio fields
(e.g. residual count = 0) and ensures that the iovectors are valid (non
negative). We determine the total number of bytes requested (total of each
iovec count) and set the uio offset to the present file pointer offset.
Then we will call the routine ,,~ F<hR:"" via a pointer to the routine in the
file pointer structure (the routine isifilled in by the open system call).
Upon return we update the return value in the u area (bytes transfered) and
the file pointer offset.

\J~,.\\J.)

49.1 87/08/21 */

/*
(c) Copyright 1983, 1984, 1985, 1986, 1987 Hewlett-Packard Company.
(c) Copyright 1979 The Regents of the University of Colorado, a body corporate
(c) Copyright 1979, 1980, 1983 The Regents of the University of California
(c) Copyright 1980, 1984 AT&T Technologies. All Rights Reserved.
The contents of this software are proprietary and confidential to the Hewlett
Packard Company, and are limited in distribution to those with a direct need
to know. Individuals having access to this software are responsible for main
tr~~ing the confidentiality of the content and for keeping the software secure
~~. not in use. Transfer to any party is strictly forbidden other than as
~essly permitted in writing by Hewlett-Packard Company. Unauthorized trans
fer to or possession by any unauthorized party may be a criminal offense.

*/

RESTRICTED RIGHTS LEGEND

Use, duplication, or disclosure by the Government is
subject to restrictions as set forth in subdivision (b)
(3) (ii) of the Rights in Technical Data and Computer
Software clause at 52.227-7013.

HEWLETT-PACKARD COMPANY
3000 Hanover st.

Palo Alto, CA 94304

rwuio(uio, rw)

{

register struct uio *uioi
enum uio rw rw;

struct a {
int

} i
fdes;

register struct file *fPi
register struct iovec *iOVi
int i, count;

Feb 11 08:24 1988 Gpio.Driver Page 8

}

GETF(fp, «struct a *)u.u ap)->fdes);
if «fp->f flag&(rw==UIO READ? FREAD

u.u error = EBADF;
return;

}
uio->uio resid = 0:
uio->uio-segflg = 0:
iov = uio->uio iov;
for (i = 0; i < uio->uio iovcnt; i++) {

if (iov->iov len-< 0) {
u.u error = EINVAL;
return;

}

}
uio->uio resid += iov->iov len;
if (uio->uio resid < 0) { -

u.u error = EINVAL;
return;

}
iov++;

FWRITE» -- 0) {

count = uio->uio resid;
uio->uio offset ~ fp->f offset;
if «u.u-procp->p flag&SOUSIG) == 0 && setjmp(&u.u qsave»

If (uio->uio resid == count) -
u.u_eosys = RESTARTSYS;

} else
u.u error = (*fp->f ops->fo rw) (fp, rw, uio);

u.u r.r vall = count - uio->uio resId;
fp->f offset += u.u r.r vall; -
u.u ru.ru ioch += u:u_r:r_vall; 1* for System V accounting *1

Feb 11 08:24 1988 Gpio Driver Page 9

Vno rw Kernel Routine

The routine vno rw is the vnode layer read/write routine. It sets up some
values from the-uio and file pointer structures and calls VOP RDWR, a macro
routine which calls the proper vnode operation routine (in thIs case
ufs_rdwr) •

49.1 87/08/21 */

/*
(c) Copyright 1983, 1984, 1985, 1986, 1987 Hewlett-Packard Company.
(c) Copyright 1979 The Regents of the University of Colorado, a body corporate
(c) Copyright 1979, 1980, 1983 The Regents of the University of California
(c) copyright 1980, 1984 AT&T Technologies. All Rights Reserved.
The contents of this software are proprietary and confidential to the Hewlett
Packard Company, and are limited in distribution to those with a direct need
to know. Individuals having access to this software are responsible for main
ta~ning the confidentiality of the content and for keeping the software secure
when not in use. Transfer to any party is strictly forbidden other than as
expressly permitted in writing by Hewlett-Packard Company. Unauthorized trans
fer to or possession by any unauthorized partY'may be a criminal offense.

*/

int

RESTRICTED RIGHTS LEGEND

Use, duplication, or disclosure by the Government is
subject to restrictions as set forth in subdivision (b)
(3) (ii) of the Rights in Technical Data and Computer
Software clause at 52.227-7013.

HEWLETT-PACKARD COMPANY
3000 Hanover st.

Palo Alto, CA 94304

vno rw(fp, rw, uiop)
- struct file *fp;

enum uio rw rw;
struct uTo *uiop;

{
register struct vnode *vp;
register int count;
register int error;·

vp = (struct vnode *)·fp->f_data;
/*
* Ir write make sure filesystem is writable
*/ -

if «rw == UIO WRITE) && (vp->v vfsp->vfs flag & VFS_RDONLY»
return(EROFS); - -

count = uiop->uio resid;
if (vp->v_type ==-VREG) {

error =

Feb 11 08:24 1988 Gpio Driver Page 10

VOP RDWR(vp, uiop, rw,
-«fp->f flag & FAPPEND) 1= O?

IO_APPENDIIO_UNIT: IO_UNIT), fp->f_~red) i

Feb 11 08:24 1988 Gpio Driver Page 11

}

} else

}

error =
VOP RDWR(vp, uiop, rw,

-«fp->f flag & FAPPEND) != O?
10 APPEND: 0), fp->f_cred);

if (error)
return(error);

if (fp->f flag & FAPPEND) {
/* * The actual offset used for append is set by VOP RDWR
* so compute actual starting location -
*/

fp->f_offset = uiop->uio_offset - (count - uiop->uio_resid) ;
}
return(O);

Feb 11 08:24 1988 Gpio Driver Page 12

Ufs rdwr Kernel Routine

The ufs rdwr routine is the read/write vnode operation routine. It is a
short routine that converts the vnode pointer into an inode pointer, and
(for a device file), calls the rwip routine "(we are getting close to the
driver!)

49.7 87/10/16 */

/*
(c) Copyright 1983, 1984, 1985, 1986, 1987 Hewlett-Packard Company.
(c) Copyright 1979 The Regents of the University of Colorado, a body corporate
(c) Copyright 1979, 1980, 1983 The Regents of the University of California
(c) Copyright 1980, 1984 AT&T Technologies. All Rights Reserved.
The contents of this software are proprietary and confidential to the Hewlett
Packard Company, and are limited in distribution to those with a direct need
to know. Individuals having access to this software are responsible for main
taining the confidentiality of the content and for keeping the software secure
when not in use. Transfer to any party is strictly forbidden other than as
expressly permitted in writing by Hewlett-Packard Company. Unauthorized trans
fer to or possession by any unauthorized party may be a criminal offense.

*/

RESTRICTED RIGHTS LEGEND

Use, duplication, or disclosure by the Government is
subject to restrictions as set forth in subdivision (b)
(3) (ii) of the Rights in Technical Data and Computer
Software clause at 52.227-7013.

HEWLETT-PACKARD COMPANY
3000 Hanover st.

Palo Alto, CA 94304

/* read or write a vnode */
int
ufs rdwr{vp, uiop, rw, ioflag, cred)

- struct vnode *vp;
struct uio *uiop;
enum uio rw rw;
int ioflag;

(
struct ucred *cred;

register struct inode *ip;
int error;
int type;

ip = VTOI{vp);
type = ip->i_mode&IFMT;

Feb 11 08:24 1988 Gpio Driver Page 13

}

if (type == IFREG I I type == IFIFO I I type == IFNWK) {
1* don't have file pointer *1

} else {

}

ILOCK(ip)i
if «ioflag & IO_APPEND) && (rw == UIO_WRITE)) {

1*
* in append mode start at end of file.
*1

uiop->uio_offset = ip->i_sizei
}
error = rwip(ip, uiop, rw, ioflag)i
IUNLOCK (ip) i

error = rwip(ip, uiop, rw, ioflag)i

return (error);

Feb 11 08:24 1988 Gpio Driver Page 14

Rwip Kernel Routine

The rwip routine "distributes" the read/write request based on the type of
file. We will update the access time in the inode since this is a read
routine (if we perform a write, we update the "update" and "change" values
in the inode). Since this is a character device (type = IFCHAR), the
routine determines what the major number is (21 for gpio) from the dev
number (stored in the inode structure). We then perform a jump to the
"gpio.read" (actually hpib.read) through the cdev sw[] table. Now we are
off and running to the driver!! -

49.7 87/10/16 */

/*
(c) Copyright 1983, 1984, 1985, 1986, 1987 Hewlett-Packard Company.
(c) Copyright 1979 The Regents of the University of Colorado, a body corporate
(c) Copyright 1979, 1980, 1983 The Regents of the University of California
(c) Copyright 1980, 1984 AT&T Technologies. All Rights Reserved.
The contents of this software are proprietary and confidential to the Hewlett
Packard Company, and are limited in distribution to those with a direct need
to know. Individuals having access to this software are responsible for main
taining the confidentiality of the content and for keeping the software secure
when not in use. Transfer to any party is strictly forbidden other than as
expressly permitted in writing by Hewlett-Packard Company. Unauthorized trans
f~~to or possession by any unauthorized party may be a criminal offense.

*/

int

RESTRICTED RIGHTS LEGEND

Use, duplication, or disclosure by the Government is
subject to restrictions as set forth in subdivision (b)
(3) (ii) of the Rights in Technical Data and Computer
Software clause at 52.227-7013.

HEWLETT-PACKARD COMPANY
3000 Hanover st.

Palo Alto, CA 94304

rwip(ip, uio, rw, ioflag)

{

register struct inode *ip;
register struct uio *uio;
enum uio rw rw;
int iofI'ag;

dev t dev;
struct vnode *devvp;
struct buf *bp;
struct fs *fs;
daddr t Ibn, bn;
register int n, on, type;
int size;
long bsize;
extern int mem no;

Feb 11 08:24 1988 Gpio Driver Page 15,

extern int ieee802 no;
extern int ethernet no;
int error = 0; -
int total;
int syncio flag;
int dirsz ;; 0;

dev = (dev t)ip->i rdev;
if (rw != 010 READ-&& rw != UIO_WRITE)

panic(IIrwipll);
if (rw == UIO READ && uio->uio resid == 0)

return (0);
type = ip->i mode&IFMT;
/* uio_offset can go negative for software drivers that open, read,

or write continuously, and never close */
if «uio:>uio_offset < 0) I I (uio->uio_offset + uio->uio_resid) < 0) {

lf (type != IFCHR)

}

return(EINVAL);
else {

}

if (major (dev) == ethernet_no I I major(dev) == ieee802 no)
/* kludge! how do we set f offset to 0 ??? */
uio->uio_offset = 0;

else {

}

if (major(dev) != mem no)
return (EINVAL);

/* If the inode is remote, call the appropriate routine. Note,
* We could completely separate out all DUX code from this
* routine by having a separate vnode entry, but it would mean
* duplicating all the preliminary tests.
*1

if «type 1= IFCHR && type 1= IFBLK) && remoteip(ip»
return (dux rwip(ip, uio, rw, iOflag»;

if (rw == UIO READ)-
imark(ip, IACC);

switch (type) {
case IFIFO:

case

if (rw -- UIO READ)
error-= fifo_read (ip, uio);

else
error =

return(error);
break;

fifo_write (ip, uio);

IFCHR:
if (rw

} else

== UIO READ) {
error-= (*cdevsw[major(dev»).d read) (dev, uio);

{ -
imark(ip, IUPDIICHG);
error = (*cdevsw[major(dev)].d_write) (dev, uio);

}
return (error);
break;

case IFBLK:

Feb 11 08:24 1988 Gpio Driver Page 16

}

case IFREG:
case IFDIR:
case IFLNK:
case IFNWK:

Feb 11 08:24 1988 Gpio Driver Page 17

Hpib_read Driver Routine

This routine is much like the RAMdisk read routine. The main difference is
that we use a dil buffer instead of requesting one from the file system.
This buffer is located off the user's u area, and was acquired when the user
opened the device. We return to "rwip"-the return status of physio() .

49.3 87/10/14 */

/*
(c) Copyright 1983, 1984, 1985, 1986, 1987 Hewlett-Packard Company.
(c) Copyright 1979 The Regents of the University of Colorado, a body corporate
(c) copyright 1979, 1980, 1983 The Regents of the University of California
(c) Copyright 1980, 1984 AT&T Technologies. All Rights Reserved.
The contents of this software are proprietary and confidential to the Hewlett
Packard Company, and are limited in distribution to those with a direct need
to know. Individuals having access to this software are responsible for main
taining the confidentiality of the content and for keeping the software secure
when not in use. Transfer to any party is strictly forbidden other than as
expressly permitted in writing by Hewlett-Packard Company. Unauthorized trans
fer to or possession by any unauthorized party may be a criminal offense.

*/

RESTRICTED RIGHTS LEGEND

Use, duplication, or disclosure by the Government is
subject to restrictions as set forth in subdivision (b)
(3) (ii) of the Rights in Technical Data and Computer
Software clause at 52.227-7013.

HEWLETT-PACKARD COMPANY
3000 Hanover st.

Palo Alto, CA 94304

hpib read(dev, uio)
dev t dev;
struct uio *uio;
{

}

register struct buf *bp;
register struct dil info *info;

bp = (struct buf *)u.u fp->f buf; /* get buffer */
info = (struct dil info *) bp->dil packet;
info->dil_procp = u~u_procp; -

return (physio(hpib_strategy, bp, dev, B_READ,minphys,uio»;

Feb 11 08:24 1988 Gpio Driver Page 18

Physio Kernel Routine

Back in the kernel again! The physio routine takes each vector from iovec
(buffer ptr/count) and breaks the routine into "mincnt" size chunks (64k if
mincnt is minphys). It·converts the user's addresses into physical memory
addresses, and locks down those pages. Then it will call the proper .
strategy routine (in this case hpib strategy) via the physstrat routine.
When physio is finished with a transfer, it releases the pages that were
locked. Physio also keeps track of how many bytes have actually been
transfered, updating the residual as it runs through the transfer.

While physio is using the buffer "bp" , it marks the buffer "BUSY" so no one
else will try to use it. When physio finishes with the buffer, it marks the
buffer "unBUSY" and checks if someone wanted it (B WANTED bit set). If so,
physio calls wakeup to wake up all processes sleepIng on the buffer (note:
this should not happen for this read call).

49.1 87/08/21 */

/*
(c) Copyright 1983, 1984, 1985, 1986, 1987 Hewlett-Packard Company.
(c) Copyright 1979 The Regents of the University of Colorado, a body corporate
(c) Copyright 1979, 1980, 1983 The Regents of the University of California
(c) Copyright 1980, 1984 AT&T Technologies. All Rights Reserved.
The contents of this software are proprietary and confidential to the Hewlett
P~---ard Company, and are limited in distribution to those with a direct need
~now. Individuals having access to. this software are responsible for main
~ing the confidentiality of the content and for keeping the software secure
when not in use. Transfer to any party is strictly forbidden other than as
expressly permitted in writing by Hewlett-Packard Company. Unauthorized trans
fer to or possession by any unauthorized party may be a criminal offense.

*/

/*

RESTRICTED RIGHTS LEGEND

Use, duplication, or disclosure by the Government is
subject to restrictions as set forth in subdivision (b)
(3) (ii) of the Rights in Technical Data and Computer
Software clause at 52.227-7013.

HEWLETT-PACKARD COMPANY
3000 Hanover st.

Palo Alto, CA 94304

* Raw I/O. The arguments are
* The strategy routine for the device
* A buffer, which will always be a special buffer
* header owned exclusively by the device for this purpose
* The device number
* Read/write flag
* Essentially all the work is computing physical addresses and
+ -alidating them.

Of the user has the proper access privilidges, the process is
"arked 'delayed unlock' and the pages involved in the I/O are

Feb 11 08:24 1988 Gpio Driver Page 19

~aulted and locked. After the completion of the I/O, the above pages
~re unlocked.

Feb 11 08:24 1988 Gpio Driver Page 20

~iO(strat, bp, dev, rw, mincnt, uio)
int (*strat) ()i .

{

nextiov:

register struct buf *bp;
dey t dey;
int-rwi
unsigned (*mincnt)();
struct uio *UiOi

register struct iovec *iov;
register int ccount, npf;
char *base;
int s, error = 0;
register long *upte, *kpte;
int aa, i;
struct buf *save_bp = bPi

1* if caller did not have bUf » allocate one for him *1
if (bp == NULL) {

}

s = sp16()i
while (bswlist.av forw == NULL) (

bswlist.b=flags 1= B~WANTED;
sleep«caddr_t)&bswl~st, PRIBIO+l);

}
bp = bswlist.av forw;
bswlist.av forw-= bp->av_forw;
splx(s);
bp->b_flags = 0;

iov = uio->uio iov;
if (uio->uio iovcnt == 0) {

error = Oi
goto physio_exit;

}
1* The uio data may be in kernel space, so don't check access if so *1
if (uio->uio seg != UIOSEG KERNEL &&

useracc(iov->iov base, (u int)iov->iov len,
rw==B READ?B WRITE:B READ) == NULL) {-
error-= EFAULT; -
goto physio_exit:

}
s = sp16()i
while (bp->b flags&B BUSY) {

bp->b_flags T= B_WANTED;
sleep«caddr_t)bp, PRIBIO+I);

}
splx(s);
bp->b error = Oi
bp->b-proc = u.u procp;
base ~ iov->iov Ease;
if (u.u pcb. pcb-flags & MULTIPLE MAP MASK) {

-if «(int)base & OxfOOOOOOO) != OxfOOOOOOO)
base = (caddr_t) «int)base & OxOfffffff);

}

Feb 11 08:24 1988 Gpio Driver Page 21

Feb 11 08:24 1988 Gpio Driver Page 22

while (iov->iov len> 0) {
bp->b flags = B BUSY I B_PHYS I rw;
bp->b-dev = dey;
bp->b-blkno = btodb(uio->uio offset);
bp->b-offset = uio->uio offset;
bp->b-bcount = iov->iov-len;
(*mincnt) (bp); -
ccount = bp->b bcount;

1* I·f the uio data is-in kernel space, don't go through the mapping */
if(uio->uio seg == UIOSEG KERNEL)

{ bp->b un.b addr = base;

1*

goto do_physio;
}

u.u_procp->p_flag 1= SPHYSIOi
vslock(base, ccount)i

* Allocate kernel address space for mapping in the users buffer.
*/

1* calculate

1* allocate

number of pages needed */
npf = btoc(ccount + «int)base & CLOFSET»;

kernel pte's */
while «aa = rmalloc(kernelmap, npf» == 0) {

kmapwnt++; /* should never happen */
printf("oops - kernelmap should be bigger\ntl) ;
sleep«caddr_t)kernelmap, PRIBIO+I);

~et address oi pte's for user's buffer *1
upte= (long *)vtopte(u.u procp,btop(base»;

1* calculate kernel logical address for reference thru ptes */
bp->b un.b addr = (caddr t)kmxtob(aa) + «int)base

1* copy user's ptes into the kernel's ptes */
for (kpte = (long *)&Sysmap[btop(bp->b un.b addr)],

*kpte = *upte++; - -

}

«struct pte *)kpte)->pg v = 1;
«struct pte *)kpte)->pg=prot = PG_RW;

PURGE TLB SUPER; - -

& CLOFSET) i

i = npf; i>o

Feb 11 08:24 1988 Gpio Driver Page 23 .

do physio:
- physstrat(bp, strat, PRIBIO);

if(uio->uio seg != UIOSEG KERNEL) {
1* free the kernel logical address space *1

rmfree(kernelmap, npf, aa);
vsunlock(base, ccount, rw);
u.u_procp->p_flag &= -SPHYSIO;

)

}
(void) sp16();
if (bp->b flags&B WANTED)

wakeup«caddr t)bp);
splx(s); -
ccount -= bp->b resid;
base += ccount;-
iov->iov len -= ccount;
uio->uio-resid -= ccount;
uio->uio-offset += ccounti
1* temp kludge for tape drives */
if (bp->b_resid I I (bp->b_flags&B_ERROR»

break;

PURGE DCACHEi
bp->b=flags &= -(B_BUSYIB_WANTEDIB_PHYS)i
error = geterror(bp);
1* temp kludge for tape drives *1
if (bp->b_resid I I err?r)

goto phYS10 eXlt;
uio->uio iov++; -
uio->uio-iovcnt--;
goto nextiov;

physio exit:
- 1* if we allocated buf for caller, then deallocate it */

}

if (save bp == NULL) {
S = sp16();
bp->b~flags &= -(B~BUSYIB_WANTEDIB_PHYSIB_PAGETIB_UAREAIB_DIRTY)
bp->av forw = bswllst.av forw;
bswlist.av forw = bPi -
if (bswlist.b flags & B WANTED) {

bswlist.b flags-&= -B WANTED;
wakeup«caddr t)&bswlIst);
wakeup«caddr=t)&prOC[2]);

}
splx(s);

}
return(error);

Feb 11 08:24 1988 Gpio Driver Page 24

#(:)ine NETMAXPHYS (8 * 1024)
#define MAXPHYS (64 * 1024)

unsigned
minphys(bp)

{

}

struct buf *bPi

if (my site status & CCT SLWS) {
- if (bp->b bcount-> NETMAXPHYS)

bp->b_bcount = NETMAXPHYSi
return;

}

if (bp->b bcount > MAXPHYS)
bp->b_bcount = MAXPHYS:

Feb 11 08:24 1988 Gpio Driver Page 25

Hpib_strategy Driver Routine

The hpib strategy is the common OIL strategy for both the gpio and hpib
drivers.- It just sets up the buffer pointer (bp) for the transfer and
queues up the transfer with the enqueue{) routine. The enqueue() routine
will just make a call to hpib_transfer() when it is queued.

49.3 87/10/14 */

/*
(c) Copyright 1983, 1984, 1985, 1986, 1987 Hewlett-Packard Company.
(c) Copyright 1979 The Regents of the University of Colorado, a body corporate
(c) Copyright 1979, 1980, 1983 The Regents of the University of California
(c) Copyright 1980, 1984 AT&T Technologies. All Rights Reserved.
The contents of this software are proprietary and confidential to the Hewlett
Packard Company, and are limited in distribution to those with a direct need
to know. Individuals having access to this software are responsible for main
taining the confidentiality of the content and for keeping the software secure
when not in use. Transfer to any party is strictly forbidden other than as
expressly permitted in writing by Hewlett-Packard Company. Unauthorized trans
fer to or possession by any unauthorized party may be a criminal offense.

*/

RESTRICTED RIGHTS LEGEND

Use, duplication, or disclosure by the Government is
subject to restrictions as set forth in subdivision (b)
(3) (ii) of the Rights in Technical Data and Computer
Software clause at 52.227-7013.

HEWLETT-PACKARD COMPANY
3000 Hanover st.

Palo Alto, CA 94304

hpib strategy (bp, uio)
register struct buf *bp;
struct uio *uio;
{

register struct iobuf *iob = bp->b queue;
register struct isc table type *sc-= bp->b SCi

register struct dil=info *info = (struct dIl info *) bp->dil_packet;

bp->b_flags 1= B_OIL; /* mark the buffer */
bp->b_error = 0; /* clear errors */

/* set up any buffer stuff */
bp->b resid = bp->b bcounti
iob->b xaddr = bp->b un.b addr;
iob->b=xcount = bp->b_bcount;

info->dil timeout proc = hpib transfer timeout;
bp->b actIon = hpIb transfer;- -
enqueue (iob, bp); -

Feb 11 08:24 1988 Gpio Driver Page 26

Feb 11 08:24 1988 Gpio Driver Page 27

Hpib_transfer Routine

The hpib transfer routine determines what action is to be taken. In this
case, we-want to do a transfer. We enter into the Finite state Machine
(START FSM is a macro with assembly code that is to ensure that only one
process is in the FSM for a given select code at a time). When we are able
to perform our transfer, the routine determines what type of transfer can be
used. If we had asked for termination on pattern or the there is only 1
byte to transfer (two in word mode), we select MUST INTR control. Otherwise
we will select MAX OVERLAP, which means DMA will be-tried. We will then
call the driver routine for transfer (in this case gpio_driver).

49.3 87/10/14 */

/*
(c) copyright 1983, 1984, 1985, 1986, 1987 Hewlett-Packard Company.
(c) Copyright 1979 The Regents of the University of Colorado, a body corporate
(c) Copyright 1979, 1980, 1983 The Regents of the University of California
(c) Copyright 1980, 1984 AT&T Technologies. All Rights Reserved.
The contents of this software are proprietary and confidential to the Hewlett
Packard Company, and are limited in distribution to those with a direct need
to know. Individuals having access to this software are responsible for main
taining the confidentiality of the content and for keeping the software secure
w~--' not in use. Transfer to any party is strictly forbidden other than as

()
' essly permitted in writing by Hewlett-Packard Company. Unauthorized trans

to or possession by any unauthorized party may be a criminal offense.

*/

RESTRICTED RIGHTS LEGEND

Use, duplication, or disclosure by the Government is
subject to restrictions as set forth in subdivision (b)
(3) (ii) of the Rights in Technical Data and Computer
Software clause at 52.227-7013.

HEWLETT-PACKARD COMPANY
3000 Hanover st.

Palo Alto, CA 94304

enum dil transfer state {get dil sc = 0,
check transfer,
re get dil sc,
do-transfer,
end transfer,
tfr-timedout,
tfr-defaul};

hpib transfer(bp)
register struct buf *bp;
{

register struct iobuf *iob = bp->b queue;
register struct dil info *info = (struct dil info *) bp->dil_packet;
register struct isc=table_type *sc = bp->b_sc;

Feb 11 08:24 1988 Gpio Driver Page 28

register unsigned char state = 0;
register enum transfer request type control;
register int x; - -

Feb 11 08:24 1988 Gpio Driver Page 29

state = iob->dil state;

try

re switch:
START FSM;

switch «enum dil_transfer_state)iob->b_state) {

case

· · · · do transfer:
-END TIME

iob=>b state = (int)end transfer;
DIL START TIME(hpib transfer timeout)
if (state-& D RAW CHAN) -

else
(*sc->iosw->iod_save_state) (sc);

(*sc->iosw->iod preamb) (bpI 0);
END TIME -
/* set the speed for the process */
if (state & (READ_PATTERN I USE_INTR» {

control = MUST INTR;
sc->pattern = Iob->read_pattern;

}
else if (bp->b bcount == 1)

control = MUST INTR;
else if (dma here != 2)

control = MUST INTR;
else if (state & USE DMA)

control = MAX OVERLAP;
else

control = MAX OVERLAP;
/* set up transfer control info here */
sc->tfr control = state;
DIL START TIME(hpib transfer timeout)
(*sc->iosw->iod tfrT(control~ bp, hpib transfer);
break; - -

· · case tfr timedout:
escape(TIMED OUT);

default: -
panic("bad dil transfer state") ;

}
END FSM;

recover { -

}

ABORT TIME;
iob->b state = (int) tfr defaul;
if (escapecode == TIMED OUT)

bp->b error = EYO;
(*sc->iosw->iod abort io) (bp);
HPIB status clear(bp)7
iob->term reason = TR ABNORMAL;
dil drop selcode(bp);
queuedone (bp) ;
dil_dequeue(bp);

Feb 11 08:24 1988 Gpio Driver Page 30

Feb 11 08:24 1988 Gpio Driver Page 31

Gpio_driver routine

This routine determines what type of transfer to perform and then kicks of
the transfer. It will select INTR TRANSFER if:

1)1 byte transfer
2) 2 byte transfer in word mode
3) using READ PATTERN for termination
4) requested INTR XFER (via io)speed ctl
5) try dma routine failed -

otherwise the transfer type is DMA_TFR

If DMA TFR
set transfer width to 8 or 16 bit
calls dma build chain to build a chain of DMA requests

DMA build chain routine

The routine will set up dma channel and card for dma transfer (and selects
transfer mode (8 or 16 bit).

It builds a chain of dma transactions for the transfer. These are usually
4k (1 page/chain or less), but will chain transactions for contiguous pages.

The information in the chain:
address of i/o card
interrupt level for DMA card (7 except for last link, then i/o cards

IRL)

After building the chain, we then return to gpio_dma() routine.

Feb 11 08:24 1988 Gpio Driver Page 32

Gpio_dma Routine

This routine called the dma build chain routine. When the chai~ is built,
it sets up where to go on completIon of dma transaction. This ~s
gpio_do_isr(). We then call dma_start() to actually start the transfer.

Dma start Routine

This routine sets up the first DMA transaction (first link in the chain) and
returns to the driver. The driver will sleep awaiting completion of the
transfers. The DMA transfer is started by writing the address of the buffer
and the count into the DMA channel and arming the channel.

When the channel transfers all the bytes for that link, it generates a level
7 interrupt. This interrupt jumps to very specific code which is all in
a#~~~bly. The first thing this code checks is if the interrupt was caused
~ In of the DMA channels. If so, then it updates the link to the next in
t~~ chain, arms the DMA channel, and returns. If it is the last link in the
chain, then it sets up interrupt level to that of the card, so that
following the last link, we enter the gpio card's isr routine.

Feb 11 08:24 1988 Gpio Driver Page 33

This routine will transfer the last byte (on read) from the gpio card. It
is also the routine used if the transfer type is not dma. It just executes
the transfer, then returns to the process that was interrupted. If it
transfered the last byte, then it will wake up the driver routine so that
the driver can complete the transaction and return to user code.

A Brief History of File Transfers
The First Generation

Sneakernet

Carry the file from one machine to another. on tape
(or punched cards)

HP Company Confidential

12/8/87
J. Tesler

FOIL2 .

The Second Generation
Copynet

• Copy the file via a network (Ethernet, RS232 ,
telephone, etc ...) from one machine to another

- uucp
• uucp remote! -uucp/file -uucp/:file

rep
• rep remote:file file

• Usually implemented as an application program.
Kernel does not know about remote files

. HP Company Confidential

12/8/87
J. Tesler

FOIL 3

12/8/87
J .. Tesler·

FOIL 4

Problems with Second Generation· File Access
• Requires special mechanisms to access remote

files

- Not transparent

- Remote files are normally inaccessible to
programs and must be manually copied over
first

• Need to make a local copy of a file to use .it

- Wastes local disc space

- Easy to forget about the copy and leave it
around

- Local copy can get out of date

• Not integrated with system

• ~ither requires password every time a file is·
copied .or presents a large security hole

• Shared packages must be duplicated on all
machines

- Wastes space

- Major system administration problems keeping
all copies up to date

HP Company Confidential

The Third Generation

Remote File. Systems

• Three UNIX remote file systems at HP

- RFA (Remote File Access)
• Developed at Hewlett-Packard

- NFS (Network File System)
• Developed at SUN Microsystems

- RFS (Remote File System)
• Developed at AT&T

HP Company Confidential .

12/8/87.
J. Tesler

FOIL 5

12/8/87
J. Tesler

FOIL 6

Characteristics of a Remote File System
• Provides access to file systems on a remote

machine in a manner ide"ntical to I"ocal file
systems

- Same commands
• vi /localfile
• v·i /remote/rernotefile

- Same system calls

- Applications need not know about the remote
file system (unless they want to)

• Client-Server model

- Server performs actions dealing with remote
files on behalf of the client

- Client does not make a local copy of the file

• Integrated into the system

• Provides protection

- Control over which files are available over the
network

- Protect available files from unauthorized
access·

• Implemented in the form of a remote mount

HP Company Confidential "

Mounting. a Complete Remote
Machine's File System

---r-----------___ -...IIMI ernet

Client
Server

/ / /

dl~ HI~ If\ev ~c 1\ use~d~ -!f\ev ~c 1\ 7\
Ii~ bin spool Is who lib bin spool Is who fred air

myfile

HP Company Confidential

12/8/87
J. T.aler

FOIL 7

Mounting a Package from a
Remote Machine

Server Client

dates raisins prunes

HP Company Confidential

12/8/87
J. Tesler

FOIL 8

. Remote File Systems Solve
Second Generation Problems

• No special mechanisms to access remote files

Transparent file access

- ft .. ny program that works on local files will
work on remote files

• No need to copy files locally

- No wasted disc space

No left over copies

Copies don't get out of date'

• Fully integrated with system

• Password protection integrated in

• Provides mechanism for sharing packages

- No wasted disc space

- Simplifies system administration-no need to
keep copies up to date

HP Company Confidential

12/8/87
J. Tesler

FOIL 9·

The Network File System (NFS)
• Developed by SUN Microsystems

• The "Industry Standard" Remote File System

• Goals:

Simple

- General purpose

• Export/mount interface

• Stateless System

• Includes Yellow Pages to provide consistent
userids among machines

• Available from HP in early '88 on 300s and 800s

HP Company Confidential

12/8/87
J. Tesler
FOIL 10

Export and Mount in ·NFS

Client

/ /

41~ 41~ ;r\ev ~c l\ users ;r\ev ~c l\ use~
iii bin spool Is who 119 bin spool

/- '" . I
Ir\\,,- _J~

Is who

dates raisins prunes

File / etc / exports: $ Is /usr /lib/fruit

12/8/87
J: Tesler
FOIL 11

/usr /lib/fruit dave # mount bill:/usr /lib/fruit
/usr /Iib/fruit

$ Is / usr /lib /fruit
dates prunes raisins

HP Company 90nfidential

A Stateless System·

The NFS server does not keep track of which
clients are accessing it

• Advantages:

Easy to recover from client failure

If server or network fails temporarily, client
can continue once server is again available

• Disadvantages:

Does not provide full UNIX semantics
• Sy~chronization not guaranteed in the event

of concurrent access
• UnUnked open files are no longer accessible

- But:
• Most programs run 'without any problems

HP Compa~y Confidential

12/8/87
J. Tesler
FOIL 12

The Yellow Pages

The Yellow Pages (YP) is a rudimentary distributed
data base used primarily for sharing certain system
administration files such as the password file
among cooperating machines

NFS already pro\r'ides shar!ng of files. Vvhy ~o we
need the Yellow Pages too?

• YP allows configuration of multiple servers,
eliminating reliance on a single pOint.

Can still run if server fails .

- Certain files needed at boot time before NFS
is up

• YP permits customization on .a machine by
machine basis, permitting local overrides. For
example, each machine can have its own
superuser password.

• Putting these capabilities in an application
program cuts down on the kernel size.

HP Company Confidential

12/8/87
J .. Tesler
FOIL 13

The Remote File System (RFS)

• Developed by AT&T

• The "System V.3 Standard"· R~mote File System

• Goal:

- Full ur\Jlx semantics

• Advertise/mount interface

- Advertise is symbolic; hides advertising
machine

• Stateful system

• User ID mapping

• . Remote device access

• HP is currently porting °RFS

HP Company Confidential

12/8/87
J. Tesler
FOIL 14

Advertise and Mount inRFS

- ___ ---------or--- emet

Server Client

dates raisins prunes

-# advFRUIT /usr /Iib/fruit $ Is /usr /Iib/fruit
dave

,

mount -r FRUIT
/usr /1ib/fruit

$ Is /usr /lib/fruit
dates prunes raisins

• Advertised name is symbolic-Does not include
machine name

HP Company Confidential

12/8/87
J. Tesler
FOIL 15

A Stateful System

The RFS server keeps track of which clients are
accessing it

• Advantages:

- Provides fuB UN'X semantics including
synchronization

• Disadvantages:

- Recovery from client faUure more difficult

Temporary loss of the server or the network
means loss· of the file access
• Client must reopen the remote file once the

system is available

HP Company Confidential

12/8/87
J. Tesler
FOIL 16

User 10 -Mapping·

RFS provides a facility for mapping userids (UIDs)
from one machine to another

• Set up by system administrator

- Eas)! to configure defau'ts
• Transparent mapping-each UID maps to

itself
• Given UIO mapping-all UIDs map to a

single remote UID

- Can override on a UIO by UIO basis

- .Each machine can have a different' mapping

HP Company Confidential

12/8/87
J. Tesler
FOil 17

Why· Three Remote File Systems?

HP will be providing three remote file systems, RFA,
NFS, and RFS. Why do we need them all?

• RFA is needed for backvvtards compatibility and
to talk to 8500s

• NFS is the current industiY standard, and is
availabie from more vendors than any other
remote UNIX file system

• RFS is needed for AT&T System V.3 compatibility

HP Company Confidential

12/8/87
J. Tesler
FOIL 18

The Fourth Generati.on

Distributed Systems

A Future Vision

• One system view

- The same file s)"stem seen from all sites

File locations fully hidden

- Not a remote mount based model

• Other resources also distributed in a transparent
manner

- Transparent remote process execution

Process migration

Remote and local inter-process
communication treated identically

• Every machine feels like home

HP Company Confidential

IZ/0/07
J. Tesler
FOIL 19

The -Discless 300s

• Not a fourth generation system, but has some
aspects of it

'. Allows multiple Series 300s to share a single set
of discs

• All machines in cluster see the same vievJ of the
file system

• Common logins and passwords automatically
provided

• Not a remote file system

Provides sharing within the cluster only

Does not use a remote mount model-all .
machines see the same file system

• Only one logical machine to administer

HP Company Confidential

12/8/87
.J. Tesler
FOIL 20

•

The Buffer· Cache

title 3 __ 1987 Hewlett-Packard Company

I 0 The Buffer Cache II L-D __ N_ot_e_s _____ I

Buffer Cache
system call interface

file subsystem

I buffer CIChe

character : block

device drivers

1
hardware control

0010 ... 1i!7 I.,\-POC .. orcs ompcn,

Page 1-3a

.' '

I ~D ___ T_h_e_B_u_f_fe_r __ C_a_c_he __________________ ~II~D ___ N_o_t_e_s ________ ~

Buffer Header

device number b_dev

block number b_blkno

amount of valid data in buffer b bcount -
amount of real memory being b bufsize

pointed to by this buffer
pointer to data area *b_ un

pointers to buffers on hash

Queue *b back

pointers to buffers on free list *av for -
*av back

state of buffer header
b_flags

Plge 1-58

~ -8k

WAX8SIZE

I' Module 3
.. ' ', ,,: ...••..... :: ' ":.:': '. ' ..
•. . ' ... ::" .:~: :';~::''; :" ···: .. :·::~i::···:;/·:· :::? :." .: :' :~: .,' :', .

. :

I_D __ T __ he __ B_u_ff_e_r_C_a_c_he ___________________ I~IO ___ N_o_t_e_s ________ _

Buffer Header Usage

"sh Queue headerl ,. ,.

: ...•
........

......

ufa;)OO2C

blkno 0 r::I r:I r::I
l-------t· .. :~=~l .. ~~ , mod 4

blkno 1

mod 4

blkno 2

~ 0~0··I0
. ... ~ .. G··0~·· mod 4

blkno 4

mod 4
.. 3 1~ •• 0 [~]

bfreelist ~
I------------------~

Page 1-7.

·•... '.~ .: .. . :-.'. ' ..

Module 3,:::\:,,:: ,',: ,'.: '::,,':':, ":'::::':' .. ' ",::'; .. " ,:~,:'

I ~D ___ T_h_e_B_U_f_fe_r_C __ aC_h_e __________________ ~I~ID ___ N __ ot_e_s ________ ~

.,/'

.,/'

Buffer Management

LRU I AGE I EMPTY

1 1

- Always on exactly one hashchain unless EMPTY

- Always on exactly OAe freelist unless BUSY

Page 1-91

Module ·3

I ~O __ T __ he __ B_Uf_fe_r_C __ aC_h_e ________________ ~II~o ___ N_o_t_es ________ ~

." 0

Reading and Writing Disks Blocks

issue READ

request

•
sleep on
request .. ~ eup

Data is in
locked buffer

release buff4

when done

r

Page 1-11a

issue READ

request

ssue asynch

READ

sleep on
first reQuest

Oat is in
locked buffer

elease buffe

when done

.,.1

'f

y

_ID __ T_h_e_B_uf_fe_r_C_a_ch_e _______________ �I~D ___ N_ot_e_s ______ ~1

Major Routines

o Getting Buffers

bp = bread{dev,blkno,size)

o Releasing Buffers
brelse(bp} - release it, no write

bwrite{bp} - syncronous write

bdwrite(bp) - delayed write

bawrite(bp) - asynchronous write

Page 1-131

· ~ .•....•. ; Module 3· '"
' .. ':' .'.

_IO __ T_h_e_B_uf_fe_r_C_a_ch_e _______________ II~D ___ N_ot_e_s ______ ~1

BREADO
arl_'lo.c bread(dev,blkno,size) ---~. biowaiUbp)

I I getblk(dev,blkno,sizel J
getnewbufO notavailCbp)

brealloc(bp.size}

I
atlocbuf(tp.size)

Page 1-158

· : : I : .. :.:.: ...
' .. " :: .. :

~ID __ T_h_e_B_Uf_fe_r_c_a_C_he ______________ ~II~D ___ N_ot_e_s _______ 1

Retrieval of a Buffer
Block NOT in Cache

t Remove rnt block fTom Free Uat

q r 1
" t , j H H r.. · 6 4

[I r-J ~ 1 bPTtelilt rl ~ I 6 4 r:. ·

2) block not in hash QUaIl - remove 1st bloc:k from fret list

r delay l
'I :3 H 6 H 4 r:. ·

rJ LI J
~ 6 I 4 r.. · q b 1

writing

3 Free List empty

_ 1

Page 1-17a

Module 3 .' ...' . ".; ".;.: :.~;.. ..' :.: .. ;.• : .::'. :.'
- ':.;::':: : ," " ":

....... ',' "

I_D ___ T_h_e_B_u_f_fe_r_C __ a_ch_e __________________ ~II~D ___ N __ ot_e_s ________ ~

Retrieval of a Buffer
Block IN Cache

.) Found block 50

C ~················ I:·!·· .~ ... L~· ··4·· ·13 ·~I· . ~ .. ·IJ·.
......1 17 'r· & 1..1' 97 I····· ..

bIkno 0
mod ..

bIm::> 1
mod ..

.... 198 I. ... 50 , 110 l blkno 2
mod 4

~ ___ 1 35 I 1 99 , blkno ..
mod ..

bfreehst

5) found block 50 but busy

~ 1:].\
97 I

blknO 0
mod 4

blkno 1
mod 4

~ I bIkno 2
mod 1 ge J. ... ~ I

99 , bIkno ..
mod 4

.... 3 I 35 , 1

bfreeli&t

uf 026

Page 1-18a

. Module 3 :.{.:;:: .. '.:.:;::. ';' ..
.: .. : .. :

. ' '

. :.. .: ... '.~ ... : .. '. ::::' ... :..... ,,:: :'::;' . ': .:." I
I~D __ T_h_e_B_u_ff_e_r_C_ac_h_e ______________ ~I~lo ___ N_o_te_s ______ ~I

Overlapping Buffers

old I
buffer t-------------!

:~rl~ ___________ ~

If the ·old buffer- is marked delayed
write, it must be written. The ·old
buffer- must be marked INVAL.

o Therefore, a disk block is mapped
Into at most on, buffer.

-'

Page 1-22a

Module 3· : :.'.:.;. '; .. :~.. ":",• :

', : ·:.-···t······.:.· :<" "

~ID __ T_h_e_B_u_f_fe_r_C_a_c_he _________________ I~lo ___ N_o_te_s ______ __

allocbufO
(Skl

MAXBSIZE

bufsize == 2k

CLBYTES CLBYTES

If buffer size is shrinking:

o Take buffer header off EMPTY Queue.

o Put excess pages in it and release onto AGE Queue.

If buffer size is growing:

o Get a buffer from NEWBUF.
o Transfer pages to new buffer.
o If pages left over return to AGE.

o If no pages left return to EMPTY.
o Repeat until enough pages are allocated to new buffer.

ut c

Page 1-248

SE 390: Series 300 HP-UX Internals

Monday Afternoon Labs

o. Reboot the system and pay close attention to the messages that
are printed out. What't the last line printed by the kernel? What's
the first line printed by init (1m) ?

1. Using the template provided (ppt.c), print out the values of at
least 10 kernel parameters. Verify 2-3 of them with adb(1), and the
rest with monitor(1m).

2. Using ppt.c again, write a version of ps(1) that skips most of
the garbage (gettys, daemons, etc).

3. Modify top. c so it will run on the 300.

4. Put the system under stress and experiment with nice values. How
much do they affect a process when the system is under 1) no stress;
2) moderate stress; 3) heavy stress?

5. Replace /etc/init with a program or script that 1) does something useful,
like invoke a shell; 2) moves the real init back into place so that you can
reboot and have a normal system.

SE 390: Series 300 HP-UX Internals

Tuesday Afternoon Labs

o. set the sticky bit on a fairly large program and see how this affects
startup time.

1. Configure a new kernel and look at the conf.c that is generated. Which
parts of it came from /etc/master? Which from the dfile you provided?

~ 2. Make the system panic and interpret the resulting stack trace.

3. Run a program that will force the system to page and/or swap, and
observe the results with monitor(1m) .

~ 4. write a program that attaches to some shared memory and then starts
~ malloc(3)ing 1k chunks. How many can you get? What kernel parameter

co~ld you change to fix the problem?

SE 390: Series 300 HP-UX Internals

Wednesday Afternoon Labs

o. write a program to hunt for superblocks on a disk.

1. write a program to figure out which files are in a particular cylinder
group on the disk.

2. write a program that will "stat" a file without using the stat(2) call.
(Hint: in what place on the disk is most of the information for a file kept?
How can you get there given the file's pathname?)

3. Translate a pathname to an i-number using adb(l), fsdb(lm), disked(lm),
or a C program you write.

4. Have your partner mess up the disk using disked(lm). Then fix it using
fsck(lm), disked(lm), or whatever you want (dd(l)ing from another disk is
strictly an option of last resort :-»

***** OR *****
Write a version of cat(l) that uses only the raw disk device.

