
HEWLETT ff PACKARD

HP 3000 Series II Computer System

APL\3000
Reference Manual

Part No. 32105-90002
Product No. 32105A

H P 3000 Series II Computer System

APL\3000
Reference Manual

HEWLETT QW PACKARD

5303 STEVENS CREEK BLVD., SANTA CLARA, CALIFORNIA 95050

Printed in U.S.A. 11/76

PRINTING HISTORY

New editions incorporate all update material since the previous edition. Update packages, which are issued between
editions, contain additional and replacement pages to be merged into the manual by the customer. The date on the title
page and back cover changes only when a new edition is published. If minor corrections and updates are incorporated,
the manual is reprinted but neither the date on the title page and back cover nor the edition change.

First Edition. November 1976

NOTICE

The information contained in this document is subject to change without notice.

HEWLETT-PACKARD MAKES NO WARRANTY OF ANY KIND WITH REGARD TO THIS MATER
IAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS FOR A PARTICULAR PURPOSE. Hewlett-Packard shall not be liable for errors
contained herein or for incidental or consequential damages in connection with the furnishing, perfor
mance or use of this material.

Hewlett-Packard assumes no responsibility for the use or reliability of its software on equipment that is
not furnished by Hewlett-Packard.

This document contains proprietary information which is protected by copyright. All rights are reserved.
No part of this document may be photocopied, reproduced or translated to another program language
without the prior written consent of Hewlett-Packard Company.

Copyright © 1976 by HEWLETI-PACKARD COMPANY

ii

LIST OF EFFECTIVE PAGES

The List of Effective Pages gives the most recent date on which the technical material on any given page was altered. If
a page is simplyre-arranged due to a technical change on a previous page, it is not listed as a changed page.

Page Effective Date Page Effective Date

Title Nov 1976 11-1 to 11-14 Nov 1976
ii to xiv . Nov 1976 12-1 to 12-9 Nov 1976
1-1 to 1-7 . Nov 1976 A-1 to A-7 Nov 1976
2-1 to 2-12 . Nov 1976 B-1 to B-4 . Nov 1976
3-1 to 3-61 . Nov 1976 C-1 to C-2 Nov 1976
4-1 to 4-23 . Nov 1976 D-1 to D-2 Nov 1976
5-1 to 5-7 Nov 1976 E-1 to E-2 Nov 1976
6-1 to 6-14 . Nov 1976 F-1 to F-2 Nov 1976
7-1 to 7-7 Nov 1976 G-1 Nov 1976
8-1 to 8-12 . Nov 1976 H-1 Nov 1976
9-1 to 9-12 . Nov 1976 1-1 to 1-11 Nov 1976
10-1 to 10-15 Nov 1976

iii

PREFACE

This publication is the reterence manual
programming language developed for use
Computer system.

for APL\3000, a high-level
on, the HP 3000 Ser les I I

Because of the unique structure of APL, this manual difters from most
reference manuals, in that function descriptions are not arranged in
alphabetical order, and more comprehensive descriptions are provided
than woUld be necessary for better known languages such as FORTRAN or
COBOL. Examples of all functions, however, are contained In
alphabetical order in Appendix B.

Althougn it is possible to learn how to program in APL\3000 using this
manual, such 1s not its main purpose, and therefore this manual
assumes a Knowledge of APL by the user. Further, because APL IS an
advanced computer language which has many apPlications In mathematical
problem solving,· it 1s assumed that readers have had mathematics
training. For example, such terms as "non-singular arrays," "linearly
independent columns," and so forth are introduced but not explained;
and the reader 1s expected to be familiar with linear equations,
logarithms, and pythagorean and hyperbolic functions.

Other publications which should be aVailable for reference are:

This

MPE Intrinsics Reference Manual - Part Number 30000-90010
MPE Commands Reference Manual .. Part Number 30000-90009
Console Operator's Guide .. Part Number 30000-90013

manual is
cross-reference

divided into twelve sections, eight appendices, and a
index as tOllows;

Section I - Introduction to APL\3000

Section II - Elements of APL\3000

Section III .. APL\3000 Primitive Functions and Operators

Section IV - System Functions and System Variables

Section V - Shared Variaoles

Section VI .. APL\3000 File System

Section VII .. Function Definition

Section VIII - APL\3000 Editor

Section IX .. APLGOL

Section X .. Function Execution

v

Section XI - System Commands

Section XII - Error Messages

Appendix A - APL\3000 Character Set

Appendix .B • APL\3000 Pr1mlt1ve Functions and Operators

Appendix C -APL\3000 System CommandS

Appendix 0 -APL\3000 System Variables

Appendix E • APL\3000 System f'''unct ions

Appendix F ., APL\3000 Edit Instruction SYntax

Append1x G • APLGOL Statement Syntdx

Appendix H - system Supplied Utility Shared Variables

Index

vi

NOTATION

[]

{ }

underlining

user input

return

CONVENTIONS USED IN THIS MANUAL I

DESCRIPTION

An element inside brackets is optional. Several elements stacked inside a pair of brackets means
the user may select anyone or none of these elements.

Example: [~J user may select A or B or neither

When several elements are stacked within braces the user must select one of these elements.

{ A~} Example: user must select A or B or C.

Underlined words denote parameters which must be replaced by user-supplied variables.

Example: CALL name
~ one to 15 alphanumeric characters.

Where it is necessary to distinguish user input from computer output, the input is underlined.

Example: NEW NAME? ALPHA1

~ underlined indicates a carriage return

A horizontal ellipsis indicates that a previous bracketed element may be repeated, or that elements
have been omitted.

vii

CONTENTS

Section I
INTRODUCTION TO APL\3000
APL\3000 Character Set •••••••••••••• , ••••• ,.,.,', ••••• ,.
APt KeybOard ••••• "., ••••••••••••• , ••••••••••••••••• , •••
Initiating an APL\3000 Session •••• , ••••••••••••••• , •• ,.,
Running APL\3000 •••••••••••• , ••• ,., ••••••••• , •••••••• , ••
Terminating an APL\3000 Session •••••••••••••••• , •••••• ,.

Section II
ELEMENTS OF APL\3000
APL Constants •••••••••••• , •• , •••• , •••••••• ,., •• , ••••••••

Scalar Constants •••••••••••••••••• , ••••••• , ••••••• "
Vector Constants ••• , ••••• , •••• , ••• , •••••••• , •••• , •••
Character Constants •••••••••••••• , •• , ••• , ••• " •••• ,.

APL Expressions ••••••••••• " •••••••• , •••••••••••••• " •••
APL runctions ••••••••••••••••••••••••••• tt •• , •••••••••••

Monadic Functions •••••••••••••••••••••••••••••••• , ••
Dyadic Functions •••••••••• , •••••• , •• , •••••••• , ••••••
Niladic Funct1ons ••••• ,., •••••••••••••••••••••••••••
Primitive Functlons ••••••••••••••• , •••••••• ~ ••••••••
User-Defined Functions ••••••• , •••••••••••••• , •• , ••• ,

System Commands •• , •• , •••• , •••••••••••••• , •••••••••••••••
APL Order of Association, •••••••••••••••• " •••• " •••••••
Arrays •••• "., ••••••• , ••••••• ,., ••••••••••••••• "" •• " ••
WOfKspaces and Libraries, •••••••• " ••••• , •••• , ••• , •• , •••

Section III
APL\3000 PRIMITIVE fUNCTIONS AND OPERATORS
Primitive Scalar Functions •••••• , ••• , •• ".", ••••• , ••• ,.

Plus, Minus, Times, and Divide Functions" ••••••• ".
Residue Function •• , •••••••••••••••• " •••••••••• , ••• ,
Conjugate Function •••• , ••••• , ••••• , •• "" •• ,."., •• ,
Negative Funct1on •••• ,." ••••••••••••• ,.,., ••• " ••• ,
Signum Function" ••••• , •••••••••••• , •••• , •••••••••• ,
Reciprocal Function •• , ••••••••• , •• , •• , •••••• , •••••••
MagnitUde Function ••••••••••••• , ••••••••••••••••••• ,
Boolean Functions, ••••••••• , ••••••••••••••••• , ••• , ••
Relat10nal Functions •••• " ••••••••••• ,." ••• ,." ••••
Minimum and Maximum Functions, ••••••• , •••••• " ••• ,.,
Floor and Ceiling Functlons, •••••• ,." •• , ••••• ".~,.
Roll (RandOm ~umber) Function ••••••••••••••• ", ••• ,.
Power Funct1on, •••••••••••• , •• , ••• ,., ••••••••••••• ,.
Exponential function •••••••••• , ••••• ,., ••• ,., ••• , •••
Natural Logarithm function ••••••••••• , ••••••••••• ",
General Logarlthm Yunctlon._ •••••• ,., ••••• ,., •• ,.".
Gircular Hyperbolic and pytnagorean Functions •••••••
Factorial Funct1on ••••• , ••••••••• , •••••• , ••• ,", •• ,.
Binomial Function •• , •••• ".,., •• , ••••••• , •• " ••• , •••

viii

Page

1-1
1-3
1 .. 4
1-0
1-;

Page

2-1
2-2
2 .. 2
2-2
2 .. 3
2-5
2-5
2-5
2 .. S
2-6
2-b
2-0
2·9
2-9
2-12

Page

3-1
3-2
3-7
3-7
:;·7
3-7
3-8
3-8
3-8
3-8
j-11
3-11
3-11
3-12
3-12
3 .. 13
3-13
3-13
3-16
3-1E>

CONTENTS

Op era tor s •• , • , " •••• " ••••• , , ••• t •••••••• , ••••
Reduction Operator." ••••••••••••••••••••• ,.,', •••• ,
Scan operator ••• , •••••••••••••••• , •••••• , •• , •••••• ,.
Axis operator ••• " •••••••••• ,', •••••••• , ••••• " •••••
Inner PrOduct o~erator •••• , ••••••••• , ••••••• , •••• , ••
Outer PrOduct Op~rator." •• , ••• ".,." ••••••••••••••

Mixed Functions •••••••••••••• , ••••••••••••••••••••••• , ••
Structural functions •••••••••••••••••••••••••••••• ,.

Snape Funct1on, ••••••••••••••••• ,.,
Ravel Function, •••••••••••• ,., ••• , ••••••••••••••
Resnape Function •••• " •••••• , ••• , •••••••••• _., ••
Reversal Function •••••••••••••••• " •••••••••••••
Rotate Function ••• "." ••• , •• ", •••••••••• " ••• ,
Catenate Function, •••••••••••••• , •••••••••••••••
Laminate Function ••••• ,., •••••••••••••• , ••••••• ,
Transpose Function •••••••• , ••••• , ••••••• , •• , ••••

Selection Functions ••••• , ••••••••••••••••• , ••• " ••••
TaKe Function •• , •• , •• "" •• , ••••• "." •• ,.,.", ••
Drop function , •••• , •• " , ••• , ., , , , .,. , •••••• ,., ••
Compress function."., •••••• , ••• , •••••• , •• ,., •• ,
Expand Function.,., •• , ••••••••••••••••• , ••••••••
Indexing Function, •••••••••••••• , ••••••••••• " ••

Selector Generator ~uMctio~s •••••••• , ••• , ••• 't' •••••
Index Generator, •• ", ••••••••••••• ,., •••••••••••
Index Of •••••••••• , •••••••••••• " •• , , •••• , ••
Membership Function •••••• "., ••• , ••• , ••••••• , •••
Grade functions ••••• , •••••••••••••••• , •• , •••••••
Deal Function ••••••• , ••••• ,., ••••••••••• , •• " •• ,

Numerical Functions •• , ••••••• , •••• " •• , •••••••••• , ••
Matrix Lnverse and Matrix Divide Functions,.,.,.
Decode function ••••• ,.,."., ••••••• " •• " •••• , ••
Encode Function ••• , ••••••• , ••••••• """ ••• " •••

Data Transformations,., •••••••••••••••••••••••••••• ,
Execute Funct1on" •• , ••• " •••••• ,." •••••• , •••• ,
Format Function ••••• ,.,., ••••••• " ••••• , ••••••••

Monadic Format, ••••• , ••••••••••• , •• , •• , •• , ••
Dyadic Format.",."' •• , •••• " •••••• ~ •• "' ••

Control Pairs ••• " •• , ••••••••••••• , •••••••• , ••••
Width ContrOl,., •• , •••••••••••• , ••••• , •• ,.,.
Shape and Precision Control., •• , ••• , ••••••••
Control-Pair Formation •••••• ,., •• "., ••• ",.
Dyadic Format Conditions •••••••••• , ••• ,." ••
Quad Output •••• ,., •••• , •••••••••• , ••••••• ".
Quad Input •••••• , ••• , •• ,." ••••• " •••• "" ••
Quote Quad Output ••• ", ••••••••••• ,.,., •••••
Quote Quad Input ••• "., •••••••••••••••••••••

ix

(continued)

3-17
3-17
3-19
3-20
3-22
3-24
3·25
3-29
3-30
3-30
3-32
3-32
3-33
3-35
3-37
3-39
3-40
3-40
3-41
3-42
3-44
3-45
3-48
3-48
3-48
3-49
3-49
3-50
3-51
3·51
3-53
3·53
3-54
3-54
3-55
3·55
3.55
3-56
3-56
3-56
3-56
3-57
3-58
3-59
3-60
3-60

CONTENTS (continued)

Section IV
SYSTEM FUNCTIONS AND SYSTEM VARIABLES
System Functions ••••••• , •• ,." •• ,.,., ••••••••••• , •• " •••

Canonical Representation Function ••••••••••••••• , •• ,
Vector Representation Function, ••••••••••••••••••• ,.
Function Establishment •• " •••••• , ••• , •• " ••••••••• ,.
Expunqe Function, •••••• " ••••••••••••••••••• , •• , ••••
Name List Function •••••••••••••••• , •••••••••••• " •••
Na~e Classification Function, •• , ••• , ••• ,." •••• ,., ••
Delay Function, ••••••••••• ", ••• , ••• , •• , ••••••••••••

System Variables ••••••••••• , •••••••••••••••• , ••••• , •••••
Comparison Tolerance, •••• ,." •••••••• , •••••••• ,', •••
Index Origin •• , ••••• , ••••••••••••••••••••••••••• ,.,.
Latent Expression ••• , ••••• , ••••••••• ,.,."" •• ,., ... ,
Random Link., •••• , •••• , •••••••••••••••••• , •••••• ",.
Printing Precision •••• ,., ••••••• , ••• , •••••••• , ••• , ••
Printing width •• , •••••••••••••••••••••• , •• "." •••••
Account Information ••••• " •• , •••••••• ,.,., •••• , •••••
Atomic vector •••••••••• , ••• , •• , ••••• " •••••• ,"', •••
Line Counter" •• , ••••••• " ••••••••••••••••••••• ,.,.,
Stack Names ••••••••••• , ••• , •••••••••••••••• , ••••••••
Workspace Identification •• , ••••••••• , ••••••••• "" ••
Time stamp •• , ••••••••• ,", •••••••••••• , ••••••• , •••••
Assertion Level, •••••••• ,., ••••• , ••••• ,." •••• , •• , ••
Execution Trace •••••••••••• , •••• ,.,., ••••••••••• ,.,.
Branch Trace •• , ••••••••••••••••••••••••• " ••••••••••
Virtual Memory,."., •••••• , •••••••• , •••••••• , ••••• ,.
Language ••• , ••• , •••••• "., •••••• , ••••• , ••• " ••••• ".
Terminal Type ••• , •• , •••••••••• , •• "".,., ••• " ••••••
Hor1~ontal Tabs, •••••••••••••• , •••••••••••• "., •••••
Work Area AVailable •••••••• , •••• , •••••• , •••• ",., •• ,
Character System Varlables, ••• , •••••••• ,~ •••••••••••

Section V
SHARED VARIABLES
Clffers •••• , •••••• ,., •••••••••••••••••••• t ••••••••••• ,. t'
Access ContrOl., •• , •••••••••••• " ••••••••••• " ••• , •• , •••
Retraction, ••••••••• , ••••••••••••••••••••• " ••••• , •••• It

Inquir 1es •••••••••• , •••••••••• "" ••••••• , ••••••• , •••••••

Section VI
APL\3000 FILE SYSTEM
Control Variable ••• " •••••• ", •• , ••••••••• , •• , ••• , ••••••
Data Varldble., •••• " ••••••• , ••• , ••••••• , •••••• , ••••••••

Writing to a File ••••••••••• , ••• , •••••••••• , •••• ",.
Reading a File ••••••••• , •• " •••• " •••••••••• " ••••••

CMNDS Variable ••• "" ••• , ••••••••• , ••••••••• , •• ", ••• ,.,
Data Conversion •• , •• , ••• ,.,.,., •• " ••••• ,.""".".".,

External to Internal APL Conversion •••• , •• ,., •••••••
Internal APL to External Conversion •••• "., •••••••••

x

Page

4-1
4-3
4-4
4-5
4-b
4-0
4-9
4-9
4-10
4"'13
4-15
4-16
4-17
4·18
4-18
4-19
4-19
4-19
4-20
4-20
4-20
4-20
4-21
4-21
4-21
4-21
4-22
4-22
4-22
4-23

Page

Page

6-1
6.9
6-10
6-11
6-11
6-12
6-12
6-13

CONTENTS (continued)

Section VII Page
FUNCTION DEFI~ITION

Cdnonical Pepresentation and fUnction Establishment •••• , 7-1
FunctIon Header,., ••••••••••••••• , ••••••••••••• ,., ••••• , 7-3
Local and GlObal Names ••••••• " ••••• , •••••• " ••• , ••• , ••• 7-4
Branching and Line ~umbers., •••••••••••••••••••••• , ••••• 7-5
Labels •• , ••••••••• , ••• , ••••••••••••• , •••••• , ••••••• , •••• 7-6
Comments, ••••• , •••••••••••••••••••••••••••• , •••••••••• ,. 1-7

Section VIII Page
APL\3000 EDITOR
Editor Features ••••• ,., ••••••• , ••••••••••••••••••••••••• 8-1
Edit Instruction Syntax •• , ••••• " ••• , ••••••• , ••• , ••••••• 8-2
Edit Instruct1ons ••••••••••••• , ••••••••• " •••••••••••••• 8-4

ADD Instruction., •••••••••••••••••••• , •••••••• " •• ,. 8-4
BRI~F Instruction •••••• , •••••••••••••• , •••••••••••• , 8-4
CHANGE Instruction,., •• ,., ••••••••••••••• , •• " •••••• 8-5
COpy Instruction •• , •••• ~ •• , ••••••••••••••••••••••••• 8-5
CURSOR Instruction,., •••••••••••••••• , •• , •••••• , •• ,. 8-6
DELETE Instruction, ••••••••• , ••••••••••••••••••••••• 8-6
DELTA Instruction., ••• " •••••••••• ,., ••••••••••••••• 8-7
END Instruction •••••••• , •••••••••••••• , ••••••••••••• 8-7
EXPLAIN Instruction ••• , ••••••••••••••••••••••••••• ,. 8-7
FIND Instruction •• , ••••••• , •••••••••••• "., ••••••• ,. 8-7
HELP Instruction •••••••••••••••••••••••••••••••••••• 8-8
LIST Instruction, ••• , •••••••••••••••••• , •••••••••••• a-8
LOCK Instruction •••••••• , ••• , ••••••••• , ••••••• , ••••• 8.9
MATRIX Instruction ••••• ,., •••••••••••••••• , ••• " •••• 8-9
MODIFY Instruction •••••••••• , ••••••• , •••••••••• , •• ,. 8-9
QUIT Instruction •••• , ••••••••••••••••••••••••••••••• 8-10
REPLACE Instruction ••••• ,., •••••••••••• , •••• , ••••••• 8-10
RESEQUENCE Instruction ••••• , •••••• , ••• , ••••••••••••• 6-11
UNDO Instruction" ••••••••••••••••• , ••••• , •• " ••• ", 8~12
VECtOR Instruction., •• , ••••••••••••• , •• , •••• " ••• , •• 8-12
VERBOSE Instruction •••• " •••• "., ••••••••• , ••• , •• ,., 8-12

Section IX Page
APLGOL
General APLGOL FUnction Format ••• ", ••••• , ••••••• , ••••• , 9-2
APLGOL Statements •••••• , •••• , ••••• , •••••••••••••••••• , •• 9-4

NULL Statement •••••••• , ••••• , •• , •••••••• , ••• " ••• ,., 9-4
EXIT statement •••••••••• , •••• , ••••••••••••••••••• , •• 9-4
BEGIN statement •••••••••••••• ", •• " •••••• " ••••••• , 9-4
HALT statement •••••••••••••••••••• " ••••••••• " •••• , 9-5
ASSERT Statement ••••••••• , •••• , •••• ,., •••••••••••• ,' 9-5
IF Statement ••••••••••• ,." ••••••••••• , ••••••••••••• 9-5
WHILE Statement •••••••••• , ••••••••••••••••••• , •••• ,' 9-7
REPEAT Statement ••••••• , •••••••••••••••••••••••••••• 9-7

xi

CONTENTS (continued)

FOREVER DO Statement •• , ••• , ••••••• , •• , •• , •••••••• , •• 9-7
Branch Statements ••••••• , ••• , ••••••••• "., ••••••• , •• 9~7
CASE Statement ••••••• , •• , ••••••••••••• , ••••• " •••••• 9-8

Section X
FUNCTION EXECUTION
Halted Executlon •• , •••••••••• ,., ••••••••••••••••••••• ~ ••
State Indicator System Command •••••••••••• , ••• " ••••••••

State Indicator Damage ••••••••••••••••• " ••••• , •••••
APL\3000 Extended Control Functions., ••••• , ••••••••• ",.

Capture StacK Environment System Function •••••••••••
Release Stack Environment System Function •••••••••••
Extended Dyadic Execute Primitive Yunctlon ••• , ••••• ,

Stack Names system Function, ••• , •• , ••••• , ••••••••• "" ••
State Indicator and State Indicator witn Variables •• ,.,.
RESET System Command, •• , •••• , ••••••• , ••••••• " •••••• , •••
DEPTH System Command ••••••••••• , •• , ••••••• , ••••••••• " ••
RESUME system command ••••••••••• ,." ••••••••••••• ".".,
Debugging Aids ••• , •••••••••••••••• , ••••••••••• " ••••••• ,

Set Trace, Set Sto~, and Set Monitor Functions ••• ".
Reset Trace, Reset Stop, and Reset Monitor Functions
Monitor Values Function •••••• , ••••••••••• , ••••••••••
Query Trace, Query Stop, and Query Monitor Functions

LOcKed Functions •••••••••••••••••• , ••••••••••••• , •• " •••
DebUgging Aid Examples •••••••••••• , •••• "., ••••• , •••••••

Section XI
SYSTEM COfilMANDS
Initial Values 1n a Workspace •• " ••••• , ••••••••••• , •••• ,
)CLEAR Command ••••••••• ,., ••••••••••••••••••• , ••••••• ".
)ERASE Command.,." ••• , ••••••••••••••• , ••• , •••• "" •• ,.,
)COpy Command ••••••••••••••••••••• ,." ••••• , ••• ,., •• , •• ,
)PCOP¥ Command,., ••••••••••••• , ••• , •••••••••••• , ••••••••
)FNS Command." ••••• ,., ••••••••• , •• " ••••••••••• "., ••• ,
)VARS Command •••••• ~ •••••••••••••••••• t' •••••• , ••• , •• ".

) S I Command •• ,., •• , , •• " ••••• , ••• , ,., ••••
)SIV Command.,., ••• , ••••••• ,., •••• ,., ••••• , ••••• " •• " ••
WorKspace Storage and Retrieval, •••••• , •• " ••••• " •• , •••

Libraries of Saved WOfkspaces ••••••••••••• , ••••• " ••
Names and Passwords of Work5paces, ••••• , ••• , •• ~ •• , ••

)WSID Command, ••••••••• , •••••• " •••••••••••••••• , ••• " ••
)SAVE Command •••• , ••••••• , •••••••••••••••• , •••••••• ,', ••
)CONTINUE Command ••••••••••• , •••• "., •••••••••••••••• , ••
)LOAD Command.,., ••••• , ••••••••••••• " •• t ••••••• ,.~.t.,.
)DROP Command ••• ", ••••••••••••••••• , •• , ••••• , •••• " ••• ,
)L1B Command" •••• ,.,', •• , •• ,., ••• , ••••••••••••••••••• ,.
)HELP Command •• , •••••••••••••••••••••••••••••• , •••••••••
)TERM Command, •••• ,', ••••• , •••• " ••••• , •••••• , ••••• " •••

xii

F'age

10-2
10-2
10-3
10-4
10-4
10-5
10-5
10-7
10-7
10-7
10.8
10-a
10-8
10-10
10-10
10-10
10-11
10-11
10-13

Page

11-1
11-1
11-4
11-5
11-5
11-6
11-6
11-6
11-7
11-7
11-7
11-8
11-8
11-S
11-9
11",9
11-10
11-10
11-10
11-11

CONTENTS

) TERSf~ Command •• , •••••• " , ••• , ••• ,.,
)VERBOSE Command ••••• , •••••••••••••••••••••• , ••••• , •• , ••
)BIND Command ••••••••••••••••••••••• , ••• , •••••••••••••••
)FILES Command ••••••••••••• ,,, ••••••••••••••••••••••• ,, ••
)MPE Comma.nd ••••••••••••••••••••••• , ••••••• , ••••••••• , ••
)TIME Command ••••••• , •• "., ••••••••• ,., •••••••••••••••••
Terminating an APL Session •• , ••••• ,., •••••• , ••••• ,., •• ,.

Section XII
ERROR MESSAGES •••••••••••• , ••••• , ••• , ••• , •••••• , ••••••••

Appen\':iix A
APL\3000 CHARACTER SET ••••••••• ,., •••••••••••••• , •••••••

(continued)

11- j 1
11-12
11-12
11-12
11-13
11-1.3
11-13

Appendix B Paqe
APL\3000 PRIMITIVE FUNCTIONS AND OPERATORS ••••• , •• ~, •• ,. B-1

Appendix C
APL\3000 SYSTEM

Appendix D
APL\3000 stSTEM

Appendix E
APL\3000 SYSTEM

Appendix f
APL\3000 EDITOR

Appendix G

Page
COMMANDS ••• , ••••••••••••••••••• , •• " •••• C-l

Page
VARIABLES •••••••••••••••••••••••••••• , •• D-l

Page
FUNCTIONS ••••••••••••••••••••••••• ", ••• E-l

Page
INSTRUCTION SyNTAX •••••••••••• ".",., •• Y.l

APLGOL STATEMENT SyNTAX., ••••••••••••••••••••• , •• , ••• , ••

Appendix H Page
SYSTEM SUPPLIED UTILITY SHARED VARIABLES., ••••••••• , •••• H-l

Index, ••••••••• , ••• , •••••• " •••• , •••• " ... , ••••••• , •••••• I-I

xiii

ILLUSTRATIONS

Title
APL\3000 Character Set" •••• " •••••••••• , ••••••• , •• ,.",
APL Keyboard ••• , •••••••• ,." •••• " •••••• , •••••• " •• , ••• ,
APL\3000 Primitive Funct1ons" •••• , •••••• , •• ,., ••• , •• ".
PythagOrean Funct1ons •••••••• ,~ •••••••••••••••• , •••••• "
Scalar~Vector Substitutions for Mixed Funct1ons •• , •••• ,.
Rank of Arrays •••••••• , ••• , ••••••• , •• , ••• , •••• ", •••••••
Access Control of a Shared Variable ••••••••• , •••••• ,', ••
Procedure Statement Flow Chart., ••••• " ••• , ••••••• , •••••
FOFEVER 00 Statement flowchart •••••••••• ,." •••••••• ",.
Single-Arm Conditional IF Statement Flow. Chart ••• , ••••• ,
Double-Arm Conditional IF Statement Flow Chart,.""" ••
REPEAT Statement flow Chart.".,', ••••• " •••••• , ••••••••
WHILE Statement Flow Chart •••••••••• , ••• , •• " •• " •• "".
CASE Statement flow Chart" ••••••• , •••• ,."., •••••••• , ••

TABLES

Title
Monadic Primitive Scalar Functions •••• , ••••••••• " ••••••
DYadic Primitive Scalar Functions •• , ••• " ••• , •••• , ••••••
Identity Elements of Dyadlc Primitive Scalar Functions,.
Truth Table for Boolean Functions •••• ", ••••••••• ,.".,.
Structural Mixed Functions,.,." •••••••••• , ••••• ,.,.,.,.
Selection Mixed Functions •• " ••• , ••••••••••• , ••• , •••••••
Selector Generator Mixed Functions •• " ••••••••••••••••••
Numerical Mixed Functions, ••• , ••••••• "",., ••• , ••• ,., ••
Data Transformation Mixed Functions •• , ••••••••• , •• ,., •• ,
System Functions, ••• ,.t •••• " •••••• ", •••••• , •• ,.,.", ••
System Variables •••• ,., ••• , •• , ••••••••• ,', ••• ,"',.".,.
SYstem Functions for the Management ot Sharing ••••• , .. ".
Access Control Vector Settings ••••• , •• , •••• , ••••• , ••• ".
Edit Instructions, •••••••• , ••••• , •••• , •• , ••••••• ,., ••• ,.
APLGOL Syntax."., ••••••••• , •••• , ••••••••••• , ••• ,', •••••
System FUnctions Used for Debugging •••••••••••• , ••••••••
System Commands, •••• , ••• ,.,.,.,., ••• , ••• , ••••••• , •••••••
Initial Values 1n a Workspace •••• ,.,., •• " ••••••••••••••
APL\3000 Error Messages., •••• ,., ••••••• , •••••••••••• , •••
File System (FCHECK) Error MeSSages •••••••••••• , •• ,., •••

xiv

Page
1-2
1-3
2-7
3-15
3-29
3-31
5-5
9-9
9-10
9-10
9-11
9-11
9-12
9-12

Page
3--3
3-4
3-6
3-10
3-26
3-27
3-27
3·28
3-28
4-5
4-11
5-2
5-&
8-2
9-3
10-9
11-2
11-4
12-1
12-6

1 lUI 11.1 1.
INTRODUCTION TO APL\3000 ,I I 1

APL\3000 Is a high-level programming language based on APL (A
Programming Language) as developed by Dr. Kenneth Iverson.

Significant features of APL\3000 are as follows:

* APL\3000 is an interactive, terminal-oriented, problem solving
language.

* APL\3000 provides
programs may be
maintained with
programs,

a large set of functions and operators: thus
written quickly and concisely and can be
less effort than most high-level language

* Intermediate code 1s compiled for each statement when it is first
executed, Associated with the statement are binding parameters
such as data types and array shapes. If these binding parameters
are unchanged on subsequent executions, the statement need not be
re-analyzed nor the intermediate code recompiled.

* A virtual memory sCheme is used which allows extremely large,
virtual work spaces.

* An additional structured-programming facility, APLGOL, is
provided for creating user-defined functions.

* A modern cursor-oriented APL editor Is provided to compose and
edit APL programs.

* APL\3000 operates under control of the Multiprogramming Executive
Operating System CMPE), allowing it to run in a multi-language
environment.

APL\3000 CHARACTER S~T

The APL\3000 character set consists of alphabetic characters,
underscored alphabetiC characters, numeric characters, the blank
Character, and special characters or graPhic symbols. The complete set
of characters is shown In figure 1·1. Note that the names for the
special characters are tor the characters th~mselves, and not
necessarilY for the functions tney represent.

With the exception ot !J ~ w n IJ c ::> f"l U if; t- -f 0 q () [] ; : ¥ £ I ,

the special characters are used to denote primitive APL functions or
APL operators (see Section III), and have tlxed meanings In APL.
Alphabetic characters are used to torm names of variables and
user·defined functions (see Section 11). NUmeric characters are used
to form constants and may be used in conjunction with alPhabetiC
characters to form names, The first character of d name must be

1-1

alphabetIc, or ~ or~. Any number of blank characters may be used to
separate names, operators, ~unct1ons, or constants, and may not be
used to form names.

ABCDEFGHIJKLMNOPQRSTUVWXYZ

0 234 5 6 789

dieresis overbar < less

~ not greater equal ;::: not less

> greater =1= not equal v or

/\ and + plus bar

x times divide ? query

w omega € epsilon p rho

tilde t up (arrow) ~ down (arrow)

iota 0 circle star

~ left (arrow) ~ right (arrow) a alpha

r upstile L downstile underbar

" del ~ delta 0 null

0 quad open bracket close bracket

c open shoe :> close shoe () cap

U cup 1. base T top

stile / slash "'- slope

quote (open parenthesis) close parenthesis

semicolon colon comma

dot space

$ dollar f- left tack -j right tack

{ open bracket } close bracket <> diamond

The following characters are formed by overstriking

~§QQ~E@tl14KhMNQfQR§IgyWXY~

~ delta under • del stile • delta stile

f» log e circle bar ('S) circle slope

¢ circle stile f slash bar \ slope bar

"" nand ~ nor ~ del tilde

..!. base null T top null R cap null

quote dot I I-beam [!) quote quad

ffi domino

Figure 1-1. APL",-3000 Character Set

'·2

APL KEYfjOARD

APL programs are generally composed and executed using terminal
devices having special APL keyboards. The keyboard for the
Hew let t-PacKard HP 2641A APL te rmina 1 1 s shown 1 n f iqure 1-2 •
Alphabetic cnaracters are shown in uppercase but are accessed without
using the shift Key, while most special cnaracters are accessed by
depressing toe SHIFT key (uppercase), then striking the special
character key. Overstruck characters may be created by entering either
character first, backspacing, then entering the other character.
Alternatively, an expression may be created by entering characters In
any order and overstriking In any order, as long as the visual effect
1s the correct expression. This 1s referred to 1n APL as visual
fidelity. (Note that the letter E cannot be produced by entering F,
backspace, then L.)

APL\3000 also permits the use ot standard ASCII terminals to create
and run programs. These terminals of course do not have the special
APL character set shown on the keys. Appendix A shows how to form
these special characters from such non-APL terminals.

• H;f':C"'jCN Mi:."""!~;) Ht{: 1~ u.'\II2':-: ~:t < " - ..
8 9

';) 6 , t UP

'.
2 3 ... l\;. -OJ>

.. " "-
"I'<£.v

~(loWN Pt.J;~

\~ __ ~ ~ _____ L~------~

Figure 1-2. APL \ 3000 Keyboard

1-3

INITIATING AN APL\3000 SESSION

An APL\3000 session is initiated by entering

(APL) lsessionname,]username[/userpassw).acctname£1acctpassw]

where

l,groupname(/grouppassw]]

[,TERM = termtypeJ
[JTIME = cpusecsJ

BS
CS

[:PRI =]
OS
ES

[,INPRI = inputprlority]
£:HIPRll

sessionname Arbitrary name used in conjunction with username
and acctname parameters to form a fUlly
qualified session identity. Contains from 1 to

username

userpassw

acctname

8 alphanumeric characters, beginning with a
letter. Default: null session name,

Note: A fully-qualified seSSion identity
conSists of:

[sessionname,]username.acctname

and furnishes the minimum information
required for log-on, Embedded blanks are
forbidden 1n the username.acctname
combination.

A user name, established by the Account Manager,
that allows logging on under this account. This
name is unique within the account and contains
from 1 to 8 alphanumeric characters, beginning
with a letter.

User password, optionally aSSigned by the
Account Manager. Contains from 1 to 8
alPhanumeric characters, beginning with a
letter. Separated Irom username by a slash with
no surrounding blanks, as in ~sername/userpassw.

Name of account, as established by the System
Manager. Contains from 1 to 8 alphanumeric
characters, beginning with a letter.

Note: Must be preceded by a period as a
delimiter.

14

acctpassw

groupname

grouppassw

termtype

cpusecs

PRI

Account password, optionally assigned by the
System Manager. contains from 1 to 8
alPhanumeric characters, beginning with a
letter. Separated from acctname by a slash with
no surrounding blanks, as in acctname/acctpassw.

Name ot file group to be used for local file
domaIn and central processor unit time charges,
as established bY the Account Manager. Contains
from 1 to 8 characters, beginning with a letter.
Default: Home group 1t assigned by Account
Manager.

Group password, optionally assigned by the
Account Manager. Contains from 1 to 8
alphanumeric characters, beginning with a
letter. Separated from groupname by a slash
wit~ no surrounding blanks, as in
groupname/grouppassw. (Not needed when logging
on under home group.)

Type of terminal used for input.
valu@s are:

AJ - Anderson-Jacobson

ASCII - ASCII terminal

BP - Bit-pairing

COl - Computer Devices, Inc.

CP - Character-pairing

OM - DataMed1a

GSI - GenCom Systems, Inc.

HP - Hewlett-Packard

Possible

M.aximum
can use,
reached,
from 1
question

central processor unit time that session
entered in seconds. When this limit Is
session is aborted. Must be a value

to 32767. To specify no l1mit, enter
mark or omit tnis parameter.

The execution priority class that the command
interpreter uses for the session, and also the
default priority for all programs executed
within the seSSion. B5 is highest priority; ES
1s lowest. If a priority is spec1fied that
exceeds the highest permitted for the account or
user name by the system, MPE assigns the highest
priority possible below BS. Default: CS.

1-5

inputpriority

HIPRI

Relative input priority used in cheCKing against
access restrictions imposed by the job fence, if
one exists. (See the Console Operator~s Guide
for a description of the job fence.) TaKes
effect at log-on time. Must be a value from 1
(lowest priority) to 13 (highest priority). If
a value Is supplied that is less than or equal
to the current job fence set by the Console
Operator, session is denied access. Default: 8
1f session/job initiation is enabled, 13
otherwise.

Request for maximum session-selection input
priority, causing session to be scheduled
regardless of current jOb fence or execution
limit for sessions.

Note: This parameter can be specIfied only by
users with System Manager or System
Supervisor capability.

The system prints the message

APL\3000 HP32105 time and date

and awaits the first command.

RUNNING APL\3000

Once a session is initiated, APL can be run in either of two modes:
calculator or immediate execution mode, or function definition mode.

In calculator (immediate execution) mode, expressions are created and
the reSUlts may be displayed on the term1nal immediatelY after
entering a carriage return.

For example,

(;+7
13

6+7-9
4

5+7x(55f7)
62

2 4- 5 8+3
5 7 9 11

Assign a value to the variable A:

,4+14+98.5

Note that a left arrow (aSSignment arrow) 1s used to specify the APL
assignment tunction.

1-6

If just the name of the variable is entered, APL displays its value:

A
112.5

In tunction definition mode,
expressions into user-defined
user-defined functions formed with
calculator mode or trom within
computation.

the APL editor is used to form
tunctlons tor later use. These
the editor may then be invoKed from
another function to perform the

For example, CIRCLEAREA Is a user-defined function to compute the
areas of sectors of circles.

[OJ
[1]

AREA+RADIUS CIRCL~AR?A nEGR~~S
AREA+(ORADIUS*2)xDEGReESf360

RADIUS and D~GREES are arguments of the function.
radius of the circle and DEGREES denotes the
subtends.

RADIUS denotes the
angle the sector

To run this user-defined function, the name 1s entered with tne
appropriate arguments as follows:

163.2 CIRCLEAREA 37.4
8692.791899

The value 163.2 is assigned to RADIUS and 37.4 is assigned to DEGREES.
APL computes the area and displays the result.

~he result can be aSSigned to the variable AR~A by entering:

AREA+163.2 CIRCL~AReA 37.4
ART!:A

8692.791899

TERMINATING AN APL\3000 SESSION

To terminate an APL session, either the)OFF or)CONTINUE command is
used:

)OFF

See Section XI for complete discussions of the)OFF and)CONTINUE
commands.

1-7

APL CONS'IA~TS

IrU@.!I' ELEMENTS OF APL\3000 .1 II 1

APL accepts both numeric and character constants. All numeric
constants are decimal, and may include a decimal point 1f appropriate.
They may be entered 1n the conventional manner as, tor example,

23
3.14159

3.14159

or 1n scaled form. The scaled form consists of an integer or
fractional decimal number called the fraction followed by the letter E
followed by an integer called the scale. The scale is the power of
ten by ~hich the fraction is mUltiplied. Examples of scaled form are

20000

.0002
.05E7

500000

Note that an overbar may be used to denote a negative scale but a plus
sign may not be used with a positive scale.

Spaces are not allowed between the fraction and the E or between the E
and the scale or an error message results. For example,

.05 E7
8YNT!JX 8Rl?OR

.05 E7
t

.055' 7
SYNTAX ERROR

.05E 7
t

Negative numbers are specified by an overbar immediately preceding the
number. For example,

45.6
45.6

.2.2
53 -1E:' 3

.001
lE3

1000

2-1

The overbar 1s used only 1n specifying a negative constant. It is not
the equivalent of the bar (-)f which 1s an APL functlon used eIther
monadically to negate a value or dyadlcally to compute the d1fference
between two arguments. For example,

6.3

6.3

SCALAR CONSTANTS

A+6.3
A

APL treats a single constant such as

297
2.97E:8
34
5

as a scalar constant.

VECTOR CONSTANTS

A vector constant 1s entered as a sequence of numeric values. Each
value must be separated from toe next by one or more blank characters
(spaces). The torm of vector constants is

A8C'.-2 4 6 8 10
ABC

2 4 6 8 10 - -XYZ'-O 2 15'12 2.34l? 4 97.5 64 3.14159
!YZ -OE'OO 2EOO 1E12 2.341' 04 9.75E:Ol 6.4EOl 3.14159P.OO

CHARACTER CONSTANTS

Character constants are entered by placing the characters between
quote marKS (' ~) as follows:

A

C+-'A'
("

APL disPlaYs the constant without the enclosing quotes as shown above.

APL\3000 treats a single character as a scalar character constant and
a string of characters as a vector character constant. An empty vector
C&ero length) Is specified by a consecutive pair of quote marks.

2-2

Examples:

C~'CRARACTER veCTOR'
c

CHARACTER VECTOR

8Ml?TYv8C~' ,
ti;"'IPTYVEC

If a quote character 1s to be included in a character string, it must
be entered as a consecutive pair of quotes to distinguish it from the
quotes enclosing the string. For example,

OUOTE~' , , ,
TIMg~'l O"CLOCK'

is accepted and displayed by APL\3000 as

QUOTF;

T I;4.1J?
1 O'CLOCK

APL EXPRESSIONS

The expression 1s the basic executable unit in APL. An expression is
written using names (variables and user-defined functions), constants,
and APL functions or APL operators. For example,

..-,---.-\----- Constants

YIEL!)~10000x.05

Variable __JI ~/ _____ - Function

The expression just shown assigns to the variable YIELD the value
resulting when 10000x.OS (also an expression) 1s evaluated. The
specification arrow (+) is an APL primitive function (see Section Ill)
and means Dis specified bY." Thus YIELD is specified by the value
500. Several separate expressions may be written on one line if they
are separated by diamonds (0), as for example

Ylti;LD~10000x.050INCOMg~YIFLD~12

The result of an expression 1s diSPlayed on the terminal unless the
leftmost APL primitive function in the expression is an APL branCh
arrow (+), an APL assignment function (+), or the leftmost element is

2-3

the name of a user-defined function which does not return a value. For
example,

10000x.05
500 f-------------APL displays value

,r----------APL assignment arrow

A+-12.3

; APL branch arrow (see Section VII)

~5+7 , User-defined function (see SectionVII)

ROOTS

Alternatively, 1f a variable has been asSigned a value, that value can
be displayed by enterlng the name of the variable.

YIeLD
500

INCOMT?
41.66666667

The result of any portion of an expression can be displayed by
assigning it to the output variable quad (D) (see Section III) at the
appropriate point in the expression. For example,

18
22

8+-6+0+-4+0+-18

The specification arrow may appear any number of times in an
expression and is treated in the same way as other primitive APL
functions such as +, ., x, + and so forth •

30

18

14

. 4+-6 + B+-4+C+-14
A

B

c

A second expression type Is the brancn expression, which may appear in
a userwdefined function to modify the normal order of execution.
Typically, a branch evaluates the expression to the right of the arrow
and transfers control to the line number of the APL function
corresPOnding to the value of this expression. Branch expressions are
described and illustrated In Section VII.

The final type of expression In APL
funct1on. This type of expression
in Section VII.

2-4

Is used to invoke a user-defined
also is described and illustrated

APL f"UNCTIONS

An APL function may operate on zero, one, or two arguments, and
optionally return a result. For instance, the primitive dyadic APL
scalar function sum (+) takes two arguments and returns their
algebraic sum as the result. This result then may be used as an
argument for another function. For example,

13

'", ____ ,---------Arguments

7+6
L-I----------Function

l..-I-------------Result

5x13

65

MONADIC FUNCTIONS

A monadic function operates on only one argument.
example, is a monadic function which operates on
appearing to the right of tne bar as follows:

45

DYADIC FUNCTIONS

A+45
-A

Negation, for
the argument

A dyadic function operates on two arguments, one to the left and one
to the right of the function. Thus, the functions sum,~ference,
product, and quot1ent (represented by +, ., x, and ~, respectively)
require two arguments. APL graphic symbols otten have both monadic
and dyadic meaning. For example, A-B signifies subtraction of B from
A (dyadic), Whereas -A signifies negation of A (monadic); and A~B
signifies the quotient of A and B (dyadic), whereas ~A signifies the
reciprocal of A (monadic).

DYadic FUnctions Monadic F'unct ions

7+6 ~
13 6

7x5 x6
42 1

7;.6 t6
1.166656667 .1666666667

NI~AOIC FUNCTIONS

A n1ladic function has no argument. For example, if T 1s a user
defined function that returns the time of day, then entering TWill
cause APL-to return the current time (no argument exists).

2-5

PRIMITIVE FUNCTIONS

A primitive APL function 1s a part of the APL language and cannot be
redefined by the user. Such primitive APL functions are usually
represented by a special graphic symbol. For example, + - x.t 't *" -;- are
primitive function~_ A primitive function differs from a used-defined
function in that a user-defined function consists of a number of
expressions defined by a user to perform a specific computation.

The set of primitive functions is shown in figure 2-1. They are
defined in Section III.

Primitive functions can produce different functional effects by
combining an operator with the primitive function. For example, the
sum of the elements of a vector constant will be computed if the sum
(+) primitive scalar function is combined with the reduction (I)
primitive operator, as follows:

30

VEC+2 4 6 8 10
+/VEC

Operators are discussed in Section Ill.

USER-DEFINED FUNCTIONS

A user-defined APL function 1s a series of APL expressions combined
into one or more lines to form a funct1on. This user·deflned APL
function then can be inVOKed from an APL expression to perform a
computation on zero, one, or two arguments. For example, a
user-defined function to return the distance traveled could be used in
an APL expression as follows:

30 D 10

If 30 represented miles per hour and 10 represented minutes, APL then
would return 5. Note that spaces or other special characters must be
used to separate the name of a user·def1ned function from its
arguments, User-defined APL functions are discussed and illustrated
1n Section VII.

SYSTEM COMMANDS

In addition to using the APL language, it is also necessary to
communicate directly with the APL system, A set of system commands is
provided for this purpose, These commands are used tor such things as
10gg1ng on and off, saving a workspace for later use, and establishing
passwords that lock worKspaces so tnat they cannot be accessed by
other users. System commandS are discussed in section XI.

2-6

PRIMITIVE SCALAR FUNCTIONS

Monadic Dyadic

+ conjugate + plus

negative minus

x signum x times

reciprocal divide

magnitude residue

L floor L minimum

r ceiling r maximum

? roll

* exponential * power

~ natural logarithm ~ general logarithm

0 pi times 0 circular

factorial binomial

not

A and

v or

At nand

IV' nor

< less

~ not greater

equal

~ not less

> greater

not equal

PRIMITIVE STRUCTURAL FUNCTIONS

Monadic Dyadic

p shape p reshape

ravel catinate/laminate

<l> e reversal <l> e rotate

~ transpose ~ transpose

Figure 2-1. APL",3000 Primitive Functions (Sheet 1 of 2)

2-7

PRIMITIVE SELECTION FUNCTIONS

Dyadic

i take

~ drop

l- I compress

\, "'- expand

[] index

PRIMITIVE SELECTOR GENERATOR FUNCTIONS

Monadic Dyadic

1 index generator 1 index of

• grade up

• grade down

E membership

? deal

PRIMITIVE NUMERICAL FUNCTIONS

Monadic Dyadic

ffi matrix inverse ill matrix divide

1.. decode

T encode

PRIMITIVE TRANSFORMATION FUNCTIONS

Monadic Dyadic

.!. execute .L execute

T format T format

Figure 2-1. APL"'-3000 Primitive Functions (Sheet 2 of 2)

2-8

APL ORDER Or' ASSOCIATION

In APL, there 1s no hierarchy of association among functions (such as
associating division before addition). Within a given levelot
parentheses in an expression, association 1s strictly right to left.

If parentheses are used, then the part of the expression within
matching parentheses is associated rignt to left before applying lts
result to any function outside the parentheses. For example,

18t6+3
2

18t(6+3)
2

(18t6)+3
6

ARRAYS

An array is a collection of zero or more values (elements), allot
which may be represented by an array name. An array with zero
elements is an empty array, a scalar (single) value is dimensionless;
and a vector value such as

2 4 6 8 10

is a single-d1mensional array and is considered to be of rank 1. A
matrix, Which has two dimensions, or ~xes, sucn as

2 4 6 8 10
13579

is a two-dimenSional array of rank 2. APL\3000 allows arrays up to
and including a maximum of 63 dimensions.

Tn, elements of a vector (one-dimensional) array may be selected by
enclosing the indices of the desired elements in brackets, called
indexing. For example, variable XQR has the following values

XQR+2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

If 1-origin indexing 1s In effect (see page 2-11), elements 3, 4, and
8 can be indexed by entering XQR(3 4 8]. APL returns

XQR[3 4 8]
6 8 16

Another example:

CRAR+'CHARACTeR STRING'
CQAR[5 6 7 14 15 16]

ACTlfVG

2-9

APL displays a vector array on one or more output lines. The vector
can be formed into a more complex structure, contain1ng more
dimensions, with the reshape (p) function (see Section III):

2
14

CHAR
ACTE
R ST
RING

2 6pXQH
468

16 18 20
4 4pClIAR

10
22

12
24

\

t \ ~~-Nameofvector
\ \..... --------Reshape function

Number of columns

~---------Number of rows

The left arguments in the above examples (2 6 and 4 4) specify the
shape of the resulting array. The first examPle produces an array
with two rows and six columns. The second example produces an array
with four rows and four columns. More complex shapes can be created.
For example,

12
34
56
78

90
AB
CD

GH
IJ
KL
MTV

CHAR+'1234567890A8CDEFGYIJKL~N'
8RAPg+3 4 20CTfAR
8fiAT?8

\ \' ~V.ctorMm.
Reshape function

Number of columns

Number of rows

'------Number of planes

'-------Name of array

Note that when all the values of one axis have been disPlayed, a line
1s skipped and the next set of axis values 1s then returned.

The shape of an array can be determined by entering the monadic shape
(p) function (see Section III) followed by the array as its argument.

pRE811A1?El
2 6

pTr."R8FtAP!?2
4 4

pSHAPE
3 4 2

2-10

The elements of a multi-dimensional array can be selected by indexing
in the same manner as snown tor vector arrays, except that an index is
provided for each axis. For example, to select and display the fourth
element in the second row of array RESHAPE1:

20

RE:ST:lAPE1
2 4 6 8 10 12

14 16 18 20 22 24
RESHAPS1[2;4]

The next example selects the second, third, and fourth elements from
the third and second rows of array FESHAPE2.

1234
5678
90AB
CDEF

OAB
578

F?~8HAPE2

R~S8APe2[3 2;2 3 4J

To select the second column of the first four rows of the second plane
of SHAPE:

12
34
56
78

90
AB
CD
EF

OSDF

SHAPE

SHAPE[2;1 2 3 4;2]

The foregoing examples assume that the elements are numbered 1, 2, 3,
,.. n, and therefore is called I-origin indexing, Indices may begin
with -0, called O-origin inaexlng, by setting the index origin to 0

2-11

with the system var1able 010 (see Section IV). For example,

CHAR
1234567890ABCD~PGqTJKLMV

010+1
CHAR[2 4 6J,

246 1I(r----------....::>o..--- Selects elements 2,4, and 6

OTO+O
CHAR[2 4 6],

357 1I(f----------""::>O"---Selects elements 3, 5, and 7

WORKSPACES AND LIBRARIES

When an APL session is initiated, the system reserves a blocK ot
storage for this session. This storage 1s called a worKspace, and
contains all the information to perform calculations, save the
results, etc. This workspace also contains the definitions of
user-defined functions as well as the names and values of any
variables. The worKspace also includes areas used by the system for
the temporary storage of intermediate results while a calculation is
in process, etc. The worKspace being used Is called the active
worKspace. workspaces may have names asSigned to them so that they
can be saved as duplicates of the active worKspace for later use.
These saved workspaces are called stored workspaces.

The set of saved workspaces is called a library. Each workspace is
identified by group and account names as well as the actual name
assigned to it. In referring to workspaces In the user~s own library,
however, the group and account names may be om1tted, because they are
supplied automatically.

In systems with multiple APL users, it is otten convenient to use
functions or variables contributed by others. A user may activate an
entire workspace saved by another user, or he may copy selected items
from another user;s workspace. In order to copy another userrs
worKspace, the group and account names, if different, must be supplied
together with the worKspace name.

Some libraries (usually identified by a special group and account
name, for example, PUB.SYS) are not assigned to individual users, but
are deSignated as Public libraries. There may be restrictions,
however, on WhO can save, delete, or modify a workspace in a public
library. In general, a public library worKspace can be re-saved or
deleted only by the user who first saved it.

2-12

APL\3000 IUlllnl•
PRIMITIVE FUNCTIONS AND OPERATORS I III I

Primitive functions In APL consist ot two types: primitive scalar
functions and primitive mixed functions. Primitive scalar functions
operate on scalar arguments or arrays on an element-by-element basis,
prodUcing results of the same ranK and shape. Primitive mixed
functions also operate on scalars and arrays, but may produce results
which differ in rank and shape from the original argument arrays.

Four primitive operators can be applied to the primitive scalar dyadic
functions to produce different effects. Operators are discussed
starting on page 3-17.

PRIMITIVE SCALAR FUNCTIONS
Primitive scalar functions are of two types: monadic and dyadic.

A monadic primitive scalar function apPlies to one scalar argument, or
to each element of one array argument. If the argument is an array,
the result 1s an array of the same shape as the argument. Each element
of the resulting array is produced as the monadic function is applied
to the corresponding element of the orIginal argument array. For
example,

A
7 34.1 6.035 155.64

~
7 34.1 6.035 155.6~

A dyadic primitive scalar function applies to a pair of arguments. The
arguments can be scalars or arrays. If arrays are used, both must be
of the same rank and shape, or, 1f not, one must be a scalar or unit
(one·element array).

When arrays of the same shape are used as arguments, each element of
the left argument is paired with the corresponding element 1n the
right argument. For example,

.t
7 34.1 6.035 155.64

.!l.
3 1.2 .35 10

AxB
21 40.92 2.11225 1556.4

If one of the arguments is a scalar or unit (one-element) array, then
that element is paired with every element of the other argument
(extended) as follows:

C
.45 .3

.E..
3 1.2 .35

CxB
135.9 54.36

10

15.855 453

3-1

Primitive scalar functions are typically applied to all numbers With
the exception that arguments to the boolean functions (A v ~ ¥ ~) are
restricted to the binary values 0 and 1. Additionally; the functions
= and ~ may be applied to character arguments.

Monadic primitive scalar functions are shown 1n table 3-1 and dyadic
primitive scalar functions are shown in table 3-2. Note that most
symbols (sUCh as + and -) are used both monadically and dyadically;
whether they are interpreted as monadic or dyadic depends on the
context in which they are used.

Some primitive dyadic scalar functions possess a left identity and/or
a right identity. A left identity is such that if L is the left
identity for the function fn, then LfnX eQuals x for all X.

For a right identity R, XfnR equals X for all X.

Table 3-3 shows the identity elements of the primitive dyadic
functions. Note that the relational functions equal (=), not equal
(~), less «), greater (», not less (~), and not greater (~) do not
possess true identity elements when used as relational functIons, but
do when used as boolean functions (applied only to the values 0 and
1) •

PLUS, MINUS, TIMES, AND DIVIDE FUNCTIONS

Plus (+), minus (-), times (x), and divide (f) are dyadic functions
which perform the same functions 1n APL as they do in standard
arithmetic operation. (Note that in APL, 0+0 returns a value of 1:
however, when X ~ 0, X+O results in an error.)

Examples of these four functions are:

.A
5 34.2

B
3 1.2

A+8

7 6.035 155 .64

.35 10 .75 1

1

2 35.-4---7.35 3.965 154.89 0
A-B ---8 33 6.65 16.035 156.39 2
AxE

15 41.04 2.45 60.35 116.73 1
A.!l?

1.666656557 23.5 20 .6035 207.52 1
A-5

o 2 g'. 2 12 11.035 150.64 4

Table 3-1. Monadic Primitive Scalar Functions

SYMBOL NAME DEFINITION EXAMPLE

+ Conjugate +A is A A
6

+.4
6

- Negative -A is 0 - A A
6

-A - 6

x Signum x A is (A>O)-A<O .4
6

xA
1

Reciprocal -;.-A is 1 -;.- A A
6

tA
.1666666667

I Magnitude Absolute value E -4.743 4.743
\B

4.743 4.743

L Floor Least integer B -4.743 4.743
lB -4 5

r Ceiling Greatest integer B .-
4.743 4.743

r8 -5 4

? Roll ? A is random choice from set of C
A consecutive integers 6 6 6 5 6 6
beginning at 010. ?C

1 3 4 2 5 2

* Exponential eA A
6

*/1
403.4287935

~ Natural In A or I0ge A A
logarithm 6

fiA
1.791759469

0 Pi times 7rxA D
1 2

OD
3.141592654 6.283185307

3-3

Table 3-1. Monadic Primitive Scalar Functions (continued)

! Factorial !A = A x A - 1 x ... x1 A
6

~ ,4
720

~ Not ~1 is 0, ~O is 1. Truth table T<}

defined for ° and 1 only. 1 0
-E

0 1

Table 3-2. Dyadic Primitive Scalar Functions

SYMBOL NAME DEFINITION EXAMPLE

+ Plus Add 6+7
13

- Minus Subtract 6-7 - 1

x Times Multiply Sx7
42

Divide Divide 6f7
.8571428571

I Residue Remainder after divide 7143.36
1.36

L Minimum Smaller of two values 617
6

r Maximum Greater of two values Sf7
7

* Power Product of Bx B A times. 2*8
[SA] 256

~ General 10gB A
logarithm 10.1003

3.001300933

3-4

Table 3-2. Dyadic Primitive Scalar Functions (Continued)

SYMBOL NAME DEFINITION

0 Circular, Hyperbolic, -7oX = Artanh X
and Pythagorean - 60X = Arcosh X
functions -50X = Arsinh X

-4oX = (-1+X*2)*.5

- 30X = Arctan X
- 20X = Arccos X
-1oX = Arcsin X

OoX = (1- X*2)*.5

10X = Sine X
20X = Cosine X
30X = Tangent X

40X = (1+X*2)*.5

50X = Sinh X
60X = Cosh X
70X = Tanh X

! Binomial (~)

" And A B AAB AvB AA-B A¥B

v Or 0 0 0 0 1 1
0 1 0 1 1 0

A Nand 1 0 0 1 1 0
1 1 1 1 0 0

~ Nor

< Less Result is 1 (TRUE) if relation holds and 0 (FALSE)
if it does not hold. For example, 4< 6 is 1 , 4> 6 is O.

~ Not greater

= Equal

;::: Not less

> Greater

Not equal

3-5

Table 3-3. Identity Elements of Dyadic Primitive Scalar Functions

. FUNCTION SYMBOL IDENTITY ELEMENT LEFT OR RIGHT

Plus + 0 Both

Minus - 0 Right

Times x 1 Both

Divide 1 Right

Residue I 0 Left

Minimum L The largest Both
representable number

Maximum r The greatest in Both
magnitude of
representable negative
numbers

Power * 1 Right

Logarithm fA' None

Circle 0 None

Binomial ! 1 Left

And " 1 Both

Or v 0 Both

Nand A, None

Nor ¥ None

Less < 0 Left

Not greater ~ 1 Left

Equal = 1 Apply for boolean Both

Not less :3 1 arguments only Right

Greater > 0 Right

Not equal =i' 0 Both

3-6

RESIDUE fUNCTION

Residue (I) 1s a dyadic primitive scalar function which returns the
remainder when a value X is divided into a value Y; that is, Xlii
returns the remainder when X Is divided into Y.

The following rules apply for zero and non-zero values:

* It X = 0, xlY ++ Y.

* If X = 0, XIY. ~ a value between 0 and X. The result can equal 0
but not X (equal to Y-NIX for some integer N).

Examples of the residue function are

5 34.2 7 6.035 155.64 1
Ji

3 1.2 .35 10 .75 1

A'~
2 1 .2 .35 2.07 154.89 0

.tlA_ - -lB'OO 6S 01 2.220446049E' 16 3.955~OO 3.6~ 01 OE'OO

CONJUGATE FUNCTION

Conjugate (+), a monadic primitive scalar function, returns the value
of its argument unchanged. For example,

A-
5 34-.2 7 6.035 155.64

!.A..
5 34-.2 7 6.035 155.64

NEGATIVE FUNCTION

The monadic primitive scalar function
of its argument with the opposite s1gn.

A
5 34.2 7 6.035 155.64-

-A
5 34.2 7 6.035 155.64-

SIGNUM FUNCTION

1

1

1

negative (-) returns the value
F'or examp Ie,

1

The signum function (x) is a monadic primitive scalar function which
returns a value that is dependent upon the sign of its argument. If A
is negative, then xA is-1: if A is Positive, XA is 1; if A is 0, then
xA 1S o.

Examples of the signum function a.re:
,4

5 34-.2 7 6.035 155.64- 1
~A

1 1 1 1 1 1

3-7

RECIPROCAL FUNCTION

The monadic primitive scalar function reciprocal (~) returns the value
1+X for the argument X. For example,

A
5 34.2 -7 6.035 155.64 1

fA
2E-Ol ~.923976608g-02 1.428571429g-01 1.657000829E-Ol 6.425083526E-03

lEOO

Note that when X 1s 0, an error results,

MAGNITUDE FUNCTION

The magnitude (I) monadic primitive scalar function returns the
absolute value of its argument. for example,

A
5 34.2 7 6.035 155.64 1

U
5 34.2 7 6.035 155.64 1

BOOLEAN FUNCTIONS

The five boolean functions apply only to the values 0 and 1. APL
interprets 1 as being true and 0 as being false,

Four of the boolean functions are dyadic, tne other, not (~), is
monadic. A truth table for the functions is:

AND OR NAND NOR NOT

X Y XAY XvY X~ X¥Y ~X ~Y

1 1 1 1 0 0 0 0

1 0 0 1 1 0 0 1

0 1 0 1 1 0 1 0

0 0 0 0 1 1 1 1

RELATIONAL FUNCTIONS

The relational functions are dyadic primitive scalar functions and are
listed below,

Less e<)
Not greater (~)

Equal (=)
Not less (~)

Greater (»
Not equal (~)

The functions < ~ ~ > only apply to numeric arguments, while = and ~.
apply to numeric and Character arguments. Note that the resuit of
'1'=1 is always 0 and that '1'~1 is always 1.

3-8

The result is 1 (true) If the compared relation is true and 0 (false)
if the compared relation is false. For example,

A-
S 34-.2 7 6.035 155.64 1

B
3 1 • 2 .35 10 .75 1

A<B
0 0 1 1 0 0

A>B
1 1 0 0 1 1

The results ot comparing the arguments of relational functions are not
absolute, but are within a certain comparison tolerance whose value 1s
contained in the system variable OCT. The question "1s A equal to B"
is straightforward unless floating-point numbers represented in a
finite number of bits (64 bits for APL\3000) are involved. The A;B
question then becomes harder to answer because many floating-point
numbers cannot be represented exactly in 64 bits. ThUS, problems
arise if the equals test Is defined to be "exact." The following
example illustrates this pOint.

A+t970A
1.030927835E-02

OCT+O
1=97xA

o

A THIS MA~ES '=' AN EXACT TrST

A BECAUS~ 1/97 CAN~OT BE STOREV EXACTLY
A THEN 'A' IS NOT A NUMBER THAT CAN
A BE MULTIPLIED BY 97 TO RgTUR~ 1

This particular way to define = Is then not very consistent with the
way = would be expected to act. ThuS the definition Of = (and some
related functions) Is not an "exact" definition, but is relative to
the magnitude of the operands and the value of OCT. The definition Is

¥+IA-B
Y+-f/(IA).IB
IF (YxOCT)~X TH8N
A IS EQUAL TO B

[1]
[2]
[3]

Notice that the preceding set of equations, while concise and correct,
Is difficult to understand. Paraphrasing them as follows may help:

Equation (1] sets the variable X to the absolute value of the
difference of the two arguments A and B.

Equat10n l2J sets Y to the absolute value of the larger of the two
arguments A and B.

The third (and crucial) equation [3] states that the arguments are
defined to be equal if OCT times the iarger of the arguments (~)
Is larger that the difference between the arguments.

3-9

Note that OCT does not specify the absolute difference between the
arguments but the difference relative to the size of the arguments.
Thus two b1g numbers need not be as close, in an absolute sense, as
two small numbers. Note that under th1s definition, if OCT is 0, the
equals test is exact 1n that the d1fference between the arguments A
and B must be 0, exactly, for equation [3] to be true,

There are several APL functions (such as index of, index generator,
deal, roll, etc) which will result in an error unless the operand(s)
are considered "integers." In APL\3000, this test for integer is done
In the following way:

1) First, the integer closest to the argument is obtained.

2) Second, the integer obtained In 1) is compared In a relative
sense to the argument.

3) If the integer from 1) is relatively equal to the argument,
that integer Is used as the argument.

An example:

250

250

A+30001100Q
A[250]

OCT+-iE-i0
A[250+iE-iiJ

A[250+1E'-10J
DOMAIN E7RROR

A[250+.1E-09]
t

The relational functions act as boolean funct10ns when they are used
with the boolean arguments 0 and 1. Table 3-4 shows the boolean
functions and relational functions for all possible values of the two
bOOlean arguments.

Table 3-4. Truth Table for Boolean Functions

NOT
NOT NOT EQUAL

AND OR NAND NOR LESS GREATER EQUAL LESS GREATER (XOR) NOT

X Y X"y XvY XAY X-vY X<Y X=::;Y X=Y X~Y X>Y X¥:Y ~X ~Y

1 1 1 1 0 0 0 1 1 1 0 0 0 0

1 0 0 1 1 0 0 0 0 1 1 1 0 1

0 1 0 1 1 0 1 1 0 0 0 1 1 0

0 0 0 0 1 1 0 1 1 1 0 0 1 1

3-10

MINIMUM AND MAXIMUM FUNCTIONS

The minimum el) and maximum (r) functions are dyadic primitive scalar
funct10ns that compare two values and return tne smaller or larger of
the two. Examples are

A
5 31+.2 7 6.035 155.64 1

B
3 1 • 2 .35 10 .75 1

ALB ---3 1 . 2 7 6.035 .75 1
AlB ---

5 31+.2 .35 10 155.61+ 1

FLOOR AND CEILING FUNCTIONS

Floor el) and ceiling Cr) are monadic primitive scalar tunctions. The
floor funct10n returns the largest integer value which does not exceed
the value of its argument. The ce1ling function returns the smallest.
integer value which 1s not less than the value of its argument.

Examples are

~
5 34.2 7 6.035 155.64 1

L~
5 34 7 7 155 1

rA
--:::::-

5 35 7 6 156 1

The results returned by the floor and ceiling functions depend on the
value of the comparison tolerance (OCT). See page 3-9 for a
description of results which are dependent on OCT. An example 1s:

1

1

o

1

OCT~lE-13
X~97x1t97

U

DCT~O

li

ROLL (RANDOM NUMBER) FUNCTION

Roll (1) is a monadIc primitive scalar function (named atter the roll
of a die) which produces a pseudo-random choice with replacement
between 010 and A-l-DIO (depending on the inoex origin presently in

3-11

effect). For example, 1f the argument 1s 6 and the index origin Is 1,
then 16 will produce a random integer between 1 and 6.

Examples are
nIO+-l
76 6 6 6 6 6 6

6 4 1 3 2 2 6
?7 7 7 7 7 7 7

2 6 2 2 7 6 7
OIO+O
?6 6 6 6 6 6 6

3 4 0 5 1 3 0
?7 7 7 7 7 7 7

6 4 0 1 6 5 0

The result produced bY tile roll function 1s always a non-negative
integer.

POWER FUNCTION

The power function (*) is a dyadic primitive scalar function which, in
the form X*N, raises X to the power N. X*-N therefore is the
reciprocal of X*N, and X*+N Is the Nth root of X.

Examples are

A-
5 34.2 7 6.035 155.64 1

N+2 4 6 -2 -4 6
A*N

2.5~01 1.36805773E06 1.17649805 2.745651746E-02 1.704178616g-09 lEOO

1

Note that APL defines the indeterminate case 0*0 as 1.

The power function results in a domain error if the following two
restrIctions are not observed for X*N:

1. If X = 0, N must be non-negative.

2. If X < 0, N must be an integer or a rational number with an
odd denominator.

EXPONENTIAL FUNCTION

The exponential function (*1 1s a
where *X Is e*X and e Is the
2,718281828459045.

Examples are

l.
5 34.2 7 6.035 155.64 1

*A

monadic primitive scalar function
natural logarithm base, which 1s

1.484131591g02 7.126417816E14 9.118819656~-04 2.393496527E-03 3.922772873E67
2.718281828EOO

3-12

NATURAL LOGARITHM FUNCTION

The natural logarithm tunction (~) is a monadic primitive scalar
function and the inverse of the exponential function. The domain of
the natural logarithm function is !imited to positive numbers.

Examples of the natural logarithm function are

1
X+2 4 6 8 10
ex

.6931471806 1.3862943611 1.7917594692 2.0794415417 2.302585093

GENERAL LOGARTIHM FU~CTION

The general logarlthro functIon (~) is a dyadic primitive scalar
function in which B~A is the "log base B of A." The general logarithm
function Is the inverse of the power function In that B*B~A ana B~B*A
both equal A.

Examples of the general logarithm function are

.K.
2 4 6 8 10

2eX
1 2 2.584952501 3 3.321928095

10eX
.3010299957 .6020599913 .7781512504 .903089987 1

CIRCULAR HYPERBOLIC AND PYTHAGOREAN FUNCTIONS

The symbol 0 signifies a monadic primitive function which returns a
v~lue equal to PI times the argument. For example,

Y+O 1 2 4 6 8 10
oY

o 3.141592654 6.283185307 12.566370614 18.849555922 25.132741229
31.415926536

The same symbol also can be used to specify a dyadic primitive scalar
function to signify 15 circular, hyperbolic, and pythagorean
funct1ons. When used in this manner, an integer in the range -7 to 7
as the left argument signifies the particular function:

3-13

-7oX = Arctanh X
-6oX = Arccosh X
-SoX = Arcsinh X
-4oX = (-1+X*2)*.5
-30X = Arctan X
-2oX = Arccos X
-loX = Arcsin X

ooX = (1-X*2)*.5
loX = Sine X
20X = Cosine X
30X = Tangent X
40X = (1+X*2)*.5
SoX = Sinh X
60X = COSh X
70X = Tanh X

The six circular functions are:

loX = Sin
20X = Cos
30X = Tan
-loX = Arcsin
-2oX = A.rccos
-30X = Arctan

The right argument of the above circular functions 1s 1n radians. For
example,

The six

SoX
boX
?oX
-SoX
-boX
-7oX

Z.-7 5 3 1 0 1 3 5 7
10Z

.6569865987 .9589242747 .1411200081 .8414709848 0 .8414709848
.1411200081 -.9589242747 .6569865987
20Z

.7539022543 .2836621855 .9899924966 .5403023059 1 .5403023059
-.9899924966 .2836621855 .7539022543
30Z

.8714479827 3.3805150062 .1425465431 1.5574077247 0 1.5574077247
-.1425465431 -3.3805150062 .8714479827

30Z
1.4288992722 1.3734007669 1.2490457724 .7853981634 0 .7853981634

1.2490457724 1.3734007669 1.4288992722

hyperbolic functions are:

= S1nh
= COSh
= Tanh
= Arcs1nh
= Arccosh
= Arctanh

The functions sinh (SoX) and coso (boX) are the odo and even
components of the exponential function. for example, 50X is odd, 60X
is even, and the sum (SOX) + boX is equivalent to *X.

3-14

X+-8
sox

1490.478826
60X

1490.479161
(SOX)+6oX

2980.957987

*X
2980.957987

The tanh function (7oX) is similar to the definition of the tangent,
Which is

thus

sinh
tanh =---

cosh

12-J.
.9999997749

{50X)t60X
.9999997749

The three pythagorean functions are:

OoX = (1-X*~)*.5
-4oX = C-l+X*2)*.5
40X = (i+X*2)*.5

The pythagorean functions are related to the properties of a right
triangle as shown in figure 3-1.

Each of
inverse

E

~--------~------~~D

AC=1
AB=OoBC
BC=O oAB
AE=4oDE
DE=-4oAE

Figure 3-1. Pythagarean Functions

the circular, hyperbolic, and pythagorean functions has an
in the same familY: thus, (-I)oX is the inverse of loX. Some

3-15

of the functions are not isomorPhic, however, and thus their inverses
can have many values. The .principal values are shown below:

ARCCOSq

ARCCOS
ARCSIN

1/+-60K
1/+-4o;r
f/+-2oX
V+-1oX
V+ooX

V~O

v~o

(V~0)A(xs01)

(IV)so.5
v~o

V+40X V>O

Domain restrictions are as follows:

ARCTANH 70Y l>IY
ARCCOSH 60y Y~l

40Y lslY
ARCCOS 20¥

l~IY
ARCSIN lOY

OOY YSl

FACTORIAL FUNCTION

The factorial function (1) 1s a monadic primitive scalar function. for
a positive integer argument X, LX is the product of all positive
1ntegers up to and including X. ThUS, !X = Xx!X-l, or 1X-l = (!X)+x.
This relation is used to extend the function to both positive integer
and non-integer values and to negative non-integer values. Negative
integer values are excluded from the doma1n of the factorial function
because the relat10n described above leads to the expression (10)+0,
o r 1 + 0 for 1 1-1 •

Examples of the factorial function are:

X+-2.5 1.4 .5 0 1 2 3 4 5
: X

2.363271801

BINOMIAL FUNCTION

3.722980622 1.772453851 1 1 2 6 24 120

The binomial function (1) is a dyadic primitive scalar function, For
non-negative integer arguments X and Y, the function X!Y is defined as
the number of different ways X things can be chosen from Y things. The
expression (!Y)+(!X)x(!Y·X), however, produces an equivalent
definition wh1ch is used to extend the binomial function definition to
all numbers.

Unlike the factorial function, which excludes negative integers from
its domain, the binomial function does not. This is because any
implied division by zero 1n the numerator lY is accompanied by a
corresponding division by zero in the denominator. Thus, the binomial
function extends correctly to all numbers.

3-16

Examples of the binomial function are:

X+O 12345
Y+6
X!Y

1 6 15 20 15 6

OPERATORS

Operators are combined with dyadic primitive scalar functions to
produce different functions. For example, tne reduction operator (I)
can be combined with the dyadic primitive scalar function plus (+) to
sum the elements of a vector to produce a scalar sum as follows:

x:
0 1 2 3 4 5

+/X
15

The four major operators are:

* Reduction (I)

* Scan (')

* Inner product e.)
* Uuter product (0.)

Additionally, an auxiliary axis operator may be used in conjunction
with the scan and reduction operators and the primitive mixed
functions to specify the coordinate (axis) over which tne operation is
to occur.

REDUCTION OPERATOR

The reductIon operator C/) applies a dyadic pr1mitive scalar function
which precedes it to elements in the right argument, producing a
result whose rank is one less than that of the argument (thus reducing
the rank). For example,

30

6

VECTOR+2 4 6 8 10
+/VECTOR

-(VECTOR

+/VECTOR 1s the equivalent of 2+4+6+8+10

-/VECTOR is the equivalent of 2-4-6-8-10

The reduction operator performs as though the function were placed
between adjacent pairs of elements of VECTOR and associating right
to-left.

3-17

The last example demonstrates the riQht-to-left association, wh1ch
causes -/VECTOR to result in the alternating sum of the elements ot
VECTOR. The alternating sum 1s the sum obtained after mUltiplying
alternate elements ot a vector by 1 and -1. ThUS, 1f ALTER+l-1 1-1 t,
then +/VECTORxALTER and -/VECTOR are equal, as demonstrated below:

VECTOR
2 4 6 8 10

ALTER~1 1 1 1 1
VECTORxALTER

»
2 4 6 8 10

+/VECTORxALTER
6

-/VECTOR
6

An alternating product can be obtained by f/VECTOR. For ex~mple,

VECTOR
2 4 6 8 10

ALT8R
1 1 1 -1 1

x/VECTOR*ALTER
3.75

t/VECTOR
3.75

When the reduction operator is apPlied to any scalar or vector
argument, the result 1s a scalar value. The value resulting from a
scalar or unIt array argument is the argument itself. The ettect of
applying the reduction operator to multi-dimensional arrays is
discussed under the axis operator on page 3-20 •

If the reduction operator and a primitive scalar dyadic function are
applied to an empty array, the identity element of the function
becomes the result if an identity element exists for that function, If
an identity element does not exist for the function, a domain error
results, Note that an empty array may be of type Character or numeric
and identity elements differ depending on these types, For example,
the identity elements for the times function (X) is 1 for numbers, and
none exists for the nand tUnctlon,

~18

1

E+-OoO
xlE

""IS
DOMAIN El?ROR

o

""IE
t

+IE

g Oo' ,
xl E

DOMAIN ERRQR
x/g

t
""IE

DOMAIN ERROR
""lIS

t
+IE

DOM.4IN ERROR
+IE

t

The identity elements (or the domain error resulting when no identity
element exists) of all functions when they are combined with the
reduction operator and applied to an empty vector are shown 1n table
3-3.

SCAN OPERATOR

The scan operator C\) applies the dyadic pr1mitive scalar function
which precedes it to the argument. The scan operator performs a
cumulative reduction over arrays. The result of this operator 1s an
array of the same shape as the operand, 1n which the nth element
corresponds to the result of the reduction over the first n elements.

VISCTOR
2 4 6 8 10

+IVBCTOR
30

+\VECTOR
2 6 12 20 30

Other examples of the scan operator are:

VH.:CrOR
2 4 6 8 10

x\fJT!:CTOR
2 8 48 384 3840

Vl?C+-1 1 1 0 0 0 1
"\VEe

1 1 1 0 0 0 0
v\VF;C

1 1 1 1 1 1 1
1't\VEC.

1 0 1 1 0 0 0

The results obtained when the scan operator is applied to arrays other
than vectors is discussed under the axis operator.

AXIS OPE-RATOR

The discussion of the reduction and scan operators described what
happens when those operators are coupled wlth a dyadic primitive
scalar function and applied to a vector. The reduction operator,
however, also can be apPlied to arrays, whiCh can be thought of as
collections of vectors. For example, consider an array that has two
axes:

.------------.. AXIS 2

AXIS 1

The columns extend along axis 1 and rows extend along axis 2.

AXIS 2 (Columns)

1 2 3 4 5
2 4 6 8 10
3 6 9 12 15
4 8 12 16 20
5 10 15 20 25

AXIS 1 (Rows)

Reduction of an array can be defined as the vector of results produced
by reduction of eaCh of the column vectors or tne row vectors.

The axis operator 15 signif1ed by brackets [] enclosing an

3-20

expression. The expression, wnen evaluatea, yields the index of the
axis. For example,

ARRAY+4 6p1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
ARRAY

1 -2-3 4 5 6
7 8 9 10 11 12

13 14 15 16 17 18
19 20 21 22 23 24

+/[1]ARRAY
40 44 48 52 56 60

+/[2]ARRAY
21 57 93 129

+\[l]ARRAY
1 2 3 4 5 6
8 10 12 14 16 18

21 24 27 30 33 36
40 44 48 52 56 60

+\[2]ARRAY
1 3 6 10 15 21
7 15 24 34 45 57

13 27 42 58 75 93
19 39 60 82 105 129

Note that the scan operator produces a result whose shape is the same
as that of the argument while the reduction operator produces a result
whose shape is the shape ot the arqument with the reduction axis
removed. That is, the shape vector of the result has one tewer
elements.

If no axis operator is included with reduction and scan, these
operators apply along the last axis as follows:

ARRAY
1 2 3 4 5 6
7 8 9 10 11 12

13 14 15 16 17 18
19 20 21 22 23 24

+/ []ARRAY
21 57 93 129

+\[]ARRAY
1 3 6 10 15 21
7 15 24 34 45 57

13 27 42 58 75 93
19 39 60 82 105 129

The symbols f and ~ may also s1gnlfy reduction and scan (also
compression and expansion), respectively: and, in the absence of the
axis operator, these operators apply along the first axis, as follOWS:

+f A.T?R AY
40 44 48 52 56 60

+~ARRAY
1 2 3 4 5 6
8 10 12 14 16 18

21 24 27 30 33 36
40 44 48 52 56 60

3-21

If an axis operator Is used with f or ~, it siqnifles the nth from
last axis, as opposed to nth from first axis with I or \.

See the discussions of the mixed functions reverse, rotate, compress,
and expand for additional applications of the axis operator.

INNER PRODUCT OPERATOR

Sets of data can be arranged into vectors of the same shape to perform
numerous useful computations. For example, if vector A represents a
list of parts and B represents a list of prices, and A and B are the
same shape, then the expression +/Ax8 would produce the total cost Of
inventory.

Expressions of the same form using other functions also are useful.
For example,

X
2 4 6 8 10

Y
17 4 3.95 8.96 10

A/X=Y---------'- Comparison of X and Y

0
+ / X= Y-------Number of agreements between X and Y

2

The inner product operator C.l apPlies the two functions that enclose
it to a left and a right argument to produce functions equivalent to
the examples shown above.

Thus, Afnl.fn2B Is equivalent to fnl/Afn2B.
vectors/scalars:

A
2 4 6 8 10

.li
17 4 3.95 8.96 10

A+.xB
245.38

+/AxB
245.38

Ax.*B
4.91058931B'28

x/A*B
4.910589311?28

For example, for

When applied to arrays, the inner product operator extends to the last
axis of the left argument and the first axis of the right argument.
The lengths of the two axes must agree. The axes operated on by the

3-22

inner product operator are deleted and the shape of the result is the
catenation of the rema1ning shapes ot the operands, as for example,

VEC
1 2 -3-4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

A+3 5pVEC
8+5 4pVEC
A

1 2 3 4 5
6 7 8 9 10

11 12 13 14 15
8

1 2 3 4
5 6 7 8
9 10 11 12

13 14 15 16
17 18 19 20

A+.x8
175 190 205 220
400 440 480 520
625 690 755 820

8+5pVEC
8

1 2 3 4 5
A

1 2 3 4 5
6 7 8 9 10

11 12 13 14 15
A+.x8

55 130 205
A+8pVEC
8+8pVEC
A

1 2 3 4 5 6 7 8
1L

1 2 3 4 5 6 7 8
A+.x8

204

The inner product A+.xB is also known as the matrix product. Examples
are

VEe
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

A+4pVEC
A-

1 2 3 4
800L+1 1 1 1 1 0 0 0 1 0 1 0 0 0 0 0
B+4 4p800L

J!
1 1 1 1
1 0 0 0
1 0 1 0
0 0 a 0

A+.x8
6 1 4 1

8+.xA
10 1 4 0

B+.xB
3 1 2 1
1 1 1 1
2 1 2 1
0 0 0 0

3-23

Examples of other inner products:

A-
i 2 3 4

B
1 1 1 1
1 0 0 0
1 0 1 0
0 0 0 0

Ax.*B
6 1 3 1

,8/\.=8
0 0 0 0
0 1 0 1
0 0 1 0
0 0 0 0

.8/\.=1 1 0 0
0 0 0 0

B-.xB
1 1 2 1
1 1 1 1
2 1 2 1
0 0 0 0

The preceding examples Show that either argument can be of any rank,
so long as the rank of the result Is s63, and the last dimension of
the left argument is compatible with the first dimension of the right
argument, that is,

Thus, A+.xl is equivalent to +/A and 1+.xA is equ1valent to +/A. For
example,

A+2 4 6 8 10
+ / .4

30
A+.xl

30
+fA

30
l+.xA

30

OUTER PRODUCT OPERATOR

The outer product operator Is signified by the symbols o. and precedes
the function to which it 1s applied. The outer product operator can be
applied to any dyadic primitive scalar function. When the outer
product is applied to a function, that function Is evaluated for each

3·24

element of the left argument paired with each element of the r1ght
argument. For example,

J.
2 4 6

Jl..
2 4 6 8 10

,40.+8
4 5 8 10 12
6 8 10 12 14
8 10 12 14 16

A 0 • x B
4 8 12 16 20
8 16 24 32 40

12 24 36 48 60
Ao.*B

4 16 5 1+ 256 1024
16 256 4096 65536 1048576
36 1296 46556 1679616 60466176

A 0 • < B
0 1 1 1 1
0 0 1 1 1
0 0 0 1 1

Ao.>B
0 0 0 0 0
1 0 0 0 0
1 1 a 0 a

These examples show that the shape of the resul t ot Xo .fnY i.s equal to
(QX),QY. The expression (pX),QY produces the shape for any arguments
X and Y.

MIXED FUNCTIONS

There are five classes ot m1xed functions, grouped according to
whether they are concerned with:

* The structure of arrays,

* Selection from arrays.

* The generation of selection information.

* Numerical calculations.

* Transformations
characters.

of data such as that between numbers and

These five groups of mixed functions are listed in tables 3-5 through
3-9. Included in each table are the names of the mixed functions, the
symbols used to denote the functions, a definition or example of each
function, and restrictions on the ranks of arguments that may be used
with each rnl~ed function.

3-25

Table 3-5. Structural Mixed Functions

NAME SYMBOL FORM DEFINITION

Ravel
,

,A Produces vector whose elements are
the e·lements of the right argument in
row major order.

Shape p pA Produces vector whose elements are
the dimensions of A.

Reshape p ApB Reshapes the ravel of right argument to
shape specified by left argument.

Reversal ¢ or ¢ A or Reverses elements in the right argu-
e eA ment. When <P is used, elements along

the last coordinate are reversed; with
e, elements along the first coordinate
are reversed.

Rotate ¢ or A¢B or Causes elements of the right argument
e AeB to be rotated. When <p is used, ele-

ments along last coordinate are
rotated; with e , elements along first
coordinate are rotated.

Catenate ,[] ,[A] Joins two arrays along an existing
axis.

Laminate ,[] A,[B] Joins two arrays along a new axis.

Transpose (S) (S) A or Reverses the order of (transposes) the
A(S)B axes of an array. If used dyadically, as

A~B, arranges axes of B to conform to
argument A.

3-26

Table 3-6. Selection Mixed Functions

SPECIAL
NAME CHARACTER FORM DEFINITION

Take j NjA Takes N elements from A. If N is
positive, first N elements are taken; if
negative, last N elements taken.

Drop ~ N~A Drops N elements from A. If N is
positive, first N elements are dropped;
if negative, last N elements dropped.

Compress / N/A Selects elements from an array as
determined by boolean argument N.
For each 1 in N, the corresponding
element in A is selected; for each 0, it is
ignored.

Expand \ N\A Fills array with spaces (if alphabetic) or
zeros (if numeric) depending on
boolean argument N.

Indexing [] A[] Selects elements from A depending on
expression enclosed in brackets. If A is
246810, A[3] selects 6 if 1-origin
indexing is in effect.

Table 3-7. Selector Generator Mixed Functions

NAME SYMBOL FORM DEFINITION

Index 1 IA Produces first A integers in order,
generator beginning with index origin in effect.

Index of 1 AlB Produces the index of first occurrence
of B in A.

Membership E AEB Determines if each element of A is a
member of B.

Grade up • !A Sorts the elements of a vector in
ascending order, returning indices.

Grade down • ,A Sorts the elements of a vector in
descending order, returning indices.

Deal ? A?B Selects A random integers without
replacement from 'lB.

3-27

NAME

Matrix
inverse

Matrix
divide

Decode

Encode

NAME

Execute

Format,
monadic

Format,
dyadic

Quad output

Quote quad
output

Quote quad
input

Quad input

Table 3-8. Numerical Mixed Functions

SYMBOL FORM DEFINITION

ffi ffiA Produces the inverse of a non-singular
matrix. Columns of A must be linearly
independent.

ffi AffiB Produces a result equal to
(I±l B) + . x A.

1.. Al.B Computes the sum of all the elements
of B raised to a power specified by the
base value of A. If A is 2 and B is 1 2 3
45, then A 1- B is lOt.

T ATB Converts the value of A into its
representation in the number system
specified by the base value of B.

Table 3-9. Data Transformation Mixed Functions

SYMBOL FORM

.!..A

T TA

T ATB

o O~A

o A~O

3-28

DEFINITION

Executes the character expression A.

Monadic form A produces character
representation of A to current default
printing precision.

For example,
A~o1

'PI IS EQUAL TO ';"fA

produces

PI IS EQUAL TO 3.14159265

Produces result based on data B
displayed in accordance with control
argument A.
For example,
4 2~3.14159

3.14

Generates carriage return/linefeed
when displaying A.

Outputs A with no carriage return/
linefeed.

Reads a line of characters typed in by
user and creates a character vector
result.

Evaluates a line of input from the
terminals.

Figure 3-2 contains d list of those mixed functions for which scalar
and vector arguments mdY be substituted,

1. A scalar may be used in place of a one-element vector:

2.

3.

a. as left argument of

reshape 2p5 ~

take 4j 6 ~

drop -4~ 6
expand 1 \ ,6
transpose 1cf>,4
format 6T4.5
rotate 2cf>A

b. as right argument of

execute .!."X'

A scalar is extended to conform to a vector:

a. as left argument of

compress
rotate

b. as right argument of

compress
expand

1/14 ~
1cf>2 2 p14 ~

o 1 / 2 ~

o 1 \ 2 ~

A unit array is permitted in place of a scaler:

a. as left argument of

deal (,4)?5 ~

b. as right argument of

index generator ,6 ~

deal 2?,6 ~

(,2)p5
(,4n 6
(,4)~ 6
(,2) \ ,6
(,1)cf>,4
(,6)T 4.5 +-+
(,2)cf>A

1., 'X'

1/14
cf> 22p14

o / 2 2 2
o \ 2 2

4?5

6
2?6

Figure 3-2. Scalar-Vector Substitutions for Mixed Functions

STRUCTURAL FUNCTIONS

The structural fUnctions consist of:

* Ravel (,)

* Shape (p)

3-29

o 6~4.5

* Reshape (P)

* Reverse (¢ or e)

* Rotate (¢ or 9)

* Catenate (, [))

* Laminate (, (1)

* Transpose (~)

For monadic structure functions, the argument may be ot any type,
numeric or character. For dyadic structure functions, the right
argument may be of any type, but the lett argument (which serves as an
index or other selection generator) must be numeric integer.

SHAPE FUNCTIUN. The monadic shape function (~) applied to an array
argument, yields the shape ot the array as a vector whose elements are
the dimensions of the array. For example,

ARl?AY
1 2
3 4

5 6
7 8
9 10

pARRA.Y
5 2

ppARRAY
2

ppoARRAY
1

The result produced by pARRAY contains one component for eactl axis of
ARRAY. For example, 5 2 (above) signifies that A~RAY 1s a matrix of
five rows and two columns, Thus, the expression ppARRAY produces the
ranK of ARRAY, and pppARRA¥ produces the shape of the array resulting
from the expression ppARRAY. (Note that pppARRAY 1s always 1.)
Figure 3-3 illustrates arrays from rank 0 (scalar) up to rank 6. Note
that the function ~ applied to a scalar yields the empty vector. Note
also that a one-dimensional array 1s rank 1, two-dimensional is rank
2, and so forth.

~AVEL FUNCTION. The monadic ravel function (,) applied to an array,
produces a vector whose elements are the elements of the array in row
major order. For example,

1
5
9

13

ARRAY
2 3 4
6 7 8

10 11 12
14 15 16
VECTOR+-,ARRAY
VECTOr:?

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

3·30

If the ravel functIon 1s apPlied to a vector argument, the result 1s
equivalent to the argument itself. If applIed to a scalar argument,
the ravel function produces a vector of length 1,

-AO+l
DAO

RANKO
ppAO

0

- -
Al'-/~pVEC

oAl
4 RANK 1

opAl
1

.- -
A2+4 4nvec
oA2

4 4
RANK 2

ppA2
2

--
A3'-4 4 4pVEC
pA3

4 4 4 RANK 3
P 0.4 3

3

--
,44'-4 4 4 4pVEC
pA4

4 4 4 4 RANK 4
opt14

4
-

.45'-4 4 4 4 4pvec
045

4 4 4 4 4 RANK5
opA5

5
- -

A6'-4 4 4 4 4 40VFC
pA6

4 4 4 4 4 4 RANK 6

poA6
5 -

Figure 3-3. Rank of Arrays

·3-31

RESHAPE fUNCTION. The dyadic reshape function (p) reshapes the ravel
of its right argument to the shape specified by its left argument. for
example,

A
1 2 3 ~ 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

~ SpA
1 2 3 ~ 5
6 7 8 9 10

11 12 13 1~ 15
16 17 18 19 20

For tne reshape expression LpR, if the total number of elements In the
right argument R is equal to the total number of elements required by
the left argument, L (as above), the ravel of LpR 1s equal to the ravel
of R (the elements are equal). If L specifies a value that requires
less elements than are contained in R, only the first x/L elements Of
Rare llsed: if L requires more elements than are contained 1n R, the
elements of Rare repeated cyclically. For example,

2 30.4
1 2 3
4- 5 6

5 6pA
1 2 3 4 5 6
7 8 9 10 11 12

13 14 15 16 17 18
19 20 1 2 3 4-

5 6 7 8 9 10

Anyone or more of the axes of an array may have zero length, thus,
OpA, 0 3pA, and 0 0 OpA are all valid. -SUCh an array is called an
empty array. If A is a numeric empty vector, then ApB Is a scalar
containing the first element of ravel 6.

REVERSAL FUNCTION. The monadic reversal function is denoted by the
symbols ¢ or e and 1s used to reverse the elements along a particUlar
axis of the argument. For example,

A
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

~A
20 19 18 17 16 15 1~ 13 12 11 10 9 8 7 6 5 ~ 3 2 1

When ~A is used, the reversal occurs along the last axis (the columns
are reversed) of the array. For example,

ARRAY
1 2 3 4-
5 6 7 8
9 10 11 12

13 14 15 16
t1>ARRAY

4 3 2 1
8 7 6 5

12 11 10 9
16 15 14 13

3·32

When the e symbol is specified, the reversal occurs along the first
axis (the rows dre reversed), as for example,

aARli:'AY
13 14 15 16

9 10 11 12
5 6 7 8
1 2 3 4

The auxiliary axis operator can be applied to the reversal function to
specify a particular axis for the reversal. For example,

¢[lJARRAY
13 14 15 16

9 10 11 12
5 6 7 8
1 2 3 4

<P[2]ARRAY
4 3 2 1
8 7 6 5

12 11 10 9
16 15 14 13

The previous example shows that ~A Is equivalent to ~[ppA]A or ~[lJA,
and eA is equivalent to e[lJA.

ROTATE FUNCTION. The dyadic rotate function IS denoted by the symbols
¢ or e and rotates elements in the right argument by amounts specif1ed
In the left argument.

If 5 Is a scalar or unit and V Is a vector, then S¢V results in a
cyClic rotation of V, as fOllows:

For 1-origin indexing, S$V = V[1+(pV)-1+S+1PV]

For O-origin indexlng,StV = V[(pV)IS+IPV]

General expression: S~V = V(OIO+(pV)I(-OIO)+SlPV]

The axis operator can be used with the rotate function to specify the
axis along whIch the rotation is to be performed. The form 1s

3·33

For general arrays, the vector along the nth axis of V 1s rotated as
signified by the corresponding element of S, and the shape of S must
equal the remaining dimensions of V. for exampie,

V'BCTOR
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

X 4 4QVECTOR
J..

1 2 3 4
5 6 7 8
9 10 11 12

13 14 15 16
1 2 3 4$[1].¥

5 10 15 4-
9 14 3 8

13 2 7 12
1 6 11 16

1 2 3 4~[2]X
2 3 4- 1
7 8 5 5

12 9 10 11
13 14 15 16

The symbol e can be used to signify rotation along the first axis of
an array and therefore AeB 1s equivalent to Ae[l]B, as follows:

VEC 1160118C
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

8 4 50VeCOB
1 2 3 4 5
6 7 8 9 10

11 12 13 14 15
16 1 2 3 4-

(1 5) eB
6 12 2 4 10

11 1 3 9 15
16 2 8 14 4

1 7 13 3 5
(14)e[l]8

2 3 4- 5 1
8 9 10 6 7

14 15 11 12 13
4- 16 1 2 3

3-34

CATENATE FUNCTION. The dyadic catenate tunction (,) is used to jo1n
two arrays along an existing coordinate. The number ot elements 1n
the resulting array Is equal to the total number of elements 1n the
two arguments. For example,

A
1 2 3 4 5
6 7 8 9 10

11 12 13 14 15
16 17 18 19 20

Jl
21 22 23 24 25
26 27 28 29 30
31 32 33 34 35
36 37 38 39 40

A,B
1 -2- 3 4 5 21 22 23 24 25
6 7 8 9 10 26 27 28 29 30

11 12 13 14 15 31 32 33 34 35
16 17 18 19 20 36 37 38 39 40

A numeric vector cannot be catenated with a character vector.

The axis operator can be applied to the catenate function to signify
the axis along which the arguments are to be catenated. For example,

Arrays of
have the
ranK by 1.

A
2 4 6 8 10 12 14 16 18

8+3 3pA
B

2 4 6
8 10 12

14 16 18
B,[lJB

2 4 6
8 10 12

14 16 18
2 4 6
8 10 12

14 16 18
B,[2]B

2 4 6 '2 4 6
8 10 12 8 10 12

14 16 18 14 16 18

different shapes can be catenated along an axis n If they
same number of elements along that axis and they differ in

F'or example,

(2 3p1100),2 100$1(100)
1 2 3 100 99 98 97 96 95 94 93 92 91
4 5 6 90 89 88 87 86 85 84 83 82 81

3-35

Some other examples:

ARR1
2 4 6

A.RR2
2 4 6 8

10 12 14 16
18 2 4 6

ARR3
2 4 6 8 10

12 14 16 18 2
4 6 8 10 12

14 16 18 2 4

6 8 10 12 14
16 18 2 4 6

8 10 12 14 16
18 2 4 6 8

10 12 14 16 18
2 4 6 8 10

12 14 16 18 2
4 6 8 10 12

ARR1,ARR2
2 2 4 6 8
4 10 12 14 16
6 18 2 4 6

ARR2,ARR3
2 2 4 5 8 10
4 12 14 16 18 2
6 4 6 8 10 12
8 14 16 18 2 4

10 6 8 10 12 14
12 16 18 2 4 6
14 8 10 12 14 16
16 18 2 4 6 8

18 10 12 14 16 18
2 2 4 6 8 10
4 12 14 16 18 2
6 4 6 8 10 12

3·36

A scalar or unit argument Is repeated along the appropriate axis when
used as an argument in the catenate function. For example,

A+l
AT?R2

2 4 6 8
10 12 14 16
18 2 4 6

.4RR2,[lJA
2 4 6 8

10 12 14 16
18 2 4 6

1 1 1 1
AF?R2,[2JA

2 4 6 8 1
10 12 14 16 1
18 2 4 5 1

LAMINATE FUNCTION. The dyadic laminate function Is denoted by a comma
followed by the lamination coordinates enclosed In brackets,t J. The
lamination coordinate is a non-integral. index number signifying a new
coordinate between existing coordinates along which the lamination is
to occur.

The laminate function joins two arrays of identical ranK and shape
along a new axisJ this new axis is indicated by the index number. for
example,~ the new axis is to be Ins~rted between eXisting axes 1 and
2, the index number must be between 1 and 2: for laminating between
ixlstlng axes 2 and 3, the index number ~ust be between ~ and J, and
so forth. If the new axis Is to be inserted before the existing first
axis, the index number must be between 0 and 1. (If O-origin indexing
is 1n effect, sUbtract 1 from the above index numbers.) If the new
axis is to be added after the existing last axis, the fractional index
number must exceed the last axis number by a fractional amount between
o and 1.

3-37

Examples of lamination are:

.A R+-A,[2.sJBOE
ABeD A1
lj} FGR 82
JJKL C3
,~1VOP D4-

.1i
1234- ES
5678 F6
9012 (;7
34-56 rI8

C+-A,[.5]BOC
ABeD I9
gPGH ,]0

T~JK£ K1
MVOl? [,2

1234 L~'3

5678 N4
9012 05
3456 P6

D+A,[1.5]BOD pC
.ABeD 2 4- 4
1234- pD

4 2 1+
P.FGH pE
5678 4- 4 -2-

I ~J K [,
9012

'4 TIl a P
3456

The shapes of the resulting arrays In the above examples are 2 4 4, 4
2 4, and 4 4 2. Note that the resulting array In each case is one
rank greater tnan the rank of A and 8, and has the same shape except
for the insertion of the new axis. The 2 1n 2 4 4, 4 2 4, and 4 4 2
shows where the new axis was inserted and also denotes the length Of
the new axis.

3-38

When used with the laminate tunction, a scalar or unit argument Is
extended as necessary. For example,

.ABC
DT?F
G.qI

1

Ai
Bl
Cl

Dl
El
Fl

~1

fIl
Ii

A+3 3p'ARCDePGR['
8+'1'
A

Ji

A,[2.5]B

TRANSPOSE r"UNCTION. The dYadic transpose function 1s signified by the
character Q and reverses the order of (transposes) the axes ot A. An
element [I,JJ in the result 1s equal to (J,ll in the argument. Thus,
[1:2) in the argument is equal to [2;1J in the result. For example,

ABC
D.'5 F
GRT

ADG
B8H
CFI

ADG
BP,H
CFT

B

B

2 1~4

A[1;2]

RT£STJLT[2;1]

3-39

Monadic Transpose Examples

...A-
i 2 3
5 6 7
9 10 11

0.4
3 4

A-+-~A
A

1 5 9
2 6 10
3 7 11
4 8 12

1L
HorJNOIJO LDcor,",

HO'i/
NOW
OLD
COW

T-!NOC
DOLO
r.{WDfI

8+4 308
B

'+
8

12

The dyadic expression 2 1 ~A reverses the order ot the axes of A. ror
example,

A
ABC
DEF
G'fI

~.4
ADG
BEFJ
CFr

2 1~.4
ADG
BgFl
eFI

SELECtION FUNCTIONS

The selection functions include:

* Take (+)

* Drop (1-)

* Compress (I)

* Expand (\)

* Indexing ([J)

The arguments whose elements are being selected may be any type of
array, while the other argument, which specifies the selection, must
be numeric integer or bit. For the expand and compress functions, the
numeric values must be boolean.

TAKE FUNCTION. The take function (+) selects elements from an array.
The elements selected are dependent on the numeric left argument. If
the values of N are positive, the first N elements are selected: 1f
the values of N are negative, the last N elements are selected, If N
is greater than the number of elements in the array, the result is
filled with zeros if the array 1s numeric or spaces if the array 1s
alphabetic,

3-40

Examples of the take function being applied to a vector are:

A+-2 4 6 8 10
2tA

2 4-
4tA

2 4- 6 8
6tA

2 4- 6 8 10 0
8tA

2 4- 6 8 10 0 0 0 -8tA
0 0 0 2 4 6 8 10

8+-'12345'
2tB

12
4tB

1234
6tB

12345
'A'~8tB

412345
'A'~ 8tB

A 12345

Note that the zeros (or spaces) are added on the right 1f the left
argument 15 positive and on the left it the left argument is negative.

If the lett argument is a vector, then the expression ViA is valid
only 1f V has one element for each axis in array A. For example, if A
1s unit or 1f A has two axes, then V can have only two elements,

The rank of the result of the take function Is the same as the rank of
the riqht argument.

DROP FUNCTION. The drop function (+) is the oPPosite of the take
function, and removes speCified elements from an array. If the number
of elements dropped from an array equals or exceeds the number of
elements along the axis, the result has zero length for that axis,

Examples of the drop function are:

A
2 4- 6 8 10

2+A
6 8 10

4+A
10

2+A
2 4- 6 -4-+A
2

3-41

The rank of the result of the drop function Is the same as the ranK of
the right argument.

COMPRESS FUNCTION. The compress function (I) selects elements from an
array as determined by a boolean argument. For each 1 In the boolean
argument, the corresponding portion In the array Is selected, for each
zero In the boolean argument, the correspOnding portion In the array
is not selected. For example, a boolean argument 1 0 1 0 1 selects
the first, third, and fifth elements of an array as follows:

,A

2 4 6 8 10
1 0 1 0 l/A

2 6 10

The dimensions ot the
arguments are extended.
vector, as shown below:

A
2 4 6 8 10

l/A
2 4 6 8 10

O/A

pO/A
0

arguments must agree, except that scalar
Thus, l/A equals A and O/A equals an empty

3-42

The axis operator can be used with the compress function. For an
expression A/lnJB, the shapes of A and B conform if pA equals (pB)[n],
or A 1s a unit. An example,

1
5
9

13

1
9

1
5
9

13

A+-4 4Pl16

A
2
6

10
14
1 0
2

10
1 0

3
7

11
15

3 4
7 8

11 12
15 16
1 0/[1]11
3 4

11 12
1 0/[2]A

8+-4 4p'ABCDEFGHIJKLMNOP'OB
ABeD
EFGH
IJK&
M1VOP

ABeD
I!JKL

AC
eG
IK
[,vJO

1 0 1 0/[lJ8

1 0 1 0/[2].8

The f symbol can be used to denote compression along the first axis,
as follows,

A
1 2 3 4
5 6 7 8
9 10 11 12

13 14 15 16
1 0 1 of-A

1 2 3 4
9 10 11 12

The rank of the result of the compress function equals the rank of the
right argument, and presult, along the aXis of compression equals
+/left argument.

3-43

EXPAND FUNCTION.
identity elements
is numeric, the
expandedJ 1f the
spaces.

The expand function (\) expands an array, tilling
as determined by a boolean argument. If the array
identity elements are Zeros where the array is
array is alphabetic, tne identity elements are

Examples of the expand function are:

X+'THEQUICKBROWNFOX'
Y+l 1 1 0 1 1 1 1 1 0 1 1 1 1 1 0 1 1 1
Y\X

THE QUICK BROWN FOK
C+5 4oXOC

'THF.:Q
UICK
BROW
NFOK
THEQ

1 o 1 0 1 l\C
T H P.Q
u I CK
8 R OW
N F OX
T H gO

The axis operator can be used with the expand fUnction. For example,

A
1 2 3 4
5 6 7 8
9 10 11 12

13 14 15 16
1 1 o 1 o l\[lJA

1 2 3 4-
5 6 7 8
0 0 0 0
9 10 11 12
0 0 0 0

13 14 15 16
1 1 0 1 o 1\[2]A

1 2 0 3 0 4
5 6 0 7 0 8
9 10 0 11 0 12

13 14 0 15 0 16

3-44

The ~ symbol can be used to denote expansion along the first axis as
follows,

A
1 2 3 4
5 6 7 8
9 10 11 12

13 14 15 16
1 0 1 0 1 l\A

1 2 3 4
0 0 0 0
5 6 7 8
0 0 0 0
9 10 11 12

13 14 15 16

The rank of the result of the expand function 1s equal to the rank of
the right argument, and the length of the result along axis of
expansion 1s plett argument.

INDEXING FUNCTION. The indexing function is denoted by brackets and
may be 1-or1g1n or O-ori91n as specified by DID. For l-origln
indexing, the function A{I] indicates the Ith element of A: for
O-origin, A[I) indicates the 1+1 element of A. For example,

A+l 2 3 4 5 6 7 8 9 0
UTO+l
A[3]

3
A[6]

6
OIO+O
A[3]

4
A[6]

7

If a vector V is used within the brackets, sUCh as AtVl, elements are
selected from A as indicated by the elements of V. For example,

ACEGl

V+l 3 5 7 9
'ABCDEFGHIJKLMNOP'[V]

3-45

If the value specifies an element outside the range of A, an error
message results. In general, the shape of A[I] 1s the shape of I.
Thus, 1f I 1s scalar, the result of A[I] 1s scalar: and if I Is an
array of any rank, then A[I] 1s an array of that rank. For example,

D

ABCDB
CDACD
ABDCB

A+'ABCDEFGHIJKLMNOP'
A[I+]

V+3 501 2 3 '+ 2 3 1+ 1 3 '+ 1 2 1+ 3 2 1
A[V]

If A is a matrix, it must be indexed 1n the form [R:Cl. The first
index, R, signifies the row (or rows) and the second index, C,
signifies the column (or columns). ThUS, Al2:1J selects the element
from the second row, column 1. If either index is a vector, the rows
or columns specified by all values of the vector are selected. For
example,

.A..
ABCD
E:FGH
I~JKD

MNOP
ABeD

A+4 l+oA
J..

ABeD
ll:PGH
IJK['
MTiJOP

A[2 3; 1]
EI

A[4 3 2;2 3 4]
NOT?
JKL
E'GH.

In general, the shape ot the result of A[RJC] 1s (pR),pC. Thus, if R
and Care botn vectors, the result is a matrlx; if Rand C are both
matrices (rank 2), the result is an array of ranK 4. Similarly, If R
and C are both scalars, the result is scalarJ if R is vector and C
scalar, or vice versa, the result 1s a vector.

3-46

Examples:

ABCD
EFGH
IJKL
MNOP

G

GFlF

FGH
NOP

RE
GF

&I
KJ

D,4
CB

PM
OV

2
1

4
3

3
4

1
2

A

A[2;3]-~------Both scalars

A[2;3 4 ~----Scalar and a vector 2J-

A(2 4;2 3 ...----Both vectors 4]-

R+-2 2p2 3 1 4
C+-2 2Q4 1 3 2
R

C

A[P.;C].-~------Both matrices

Omitting one of the members of the index denotes all rows or columns,
depending on which is omitted. Thus, A[;C] specifies all rows (the
row index 1s omitted), and A[R;] specifies all columns (the column
index is omitted). For example,

ABeD
EFGH
IJKL
~lVOP

DHLP

MNOP

The left-hand
expression as

.A..

A[;4]

A[4;]

part of
long as

an assignment expression may be an indexed
it is ot the correct shape and size. For

3-47

example, to change elements 3 and 10 of array A to tne values 4 and 2,
respectively,

A~'ABCDEFG"IJKLMNOP'
A[3,10]+'42'

.A..
4B4DEFGHI2KLMNOP

SELECTOR GENERATOR FUNCTIONS

The selector generator fUnctions consist of:

* Index generator (t)

* Index of (1.)

* Membership (E)

* Grade up (4)

* Grade down (~')

* Deal (?)

Each of these selector generator
WhiCh are useful 1n a variety of
function following.

functions produce integer results
apPlications as discussed for eaCh

INDEX GENERATOR. The index generator is signified by the symbol Land
can have as an argument a non·negative scalar integer N to produce a
vector containing N integer values in order, beginning with the index
origin in affect. For example, 16 produces the vector 1 2 3 4 5 6 If
the index origin is 1, and 0 1 2 3 4 5 if the 1ndex or1gin is O. If
zero is used as the argument, an empty vector 1s produced.

INDEX OF. When the L function 1s used dyadlcally with a vector and a
scalar ar9ument 1n the form VECTQR1SCALAR, the index generator
function results 1n the index of the f1rst occurrence ot each element
of VECTOR 1n SCALAR.

If the scalar 1s different from all elements of the vector, a value
one greater than the index of the last element of VECTOR 1s returned,
as for example,

7

rJECTOR+'ABCDEF'
SCALAR+'J'
VECTOR1SCALAR

Note that the result of VECTOR1SCALAR is origin dependent.

3-48

MEMBERSHIP FUNCTION. The memberShip function Is denoted by the symbol
E. If A 1s an array, the expression AEa produces an array with the
same shape as A but consistIng of boolean values only (B may be of any
shape). The elements of the result have a value of 1 if the
corresponding element of A also eXists In H, and a value of 0 if the
corresponding element of A does not exist In B. For example,

A
ABeD EFGH IJKL MNOP QRST UVWX

1L
BAD NEr.lS

AeB
1 101 1 1 000 1 0 0 0 0 1 0 1 0 0 1 0 0 1 0 100

1 0

The arguments of tne membership functIon 00 not have to be of the same
shape or rank. See below.

A
ABCD EFG9 IJKL MNOP QRST UVWX

Ji
B.4D NBf";S

C+-5 6pAOC
ABeD E
FGH r~J

KL M1ll0
P QRST

UVftlXA
CEB

1 1 a 1 1
0 0 0 1 0
0 0 1 0 1
a 1 0 0 1
1 a 0 1 0

V+-2 4pBOD
8.4D
NEWS

CEO
1 1 0 1 1
0 0 0 1 0
0 0 1 0 1
0 1 0 0 1
1 0 0 1 0

1
0
0
0
1

1
0
0
0
1

GRADE FUNCTIONS. The two grade functions, grade UP (~) and grade down
(1), apply only to numeric vectors and are sortIng functions. The
grade up function sorts the elements of a vector 1n ascending order
and produces a vector of the same length as tne argument, containing
the indices of the sorted elements of the argument. For example, it
A+l0 6 1 3 2, ~A produces 3 5 4 2 1, in whiCh the index of tne lowest
value of A 1s first, the index of the next lowest value 1s second, and
so forth. In order to access the elements Of A In ascendIng order,

3-49

rather than the lndlce$ Of the elements, the expression A(.A] is used.
For example,

A+-l0 5 3 2 1

M
54321

A[!A]
1 2 3 5 10

If two or more elements of a vector are the same, tne order Is
determined by their positions In the vector. For example,

A+-6 6 6 4- 3 6
!A

5 412 3 6

The grade down function (') produces a vector of indices of the
elements of a vector- sorted in deSCending order. Equal elements are
sorted according to their position in the vector just as they are tor
the grade up function.

Examples of the grade down function are:

A+-3 10 6 1 2
'fA

2 3 1 5 4
A['A]

10 6 3 2 1
A+-3 10 3 3 6

..u
2 5 1 3 4-

Note that the results of grade up and grade down are origin dependent.

DEAL FUNCTION. The deal function (1) selects pseudo-random integer
selections from the vector of integer values produced by the index
generator functIon (1). NO two of the selections are the same. Both A
and B are limited to scalar or unit array arguments. Each selection
from the 18 set of integers Is in accordance with the method described
for the roll function. That is, A?S produces A integers selected 1n
random fashion without replacement from the set of lB. A?B is origin
dependent.

Examples of tne deal function are:

6?9
2 4- 5 8 1 3

6?3
DOMAIN ERROR

6?3
t

3?5
3 5 1

4/6
6 2 5 l~

3·50

To select N elements at random from a vector V, the following form can
be used:

V(N?pV]

NUMERICAL FUNCTIONS

The numerical functions consist of:

* Matrix inverse (~)

* Matrix divide (~)

* Oecode (.i)

* Encode (T)

The numerical functions apply only to numeric arguments and produce
only numeric results.

MATRIX INVERSE AND MATRIX DIVIDE FUNCTIONS. The matrix inverse and
matrix divide functions are both denoted by the domino symbol (~).

The matrix inverse function is of the form

This function produces the inverse of a non-singular matrix. (A
non-singular matrix 1s one 1n which all rows and all columns are
linearly independent. For example,

2 222
2 222

is a Singular matriX.)

An example of matriX inverse is

~
1 2 3 4
234 5
3 4 5 6
456 7

ifIA
4.270079647E15
8.006399338E15
3.202559735E15
5.337599558l?14

3.469439713E15
8.006399338E'15
5.604479536E'15
1.067519912E15

5.871359514E15
8.006399338E'15
1.601279868E15
3.736319691E'15

5.07071958l?15
B.006399338E'15
8.006399338E14
2.13S039823E'15

The result is such that (~A)+.xA yields an identity matriX (that 1s,
produces a left inverse).

The matrix divide function 1s of the form

AfEB

3-51

~

The matrix divide expression

X+AfBB

can be used to sOlve systems of linear equations. for example,

A C+4- 2p1 2 3 4- 2 4- 6 8
1 0 1 0 rt

.J:...
1 1 0 0 1 2
1 1 1 0 3 4-
1 1 1 1 2 4

rEA 6 8
1 1 1 0 l?+C!iJA
1 0 1 0 A+.xR
a 1 1 0 1 2
a 0 1 1 3 4-

A+.xlfJA 2 4-
1 0 0 a 6 8
0 1 0 a (r.t/A)+.xC
0 0 1 a 2 2
0 0 0 1 1 2

B+2 4- 6 8 1 0
X+800A 4- 4-

..K.
a 4- 2 2

A+.xX
24-6 8

([iJA)+.xB
04-2 2

The matrix inverse and matrix divide tunctions apply to singular and
non-square matrices, and to vectors and scalars, but not to arrays-of
rank greater than 2 (this produces a rank error). The expression

lilA

will produce a result only If A is a non-singular array and the
columns of A are linearly independent.

Similarly, the expression

R+AI±IB

will produce a result only if:

* A and B have the same number of rows.

* The columns of B are linearly independent.

A vector argument is treated by matrix inverse and matrix divide as a
one-column matrix and a scalar argument Is treated as a matrix of
~++1 1. For scalar arguments A and S, the expression ~B Is equivalent
to fB and the expression AffiB is equivalent to A~B, except that OI±lO
prOduces a domain error (whereas Of 0 does not).

3-52

DECODE fUNCTION. The dyadic decode (base value) function (~)

evaluates two arguments and computes the sum of all the elements of
the right argument raised to a power specified by the base value of
the left argument. For example, if A+5 2 8 3 7 and 8+1 2 3 4 5, then
A~B equals 768.

If the left argument is scalar or unit, the scalar value is extended
for all the elements of the right argument, as follows:

A+-2
8+-8 8 10 2 8 10
AlB

498

The decode function Is extended to arrays as follows: each of the
vectors along the last axis of the first argument is applied to each
of tne vectors along the first axis of the second argUment. If either
of the axes Is of length 1, it will be extended as necessary to match
the length of the axis of the other argument.

Examples of the decode function are:

A+-8
B+-1 7 7 7 7 7
AlB

65535

65535
A+-4 4p8
B+-4 4p2

..!
8 8 8 8
8 8 8 8
8 8 8 8
8 8 8 8

.L
2 2 2 2
2 2 2 2
2 2 2 2
2 2 2 2

AlB
1170--1170 1170
1170 1170 1170
1170 1170 1170
1170 1170 1170

1170
1170
1170
1170

ENCODE FUNCTION. The dyadic encode (representation) function (T) is
the inverse of the decode function for some arguments. For example,

A+-8 8 8 8 8 8
8+-1 7 7 7 7 7
AlB

65535
AT65535

1 7 7 7 7 7

3-53

The above is not true when the left argument 1s scalar and the right
argument 1s vector. For example,

65535

7

A+8
8+1 7 7 7 7 7
A.lB

A.T55535

The encode function applies to arrays in the same manner as the decode
function. That Is, each vector along the last axis of the left
argument is applied to each of the vectors along the first axis of the
right argument. For example,

A+4 408
8+4 402
C+A.lBOC

1170 1170
1170 1170
1170 1170
1170 1170

DATA TRANSFORMATIONS

1170
1170
1170
1170

1170
1170
1170
1170

The two data transformation functions are format and execute. The
format function transforms numeric data in its argument to a character
representation of this data. In general, the execute function can be
considered the inverse of format, that Is, it produces a numeric
result from a character argument.

EXECUTE fUNCTION. The execute function, denoted by the symbol ~, is
both monadic and dyadic and applies to character right arguments and
numeric left arguments. The character argument can be scalar, vector
or unlt.

The execute
expression
constitute
only valid
are invalid

function considers its Character argument to be an APL
and it executes this expression. If the argument does not
a well-formed APL expression, an error results. Note that
APL expressions can be used as argumentsJ system commands
arguments.

An empty vector or one containing only spaces can be used with execute
1f no assignment arrow is placed to the lett of the execute Character,
as for example,

A+.!. '
VALUE ERROR

A+! '
t

!. '

Domain errors result if a non-character argument 1s used as the right
argument of the function.

3-54

FORMAT FUNCTION. Format (~) is a monadic or dyadic function which
converts numeric data to character arrays.

Monadic Format. The monadic format function Is of the form:

The result of the monadic format function lOOKS identical to the
result produced by the argument without the format function, however,
the format function converts the data to a cnaracter representdtion,
as follows:

'PI IS gQUAL TO ',.01
PI IS EQ~AL TO 3.141592653589793

The argument A may be numeric or character. Numeric values are
displayed in accordance with the print precision in effect (see
Section IV). The display converts to scaled form if any of the numbers
in the data are such that the number of signitlcant digits is greater
than the precision 1n effect.

Examples of monadic format are:

6
6
6

A+3 4p6
.A

6 6
6 6
6 6

A+2
.A

6
6
6

4p23*8

7.831098528El0 7.831098528~10 7.831098528g10
7.831098528El0 7.831098528~10 7.831098528El0

A+4 5p'ABCDEFGHIJKLMNOPQRSTUIWX'

A BCD-E
FGHIJ
K&MNO
PQRST

.A

Dyadic Format. Dyadic format is of the form

7.831098528~10

7.83109852BE10

where A is the control argument and B Is the data argument.

The data argument, B, may be any APL expression that produces a
result.

* If B is empty (at least on~ element of ~B is zero), the reSUlt 1s
the same shape as B except that it 1s always of type character.

* If B already 1s a character variable, the result 1s a copy of B.

* If B 1s scalar, it is treated as a one·element vector.

* It B 1s an array of rank 2 or greater, it is formatted according
to the contents of argument A.

3·55

CONTROL PAIRS. A control pair describes how to format a number by
giving the number of characters available tor the result, the type of
formatting, and the precision of the formatted number.

Width Control. Tne first number in the control-pair is called the
width. This number must be an integer between 0 and 32767. The width
controls how many characters the resultant formatted output will
occUpy. A widtn value of zero causes the minimum number of characters
to be used such that there are two spaces In front of the number. If
the width allows more characters that the formatted number requires,
spaces are added on the left.

Shape and Precision Control. The second number in a control-pair 1s
called the precision. The s1gn of the precision controls Whether to
format the number 1n decimal form or in scaled form. If precision is
positive, the data 1s displayed as a sign (no s1gn for positive data),
followed by the integer portion of the data, followed by a decimal
pOint, followed by the tractional part of the data.

The magnitude of precision controls how many fraction digits to
return. If the precision is zero, no fraction digits or decimal point
are displayed. All numbers are rounded or padded with ~eros to obtain
the proper number of fraction d1gits.

If the precision ot the control-pair 15 negative, the data 15
formatted as a s1gn (no sign for Positive data), a one-digit
Characteristic, the mantissa digits, an 'E' followed by an exponent
sign (no sign if positive), and two exponent digits.

(t'or examp le,

2.3462E02

The number of mantissa digits displayed 1s controlled by the absolute
magnitude of precision. The result is rounded or padded with zeros to
fit the precision specified. If the precision value 1s -1, the
Characteristic digit Is returned with no decimal point (the E(sign)xx
is returned). If the exponent is ~O, a trailing blank replaces the
leading Sign.

Control-Pair Formation. Dyadic format requires one control-pair for
each column in the data. It is possible, however, to specIfy the
control argument as a scalar, unIt, one-element vector, two-element
vector, or a vector with one control-pair (two elements) for each data
column. When the control variable is a scalar, un1t. or one-element
vector, then it 1s treated as a one-control-pair with a width value ot
zero, If the control variable has onlY one control-pair, the
control-pa1r is used on all columns. Note that with dyadic format, the
precision for at least one control-pair must be specified.

3-56

Dyadic Format Conditions. There are several conditions controlling
dyadic tormat, as follows:

1. It the resulting formatted output is a vector and the width
value 1s zero, any leading blanks are omitted. This is done by
not allowing the normal column separation spaces to be placed in
front of the first column.

2. The rounding process is performed on the absolute magnltuae of
the number, thus negative numbers round differently than
positive numbers,

3. There are several conditions under which the dyadic format will
generate errors:

a. Domain Error

1) One ot the numbers in the data variable would not fit
into the specified width.

2) Tne width
negative,
integer.

portion of one
or was greater

of
than

the control-palrs was
32767, or was not an

3) The precision portion of one of the control-pairs was
not in the range -32768 to +32767, or the value was not
an integer.

b. Length Error

1) Tne number of elements 1n tne control variable 1s not
one, two, or the number of data columns times-two,

c. Rank Error

1) The control variable is higher dimension than a vector,
unless it 1s a unit.

Note: See Section XI for a further discussion of errors.

Examples of dyadic format with control-pairs are:

A+6 6p3421.789473
...L

3421.789473
3421.789473
3421.789473
3421.789473
3421.789473
3421.789473

3421.789473
3421.789473
3421.789473
3421.789473
3421.789473
3421.789473

3421.789473
3421.789473
3421.789473
3421.789473
3421.789473
3421.789473

3421.789473
3421.789473
3421.789473
3421.789473
3421.789473
3421.789473

3421.789473
3421.789473
3421.789473
3421.789473
3421.789473
3421.789473

B+10 3.A
...[.

3421.789 3421.789 3421.789 3421.789 3421.789 3421.789
3421.789 3421.789 3421.789 3421.789 3421.789 3421.789
3421.789 3421.789 3421.789 3421.789 3421.789 3421".789
3421.789 3421.789 3421.789 3421.789 3421.789 3421.789
3421.789 3421.789 3421.789 3421.789 3421.789 3421.789
3421.789 3421.789 3421.789 3421.789 3421.789 3421.789

B+9 2.A
.lL

3421.79 3421.79 3421.79 3421.79 3421.79 3421.79
3421.79 3421.79 3421.79 3421.79 3421.79 3421.79
3421.79 3421.79 3421.79 3421.79 3421.79 3421.79
3421.79 3421.79 3421.79 3421.79 3421.79 3421.79
3421.79 3421.79 3421.79 3421.79 3421.79 3421.79
3421.79 3421.79 3421.79 3421.79 3421.79 3421.79

8+9 3.A
B

3.42g03 3.42g03 3.42E03 3.42g03 3.42803 3.42803
3.42E03 3.42803 3.42g03 3.42803 3.42g03 3.42803
3.42803 3.42E03 3.42g03 3.42803 3.42E03 3.42803
3.42803 3.42803 3.42803 3.42803 3.42803 3.42803
3.42803 3.42E03 3.42803 3.42803 3.42803 3.42E03
3.42803 3.42803 3.42803 3.42803 3.42E03 3.42803

B+10 4.A

JL
3.422803 3.422803 3.422g03 3.422E03 3.422g03 3.4221?03
3.422803 3.422803 3.422803 3.422E03 3.422g03 3.422g03
3.422803 3.422803 3.422803 3.422803 3.422803 3.422E03
3.422803 3.422E03 3.422g03 3.422E03 3.422E03 3.422E03
3.422803 3.422803 3.422E03 3.422g03 3.422803 3.422E03
3.422803 3.422803 3.422g03 3.422E03 3.422E03 3.422803

Quad Output. Quad output is of the form

O+A

where A 1s any APL expression which returns a result.

3421.789473
3421.789473
3421.789473
3421.789473
3421.789473
3421.789473

If A Is a Character variable, the data is diSPlayed ~tarting at the
left margin. If the printing width in effect 1s reaChed before the
last column is printed, a carriage return/linefeed is generated and
printing resumes on the next line, indented six spaces. Arrays of
rank three or higher are printed with extra lineteeds in between each
dimension. ThUS, a three-dimensional variable will print as several
two-dimensional arrays with one blank line between eaCh plane.
Similarly, -d four-dimensional array will print as severai groups of
three-dimensional arrays with two blanK lines between eaCh plane.

3-58

Examples of quad output are:

A+-4 6p123*8
O+-A

5.238909443816 5.238909443E16 5.238909443E16 5.238909443816
5.238909443816 5.238909443E16

5.238909443E16 5.238909443E16 5.238909443E16 5.238909443E16
5.238909443816 5.238909443E16

5.238909443E16 5.238909443816 5.238909443E16 5.238909443E16
5.238909443816 5.238909443E16

5.238909443816 5.238909443E16 5.238909443E16 5.238909443E16
5.238909443816 5.238909443816

A+-4 80p'ABCD'
A

ABCDABCDABCDABCDABCDA8CDABCDABCDABCDABCDA8CDABCDARCDARCDABCDABCDABCDABCDABCDflBCD
ABCDABCDABCDABCDABCDABCDA8CDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCD
ABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDflBCDABCDABCDABCDABCDABCDABCD
ABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDA8CDABCDABCDABCDABCDABCDABCD

.fr..d..
ABCD
ABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDA8CDABCDABCD
ABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDARCDABCDA8CDABCDABCDABCDABCDABCDABCD
ABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDA8CD

ABCD
ABCD
ABCD
ABCD

ABCD
ABCD
ABCD
ABCD

ABCD
ABCD
ABCD
ABCD

ABCD
ABCD
ABCD
ABCD

A+-4 4 4p'ABCD'
O+-A

Quad Input. Quad input is of the form

O+A

The system wrltes the characters 0: and unlocKs the keyboard on the
next line, indented six spaces, and awaits input. At this point, any
APL expression may be entered. ThiS expression is evaluated and the
result is used as the value of A.

Quad input example:

n·; .

34.2

3-59

Quote Quad Output. Quote quad output is of the torm

where A is any APL expression.

Operation of quote quad output is exactly the same as quad output
except that the concluding carriage return/linefeed is not generated,
This is useful 1n the case Where either the next output results from
qtiote quad or the next input request results from quote quad. In
these two cases the carriage starts where it left off with tne last
quote quad output.

Quote quad output example:

~+'TRIS IS A 'O~+'TEST'
'rHI S IS A TEST

'TffIS'O'IS A TEST'
THIS
IS A TEST

A+4 30123*8
~+A

5.238909443E16
5.238909443E16
5.238909443E'16
5.238909443E16

5.238909443E16
5.238909443E16
5.238909443~16

5.238909443E16

5.238909443~16

5.238909443~16

5.238909443!?16
5. 23 B909443,~16

Quote Quad Input. QUote quad input 1s of the form

A+~

where the result is always a string of zero or more characters.

Quote quad input reads 1n the line of characters typed by the user and
creates a character vector result to contain that input. Any
characters may be entered from zero characters (carriage return) UP to
the maximum number of Characters allowable by the system (the printing
width 1n effect 1s ignored). In the case where a preceding quote quad
output has lett the carr1age somewhere other than the left margin, the
result of the quote quad input Is as if the carriage na6 been spaced
to the current carriage position before entering the characters. The
system allows backSpacing to a point to the left of the last output
before entering data, and this Is reflected 1n the result. Note that
If characters are entered which do not cause the carriage to advance,
visual fidelity (see Section I) will not be preserved in the output,
because the computer treats every output character as If it caused a
carriage movement of one space to the left.

3-60

Quote quad input example:

A+-[J
3.14159

A
3.14159

A+-[]
THP, vALUE

.A.
TFfT? VALUE

OF .t.

OF A

IS !?~AD

IS RTiJAlJ

BY 'rRf!} SYSTEM AS IT IS TYPF'D IN

BY 'rHE SYSTP.M AS IT IS TYPi?D IN

3-61

SYSTEM FUNCTIONS liBM':.
AND SYSTEM VARIABLES I IV I

The set of primitive APL functions described In Section III deals only
w1th abstract Items such as numeric and character arrays, To deal w1th
concrete items, such as system resources, a set of system variables 1s
1dentified for use in communicat1ng among the user, APL, and tne
system (MPE) In Which APL resides,

The system var1ables are used for Interaction between APL and its
environmentJ however, there are situations where it is more convenient
to use functions based on sYstem variables when the system var1ables
themselves may not be explicitly aVailable to users, SUch functions
are called system functions,

System Variables and system fUnctions are denoted by distinguished
names, These are formed by the Quad symbOl (D) followed by a name
denotIng the variable or function (for example, 010 or DSVQ). Such
names cannot be used tor user-defined objects, and cannot be eo~ied or
erased,

SYSTEr", FUNCTIONS

Twenty four system functions are provided

Canonical representation OCR

Capture stack environment DeSE

convert DeV

Delay ODL

Expunge De;X

Function establishment DFX

Monitor values OMV

Name claSSification ONe

Name It&t DNL

Query monitor DUM

Query stop OQS

4-1

Query trace DQT

Releas. stack environment D~SE

Feset monitor DRM

~eset stop DRS

Reset trace DR!

Set monitor DSM

Set stop DSS

Set trace DST

Shared variable control DsVC

Shared variable ofter DSVO

Shared variable retract DSVR

Shared variable query OSVQ

Vector representation OVR

Four system functions .- shared variable control (DSVO), shared
variable offer (DSVO), shared variable query (OSVQ), and Shared
variable retract (OVR) •• are concerned with the management Of the
shared-variable facility and are described in Section V,

The convert (DCV) system function performs data conversions and 1s
described in Section VI,

The capture stack environment (DeSE) and release stack environment
(DPSE) system functions are used with the extended control facility
and are described in Section X.

The followIng system functions are used as debU9Qlnq aids and are
descr1bed 1n Section X;

Monitor values (OMV)

Query monitor (OQM)

Query stop (DOS)

Query trace (OOT)

4-2

Reset monitor CORM)

Reset stop (DRS)

Reset trace (OFT)

Set monitor (DSM)

Set stop (DSS)

Set trace (OST)

The remaining seven sYstem tunctlons are listed in taole 4-1 and are
described in this section,

System functions can be referenced or executed liKe any other
function. They are monadic or dyadic, as appropriate, and have
explielt results, In most cases, they also have implicit results, in
that their execution caUSeS a change in the enVironment. The explic1t
result always indicdtes t~e status of the env1ronment relevant to the
possible imp11eit result,

CANONICAL REPRESENTATION FUNCTION

The canonical representation tunct!on is denoted oY the name OCR, When
applied to a character argument representing the name of an already
established user-defined function, the OCR function prOduces the
user-defined function's canonical representation. For example, If
ROOTS Is a user-defined function,

OCR 'ROOTS'
ROOTS
'ENTER A NUMBER'
'AND THE COMPUTER WILL COMPUT~ THF SQUARE ROOT'
'AND THE CUBE ROOT'

LABEL1:N+O
LABEL2:A+N*t2
LABEL3:B+N*t3

'THE SQUARE ROOT IS '~.A
'TRE CUBE ROOT IS '~.B
'ENTER 0 IF YOU DO NOT WISq TO CONTINUE'

LABEL4:N+O
~(N~O)/5

4-3

The status ot the orioinal function ROOTS 1s Unchanqed and it can be
executed by entering ROOTS.

ROOTS
ENTER A VUMBER
AND THE COMPUTER WILL COMPUTE THE SQUARe ROOT
AND THE CUB~ ROOT
0:

45
THE SQUARg ROCT IS 6.708203932
THE CUBE ROOT IS 3.556893304
ENTER 0 IF YOU DO NOT WISH TO COVTI~U~
0:

Q

When applied to any argument Which does not represent the name of an
unlocked defined function, OCR returns a matrix of dimensions 0 0, For
example,

o 0

Possiole error reports for OCR are rank error it the argument 1s not a
vector or scalar, or domain error if the argument is not character.

VECTOR REPRESENTATION FUNCTION

The vector representation function (DVR) 1s similar to the canonic
representation function (OCR), the difference being that the result of
DVR is a vector with carriage return characters used to separate lines
of the function, 1nstead of trai11ng blanks, Note that there 1s no
carriage return on the last line of the result, Note also that the
result Of DVR usually takes considerably less storage space than does
that of OCR when executed with the same argument, because there are no
blank Characters needed to f1l1 each row of the matrix result of OCR,

An example:

DVR 'ROOTS'
ROOTS
'ENTER A VUMBER'
'AND THE COMPUTER WILL COMPUTE THE SQUARE ROOT'
'AND THE CUBE ROOT'

LABEL1:N+O
LA8EL2:A+N*~2

LABEL3:B~N*f3

'TffE SQUARE ROOT IS ',YA
'THE CUBE ROOT IS ',.8
'ENTER 0 IF YOU DO NOT WISH TO CONTINUg'

LABEL4:N+O
~(N~O)/5

4-4

Table 4-1. System Functions

REQUIREMENTS

NAME SYMBOLS RANK LENGTH DOMAIN EFFECT ON ENVIRONMENT EXPLICIT RESULT

Canonical OCRN 1;:,:ppN Character None. Canonical representation of N.
representation array. The result for anything other than

an unlocked defined function
has the dimensions 0 O.

Function DFXN None Character Fix (establish) definition of the A vector representing the name
establishment matrix, function represented by N, of the function established, or

vector, or unless its name is already in use the scalar row index of the fault
unit. for an object other than a func- which prevented establishment.

tion which is not halted.

Expunge DEXN 2;:,:ppN Character Expunge (erase) objects named A boolean vector whose Ith
array. by rows of N, except groups, element is 1 if the Ith name is

labels, or halted functions. now free, or 0 if the Ith name is
not free.

Name list DNL N 1;:,:ppN 1;:,:p,S /I./NE1 234 None. A matrix of rows (in random
(monadic) order) representing names of

designated kinds in the dynamic
environment: 1 , 2, 3, 4 for labels,
variables, APL functions, and
APLGOL functions respectively.

Name list AONLN 1;:,:ppN /I./NE1 234 None. As for the monadic form, except
(dyadic) Elements that only names beginning with

of A must letters in A will be included.
be alpha-
betic.

Name DNCA 2;:,:ppM Character None. A vector giving the usage of the
classification array. name in each row of A:

O-name is available
1-label
2-variable
3-APL function
4-APLGOL function
5-name unavailable

Delay DDLN 1;:,:ppN Numeric None, but requires N seconds Scalar value of actual delay.
value. to complete.

Vector DVRN 1;:,:ppN Character None. Vector representation of N. The
representation vector result for anything other than an

unlocked defined function has
the dimensions 0 O.

FUNCTION ESTA8LISH~ENT

A function can be created with the system function denoted by DFX. The
argument to the tUnction must be a character vector or matrix, and
must be a matrix or vector canonical representation. DFX is executed
with the character representation of the function as 1ts argument and
produces as an explicit result a character vector of the name of the
function (this 1s the name contained 1n the first statement ot the
function), If OFX cannot establish tne function, it returns a scalar
numeric denot1nq the line number COlO dependent) in whiCh tne error
was found,

4-5

The DP~X

(BOOTS),
function returns
For example,

the

BOOTS

TEST+DCR 'ROOTS'
TEST[1;2J+'B'
.T/EST

'E¥TgR A VUMB-g;R'

nam.e Of the function being created

'AVD THE COMPUTER ~ILL COMPljT~ THE SQUARE ROOT ,. ,
'AND TRE CUBE ROOT'

LABEL1:!l+O
LABBL2:A+N*t2
LABTSL3:B+N*t3

'TH8 SQUARE ROOT IS ',~A
'THE CUBE ROOT IS ',~B
'ENTER 0 IF YOU DO NOT WISH TO CO'TINUS'

L.4BE L4: N+O
-+(N~O)/5

EXPUNGE FUNCTION

The expunge function 1s denoted by the name DEX and is used to
eliminate an object from tne active workspace,

The DEX function will not expunge a laoel or a halted fUnction, (A
label Is a name used to identity a speeIflc statement 1n a defined
function, and a halted funetion is a funetion that has been halted
While In execution mode,)

The DEX function returns a logical vector result of 1 if the name 1s
presently available, or a result Of 0 if it IS not, A 0 also 1s
returned 1f the argument used wltn DEX is not a well-formed name. A
rank error 1s reported if tne argument is of higher rank than a
matrix, or a domain error it the orgument 1s not Character,

An example of the DEX function is as tollows:

DEX 'ROOTS'
1

NAME LIST FUNCTION

The name list function is denoted by the name DNL and can oe used
monadically or dyad!cally, D~L returns a Character matrix, each row
of which represents the name of a label, variable, or function
currently in the dynamic environment.

When used dyadically, tne left argument is a scalar or vector which
restricts the names produced to those whose initial letter 1s the same
as a letter occurring in the argument, For example, if the left

4-6

argument 1s A, then
the DNL function.
whose values may be
and 4 respectively
functions, and APLGOL

only names beginning with A will be produced by
The right argument of DNL Is a scalar or vector
the integers 1, 2, 3, or 4, The values 1, 2, 3,
produce the names of labels, variables, APL
functions,

If the vector value 1 2 3 4 is used as the right argument of DNL, the
names from all categories are produced, The results produced are 1n
the order In which the names first appeared in the workspace,

Examples of tne DNL function used dyadlcally are:

'BERT' ONL 2 3

ROOTS
B
EDITl
RESQAPEl
RESHAPE2

'B' ONL 2 3
B

'R' ONL 3
ROOTS

4-7

When used monadlcally, there 15 no restrict10n on initial letters. The
right argument performs the same as when used dyadically. An example
of monadic use is:

ON~ 2 3
CIRCLEART?A

ROOTS
?II

A
B
e
y
EDIT1
AT?LGO L 1
APLGOL2
APLGOL3
APLGOL4
AP['GOL5
APLGOL6
APLGOL7
APLGOL8
APLGOL9
APL11
APL3i
APL32
APL33
APL34
AP~35

APL5i
AP['52
APL6i
APL62
APLi01
APL102
.4PL103
APL104
APLSET
YIELD
INCOME~

VEe
XQR
CHAR
SHAPE
RTESHAPEi
REBHAP'S2
D
X
Z
VECTOR
ALTER
ARRAY

4-8

Further uses of the DNL funct10n include tne fOllowing:

* In conjunction with the expunge function (OEX), all the objects
of a certain class can De dynamically erased; or a function can
be defined that w1ll clear a workspace of all but a preselected
set of objects.

* In conjunction with the canonical representation function CDCR),
functions can be wr1tten to display automatically the definitions
of all or certain functions in the workspace, or to analyze the
Interactions among functions and variables.

* The dyadic form of DNL can be used as a convenient quide in the
choice of names while designing or exper1menting with a
workspace.

NAME CLASSIFICATION FU~CTION

The monadic name classification tunction 1s denoted by the name ONe.
Tn1s function accepts scalar, vector, or matrix arguments and returns
a numerical ind1cation of the class of the name (or names) represented
by the argument. For example,

ONC 'ROOTS'
3

ONC'ABN'
o

ONe 'e'
2

ONC 'A'
2

The result of tne DNL function can be Used as an argument for DNe, but
other character arrays may also be used. The results are integer
values from 0 to 5. The inteQers 1, 2, 3, and 4 have the same
meanings as for DNLJ a result of 0 Signifies that the corresponding
name 1s available tor any use: and a result of 5 signifies tnat the
name 15 not valid because it is a dlstingu1shed name, or 1s
incorrectlY formed,

DELAY fUNCTION

The delay function is denoted by the name DOL and causes a pause in
the execution of the statement in which it appears, The duration Of
the pause, in seconds, 1s determined by the argument of the DOL
function~ the accuracy, however, 1s limited by possible contend1nQ
demands on the system when the statement 1s executed, Additionally,
the delay can be overridden bY a hard interrupt,

The result of the DOL function 1s a scalar value equal to the actual
delay, If the argument used with ODL 1$ not a numeric scalar Value, a
rank or domain error is reported.

4-9

Because the delay function uses only a small amount Of computer time
compared to connect time, it can be used repeatedly in s1tuations
where it is desirable to determine 1f an expected event has occurred.
This is useful 1n 1nteractions between a program and the user, and 1n
work with snared varla~les as discussed in Section V,

Example,

'TIME+ODD 30TIMF.
3.032000065

SYSTEM VARIABLES

system variables are shared between a workspace and the APL system,
thus they are instances of shared variables wnieh are discussed 1n
Section V. Sharing occurs automatically when a workspace 1s
activated, or, when a system variable 1s used in a functiQn, each time
that function 1s used,

The Character1stlcs of Shared variables that are signif1cant here are;

* When a variable is shared by two processors, the value Of the
variable may be different for each processor.

* Each processor 1s free to use or not use the value specified by
the other processor for a variable,

System variables are shown In table 4-2. Included is the name of each
variable, the name used to denote the variable, its purpose, its value
in a clear workspace (Where appropriate', and its meaningful range,
Note that there are two classes of system variables, as follows:

1, The value specified by tne user Cor available in a clear
workspace) for a system variable 1s used by the processor 1n
operations relating to this variable, If the value 1s
Inappropriate, a do~aln error occurs at assignment exeeut1on.

Included in this class are:

Assert level OAL

Comparison tolerance OCT,

Horizontal tabS OHT,

Index origin 010,

Language DLA

Latent expression DLX.

4-10

NAME

Comparison
tolerance

Index origin

Latent
expression

Printing
precision

Printing
width

Random link

Account
information

Atomic vector

Li ne co unte r

Time stamp

Assertion
level

Execution
trace

Branch trace

Virtual
memory

Language

Terminal type

SYMBOLS

OCT

010

OLX

OPP

OPW

ORL

OAI

OAV

OLe

OTS

OAL

OXT

OBT

DVM

OLA

OTT

Table 4-2. System Variables

PURPOSE

Contains the comparison tolerance.
Used in monadic ,
dyadic < :::::; = ~ > # E

Contains the index origin.
Used in indexing and in ? 1 41 ~ <\' 0 FX

Executed on activation of workspace

Contains the print precision. Affects
numeric output and monadic format

Contains printing width

Contains the random link. Used in
roll and deal primitive functions

Contains connect time this session and
CPU time this session, in milliseconds

Contains all available characters in APL

Contains statement numbers of func
tions in execution or halted, most
recently activated first

Contains year, month, day of month,
hour (24-hour clock), minute, second,
millisecond.

Contains the APLGOL assertion used
in APLGOL assertion-checking

Contains trace information. Prints value
in TRACE format

Prints value in TRACE format as if
value were argument to branch (~)

Contains virtual memory paging
scheme parameters

Contains language setting

Contains internal terminal type

4-11

INITIAL
VALUE

(empty vector)

10

80

a

See page 4-17

a

a

256 -24

'APL'

Same as
previous workspace

MEANINGFUL
RANGE

a to 1

0,1

characters

1 to 16

20 to 255

a to 1

Cannot be set

Cannot be set

Cannot be set

Cannot be set

-32768 to
32767 (integer)

Any value

Any value

N[1] : 2*X
7:::::; X:::::; 12

N[2] : X>O -
2 x Y

2:::::;Y:::::;L
X<O : 2:::::;X:::::;L

L stack size
dependent

'APL'
'APLGOL'

See page 4-22

Table 4-2. System Variables (Continued)

NAME SYMBOL PURPOSE

Horizontal OHT Contains tab positions
tab setting

Work area OWA Contains amount of space still unused
available in workspace (in bytes)

Stack names OSN Contains character matrix of names of
suspended functions

Workspace OWl Contains workspace identification
id entification

Backspace DB Backspace character

Linefeed OL Linefeed character

Return DR Carriage return (new line) character

Tab OT Tab character

Null ON Null character

Escape DE Escape character

Alphabet DA Alphabet

Digits OD Digits

Printing ~recls1on OPP.

Print1ng width DPW.

Random link. ORL.

Terminal type OTT

Virtual memory DVM

Workspace identification OWl

4-12

INITIAL
VALUE

10

1610474
bytes

o Op "

"

ASCII 8
O-origin 0 A V [148]

ASCII 10
O-origin 0 AV [140]

ASCII 13
O-origin DAV [152]

ASCII 9
O-origin DAV [141]

ASCII 0
O-origin DAV [138]

ASCII 27
O-origin DAV [166]

ABCDEFGHIJKLM
NOPQRSTUVWXY

0123456789

MEANINGFUL
RANGE

Non-negative
integer
vector

Cannot be set

Characters

Characters

Cannot be set

Cannot be set

Cannot be set

Cannot be set

Cannot be set

Cannot be set

Cannot be set

Cannot be set

2, The value specified by tne user 1s not used, The APL processor
always resets the variable before it 1s used,

InclUded 1n this class are:

Account information OAI

Alphabet OA

Atomic vector OAV

BaCKspace DB

BranCh trace DBT

D1gits 00

Escape OE

Execution trace OXT

Line counter OLe

Linefeed 01"

Null ON

Return OR

Stack names OSN

Tab 01

Time stamp OTS

WorKing area OWA

COMPARISON TOLERANCE

The comparison tolerance system variable 1s denoted by the name OCT
and 1s used to establish the tolerance for the monadic functions less
«), not greater (S), equal (=), not less (~), qreater (», not equal
(~), floor ell, and ceiling Cr)J and the mixed functions index Of (1)
and membership (E),

4·13

In APL\3000, as with all languages, floating-point numbers are
represented in a finite number of bits. Tnls makes some floating
pOint numbers difficult to represent exactly, For example, the
question "1s A equal to B" is straiqhtforWard unless floating-point
numbers represented in a finite number of bits (64 bits for APL\3000)
are inVOlved. The A=S question tnen becomes harder to answer because
many floating- point numbers cannot oe represented exactly in 64 bits,
Thus, problems arise 1f the equals test 1s defined to be "exact," The
following example illustrates this point,

A~t970A

1.030927835.~-02
DCT~O

1=A x 97
o

A THIS MAKes '=' AN EXACT TEST

A BSCAUS8 1/97 CANNOT BE STORED ~XACTLY
A THeN 'A' IS NOT A NUMBER THAT CAV
A Be MULTIPLI~D BY 97 TO R~TURN 1

This particular way to define ~ 1s then not very consistent with the
way = would be expected to act, Thus tne definition of = (and some
related functions) is not an "exact" definition, but Is relative to
the magnitude of tne operands and the value Of OCT, The definltlon 1s

X~IA-B
Y~r/(IA),IB
IF (YxDCT)~X THEN
A IS eQUAL TO B

C 1]
[2]
[3]

Notice that the above set of equations, wh1le concise and correct, 1s
difficult to understand. Paraphrasing them as tollows may help:

Equation [ll sets the variable X to the absolute value of the
difference of the two arguments A and B,

Equation (2J sets Y to the absolute value of the larger of the two
arguments A and B.

The third (and crucial) equation (3] states that the arguments are
defined to be equal 1t OCT times the larger of the arguments (I)
1s larger that the difference between the arguments,

Note that OCT does not specify the absolute difference between the
arguments but the difference relative to the size of the arguments.
Thus two big numbers need not be as close, in an absolute sense, as
two small numbers. Note that under this definlt1on, 1f OCT Is 0, the
equals test Is exact 1n that the difference between the arguments A
and B must be 0, exactly, for equation [3] to be true,

4-14

The functions (less, not greater, equal, not
floor, ce111nq, index of, and memberShip)
the tolerance result in an error unless the
"Integers." In APL\3000, this test for
following way:

less, greater, not equal,
for whlen OCT establishes
operandCs) are cons1dered
1nteger 1s done 1n the

1) First, the integer closest to the argument 1s obtained.

2) Second, the integer obtained in 1) 1s compared in a relative
sense to the argument.

3) If the integer from 1) is relatively equal to the argument,
that integer is used as the argument.

A comparison tolerance example:

A+34*t5·0A
2.024397458

B+33*t50B
2.012346517

o

o

1

INDEX ORIGIN
•

A=B

LJCT+18-2
A=B

The index origin system variable Is denoted by the name 010 and Is
used to establish the index origin (I-origin or O-origin) for the
monadic function roll (1); the mixed functions deal (?), index
generator (1), index of (l), grade UP (~), 9rade down (W), and
transpose (~), and the system function fix (OFX). For example,

4

5

A+1 2 3 4 5 6 7 8 9 0
iJIO+1
A[4]

OIO+O
A[4]

4-15

LATENT EXPRESSION

The latent expression system variable 1s denoted by the name DLX. The
APL statement represented by a latent expression 1s executed
automatically whenever a workspace is activated, for example, if the
exr>ress!on

DLX "'THIS IS WORKSPACE 3'"

1s entered and workspace WS3 1s saved, tne phrase THIS IS WORKSPACE 3
will be displayed when WS3 1s activated, See beloW,

OLX+"'TRIS IS WORKSPACE 2'"
)SAVE WS2

SAVED 11:12 10/14/76 WS2
)LOAD ~S2

SAVgD 11:12 10/14/76
THIS IS WORKSPACE 2

The form DLX+'+DLC' can be used to restart a suspended function
automaticallY and the form DLX+'TEST' also may be used to activate the
function TEST when a workspace is activated. For example,

OLX+'TEST'
)EDIT

TEST; IJLX [oJ
[lJ
[2J
[3J

DLX+'OC,pO+"LATENT ~XPR~SSION DRMONSTRATION t
f.

'FUNCTION TEST WILL Bg CA&G~D AUTOM4TICALLY'

)SAilB WS1
SAVED 11:14 10/14/76 WS1

)LOAD WS1
SAVED 11:14 10/14/76
FUNCTION TgST WILL BE CALL~D AUTOMATICALLY

Note that system commands may be used with DLX,
DLX+-)f"HS'- is va11d.

4-16

For example,

RANDOM LINK

The random linK system variable 1s denoted by the name DRL. The random
linK is a value used bY APL to generate random numbers for tne roll
(1) and deal (?) functions, The random l1nk variable has a value of 0
when a workspace In f1rst activated, After a roll or deal function is
executed, the random link Is changed, so that when the roll or deal
function 1$ executed again the same set of random numbers 1s not
repeated, for example,

ORL
0

7?9
1 8 6 2 9 5 1+

ORL -9.928070009E 02
7?9

4 5 3 8 2 9 6
OR['

.5041744709

If the random linK 1s set by the USer before executing a roll or deal
function, this value 1s used by APL as the linK value, For example,

ORC.-O
7?9

1 8 6 2 9 5 4
DRL.-O
7?9

1 8 6 2 9 5 4
ORL.-.5576
7?9

4 3 7 9 1 8 6
ORL.-.5576
7?9

4 3 7 9 1 8 6

4-17

P~INTING PRECISION

The printing preeision system variable CDPP) contains the prec1sion of
values displayed. Examples are:

PRINTING

10
A+-34*12
A

2.386420684E18
OPP+-8
~

2.3864207E18
OPP+-6
~

2.38542l!:18
OPP+-4
~

2.386E'18

WIDTH

The printing width system variable (OPW) contains the
for values displayed by APL,

An example:

OPW
80

A+t800A
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

23 24 25 26 27 28 29 30 31 32 33 311- 35 36
42 43 44 45 46 11-7 48 49 50 51 52 53 54 55
61 62 63 64 65 66 67 68 69 70 71 72 73 74
80
OPW+400A

1 2 3 4 5 6 7 8 9 10 11 12
13 14 15 16 17 18 19 20 21
22 23 24 25 26 27 28 29 30
31 32 33 34 35 36 37 38 39
40 41 42 43 44 1J5 46 47 1J8
1J9 50 51 52 53 54 55 56 57
58 59 60 61 62 63 64 65 66
67 68 69 70 71 72 73 74 75
76 77 78 79 80

4-18

printing width

19 20 21 22
37 38 39 40 41
56 57 58 59 60
75 76 77 78 79

ACCOUNT INFO~MATION

The account information system variable 1s
Its result 1s the CPU time and the connect
session, in m1lliseconds.

An example of the DAI system variable ~s:

[JAI
39525 1610229

[JAI
39871 1619113

ATOMIC VECTOR

denoted by the name DAI.
time used so far in the

The atomic vector system variable 1s denoted by the name DAV. Its
value is a 2So-element character vector containing all posslo1e APL
characters.

Indices of known characters, such as A, a, :, <, and so forth, can be
determined by an expression SUCh as DAV1'AB:<'.

Examples of the DAV variable are:
OAV

0123456789 ~~B~C~D~E~FlG~HHIlJlKKL~MMNMOQPEQgRES~TIUQV~W~XKYrZZ6~<S>~=~VA-€t+~T/
\()(] ++VO'o.;:O-+tx?pl0*rLI •• e~:m.*~I"~A'f~lY$ ~~$wac~un

Note that prInting of DAV may result in erratic termInal behaviQr due
to the output of control characters,

LINE COUNTEF<

The line counter system variable, denoted oy the name D~C, produees a
vector of the statement numbers of funct10ns In execution or halted.
The most recently activated statement numbers are displayed first, For
example,

ROOTS
ENTER A lVUMBER
AND THE COMPUTER WILL COMPUTE THE SQUARE ROOT
AND THE CUBE ROOT
0:

34
ROOTS[5]*

OLe
5

-+-6
ROOTS[7]*

OLe
7

-+-10
0:

o

4-19

STACK NAMES

The stack names system variable (OSNl returns the names of all
user-defined functions on the stack. For example,

ROOTS
ENTER A VUMBER
AND THE COMPUTER ~ILL COMPUT~ THE SQUARB ROOT
ROOTS[3]*

OS'N
ROOTS

0:

WORKSPACE IDENTIFICATION

The workspace ldentlflcation system variable COWl) contains tne name
of the active workspace, If the workspace Is unnamed, an empty vector
1s returned, For example,

TIME STAMP

)LOAD 1182
SAleD 11:12 10/14/76
THIS IS WORKSPACE 2

OWl
WS2

The t1me stamp system variable 1$ denoted by the name OTS and returns
the year, month, day of the month, hour (24-hour clock), m1nute,
second, and millisecond. For example,

OTS
1976 10 14 11 33 1 700

ASSERTION LEVEL

The assertion level system variable (OAL) establishes APLGO~ assertion
checking level, The DAL system variable indicates the lower bounds of
assertions to be cheeked, EaCh tIme an ASSERT statement 1$
encountered in an APLGOL user·deflned program, the assertion level is
cheeked aqalnst the first expression in the ASSERT statement. If the
assertion level Is smaller than the level set by OAL, tne entire
statement 1s regarded as a comment and 1s not executed. See Section
IX for a further discussion of the AP~GOL ASSERT statement.

4·20

EXECUTION TRACE

The execution trace CDXT) system variable 1s used to trace the
execution of a statement, Or to determine the type (Character or
numeric), shape, and value, of the result Of an APt expression, When
read, OXT always has the value" (empty character vector). Upon
assigning a value to OXT, nowever, the type, shape, and value are
displayed on the terminal 1n the same format as when tracing a
function with the OS! system variable, See Sect10n IX for a
discussion of OST and trace format,

B~ANCH TRACE

The branch trace system variable (OST) causes APL to display values 1n
trace format as If the value Is an argument Of a branch arrow (+). See
Sect10n IX for a discussion of trace format,

VIRTUAL MEMORY

The virtual memory system variable (DVM) allows a user to control the
paging scheme used by APL 1n managing the active workspace, When read,
DVM yields a four-element integer vector Whose elements are the page
Size (in bytes), the nU~ber of pages to De used, the number of page
faults wh1ch have occurred s1nce the last assignment of DVM or tne
last)SAVE,)LOAD, or)CLEAF (whichever occurred last), and the staCk
sl~e of the HP 3000 stack used (in words), When assigning a value to
OVM, an integer vector is used, the first two elements Of which
replace the first two elements of DVM, and the rest is Ignored.

The firSt element of the value assigned to OVM must be a power of two
between 2*1 and 2*12. The second element can either be positive or
negative, If positive, it implies a congruent set ~agln9 sCheme, and
must be a power of two between 2*2 and a numher dependent on the stac~
size, If the second element is negative, it implies a linked list
paqlng scheme, and can be any integer between -2 and a negative number
again dependent on the stack size.

If either of the first two elements of the vector beinq assigned to
OVM 1s out of range, the ass1gnment has no effect.

LANGUAGE

The language system variable CDLA) contains the default language Of
the translator. Wnen the APL\3000 editor or the DFX function 1s used
to create a user·deflned function, the funetion 1s assumed to be 1n
either APL or APLGOL, The argument of DLl 1s a Character vector 'APL'
or 'APLGOL~ to specify the translator to be used.

4-21

TERMINAL TYPE

The terminal
The terminal
follows,

type system variable (OTT) contains the terminal type,
type 1s specified by a character vector argument as

'AJ' w Anderson Jacobson

·COI' • Computer Devices, Inc.

'GSI' • GenCom systems, Inc.

'BP' • Bit Pairing

'CP' - Character PairIng

'HP' • Hewlett-PaCkard HP 2641A .

HORIZONTAL TABS

The horlgontal tabs system variable (OHT) 1s used to set internal tab
stops and the interpretation of the tab character on input. OHT can
be assigned an inteQer vector, each element of which denotes the
number of character positions between a tab stop and the left margin.
The vector need not be in any particular order, Upon reading OHT, the
tab stop positions, in ascending order, are returned, Ass1qning an
empty vector to OH! causes operation to be as though there were no tab
stops.

The OHT system variable has no effeet if the terminal type (OTT) 1s
ASCII, If OTT = 'ASCII~, an implic1t OMT 1s preserved but ignored.
Upon suosequent resetting Of the terminal type to non-ASCII, an
Implicit OHT+OHT 1S performed and the stored value becomes effective,

WORK AREA AVAILABLE

The worK area available system vara1ble COWA) has as its value an
integer representing, in bytes, the approximate amount Of storage
still available in tne active workspace, This system variable 1s not
explicitly changeable, but changes every time storage in the worKspace
1s used or released.

CHARACTER SYSTEM VARIABLES

S1x control cnaracter system variables, and three character sequence
variables are available. These are scalar (in the ease of the control
Characters) or vector (1n the case ot the character sequences)
variables, whose values are constant from one read to the next. These
variables arel

ASC I I VALUr: ATOMIC VECTOR C lV)
NAME CHAR-ACTER DECIMAL OCTAL INDEX (O-ORIGIN)

DB Backspace 8 10 148

DL Llnefeed 10 12 140

DR Carriage Return 13 15 152

DT Pa.w Tab 9 11 141

ON Null 0 0 138

DE Escape 27 33 166

DA Alphabet 'ABCDEfGHIJKLMNOPQRSTUVWXYZ~

DO Digits "0123456789'

DAV Atomic Vector (See page 4-19)

4·23

111I111'n SHARED VARIABLES .1 v 1

Shared variables are used to communicate between two processes, This
allows two independent concurrently operating processes to cooperate
with one another by Sharing information which each process can use tor
its own purposes. Currently, variables may be shared between the
active workspace, the APL system, and the file system.

Shared variables may e1ther be global or local, and are SimIlar to
ordinary variables except that shared variables may not be used with
indexed assignments. A shared variable may appear on the left of an
assignment statement, in which case its value 1s said to be set, or
wrltten~ or it may be used elsewhere in a statement, in which case its
value is said to be used, or read. Either form is defined as an
access,

A shared variable can have only one value at any given instant;
however, either process can change the value. Thus a process using a
shared variable may find its value different from that which it
assigned previously, or from one read to the next.

Although a process can share variables with any number of other
processes simUltaneously, each sharing is bilateral: that Is, each
shared variable nas only two owners. This does not detract from the
efficiency of the system because one process can share variables
bilaterally with several other processes, controlling their access to
these variables as required.

Four system functions are provided to establish the sharing of
variables. Two ot the functions are used for the actual management of
the shared variables, and the other two are used to provide related
information. The functions are listed 1n table 5-1.

OFFERS

An offer to share a variable 1s performed by the system function DSVO.
This function can be used monadically or dyadlcally, Tne monadic form
1s DsvO PN, where PN is a Character vector representing a shared
variable identifier, The dyadic form is PI DSVO PN, where PI is a
character vector identifying the other process with which Sharing 1~
to be accomplished, and PN is as noted above,

The shared-variable identifier generally cons1sts of two names. The
first name indicates the variable to be shared, and the second name is
a substitute, or surrogate, name which is offered to match a name
offered by the other process, The surrogate name is not necessary,
only one name need be used, (In this case, the name of tne variable
is its own surrogate.)

5-1

Table 5-1. System Functions for the Management of Sharing

REQUIREMENTS·

SYMBOL NAME RANK LENGTH DOMAIN EFFECT ON ENVIRONMENT EXPLICIT RESULT

PI O)VO PN Dyadic 2~ppPN (xI-1tP)e1,-1tpN Characters Tenders offer to process P if Degree of coupling now in
offer first (or only) name of a pair effect for the name pair.

is not previously offered and Dimension: xI-1 tpN.
not already in use as the
name of an object other than
a variable.

DSVO PN Monadic 2~ppPN None ** None Degree of coupling now
offer in effect for the name pair.

Dimension :x/-1 tpN.

CDSVC PN Access 2~ppPN (1 ~ppC)"1= xlpC A./CeO 1 Sets access control. New setting of access
control or control.

2~ppC (PC)= (-1 tpN),4 ** Dimension: (-1tpN),4.

DSVC PN Access 2~ppPN None ** None Existing access control.
control.

DSVR PN Retraction 2~ppPN None ** Retracts offer (ends sharing). Degree of coupling before
this retraction. Dimension:
x/-npN.

OSVQ P Inquiry 1~ppP Vector Characters None If P is empty: Vector of identi-
fication of processers making
offers to this user.
If P= vector: Matrix of names
offered by process P but
not yet shared.

*If a requirement is not met the function is not executed and a corresponding error report is printed.
**Each row of N (or N itself if 2~ppN) must represent a name or pair of names. If a pair of names is used for an offer (dyadicOSVO), either

the pair, or the first name only, can be used for the other functions.

The surrogate name has no effect other than controlling the matching
of the shared variables, thus making it pOSSible for one process to
operate with no direct knowledge of, or concern with, the variable
name used by the other process. In addition, the same surrogate name
may be used for offers to several processes at the same time. When
this 1s done, however, each use of a particular surrogate name must be
aSSOCiated with a different variable name oecause a variable may be
shared with only one other process at any given time.

The explicit result of the expression PI DSVO PN is the degree of
coupling of the name or name pair in PN, as follOWS:

o - Sharing is not completed.

2 - Sharing is completed.

An offer of a name to any other process increases the coupling if no
other ofter has been made (0 coupling), and the name is not the name

5-2

Of a label, function, group, or previously shared var1able, An offer
never decreases the coupling,

An example of the dyadic use of the offer function Is as follows:

'FILE' OSVO 'ABC CTRLO'
2

The monadic form of the otter function COSVO PN) does not affect the
coupling of the variable contained in PN; however, the degree of
coupling is reported as the explicit result, If the degree of
coupling is 2, a repeated offer to share this variable has no fUrther
implicit result, In this case, the monadic or dyadic form may be used
for inquiry to determine the degree of coupling,

An example of the monadic use of the offer fUnction is as follows:

osvo 'ABC'
2

The offer fUnction will not produce the proper result unless all the
requirements listed in table 5-1 are met. An appropriate error report
Is generated when the requirements are not met.

A set of offers can be made with one dyadic offer function by using a
character matrix left argument, or a scalar, vector, or unit argument
Which Is (automaticallY) extended, with a character matrix right
argument, Each ot the rows of the right argument represent a unique
name or name pair. The offers are treated in sequence~ the eXPlicit
result is a vector of the resulting degrees of coupling.

ACCESS CONTROL

As mentioned previously, the value of a shared variable may be changed
by either of the processes sharing it. For most applications, it 1s
important to be able to determine whether a new value has been
assigned, or whether use has been made of a current value before a new
value is assigned, An access control mechanism is incorporated In the
APL shared variable facility for this purpose.

The access control uses the dyadic form of the system function SVC to
inhibit the setting or use of a shared variable by either of its
owners, depending on the access state of the variable, and the value
of an access control matrix CACM) Which is set jOintly by the two
owners.

A delay is caused by an inhibition of an access, resulting in a
negligible amount of computer time. The keyboard is locked during
this period. A hard interrupt during the delay will abort the access
and unlock the keyboard.

The three possible access states for
transitions between states, and the

5-3

a shared variable, the possible
potential inhibitions imposed by

the access control matrix, ACM, are shown
figure refers to the access state matrix,
state matrix are as follows:

in figure 5-1. ASM 1n the
Tne codes for the access

o 0 1 1 - Initial ASM (can be used by process A or B).

o 1 0 1 - Can be set bY process A.

1 0 1 0 - Can be set by process B.

The operations permIssible for any state are indicated by the zeros 1n
the expression ACMAASM. Thus, referring to figure 5-1, each of the
following statements can be validated,

If ACM£l;lJ=l - Two successive sets by A require an intervening
access (set or use) by B,

It ACM[lJ2J=1 - Two successive sets by B require an intervening
access (set or use) by A.

If ACM[2~lJ=1 - Two successive uses by A require an intervening
set by B.

If ACMl2:2J=1 - Two successive uses oy B require an intervening
set by A

The value of the access state matrix (ASH) is not directly available
to a user, but the value Of the access control matrix (ACM) Is. The
ACM can be obtained from the monadic function Dsvc ~N', where N 1s the
name of tne shared variable of interest.

Note that if two owners use the tunction DSvc 'N', the results are
reversed. In other words, 1f user A enters DSvc 'N', the result 1s
the access control vector 1 4pACM. User B, however, on using the same
expression, w11l obtain the reverse of the access control vector, or
¢ACM, The reason for the reversal Is that sharing 1s symmetric, that
is, neither process has precedence over the other, and each sees a
control vector In which the first one of each pair of control settings
applies to that process' accesses. This can be seen from figure 5-11
if the rows of A and B are reversed, the access control matrix wl1l be
the row reversal of the matrix shown.

The access control matrix setting for a shared Variable 1s determined
in a manner that retains the functional symmetry. An expression such
as L DSVC ~N' executed by user A ass1gns the value of the left
argument L to a four-element vector. A sImilar action by user B also
results in a four-element vector. If these vectors are called VA (for
user A) and VB (for user B), then the value of the access control
matrix can be determined as follows:

ACM+(2 2pVA)A~2 2pVB

~4

1010
ACCESS STATE

MATRIX
SET BY A

,----------SET BY A-----------..

,----------- USED BY B---------""-

0011
ACCESS STATE

MATRIX
INITIAL STATE

A one in an element of ACM inhibits the associated access.
Allowable accesses are given by the zeroes in ACM~ASM.
Access control vectors as seen by A and B, respectively, are
,ACM and ,cbACM.

The access state matrix represents the last access: ones occur
in the last row if it is not a set, and in a column if it is, the
first column if set by A and the last if set by B.

Figure 5-1. Access Control of a Shared Variable

5-5

0101
ACCESS STATE

MATRIX
SET BY B

Because the ones in the access control matrIx inhibit the
corresponding actions, it can only be the case that a user can
increase, and not decrease, the degree of control imposed by the other
user. A user can, however, restore the control to the minimum level
available to him by using the DSVC function with a left argument of
all ;eros,

The initial values of VA and VB when sharing 1s first offered are
zero, Access control can be imposed only after a variable 1s offered,
however, after once be1ng offered, access control can be imposed
whether or not the sharing is completed, In other words, access
control can be imposed either before or after the degree of coupling
reaches two,

The access state when a variable is first offered (the degree of
coupling is one) 1s always the initial state as shown in figure 5-1.
completion of sharing does not change this access state, however, if
the variable 1s set or used before the offer 1s accepted, the access
state Changes accordingly,

Table 5-2 lists several settings of
settings also CoUld be represented by
figure 5-1 and deleting the l1nes
inhibited for each particUlar case.
figure 5-1 would be deleted when
imposed.

the access control vector, These
omitting the control matrix from
representing accesses which are
For example, all Inner pathS in
maximum restraint (all ones) 1s

Table 5-2. Access Control Vector Settings

ACCESS CONTROL
VECTOR AS SEEN BY

A B

o 0 0 0 o 0 0 0

o 0 1 1 o 0 1 1

1 1 0 0 1 1 0 0

1 1 1 1 1 1 1 1

o 1 1 0 1 0 0 1

COMMENTS

No constraints.

Half-duplex. Ensures that each use is
preceded by a set by partner.

Half-duplex. Ensures that each set is
preceded by an access by partner.

Reversing half-duplex. Maximum
constraint.

Simplex. Controlled communication
from B to A. (For card reader, etc.)

Several access control matrices can be set by using matrix arguments
in the DSVC functions as tollows:

To set N access control matrices, use an N by 4 matrix left
argument tor DsvC and an N-rowed right argument of variable names,

The explicit result produced Is an N by 4 matrix of the current values

5-6

(the 1 4p) of the control matrices.
Lnhlbits, the left argument can be a
left argument can be a single O.

RETRACTION

If control is being set for all
single 1: for no inhibits, the

The system tunction denoted by the name DSVR is used to retract
sharing offers. The argument ot the DSVk function can be a single
name to retract a single otfer or a matrix of names to retract several
offers.

The explicit result of the DSVR function is the degree of coupling for
each name specified in the argument prior to retraction. The implicit
result Is to reduce the degree of coupling for all specified names to
zero.

The APL system retracts sharing automatically if the connection to the
computer Is interrupted, if the user logs off, or it a new workspace
is loaded (including clearing the active workspace). sharing ot a
variaole also 1s retracted automatically if the variable is erased by
either user or, if it is a local variable, upon completion of the
function in which it appeared.

The value of a shared variable set by one process often will not be
represented in the partner process' workspace until it is actually
required to be there. Conditions requiring the value to be
represented are when the variable is to be used or when Sharing is
terminated.

Under any of the above conditions, it is possible that a WS FULL error
message will be reported. The prior value of the variable remains in
effect In this case, and, after correct1ve action, the particular
action that caused the error message can be repeated and the current
value of the variable will be brought into the workspace.

INQUIRIES

The monadic system functions DSVQ and DSVC (already discussea), and
DSVQ produce information concerning the shared variable environment
but do not alter it.

If the DSVQ functlon is executed with an empty vector argument, the
result is a vector containing the identification of each process
maKing any sharing offers.

If the argument to the DSVQ function specifies a particular process,
the result 1s a matrix of variable names offered by the identified
process. This matrix does not contain the names of variables whiCh
have been accepted by counter offers.

To produce a character matrix Showing the names of shared variables in
a dynamic enVironment, the expression shown below can be used:

M+ONL 20M (O~DSVO M)fM

The names now. will be in variable M.

5-7

1 lUI 11.11.
APL\3000 FILE SYSTEM ,I VI 1

Interface between APL\3000 and MPE Is provided by the shared variable
facility. A process named 'FILE~ shares certain variables when they
are offered by an APL user.

The variables Which can be shared by the APL workspace and the fIle
process must be offered with the specific surrogate names 'CTRL' or
'DATA' followed by the single digit 0 through 9. For example,

CTRLO DA1'AO

CTRL7 DATA7

The digit refers to the file being offered, thUS CTRLO and DATAO refer
to the same file. A maximum of ten files can be shared at the same
time.

A third variable ('CMNOS') can be shared between APL and MPE In order
to issue certain MPE commands from APL. See page 6·11 for a
discussion of toe CMNDS variable.

CONTROL VARIABLto.:

Before a file can be used, it must be opened. The control variable,
issued with the surrogate name CTRLn, Is used for this purpose. The
APL system tnen invokes the MPE FOPEN intrinsic to open the file. The
file name is converted from internal APL Characters to ASCII. The
foptions parameter of FOPEN 15 specified as %2003, aoptlons as %4, and
default values are taken for all other FOPEN parameters. This means
that the file 15 opened as an old bInary file, with fixed- length
records and no carriage control. These options can be overridden by
the file label or the specification of a :FILE command (see the MPE
Commands Reference Manual). AddItionally, the name is that of a file
(as opposed to that of a file equation), and the file Is opened for
read/write, sIngle record access, buffering, and exclusive access.

Note: See the MPE Intrinsics Reference Manual for a complete
discussion of the FOPEN intrinsic.

The shared variable offer system function (DSyO) 1s used to offer to
share the control variable with the file system. As described in
Section V, the left argument of the DSVO function specifies the
process to whiCh the offer is being made. Tne process name In this
case is 'FILE', thus the character vector ~FILE' must be specified as
the left argument of DSVO.

6-1

The right argument of DSVO Is a character vector which consists of two
names: the control variable and tne surrogate name CTRLn, where n is
a digit from 0 through 9. The form of the complete statement is

'FILE' Dsvo '[controlvariable] CTRLn'

For example,

'FILE' Dsvo 'ABC CTRLO'

When the above statement is executed, it returns the degree of
coupling, as follows:

o • The otfer 1s not accepted (usually because of an error, for
example, misspelling, or name already shared, etc.).

2 The offer Is accepted.

For example,

'FI~E' oSVO 'ABC CTRLO'
2

If a 2 15 returned, the attempt at establishing communication with the
file system was successful. If a 0 1s returned, the attempt was
unsuccessful.

The control variable (ABC in the above example) must be assigned the
name of the file (the "formal file designator") being accessed. This
1s accomplished as follows:

1

ABC+'FILE1'
ABC

6-2

The resulting condition code from the FOPEN attempt can be obta1ned by
accessing the control variable (ABC), The file system will signify
the condition code returned by FOPEN by returning one of the following
values in the control variable:

CONDITION CODE

CCE

eCG

eCL

A condition code example,

ABC+-'FI&E2'
FILTiJ ERROR

ABC+-'PI&E2'
t

52

APL DISPLAYS

1

o

Negative of tne error number returned by
the FCHECK intrinsic,

Note: The numbers -1000, -1001, and-l002
are not returned by MPE, These are
APL error numbers which have the
following meanings:

F'lle
Remains
opened,

already opened,
as previously

-1001 - File not yet opened.

An attempt was made to
write to a file with a
record size which would
cause a staCK overflOW,

~/ ______ --t------ Referenced file does not exist

Note: OnlY an existing file can be accessed (a new file will not be
created if none exists under the name assigned to the control
variable), An MPE :fILE command can be entered and the file
can be back-referenced as follows:

'FILE' DsvO 3 5D 'DATAOCTRLOCMNDS'
222

1

1

CMNDS + 'FILf~ L:DEV=LP' 0 CMNDS

CTRLO '*L'
CTRLO

The * means turn off the "no file equation" bit in
FOPEN.

6-3

If FILEl eXists:

1

ABC+'FIL81'
ABC

The control variable also may be assigned numeric vector values which
direct the file system to perform certain actions (through MPE
intrinslcs). The first element of the vector value must be:

o • Issues an YCLOSE. Elements 2 and 3 of the vector specify the
disPosition and seccode parameters of FCLOSE. For example,

ABC+O 4 0

The above statement closes the file identified by the control
variable ABC and deletes the flle from the system. If element
3 is omitted, it is assumed to be O. Subsequent reading of
the control variable causes the file system to return a scalar
value signifying the condition code returned by FCLOSE as
follows:

Condition codes:

CCE (1) • Successful

CCL «0) - Unsuccessful. The value returned is the negative of
the error number returned by the FCHECK intrinsic.

An example,

1

ABC+O 4 0
ABC

Note: Issuing a shared variable retract (OSVR) on the control
var1able will close the file with FCLOSE disposition of 0 (no
change if the file is NEW, it Is deleted: otherwise, it is
returned to its previous disposit1on domain).

1 - Calls the FCONTROL intrins1c. Elements 2 and 3 of the vector
specify the controlcode and param parameters of FCONTRO~. For
example,

ABC+l 6 0

The above statement writes an end-of-file mark on the file
associated with ABC.

6-4

The following actions are available through tne FCONTROL intrinsic.
Some of these actions only apPly to certain types of files (for
example, terminals, tapes, and so forth). See the MPE Intrinslcs
Reference Manual for details.

VECTOR[2] OPERATION

o General device control.

1 Line control.

2 Complete input/output.

4 Set time-out interval.

5 Rewind tape.

6 Write end-of-tile.

7 Space forward to tape mark.

8 Space backward to tape mark.

9 Rewind and unload tape.

10 Change terminal input speed.

11 Change terminal output speed.

12 Turn ECHO on or oft.

14 Disable bREAK.

15 Enable BREAK.

16 Disable CONTROL-Y.

17 Enable CONTROL-Y.

18 Disable tape mode.

19 Enable tape mode.

20 Disable input timer.

21 Enable input timer.

23 Disable parity checking.

24 Enable parity cheCking.

25 Define line-termination character,

26 Disable binary transfers.

6-5

27

28

29

34

35

36

37

38

39

40

41

Enable binary transfers.

Disable user block mode transfers.

Enable user block mode transfers.

Disable line deletion echo suppresion.

Enable line deletion echo suppression.

Set parity.

Allocate a terminal.

Set terminal type.

Obtain terminal type information.

Obtain terminal output speed.

Set unedited terminal mode.

Condition codes:

CCE (1) - Successful

ceL «0) • Unsuccessful. The value returned IS the negative of
the error number returned by the FCHECK intrinsic.

2 - Calls the FSPACE intrinsic. The second element specifies the
number of records to skip (forward If positive, backward if
negative). For example,

ABC+2 6

skips forward 6 records on the file associated with ABC.

Condition codes:

CCE (1) - Successful

ceG (0) - End-ot-file

eeL «~a) - Unsuccessful. The value returned Is the negative Of
the error number returned by the FCHECK Intrinsic.

3 - Calls the FPOINT intrinsic. The second element specifies the
number of the record at Which the file 1s to be pOSitioned.
For example,

ABC+3 4

points to record 4 1n the file associated with ABC.

6-6

Condition codes:

CCE (1) • Successful.

CCG (0) - End-of-file.

ceL «0) - Unsuccessful. The value returned is the negative of
the error number returned by the FCHECK intrinsic.

4 Calls the FSETMODE intrinsic. The second element specifies
the modeflags parameter of FSETMODE. For example,

ABC+4 0

calls FSETMODE and sets modeflaqs to O.

CondItion codes:

CCE (1) - Successful

eCL «0) • Unsuccessful. The value returned is the negative of
the error number returned by tne FCHECK intrinsic.

5 - Calls the FGETINFO intrinSiC and requests "full status"
concerning the f1le. For example,

ABC+5

requests a full status report (from FGETINFO) for the file
associated with ABC. Reading ABC returns a 25 by 20 character
array containing the file information, as follows:

ABC+50ABC
Ml?EFILEINFO
FILENAME+'PIL7J:1
GRPNAME +'GOODWIN '
ACC-TN AME+' TEST
F'OPT10NS+1025
AOPT 10"18+4
RECSIZE +128
DEVTYPE +0
DEVSUBTP+3
LDT:!:V +4
DRT +5
UNIT +1
F'ILT!:CODTS+O
RECPTR +0
EOP +-0
FLIMIT +1023
LOGCOUNT+O
PRYCOUNT+O
BLKSIZe +-128
EXTSIZE +128
NUMEXTS +8
USTERLAB +0
CREATOR +'GOODWIN •
L4BADDR +67110318

6-7

6 Calls the FLOCK intrinsic to lock the file. The second
element specifIes the locKcond parameter of FLOCK (1 for TRUE,
o for FALSE lOCK). For example,

ABC+-6 1

lOCKS the file associated with ABC uncondItionally (lockcond =
TRUE).

Condition codes

The condition codes possible if lockcond = TRUE are

CCE (1) - Successful

CCG (0) - Not returned when lockcond = TRUE.

eCL «0) - Request denied because tnts file was not opened
with the dynamic locking aoptlon specified 1n the
FOPEN Intrinsic, or the request was to lock more
than one file and the calling process does not
possess th.e Multiple BIN capability (see the .MPE
Intrinsics Reference Manual).

The condition codes possible when lockcond = FALSE are

CCE (1) - Successful

CCG (0) - Request denied because the file was locked by
another process.

CCL «0) - Request denied because thiS file was not opened
with the dynamic lOCking aoPtion specified in the
FOPEN intrinsic, or the request was to lock more
than one f1le and the calling process did not
possess the M,ultiPle RIN Capability (see the MPE
Intrinsics Reference Manual).

7 - Calls the FUNLOCK intrinsic to unlock tne file. For example,

ABC+7

unlocks the file associated with ABC.

Condition codes:

CCE (1) - Successful

CCG (0) - Request denied because the file had not been locked by
the calling process.

CCL «0) - Request denied because the file was not opened witn the
dynamic lOCking aopt1on of the FOPE~ intrinsic, or the
filenum parameter is invalid.

6-8

8 - Controls auto-ASCII conversion. The second element is a 0 to
turn auto-convert OFF, or a 1 to turn auto-convert ON. ~hen
executing with auto-convert ON, APL-to-ASCII conversion is
performed ImpllcitlY~ when auto-convert is OFF, no such
implicit conversion 1s performed. All files are initially
opened with auto-convert OFF. Once set -- either by the user
or by the open auto-convert does not change for the
duration of the open unless explicitly set by the use ot
CTRLn.

Note: See the MPE Intrinslcs Reference Manual for a discussion of the
FCLOSE, FCONTROL, FSPACE, FPOINT, FSETMODt, FGETINFO, FLOCK,
and FUNLOCK Intrlnsics.

When a file 1s first opened, a ~FILE ERROR MODE' flag is set to zero.
When this flag Is 0, any attempt to perform an operation on the file
system which causes a non-l return into the control variable will
cause APL to suspend execution. An error report is printed,
consisting of the line on which the error occurred and the words 'FILE
SYSTEM ERROR.'

The control variable may then be read to determine which error
occurred.

The 'FILE ERROR MODE' flag may be altered through the use of the
control variable. Setting control with the vector 9 0 will set the
flag to ~ero, thus causing APL to report errors. Setting control with
the vector 9 1 will cause APL to ignore file system errors (which may
still be checked by the return from the control variable).

DATA VARIABLE

Once a file has been opened, data can be written or read from this
file using the data variable.

The data variable 1s offered for sharing with the shared var1able
offer system function (D5VO) and the surrogate name DATAn, where n is
a value from 0 through 9. The process named 'FILE' must be used as
the left argument of the DSVO function. The form of the complete
statement is as follows:

'FILE' DSVO '[datavarlable1 DATAn'

For example,

'FILE' DSVO 'DID DATAO'

When the above statement is executed, it returns the degree of
coupling, as follows:

o - Sharing is not completed.

2 - The offer is accepted.

6-9

For example,

'FILE' OSVO 'DID DATAO'
2
L:-t-------------Offer accepted

WRITING TO A FILE

If a character vector is assigned to the data variable, the file
system w1l1 perform an FWRITE to the file -- using the actual byte
values of the Characters as the data. The length (~) ot the character
vector being written is used as the length parameter 1n the fWRITE
intrinsic. The FWRITE control parameter is always 1, thus allowing
embedded carriage control. The condition code status returned by
FwRITE can be obtained by reading the control variable.

Condition codes:

CCE (1) - Successful

CCG (0) - End-of-tile wh1le attempting a write.

eeL «0) - Unsuccessful. The value returned 1s the negative of
the error number returned by the FCHECK intrinsic.

An example of writing to a file is as follows:

1

1

OID+'THIS IS R~CORD 0'
DID+'THIS IS RgCORD l'
ABC

DID+'THIS IS RECORD 2'
OID+'T¥IR IS RECORD 3'
OID+'THIS IS R~CORD 4'
.4BC

Writing 1s performed sequent1allY1 thus record 0 is written first,
then record 1, record 2, and so forth. To write data to a specific
record in the flle, a numeric scalar representing the record number Is
assigned to the data variable before assigning the character data. The
FWRITEDIR intrinsic is invoked in this case. For example,

1

OID+12
DID+'DIRECT WRITING'
ABC

Again, the status of the FWRITE is returned in the control variable,
as fOllows:

eeE (1) - Successful

CCG (0) • End-of-file

eeL «0) - Unsuccessful. The value returned 1s the negative Of
the error number returned by the FCHECK intrinsic.

6-10

READING A FILE

Reading the data variable directs the file system to use the FREAD
intrinsic. A character vector representing the contents of a record
In the file will be returned. The FREAD is performed sequentiallY,
and successive records are read each time the data variable is read.
The number of words per record in the file as opened is used as the
length parameter of FREAD. The condition code status returned by
FREAD can be obtained by reading the control variable.

Examples of reading a file are

DID
THIS IS .RT£CORD 0

DID
THIS IS RECORD 1

ABC
1

DID
THIS IS RECORD 2

DID
THIS IS R!?CORD 3

DID
TFIIS IS RECORD 4

ABC
1

Reading the control variable returns the status of the condition code:

CCE (1) - Successful

CCG (0) - End-of-tile

CCL «0) - Unsuccessful. The value returned 1s the negative Of
the error number returned by the FCHECK intrinsic.

To read a specitic record In the file, a scalar value representing the
record number is aSSigned to the data variable. This positions the
file to that record, and the next time the data variable Is read, the
record is read. The FREADDIR intrinsic is used in this case. For
example,

DID-+-2
Jll..Q

THIS IS RT?CORD 2

CMNDS VARIABLE

The CMNDS variable allows MPB commands to be used from APL by USing
the MPE COMMAND intrinsic.

6-11

The CMNOS variable 15 offered for sharing with the shared variable
offer system function CDSVO), as follows:

'FILE' DSVO 'CMNDS'
2

Note that the surrogate name can be reserved,

The MPE command to be Issued then Is assigned to CMNDS as a character
vector.

The condition code status returned by the COMMAND intrinsic can be
obtained by reading the CMNDS variable.

CMNDS
1

The negative of the error number is returned 1f an error occurred.

108

CMNDS+'LISTF TEST1'
CMNDS

'-I------------Non.existent file

DATA CONVERSION

All data read or written by the file system 15 represented by APL
characters. The internal value of any character may be obtained with
the atomic vector system variable (DAV) by executing DAVIe, where C is
a vector of Characters for which the internal values are desired. APL
will return a vector representing the indices of these characters in
the 256-element atomic vector (see Section IV). For example,

OA{l'lA~.'
2 12 69 93

The system function Dey can oe used to convert data from internal APL
format to external formats compatible with other MPE SUbsystems, and
from external formats to the internal APL format. The left argument of
Dev is a scalar value used as a control to specify the type of
conversion, or a 256-element vector which 1s indexed by the rignt
argument of DAV to obtain a result, The right argument is the data to
be converted; the result 1s the converted data.

EXTERNAL TO INTERNAL APL CONVERSION

The following values of the left argument (control) of Dev produce the

6·12

following external to internal APL conversions:

control

1 The right argument must be a character vector or unlt or
scalar character. The result 1s a character vector which
Is tormed by treating the right argument characters as
ASCII and performing an input conversion trom external
ASCII to internal APL. (See Appendix A for a conversion
table.)

2 Converts every two characters in the right argument to a
numeric value in the result using integer conversion. If
the input vector is ot odd length, the last byte is
ignored.

3 Converts every four characters in the r1ght argument to a
numeric value in tne result using double integer
conversion. If between one and three bytes are left over at
the end of the rignt argument, they are ignored.

4 Converts every four characters in the right argument to a
numeric value in the result using real conversion. If
between one and three bytes are left over at the end of the
right argument, they are ignored.

5 Converts every eight characters in the right argument to a
numeric value in the result using real conversion. If bytes
are left over at the end of the right argument, they are
ignored.

Note: An APL statement equivalent to 2 DCV VEC is:

256L~«LO.5xp7EC),?)p«-OIO)+~A{lV~C)

INTERNAL APL TO EXTERNAL CONVERSION

The following values of the lett argument (control) of DCV produce the
following internal APL to external conversions:

control

1 converts the right argument, which must be characters, to
external ASCII and returns a character vector result.

2 Converts each right argument element to two characters 1n
the result, The right argument must be a numeric scalar,
vector, or unit 1n which each element is an integer between
·32768 and 32767, or a domain error Will occur.

3 Converts each data value in the right argument to a
four-character result. The right argument must be a scalar,
unit, or vector numeric value in Which each element 1s an
integer between ·2,147,483,648 and +2,147,483,647, or a
domain error will occur.

6-13

4 Each data value in the right argument Is converted to four
characters in the result. The right argument must be numeric
scalar, unit, or vector.

5 Each data value 1n tne right argument is converted to eight
bytes In the result. The right argument must be numeric
scalar, unit, or vector.

In the last four of the above conversions, each result character is
obtained by dividing the right-argument element into bytes and using
these bytes as an index into DAV. This is simulated in APL, for
-2 Dev, by

OAV [OIO+t~256 256TVPC]

where VEe Is the right argument of Dev.

If the right argument of Dev is a 256-element vector (of any type), a
translation is performed whereby each character 1n the right argument
is used, essentially, as an index into the left argument. The result
has the same Shape as the right argument (which must be a character
vector), and 1s the same type as the left argument.

In this mode, Dev 1s equivalent to the APL expression

leftarg£DAVlrlghtarg]

&14

IIUIIIIIII
FUNCTION DEFINITION .1 VII 1

A user-defined function 1s a function written by a user to perform a
specific computation. A user·de£lned fUnction (or, more simPlY, a
defined function) can be established in a workspace In one of four
ways:

1 • An existing defined
worKspace using the
Section XI).

function can be obtained from a stored
)LOAD,)COPy, or)PCOPY commandS (see

2. A defined function can be established with the OFX system
command.

3. A defined function can be created and saved using the APL\3000
editor.

4. A new defined function can be created by modifying an existing
defined function with the APL\3000 editor.

Once established in a workspace, a defined fUnction can be disPlayed
or executed, modified using the APL\3000 editor (see Section VIII),
stored in a saved workspace, or deleted (destroyed).

CANONICAL REPRESENTATION AND FUNCTION ESTABLISHMENT

A canonical representation Is a character matrix which must satisfy
the following requirements:

1. The fitst row of the matrix is the function header and must be
1n one of the forms described under the heading fUNCTION
HEAD~~R, be low.

2. The remaining rows, if any, of the matrix constitute the
function body, and may consist of any combinations of
characters, except that there may be no blank rows.

The canonical representation of a defined function can be obtained by
executing the OCR system function, and the vector representation of a
defined functIon can be obtained by executing the OVR system function.
A character vector argument containing the name of the function must
be specified as the argument of DCR and OVR.

7-1

An example Of OCR is:

HOOTS

T TS S'f-c-OC R 'ROOT c; ,
TT!:ST

'EN~rER A. NUMBER'
'AND THE COMPrpPER WILG COMPUTE THT!: 8Q(J,AQF: HOOT'
'AND THE CUBg ROOT'

LABEL1:N-c-O
LABEL2:A-c-N*t2
LABTSL3:B-c-N*t3

'TqE SQUARE ROOT IS 's.A
'THE CUBE ROOT IS ',.8
'ENTER 0 IF YOU DO NOT WISY TO COVTIMJTS'

LAB"£L4:N-c-O
-+-(N~0)/5

See Section IV for complete discussions of the OCR and OVR system
functions.

If ROOTS is expunged with the OEX system function (see Section IV), it
is no longer available for use:

DE,\' 'ROOTS'
1

ROOTS
VALUE 1i:RROR

ROOTS
t

The function can be re-estaolished by executing the OFX system
function with T~ST (the variable to Which the canonical representation
of ROOTS had been assigned) as its argument:

!JFX TF:ST
ROOTS

The function OFX produces as an explicit result a character vector
representing the name of the function being fixed, while replacing any
eXisting definition of the function with the same name. The function
ROOTS now can be used again:

ROOTS
gNTER ,4 NUMBTJ:R
AND THE COMPUTER WILL COMPUTe T8~ SQU4R~ ROOT
AVD Tqg CUBE ROOT
0:

125
THE SQUAR~ ROOT IS 11.18033989
TH~ CUBE ROOT IS 5
EMTER 0 IF YOU DO NOT WISR TO CONTI¥UE
0:

7-2

The expression DFX n will establish a function if the followlng
conditions are met:

* The argument n Is a valid representation of a function. Any
character vector or matrix which differs from a vector or
canonical representation only in the addition of non-significant
spaces (other than rows consisting of spaces only) Is a valid
representation.

* The name of the function to be established does not conflict with
an existing use of the name for an executing or halted function,
or for a label or variable.

If the expression DFX n fails to establish a function, no change
occurs in the workspace and the expression returns a scalar index ot
the row in the argument where the fault was found. See Section IV for
a complete discussion of DFX.

FUNCTION HEADER

A defined function mayor may not return a result, and it may have one
argument (monadic), two arguments (dyadic), or no arguments (niladic),

If the function header contains a specification (left) arrow, the
function returns a result, and the name to tne left of the arrow is
the name used within the function to identify the result.

.
The valence of a defined funct10n is defined as the number of
arguments it takes. Thus, a defined function may have a valence of
zero (no argument), one (one argument), or two (two arguments). This
allows six possible header forms as follows:

TYPE VALENCE

Dyadic 2

Monadic 1

Niladic o

EXPLICIT
RESULT

R+A FUNCTIONNAME 8

R+FUNCTIONNAME B

R+FUNCTIONNAME

NO EXPLICIT
RESULT

A FUNCTIONNAME B

FUNCTIONNAME B

FUNCTIONNAME

The name of a defined function Is global (see LOCAL AND GLOBAL NAMES,
below). The names used for arguments of a function are local to the
function. Additional local names may be deSignated by listing them 1n
the function header after the function name and argument name(s).
These additional names must be separated from the function name and
argument(s), and from one another, by semicolons. for example,

AReA+RADIUS CIRC£EAREA D~GR~ES;LOCAL1;LOCAL2

A name, except the function name itself, may not be repeated 1n the
function header. Argument names used 1n the function header do not
need to be used within the body ot the function.

7-3

LOCAL AND GLOBAL NAMES

When a function is executed, it often 1s necessary to use intermediate
results or temporary functions which have no significance outside the
function. The use of names local to the function, so designated by
their appearance 1n the fUnction header, or by being used as labels,
relieves tne programmer of the requirement Of keeping track of such
transient names, and allows greater freedom 1n the choice of names
(the same name can be used independentlY in several functions as long
as it is local to its function).

The name of the function itself, and names used 1n the function body
that are not designated as local by being included 1n the function
header, are defined as global names. GlObal names have significance
both inside and outside the function and may be referenced in the
workspace (assuming that the function is established in the
workspace). For example, the following function computes the areas of
sectors of circles.

OCR 'CIRCLEARgA'
AREA+RADIUS CIRCLgAREA DEGREES;LOCAL1;LOCAL2
AREA+(ORADIUS*2)xDEGRgESt360
DIAMETER+RADIUSx2
ATHIS IS A COMMEMT

The names RADIUS and DEGREES are argument names defined as local by
being included in the function header. The name CIRCLEAREA is the
function name and Is global. In addition, the name DIAMETER is global
because it is included in the body of the function but not in the
function header. The names CIRCLEAREA and DIAM~TER, being global, can
be referenced from the workspace outside the function. Note that
names glObal to one function may be local to another calling function.
Therefore local/global distinction 1s on a function-by-functlon basis.

348 CIRCL~AR~A 12.852
13582.40189

DIAMETER
696

A local name may be the same as a glObal name, and any number of names
local to different functions may be the same. During the execution of
a defined function, a local name will temporarilY exclude from use a
glObal Object of the same name. If the execution of a function is
interrupted (leaving it either suspended or pendent; see Section X),
the local Objects retain their dominant position during the execut10n
of subsequent APL operations, until such time as the halted function
Is completed.

The locall~atlon of names Is dynamic, that Is, a local name has no
effect except when the defined functlon is being executed. When a
defined funct10n uses another defined function during its execution, a
name local to the first (or outer) function cont1nues to exclude
giobal Objects of the same names from the second (or inner) function.
This means that a name locall%ed In an outer function has the

7-4

significance assigned to it in that function, but has no further
localization In an inner function. The same name localized 1n a
sequence of nested functions has the significance assigned to it at
the innermost level of execution.

The shadowing of a name by localization is complete, 1n that once a
name has been localized its global values are inaccessible, even it
nothing Is assigned to it during execution of the function 1n wh1ch it
1s localized.

BRANCHING AND LINE NUMBERS

Lines in a function are normally executed sequentially, from line 1
through the highest numbered line, and execution terminates at the end
of the last line in the function. This normal order can be modified
by branching. Branching 15 used in iterative procedures, in choos1ng
one out of a number of possible lines, and In other Situations where
the normal order of line execution is not desired.

Lines in a function have reference numbers associated with them,
starting with the number one for the first line in the tunction body
(the function header is number zero), and continuing with successive
integers. Thus, the statement +11 specifies a branch to the eleventh
line in the function body. When the expression Is executed, branching
occurs and line number 11 is executed next, regardless ot where the
branch statement itself occurs. (The branch statement +11 may be in
line 11, 1n which case an infinite loop may result until interrupted
by an action from the terminal.)

A branch statement always starts with the branch (or right) arrow on
the left, followed by any expression. For the statement to be
effective, however, the expression must evaluate to an integer, to a
vector whose first element 15 an integer, or to an empty vector. Any
other value results in a DOMAIN or RANK error. If the expression
evaluates to a valid result, then the following rules apply:

* If the result 1s an empty vector, the branch has no effect and
the next statement in the fUnction Is executed. It there Is no
next statement (the branCh is the last statement), the function
terminates normally.

* If the expression evaluates to the number of a line in the
function, that line is the next to be executed.

* If the reSUlt of the evaluation is
lIne numbers in the function,
number 0 and all negative numbers
numbers fOt any function.)

a number out of tne range of
the function terminates. (The
are outside the range of line

Because zero is often a convenient result to compute, and it 1s never
the number of a line in the body of a tunction, it is often used as a
standard value for a branch intended to end the execution of a
function.

7-5

An example of branching:

OCR 'ROOTS'
ROOTS
'ENTER A NUMBER'
'AND THE COMPUT~R WILL COMPUTE THg SQUARE ROOT'
'AND THE CUBE ROOT'

LABEL1:N+O
LABEL2:A+N*f2
LABll:L3:B+N*t3

'THE SQUARE ROOT IS ',YA
'THe CUBE ROOT IS ',YB
'ENTER 0 IF YOU DO NOT WISH TO CONTINue'

~AB1!:L4:N+O
-+- (N ~ 0) / 5 '1111--------- Branch statement

ROOTS
eVTER A NUMB7!}R
AND THE COMPUT~R WILL CO~PUTE THE SQUARg ROOT
AND THE CUBE ROOT
[] :

574
THE SQUAR1!: ROOT IS 23.9582971
T~g CUBE ROOT IS 8.310694107
ENTER 0 IF YOU DO NOT WISY TO CONTINUE
0:

Q 'IIII----------Terminates execution when 0 entered (does not branch)

The compreSSion funct10n in the form U/V (the statement +(~~O)/5
above) gives V if U is equal to one (true), and an empty vector if U
Is equal to 0 (false). Thus, the statement +(N~O)/5 1n ROOTS is a
branch statement which causes a branch to line 5 if the condit1on N~O
is true, and a branch to an empty vector (normal sequence) when the
condition is f~lse. In this case, there is no next statement and the
function terminates.

LABELS

If a line occurring In the body ot a function is prefaced by a name
and a colon, the name 1s assigned a value equal to the line number
automatically upon function execution. A name used In this way 1s
called a label. Labels are advantageous when it Is expected that a
function may be changed, because a label automatically assumes the new
line number of its associated line as other lines are inserted or
deleted.

The name of a label is local to the function in which it appears, and
must be dIstinct from other label names and trom local names in the
function header.

A label name may not appear immediately to the left of a specitication
arrow. In effect a label acts liKe a local constant.

7·6

Examples of labels are:

OCR 'ROOTS'
ROOTS
'EiIlTli?R A 7tlUtvfBF?R'
'.4ND- TlIT!: CO'\,fPU'!'frR WILL COM-PUTE flUS SQUAR,Ti} POOT'
'AND THe CUBg ROOT'

LABEG1:N+O
LABE:£2:A+N*~2

LABEL3: 73+N*-';-3
'TQE SQUAR~ ROOT IS ',~A

'THE CUB~ ~OOT IS ',~B
'ENTER 0 IF YOU DO VOT WISq TO CONTI~U~'

LABEG4:1\1+0
-+(N~O)/5

L--__ ---, ___________ Labels

COMMENTS

The symbol A signifies a comment. A comment 1s inserted in a function
for informative purposes only, and 1s not executed. The symbol may
occur anywhere within a line; however, everything to the r1ght of the
comment symbol 1n the line is ignored at execution. A comment may not
be placed in the header line.

A comment example:

GC'l? 'C'IRCLJ?AREA'
AR~A+RADIUS CIRC&~AR~A D~GREES

ARgA+(oRADIUS*2)xDEGRg~S~360
DIAMETER+RADIUSx2
ATHIS IS A COMMENT

7·7

IIUlllU11
APL\3000 EDITOR I VIII I

The APL\3000 editor Is used to create and modify APL or APLGOL
functions ana to create and modify one- or two-dimensional character
data, The editor recognizes lines of input and operates on lines of
text and on characters within these lines. ~ithln the editor, both
line numbers and a cursor to the line currently being edited are
maintained, so that edIting may specify lIne numbers or a line
Position relative to the cursor,

EDITOR FEATURI::S

* The editor retains instruction parameters from one edit
instruction to the next, so that In successive applications of an
edit instruction, the parameters often need not be respecifled.

* Most edit instructIons may be abbreviated.

* In the absence of specified parameters, defaUlt parameters are
assumed.

* In all instructions which require that a line be specified
(except ADD), the position of the cursor is assumed if an
explicit line number is absent. If a line number 1s specified,
it will be used and toe cursor is adjusted to reflect the new
current line. The instructions which are used to set patterns
(DELTA, CURSOR, and so forth), may be useo without parameters to
determine tne current parameter sett1ng.

* In some instructions, a character string may be specified instead
of a line number. In this case, the next line starting with the
line in which the string 1s located is the selected line.

* Line numbers may range between 0.000 to 99999.999 for a maximum
of 100,000 lines.

To access the editor, the system command)EDIT 1s entered, opt1onally
followed by the name of an existing function or character variable to
be edited. If a name is not specified, the ed1tor immediately enters
ADD mode, and new l1nes may be entered. If the name of an existing
function or character variable is specified, the editor prompts with a
"greater than" (» symbol for an edit instruction.

8-1

An example of accessing the editor 1s as follows:

) ED I T RO 0 T S ... ----Existing function specified

APL FUNe'frON
>ADD
[12)
[13)
>END

A THIS IS A COMMENT

) ED IT. Editor enters ADD mode when no existing function specified

[0)
[1]
[2]
[3]
[4]
(5]
(6J
[7J
>

TqIS IS LINE Z~RO

THIS IS LIVE ONE
LTNft TWO
THRE:E
~
2-
...§.
return

EDIT INSTRUCTION SYNTAX

Table 8-1 lists all edIt Instructions and shows the syntax and the
abbreviation (where applicable) for eaCh instruction.

A[DD] r~ Inespe~l
Ls tr Ing J

BeRIEF]

Table 8-1. Edit Instructions

(delta]

C[HANGEJ [character [patternstring] character [changestrlng]
Character [rangelistlJ

co [PYJ I1neblock

11nebloCK = linerange { : }llneSpec

blank

{C*U [RSORJj funespec ~
+ 1nteger

l
- integer
string

O[ELETE) [string 1
range 11 stJ

delta; (,l linenumber

[declma1number]

8-2

[delta]

Table 8-1. Edit Instructions (continued)

t:ND rAPL J
LAPLGOL

FIND lstr1ng] [rangelistl

{

HlELPl } [instruction]
EXPLAIN
?

linerange = 11nespec
<llnespec> <separator> <linespec>
<linespec> <separator>
<sep~rator> <linespec>

l1nespec

separator
ALL

= [: ~~~T number]
LAST
CURSOR

*
L[IST] [rangelistj string

ALL
f"lRST
LAST

LOCK rAPL J
LAPLGOL

MATtRIXJ [variablenamel

M [0 D IF Y J [S t r 1 n 9 J
rangelist

QUIT

rangellst = [llnerange (, 11nerange] [, linerangen
Lrnge (,rllst] J

R [E P LAC E] f-s t r i n 9 J
brangelist

[deltaJ

RES(EGUENCEJ l1neblock

separator = ~]

8-3

Table 8-1. Edit Instructions (continued)

string ~ <character> <text not containing Character> <character>

UNDO [integer] 19rainspec]

grain spec ~ { , } {L[INES] }
I C[OMMANDS]

blank

VEC[TORJ [varlablenameJ

VER[BOSEJ

EDIT INSTRUCTIONS

ADD INSTRUCTION

The form of the ADD instruction Is

A[DD] f.l.1nespe~1 [delta]
Lstrin g J

The ADD instruction places the editor into a mode to accept new lines
of input. If parameters are not specified, the text is added to the
end of the edit file using the present value of delta to increment the
line numbers. If linespec Is specified, the text is added starting
with the specifIed line and thereafter increasing the line number by
the delta specified, or by the default delta supplied by the system
(the initial default value is one). It the line number specified
already exists, the text is added following that line by applying the
proper delta. If this is not possible, an error is reported. A null
line, that is, a line with just a carriage return, terminates the ADD
instruction. The system retains a delta value, initially set to one,
which is updated by any edit instruction specifying a delta parameter.
The delta value can be specified once, therefore, and retained as long
as necessary without further respecification. When there is no more
room to add lines using the present delta, the system divides the
delta by 10 so that more lines can be added. This 1s repeated until
delta becomes .001.

BRIEF INSTRUCTION

The form of the BRIEF instruction is

SlRlEF)

The BRIEF instruction 1s used to set the editor response mode to
brief, in which case messages are either shortened or are omitted. The
oPPosite setting of the instruction response mode Is VERBOSE (th~
default mode).

8-4

CHANGE INSTRUCTION

The form of the CHANGE instruction 15

C[HANGEJ lcha~acter [patternstr1ng] character [changestrinq]
character {ranqelist]

The CHANGE instruction is used to change one pattern within a range of
lines to another pattern (which may be null). If rangelist Is not
specified, the current line Is assumed. If both patterns are omitted,
whatever patterns were most recently associated with a CHANGE
instruction are used again. If a single pattern 1s specif1ed, it
becomes the new change pattern and the former search pattern is
retained. If both patterns are specified, the first string
(patternstring) is a search pattern and the second string
(changestring) 1s the change pattern.

An example of the CHANGE: instruction is shown beloW':

>LIST 0
[oJ THIS IS LTAJ!!: ZERO
>Cli A.VG-e 'Z1?RO'O' 0
[oJ THIS IS LIN,r;; 0
>LIST 0
[0 J THIS IS LTNE 0
>

COpy INSTRUCTION

The form of the COpy instruction 1s

CO(py] 11neblock

where

lineblock = linerange linespec ldelta]

The COpy instruction Is used to duplicate one or more lines of text
elsewhere in the text. This instruction requires the specification of
a linerange to be copied and a linespec to specify the target pOint
for copying. It 1s not possible to delete existing lines within the
COpy instruction by overlaying a copied line number on top ot an
existing line.

An example of the COpy instruction 15 shown below:

>COpy 2 7
[2J => [7J
>LIST 7
[7J LI'ifE TWO

8-5

CURSOR INSTRUCTION

The form of the CURSOR instruction Is

I;U[RSORJj [!1~~~~~~rj
- integer
strIng

The CURSOR ihstruction is used wither to indicate the current posItion
of the cursor or to reposition it. To find the current cursor
position, either the word CURSOR or the symbol * may be entered
without other parameters. The addition of parameters to the CURSOR
instruction causes the cursor to be relocated according to the
parameters. If linespec 1s specified, the cursor moves to the
specified line; if string is specified, the cursor moves to the next
line beyond the present cursor position 1n which the string is
located. The + integer and • integer parameters move the cursor
forward or backward 1n the text relative to the present cursor
location.

An example of tne CURSOR instruction is shown below;

>CURSOR
CURSOR = [7J
>*
ClIR/,OR = [7J
>CURSOR 0
WAS [7J
>

DELETE INSTRUCTION

The form of the DELETE instruction is

DlELETEJ
[
string J
rangel1st

The DELETE instruct10n 1s used to delete lines from the text. If no
parameters are specified, the line currently lndlcated by the cursor
position is deleted. If string is specified, the next line In which
the string occurs is deleted. If rangelist Is specified, the lines In
the list are deleted.

Note: In VERBOSE mode each line is printed as it is deleted.

An example of tne DELETE instruction 1s shown below:

>D!?Ll!}TE 7
[7]
>

LINe TWO

8-6

DELTA INSTRUCTION

The form of the DELTA instruction is

(declmalnurnberJ

The DELTA instruction is used to set the increment value for adding,
replacing, copying, and resequencing lines. The default value of delta
is one. The optional specification of a delta In the COPY,
RESEQUENCE, ADD, and REPLACE instructions automatically changes the
value of the default delta.

An example of the DELTA instruction is shown below:

>DELTA=.l
WAS [lJ
> .A2J2
[6.1J THE rNCREMJYT IS .1
[6 .2]
>

END INSTRUCTION

The form of the E~D instruction is

END [APL J
APLGOL

The purpose of the END instruction is to terminate edit1ng and to
translate the text into internal APL or APLGOL form suitable as a
function for execution by APL. If a former version of the function
existed, the new version now replaces the former. If, in translation
to the internal form, errors are discovered which make it 1mpossible
to create a new internal form, an indication of the error and a
listing of the line in which the error was found are displayed, and
the system retains the internal form as well as the text in the editor
for turther editing. If the error is hard to correct, either the
MATRIX or VECTOR instruction may be used to save the text as a
character matrix or vector for later editing.

The optional APL and APLGOL parameters specify the particular
translator to be used (that is, the Kind of function being edited).

EXPLAIN INSTRUCTIOh

See the HELP instruction below.

FIND INSTFUCTION

The form of the FIND instruction is

It"' [1 ND 1 [string] [ranqelist]

8-7

The FIND instruction 1s used to locate the line containing the next
occurrence of the string starting witn the cursor position. If tne
strIng is not specified, the search string from the last FIND
instruction is used. The rangelist parameter may be used to limit the
search.

An example of the FINO instruction 1s shown below:

> FIND 'LI~Jfi; TWO'
[2J LI~E TWO

HELP INSTRUCTION

The form of tne HELP instruction is

{

H[ELPJ }
;XPLAIN

[instruction]

The HELP instruction lists permissible edit instructions. If followed
by an instruction parameter, a brief eXPlanation of that particular
instruction is provided.

Examples:

>RELP
THE gDIT COMMANDS ARfi.:: ADD, BRIEF, CHANG'!:, COpy. ClJR.'30'R .. DELETFJ.

DELTA. END .. FIND, 8~LP, LIST, LOCK, MATRIX. MODIFY. QUIT,
REPLACE, RESEQUENCE, UNDO. VECTOR, AND VER80SE.
TO OBTAIN FURTHER DATA ON ANY OF THESE COMMANDS, ENTER
'HELP' FOLLOWED BY THE COMMAND NAME.

>HELP MATRIX

>

THE MAT [RIX] COMMAND IS USED TO CREATE A CHARACTER MATRIX FROM
THE TEXT IN THE EDIT BUFFER. THE CHARACTER VARIABLE MAY THEN BE
USED AS DATA WITHIN THE SYSTEM OR LATER TURNED INTO A PROCeDURe
MATRIX WITHOUT A NAME WILL STORE THE DATA IW THE VARIABLE WHIC"
WAS EDITED (IF ANY), MATRIX <VARIABLE NAME> WILL STORE IN TH~
SPECIFIED NAME. <SEE VECTOR)

LIST INSTRUCTION

The form of the LIST instrUction 1s

L [1ST]

[
rang.~ el. 1st] string
ALL
FIRST
LAST

The LIST instruct10n is used to print lines. If a parameter is not
specified, the line currently indicated by the cursor is listed, If
string 1s specified, the next line starting with the line 1n which the
string occurs 1s listed. If rangelist is specified, lines 1n the list
are listed.

8-8

An example of the IJIST instruction is shown below:

>LT8T AL~
[OJ
[1 J
[2J
[3J
[4J
[5]
[6J
[6.1J

LOCK INSTRUCTION

THIS IS LINE 0
.THIS IS LTV!!; ONT!:
.LINE TWO
THRTi;r;:
4
5
6
THE IVCRgMEMT IS .1

The form of the LOCK instruction is

LOCK
[APL J
APLGOL

The LOCK instruction is similar to the END instruction, 1n th~t it is
used to terminate the editing of a function and have the function
translated into internal APL or APLGOL form for execution. If the
translation 1s successful, however, the function then Is marked as
locked, and it 1s not possible thereafter for the function to be
unlocked, edited, or read.

MATRIX INSTRUCTION

The form of the MATRIX instruction is

MAT[RIXJ [variablenameJ

The MATRIX instruction stores the edit text as a character matrix with
rows sufficiently long to contain the longest t~xt line. The variable
may be edited later and a function or other variable produ~ed. If
varlablename 1s omitted, the name of the function or variable used in
the)EDIT command 1s replaced by the character matrIx.

MODIFY INSTRUCTION

The form of the MODIFY instruction 1s

M[ODIFYJ [string J
l!ang ellst

rhe MODIFY instruction 1s used to modify the contents of a line or
range Of lines, depending on the parameter specified. If no parameter
15 specified, the line currently indicated by the posItion of the
:ursor is modified; if string is specified, the next line starting
fith the line 1n which the string 1s located is mod1fied: 1f range11st
Ls specified, lines 1n the list are modified, one at a time.

8-9

When a line 1s to be modified, the line number 1s printed, followed by
the line, after which special modification characters may be used as
sub-editing instructions to alter the contents of the line. A
sub-editing template line Is created by spacing out under the line to
the point where the sub-editing Is to be done and then entering the
appropriate s1ngle character instruction, possibly followed by
replacement or insertion text. When this 1s done, the edited line Is
printed again to reflect the modifications, and further modifications
can be entered. A null line (signified by just a carriage return)
terminates the modification process,

MODIFICATION INSTRUCTION

o

R

I

I

MEANING

Delete the above character,

starting at the above position, replace
the following text.

starting immediately before the above
position, insert the following text,

Delete entire line.

Note: A string of delete (D) characters may be followed by a single
insertion (1) or replacement (R) character, fOllowed by the
insertion/deletion text: otherwise oniy one action may be
specified per modification template line.

An example of the MODIFY instruction is shown below:

>,MODIFY 1
[1]
TRI8 IS GINS ONe

DDDI1
THIS IS &IN'l: 1

QUIT INSTRUCTION

The form of the QUIT instruction is

QUIT

The QUIT instruction terminates all editing, deletes any text being
edited, and returns to immediate execution mode 1n the APL system,
Note that a function is not changed if tne QUIT instruction is
performed.

REPLACE INSTRUCTION

The form of the REPLACE instruction is

R[EPLACEl fstring J I!angellst
[delta)

8-10

The REPLACE 1nstruction Is used to replace one or more l1nes,
depending on the parameters specified. If no parameters are
specified, the l1ne currently indicated by the cursor is replaced. If
string is specified, the next line containing the string is replaced.
If rangellst is specified, each line In the list Is replaced. In
replacing a line, the current line Is listed, and the replacement line
may then be entered. Once the rangellst Is exhausted, the editor
switches to the ADD mode, so that lines may be replaced and
immediately fOllowed with new lines without having to use multiple
instructions. The optional delta specification Is used for the ADD
mode incrementing. Entering a null line (carriage return) terminates
the process.

An example of the REPLACE instruction 1s shown below:

>Rll:PL.4CE
[1]
[1]
[5]
[5]
[5.1]
>LIST ALL
[0]
[1]
[2]
[3]
[4]
[5]
[6]
(7J
[7 .1]
>

1 , 5

RESEQUENCE INSTRUCTION

TRI.8 IS LINE 1
THIS IS A NRW LINE 1
5
THIS IS TR8 N8~ LT¥~ 5

THIS IS LIV~ 0
TqIS IS A 'R~ LINE 1
LIN8 T'lO
THRfEF:
4
THIS IS TRg MEV LINe 5
6
LIMH: TWO
T8~ INCR~MENT IS .1

The form of the RESEQUENCE instruction is

RES(EQUENCEJ lineblock

The RESEQUENCE instruction is used either to resequence portions or
all of a function or data, or to rearrange l1nes of the function or
data to appear elsewhere, thUS 1n effect acting as a move instruction.
It is not possible to overlay existing lines with resequenced line
using the RESEQUENCE instruction.

8-11

An example of the RES~Q~UNCE instruction is shown below:

[0]=>[0.5]
>LI8T AL~
[0.5]
[1]
[2J
(3]
(4J
[5J
[6]
[7J
[7.1]

UNDO INSTRUCTION

0, .5

THIS IS LINT? 0
THIS IS A NgW LTN~ 1
LINE 'fWD
T"flRET<J
4
THIS IS TH~ N€¥ LTNE 5
6
~ INE TriO
THE INCREM~~T IS .1

The form of the UNDO instruction 15

UNDO [integer] (grainspecJ

The UNDO instruction negates the effect ot the last command, that Is,
it "undoes" a command. UNDO affects ADD, CHANGE, DELETE, COPY,
MODIFY, REPLACE, and RESEQUENCE (note that this does not include UNDO
itself).

The grainspec parameter specIfies whether to UNDO on a llne·by- line
{LINES] basis, or on a command-by-command [COMMANDSl basis. The
default 1s LINES. The integer parameter specifies how many "grains"
to ONDO, that 15, how many LINES or COMMANDS. The default Is one.

VECTOR INSTRUCTION

The form of the VECTOR instruction 1s

VEe [TOR] [variablename]

The VECTOR Instruction stores the edited text as a character vector
with carriage return characters used to separate the lines. The
variable may be edited later and a function or other variable
produced. If variablename Is omitted, the name of the function or
variable used in the JEOIT command Is replaced by the character
vector.

VERBOSE INSTRUCTION

The form of the VERBOSE instruct10n is

VER[BOSE]

The VERBOSE instruction 1s used to set the edItor response mode to
verbose, in whIch case messages regarding the effect of instructions
are fully printed. The opposite setting Of the instruction response
mode 1s BRIEF. The default mode is VERBOSE.

8-12

l'iii'!.iI' APLGOL I IX I

APLGOL is a language which is a superset of APL, adding additional
statement-sequence control structures. A workspace may contain any
mixture of APL and APLGOL functions, which can be used 1n any
combination. A single function, however, must be all APL or all
APLGOL: the two languages may not be mlxea within the same function.

In APLGOL, Keywords are used 1n conjunction with APL expressions
(except APL branch expressions, which cannot be used in APLGOL) to
describe the control flOW within a given procedure. For example, the
APL procedure

Z+FACT N
-+(-NS1)/L
Z+l
-+0
L:Z+NxFACT N-1

is comparable to the APLGOL procedure

PROCEDURg Z+FACT ~

IF /IIs1 'TH.EN
Z+l

EL8F:
Z+NxFACTi\l-l;

'END PROCgDURE

APLGOL keywords are formed from an alphabetic string.

The external attributes of an APLGOL function are the same as those ot
an APL function: it is named according to the same rules as APL
functions and has an oPtional result: zero, one, or two arguments:
and zero or more local variables.

The header line of an ApLGOL function 1s similar to an APL header
except it 1s preceded by the keyword PROCEDURE, and terminated with a
semicolon. The list of local variables, If any, is separated by commas
instead of semicolons. for example,

PROCEDUR~ Z+L FUNe R,L1,L2,QIO;

defines an APLGOL function header equivalent to the APL function
header

Z+L PUNC R;L1;L2;OIO

9-1

GENEFAL APLGOL FUNCTION FORMAT

In addition to the header, an APLGOL function 1s composed of one or
more statements followed by END PROCEDURE, statements are written in
free-field format and are terminated by semicolons.

APLGOL comments are placed between paired comment symbols (W), while
1n APL a comment 1s defined as anything on a llne to the right of the
leftmost comment symbol. \

APLGOL functions art written in a tree-field format, while APL
functions are line-oriented. APLGOL statements may be entered in any
convenient format. When the function IS subsequently edited, the
listing will be formatted to snow a canonic form with indenting used
to depict the depth and shape of the nested control structures.

For example, an APLGOL procedure could be entered as:

PROCEDURE SAMPL; IF A~B THEN B~GIN A+C; WRIL~ J~L(¥-1+I)t2
DO BEGI~ L2+L3+L~L-J-l;L~+-L-l+pY+77777 DYADF L; END; END; ~LSE;
A+D; IF 2=ppZ DO EXIT C[2]+(1+pZ)-N; Z+N.C.~.P.Q.R; END
PROCEDURE

while subsequent editing would show it as:

[oJ
[1]
[2J
[3]
(4]
(5]
[6]
[7]
[8]
[9]
[10]
[11]
[12J
[13J
(14J
(15]

PROCF:DURg 8AM!?L
IP A~B TflEAJ

B1?GIN
A+C;
WHILE J~l(N-l-I)t2 DO

BEGIN
L2+L3+L4L-J-l;
L4+-L-l~pY+7 DYADF L;

END;
'!:ND

ELSE
A+D;

IF 2=ppZ DO
EXIT C[2J+(l~pZ)tN;

z+ltJ.,C.,P.,Q.,R;
END PROCEDUR"B:

Table 9-1 lists the syntax for all APLGOL statements.

9·2

Table 9-1. APLGOL Syntax

aplgol function = PROCEDURE header : statement list
END PROCEDURE

header = lldent1fler] identifier [identifier]
lidentifier] ••• [identifier]

statement list = [statement] [statement list]

statement = expression

branch =

control

NULL

EXIT [expression]

BEGIN statement list END

HALT [expression]

FOREVER DO statement

ASSERT expression : expression

IF expression DO statement

IF expression THEN statement ELSE
statement

WHILE expression DO statement

REPEAT statement list UNTIL expression

CASE expression OF integer constant
BEGIN subcase list + END CASE

[

BRANCH 1
LEAVE
ITERATE
RESTART

= PROCEDURE
f'OREVER
IF
WHILE
REPEAT
CASE

subcase ::= subcase label: statement

subcase label = [integer scalar constant]
Llnteger vector constant

9-3

Table 9-1. APLGOL Syntax (continued)

subcase list = subcase [subcase list]

comment

DEFAULT

= lamp symbol [text not containing a lamp symbolJ
lamp symbol

Note: Comments may appear anywnere except 1n the middle of a
vector constant, within a keyword, or within an identifier.

APLGOL STATEMENTS

NULL STATEMENT

The form of the NULL statement 1s

NULL

NULL 1s a no-oPeration statement. It 15 used when a dummy statement
is needed to complete a control structure but when no other action Is
necessary.

EXIT STATEMENT

The form of the EXIT statement 1s

EXIT lexpressionJ

The EXIT statement 1s used to return from tne current procedure. If
the oPtional expression 1s specified, the expression is executed just
prior to returning.

BEGIN STATEMENT

The form of the BEGIN statement is

BEGIN statement list END

The BEGIN statement is the usual compound statement which is used to
group mUltipie statements, so that they can be treated as a single
statement within the control structure. Note that a BEGIN/END pair
does not constitute a block as in ALGOL (permlttlnq a new name scope):
local variables may only be specified 1n a function header line.

An example:

[0]
[lJ
[2]
[3]
[4]

IF' KLARN s 6 DO
Bli:GIN

'ARGGH: KLARM IS BELOW SEV~N, NAM~LY, ',. KLARM;
EXIT;

1?ND;

9-4

HALT STATEMENT

The form of the HALT statement 1s

HALT [expression]

When a HALT statement is enCountered, execution 1s suspended and the
system enters immediate execution mode. If the optional express10n is
specified, it is evaluated just prior to the suspension. If a HALT
statement is used in place ot a call to an unwritten module, the
expression can be used to print a message that the part1cular
procedure has reached this pOint before suspending. At this point, 1t
is possible to simulate the effect of the m1ssing module before
cont1nuing further execution.

For example, a compiler system control routine might be started as:

[0]
[1]
[2]
[3]
[4]
[5]
[6]
[7]

PROCEDURE COMPILE
FOREVER DO

BEGIN
SCANNER;
PARSER;
HALT 'INTERPRETER';

END;
END PROCEDURE

A LOOP TO PROCESS EAC" INPUT A
A INVOK~ THE SCANNER MODULE A
A INVOKE THE PARSER MODULE A

A NO INTERPRETER YET A

When line [5] is executed, the text INTERPRETER is printed and
execution is suspended.

ASSERT STATEMENT

The form of the ASSERT statement is

ASSERT expression : expression

The ASS~RT statement is intended as an aid 1n the pToof·of-correctness
programming approach. The ASSERT statement allows the programmer to
make assertions regarding the program which the system may optionally
test. The second expression in the statement is a boolean expression
giving a scalar (unit) truth value for the assertion. For example, if
the variable I must lie between 0 and 9 inclusively, the assertion
would be:

ASSERT 10: (I~0)AI~9;

which would evaluate to a 1 If true and a 0 if false.

The first expression Is used to give the relative importance of the
assertion and must evaluate to an integer between -32768 and 32767.
For example, a value of 1 would indicate a trivial assertion, while a
value of 10 would indicate a less trivial one and a value of 100 would
indicate a major assertion.

The actual mechanics
system variable DAL,

of executing ASSEHT
Which contains the

9-5

statements dependS on the
current assertion CheCKing

level. This variable indicates the lower bound of assertions to be
checKed and has an integer range between -32768 and 32767. Each time
an ASSERT statement is encountered, the assertion level 1s checked
against the first expression in the statement. If the assertion level
is smaller than the system variable the statement Is regarded as a
comment and not executed.

If the first expression is larger than or equal to the assertion
level, however, the second expression Is evaluated. If the result ot
the evaluation 1s true, the program continues: otherwise execution is
suspended, and an ASSERTION FAILED message is printed together with
information to locate the assertion in the procedure. At this point
the system suspends execution to allow the user to correct the
Situation.

If the assertion level is lower than the lowest specified level, all
assertions are checKed. An example of assertion usage might be: a
program may be debugged initially with the assertion level set low to
check all assertions, When the assertions no longer fail, the
assertion level may be raised to the highest-valued assertion 1n the
program, so that only the most major assertions are checKed. Should a
malfunction SUbsequently occur in a program assumed to be ChecKed out,
the assertion level can again be lowered to check all of the original
assertions aga1n. Assertion statements remain as comments in a
completed program and are intended to be useful documentation and
debugging a1ds.

IF STATEMENT

APLGOL has two separate forms of IF statements. The single-arm
conditional evaluates the expression after the If, and if it is true,
executes the statement following the DO. The form of the single-arm
conditional IF statement is

IF expression DO statement

For example,

IF A>5 DO
B+AI5;

The dOUble-arm conditional evaluates the expression after the IF and
executes the statement following the THEN 1f it is true~ otherwise it
executes the statement following the E:LSE. The form of the double-arm
conditional IF statement is

IF eXpression THEN statement ELSE statement

For example,

IP A>S TH8¥
A+CtS

~LSE
A+A+1;

9·6

Note that the expression must evaluate to a boolean (0 or 1) scalar,
unit, or vector result. It the expression evaluates to a multi
element vector, an implicit 1W expression Is performed to select the
first element.

WHILE STATEMENT

The form of the WHILE statement is

WHILE expression DO statement

The WHILE statement first evaluates the expression WhiCh must evaluate
to a boolean scalar, vector, or unit result. If the first element of
expression Is true, the statement is performed and the process Is
started over with the re-computation of the expression. Otherwise,
control proceeds to the next statement.

REPEAT STATEMENT

The form of the REPEAT statement is

REPEAT statement list UNTIL expression

The WHILE statement is termed a pre-checked lOOP1 the REPEAT statement
is referred to as a post-checked loop. A post-checked loop means that
the statement list Is performed at least once, after which the
expression fOllowing the UNTIL is evaluated and checked. If the first
element of this expression, which must evaluate to a boolean scalar,
vector, or unit, Is false, control wlil continue with the next
statement: otherwise control returns to the first statement 1n the
statement list following the REPEAT. Note that several statements may
be contained between the REPEAT and the UNTIL, since this keyword pair
forms a natural block, whereas in the WHILE statement a BEGIN/END must
be used to specify the statement list.

FOREVER DO STATEMENT

The form of the FOREVER DO statement 15

FOREVER DO statement

The FOREVER DO statement causes statement to execute endlessly. In
order to exit the scope of the FOREVER statement a specIal EXIT or
branCh statement 1s required. A FOREVER DO may be Interrupted by
generating a hard or soft terminal interrupt.

BRANCH STATEMENTS

APLGOL branch statements are of the form

branch : [controll +

9·7

The only branch statements permitted in APLGOL are those directed to a
~ey point in a control structure which encloses the pOint In which the
branCh 1s located. Three key points, termed LEAVE, ITERATE, and
RESTART, are assocIated with each of the following control structures:
PFOCEDURE, FOREVER, IF, WHIL~, REPEAT, and CASE.

Each branch statement consists of a keyword specifying the type of
branCh, followed by a colon and a list of control structure keywords
which Is processed left-to-right. Each element in the list specifies
a control structure in which the branch statement is located, and each
successive control structure is exited until the last one In the list.
Control 1s then transferred to the appropriate point In the outermost
control structure shown In the list. The nesting is defined by the
lexical structure of the function, not the run-time execution
structure. For example, LEAVE: WHILE will effect a branch to the
leave po1nt 1n the innermost WHILE statement relat1ve to the location
of the LEAVE statement.

Examples:

RESTART: r'OREVER FOREVER;

results in leaving the innermost FOREVER statement and branching to
the restart point of the next Innermost FOREVER statement.

ITERATE: WHILE REPEATJ

exits tne current inner WHILE statement and branCh to the iterate
pOint In the next innermost REPEAT statement.

The LEAVE, ITERATE, and RESTART pOints
at the end of this section.

are defined on the flOWCharts

CASE STATEMENT

The form of the CASE statement Is

CASE expression OF integer constant BEGIN
subcase list + END CASE

\

Tne CASE statement uses the value of the expression following CASE to
select one of the subcases and execute it, The expression must
evaluate to a non-negative integer. If the value 15 non-single, the
value of the first element 1s used. The value must be between 0 and
the value of the integer constant following OF. The integer constant
indicates the largest number for a subcase in the statement, although
not all subcases need be specifIed. A s1ngle subcase may be
aSSOCiated with more than one value of the expression.

Note that no more than 1024 sUbcases (numbered 0 thrOUgh 1023) are
permitted,

The case body is delimited by BEGIN and END CASE, Inside 1t are the

9·8

subcases, in any order. The syntax of a sUbcase Is as follows:

subcase = subcase label : statement
subcase list = subcase [subcase list]

The subcase label can be a constant integer scalar, or a constant
integer vector, 1n which case the associated statement will be
executed it the value ot expression following CASE Is an element of
the SUbcase label. The subcase label can also contain the Keyword
DEFAULT, in wh1Ch case the accompanying statement will be executed if
the value of the selector expression is In range but does not match
any of the specified values 1n the other subcase labels. Only one
DEFAULT subcase may be permitted 1n a case statement.

For example:

CASg IIJ OF 15
Bfi:GIN

0: I+J+13tK;
2: NULL;
1: RALT 'CASE 1 IS SYSTE~ ERROR';
10 12 14:

B'i:GIN
I+I-l;
J +~J -1;

END;
5 : EX TTJ +-.] -1 ;
DEFAULT:

q4LT 'UNKNOWN CASE POSSIBILITIES';
END CASe;

The flow diagrams contained in figures 9-1 through 9-7 Show the flow
of control for each of the APLGOL statements. The key branch pOints
of each statement structure associated with the three types of
branches are indicated by IT, the iterate point, RS, the restart
point, and LV, the leave pOint.

PROCEDURE A

,If RS, IT

body of A

LV

Figure 9-1. Procedure Statement Flow Chart

9-9

FOREVER DO statement

I F expression DO statement

,.

RS, IT

"

statement

I
I
I
I

t

LV

Figure 9-2. Forever Do Statement Flow Chart

RS IT

true
statement

false

LV

Figure 9-3. Single-Arm Conditional If Statement Flow Chart

9·10

IF expression THEN statement -1 ELSE statement-2

IT IT

true false
statement -1 statement -2

LV

Figure 9-4. Double-Arm Conditional If Statement Flow Chart

REPEAT statement-list UNTI L expression

RS

statement-I ist

IT

false

Figure 9-5. Repeat Statement Flow \Chart

9-11

WHI LE expression DO statement

RS

false

statement

LV

Figure 9-6. While Statement Flow Chart

CASE expression OF integer BEGIN [subcase;] + END CASE

t RS

select expression

I
IT IT IT IT

~ hi ~ ~

subcase subcase subcase subcase

, It ~ r

LV

Figure 9-7. Case Statement Flow Chart

9-12

1111111.111 FUNCTION EXECUTION I x I

User-defined functions (or simply, defined functions) may be used 1n
the same manner as primitive functions, except that they may not be
used as arguments of primitive operators. A defined function may be
used 1n calculator mode or it may be called from Within another
defined function.

When a defined function is invoked, its execution begins with the
first statement, then successive statements are executed 1n order,
except as this order is changed by branch instructions.

For example, consider the function CIRCL~AR~A:

OCR 'CIRCL-eAREA'
AREA+RADIUS CIRCLgAR~A D~GREES;LOCAL1;LOCAL2
AREA+(ORADIUS*2)xDgGREESt360

When this function is executed with tne statement

265.3 CIRCL£AR~A 16.67

the value 265.3 is assigned to tne local
16.67 is' assiqned to the local name DEGREES.
then 1s executed and the statement

AREA (oRADIUS*2)xDEGRElS 360

name RAOIUS and the value
Tne body of the functIon

computes a value for the result variable AREA.

A function like CIRCLEAREA, which produces an explicit result, may be
used in compouna expressions. t'or example,

PRICE+12x36000x12.4 CTRCLEARPA 36.2
PRICE

20983747.88

The value computed tor the result variable AREA 1n the function
CIRCLEAREA is used to compute PRICE. The result variable, AREA, 1s
treated the same as any lOCdl Variable ana therefore has no
significance after the function is executed:

.4R8A
VA~U'5 !ERROR

AReA
t

10-1

HALTED EXECUTION

Execution of a function may be stopped before completion in the
following ways:

* By an error report.

* By an interrupt from the terminal.

* By use ot the stop control system function OSS (see page 10-10).

* By execution of the HALT statement.

When a function is stopped before its execution 1s complete, the
function is suspended. The name of the function Is displayed, with a
line number beside it. If the suspension is because of an error ot
interrupt from the terminal, the line is displayed witn .an appropriate
message and an indication of the point of interruption. Unless
multiple specification arrows or other used-defined functions appear
in the line, the state of computation was restored to the condition
existing before the line started to execute.

The displayed number generally is the number of the line that would be
executed next if the tunction were to continue normally. Execution of
the suspenaed function can oe resumed by entering a branch arrow to
the line counter system function (OLe), or by entering)RESUME (see
page 10-8 tor a discussion of the)RESUME command).

Entering +0, or a branch to a number outside tne range ot statement
numbers in the function causes an immediate exit from the function.

All normal activities are possiole when ~ functlon is in the suspended
state. Statements or systero commands may be eXecuted, or execution ot
the function may be resumed at any point, or the editor may be invoked
to edit any function ~hlCh is not pendent (see below).

STATE INDICATOP SYSTEM COMMAhD

The state indicator system command lSI displays the state indicator. A
typical display hdS the form

lSI
A[4] *
H[6J
D[4]
C[2J *
D (1 J

and indicates that execution was halted before completing execution of
line 4 of function A, the current use of function A was called in line
6 of function b, function bwas called 1n D(4), the use of function C
was halted at line 2, and that function C was called in 0(1). The
asterisks appearing to the riqht ot AL4) ana C(2J indicate that
functions A and Care suspended. The functions Band Dare detined as

10-2

being pendent, because their execution Cdn be resurnea only as a result
of tunction A resuming its execution. The term halted is used to
define a function which is either pendent or suspended.

Additional functions can be invOKed when in the suspended state. for
example, if C were called now and a further suspension occurred in
stdtement 3 of function D, itselt invokea in statement 7 of C, the
state ind1cator display would be:

lSI
D[3J * C(7)
A(4J * h[6J
D[4J
C(21 * 0[1]

Because the line counter, OLe, holds the current statement numbers of
functions that are in execution, its value at this point would be the
vector 3 7 4 6 4 2 1. The sequence from tne last suspension to the
precedinq suspension can be cleared by entering a single branch arrow:

~

lSI
A[4] *
B[bJ
D(4J
C[2J *
DL1J

OLe
4 b 4 2 1

Repeated use of toe branch arrow will clear the state indicator and
restore OLe to an empty vector. (The)RESET system command (see page
10-7) nas the same effect.) The cleared state indicator is disPlayed
as a blank line. See page 11-6 tor further applications of the state
indicator system comwand.

STATE INDICATUR DAMAG~

If a function name occurs in the state indicator list, erasure of that
function or replacement of that tunction by copying an object with the
same name (even another example of the same function) makes it
impossible tor the original execution to be resumed. In this case, an
51 DAMAGE message 1s reported.

If an 51 DAMAG~ message is reported for a suspended function, it will
be impossible to resume its execution, out the function can be inVOked
again, with or without prior clearance of the state indicator.

1~3

APL\3000 EXTENDED CQNIFOL FUNCTIONS

The state indicator lSI displays a list ot pendent and suspended
functions in the order in which they were called. It also displays
the line number on which each function is suspended and optionally, it
)SIV is used, a list of all variables shadowed by each function call.
Eaen of the ~ser-deflned function names which appear on the state
indicator is termed a control point and the cOllection of all control
paints dIsplayed by the state Indicator is termed an environment. The
current control point is the function which is currently executing or
suspenaed, and the current environment Is the set of functIon calls
which would De displayed by the state indicator if it were called at
the current control pOint.

In order to facilitate the execution of APL statements in environments
other than the current environment, two system fUnctions are available
in APL\3000 which allow the saving of new environments for later use.
An arbitrary APL expression can then De executea in one Of these saved
environments through the use of the extended execute function.

CAPTURE STACK ENVIRONMENT SYSTEM FU~CTION

The form of the capture stack environment system fUnction is

A+f DeSE; C S D

where

A = assigned environment n.umber
F = functlon name
C = count (scalar, unit, or 1. to 3 element vector)
S = starting environment
0 = desired environment number

The DCSE functlon searChes down the list of control points beginnlng
with the startinq environment for the control point specified by count
and with the designated function name. If the required control point
Is found, it is assigned, along with its environment, to the assigned
environment number (a number between 1 and 1~ which can be used to
access the captured environment at a later tlme). Environment 0 is
always defined as the current environment.

If function name 1s not specified, the control pOint specified by
count (regardless of name) will be captured. Although the execute and
evaluated input functions (~ and D) appear in the status indicator,
they are not considered as control points. They cannot be captured by
DOSE an d don 0 t par tic i pat e 1 nth e co un t • 1 f ttl e fun c t ion n a mel s not
specified and the count exceeds the number of user-defined functions
in the starting environment, the global environment 1s captured.

If a desired environment number is not specified in the right
argument, the next available environment number is chosen. If the
environment limit Is eXhausted, an error message 1s returned,

10-4

It a desired environment number is specified in the right argument,
any environment previously assigned to that number is released before
the new environment is captured.

If a starting environment is not specified, the current environment
(environment 0) is assumed. If a starting environment is specified,
toe search starts in that environment but control always returns to
the current environment.

R E LEA S EST A eKE N V I F 0 N t4 r.: N T S t S T E tVl ~. U NeT ION

The form of tne release stack environement system function is

where

R L :: r e 1 e a 5 e den vir 0 n ni e n t 1 i 5 t
EL = environment list

The DRSE function releases a list of environments previously captured
by DCSE. Tne released environment list contains a list of
environments actually released, this may be different trom the
environment list because some of the environments In environment list
may be empty or non-existent. DRSE may be used with the current
environment (number zero) which will cause the current environment to
be reduced to the empty environment.

EXTENDED OY.ADIC EXECUTE PHlt"iITIVE FUNCTION

The form of the extendea ayadic execute primitive function 1s

N. .t E

where

N = environment number
£ = Character scalar, vector, or unit representing the APL

expression to be evaluated

The dyadic torm of execute evaluates an APL expression in the same way
that the monadic form evaluates these expressions, except that the
dyadic form evaluates tne expression in toe environment specified by
environment number, wnich may De different from the current
environment. 1f E does not contain a branch, the resulting value
(tnat is, the result of the expression evaluated in the specified
environment) 1s returned to tne current environment as the value of
the execute function.

If ~ results in d branch, the branch is executed as 1t it had occurred
1n the environment specified by environment number, and the
environment from whicn execute was called is released unless it has
been explicitly captured using Dcs~.

10-5

The following examples illustrate possible uses of the extended stacK
control functlons:

Example 1.

Suppose APL 1s being used to simulate machlne code for a hypothetical
machine, and one of the instructions simulated is a relatlve branch.
This can be simulated as follows:

(OJ CODE
(1 J LD A This slmulated mdcnlne code program

will continuously ada 1 to tne contents
of memory location A.

[2] LD I 1
[3 J ADD
[4) STO A
[5J BR-4

The HP program can be written using the extended control functions as
tollows:

[0]
[1]
[2]
[3J
[4]
[5]
[6]

BR OFFSET; E'VIRONM~NT; NEXTLTNR
A CAPTURE THE E¥VIRONMENT OF THE FUNCTION WHICH CALLED 8R
~NVIRONMENT+OCSE 2 0 1
A CALCULATE THE LINE TO BRANCH TO
NEXTLINE+OLC (2] + OFFSET
A EX~CUTE THg BRANCH IN THE FUNCTION WHICB CALLED BR
ENVIRONMENTt'+'9.NEXTLINE

A shorter Version ot thiS program 1s shown below:

(OCS~ 2 0 1) t'+OLC+',.OFFS8T

Example 2.

Suppose that function TEST has local varldDle A, and the system Is
suspended in TEST. The follo~inq sequence will return the glObal
(unshadowedl value of A.

A+'GLOBAL A'
OCR 'TEST'

TEST; A
A+' LOCAL A'

A
2 DSS 'TEST' ~ STOP BEFORE EXECUTION OF LINE 2

2
TEST

TEST[2] *
A

LOCAL A
DCSE 2 A CAPTURE GLOBAL ENVIRONMENT

1
.1£' A' ~ GLOBAL ENVIRONi11ENT CAPTURED AS ENVIRONMENT 1

GLOBAL A

The following system variables can be used to facilitate tne use of
the extended staCk control system functions.

STACK NAMES SYSTEM fUNCtIO~

The stacK names system tunction (DSN) returns a character matrix
containing tne names ot the user-defined functions nalted in the
envlronment in which DSN is evaluated. for example, 1.'DSN' w1ll
return a matrix of the tunction names halted in environment 1.

STATE INDICATOR ANU STAT~ INDICATUR wITH VARIABLES

The state indicator and state indicator witn variables system commands
are entered as

lSI n
)SlV n

where n is an integer between 0 and 15 (default is 01. rhe
environment displayed will oe environment n. If environment n is not
the current environment (environment 0), some of the functi6n names
may appear with d 0 (shift letter 0 in the APt character set)
following the name. A 0 tollowing the function name indicates that
the function is not nalted in the current environment.

For example, suppose tnat the state indicator displays a suspended and
a pendent function as follows:

lSI
TEST(2} *
TEST1[3J

If this environment is captured and the stack is then cleared, tne new
state indicator is shown nelow:

DeSE 1 0 2 ~CAPTURE ENVIRONM~NT 2
2

)SI
) 51 2

TEST{2] ~

TEST1[3J 0

~CL~Ak CURR~NT ENVIRONM~Nr

This indicates that the functions TEST and TESI1 are no longer in the
current environment, although they are contained in environment 1.

RESET SYST~M COMMAND

The torm of tne HESET system command 1s

)RESET n

where n is an integer between 0 and 15 (detault is 0), The RESET

10~

system command releases the environment specified by n. It ~ is
omitted, the current environment is released.)RESET ~ is equivalent
to executing DRSE n.

DEPTH SYSTEM COMMAND

The form of the DEPTH system command is

)DEPTH n

where n is an integer specifying the size of the execution stack. The
execution stacK controls the number ot nested functions allowed. for
example, if n is set to 64, up to 64 functions can be nested at any
one time. A DEPTH ERROR ~ill be returned if the number of nested
functions exceeds the size of toe execution staCk.

RESUME SYSTEM COMMAND

The)PESUME system command resumes execution of a suspended tunction.
Examples of the)RESUME command are shown startln~ on page 10-13.

DEBUGGING AIDS

The system tunctions shown in table 1~1 are used to debug l1nes of
unlocKed user-defined functions.

1~8

Table 10-1. System Functions used for Debugging

MONADIC DYADIC
(All lines) NAME (Specified lines) RESULT

DST f" Set Trace N DST f L
055 F Set Stop N DSS {i' L
DStil r Set Monitor N DSM }i' L
DRT p- Reset Tra.ce .N OPT f L
DRS F' Reset Stop N DRS F' L
DRi~ F Reset ~1oni tor N OHM F 11
Dor f Query Trace B
DQS F Query Stop B
DQfvl f~ Qu.ery Monitor B
DMV ~' Monitor Values N DMV f M

Notes:

F is a cnaracter vector aenoting toe name Of an unlocked
user·detined function.

N is a numeric vector of line numbers,

L is a numeric vector of lines with property (set, reset).

B is a boolean vector, 1 if the property is set, 0 if not set.
(one element per line including header.)

M 15 a matrix of monitor values. The first column contains
the number of executions, and the second column contains the
execution or compute time for each line tor which values are
requested. First row corresponds th header, second row to
line 1, and so forth. Values for header signify number ot
times function executed and CPU time for function.

The monadiC forms Of the debUgging system funct10ns apply to all lines
including tne heaoer line (line 0). Tne dyadic forms apply only to
the lines speCified in the left argument.

DUflng funct10n execution, the effects of tne aids are as follows on
encountering a line:

HEADER LIN~ bODy LINE

Trace kesult returned bY function

Stop suspend prior to return
from functIon

Monitor Increase number of calls
to function dnd total cpu
time in function

10-9

Result

suspend prior to
execution of line

Increase number of times
llne has oeen executed
and increase cpu time
in line execution

The trace result forms are

function name lline number]

Function name [line numberJ type (shape) value

Function name [line number) (shape) value

The first form above occurs if no result is possible: otherwise, the
second form occurs. Ihe third form occurs when a line results 1n a
branch.

The type is C tor character or N for numerlC. The ihape 1s a numeric
vector representing the result ot mondaic D , and value is the normal
displayed value (p r 1 n ted beginning on next 1i n elf pp > 1) •

The stop result form is

Function name [line number] *

SET TRACE, SET STOP, AND SET MONITOB fUNCTIONS

The set trace, set stop, and set monitor functions (OST, 055, and OSM,
respectively) set the trace, stop, and mon1tor states of lines of a
user-defined function. These set functions can be used either
monadically or dyadically. If these functions are used monadically,
the appropriate state is set for all the lines of the function
specified by the character scalar, vector, or unit right argument. If
used dyadically, the state is set for only those lines specified in
the numeric scalar, vector, or unit lett argument. Both forms return
as their results numeric vectors denoting those lines tor whiCh the
state 1s now set.

Note that these functions dO not reset the states each time they are
called~ llnes which are not (implicitly or explicitly) referenced are
not affected.

RESET TRACE, ~ESET STUP, AND R£SET MONITOR fUNCTIONS

The reset trace (ORT), reset stop (DRS), and reset monitor CORM)
functions are analogous to the set functions (described above), except
that they reset the designated state. Their arguments are the same as
those for the set functions: their results are analogous.

MONITOR VALUES fUNCTION

The monitor values system function (DMV) 15 dyaaic or monadic. Tnis
function returns an array of execution count and execution time for
lines of the function specified by its character scalar, vector, or
unit right argument. If the function Is used monadically, the monitor
values for all tne lines of tne function are returned. If usee

10-10

dyadically, only values for tnose lines specitied by the numeric
scalar, vector, or unit lert argument are returned.

The accumulated number of milliseconds is contained in DMV. A time of
o inaicates unmonltored Ilnes or monitorea lInes that have not been
executed. Thus, monitoring all lines over d period of execution is an
effective way to determIne if some program path has reached each line,
and also the time spent in each line.

If a line contains a call on another function, any time spent in that
called function is accumulated there, instead of in the calling line.

The result of OMV 1S a matrix ot shape nXi, wnere ~ is toe number ot
lines in the tunction (inCluding the neader) 1£ used monadicallY, or
the length ot the lett argument if used dyadically. The first column
contains the number of times the line has been executed since tne last
set monitor of the line: the second column is the compute time used by
that line (excluding that usea by user-defined tunctions called by
that line) 1n milliseconas. The values for line number ~ero indicate
the number of times the function has been called and the amount of
computer time it has used.

QUERY TkACE, QU~FY STOP, AND QUERY MONITOR fUNCTIONS

The query trace (OaT), query stop (DOS), and query monitor (OGM)
functions taKe as their only argument a cnaracter scalar, vector, or
unit specitylng the name of a function whose trace, stop, or monitor
states are to oe querieo..

The results ot tnese tunctions are boolean vectors, with a one
denoting tnat the state (trace, stop, or monitor) is set for that
line, and a zero denoting that tne state is not set, The elements of
the result corre&pond to the lines of the funct1on, with the first
element corresponding to line zero, the second to line one, and so
forth,

Examples of the debugging aid system functions are provided at the end
of this section.

LOCKE:O FUNCl IONS

If LOCK is used instead of t~D in the editor to save a defined
function, the function becomes lOcked. A locked function cannot be
edited or displayed. Any associated stop control or trace control
function is nullified after the tunction is lOCked,

A locked function 1s treated In the same manner as a primitive, and
its statements are concealed as much as possible. Execution ot a
lOCked function is terminated by any error occurring Within it, or by
a strong interrupt from the terminal, If execution stops, the
function 1s never suspended but 1s immediately abandoned, The message
displayed for a stop is a DOMAIN error i~ an error of any kind
occurred, v~S fULL 1f the stop resulted from a system limitation, or
INTERRUPT if It was stopped from the terminal.

10-11

A locked function is never pendent, and if an error occurs in any
function called either directly or indirectly by a locked function,
the execution of the entire sequence of nested functions is abanHoned.
If the outermost locKed function was called by an unlocked function,
the outermost function is suspended: if it was called by an entry from
the terminal, an error messaqe 1s displayed with a copy of the
statement that callea the function.

When a soft interrupt from tne terminal is encountered 1n a locked
function, or 1n any tunction that was called by a locKed function,
execution continues normally up to the fIrst interruptable pOint,
which is either the next statement in an unlocked function that called
the outermost locked function, or the completion of the terminal entry
that used tnis locked function. In the latter case, the soft
interrupt has no net effect on function execution, only on display of
output if the explicit result of the function 1s not directly used.

LoCked functions may
proprietary, or as part
proprietary information.

be used to keep a function definition
of a security scneme for protecting other

1~12

DEBUGGING AID EXAMPL~S

OQS 'ROOTS'
100 0 0 0 000 0 0 1

DRS' 'ROOTS'
o 1 2 3 4 5 6 7 8 9 10 11

DOS' 'ROOTS'
o 0 0 0 0 0 000 0 0 0

OS'S 'ROOTS'
o 1 2 3 4 5 6 7 8 9 10 11

OQS 'ROOTS'
1 1 1 1 1 1 111 1 1 1

ROOTS'
ROOT8[1]*

)RBSUMH7
-gNTFJR A NUMBER
ROOTS[2]*

)VARS
A B LABELl LABEL2 LABEL3 LABBL4 N

)RTi:SUME
AND Tqe COMPUTER WILL COMPUTE THE SqUAR~ ROOT
ROOTS[3]*

)RES'J"-17l:
AND THE CUBe ROOT
ROOTS[4]*

lSI
ROO'rS[4] *

)SIV
R-VOTS[4]* LAB15Ll LABEL2 LAB15L3 CABeL4

)RgSUM~

0:
64

ROOTS(5]*
(111) DRS 'ROOTS'

1 2 3 4 5 5 7 8 9 10 11
)RTESUME:

TRE: SQUARE: ROOT IS 8
THe CUBE ROOT IS 4

~NTER 0 IF YOU DO NOT WISH TO CONTINUE
0:

90
THE: "qUARE ROO.T IS 9.486832981
THE CUB~ ROOT IS 4.481404747
ENTER 0 IF YOU DO NOT WISH TO CONTINU~

0:
o

ROOTS[OJ *
) RgSUMri)

10-13

)VAR8
A B N

) R PJ SU\1TS
UQS 'ROOTS'

1 0 0 0 0 0 0 0 0 0
0 1 5 8 DSM 'ROOTS'

0 1 5 8
OSS 'ROOTS'

0 1 2 3 '+ 5 6 7 8 9
OOS 'ROOTS'

1 1 1 1 1 1 1 1 1 1
OQM 'ROOTS'

1 1 0 0 0 1 0 a 1 0
ROOTS

ROOTS[l]*
DRS' 'ROOTS'

0 1 2 3 4 5 6 7 8 9
)RF.:SUMF:

ENTER A NUMBER
AND THE COMPUTER WIL~ COMPUTE
AND THE CUBE .ROOT
0:

42
THE SQUARE ROOT IS 6.480740698
THE CUBE ROOT IS 3.476026645

0 0

10 11

1 1

0 0

10 11

THE S~UARE

gNTER 0 IF YOU DO NOT WISH TO CONTINUE
[J:

0
OQS 'ROOTS'

0 0 0 0 0 0 0
OQT 'ROOTS'

0 0 0 0 0 0 0
6 08T 'ROOTS'

6
ROOTS

'£NTER A NUMBER

a 0 0 0 0

0 0 0 0 0

ROOT

AND THe COMPUTER WIL~ COMPUTE TRE SQUAR~ ROOT
AND T88 CUBE ROOT
0:

~
ROOTS[6] N () 2.080083823
THe SQUARE ROOT IS 3
THE CVBR ROOT IS 2.080083823
ENTER 0 IF YOU DO NOT WISH TO CONTINUE
0:

o

10-14

OOT 'ROOTS'
0 0 0 0 0 0 1 0 o 0 0 0

OlTT 'ROOTS'
0 1 2 3 4 5 6 7 8 9 10 11

Olv/V 'ROOTS'
2 1583
2 87
0 0
0 0
0 0
2 18
0 0
0 0
2 170
0 0
0 0
0 0

10-15

1'1"1[.11' SYSTEM COMMANDS I XI I

System commands are used for SUCh things as monitoring and modifying
the workspace environment, saving and then reactivating copies of a
worKspace, accessing the APL\3000 editor, resuming suspended
functions, and terminating an APL session.

System commands are prefixed by a right parentheses and can only be
entered in immediate execution mode; they cannot be used as part of a
defined function. The complete set of ~ystem commands is shown in
table 11-1.

INITIAL VALU~S IN A WORKSPACE

Some items in a workspace are set to certain standard values when the
workspace is first accessed. In particular, the workspace contains
the settings of the state indicator and several system variables.
These settings are shown 1n table 11-2.

)CLEAR COMMAND

The form of the)CLEAR command is

)CLEAR

The)CLEAR command is used to clear (and discard) the contents of the
active worKspace and reset the workspace to the standard initial
values (see taDle 11-2).

An example of the)CLEAR command is shown below:

)CLEAR
CL~AR r-lS

11-1

Table 11-1. System Commands

NAME SYNTAX PURPOSE

Bind)BIND Sets the BIND flag ON or OFF

Clear)CLEAR Clears the active workspace

Continue)CONTINUE Saves CONTINUE file and terminates APL session

Copy)COpy [name list] Obtains objects from saved workspace

Depth)DEPTH num See Section X

Drop)DROP wsname Purges workspace

Edit)EDIT [name] Accesses APL '" 3000 editor

Erase)ERASE [namelist] Deletes objects from workspace

Files)FILES [groupname. acctname] Lists all files in user's library or, optionally, all files in speci-
fied group and account.

Functions)FNS [letter] Lists user-defined functions in the active workspace.

Help)HELP [cmdname] Displays information on system commands

Library)UB [groupname [acctname]] Lists workspaces in specified library

Load)LOAD wsname Replaces active workspace with duplicate of saved
workspace

MPE)MPE Exits APL and enters MPE

Off)OFF Terminates APL session

Protected)PCOPY wsname [namelist] Obtains objects from named workspace. Does not replace
copy named objects in active workspace.

Reset)RESET See Section X

Resume)RESUME See Section X

Save)SAVE wsname Saves duplicate of active workspace

State)SI Lists state indicator in the active workspace
indicator

State)SIV Lists state indicator in the active workspace with names
indicator local to user-defined functions
with
variables

Terminal)TERM [termtype] Sets terminal type
type

Terse)TERSE Sets error messages to "terse"

Time)TIME Returns elapsed wall time and elapsed CPU time

11-2

Table 11-1. System Commands (Continued)

NAME SYNTAX PURPOSE

Variables)VARS [letter] Lists variables in the active workspace

Verbose)VERBOSE Sets error messages to "verbose"

Workspace
ide ntification

)WSID [wsname] Displays the active workspace name, or, when wsname is
included, renames workspace.

namelist = name [name] [name] ... [name]

wsname = workspace identification [//ockword] [.groupname [.accountname]]

Note: All workspaces are saved with MPE lockwords. If the lockword parameter is not supplied by the user, APL "'-
3000 supplies APLOOOOO.

The reason is that if an attempt is made to open a file containing a lockword, and the lockword parameter is
omitted, MPE prints

LOCKWORD: fileid

on the output device.

If the output device is an APL character= set device, it prints

00 n'wopL.

To change the lockword of a saved workspace, enter)DROP, then)SAVE with new lockword.

11-3

Table 11.,2. Initial Values in a Workspace

Latent expression, OLX

Depth,)DEPTH

Line counter, OLe

stack names, OSN

State indicator, lSI
,-

Workspace Identification,)WI

Print1ng precision, OPP

Printing width, OPW

Comparison tolerance, OCT

Random link, ORL

Language, OLA

Assert level, OAL

Horl~ontal tabs, OHT

Virtual memory, DVM

Index origin, DID

)ERASE COMMAND

The form of the)ERASE command is

)ERASE enamelist]

Empty

66

Empty

E.:mpt y

Cleared

Empty (UNNAMED WS)

10

80

1E 13

o

'APL'

o

o

256 .. 24

1

The)ERASE command deletes objects (functions and variables)
identified by the namelist parameter from the workspace. Shared
variable offers pertaining to any of these objects are retracted.

If a halted function 1s erased, the report 51 DAMAGE is displayed. It
Is not possible to resume the execution ot an erased function, and the
the state indicator Should be Cleared of indications Of damage (see
Section X).

If an object specified In the namellst parameter cannot be erased, the
message NOT ERASED: 1s reported, followed by the name of the Object
not erased.

11·4

An example of the)~RASE command is shown below:

)VARS
A ~ER APL10l APL102 APL103 APL104 APL11 APL31 APL32 APL33
APL34 APL35 APL51 APL52 APL61 APL62 APLGOLl APLGOL2 APLGOL3 APLGOL4
APLGOL5 APLGOL6 APLGOL7 APLGOLB APLGOL9 APLSET ARRAY B C C"AR
D E ~DITl INCOME N RES"APEl RES"APE2 SHAPE
TIM~ VEe VECTOR x XQR Y YIELD Z

)ERASE ALTER VEC XXQR
)VARS

A ~101 APL102 APL103 APL104 APLll APL31 APL32 APL33 APL34
APL35 APL51 APL52 APL61 APL62 APLGOLl APLGOL2 APLGOL3 APLGOL4 APLGOL5
APLGOL6 APLGOL7 APLGOL8 APLGOL9 APLSET ARRAY B C C"AR D
E EDITl INCOME N RESHAPEl RESqAPE2 SHAPE TIME
VECTOR X XQR Y YIELD Z

)COpy COMMAND

The form of the)COPY command Is

)COpy wsname [namelist]

The)COPY command copies the objects specified In the namelist
pardmeter from the workspace indicated by wsname (the source
workSpaCe) into the actIve workspace. It namelist Is omitted, all
objects (except system variables) in the source workspace are copied.

When an object to be copied has the same name as an object in the
active worKspace, the copied object replaces the object in the active
worKspace. If there 1s a shared variable offer pending with respect
to the object thus replaced, the offer is retracted.

If names eXPlicitlY inclUded 1n the)COPY command are not the names of
objects in the source workspace, APL reports NOT COPIED:, followed by
a list of the Objects not tound.

An example of the)COPY command is shown below:

)COP¥ WS2
SAVED 12:44 10/14/76

)PCOP¥ COMMAND

The form of the)PCOPY command is

)PCOpy wsname [namel1st]

The)PCOPY (protected copy) command worKS like the leOpy command,
except that 1t the namelist parameter specifies objects having the
same name of objects in the active workspace, the Objects 1n the
source workspace are not copied. APL reports objects not copied for
this reason by diSPlaying

NOT COPIED: list of objects

11-5

An example of the)PCOPY command 1s shown below:

)PCOpy WS2 ROOTS
NOT COPIED: ROOTS
SAVED 12:44 10/14/76

)FNS COMMAND

The form of the)FNS command Is

)FNS [letter]

The)FNS command l1sts fUnctions in the active workspace in alphabetic
order, starting with the letter specified. If letter Is omitted, all
functions are listed.

An example of the)FNS command is shown below:

)PNS
BOOTS CIRCLEARSA GOLF'SCORE ROOTS

) VARS COt-1MAND

The form of the)VARS command is

)VAHS [letter)

The)VARS command lists variables in the active
alphabetic order, starting with the letter specitied.
omitted, all variables are listed.

An example of the)VARS command Is shown below:

)VARS
A --;;y;;rER APL101 APL102 APL103 APL104 APLll APL31

workspace In
If letter is

APL32 APL33
APL34 APL35 APL51 APL52 APL61 APL62 APLGOLl APLGOL2 APLGOL3 APLGOL4
APLGOL5 APLGOL6 APLGOL7 APLGOL8 APLGOL9 APLSET ARRAY B C CHAR
D E EDITl INC0101E fI/ RJifSHAPEl RES'ffAPE2 SHAPE
TIME VEC vr;;CTOR x XQR Y YIELD Z

)VARS G
INCO,\fE N RESHAPEl RESHAPE2 S'ffAPE TIM"? V7!:C VECTOR
X XQR Y YIELD Z

lSI COMMAND

The form ot the lSI command is

lSI N

11-6

The)51 command displays the state indicator, which Shows the status
of halted functions. The most recently halted function is listed
first. If N is specified, it must be an integer between 0 and 15, and
it causes the environment specified by N to be displayed. See Section
X for a discussion of the use of environment numbers.

The list shows the name of the function and the number of the line at
which the function haltea. Actions which can be taken with respect to
a halted function are discussed In Section X.

Suspended tunctlons are denoted in the state indicator list by an
asterisk, while pendent functions appear without an asterisk.

An example of the lSI command Is shown below:

)SI
ROOTS[3]*

)SIV COMMAND

The form of the)SIV command 1s

)SIV N

The)SIV command displays the state indicator in the same way as the
lSI command, but in addition, lists names local to each function.

If N is specified, it must be an integer between 0 and 15, and it
causes tne environment specified by N to be displayed. See Section X
tor a discussion of the use of environment numbers.

An example of the)SIV command 1s shown below:

)SIV
ROOTS[~ LAB~Ll LAB~L2 LABEL3 LABEL4

WORKSPACE STORAGE AND RETRIEVAL

A duplicate of the active workspace for may
this duplicate is subsequently reactivated,
restored as it was, except that variables
active worKspace when saved are not shared
the workspace 15 reactivated.

LIBRARIES OF SAVED WORKSPACES

be saved later use. When
the entire worKspace 1s

which were shared in the
automatically aga1n when

The set of saved workspaces is called a library. Each worKspace Is
identified by group and account names as well as the actual name
assigned to it. In referring to worKspaces in the user's own library,
however, the group and account names may be omitted, because they are
supplied automatically.

11-7

In systems with multiple APL users, it often is convenient to use
functions or variables contributed by others, A user may activate an
entire workspace saved by another user, or he may copy selected items
from another user~s workspace. In order to copy another user's
worKspace, the group. and account names, 1f different, must be supplied
together with the workspace name.

Some libraries (usually identified by a special group and account
name, for example, PUB.SYS) are not assigned to individual users, but
are designated as public libraries. There may be restrictions,
however, on WhO can save, delete, or modify a workspace In a public
library. In general, a public library worKspace can be re-saved or
deleted only by the user who first saved it.

NAMES AND PASSWORDS OF WORKSPACES

A saved worKspace must be named, The name of a workspace may
duplicate a name used for an APL object within the workspace. A
password may be used with the name of a worKspace, If a password is
used, any reference to the saved workspace must specify this password,

)WSID COMMAND

The form of the)WSID command is

)WSID wsname

The)WSID command renames an active workspace with the name specif1ed
by wsname.

APL displays WAS • •• , followed by the former name.

Another form of the)WSID command With no parameters is

)WSID

This form reports the identification of the active workspace, listing
the group and account names (If other than the user~s) and the
password.

Examples of tne)WSID command are shown below:

)WSID
IS NOT NAM~D

)WSID WS4
WAS NOT NAM~D

)WSID
IS WS4

)SAVE COMMAND

The form of the)SAVE command is

)SAVE wsname

11-8

The)SAVE command saves a duplicate of the active workspace with the
name specified by wsname. The workspace 1s saved in the group library
associated with the user unless otherwise specified. A password is
included in the name 1f the password portion of wsname is specified.

APL aCKnowledges saving by a report listing the date and time at which
the workspace was saved, and the wsnam~.

An example of the)SAVE command is shown below:

)SAVE WS2
SAVED 14:05 10/14/76 WS2

)CONTINUE COMMAND

The torm of the lCONTINUE command is

)CONTINUE

The)CONTINUE command saves the active workspace under the name
CONTINUE and terminates the session.

Additionally, when a sess10n is aborted for any reason except a normal
log-Off (such as the connection to the computer being broken), the
worKspace is saved with a name SUCh as A2661516, where the first three
digits specify the day of the year (tne 266th day in this case), and
the last four d1gits specify the time ot day (3:16 PM in this case).

An example of the)CONTINUE command 1s shown below:

)CONTINUE

)LOAD COMMAND

The form of the)LOAD command is

)LOAD wsname

The)LOAD command discards the active workspace and then transfers a
duplicate of tne saved workspace specified by wsname into tne active
workspace. Shared variable offers in the tormer active worKspace are
retracted.

APL displays the date and time at which the loaded worKspace was last
saved. The latent expression (DLX) in the loaded workspace is
executed automatically.

An example of tne)LOAD command Is shown below:

)LOAD WS2
SAVED 14:05 10/14/76

11-9

)DROP COMMAND

The form of the)DROP command Is

)DROP wsname

The)DROP command removes the workspace
library in which it Is contained. The
wsn~me parameter to drop a workspace.

specified by wsname from the
password Is required in the

The)DROP command has no effect on the actIve workspace.

An attempt to drop a workspace by someone other than the user who
saved it is rejected with the error report IMPROPER LIBRARY REFERENCE.

An example of the)DROP command is shown below:

)DROP '1'5'1
DROPPED

)DROP WS3
WS NOT FOUND

)LIB COMMAND

The form of the)LIB command 1s

)LIB [groupname[.accountnamell

The)LIB command dlsplays the names of the worKspaces, in alpnabet1c
order, 1n the speclfle~ library.

An example of the)LI8 command 1s shown below:

)LIB
A2881407 CONTINU~ JWSAVE WS2 W84

)HELP COMMAND

The form of the)HELP command is

)HELP [cmdname]

The)HELP command returns a listing of the system commands. It the
optional cmdname parameter is specified, the)HELP command returns a
brief description of the specifIed command,

Examples:

)HELP
COMMANDS LEGAL FROM CALCULATOR MODE:
CLEAR CONTINUE COpy DROP ~DIT ~RASE FILES FNS
MPE HELP LA~GUAGE LIB LOAD OFF PCOPY BIND
RESET RESUME SAVE SI SIV VARS WSID TI~R
DEPTH TERM TERSE VERBOSE
ENTER)HELP <COMMAND> FOR A BRIEF DESCRIPTION OF THE COMMAND

)HELP MPE
THE)MPE COMMAND IS USED TO LEAVE APL AND ENTER MPE.

11·10

)TERM COMMAND

The form of the)TERM command is

)TERM [termtype]

where termtype s1gnifies the type of terminal being used. Possible
values for termtype are:

ASCII - ASCII terminal

BP - Hit-pairing

COl - Computer Devices, Inc.

CP - Character-pairing

OM ·'OataMedia

GSI - GenCom Systems, Inc.

HP - Hewlett-PaCkard

An example of the lTERM command:

)TERM
IS ASCII

)TER~4 HP
WAS ASCII

)TERSE COMMAND

The)TERSE command sets error messages to "terse." For examPle,

6tO
REAL DIVIDE BY 0

6tO
t

)'TERSE
6tO

DOMAIN ERROr?
6tO

t

11-11

)VERBOSE COMMAND

The)VERBOSE command sets error messages to "verbose." For example,

6tO
DOMAIN gRROR

6tO
t

)VERBOSE:
6tO

ReAL DIVIDE BY 0
6tO

t

Verbose Is the default mode,

)BIND COMMAND

The)BIND command sets a BIND flag on
command Is entered, the flag is turned
Off,

or off. If otf when the)BIND
on; 1f on, the flag is turned

If a binding error occurs during program execution and the BIND flag
is on, the statement in whiCh the binding error occurred Is listed
along with an indication of the position of the binding error,

An example of the)BIND command is shown below:

)BIND
NOW ON

)BIND
NOW OFF

)FILES COMMAND

The form of the)FILES command Is

)FILES [groupname.acctname]

The)FILES command Is used to list all files 1n the user's account. If
followed by the optional groupname.acctname parameter, all files In
the account specified are listed.

An example of the files command is shown below:

)FILES
A2881407 JWSAVE WS2 WS4

11-12

) MPE C,OMMAND

The)MPE command is used to exit APL and enter the MP~ operating
system. For example,

)MPt?
:LI8TP--

FIL!!:NAME

A2881412

: Rl?8UME

JW8AflE T.182 W84

Note that when the MPE :RESUME command is entered, the READ PENDING
message is not disPlayed (as it is when BREAK Is used).

)TIME COMMAND

The)TIME command turns on or off the reporting of wall/CPU elapsed
times for an APL function to execute. It off,)TIME turns the
reporting on: 1f on, the reporting is turned off. The first value
returned is the elapsed wall time, tne second value is the CPU time,

An example of the)TIME command 1s shown below:

)TIME
NOW ON
TIMES: .0,

A+l1000
TIM7J)S: .5,

B+A*f12
TIMl!:S: 4.9,

C+B*4
TIMeS: 7.7.,

)TIME
NOW OFF

TERMINATING AN APL SESSION

.009

.218

3.534

4.640

An APL session may be terminated with either the)OFF or)CONTINUE
commands,

If the JOFF command is used, the active workspace is discarded and, if
it has not been saved with the)SAVE command, 1s not retrIevable,

The)CONTINUE command terminates the seSSion and saves the active
workspace under the name CONTINUE.

11-13

Examples of the)OFF and)CONTINUE commands are shown below:

)OFF
:LISTF

FIL-eNAME

JWSAVE W52

)CONTINUE
:LISTF

FILENAMT5

WS4

CONTINUg JWSATfE WS2 WS4

'--1 ___________ CONTINUE file saved

11·14

t ,nlM·" ERROR MESSAGES I x I I

Table 12-1 contains error ~essages prodijced by APL\3000. Table 12-2
contains file system (FCHECK) error messages and the corresponding
APL\3000 error numbers.

Table 12-1. APL\3000 Error Messages

TERSE VERBOSE

TRANSLATION ERRORS

SYNTAX ERROR CONSTANT ERROR

SYNTAX ERROR COMMENT ERROR

DOMAIN ERROF EXPONENT OVERFLOW

LABEL ERROR DUPLICATE LABEL

DEFN ERROR DUPLICATE NAME IN HEADER

SYNTAX ERROR SYNTAX t:RROR

SYNTAX ERROR NON-EXISTENT CONTROL STRUCTURE

LABEL ERROR CASE LABEL TOO BIG

LABEL ERROR REAL CASE LABEL

DOMAIN ERROR CASE RANGE TOO BIG

DOMAIN t:RROR CASE RANGE MUST BE INTEG~R

SYNTAX ERBOR DUPLICATE DEFAULT CASE

LABEL ERROR DUPLICATE CASE LABEL

DEFN ERROR MISSING NAME

DEfN ERROR TOO MAN'X NAMES

DEFN ERROl-< ILLEGAL IN HEADER

DEFN EHROR LOCAL LIST ERROR

SYNTAX ERROR ERROR IN EMPTY STATEMENT

CEFN ERROR KEYWORD ' PROCEDURE ' MISSING

12-1

DEFN ERROR

CONST BLK OVFLW

SCODE BLK OV~'LW

CMNT BLK OVfLW

EXECUTION ERRORS

CHARACTER ERROR

SYNTAX ERROR

DEPTH ERROR

DOMAIN ERROR

DEFN ERROR

INDEX ERROR

LABEL ERROR

LENGTH ERROR

RANK ERROR

SYMBOL TABLE FULL

SYSTEM ERROR

VALUE ERROR

WS fULL

DOMAIN ERFlOR

DOMAIN ERROR

DOMAIN ERROR

DOMAIN ERROR

DOMAIN ERROH

DOMAIN ERROR

NONCE ERROR

SYNTAX ERROR

Table 12-1. APL\3000 Error Messages (continued)

FUNCTION ALREADY EXISTS

CONSTANT BLOCK OVERFLOW

SECCODE BLOCK OVERFLOW

COMMENT BLOCK OVERFLOW

ILL~GAL CHARACTER

SYNTAX ERROR

FUNCTION CALLS TOO DEEP

DOMAIN ERROR

DEF'N ERHOR

INDEX ERROR

LABEL ERROR

LENGTH ERROR

RANK ERROR

TOO MANY SYMBOLS IN WS

SYSTEM ERROR

VALUE ERROR

WORKSPACE FULL

INTEGER DIVIDE BY 0

REAL DIVIDE BY ZERO

INTEGER OVERFLOW

REAJ", OVERFLOW

INT~GER UNDERFLOW

PEAL UNDERFLOW

NOT YET IMPLEMENTED

FUNCTION VALENCE CHANGED

12-2

Table 12-1. APL\3000 Error Messages (continued)

INCORRECT COMMAND

INTERRUPT

BINDING ERROR

DOMAIN ERROR

DOMAIN EHROR

NO ENVIRONMENTS

ASSERTION ~"AILED

EDITOR ERRORS

INTERNAL OVERFLOW

SYNTAX t:RROR

MUST BE APL OR APLGOL

ILLEGAL LINE RANGE

NUMBER TOO LARGE

TOO MAN~ DECIMAL POINTS

ILLEGAL NAME

NUMBER TOO LARGE

MISSING COLON

MISSING START LINE

MISSING LINE COUNT

MISSING DELTA

MISSING ASSIGNMENT

MISSING DELTA VALUE

ILLEGAL DELTA VALUE

NO SUCH COMMAND

CHANGE STRING NOT DEFINED

FIND STRING NOT DEFINED

INCURRECT COMMAND

INTERRUPT

BINDING ERROR

NON-EXISTENT ENVIRONMENT

ENVIRONMENT NOT ON STACK

ENVIRONMENT LIMIT EXHAUSTED

ASSERTION FAILED

INTERNAL OVERFLOW

SYNTAX EFROR

MDST BE APL OR APLGOL

ILLEGAL LINE RANGE

NUMBER TOO LARGE

TOO MANY DECIMAL POINTS

ILLEGAL NAME

NUMBER TOO LARGE

MISSING COLON

MISSING START LINE

MISSING LINE COUNT

MISSING DELTA

MISSING ASSIGNMENT

MISSING DELTA VALUE

ILLEGAL DELTA VALUE

NO SUCH COMMAND

CHANGE STRING NOT DEFINED

FIND STRING NOT DEFINED

12-3

Table 12-1. APL\3000 Error Messages (continued)

PATTERN STRING NOT DEFINED

NO LI~E NUMBER ROOM

NONCE ERROR

LINE NOT FOUND

STRING NOT FOUND

WS FULL

LIBRARY COMMAND ERRORS

SYSTEM ERROR

WS LOCKED

WS NOT FOUND

~., ILE NOT WS

NO SPACE

NO SUCH LIB

BAD WSID

ACCESS ERROR

ACCESS ERROR

ACCESS EHROR

NO SPACE

FILE EXISTS

UNNAMED WS

INTERRUPT

INTERRUPT

EDITOR ERRORS

WILL NOT OVERLAY LINE

INTERRUPT

PATTERN STRING NOT DEFINED

NO LINE NUMBER ROOM

NOT YET IMPLEMENTED

LINE NOT FOUND

STRING NOT FOUND

WORKSPACE FULL

UNEXPECTED FILE ERROR

INCORRECT PASSWORD SUPPLIED

WORKSPACE DOES NOT EXIST

FILE IS NOT AN APL WORKSPACE

NO OISC SPACE AVAILABLE

ACCOUNT OR GROUP NON·EXISTENT

INCORRECT WORKSPACE NAME

CANNOT OBTAIN EXCLUSIVE ACCESS

SECURITY DISALLOWS ACCESS

FILE CR~ATOR CONFLICT

DIRECTORY OVERFLOW

NOT SAVED - FILE ALREADY EXISTS

NOT SAV~D • WORKSPACE HAS NO NAME

INTERRUPT • WS NOT LOADED

INTERRUPT - WS NOT SAVED

WILL NOT OVERLAY LINE

12-4

FILE

-1000

-1001

~1002

Table 12-1. APL\3000 Error Messages (continued)

SYSTEM ERRORS

FILE SYST~M ERROR

SYSTEM ERROR

WS LOCKED

WS NOT FOUND

FILE NOT WS

NO SPACE

.NO SUCH LIB

BAD WSID

ACCESS ERROR

ACCESS ERROR

ACCESS ERROR

NO SPACE

[tILE EXISTS

UNNAMED WS

FILE ALREADY OPENED

FILE NOT OPEN

STACK OVf"LW

FILE SiSTEM ERROR

UNEXPECTED FILE ERROR

INCORRECT PASSWORD SUPPLIED

WORKSPACE DOES NOT EXIST

FILE IS NOT AN APL WORKSPACE

NO DISC SPACE AVAILABLE

GROUP OR ACCOUNT NUMBER

INVALID WORKSPACE NAME

CANNOT OBTAIN EXCLUSIVE ACCESS

SECURITY DISALLOwS ACCESS

FILE CREATOR CONFLICT

DIRECTORY OVERFLOW

NQN-WS FILE BY THAT NAME

NOT SAVEu - WORKSPACE HAS NO NAME

FILE ALREADY OPENED

FILE NOT YET OPENED

RECORD SlZE TOO LARG~

12-5

Table 12-2. File System (FCHECK) Error Codes

ERROR
NUMBER MEANING

20 Invalid operation

21 Data parity error.

22 Software time-out.

23 End of tape.

24 Unit not ready.

25 No write ring on tape.

26 Transmission error.

27 Input/output time-out,

28 Timing error or data overrun.

29 Start input/output (SID) failure,

30 Unit failure.

31 End of line indicated by special character
terminator.

32 Software abort of input/output operation.

33 Oata lost.

34 Unit not on-line.

35 Data set not ready.

36 Invalid disc address.

37 Invalid memory address.

38 Tape parity error,

39 Recovered tape error.

40 Operation inconsistent with access type.

41 Operation inconsistent with record type.

42 OperatIon inconsistent with device type,

12-6

APL
ERROR

NUMBER

100

100

100

100

100

100

100

100

100

100

100

100

100

100

100

100

100

100

100

100

100

100

100

Table 12-2. File System (FCHECK) Error Codes (continued)

43 Transfer count (tcount) exceeds record size 100
parameter (recs1ze) when mult1-record write
(aopt1on) not specified when f1le opened.

44 FUPDATE intrinsic requested but file Is 100
positioned at record zero: fUPDAT~ must
reference last record read but no previous
record was read.

45 Privileged tile violation. 100

46 Insufficient disc file SPace on all d1scs 1n 104
specified device class.

47 Input/output error while accessing file label. 100

48 Inval1d operation due to mUltIPle file access. 100

49 Unimplemented function. 100

50 Referenced account does not exist. 105

51 Referenced group doeS not eXist. 105
-

52 Referenced permanent file not found in system 102
directory.

53 Referenced temporary file not found in job 102
directory.

54 Inval1d file reference. 106

55 Referenced device is not available. 100

56 Device speCifIcatIon 1s invalid or undetined. 100

57 Virtual memory insufficient for specified file. 100

58

59

60

61

62

63

File not passed: typically caused by request
for $OLDPASS when tnere Is no SOLDPASS,

Standard label violation,

Global RIN not aVailable.

Group disc file space exceeded.

Account disc file space exceeded.

User does not have non-sharable device (ND)
capability required by this operation.

12-7

100

100

100

104

104

100

Table 12·2. File System (FCHECK) Error Codes (continued)

64 User does not have multiple RIN (MR) capability 100
required by this operation.

71; Too many files opened tor process. 100

12 Invalid file number. 100

73 Bounds checK violation, 100

80 Configured maximum number of spoolfl1e sectors 100
exceeded by this output request.

81 SPOOL class not defined in system. 100

82 Insufficient space in SPOOL class for this 100
input/output request.

83 Extent size greater than 65K (maximum allowed). 100

84 Device In SPOOL class is down: that Is, next
extent in this spoolfile is on device that 1s
not available to system.

100

85 Requested operation inconsistent with spooling; 100
for example, an attempt to read hardware
status,

86 Spool process internal error. 100

87 Offset to data is greater than 255 sectors, 100

89 Power failure. 100

90 Calling process requested exclusive access to 107
file ceing accessed by another process.

91 Calling process requested access to tile to 107
to which another process has exclusive access.

92 LocKword violation. 101

93 Security violation, 108

94 Conflict in use of FRENAME intrinsic because 109
user is not the creator.

100 Duplicate permanent file name in system f11e 102
directory.

101 Duplicate temporary file name 1n job file 102
directory.

12-8

Table 12-2. File System (FCHECK) Error Codes (continued)

102 Directory input/output error.

103 System directory overflow.

104 Job directory overflow.

105 Illegal variable bloCK structure.

106

107

110

Extent size exceeds 65K (maximum allowed).

Offset to data exceeds 255 sectors.

Attempt to save permanent system file in job
(temporary) directory,

12-9

100

110

110

100

100

100

APL\3000 CHARACTER SET I~II!I'I,

FUNCTION
CHARACTER OR USE APL ASCII 3-CHAR O-ORIGIN ASCII· ASCII OVERSTRUCK

NAME MONADIC DYADIC SYMBOL SYMBOL "ASCII" DAVINDEX DECIMAL OCTAL CHARACTER

Zero NUMBERS NAMES 0 0 0 48 60

One 1 1 1 49 61

Two 2 2 2 50 62

Three 3 3 3 51 63

Four 4 4 4 52 64

Five 5 5 5 53 65

Six 6 6 6 54 66

Seven 7 7 7 55 67

Eight 8 8 8 56 70

Nine 9 9 9 57 71

Space Separator It 10 32 40

A NAMES A A 11 65 101

A-underscore A "UA 12 A -
B B B 13 66 102

B-underscore B "UB 14 B -
C C C 15 67 103

C-underscore e "ue 16 e -
D D D 17 68 104

D-underscore D "UD 18 D -
E E E 19 69 105

E-underscore E "UE 20 E -
F F F 21 70 106

F-underscore F "UF 22 F -
G G G 23 71 107

G-underscore G "UG 24 G -
H H H 25 72 110

H-underrscore H "UH 26 H -
I I I 27 73 111

I-underscore I "UI 28 I -

J J J 29 74 112

J-underscore J "UJ 30 J -
K K K 31 75 113

K-underscore K "UK 32 K -
L L L 33 76 114

L-underscore L "UL 34 L -
M 1 M M 35 77 115

M-underscore NAMES M "UM 36 M -

A-1

FUNCTION
CHARACTER OR USE APL ASCII 3-CHAR O-ORIGIN ASCII ASCII OVERSTRUCK

NAME MONADIC DYADIC SYMBOL SYMBOL "ASCII" DAV INDEX DECIMAL OCTAL CHARACTER

N N N 37 78 116

N-underscore N "UN 38 N -
0 0 0 39 79 117

O-underscore 0 "UN 40 0 -
P P P 41 80 120

P-underscore P "UP 42 P -
Q Q Q 43 81 121

Q-underscore Q "UQ 44 Q -

R R R 45 82 122

R-underscore R "UR 46 R -
S S S 47 83 123

S-underscore S "US 48 S -
T T T 49 84 124

T-underscore T "UT 50 T -
U U U 51 85 125

U-underscore U "UU 52 U -

V V V 53 86 126

V-underscore V "UV 54 V -
W W W 55 87 127

W-underscore W "UW 56 W -
X X X 57 88 130

X -undersco re X "UX 58 X -
V V V 59 89 131

V-underscore V "UV 60 V -
Z Z Z 61 90 132

Z-underscore ,It
Z "UZ 62 Z -

DELTA NAMES ~ "LD 63

DEL T A-Under NAMES tl! .. "DU 64 ~ -
less less < < 65 60 74

not greater not "LE 66
greater ~

greater greater > > 67 62 76

not less not less ~ "GE 68

equal equal = = 69 61 75

not equal not ¥- "NE 70
equal

A-2

FUNCTION
CHARACTER OR USE APL ASCII 3-CHAR O-ORIGIN ASCII ASCII OVERSTRUCK

NAME MONADIC DYADIC SYMBOL SYMBOL "ASCII" DAV INDEX DECIMAL OCTAL CHARACTER

or or V "OR 71

and and /\ "NO 72

tilde not - "NT 73

epsilon member E "EP 74

up (arrow) take t tor 75 94 136

down (arrow) drop ~ "OP 76

base decode ..1 "BV 77

top encode T "RP 78

slash compress / / 79 47 57

slope expand \ \ 80 92 134

open paren Grouping Grouping ((81 40 50

close paren Grouping Grouping)) 82 41 51

open bracket Indexing Indexing [[83 91 133

close bracket Indexing Indexing]] 84 93 135

overbar neg. constant - # 85 35 43

right (arrow) branch --..,. "RA 86

left (arrow) assign +- +-or 87 95

del None None "V "OL 88

quad Input, Out- Input, Out- "00 89
put, Oistin- put, Oistin-

0 guished guished
Names Names

quote Char. Char. I I 90 39 47
Constants Constants

null Outer 0 "UT 91
Product

dot Operator • • 92 46 56
Number
Consts.

semicolon List List , 93 59 73
Separator Separator

colon Labels Labels 94 58 72

diamond Statement Separator 0 "01 95

bar neg. minus - - 96 45 55

plus conjugate plus + + 97 .43 53

divide reciprocal divide "OV 98

times signum times X "TM 99

query roll deal ? ? 100 63 77

rho shape reshape p "RO 101

iota index index of 1 "10 102
generator circular

A-3

FUNCTION
CHARACTER OR USE APL ASCII 3-CHAR O-ORIGIN ASCII ASCII OVERSTRUCK

NAME MONADIC DYADIC SYMBOL SYMBOL "ASCII" DAV INDEX DECIMAL OCTAL CHARACTER

circle 7Ttimes Hyperbolic, 0 "CR 103

etc.

star exponential power * * 104 52 42

upstile ceiling maximum r "MX 105

downstile floor minimum L "MN 106

stile magnitude residue I "RD 107

comma ravel catenate , 108 44 54

log Natural General @ "LG 109 0 X

Logarithm Logarithm

circle bar 1 st coordin- 1 st coordin- e "CD 110 0 -

ate reverse ate rotate

circle slope transpose transpose (S) "TP 111 0 \

quote dot Factorial Binomial ! ! 112 33 41 0

domino Matrix Matrix til "OM 113 0 0/0

Inverse Division

nor Nor ¥ "NR 114 v -
nand Nand At "NA 115 " -
circle stile Reverse Rotate CD "RV 116 0 I
I-beam None None I "IB 117

del stile Grade • "GO 118 'i1 I
Down

delta stile Grade up ! "GU 119 ~ I
quote quad INPUT OUTPUT 1!l "aa 120 I 0

cap hull Comment Comment fi "CM 121 n 0

slope bar 1 st coordin- \. "BD 122 -
ate Expand

\

slash bar 1 st coordin- f "SO 123 / -
ate Com-
press

del tilde None None ¥ "DT 124 '1 -
base null Extended Execute 1. "CX 125 ..L 0

Execute

top null Format Format T "FT 126 T 0

A-4

FUNCTION
CHARACTER OR USE APL ASCII 3-CHAR O-ORIGIN ASCII ASCII OVERSTRUCK

NAME MONADIC DYADIC SYMBOL SYMBOL "ASCII" DAV INDEX DECIMAL OCTAL CHARACTER

out INTERRUPT ~ "OU 127 OUT

dieresis NONE " "DR 128

left tack NONE I- "LK 129

right tack NONE .., "RK 130

doliar NONE $ $ 131 36 44

omega NONE w "OM 132

alpha NONE a "AL 133

open shoe NONE C "PS 134

close shoe NONE :::> "BS 135

cup NONE U "SU 136

cap NONE () "SI 137

cnul null ~c @c 138 0 0

attn attention ye yc 139

linefeed Iinefeed line- JC 140 10 12

feed

tab cbel tab bell tab Ge Ie Gc 141 142 9r 117

csoh start of heading Ae N 143 1 1

cstx start of text Be Bc 144 2 2

cetx end of text Ce Cc 145 3 3

ceot end of transmission Dc Dc 146 4 4

ceng enquiry Ee Ec 147 5 5

backspace backspace back- Hc 148 8 10

cack acknowledge Fe Fe 149 6 6

cvt vertical tab Kc Kc2c 150 11 13

cft form feed LC LC 151 12 14

return return return Mc 152 13 15

cso shift out Nc Nc 153 14 16

csi shift in Oc Oc 154 15 17

cdle data link escape pc pc 155 16 20

cdc1 device control I Qc Qc 156 17 21

cdc2 device control 2 Rc Rc 157 18 22

cdc3 device control 3 Sc Sc 158 19 23

cdc4 device control 4 P Tc 159 20 24

cnak negative acknowledge Uc Uc 160 21 25

csyn synchronous idle vc vc 161 22 26

A-5

FUNCTION
CHARACTER OR USE APL ASCII 3-CHAR o-ORIGIN ASCII ASCII OVERSTRUCK

NAME MONADIC DYADIC SYMBOL SYMBOL "ASCII" DAV INDEX DECIMAL OCTAL CHARACTER

cetb end of transmission block Wc Wc 162 23 27

ccan cancel line Xc Xc 163 24 30

cern end of medium yc yc 164 25 31

csub substitute zc zc 165 26 32

escape escape escape escape 166 27 33
or[c

cfs file separator OC c 167 28 34

cgs group separator {C]C 168 29 35

crs record separator Xc jC or C 169 30 36

cus unit separator "C _c 170 31 37

delete delete delete 171 127 177

doublequote NONE delete 172 34 42

underbar NAMES - "NL 173

eo! APL Terminal Control 174

eof APL Terminal Control 175

charerr un printable character 176

pound NONE # 177 35 43

percent % 178 37 45

ampersand & 179 38 46

atsign @ 180 64 100

open brace { { 181 123 173

close brace } } 182 125 175

a a 183 97 141

b b 184 98 142

c c 185 99 143

d d 186 100 144

e e 187 101 145

f f 188 102 146

g g 189 103 147

h h 190 104 150

i i 191 105 151

j j 192 106 152

k k 193 107 153

I
,f

I 194 108 154

A-6

FUNCTION
CHARACTER OR USE APL ASCII 3-CHAR O-ORIGIN ASCII ASCII OVERSTRUCK

NAME MONADIC DYADIC SYMBOL SYMBOL "ASCII" DAV INDEX DECIMAL OCTAL CHARACTER

m NONE m 195 109 155

n n 196 110 156

0 0 197 111 157

P P 198 112 160

q q 199 113 161

r r 200 114 162

5 5 201 115 163

t t 202 116 164

u u 203 117 165

v v 204 118 166

w w 205 119 167

x x 206 120 170

Y Y 207 121 171

ASCII not 209 126 176

ASCII vdash 210 124 174

grave accent r 211 96 140

A-7

APL\3000 NIII.1,.'11
PRIMITIVE FUNCTIONS AND OPERATORS I B I

NAME SYMBOL SYNTAX

And A XAY

Arccosine 0 -2oX

Arcsine 0 -loX

Arctangent 0 -loX

Axis operator t 1 [expression]

B1nomial I AlB •

Catenate , A., B

CeIlIng r A

Compress I or T boolean argument/A

Conjugate -+ +A

Cos1ne 0 20X

Deal ? A?B

Decode lo AloB

Divide .. A~B

Drop + A+B

Encode T ATB

Equal - A=6 -
Exeeute .t .tA or A.tB

Expand \ or "" boolean argument\A

Exponential * *A

Factorial , 1A

f'lloor L LA

8-1

NAME

Format

General logarithm

Grade down

Grade up

Greater

Hyperbolic arccosine

Hyperbolic arcsine

Hyperbolic arctangent

Hyperbolic cosine

Hyperbolic: s1ne

Hyperbolic tangent

Index generator

Index of

Indexing

Inner product operator

lJam1nate

Less

Magn1tude

Matrix divide

Matrix inverse

Maximum

MembershIp

Minimum

Minus

Nand

SYMBOL

w

~

t

~

>

0

0

0

0

0

0

t

t

[]

•
, L 1

<

I

~

~

r
E

L

'"

tJ'(

B-2

SYNTAX

wA or AwB

A~B

VA

~A

A>B

-boX

-SoX

-70X

60X

SoX

70X

l.A

Ala

A.[expression]

Atnl,fn2B

A,[fract1on)B

A<B

IA

A~B

rnA

ArB
.AE8

ALB

A·S

X<NY

NAME

Natural logarithm

Nor

Not

Not equal

Not greater

Not less

Or

Outer product operator

P1 times

Plus

Power

Pythagorean C-1+X*2)*.5

Pythagorean (1+X*2)*.5

Pythagorean (1-X*2)*.5

Quad input

Quad output

Quote quad input

Quote quad output

Ravel

Reciprocal

Reduction operator

Reshape

Res1due

Reversal

Roll

SYMBOL

v

o
•

o

o

o

D

o

~

~

,

/

p

I

o

+

...

<P or e

?

8-3

qgA

X¥Y

"'A

A;t B

A~B

A:2:B

XvY

A G. fnB

oA

A+B

A*8

-4oX

40X

OoX

A+D

D+A

A + [!]

~+A

,A

+A

SYNTAX

primitive function/A

ApB

A\~

<\>A or eA

?A

NAME SYMBOL SYNTAX

Rotate ¢ or s A¢B or AsS

Scan operator \ primitive tunct1on\A

Shape p pA

S1gnum x xA

Sine 0 loX

Take t AtB

Tanqent 0 loX

Times x AxB

Transpose ~ A~B

8-4

APL\3000 SYSTEM COMMANDSlrn~j.j'

NAME SYNTAX

Bind)BIND

Clear)CLEAR

Continue)CONTINUE

Copy)COpy lnamellst)

Depth)DEPTH num

Drop)DROP wsname

Edit)EDIT (nameJ --
Erase)ERASE enamelist]

ft'iles)FILES [groupname.acctnamel

Functions)FNS [letter)

Help)HELP [cmdnamel

Library)LIB (groupname[.accountnamell

Load)LOAD wsname

MPE)MPE

Namelist - name [name] enamel. • .[namel --
Off)OFF

Protected copy)peOPY wsname lname11stl

Reset)RESET [.!!.]

Resume)RESUME

Save)SAVE wsname

State indicator)51 [n]

State indicator with variables)SIV [n]

C-l

NAME SYNTAX

T1me)TI~U:

Terminal type)TERM [termtype]

Terse)TERSE

Variables)VARS (letter]

Verbose) Vf::RBOSE

Workspace Identification)WSID [wsnamel

wsname = workspace identification [/lockword]
[groupname[.accountnameJ

C-2

APL\3000 SYSTEM VARIABLES Ir,,;i'l,

NAME

Account information

Alphabet

Assertion level

Atomic vector

BaCKspace

Branch trace

Comparison tolerance

DigIts

Escape

Execution trace

Horizontal tab setting

Index origin

Language

Latent expression

Line counter

Linefeed

Null

Printing precision

Printing width

Random link

Return

D-1

FORM

OAI

OA

OAL

OAV

DB

OBT

OCT

OD

DE

OXT

OHT

010

OLA

OLX

OLe

OL

ON

Opp

OPW

ORL

DR

SYNTAX

OAI

DA

OAL[+value]

DAV

DB

OBr

OCT [+val ue]

DO

DE

OXT[+value)

OHT[+integer vector]

DIO[+valueJ

OLA+ [, APL' 1
, APLGOL 'J

DLX[+'expression']

OLe

OL

ON

OPP[+valuel

ORL [+value)

DR

NAME FORM SYNTAX

Stack names OSN OSN

Tab OT OT

Terminal type OTT OTT [+termtypeJ

Time Stamp DTS OTS

Virtual memory DVM OVM[+integer vector]

WorK area available OWA OWA

Workspace identificatIon OWl OWl

0-2

NAME

Canonical representation

Capture staCK environment

convert

Delay

Expunge

Function establishment

Monitor values

Name classification

Name list

Query monitor

Query stop

Query trace

Release staCK environment

Reset monitor

Reset stop

Reset trace

Set monitor

FORM

OCF

DCSE

DCV

DDL

DEX

DFX

DMV

ONe

DNL

DQM

D(~S

DQT

DRSE

DRM

DRS

DRT

DSM

E-l

SYNTAX

OCR "name'

A+F DCSE C S D
A = assigned environment

number
F = function name
C = coun,t
S = starting env1ronment
o = desired environment

number

control DeV data

DOL seconds

DEX "name'

DFX name

ONe "name'

["letters'] DNL integers

DQM 'name"

DQS "name' -.-
OQT ,.~"

RL ORSE EL
RL = released staCK

environment
EL = environment list

DRS 'n.ame"

ORT 'name"

OSM 'name"

NAME FORM SYNTAX

Set stop Oss DSS 'name'

Set trace OST DST "name"

Shared variable control DsvC DsVC [#process1d"]

Shared variable offer DSVO ["processid"] OSVO "shared
variable
Id"

Shared variable retract DSVR DSVR "shared variable 1d-

Shared variable query OSVQ OSVQ ["processid"]

vector representation DVR OVR "name"

E-2

APL\3000 EDIT INSTRUCTION SYNTAX Irdll~I.I'

A [DO] r~ Inesp e c:l
Lstring J

B[RIEF]

[delta]

C[HANGE] (character [patternstrlng] character lchangestrinQ]
character [rangellst]]

CO[py] llneblock

11neblock = linerange { : }llnespec

blank

D[ELETEJ
~
linespec l + integer
- integer
string

r~tr 1ng 1
lfangeliS~

delta = [,l linenumber

END rAPL J
LAPLGOL

[dec1malnumber)

FIND [string] [rangelistl

{

H [ELP] } (instruction]
EXPLAIN
?

linerange = linespec

ldelta]

<linespec> <separator> <linespec>
<llnespec> <separator>
<separator> <linespec>
separator
ALL

F-l

l1nespec = [1 ine number]
FIRST
lJAST
CURSOR

*
LCIST] [rangelist] string

ALL
FIRST
LAST

LOCK [APL J
APLGOL

MAT[RIXj

MtODIrY]

QUIT

[variablenameJ

r~tring J
l!ang ellst

rangelist = [linerange l,linerange] ••• ['11nerange~
lfnge (,rIist] J

R[EPLACE] [str Ing 1
Lrangelis tJ

RES[EQUENCEl lineblock

separator = [~]

[delta]

string = <character> <text not containing Character> <character>

UNDO [integer 1 [grainspec 1

grainspec

VEC[TOR)

VERCBOSE]

= { , } {L [I NE S 1 }
I C(OMMANDS]

blank

[var1ablename]

F·2

Iliil/I'11 APLGOL STATEMENT SYNTAX, G I

ASSERT expression : expression

BEGIN statement list END

CASE expression OF integer constant
BEGIN subcase list + END CASE

EXIT [expression]

FOREVER DO statement

HALT [expression)

IF expression DO statement

IF expression THEN statement ELSE
statement

NULL

REPEAT statement list UNTIL expression

WHILE expression DO statement

G-1

SYSTEM SUPPLIED 1111.11.11
UTILITY SHARED VARIABLES I H I

PROCESSOR: UTIL
VARIABLES: VERBOSE FLAG

INPUTCONTROL

VERBOSE FLAG = Boolean. 1 if error messages 1s in VERBOSE mode:
o otherwise. Can be set dynamically.

INPUTCONTROL = Takes as input a 1 or 2 element vector of integers
from ·32768 to 32767 (un1t or scalar extends to
l-element vector). If second value 15 omitted,
the system sets it to O.

The two values are used as the two parameters
for the FCONTROL intrInsic on the standard APL
input file 'APLIN'.

After FCONTROL executes, the value of the second
parameter (wh1ch may be changed by MPE) is
saved.

For a READ, the value saved 1s returned (saved
from the last WRIT~ call) and Inltia11~ed to 0
so that a READ before any WRITE will return an
answer.

H-1

A

Abondoned functions, 10-11
Aborted sess1o~s, 11~9
Access control, 5-3
Access control matrix, 5-)
Access control mechanism, 5-3
Acc@ss control of a shared variable, 5-5
Access control vector, 5·~
Access state, 5-3
Access state matrix, 5-4
Accessing the editor, 7-3
Account information system variable, 4-19
Active workspace, 2-12
Add editor instruction, 8-4
Alphabet system variable, 4-23
Alternating product, 3-18
Alternating sum, 3-18
And function, 3-8
APL assignment function, 2-3
APL constants, 2-1
APL expressions, 2-3
APL tunctions Which deoend on a~solute values, 3-9
APL functions wnlch depend on comparison tolerance, 3-11
APL functions, 2-5
APL order of associat1on, 2-9
APL translation, 8-9
APLGOL branch statements, 9-7
APLGOL function tormat, 9-2
APLGOL header l1nes, a-l
APLGOL statement syntax, 9-3
APLGOL translatlon, 8-9
APLGOL, 9-1
APL\3000, aoorted session, 11-9

Character set, 1-2, A-l
definition, 1-1
ed1tor, 8-1
exiting and entering MPE, 11-13
extended control functions, 10-4
file system, b-l
initiating a sess1on, 1-4
Keyboard, 1-3
running, 1-0
terminal, 1-3
terminating a session, 1-7
terminating a session, 11-13

Arguments, 1-7
Arguments, extending, 3-1
Arrays, 2-9

1-1

INDEX I

ASCII terminals, 1-3
Assert APLGOL statement, 9-5
AssertIon level Checking, 9-6
Assertion level system variable, 4-20
Assignment arrow, 1-6
Ass1gnment function, 2-3
Atomic vector system variable, 4-19
Auto convert, 6-9
Auto-ASCII conversion, 0-9
Axis operator, 3-20

B

Backspace system variable, 4-23
Base value, 3-53
Begin APLGOL statement, 9-4
Bilateral sharing, 5-1
Binding error, 11-12
Binding parameters, 1-1
Bind system command, 11-12
Binomial function, 3-16
Boolean functions, 3-8
Branch arrow, 2-3
Branch expression, 2-4
Branching, 7-5
Branch statements, 7-5
Branch trace system variable, 4-21
Brief editor Instruction, 8-4

c
CPU time, 4.19
Calculator mode, 1-6
Canonical representation function, 4-3
Capture staCK environment system function, 10-4
Carriage return system variable, 4~23
Case APLGO~ statement, 9-8
Catenate function, 3-35
Ceiling function, 3-11
Change edItor instruction, 8-5
Character constants, 2-2
Character set, 1-1, A-l
Character system variables, 4-23
Circular functions, 3-13
Clear system command, 11-1
Closing a f11e, 6-4
Column vector, 3-20
Commands var1able, 6-11
Comments, 7-7
Communicating between processes, 5-1
Compar1son tolerance system variable, 4-13
Compress function, 3-42
Compression function, 7-6
ConditIon codes, 6-3
Conjuqate function, 3-7

1-2

Connect time, 4-19
Constants, 2-1
Continue system commana, 11-9
Control arguments, 3-55
Control pairs, 3-56
Control points, 10-4
Control variable, 6-1
Conversion system function, 6-12
COpy editor instruction, 8-5
Copy system command, 11-5
Copying objects into the active worKspace, 11-5
Current environment, 10-4
Cursor editor instruction, 8-6

o

Data arguments, 3-55
Data conversion, b-12
Data transtormation functions, 3-28, 3-54
Oat a variable, 6-9
Deal function, 3-50
Debugg1ng aid examples, 10-13
Debugging a1ds, 10-8
Decimal constants, 2-1
Decode function, 3-53
Defined functions, 7-1
Defined function valence, 7-3
Degree of coup11ng, 5-2
Delay function, 4-9
Delete editor instruction, 8·&
Deleting objects from the worKspace, 11-4
Delta editor instruct1on, 8-7
Depth system command, 10-8
Des1red environment numoer, 10-4
Digits system variable, 4~23
Oisplayinq the environment, 10-7
Divide tunct1on, 3-2
Domain error, 12-1
DOuble integer conversion, 6-13
DOUble-arm conditional IF statement, 9-6
Orop function, 3-41
DroppIng a workspace from a library, 11-10
Drop system command, 11-10
Dyadic format function, 3-55
Dyadic functions, 2-5
Dyadic prlrn1t1ve scalar function, 3-1

Edit instruction syntax, a-3
Editor, 8-1
Editor errors, 12-3, 12-4
Editor line numbers, 8-1
Editor prompt character,'S-l

1-3

Empty array, 2-9, 3-32
Empty vector, 2-2, 3-)n
Encode function, 3-53
End editor instruction, 8·'
Environment, capturing, 10-4

, displaying, 10-7
, releasln;, 10-8

Environments, 10-4
Equal function, 3-8
Erase system command, 11-4
Error messaqes, 12-1
Errors, binding, 11-12

domain, 12-1
editor, 12-3
error codes (FCHECK), 12-6
execution, 12-2
file system, 12-5
l1brary command, 12-4
messages, 12-1
syntax, 12-1
translatlon, 12-1

Escape system variable, 4-23
Establishing a user-defined funet1on, 7-1
Execute function, 3-54, 10-5
Execution errors, 12-2
Execution modes, 1-6
Execution trace system variable, 4-21
Exit APLGOL statement, 9-4
Ex1t1ng~APL\3000 and entering MPE, 11-13
Exiting a suspended function, 10-23
Expand function, 3-44
Explain editor instruction, 8-7
Exponent1al function, 3-12
Expunge function, 4·6
Extended control functions, 10-4
Extended dyadic execute primlt1ve function, 10-5
Extending arguments, 3-1
External to internal APt conversion, 0-12

Factorial function, 3-16
Fcontrol intrinsic, 6-4
File system, 6-1
File system errors, 12-5
File system (FCHECK) error codes, 12-6
Files, APL\3000 tile system, 6.1

closing, 6-4
11stlng, 11-12
opening, 6-2
reading, b-ll
writing to, 6-10

F1les system command, 11-12
Find editor 1nstruction, 8-7
Floating-point numoers, 3-9

'·4

Floor function, 3~11
Forever DO APLGOL statement, 9-7
Formal file designator, 6 w2
Format function, 3·~5
Fraction, 2-1
Free-field format, 9-2
Funct10n establiShment (fix) function, 4-~
Functions (fNS) system command, 11-6
Functions, arguments, 1-7, 2-5

definition mode, 1-8
execution, 10-1
header, 7-3
line numbers, 7-5
dependent on comparison tolerance, 4-13
abandoned, 10-11
deleting trom the worKspace, 11-4
dyadic, 2-5
erasing, 11-4
invoking a user-defined, 2-4
locked, 10"11
monadic, 2-5
niladic, 2-5
primitive, 2-6
user-defined, 2-6

G

General logarithm function, 3-13
GlObal names, 7-4
Grade down tunction, 3-49
Grade up function, 3-49
Greater function, 3-8

Halt APLGOL statement, 9-5
Halted execution, 10-2
Halted functions, 7-4, 10-2
Help editor instruction, 8-8
Help sY5tem command, 11-10
Horizontal tabs system variable, 4-22
HP 2641A terminal, 1-3
Hyperbolic functions, 3-13

I

Identities, 3-2
Ident1ty matrix, 3-51
If APLGOL statement, 9-6
Immediate execution mOde, 1-b
Index generator function, 3-48
Index of function, 3-48
Index origin system variable, 4-15
Index origin, 2-9, 2-11
Indexing, 2"9

1-5

Indexing function, 3-45
Indices of APL Characters, 4-19
Inhibiting an access, 5-3
Initiating an APL\3000 session, 1-4
Inner funct1ons, 7-4
Inner product operator, 3-22
Integer values, 3-10
Intermediate code, 1-1
Internal APL to external conversion, 6-13
Interrupted functions, 7-4
Intr1nsics, 0-3
Inverse of a non·51ngul~r matrix, 3-51
Invok1nq a def1ned function, 10-1
Invoking a user-defined function, 2-4
Issuing MPE commands with the CMNDS varIable, 6-12
Iterate point, 9-8

L

Labels, 7-6
LamInate funct1on, 3-37
Language system variable, 4-21
Latent expression system variable, 4-16
Leave pOint, 9-8
Left arrow, 1-6
Left identity, J-2
Left inverse, 3-51
Less function, 3-8
LibrarIes, 2-12, 11-7
Library command errors, 12-4
Library system command, 11-10
Line counter system variable, 4-1 99
L1ne numbers, 7-5
Linear equations, 3-52
LinearlY-independent columns, 3-51
Linefeed system variable, 4-23
List editor instruction, 8-8
L1sting functions in the active worKspace, 11-6
Listing variables in the act1ve WorKspace, 11-6
Load system command, 11-9
Loading a workspace, 11-9
Local names, 7-4
Localization of names, 7-4
LOCK editor instruction, e-g
Locked functions, 10-11

M

Magnitude funct1on, 3-9
Magnitude of precis1on, 3-56
Matrix div1de function, 3-51
Matr1x editor instruction, e-9
Matrix 1nverse function, 3-51
Maximum function, 1-11
Membership function, 3-49

I~

Minimum function, 3-11
Minus function, 3-2
Mixed functions, 3-25
ModIfy editor instruction, B-9
Monadic format function, 3-55
Monad1c functions, 2-5
Monadic prlmit1ve scalar function, 3-1
Monitor values system function, 10-10
MPE, 1-1
MPE system command, 11-13
Multi-dimensional arrays, 2-9
Multiprogramming Executive operat1ng system, 1-1

N

Name classification function, 4-9
Name list function, 4-6
Names and passwords of worKspaces, 11-8
Nand function, 3·8
Natural logarithm function, 3-13
Negative constants, 2-1
Negative function, 3-7
Niladic functions, 2-5
Non-singUlar matrix, 3-51
Non-square matrices, 3-52
Nor functIon, 3-a
Not equal function, 3-a
Not function, 3-8
Not qreater function, 3-8
Not less function, 3-8
Null APLGOL statement, 9-4
Null system variable, 4-23
Numer1cal functions, 3-51

o

Obtaining descriptions of system commands, 11-10
Obtain1ng information on shared variables, 5-7
Obtaining status report for tiles, 6-7
Offering to share a variable, 5.1
Offers, 5-1
One-element array, 3-1
Opening a file, 0-2
Operators, 3-17
Or function, 3-a
Outer functions, 7-4
Outer prOduct operator, 3-24
Overbar, 2-1
OverstrucK character$, 1-3

p

Parentheses, 2-9
Pendent functions, '-4, 10-3
Plus function, 3-2

I~

Post-checked lOop, 9-7
Power function, 3-12
Pre-checked loop, 9-7
Precision control, 3-5&
Primitive functions, 2-6
Primitive numerical functions, 2-8, 3-28
Primitive scalar functions, 2-1, 3-1
Primitive selection functions, 2-8, 3-27
Primitive selector generator functions, 2-8, 3-27
Primitive structural functions, 2-7, 3-29
Primitive transformation funetions, 2-8,]-28, 3-54
Printing preCision system variable, 4-18
Printing width system variable, 4-18
Process communication, 5-1
Protected copy system command, 11-5
PUblic libraries, 11-8
Pythagorean functions, 3-13

Q

Quad input function, 3-59
Quad output function, 3-58
Query monitor system tunction, 10-11
Query stop system function, 10-11
Query trace system function, 10~11
Quit editor instruction, 8-10
Quote character, 2-3
Quote quad input function, 3-60
Quote quad output function, 3-60

R

Random link system variable, 4-17
Random numbers, 3-11
~anK, 2-9
Rank of arrays, 3-31
Ravel functlon, 3-30
Raw tab system variable, 4-23
Reading a file, b-l1
Real conversion, 6-13
Reciprocal function, 3-8
Reduction operator, 3-17
Relational functions,]-8
Release stack environment system function, 10-5
Released environment list, 10-5
Releasing the environment, 10-&
Renaming the active worKspace, 11-8
Repeat APLGOL statement, 9-7
Replace editor 1nstruction, a-l0
Report1ng elapsed time, 11-13
Representation, 3-53
Representing floating-point numbers, 3-9
Resequence ed1tor instruction, R-l1
Reset monitor system function, 10-10
Reset stop system function, 10-10

1-8

Reset systero command, 10-7
Reset trace system function, 10-10
Reshape functIon, 3-32
Residue function, 3-7
Restart point, 9-8
~esult of an express1on, 2-3
Resume system command, 10-S
Resuming a suspended function, 10-2
Retrieving a stored workspace, 11-7
Reversal function, 3-32
Right 1dentitY, 3-2
R1ght-to-lett association, 2-9
Roll function, 3-11
Rotate function, 3-33
Row vector, 3-20
Runn1ng APL\3000, 1-6

5

Save system command, 11-S
Saving a duplicate of tne active workspace, 11-8
Sealar constants, 2-2
Sealar value, 2-9
Scalar-vector sUbstitutions for mixed functions, 3-29
Scale, 2-1
Scaled-form constants, 2-1
Scan operator, 3-19
Selecting elements of an array, 2-11
Selection functions, 3-40
Selector generator functions, 3-48
Session, fUlly-qualified name, 1-4

1nit1ating, 1-4
Set monitor system function, 10-10
Set stop system function, 10-10
Set trace system function, 10-10
Setting error messages to terse, 11-11
Setting error messages to verbose, 11-12
Setting the bind flag on and Off, 11-12
ShadOwing ot names, 7-5
Shape control, 3-56
Shape funct1on, 3-30
Shape of arrays, 2-10
Shared variable enVironment, 5-7
Shared variable offer system function, 5-1, 6-1
Shared variable query system function, 5-'
Shared variable retraction system funct1on, 5-7
Shared-variable identifier, 5-1
Shared variables, 5-1
Sharing variables, 5-1
Signum function, 3-7
Single-arm conditional If statement, 9-6
Single-dimensional array, 2-9
S1ngular matrices, 3-52
Specification arrow, 2-3
StacK names system function, 10-7

1-9

Stack names system variable, 4-20
Standard ASCII terminals, 1-3
Starting environment, 10-4
State indicator damage, 10-3
State indicator system command, 10-2, 10-7, 11-7
State indicator witn variables system command, 10-7, 11-'
Storaqe available In the active workspace, 4-22
Stored workspace, 2-12
Storinq a workspace, 11-7
Structural funetions, 3-29
Subcase level, 9-9
Subc:ases, 9-8
SUrrogate names, 58 1
Suspended functions, 7-4, 10-2
Syntax error, 12-1
System commands, 2-6, 11-1
System functions, 4-1
System funct10ns used for dpbugglng, 10 .. 9
System supplied utility shared variables, H-1
System variables, 4-10

T

Ta~e function, 3-40
Terminal system command, 11-11
Terminal types, 1-5, 4-22, 11-11
Terminal type system variables, 4-22
Terminating an APL session, 1-1, 11-9, 11-13
Terse system command, 11-11
T1mes function, 3-2
Time stamp system variable, 4-20
T1me system command, 11-13
Trace format, 10-10
Translation errors, 12-1
Translators, 8-9
Transpose function, 3-39
Two-dimensional array, 2-9

u

Undo editor instruct1on, 8-12
Unit array, 3-1
User-defined tunctlons, 2-6, 7-1
Using parentheses to modify the order of association, 2-9
Using the FCH~CK intrinsic, 6-6
USing the FCONTROL intrinsic, 6-4
USing the FGETINFO intrinsic, 6-'
USing the FLOCK intrinsic, 6-8
USing the FREAD intrlns1e, 6-11
Using the FREADDIR intrinsic, 6-11
USing the FSETMOOE Intrinsic, 6-'
USing the FSPACE intrinsic, 6-6
USing the FUNLOCK IntrinSIC, 6-8
USing the FWRITE intrinsic, 6-10
USing the FWRITEDIR intrinsic, 6-10

1-10

v

Valence of a defined function, 7~3
Variables (VARS) system command, 11-6
Vector constants, 2-2
Vector ed1tor instruction, 8-12
Vector representation function, 4-4
Vector value, 2-9
Verbose editor instruction, 8-12
Verbose system command, 11-12
Virtual memory, 1-1
Virtual memory system variable, 4-21
Visual effect, 1-3
Visual fidelity, 1-3, 3-60

While APLGOL statement, 9-7
Width control, 3-56
Work area available system variable, 4-22
WorKspace identif1cation system variable, 4-20
Workspace identification (W5ID) system command, 11-8
Workspace storage and retrieval, 11-1
Workspace, copying objects from a source workspace, 11-5

definition
deleting functions from, 11-4
deleting Objects from, 11-4
displaying names of, 11-10
dropping from a library, 11-10
identification, 11-8
ln1tial values in, 11-1
listing functions in, 11-6
listing variables In, 11-'
load1nq a duplicate, 11-9
names and passwords, 11-S
paSSWord, l1-S
renaming, 11-a
saving under the name CONTINUE, 11-9
saving, 11-8
storage available, 4-22
storage and retrieval, 11.'

Writing to a fIle, 6-10

READER COMMENT SHEET

HP 3000 Series Computer System

AP L\3000 Reference Manual

32105-90002 November 1976

We welcome your evaluation of this manual. Your comments and suggestions help us improve our publications.
Please use additional pages if necessary.

Is this manual technically accurate?

Did you have any difficulty in understanding concepts or wording? Where?

Is the format of this manual convenient in size, arrangement, and readability? What improvements would you

suggest?

Other comments?

FROM:

Name

Company

Address

FOLD

FOLD

BUSINESS REPLY MAIL
No Postage Necessary if Mailed in the United States. Postage will be paid by

Publications Manager, Product Support Group
Hewlett-Packard Company
General Systems Division
5303 Stevens Creek Sou levard
Santa Clara, California 95050

FOLD

FIRST CLASS
PERMIT NO. 1020
SANTA CLARA
CALIFORNIA

FOLD

Part No. 32105-90002
Printed in U.S.A. 11/76

HEWLETTWP] PACKARl

Sales and service from 172 offices in 65 countrie
5303 Stevens Creek Blvd., Santa Clara, California 95050

