
£ g C ODC TAB     • *HOJ OFFICE* 
i   O _, 

^ m U ACCESSION MASTS* FIL« 

ESD-TDR-64-159 SR-126 H 

Q   H DATE 
CO   CO BATe- 
Ul   LU 

ESTI CONTROL NR. §L     »3925 
CY M»      \ or \ CYI 

THE COLINGO SYSTEM DESIGN PHILOSOPHY 

TECHNICAL DOCUMENTARY REPORT NO.    ESD-TDR-64-159 

NOVEMBER 1964 

ESD RECORD COPY 
J.  F. Spitzer RETURN TO 
J.  G. Robertson      SCIENTIFIC & TECHNICAL INFORMATION DIVISION 
D.  H.  Neuse (ESTI), BUILDING 1211 

COPY NR. OF COPIES 

Prepared for 

473L/492L SYSTEM PROGRAM OFFICE 

ELECTRONIC SYSTEMS DIVISION 

AIR FORCE SYSTEMS COMMAND 

UNITED STATES AIR FORCE 

L. G. Hanscom Field, Bedford, Massachusetts 

Project 492 

Prepared by 

THE MITRE CORPORATION 
Bedford, Massachusetts 

AF Contract 19(628)-2390 

Abb^^^ 



Copies   available  at  Office  of  Technical Services, 
Department of Commerce. 

Qualified requesters may obtain copies from DDC. 
Orders will be expedited if placed through the librarian 
or other person designated to request documents 
from DDC. 

When US Government drawings, specifications, or 
other data are used for any purpose other than a 
definitely related government procurement oper- 
ation, the government thereby incurs no responsi- 
bility nor any obligation whatsoever; and the fact 
that the government may have formulated, fur- 
nished, or in any way supplied the said drawings, 
specifications, or other data is not to be regarded 
by implication or otherwise, as in any manner 
licensing the holder or any other person or corpo- 
ration, or conveying any rights or permission to 
manufacture, use, or sell any patented invention 
that may in any way be related thereto. 

Do     not     return     this   copy.    Retain  or  destroy. 



ESD-TDR-64-159 SR-126 

THE COLINGO SYSTEM DESIGN PHILOSOPHY 

TECHNICAL DOCUMENTARY REPORT NO.    ESD-TDR-64-159 

NOVEMBER 1964 

J. F. Spitzer 
J. G. Robertson 
D.  H.  Neuse 

Prepared for 

473L/492L SYSTEM PROGRAM OFFICE 

ELECTRONIC SYSTEMS DIVISION 

AIR FORCE SYSTEMS COMMAND 

UNITED STATES AIR FORCE 

L. G. Hanscom Field, Bedford,  Massachusetts 

Project 492 

Prepared by 

THE MITRE CORPORATION 
Bedford, Massachusetts 

AF Contract 19(628)-2390 



THE COLINGO SYSTEM DESIGN PHILOSOPHY 

ABSTRACT 

This report describes the design and operation of COLINGO (Compile On-LINe 
and GO), a program system embodying a computer control and query language 
that provides the operator with a grammar and vocabulary approximating 
English to control program data and equipment in a data processing system. 
COLINGO provides both logical and mathematical control of data in the system, 
and allows the operator to specify the output format and content.    Additionally, 
it provides the capability of on-line programming in a higher-ordered language 
called the COLINGO Control Language (CCL).    The system provides internal 
editing, detection, and error correction features. 

A primary design objective was to make COLINGO adaptable to a changing set 
of requirements and particularly responsive to data compatibility, on-line 
programming, simple extension, and good man-machine interface.    This 
necessitated maintaining independence of data from programs so that changes 
in one do not affect the other.    The objective was achieved by means of a 
common retrieval and control program that uses a set of dictionary tables as 
the translation medium between programs and data.    With this concept, 
changes in programs or data are reflected in modifications to the tables instead 
of the usual modification to the data or programs, or both. 

REVIEW AND APPROVAL 

Publication of this technical documentary report does not constitute Air Force 
approval of the report's findings or conclusions.    It is published only for the 
exchange and stimulation of ideas. 

<Q_^,b*><4& If 

EMMETT V.   CONKLING 
Colonel,  USAF 
System Program Director 
473L/492L System Program Office 
Deputy for Command Systems 

iii 



CONTENTS 

Page 

INTRODUCTION 1 

THE COLINGO CONTROL LANGUAGE 2 

The COLINGO Message 2 

COLINGO Program Operation 7 

COLINGO Data Structure 11 

COLINGO Dictionary Structure 12 

COLINGO Data Operations .7 

COLINGO Programming Procedures 23 

COLINGO Action Verbs 30 

COLINGO Extension Procedures 37 

COLINGO Output Processing 38 

SUMMARY 41 

Data Compatibility 41 

On-Line Programming 41 

Simple Extension 42 

Man/Machine Interface 42 

REFERENCES 43 



LIST OF ILLUSTRATIONS 

Fig. Page 

1 Typical Message Format 

2 COLINGO Program Structure 

3 COLINGO Core Map 

4 COLINGO File Structure 

5 COBOL Data Division 

6 COLINGO Dictionary Format 

7 Matrix Qualification 

s Row Logic 

9 Column Logic 

10 Combination Logic 

11 Data Flow 

12 Stored Message Chain 

13 COLINGO Basic Program Set 

14 COLINGO Logical and Mathematical Operators 

15 Normal Output 

16 Generator Sample Mask 

10 

13 

14 

16 

19 

21 

22 

24 

26 

29 

31 

33 

39 

40 

vi l 



INTRODUCTION 

Our objectives in designing COLINGO were to plan and design from 

the start a system that could grow and be easily modified based on the 

user's changing operational requirements, and the designer's technical 

experience.  We knew that neither group at the onset could state the 

exact requirements, design characteristics, or desired capabilities 

that would bear on the system's configuration at future points in time. 

We envisioned a developmental effort in parallel with the operational 

activity so that longer range design and development could be conducted 

without jeopardizing operational activities, while short-range changes 

and improvements could be easily made to the operational system as the 

need arose. 

Finally, we felt that the user of the system should have products 

available at all times and confidence that his immediate problems had a 

good chance of solution by a means of on-line programming techniques or 

would certainly be included in the longer range development effort. 

These objectives and associated constraints dictated the following 

general design goals for COLINGO -- COLINGO was to be: 

A system that would accept most types of data from most 

sources, with minimal reformatting. 

A system that would perform most any logical or mathe- 

matical manipulation of the data. 



A system that would allow rapid updating without imposing 

difficult constraints on the update format. 

A system that would allow for on-line programming to meet 

many day-to-day problems, and one that would allow low lead- 

time off-line programming for more complex problems. 

A system with simple program maintenance and extension 

capabilities, to better allow the using command to partici- 

pate and guide the evolutionary design of the system. 

A system with a good man/machine interface and control 

language, which would be data compatible with most associated 

organizations. 

In keeping with these design goals, MITRE undertook development of 

a Basic Program Set to store, retrieve, and manipulate data and to serve 

as a framework and nucleus for expansion.  The system was to maintain 

independence of data from programs so that changes in one would not impact 

the other.  This was to be achieved through a common retrieval and control 

program that used a set of dictionary tables as the translation medium 

between programs and data.  With this concept, changes in programs or 

data would be reflected in modifications to the tables instead of the 

usual modifications to the data or programs, or both. 

The controlling element in the design was to be a small in-core 

executive program which would interpret a query and control language - 

the COLINGO CONTROL LANGUAGE (CCL). 



THE COLINGO CONTROL LANGUAGE 

CCL was to exist in two forms - a basic query language subset which 

could be learned in a few days, and a limited programming language which 

would provide capability approaching that of the common compiler lanugages, 

CCL was to provide an operator interface independent of the computer 

equipment configuration (initially an IBM 1401), and was to be as in- 

sensitive as possible to equipment additions, except for a betterment in 

response time.  This suggested a translation or interpretive language, 

where words, punctuation, and grammatical structure would activate pro- 

grams which would come into use in the sequence they existed in the input 

message. 

The COLINGO Message 

The man/machine communication vehicle in the COLINGO system 

was chosen to be a near-English language.  All communication with the 

computer was to be accomplished by a CCL message (sometimes called a 

query, query statement, or simply statement).  A message is of the type 

illustrated by Fig. 1.  The intent of the CCL message is to provide con- 

trol over the entire system (i.e., data, programs, equipment, and output) 

through a user oriented language.  COLINGO is a bare system of computer 

programs called by the CCL interpreter; it involves no data, and includes 

no inherent operational capabilities.  It is applicable to almost any 

data management task, but is entirely dependent upon the data base 

specification and operational requirements that the particular problem 

dictates. 

The CCL has a grammar, punctuation, and vocabulary which must 

be strictly adhered to in phrasing a message.  The vocabulary is, however, 

3 



GET A-FILE IF STRENGTH/AUTH GR 5!>0 

EXECUTE 01 02 03 IF/NOT PRINT ALL. 

(Underlined words are action verbs - all words following action 

verb n up to the next action verb n + 1 are parameters of action 

verb n). 

(The parameters following the EXECUTE action verb are the labelled 

locations of other messages (stored on disk QUIC files)). 

(Underlining of action verbs is for clarity only; they are not 

actually underlined in the message entry). 

Fig. 1. Typical Message Format. 



to a great extent created by the user to fit his particular needs.  In 

this respect, COLINGO is not unlike the compiler languages, where data 

categories can be assigned names of the user's choosing.  This ability, 

along with an English grammar and punctuation, provides a language capa- 

bility applicable to a wide variety of applications. 

In practically all data management tasks, capability is required 

in the following areas: 

(1) The data qualification area (logical processing) 

(2) The data computation area (mathematical processing) 

(3) The output area 

In keeping with the first requirement, COLINGO provides a logical 

processing verb (IF), which allows rather complete Boolean algebra over 

the data records.  As an example of this capability, take a COLINGO mes- 

sage in a typical military  environment: 

GET AIRFIELDS-FILE IF COUNTRY EQ US AND RNWY/LENGTH GR 8000. 

With respect to the second requirement, COLINGO provides a mathe- 

matical processing verb (COMPUTE), which accommodates a number of the 

common mathematical processes.  For example: 

GET FORCE-STATUS-FILE IF UNIT EQ 82-ABN COMPUTE FORCE-RATIO = 

TOTAL-OFFICERS / TOTAL-EM. 

Finally, in the output area, COLINGO embraces several verbs 

(PRINT, PUNCH, TYPEOUT, REPORT), which provide capability to a number 

of peripheral devices in a number of different formats.  For example, 

the results of the AIRFIELDS-FILE message could be output to the printer 

on two data categories by the message: 

PRINT NAME LOCATION. 



In addition to the above capabilities which are recognized as 

necessary in all data management problems, another capability is extremely 

important in military data management, namely, an update capability. 

This is accomplished by two verbs (UPDATE and CHANGE).  For example: 

GET MISSILE-FILE IF TYPE EQ AJAX OR ZEUS CHANGE RANGE TO UPDATED-RANGE. 

The COLINGO designers recognized that a query language and pro- 

gramming language need not be separate entities.  Indeed, there were many 

applications where the uniquely rapid response of a query language would 

be valuable in a programming application. 

Two design decisions allowed the accomplishment of this combined 

language capability.  They were: 

(1) A sequence control verb (EXECUTE). 

(2) A set of out-of-core control files (QUIC* files), providing 

extension of the normal in-core message area (limited to 467 

characters).  These control files provided a multiple chained 

message capability (called "message strings"), with the 

EXECUTE verb providing the message links and their sequence 

(or "schedule"). 

The EXECUTE verb  provides a reference to the Executive routine, 

setting in this routine the labels of a series of messages stored on disk 

or tape.  Additionally, any message in the string can change or reset the 

Executive schedule. 

*Self-describing files of 7000 characters each, normally stored on disk, 
and characterized by organization conducive to rapid retrieval of the 
information stored therein. 



A message string is in theory unlimited in length, and is 

furthermore modifiable based on data decisions, operator interventions 

or message composition or modification programs. 

The message string is the underlying power of the COLINGO system, 

providing an extremely practical message concept on a small machine.  It 

enables the sequential execution of a string of any number of programs, 

with only one program in core at a time. 

COLINGO Program Operation 

It was earlier mentioned that COLINGO is a system consisting of 

programs only, with no data imbedded therein.  How, then, does the data 

interact with the programs? This can be best illustrated by Fig. 2, 

where disk, tape, and core are represented as repositories for programs, 

data, and program-data interaction, respectively.  Notice that the 1401 

core has room for only one action program and only one data record (and 

its describing dictionary)  to exist simultaneously.  The action program 

area is labelled the "action station", the data record area the "I/O 

station".  Still a third area of 467 characters is the "message station", 

a fourth area is the Executive routine.  The Executive routine is the 

only permanent in-core routine, and comprises the upper 500 characters 

of core. 

The disk is the usual program storage media (although tape can 

be used with degraded response) from which a program can be called to the 

action station in core.  The calling of the program is accomplished by 

the Executive routine scanning the message area for an action verb and 

calling the associated program module.  The parameters following the 

referenced action verb describe to the program module the instructions 

for performing specific actions on the incoming data records. 

7 



^ J 
QUIC FILE/R 

^OUTPUT MASK ASSIGNMENTS> 

QUIC FILE/P 

\PROGRAM ASSIGNMENTS       J 

QUIC FILE/S 
toATA & DICT. ASSIGNMENTS 

ACTION VERBS 

TSy 

WGET, IF, etc. )      > 

FILE DATA 

FILE DICTIONARIES 

QUIC FILES (Q,X,Y,Z) 

CHAINED MESSAGES 

EXECUTIVE ROUTINE 

ACTION VERB AREA 

DATA I/O AREA 

MESSAGE AREA 

FIXED I/O (READER, PRINTER, etc 

DISK CORE 

0      D 
/ u    © O o - / I 
I o o y » » I    I 

*TAPE 1 may be used in place of the disk to contain programs & QUIC Files. 

Fig. 2. COLINGO Program Structure. 



The Executive routine contains a "schedule" area into which an 

EXECUTE verb loads the labels of a series of messages stored on disk. 

The Executive routine then calls the messages at these labels in sequence. 

For each message in the message area, the Executive performs a left to 

right scan for action verbs. When an action verb is encountered, the 

associated program is called into the action station area in core, where 

it awaits the data records.  The parameters supplied to it describe the 

process variations that it can perform on the data.  Based on the data 

and/or parameters, the action program can advise the Executive routine 

of a change in schedule or a change in parameters for the next message 

on the schedule. 

Because of the limited core, only one action station can exist 

at any instant of time.  Hence, only one action program is active at 

any one time.  This requires intermediate out-of-core storage facilities 

for data records between action verbs, and this storage is afforded by 

a scratch tape.  An action program exists only long enough for the program 

to complete its function, and then that program is destroyed by the next 

program being read in. 

A small core mapped in Fig. 3 forced this single station approach 

on COLINGO "D"; obviously in a larger core, many programs could be available 

simultaneously to work on the data.  Even assuming a larger core (such as 

the 1410 could provide), it will in general, not always be possible to 

assemble all programs in core simultaneously.  The sequenced program 

operation will be retained in COLINGO 10 (the proposed COLINGO for the 

IBM 1410) for: 

(1)  those messages whose total action verb storage exceeds 

core, and 
9 



CORE ALLOCATION FUNCTION 

1-1199 FIXED I/O Area + Indicators 

1200-1999 Stacks (2) for Parameters/Pgm 

2000-7999 Work Area (Dictionary + Data) 

8000-8999 Data Stack 

9000-10999 Sub-Executive Routine 

11000-14449 Action Verb Program Area 

14500-15449 Executive I/O Area 

15500-15999 
1 

Executive Routine 

Fig. 3- COLINGO Core Map. 

10 



(2)  those action verbs in a message which are assigned to 

the same location (station) in core. 

In this latter application, it should be mentioned that the 

COLINGO action verbs are assembled between absolute core limits (i.e., 

they are not "relocatable").  For the COLINGO 10 system, several action 

stations will be available, and certain action verbs will be assembled 

relative to these several action stations.  Relocation will not be per- 

mitted, and if two action verbs are assigned to the same location, the 

sequential method will still be required. 

COLINGO Data Structure 

In order for COLINGO to process data, the data must be generated 

and described.  A generation program is provided to generate many files 

contained on cards, card images on tape, or fixed-length unit records on 

tape to COLINGO format.  Restrictions are as follows:  The tape unit 

record length must not exceed 983 characters and must not be less than 

25 characters; file generation automatically appends 16 control characters 

to each logical record.  In the normal case, the card record files cannot 

exceed 12 different format types (i.e., there can be no more than 12 

different types of cards per data file).  If all information categories 

about a data entry (object) are single-valued, one logical record is 

sufficient to carry all information about the object.  This logical 

record is called a Master record.  If, however, certain information cate- 

gories associated with an object contain multiple values, one or more 

additional logical records are associated with the object to carry the 

multiple values.  These are called Trailer records.  The information 

category carrying the most multiple values determines the number of 

11 



logical trailer records.  If this particular category carries n values, 

there are n-1 trailer records and one master record. All logical records 

(master and associated trailers) are the same length, and are automatically 

blocked to form physical records as close to or equal to 999 characters 

as possible. Fig. 4 is an example of this blocking process as applied 

to an input file of 132 character tape unit records. Note that after 

the 16 control characters are added to each logical 132 character record, 

the resulting physical record length is 888 characters (148 x 6), consist- 

ing of 6 logical records. The drawing illustrates that the first record 

in the file is an 80 character header record, and the file is terminated 

by a separate file of 80 characters comprising the trailer record.  This 

type of file meets the IBM IOCS Form 2 requirements.  The 132 character 

record size is for example, only; any logical record size between 25 and 

983 characters is legal input. 

COLINGO Dictionary Structure 

After a file has been generated, it must be described.  The divi- 

sion of the logical record into fixed length fields, and the property- 

names given these fields, is the function of the describing dictionary. 

While the composition of the data itself indicates the normal field sizes 

and descriptions, it is possible to describe the logical record with any 

dictionary which properly describes the length of that record.  Further- 

more, several dictionaries (maximum of 36) may describe one file, and in 

addition the dictionary description may be altered on-line by the operator, 

further extending the multiple definition ability. 

2 
A dictionary is generated by creating a COBOL Data Division 

similar to Fig. 5, which describes the file being processed.  This Data 

Division is a set of cards formatted in accordance with COBOL requirements. 

Presently, only the "PICTURE IS" clause has been implemented for data 

12 



HEADER] I 
R 
G 

LABEL 

80 
- •• 15 U-132-Jl *- 
*- -^-15 U-132^jl|*- 

LOGICAL 
RECORD 

•GO 

£ LOGICAL (1 PHYSICAL RECORD) 

n PHYSICAL RECORDS 

ENTIRE DATA FILE 

E 
0 
F 

TRAILER 

LABEL 

80 

E E 
0 0 
F F 

IRG • inter-record gap 

EOF • end-of-file 

t  • record-mark 

Fig. k.    COLIHGO File Structure. 

13 



FD file-name. 

02      proj >erty-name    PICTURE IS y(x). 

y - A,  9,  or X 

1 £ x   ^80 

02      FILLER PICTURE IS X(l). 

Fig.  5.     COBOL Data Division. 

14 



description in COLINGO.  In the Data Division are described the logical 

breakdowns of the data (into levels, e.g., 02, 03), the nature of the 

data (numeric, alphabetic, or alpha-numeric), and the reference or 

data-names (property-names) assigned to the data fields.  From this 

information in the COBOL Data Division, the COLINGO dictionary generation 

program creates a describing dictionary record and assigns this particular 

dictionary record to the data file of the same name.  This procedure can 

produce several dictionaries to accompany a single file -- perhaps 

several for query use, several for update use, and several more for 

output use.  The various different dictionaries may be called by append- 

int to them a single suffix number or character.  In addition, certain 

action verbs (e.g., IF) can be modified by terms attached to their 

property-name parameters.  These modification terms further modify the 

dictionary description of the appended parameters.  As an example of 

this process, the logic level, data classification, field length, and 

property-name are illustrated in Fig. 6 as they appear internally to 

the COLINGO logic interpreter.  To accomplish an on-line change to the 

normal describing dictionary, a parenthetical term may be appended to 

the property-name to change the logic level, field limits, and data 

class, e.g., IF NAME (03,9,+5,-1).  This would qualify the NAME field 

(normally an 02 level, alpha-numeric, 15 character field) as a numeric, 

03 level field, looking at only the 5th character.  This is a transient 

change, in that the describing dictionary is not altered — only the internal 

compare logic is altered.  A property-name which is not modified by a 

parenthetical term uses the normal describing dictionary items for level, 

class, and field definitions. 

15 



•word-mark 

AIRFIELDS*"* »•* A A A A A A A 
v     v  v 
.02X15015NAME029 

20 

-file-name property-name 

cumulative length 

data length 

data class 

level 

record-marks 

Fig. 6. COLIKGO Dictionary Format. 

16 



It is the area of dictionary redefinition during execution 

that gives the COLINGO interpretive approach a singular advantage over 

a conventional compiler.  Instead of planning all possible data break- 

downs in advance (as one must in a compiler), COLINGO permits redefinition 

of the data area during exectuion, based on operator, data or program 

decision points.  Each dictionary is essentially a mask overlay which 

can subdivide a file data record as prescribed by the overlay.  Thus 

every character combination in a data record is accessible on-line by 

the combination process of storing certain dictionaries and/or using the 

modification terms available. 

With the data generated and described by a dictionary, we are 

ready to process the data file. 

COLINGO Data Operations 

An all-master file (a file with only master records) is particu- 

larly easy to process, as there are no multiple values in any record, 

and the data structure has essentially one dimension (length).  In this 

case, the retrieval logic needs to work on only one logical record per 

object (the master record), and in general any logical combination of 

property-names within this record can be used to qualify such a record. 

In this application, the COLINGO logic is compatible with COBOL qualifi- 

cation logic. 

As mentioned before, in the case of a file having objects with 

multiple values on certain property-names, trailer records are required. 

This requires the COLINGO logic to work on several logical records per 

object (master + associated trailers) to qualify an object.  Since the 

"OCCURS" clause of COBOL has not been implemented in COLINGO, the normal 

17 



COBOL 02, 03 level concept has been modified to handle the row-column 

matrix occasioned by a two dimensional data structure.  In general, 02 

defined property-names are qualified in the vertical dimension (column 

qualification), while 03 defined property-names are qualified in the 

horizontal dimension (row qualification).  Logic on joint 02, 03 prop- 

erty-names occassions a combination of those respective logics. 

To understand the operation of this two dimensional logic, let 

us take as an example the common chessboard shown in Fig. 7.  To define 

the eight value categories we shall use the standard chess notation of 

property-names from left to right; QR, QN, QB, Q, K, KB, KN, KR.  In 

this notation, the left-most column is the Queen's Rook column, the 

next the Queen's knight column, etc.  The 1st row comprises the master 

record, and the value categories will be referred to as QR1, QN1, etc. 

The 2nd row value categories will be similarly referred to from left 

to right as QR2, QN2, etc., and will comprise the first trailer record. 

The 3rd through 8th row value categories will be labeled accordingly, 

and will comprise the 2nd through 7th trailer records.  Any value cate- 

gory can assume any of the following legal values:  KI, QU, R, N, B, P 

(the King and Queen have not been given their usual notation, K and Q, 

as this would have defied the rule that prohibits a value from being 

identical in spelling to a property-name).  Since the COLINGO language 

provides no implicit way to identify rows, we will add a 9th column with 

the property-name ROW-ID.  The values inserted in this column will be 1 

in the master record and 2 through 8 in the seven trailer records. 

The chessboard serves as an example illustrating the use of the 

02, 03 logic in matrix retrieval.  It shows how a two dimensional data 

matrix may be described.  For example, let us test a row-column intersection 

18 



• »—••—     •• ^^——^—   ^^•^•••B*    BBHHHHHMBHH   MMOTOT   BMiMMHMna 

4 

3 

QR   QN   QB K   KB   KN   KR 

Fig. 7« Matrix Qualification. 

19 



(K4) for vacancy. 

Query: 

IF ROW-ID (03) EQ 4 AND K (03) EQ BLANKS. 

Notice here the use of the modification term (03), to provide 

a transient modification of the property-names to 03. 

This two dimensional data structure is referred to as a Data 

Record Matrix.  Obviously, if the vertical dimension is 1, we have the 

degenerate case of all Master (or one dimensional) file.  Since there 

is a single COLINGO data structure, there is a single logic program. 

Additionally, all COLINGO programs are designed to operate with a single 

data structure, thus permitting a high level of user isolation from the 

structure, if^ he desires such isolation.  If isolation is not desired, 

as in on-line file generation and recombinations, the data record matrix 

may be compressed, expanded, or deleted in either dimension, at the con- 

trol of the operator.  In practice, a one dimensional data structure 

(all Master records), permits almost complete operator isolation from 

the data structure; this isolation is never possible in the two dimensional 

case (Master and Trailer records). 

Let us now attempt some further interrogation of the chessboard. 

Does row 4 of Fig. 8 have all Pawns? 

The Query statement is: 

IF ROW-ID (03) EQ 4 AND P EQ KR (03) 

AND KN (03) AND KB (03) AND K (03) AND Q (03) 

AND QB (03) AND QN (03) AND QR (03). 

This is an example of row (03) logic. 

Does the King's Rook column in Fig. 9 have at least one pawn? 

20 



wm 
Jvvvvvv^ Wtti • • 1 

QR        QN        QB K KB KN KR 

Fig.  8.    Row Logic 

21 



6 

5 

QR   QN   QB K   KB   KN   KR 

Pig. 9. Column Logic. 

22 



The Query statement is: 

IF P EQ KR (02). 

This is an example of column (02) logic. 

In Fig. 10 is either King still in the King column 

(row unimportant), and are the white Bishops still in 

their original positions? 

The Query statement is: 

IF K (02) EQ KI AND KB (03) EQ B 

AND ROW-ID EQ 1 AND QB (03) EQ B. 

This is an example of combination column-row (02, 03) logic. 

COLINGO Programming Procedures 

Although the operator doing routine querying of the data base 

need not know the internal data flow, such knowledge is required for the 

person using COLINGO as a programming language.  As a means of under- 

standing this, consider the fact that COLINGO action verbs in the input 

message are processed sequentially, with intermediate and final results 

being output to tape.  In all cases, result output is in the self-describing 

form (i.e., the dictionary that describes the data accompanies it).  It 

is then necessary for any program (action verb) that requires access to 

this data to have a dictionary decoding module.  This module essentially 

relates the parameters following the action verb to the data, using the 

dictionary as the data description medium. 

It is, of course, possible (within limits) to allow an action 

verb to output a special formatted file that is not self-describing, with 

the presumption that the output format, data content, and data organization 

can be processed by the next action verb without description (i.e., that 

action verb requires a standard format input, and the prior module is 

23 



QR   QN    QB   Q    K    KB   KN   KR 

7 

6 

Fig. 10. Combination Logic. 

24 



simply supplying it).  Each action verb passes an entire data file (or 

passes data records until a preset limit is sensed) and produces another 

self-describing data file before the next action verb is called in by the 

Executive routine. 

With this data flow in hand, the COLINGO CONTROL LANGUAGE may 

be used in programming applications.  As illustrated from the data flow, 

its major difference from normal programming language is the file depend- 

ence of the language as opposed to the record dependence of the normal 

programming language.  As shown in Fig. 11, each action verb processes an 

entire file or sub-file before passing control to the next verb in the 

message.  This file dependent operation is, of course, occasioned by the 

fact that only one action verb at a time can be contained in core (ap- 

proximately 12K of the 16K core are overhead programs).  The control 

characters in the individual records are used for tag purposes. 

Let us examine this data flow as applied to a previous query. 

GET MISSILE-FILE IF TYPE EQ AJAX OR ZEUS CHANGE RANGE TO 

UPDATED RANGE. 

The first action verb to execute is the GET verb, which subsets 

the data base to locate the MISSILE-FILE.  The next action verb to work 

is IF, which tags all data records containing ZEUS or AJAX, creating a 

sub-file on tape drive 6 with all the records in the MISSILE-FILE, but 

with those containing ZEUS or AJAX having tag characters in certain of 

the 16 control characters appended to each COLINGO tape record. 

Finally, the CHANGE verb operates, updating only those records 

which are tagged, and simply copying the others.  Thus, the entire message 

causes a file to be located, tagged, and processed, in that order. 

25 



DATA 

i i 

ACTION 1 

PROGRAM 

DATA 

SUBSET 1 

ACTION 2 

PROGRAM 

DATA 

SUBSET 2 

ACTION n 

PROGRAM 

DATA 

SUBSET n 

ENTIRE 

DATA BASE 

\ GET MISSILE-FILE 
\ 

N 
N 

s 
\ s 

N 
N 
\ 
> 
N 
N 

MISSILE-FILE DATA N% 

--TF'TYPE EQ AJAX OR ZEUS' 

EXECUTIVE 

• -"N SCHEDULE 

MISSILE-FILE/ DATA 

WITH AJAX/ND ZEUS 

TAGGED / 
0 

/ 

Note that intermediate and final 

data files are normally self-describ- 

ing and are saveable. 

JJHANGE RANGE TO UPDATED-RANGE 

MISSILE-FILE DATA 

WITH AJAX AND ZEUS 

RANGE UPDATED 

Fig. 11. Data Flow. 

26 



The vehicle for producing a COLINGO program is a chained message, 

with the EXECUTE verb providing the sequencing of messages, and with the 

IF, IF/NOT verbs providing the conditional branching needed in a program- 

ming language. 

Chained messages consisting of COLINGO action verbs can be 

stored on disk and assigned a name or label.  The chained message may be 

called at any time from the console (or from cards or tape) by an "EXECUTE 

name" statement.  This will put COLINGO in the "stored query mode" and 

will transfer control to the first message at the "name" label.  Since all 

messages in the chain are available on disk at any moment and are labeled, 

branches from the normal message sequence to other parts of the message 

chain (or to some other message chain such as a library subroutine) are 

allowable.  Thus, the "instructions" that comprise a COLINGO program are 

stored on disk, with the Executive module controlling their call-in, and 

with sequencing under the control of that same Executive.  Hence, programs 

that, if compiled, could take up literally millions of characters of core, 

can be executed in the COLINGO stored query mode by the above chaining 

process. 

The chained message concept is useful operationally in several 

areas: 

One area is Operator Cues - In an operational process in this 

application a set of COLINGO messages may be chained together off-line 

and assigned to disk.  Appropriate operator messages may be inserted in 

the stored messages via the COMMENT verb, which cue the operator according 

to the process being controlled.  Thus, the operator need have no knowledge 

of CCL in this application. 

27 



Another area is Program Library construction - In this appli- 

cation, a number of general purpose processing routines written in CCL 

may be stored on disk and given a name, and then called by other CCL 

programs as library routines. 

Finally, the COLINGO Executive may be given a looping sequence 

of CCL routines to execute (such as running certain alarm type or up- 

date routines against critical files).  These routines will be continually 

executed unless the operator presses the "REQUEST" key, signalling an 

on-line operation.  Upon completion of the on-line operation, the program 

may be reset to the "idle loop." 

Fig. 12 provides an example of a stored COLINGO message chain. 

It is called by the input message "EXECUTE EOP.".  This will cause the 

Executive routine to search QUIC file Q for the label name EOP, and to 

load the message at this label into the core area set aside for messages. 

The statement thus loaded is itself an EXECUTE statement, which 

sets in the Executive routine the schedule of other message labels to be 

called, and their sequence.  Observe that the message at label Bl contains 

another EXECUTE statement which will be executed before the message at 

EOPCONT is executed.  Once, however, a "multiple" EXECUTE message (i.e., 

one with several labels following the EXECUTE) is loaded, the Executive 

routine schedule will be reset with that new message schedule.  The single 

label following an EXECUTE (as in the message at Bl) will not reset the 

Executive routine schedule. 

With the data flow and programming aspects of the language in 

mind, it is pertinent to discuss the actual CCL verbs available. 

28 



LABEL MESSAGE 

AD  STATEMENT — COMMENT 'PLACE THE DICTIONARY CARD DECK IN THE READER' 
PAUSE COMMENT 'TURN SENSE SWITCH A OFF UNTIL FIRST CARD IS READ' PAUSE. 

Al  STATEMENT — TEST/DIG. 

A2  STATEMENT — GET UTILIZATION-6/2 DICTIONARY 

A3  STATEMENT — GET UTILIZATION-6/2 DICTIONARY DUPLICATE DICTIONARY 
ON TAPE/BLANK/3. 

M  STATEMENT — COMMENT 'DICTIONARY IS READY ON TAPE DRIVE 3' COMMENT 
'LOAD THE DECK IN THE READER' PAUSE COMMENT ' TURN SENSE SWITCH A 
OFF UNTIL FIRST CARD IS READ' COMMENT "TURN SENSE SWITCH C ON UNTIL 
FILE IS GENERATED*. 

A5  STATEMENT » TEST/GEN. 

A6  STATEMENT — COMMENT 'FILE IS READY ON TAPE DRIVE 2'. 

A7  STATEMENT — COMMENT 'KEY DATA FIELDS WILL NOW BE ANALYZED FOR THEIR 
CONTENT AND ACCURACY'. 

A8  STATEMENT — GET UTILIZATION-6 ANALYZE PROJECT-NO DEPT JOB-ID PROGRAMMER 
PRINTER REPORT. 

A9  STATEMENT « PAUSE. 

Bl STATEMENT — COMMENT *A SERIES OF QUERIES ON CARDS WILL NOW BE READ 
IN1 COMMENT 'THEIR JOB WILL BE TO COMPUTE AN ERROR CHECKING COLUMN' 
PAUSE (START) EXECUTE B2. 

B2  STATEMENT — SET CARD/IN. 

B3  STATEMENT — GET UTILIZATION-6/5 IF DEPT EQ D78 REPORT/USAGE DEPT. 

Cl  STATEMENT — GET UTILIZATION-6 IF TYPE EQ A WRITE/BLANK/3 GET FILE/3 
SORT PROGRAMMER. 

C2  STATEMENT — GET FILE/5 TITLE IS '1410/7010 UTILIZATION BY PROGRAMMER' 
DTG IS 'PAGE 1 OF 5' RIGHT JUSTIFIED CLASSIFICATION IS 'MITRE CONTROLLED' 
PRINT 1* PROGRAMMER DEPT 3* JOB-ID. 

EOP 
STATEMENT — EXECUTE AO Al A2 A3 A4 A9 A5 A6 A7 A8 Bl EOPCONT. 

EOPCONT 

STATEMENT — EXECUTE A9 B3 A9 Cl C2. 

Fig. 12. Stored Message Chain. 

29 



CO LINGO Action Verbs 

The COLINGO action verbs comprise the entire set of legal oper- 

ations that can be performed on the data files.  The action verb set is 

of course, open-ended, in that special programs may be allocated to the 

system by name, and these programs then become part of the action verb 

set. 

Fig. 13 illustrates the so-called Basic Program Set (BPS); the 

set of action verbs that comprises a minimal CGLINGO. 

COLINGO Input/Output Action Verbs 

The Input/Output Action verbs govern the flow of data 

through the COLINGO system:  Although data flow is for the most part 

automatic, operator control verbs are necessary to specify the file to 

be processed and the disposition of the generated results. 

The GET verb is used to specify the file to be processed, 

and the dictionary it is to be processed against.  Only one file may be 

opened at a time; however, multi-file processing is possible through 

the use of a HOLD verb, which shall be explained later. 

The TYPEOUT verb is identical to the PRINT verb, except 

output is to the console typewriter. 

The REPORT verb allows non-standard output to be sent to 

the printer.  The non-standard output format must be stored in the com- 

puter via an ALLOCATE verb (described later). 

The WRITE verb allows data to be output to tape in part or 

in total to form another system data file. 

The DUPLICATE verb allows the duplication of system dic- 

tionaries and data. 

30 



1.  INPUT/OUTPUT 

2.  DATA MANIPULATION 

& COMPUTATION 

3.  FILE GENERATION 

4. FILE UPDATE 

5. SEQUENCE CONTROL 

6. MISCELLANEOUS 

7. MAINTENANCE 

GET 

PRINT 

TYPE 

PUNCH 

REPORT 

WRITE 

DUPLICATE 

TITLE IS 

CLASSIFICATION IS 

DIG IS 

IF 

IF/NOT 

COMPUTE 

HOLD 

SORT 

GENERATE 

DIG 

ANALYZE 

UPDATE 

CHANGE 

EXECUTE 

COMMENT 

PAUSE 

ADD 

DELETE 

UPDATE 

SET 

CLEAR 

ALLOCATE 

CREATE 

Fig. 13. COLINGO Basic Program Set. 

31 



The TITLE IS - CLASSIFICATION IS - DTG IS verbs allow the 

operator to title hard copy or punch card output with titles, security 

classification, and dates. 

COLINGO Data Manipulation and Computation Action Verbs 

The Data Manipulation & Computation Verbs allow complete 

logical and mathematical control over all fields in the data records 

which are part of the file specified in the GET statement. 

The IF verb allows logical combinations of fields as 

afforded by the logical operators set forth in Fig. 14.  Those records 

that "qualify" (i.e., are logically true) according to the IF phrase 

are automatically tagged for further processing or output. 

The IF/NOT verb allows for an alternate action verb or 

alternate message to be executed if no data records qualify according 

to the IF phrase.  This is the conditional branching verb that is 

critical in a programming language. 

The COMPUTE verb allows for mathematical combinations of 

data fields with each other or with literals according to the mathe- 

matical operators, set forth in Fig. 14.  It also allows for the 

creation of new data fields, if desired, to carry the results of com- 

putations. 

The HOLD verb enables the user to save entire or partial 

data records from several files which can be processed against the 

file specified by the GET verb. 

The SORT verb enables the user to sort his intermediate 

or final results on one or more property-name keys. 

32 



LOGICAL OPERATORS 

AND 

OR 

GR (Greater Than) 

LS (Less Than) 

GQ (Greater Than or Equal To) 

LQ (Less Than or Eqi jal To) 

EQ (Equal To) 

NQ (Not Equal To) 

MATHEMATICAL OPERATORS 

V (Root) SIN (SINE) 

+ (Plus) COS (COSINE) 

- (Minus) ARCOS (ARC COSINE) 

/ (Divide) ARCSN (ARC SINE) 

* (Multiply) GCD (Great Circle Dista 

** (Exponent: iate) ( (Left Parenthesis) 

) (Right Parenthesis) 

Fig.   Ik.     COLDJGO Logical and Mathematical Operators. 

33 



COLINGO File Generation Action Verbs 

In the Data Generation area, the user must be able to 

rapidly insert data into the system (GENERATE verb) and to define it 

for message processing (DIG verb).  In addition, a means must be provided 

to check the data for errors and discrepancies (ANALYZE verb). 

The GENERATE verb provides a flexible program for accepting 

most fixed-field card files and for accepting certain unit record files 

on tape.  The GENERATE program appends necessary COLINGO control fields 

to each data record.  Thus, external files cannot be processed directly 

by CCL; they must be first passed through the GENERATE program. 

The DIG verb provides the description of the file produced 

by the GENERATE program. It is possible to describe a file with as many 

as 36 different dictionaries. 

The ANALYZE verb provides the user with a data checking 

tool to investigate whether data is formatted in accordance with the 

describing dictionary.  It checks such things as data justification and 

data classification (numeric or alpha) and compares them against the 

dictionary description.  An optional output from the ANALYZE program is 

an alphabetized listing of data by property-name. 

COLINGO Update Action Verbs 

It is necessary to provide a means to insert new data with- 

out regenerating the file or to effect changes or deletions to existing 

data.  These capabilities are provided by the Update Programs. 

The UPDATE verb allows for exception reports or complete 

change reports based upon one or more objects in a data file. It also 

provides for deletion of objects or addition of new objects to the file. 

34 



The CHANGE verb is especially useful in the area of re- 

defining existing values in terms of new representations for those 

values.  For example, if regulation specifies a new class of readiness 

conditions (say Fl for combat readiness instead of Cl), this verb would 

facilitate rapid change of the affected values.  As such, this is especially 

useful in the non - object update application. 

COLINGO Sequence Control Action Verbs 

A Sequence Verb must be available in any programming 

language to provide loop control within a program (in the COLINGO case, 

within a stored message chain). 

In the case of CCL, the EXECUTE verb provides this capa- 

bility.  EXECUTE is the action verb that controls the scheduling of 

messages in the stored message chain.  Two levels of scheduling are 

allowed: 

(1) a main level that specifies the normal 

message sequence (similar to the Instruction 

Counter in a computer, except that EXECUTE 

in this application need not specify sequential 

message labels). 

(2) a sub-level that allows deviation from the overall 

message schedule specified in (1) above. 

COLINGO Miscellaneous Action Verbs 

A set of Miscellaneous Action Verbs is provided to allow 

a higher-language mode of operation, i.e., a mode tailored to an oper- 

ational user performing a specific, pre-planned function. 

In this higher-language mode, a message chain is composed 

using COMMENT verbs, which are the sole method of communication with the 

35 



operational user.  The actions indicated by the COMMENT verbs cue the 

operational user through his process, and completely remove him from the 

general purpose COLINGO verbs.  In this same application, the PAUSE verb 

suspends program execution awaiting an operator action. 

COLINGO Maintenance Action Verbs 

A set of Maintenance Action Verbs must be provided to the 

user for bookkeeping the system files and programs, as well as for de- 

bugging purposes.  System bookkeeping is accomplished through self-descri- 

bing files called QUIC files, which are normally stored on disk, (although 

they are also accessible when stored on tape, with degraded response). 

These files contain system file and program assignments, output masks, and 

stored message chains. A set of operations is available on these files, 

as follows: 

The ADD verb allows the addition of a dictionary term and/or 

data value to a QUIC file. 

The UPDATE verb is required before an ADD or DELETE verb 

can be executed, and identifies the QUIC file to be operated upon. 

A set of action verbs is provided for control of peripheral 

devices and for logging and tracing of messages and execution, as follows: 

The SET verb enables message input from cards or tape, as 

well as directing message output to a variety of peripheral devices. It 

also allows actions such as setting the current date into the system. 

The CLEAR verb allows the user to reset any indicator the SET 

verb has activated. It also allows core to be cleared, excluding the Execu- 

tive routine. 

The ALLOCATE verb allows the assignment of new programs and/ 

or output masks to the COLINGO system.  It is the verb that provides for 

user expansion of the CCL, as determined by his own special needs. 

36 



The CREATE verb allows the user to reproduce the C0L1NG0 

system for an external user, or for backup protection.  It also permits 

the resulting tape to be reloaded onto disk, perhaps at a different loca- 

tion than that from which it was created. 

COLINGO Extension Procedures 

Now that the so-called C0T.1NG0 Basic Program Set (BPS) has been 

set forth, it is reasonable to ask how the CCL can be extended in response 

to actual operational requirements.  Most new programs can be allocated 

to the COLINGO System, and can then be called through the CCL by an as- 

signed name.  The Executive module simply extracts the name from the CCL 

message, loads the named program and its parameters, and transfers control 

to it.  The new program is altered only to the extent that instead of 

halting, it returns control to the Executive routine upon completion (a 

Branch instruction to location 15510).  Since these non-BPS (i.e., non- 

Basic Program Set) programs need preserve only the COLINGO Executive routine 

area (15500-15999), it is relatively convenient to prepare special purpose 

programs to process COLINGO files.  In this case, BPS programs can subset 

and format data for the non-BPS programs and transfer control to them 

through the CCL.  The only requirements levied on the non-BPS programs are 

to input and output their own data and to ultimately transfer control back 

to the Executive routine (location 15510) .  If the non-BPS programs output 

COLINGO self-describing data, BPS programs can further process the data. 

COLINGO is extremely flexible in accommodating operational program 

requirements.  In many cases, the capability can be provided through a 

COLINGO BPS Program of chained messages.  Some requirements can be met more 

efficiently with special purpose programs, which can also be allocated and 

used with COLINGO as described. 

37 



COLINGO Output Processing 

The ability to output data after processing is of major impor- 

tance.  A standard COLINGO output program is available for normal usage, 

providing output to printer, console or punch.  The standard output 

produces vertical strings of data values, with automatic horizontal over- 

flow and justification procedures.  Although the standard output program 

(PRINT) provides the most rapid output, its formatting is somewhat 

restrictive, being limited to outputting vertical data strings of Fig. 

15 format, with control over horizontal and vertical spacing on the out- 

put strings, (e.g., PRINT HEADING-1 HEADING-2...HEADING-m). 

To provide further output flexibility, a user may specify, 

through a coded report generator sheet (a matrix printer page, which must 

be keypunched and assigned to COLINGO by name) most other desired output 

formats.  These report forms, when entered and assigned names, are called 

report masks.  A mask may contain all static information, all variable 

information, or a combination of either.  In the "all variable" case, the 

mask is essentially a sieve, through which may be output data from any 

file (e.g., REPORT/mask-name HEADING-1, HEADING-2,...HEADING-m).  A 

horizontal data string output format is illustrated in Fig. 16. 

Thus, the user can essentially establish general purpose output 

formats which are either file independent, or which are file dependent 

(dependent by virtue of having static information entered which is 

peculiar to the file being processed).  Note carefully that once the 

masks are designed and allocated to the COLINGO System they are available 

for output usage by means of an on-line verb (REPORT/mask-name). 

In addition to the PRINT & REPORT output verbs, the user can 

also create special purpose (non-BPS) output routines. 

38 



HEADING 1 HEADING 2 HEADING m 

VALUE 1,1 
VALUE 2,1 
VALUE 3,1 
VALUE 4,1 

VALUE 1,2 
VALUE 2,2 
VALUE 3,2 
VALUE 4,2 

VALUE l,m 
VALUE 2,ra 
VALUE 3,m 
VALUE 4,m 

VALUE n,l VALUE n,2 VALUE n,m 

Fig. 15. Normal Output. 

39 



HEADING 1 VALUE 1,1 VALUE 2,1 m~mm VALUE n,l 

HEADING 2 VALUE 1,2 VALUE 2,2   VALUE n,2 

HEADING 3 

• 

VALUE 1,3 

• 

VALUE 2,3 

• 

VALUE n,3 

• 

• 

HEADING m 

• 

VALUE l,m 

• 

VALUE 2,m   

• 

VALUE n,m 

Pig. 16. Generator Sample Mask. 

40 



SUMMARY 

In summary, let us reiterate our design objectives and relate them 

to the solutions afforded by COLINGO. 

First and foremost, COLINGO was to be adaptable to a changing set 

of requirements.  Thus, we undertook to design a system which would be 

evolutionary, which would be responsive in the following areas: 

. Data Compatibility 

. On-Line Programming 

. Simple Extension 

. Good Man/Machine Interface 

Data Compatibility 

In this area, the COLINGO design achieved a large degree of data 

and program independence by not referring to data fields directly, but 

instead through a data describing dictionary.  This dictionary was created 

according to COBOL procedures, but achieved the important plus of being 

modifiable on-line by the operator. 

Simple data generation and verification programs were included 

in COLINGO to generate a large variety of card and tape data files from 

external sources, and in addition, the CCL itself was given the power to 

manipulate and change its own data base as to content and format.  Thus, 

not only could the COLINGO System accept a wide variety of formats, it 

could also process and output that same data in a variety of different 

formats. 

On-Line Programming 

In order for a user to quickly obtain results from a generated 

data file, a combined query and programming language was provided to 

41 



manipulate the data base both logically and mathematically.  Additionally, 

a general purpose output program was provided to present results to the 

user in formats of his choosing. 

Simple Extension 

With the advance knowledge that not all operational processing 

requirements and output formats could be conveniently or efficiently 

produced by the COLINGO Basic Program Set, a simple allocation scheme 

for introducing special purpose programs into the COLINGO System was 

provided.  This scheme allowed a high degree of communication between 

the COLINGO Basic Program (BPS) and the special purpose programs. 

Man/Machine Interface 

Finally, the COLINGO CONTROL LANGUAGE was structured in a way 

that provided a convenient query language, learned in a matter of days, 

to complement a more powerful language useful in many programming ap- 

plications.  The combined language was designed to divorce the user as 

far as possible from the computer equipment configuration and to remove 

the usual core-size limitations on the operational problem being programmed, 

This removal was accomplished by the process of chaining operational 

statements together and allocating them to disk, and having the chain 

sequentially called in by a small in-core Executive routine. 

In retrospect, we have found considerable merit in the general 

purpose program approach on small computers, and conclude that any in- 

herent inefficiencies introduced by overhead programs would be largely 

overcome in a larger computer.  We feel justified in this conclusion, in 

that while the overhead program loading of COLINGO amounted to 75% of 

total core, the actual core consumed by overhead was only 12K characters 

42 



on the 1401.  Projecting this 12K overhead to a larger core, it is 

reasonable to assume that any general purpose program inefficiencies 

would be correspondingly reduced. 

REFERENCES 

1. IBM 1401 Bulletin:  Input/Output Control System, Form J24-1462 

2. IBM COBOL General Information Manual, Form F28-8053-2. 

43 



Security Classification 
DOCUMENT CONTROL DATA • R&D 

(Security claaaiticatton ot tula,  body ot abatract and indexing annotation muat ba antatad whan tha ovatall report ia ctaaaitiad) 

1    ORIGINATING ACTIVITY (Corporate author) 

The MITRE Corporation 
Bedford, Massachusetts 

2a    REPORT  SECURITY   CLASSIFICATION 

Unclassified 
2b    GROUP 

3   REPORT TITLE 

The COLINGO System Design Philosophy 

4    DESCRIPTIVE NOTES (Type of report and Inetuaiva dataa) 

N/A 
5   AUTHORfS; (Laat name,  tint name.  Initial) 

Spitzer, James F. , Robertson, Joseph G. Jr. , and Neuse, Durwood H. 

6   REPORT DATE 

November 1964 
7»    TOTAL NO.  OF   PASES 

52 
7b. NO OF REPS 

2 
8a CONTRACT OR GRANT NO. 

AF 19(628)-2390 
b.   PROJECT NO. 

492 

• a.   ORIGINATOR'S  REPORT  NUUKRiSJ 

ESD-TDR-64-159 

• b.  OTHBft REPORT   NOfS;  {Any other numb-re mat may be aaeitned 

SR-126 
10. AVAILABILITY/LIMITATION NOTICES 

Qualified requestors may obtain from DDC. 
DDC release to OTS authorized. 

11. SUPPLEMENTARY NOTES 12. SPONSORING MILITARY ACTIVITY 

473 & 492L Hq.   USAF 
USSTRICOM Command-Control System 
L. G. Hanscom Field, Bedford, Mass. 

13   ABSTRACT 

This report describes the design and operation of COLINGO (Compile On-LINe and GO), 
a program system embodying a computer control and query language that provides the 
operator with a grammar and vocabulary approximating English to control program data 
and equipment in a data processing system. COLINGO provides both logical and mathe- 
matical control of data in the system, and allows the operator to specify the output format 
and content. Additionally, it provides the capability of on-line programming in a higher- 
ordered language called the  COLINGO  Control Language (CCL). The system provides 
internal editing, detection, and error correction features. 

A primary design objective was to make COLINGO adaptable to a changing set of require- 
ments and particularly responsive to data compatibility, on-line programming, simple 
extension, and good man-machine interface. This necessitated maintaining independence of 
data from programs so that changes in one do not affect the other. The objective was 
achieved by means of a common retrieval and control program that uses a set of dictionary 
tables as the translation medium between programs and data.   With this concept, changes 
in programs or data are reflected in modifications to the tables instead of the usual 
modification to the data or programs, or both. 

DD FORM 
1   JAN   84 1473 

Security Classification 



Security Classification 
14 

KEY WONOS 
LINK A 

HOLE *T 

LINK B 

ROLE WT 

LINK C 

ROLE 

Programming Languages 
Programming (Computers) 
Digital Computers 

INSTRUCTIONS 

1.   ORIGINATING ACTIVITY:   Enter the name and address 
of the contractor, subcontractor, grantee. Department of De- 
fense activity or other organization (corporate author) iasulng 
the report. 

2a.   REPORT SECURITY CLASSIFICATION:   Enter the over- 
all security classification of the report.   Indicate whether 
"Restricted Data" is included.   Marking is to be in accord- 
ance with appropriate security regulations. 

2b.   GROUP:   Automatic downgrading is specified in DoD Di- 
rective 5200.10 and Armed Forces Industrial Manual.   Enter 
the group number.   Also, when applicable, show that optional 
markings have been used for Group 3 and Group 4 as author- 
ized. 

3. REPORT TITLE:    Enter the complete report title in all 
capital letters.   TiUes in all cases should be unclassified. 
If a meaningful title cannot be selected without classifica- 
tion, show tiUe classification in all capitala in parenthesis 
immediately following the title. 

4. DESCRIPTIVE NOTES:   If appropriate, enter the type of 
report, e.g., interim, progress, aummary, annual, or final. 
Give the inclusive dates when a specific reporting period is 
covered. 

5. AUTHOR(S):    Enter the name(a) of authors) as ahown on 
or in the report.   Entei last name, first name, middle initial. 
If military, show rank end branch of service.   The name of 
the principal -ithor is an absolute minimum requirement 

6. REPORT DATE:   Enter the date of the report aa day, 
month, year; or month, year.   If more than one date appeara 
on the report, use date of publication. 

7a.   TOTAL NUMBER OF PAGES:   The total page count 
should follow normal pagination procedures, i.e., enter the 
number of pages containing information. 

7b.    NUMBER OF REFERENCES:    Enter the total number of 
references cited in the report. 

8a.   CONTRACT OR GRANT NUMBER:   If appropriate, enter 
the applicable number of the contract or grant under which 
the report was written. 

8b, 8c, (Is id. PROJECT NUMBER: Enter the appropriate 
military department identification, auch as project number, 
subproject number, system numbers, task number, etc. 

9a.   ORIGINATOR'S REPORT NUMBER(S):   Enter the offi- 
cial report number by which the document will be identified 
and controlled by the originating activity.   This number must 
be unique to this report. 

9b. OTHER REPORT NUMBER(S): If the report haa been 
assigned any other report numbers (either by the originator 
or by the sponsor), alao enter this number(s). 

10.   AVAILABILITY/LIMITATION NOTICES:   Enter any lim- 
itations on further dissemination of the report, other then those 

Imposed by security classification, using standard statements 
such as: 

(1) "Qualified requesters may obtain copies of this 
report from DDC." 

(2) "Foreign announcement and dissemination of this 
report by DDC is not authorized." 

(3) "U. S. Government agencies may obtain copies of 
this report directly from DDC.   Other qualified DDC 
users shall request through 

(4)     "U. S. military agencies may obtain copies of this 
report directly from DDC   Other qualified users 
shall request through 

(5)    "All distribution of this report is controlled.   Qual- 
ified DDC users shall request through 

If the report has been furnished tc the Office of Technical 
Services, Department of Commerce, for aale to the public, indi- 
cate this fact and enter the price, if known. 

11. SUPPLEMENTARY NOTES: Use for additional explana- 
tory notes. 

12. SPONSORING MILITARY ACTIVITY: Enter the name of 
the departmental project office or laboratory sponsoring (pay- 
ing for) the research and development   Include address. 

13. ABSTRACT:   Enter an abstract giving a brief and factual 
summary of the document indicative of the report, even though 
it may also appear elsewhere in the body of the technical re- 
port.   If additional space is required, a continuation sheet shell 
be attached. 

It is highly desirable that the abstract of classified reports 
be unclassified.   Each paragraph of the abstract shall end with 
an indication of the military security classification of the in- 
formation in the paragraph, represented as (TS), (S), (C). or (V) 

There is no limitation en the length of the abstract.   How- 
ever, the suggested length is from 150 to 225 words. 

14. KEY WORDS:   Key words are technically meaningful terms 
or short phrases that characterize a report and may be uaed aa 
index entries for cataloging the report.   Key words must be 
selected so that no security claasificstion is required.   Identi- 
fiers, such ss equipment model designation, trade name, military 
project code name, geographic location, may be uaed aa key 
words but will be followed by an indication of technical con- 
text.   The assignment of links, rules, and weights is optionsl 

Security Classification 


