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Abstract

We consider the problem of pricing an American contingent claim whose payoff depends on
several sources of uncertainty. Using classical assumptionsfrom the Arbitrage Pricing Theory,
the theoretical price can be computed asthe maximumover all possibleearly exercise strategies
of the discounted expected cash flows under the modified risk-neutral information process.

Several efficient numerical techniques exist for pricing American securities depending on one
or few (up to 3) risk sources. They are either lattice-based techniques or finite difference
approximations of the Black-Scholes diffusion equation. However, these methods cannot be
used for high-dimensiona problems, since their memory requirement is exponentia in the
number of risk sources.

Inthispaper, we present an efficient numerical techniguethat combinesMonte Carlo simulation
with a particular partitioning method of the underlying assets space, which we call Stratified
Sate Aggregation (SSA). Using this technique we can compute accurate approximations of
prices of American securities with an arbitrary number of underlying assets. Our numerical
experiments show that the method is practical for pricing American claims depending on up to
400 risk sources. On al problemsfor which we could compare the method with known optimal
solutions, the price computed through stratified state aggregation was indistinguishable from
the optimal theoretical price. Several numerical examples are presented and discussed.
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1 Introduction

Since the seminal work of Black and Scholes (1973) and Merton (1973) in the early 1970s,
the arbitrage principle underlying option valuation theory has been extended to a broad range
of other financia instruments (see e.g. Ross (1976), Cox and Rubinstein (1985)). Indeed,
any security whose returns are contractually related to the returns on some other security or
group of securities can theoretically be valuated using the same arbitrage principle. In some
cases, explicit closed form analytical formulasfor the computation of the arbitrage price can be
derived fromthistheory. In particular, theoriginal paper of Black and Scholes (1973) providesa
closed form solutionfor a European option on asinglecommon stock. Unfortunately, few other
cases can be solved analytically, and computing the arbitrage price often requires numerical
simulations. Following an idea initially presented in an early edition of Sharpe (1985), Cox
et a. (1979) developed a discrete model for the valuation of an American option on a single
stock that can be easily computed numerically. However, the effective implementation of the
arbitrage principle is not aways such an easy task, and may sometimes become intractable.
Tractable agorithms have been developed recently for pricing European contingent claims
with many underlying assets (see e.g. Barraguand (1993)). However, these al gorithms cannot
be used for pricing American contingent claims.

Thereare several reasons motivatingthe devel opment of efficient methodsfor multidimensiona
contingent claim pricing. In particular, applications exist in the pricing of Over The Counter
(OTC) warrants, path dependent instruments (Barraquand and Pudet (1994)), multidimensional
interest rate term structure contingent claims (Heath et a. (1992)) such as mortgage-backed
securities, and life insurance policies (Fabozzi and Pollack (1987)), futures contracts with
quality delivery options (Cheng (1987); Boyle (1989)). Also, pricing models taking into
account the stochastic nature of volatility (Wiggins (1987); Dothan (1987); Hull and White
(1988)) require multidimensional modeling. Other applications exist in assets and liabilities
management, andin corporatecapital budgeting (seee.g. Masonand Merton (1985); Coppeland
(1989); Brealey and Myers (1991)). Finally, applications exist in property/liability insurance
(Merton (1977); Smith (1979); Kraus and Ross (1982); Doherty and Garven (1986); Cummins
(1988); Shimko (1992)). Thetremendous devel opment of financia engineering during the past
decade can be expected to continue, and new types of securities requiring multidimensional
modeling are likely to appear at a sustained pace in the future.

For pricing purposes, financia assets can be divided into two majors classes. Thefirst classis
that of assets whose future cash-flows cannot be influenced by decisionsfrom the holder taken
after the purchase date. We will call European instruments all financial assets belonging to
thisfirst class. In particular, stocks, bonds, futures contracts, European options, swaps, caps,
floors, mortgage-backed securities are European instruments. The second classisthat of assets
whose cash flows can be influenced a posteriori by the holder. American optionsbelong to this
class. As another example, the crediting policy of a Life Insurance company selling SPDASs
greatly influences the present value of the liabilities of the company. This crediting policy can
be adjusted by the company after signature of the contracts with the policyholders. Therefore,
the liability associated with the sale of SPDA can be viewed as an American security. We will
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2 Jérébme Barraquand and Didier Martineau

cal American instrumentsall financial assets belonging to this second class.

Following thegeneral theory of arbitrage pricing, the theoretical price of a European contingent
claim is the discounted expected value of its future cash flows under the so-called “risk-
neutral” probability distribution of theunderlying economic factors(Harrison and Kreps (1979);
Harrison and Pliska (1981); Duffie (1988); Karatzas and Shreve (1988)). Mathematically,
computing the arbitrage price reduces to computing an integral (sum) over the space of the
underlying economic factors. When the dimension of the space of the underlying economic
factors is small, standard techniques for numerical integration can be used. In some cases,
the integral can even be computed anaytically (eg. Black-Scholes formula). However, the
computational complexity of evaluating theintegral is clearly exponential in the dimension of
the space. Efficient numerical techniques for pricing high-dimensional European claims are
presented in Barraguand (1993).

The price of an American claim is the maximum over all possible cash flow monitoring strate-
gies of the associated present values of cash flows. For example, the price of an American
option isthe maximum over all possible early exercise strategies of the corresponding present
values. Since the space of cash flow monitoring strategies is generally huge, direct maximiza
tion of the present value is rarely practical (see Bossaerts (1989) for a discussion). However,
when the underlying economy is modeled as a Markov process, one can use the Bellman
principle of dynamic programming (Bellman (1957)) to compute the optimal monitoring strat-
egy. American options are typically priced using a discrete approximation of the dynamic
programming principle. Thisis the case in particular of the CRR model (Cox et a. (1979))
for American stock option pricing. This approach becomes however impractical when the
underlying economic space has many dimensions, since the dynamic programming agorithm
reguires a memory space exponential in the number of dimensions. This fact is known as the
“curse of dimensionality” problem for dynamic programming.

In this paper, we present a particul ar state space partitioning technique that attemptsto circum-
vent the curse of dimensionality problem for American security pricing. More precisely, we
partition the space of underlying assets (the state space) into a tractable number of cells, and
we compute an approximate early exercise strategy that is constant over those cells. The hope
is that, if the partition is appropriately chosen, the approximate strategy will be close to the
actual optimal strategy. Such a partitioning techniqueis classically called a state aggregation
technique.

Among the many possible ways of choosing a partition, one solution is to fix a particular
real-valued function mapping the state (i.e. the prices of the underlying assets) that particularly
influences the optimal strategy in the problem at hand. We call thisfunction stratification map.
Then, the partition chosen is a stratification of the state space into thin layers along this map.
In other words, we limit our search to strategies that only depend upon the stratification map,
and not upon the entire state itself. We call thistechnique Stratified State Aggregation.

In the case of American security pricing, an obvious candidate for the stratification map isthe
payoff of the security, i.e. the function representing the future cash-flows associated with the
security. When the stratification map chosen is the payoff of the American security, we call
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Numerical Valuation of High Dimensional Multivariate American Securities 3

the technique Stratified State Aggregation along the Payoff (SSAP).

After quantization of the payoff, the SSAP method can be combined with Monte Carlo sim-
ulation techniques in order to compute the set of conditional probabilities corresponding to
changes in the payoff value over time. Using these conditional probabilities, an approximation
of the American price can then be computed backwards in time using techniques reminiscent
from the classical CRR integration method.

Weimplemented the SSA P method on American option pricing problemsindimensionsranging
from 1 to 400. On al problems for which we could compare the SSAP method with known
optimal solutions, the SSAP price was indistinguishable from the optimal theoretica price. In
particular, in dimensions 1, 2, and 3, both put and call prices of options on the maximum of
the underlying assets were computed accurately by the SSAP method. Also, the SSAP price of
an American call on the maximum of n assets paying no dividends was indistinguishablefrom
the European price for n ranging from 1 to 400, in accordance with awell known theoretical
resultl. In other cases, no other method exists to compare to our results. However, the SSAP
price seems to constitute an accurate approximation of the American price in arbitrarily high
dimensions.

To the best of our knowledge, the SSAP method is the first capable of computing American
prices and exercise strategies in high dimensional cases.

In order to speed-up the Monte Carlo simulation of conditional probabilities, we developed
an original variance reduction technique called Quadratic Resampling. Quadratic Resampling
was originally presented in Barraquand (1993) for European security pricing. In thispaper, we
present an extension of the originad QR method that applies to both European and American
asset pricing problems. Quadratic Resampling consists in correcting the samples obtained
through classical Monte Carlo simulation in such away that the expected value of any polyno-
mial of degree two or less in the space variables is computed exactly. Our experiments show
that QR isvery efficient for American pricing problemsin up to 10 dimensions. The average
speedup obtained through QR ranges from 5 to 35, with an average of about 10. In higher
dimensions (11 and higher), the speedup isonly of 2to 3in average, and slowly decreases with
the dimension.

We implemented a parallel version of the SSAP method on a network of workstati ons equipped
with a high-bandwidth interconnect (called aworkstation farm). We observed a speedup linear
in the number of workstationsin the network. Both measured and simulated parallelization
experiments are reported in this paper.

This paper is organized as follows. In Section 2, we relate our contribution to previous work
in American security pricing, multidimensional asset pricing, and Monte Carlo valuation. In
Section 3, werecall the usual assumptions on the stochastic processes governing the evolution
of securities prices, and the main results of the Arbitrage Pricing Theory. In Section 4, we

!Indeed, sincethe discounted prices of assetspaying no dividendsare martingalesunder the risk neutral measure,
the discounted maximum of such n assets prices is a submartingale. Hence, the corresponding European call price
is always higher than the immediate payoff.
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4 Jérébme Barraquand and Didier Martineau

briefly review the current numerical methods used for American security pricing. In Section
5, we present the method of Stratified State Aggregation. In Section 6, we show how SSA
prices can be computed through Monte Carlo simulation. In Section 7, we present the method
of Quadratic Resampling. In Section 8, we present numerical experiments illustrating the
efficiency of the SSAP method.

2 Relation to other work

Thetheoretical analysisof optimal stopping timesfor early exercise of American optionsdates
back to the work of McKean (1965). This theory has then been further developed by several
authors (Merton (1973); Harrison and Kreps (1979); Bensoussan (1984); Karatzas (1988);
Jaillet et al. (1988)). Myneni (1992) surveys the theory of American option pricing.

The most widely used valuation technique for American options with one underlying asset
is the binomial lattice approach of Cox et a. (1979). Cox and Rubinstein (1985) outline
the principle of the multidimensional extension. Other numerical valuation techniques are
presented in Geske and Johnson (1984), Barone-Adesi and Whaley (1987), Barone-Adesi and
Elliott (1991).

The vauation of options depending of several underlying assets has been extensively studied.
Brennan and Schwartz (1979) addresses the problem of pricing options under two sources
of risk by direct finite-difference approximation of the generalized Black-Scholes equation.
In this example the two sources of risk are the short term and the long term interest rates.
The approach is clearly limited to afew assets, since the memory space requirements and the
computation time are both exponential in the number of underlying assets. Boyleet al. (1989)
developed a multinomia lattice method for pricing multidimensiona options, in the spirit of
the approach outlined in Cox and Rubinstein (1985). According to the authors, the computation
becomes very burdensome for more than two assets. In fact, the multinomial lattice approach
can be viewed as a finite-difference approximation of the generalized Black-Scholes equation
using an explicit Euler scheme and an appropriate change of variables (Brennan and Schwartz
(1978)).

Stulz (1982) presents an analytical solution to the problem of pricing a European option on
the maximum or minimum of two underlying assets. The analytical solution isgeneraized in
Johnson (1987) to the case of an arbitrary number of assets, taking as given the cumulative
multivariate normal distribution function. Boyle (1989) and Boyle and Tse (1990) devel oped
an approximate method for the same problem. Although the problem is solved analytically
in Johnson (1987), the approximate method does not require preliminary computation of the
cumul ative multivariate normal distribution function. To the best of our knowledge, no closed
form solutions have ever been obtained for American pricing problems.

Good reviews of the Monte Carlo method and different variance reduction techniques such as
antithetic variables, covariates, stratified sampling, importance sampling can be found in many
sources such as Hammersley and Hanscomb (1964), Zaremba (1968), Haber (1970), Kalosand
Whitlock (1986), and references thereof.
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Numerical Valuation of High Dimensional Multivariate American Securities 5

The application of the Monte Carlo method to option pricing was first presented in Boyle
(2977), in the context of claims contingent to a single underlying asset. It has then been
used by severa authors for the valuation of path dependent contingent claims. In particular,
the method has been used for pricing mortgage-backed securities (see Schwartz and Torous
(1989), Hutchinson and Zenios (1991)). Barraquand (1993) presents the method of Quadratic
Resampling for Monte Carlo valuation of European securities with many underlying assets.
The Quadratic Resampling method presented in this paper is an extension of this earlier work
to the American pricing problem.

3 Arbitrage pricing theory

Thearbitrage pricing theory isdescribed in many textbooks. Werefer thereader to Duffie (1992)
for a comprehensive and rigorous presentation. In the following, we briefly present through
intuitive arguments the main results of the theory. These developments do not constitute
mathematical proofs, and are only aimed at illustrating the main concepts underlying the
computational approaches to arbitrage pricing.

3.1 Diffusion model of information process

We model the economy as a finite-dimensional vector of real-valued state variables X(t) =
(X1(t), ..., %n(t)), called factors, representing all the information available to investors at time
t. Since X(t) represents al information available to agents at timet, in a frictionless market,
prices of securities must be deterministic functions of time and X(t). It issaid that securities
are contingent claims on the state variable X(t).

For the sake of simplicity, we will assume that the information process X(t) is a diffusion
process. However, our results on security valuation described in the next sections apply to
more general types of stochastic processes. If X(t) isadiffusion process, it is asolution of a
stochastic differential equation of the type (I1t6 and McKean (1965)):

dX = A(X(1), ydt + B(X(t), t)dwW (3.1)

The vector Ais called the drift of process X. A is the derivative of the expected value of X.
The matrix I' = BBT isthe derivative of the covariance of X. The vector W = (wy, ..., Wy) is
an-dimensional standard Brownian motion.

Often, thevariables x; are prices of securities available on the market, and are therefore strictly
positive processes. The expected increments and covariance of increments are then expressed
inrelative values:

. dx; :
vi € [1,n], % = i (X Xy DO SV (X, X,
=1

with
px = ai/%,  Vij = bij/X
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6 Jérébme Barraquand and Didier Martineau

Thematrix V = (Vij) i

ij)e[1,n2 Is caled volatility matrix, and the covariance of relative returns
isthematrix K = (kij) ;.

j)e[L,n2-
K=wWT

3.2 European securities

A security is called European security iff future cash flows cannot be influenced by decisions
from the hol der taken after the purchase date (besides of course selling back the security). Then
the cash flows are only functions of time and information.

The cash flow generated by a European security C during the time interval dt, assuming C is
held indefinitely, will be denoted by fq (X(t), t)dt.

If the price C(t) of a European security C is positive, we can define the instantaneous relative
cash flow rate or dividend yield as:

de (X(1),1) = fe (X(1), 1) /C(1)
Let ;¢ denote the expected capital rate of return of C:

dC
pedt = B(-=)

In the above formula, E; denotes the expectation conditional to the information available at
timet. The expected total rate of return of C, i.e. the expected rate of return of the total gain
processis:

1Ge = pe +de

The dividend yield of the money market account £, called short term interest rate, is denoted
by r(X). If the proceeds of the money market account are continuously reinvested, the total
gain process L (to, t) follows the equation:

Lto,to) =1, dL = r(X)L(to, t)t

or equivalently:

L(to, t) = exp (/t r(X(r))dr)

to
3.3 Arbitrage pricing

For any risk factor x;, et e(C/x;) denote the elasticity of price C to x;:

X 0C
e(C/x) = Cox

The mgjor result of the Arbitrage Pricing Theory is the following. There exist numbers
A1,. .., An, caled market pricesfor risk, such that for any security C, thefollowing relationship
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Numerical Valuation of High Dimensional Multivariate American Securities 7

holds:

n

pe, =1+ > e(C/x)\

i=1

Furthermore, if factor x; is traded, its market price for risk is the expected total rate of return
on x; in excess of therisklessinterest rate. In particular, if al x; are traded, we have:

n n

HGe — r= Ze(c/xi)(:uexi - I') = Ze(c/xi)(:uxi + dXi - I')

Using the properties of diffusion processes, the above results lead to the following partial
differential equation, called Black-Scholes equation:

_oC 0°C
- Sf = (de-nC+ Z o (o = M+ 5 Z %% (32)

If factor x; isthe price of atraded security, theterm puy, — Aj issimply r — dy,. Inparticular, if all
factors are traded, the above equation does not depend on the market pricesfor risk. Therefore,
we can replace the information process X by the so-called risk-neutral information process for
which all market prices for risk are zero:

Vi € [1,n], d_x.

n
= (r—dy)dt+ > vidw, (3.3)
=1

Using atheorem known under the name of Feynman-Kac Formula, we can represent explicitly
the solution of the above equation:

C(X(1),t) = E (/too %dr)

where E; represents the expectation under the fictitious risk-neutral information process X
following the equation (3.3).

3.4 American securities

A security is called American security iff it is not European, i.e. if future cash flows can be
influenced by decisions from the holder taken after the purchase date. Then, the cash flows
are not only functions of time and information, but aso functions of the decisions taken by the
security’s holder. A cash flow monitoring strategy u is a stochastic process associating with
each time and information state a decision u(X(t),t) € U, U being an appropriate decision
space. We denote by CMS the space of cash flows monitoring strategies. For the sake of
simplicity, wewill consider only finite American securities, i.e. thosefor which CM Sisafinite
set. The cash-flow generated by an American security C during the time dt can be written:

fo(u, X, t)dt
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8 Jérébme Barraquand and Didier Martineau

Let C be an American security with a cash flow function fc(u, X, t). To each cash flow
monitoring strategy u we can associate the European security C" whose cash flow function {3
is:

fCu(Xv t) =fc (U(X7 t) X, t)

Let us assume that the market is complete, i.e. that any factor x; can be perfectly hedged by
building an appropriate dynamic portfolio of traded assets, called trading strategy. Then, for
any cash flow monitoring strategy u, the security CY can be replicated by a trading strategy.
We can therefore consider its arbitrage price CY. In particular, we can consider the European
security CY" maximizing the market val ue:

CY = max C
ucCMS

Barring arbitrage, we must have:
C=C"= ma C
ueCMS

Indeed, if C < CY, wecan buy C, sell CY*, and take the proceeds CY" — C immediately. Then,
by selecting the cash flow monitoring strategy u* for C, al future cash outflows generated by
the sale of C"" will be exactly compensated by the cash inflows generated by C, so that we
will not be obligated to any future payments. In effect, we will have made money without any
investment and without risk.

Reciproqualy, if C > CY", let up be the cash flow monitoring strategy chosen by a purchaser
of security C. Since by definition of u* we have C¥* > ClY%, wemust have C > C%. By selling
C and buying C*, the buyer can immediately take the proceeds C — CY, without any change
in the future cash flows. Thisis again an arbitrage opportunity.

We can state:

In a complete market, the price of an American security is the maximum over all
possible cash flow monitoring strategies of the corresponding European prices.

In other words, computing the price of an American security C reduces to computing that of
the equivalent European security CY*.

B L ([ R (UX(7), 7), X(7), 7)
CIX(M).1) = s E (/ Lt 7) dT)

Therefore, the differentiation between European and American securities is irrelevant in fi-
nancial termsin a complete market free of arbitrage opportunities. On the other hand, if the
market is not complete, there is no specific relationship between the American price and the
corresponding European prices.

As acomputational problem however, American security pricing is much harder that European
security pricing. Indeed, the determination of the equivalent European security requires to
precompute the optimal cash flow monitoring strategy. In many cases, this precomputation
step is practically much more complex than the European price computation itself.
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Numerical Valuation of High Dimensional Multivariate American Securities 9

3.5 European and American options

3.5.1 European options

We consider an arbitrary asset S that can be replicated by an appropriate trading strategy. In a
complete market, we can assume that the information vector X = (xg, . .., X)) represents the
prices of n given traded securities.

For example, S could be the right to purchase any one of the n securities at a given expiration
date T. Barring arbitrage, the price SXX(T), T) at expiration date is

SIX(T).T) = max x(T)

More generally, the price S can be any contractual function g of the underlying securities prices
X1, ..., X, @ expiration.

SX(T), T) = g(xa(T), ..., %(T))
The function g, which represents the unique cash-flow associated with the contractual asset S,
is called the payoff function.

By definition, a European call (resp. put) option on an asset S with expiration date T and strike
price K givesits owner the right to purchase (resp. sell) at time T the asset S for the price K.
Since they |eave achoice to the owner, European options are theoretically American securities.
Indeed, the holder can choose to exercise or not exercise the option at expiration date. The
decision space corresponds to thischoice: U = {exer ci se, no- exerci se}.

The cash flow monitoring strategy is any process associating the decision to thetimet and the
available information at t. The space of admissible cash flow monitoring strategies CMS is
composed of all adapted processes u verifying:

YVt < T,VX, u(X,t)=no-exercise
and taking the two possiblevaluesat time T:
u(X,T) € {exer ci se,no-exerci se}

For the sake of simplicity, we will assume that the payoff of the option at exercise time T is
distributed during asmall timeinterval [T, T+ At]. Wewill also assumethat exercise decisions
u(X(t), t) are piecewise-constant, i.e. changeonly at the beginning of timeintervals of duration
At. For notational convenience, we will define the “ spike” function §(u) associating the value
1/At to the decision exer ci se and the value O to the decision no- exer ci se.

The cash flow function of acall optionis:
f(u7 X7 t) = (S(x7 t) - K)(S(U)
The optimal exercise strategy u* iseasily identified:

Vt#T, u*(X,t)=no-exercise
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10 Jérdbme Barraquand and Didier Martineau

« | exercise if X, T) >K
WX T) = { no- exerci se otherwise

Therefore, weidentify thecall optionwithitscanonically associated optimal European security,
whose cash flow functionis:

FU (X, 1) = F(U*(X, 1), X, 1) = max(S(X, 1) — K, 0)&(u")

Hence, from a computational viewpoint, the European call option can be considered as a
European security.

If the payoff at expiration date T is g(X), the price of the European call option can be written:

oo -8 (12)

with
f(X) = max(0, g(X) — K)

More generaly, any European contingent claim with a single cash flow f at date T can be
priced according to the above formula. Efficient numerical techniques based upon Monte
Carlo simulation exist for computing numerically the above expectation in arbitrarily many
dimensions (see e.g. Barraquand (1993)).

3.5.2 American options

By definition, an American call (resp. put) option on an asset S with expiration date T and
strike price K gives its owner the right to purchase (resp. sell) on or beforetime T the asset S
for the price K. The space of admissible cash flow monitoring strategies CMS is composed of
all adapted processes u taking the two possible values:

vVt € [0, T], u(X,t) € {exercise,no-exercise}
and verifying:
VE<T, u(X(t),t)=exercise =>Vr >t u(X(r),7) = no-exercise

That is, exercise cannot occur twice. The cash flow function of an American call option is
identical to that of a European call option. Unfortunately, in this case, the computation of
the optimal early exercise strategy is not straightforward, since exercise can happen before
expiration. We can simplify the above formulation by noticingthat if it is optimal to exercise at
agiven underlying asset price &, it is aso optimal to exercise at any higher price. Therefore,
if we denote H(X(t), t) the smallest possible value of &, the optimal early exercise stopping
time 7* is the solution of the following equation:

= inf{t € Ry, SOX(). 8 = HIX(0.0)
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Numerical Valuation of High Dimensional Multivariate American Securities 11

The following arbitrage argument shows that
H=K+C

where C isthe American call option price. Indeed, whenever C < S— K, any investor could
buy the option, exercise it immediately, and take the proceeds (S— K) — C > 0. Therefore, it
isoptimal to exercise whenever S> K + C, henceH < K + C.

Reciprocaly, if C > S— K, no investor holding the option would be willing to exercise it and
take S— K, since by just selling it he would make a higher immediate profit C > S— K. At
any time, and for any information state, the optimal stopping time 7* verifies:

CX(r7),77) = S(X(77),77) = K
Hence, the optimal early exercise strategy can be written:

« exercise if C(Xt) < §Xt)-K
(X, t) = : .
no- exerci se otherwise

We see that the computation of the optimal early exercise strategy requires to precompute the
pricing rel ationship between the option and the underlying asset, which is what we were trying
to compute in thefirst place.

If the payoff at the exercise date isg(X), the price of the American call (resp. put) option can
be written:

C(X(1),1) = FX(7) 5 X(r), T))At) (3.4)

u(X(7), 7') 7>t UECMS ( L(t7 T
with

f(X) = max(0,9(X) — K)  (resp. max(0,K - g(X)))
More generally, any contingent claim entitling its holder to the single cash flow f on or before
an expiration date T can be priced according to the above formula

4 Numerical methods for American security pricing

4.1 Stochastic dynamic programming

The explicit numerical valuation of an American option using the above formulainvolves a
maximization over the set of of all possible early exercise strategies. The strategy u can be
any function associating to each current value of the underlying assets X = (X, ..., %n) and
each current timet the binary decision to exercise or not exercise. Since the number of such
possible strategiesis huge, direct maximization israrely practical (see Bossaerts (1989) for a
discussion).

The only practical technique to date consists in using the Bellman principle of Dynamic
Programming. This principle can be applied since theinformation vector X is assumed to be a
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12 Jérdbme Barraquand and Didier Martineau

Markov process, and therefore the optimal early exercise strategy u(X(t), t) only depends upon
time and the current vector X(t).

Assuming that exercise decisions can only betaken at discrete timesintervalsof constant dura-
tion At, the maximization problem (3.4) can be rewritten using the law of iterated expectations
and the property L(t,t*) = L(t, t+ At)L(t + At, t*):

C(X(1),1) = x ()T%CMSE [%5(u(x0),t))m+

max Et-|—At( E %5@@(7)77'))&)

u(X(r),7), >t+atueCMS St

Examining successively thetwo casesu(X(t), t) = exer ci se and u(X(t),t) =
no- exer ci se, and using the expression of C(X(t + At), t 4+ At) from equation (3.4), we
obtain

C(X(t),t) = exp(—rAt) max (f (X(t)), E(C(X(t + At), t 4 At))) (4.1)

assuming that the interest rate r is piecewise constant on intervals of duration At. The above
recursive expression, called Bellman equation, alows to compute the price C of an American
option by proceedings backwards in time from the expiration date T. Using the properties
of diffusion processes (Itd's formula), it can be shown (see eg. Jaillet et a. (1988)) that
the solution of the above equation (4.1) converges towards the solution of the Black-Scholes
equation (3.2) when At converges towards 0.

aC ANyile!
_ﬁ:—rC—l—;a — )X Zzawleq,m

with the additional time-dependent boundary condition:
C(X,t) > f(X)

4.2 Finite differences and the Cox-Ross-Rubinstein approach

The general method for solving the above partia differential equation (PDE) is to quantize it
using afinite difference method (see e.g. Duffie (1992), chapter 10).

Wewill illustratethisapproach using anumber of simplifying assumptions. Wewill assumethat
the process of the underlying securitiesisjointly lognormal, i.e. that the mean and covariance
matrix of relative returns are constant. We will aso assume that the interest rate r and the
dividend yields of the underlying securities are constant. Then, the change of variable below

simplifiesthe finite difference approximation. We consider thevector Y = (y1,...,¥n)":
. 1
vie[Ln], v =logx — (r—dy — ki)t

and we then define the vector W = (wy, ..., Wq) T

W =V-1y
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Numerical Valuation of High Dimensional Multivariate American Securities 13

By construction, Y = VW, and W follows a k-dimensional standard Brownian motion. The
Black-Scholes equation in the variable W writes:

d(eC) 1 92C

— t = — —_—
¢ ot 2 4 owf
Defining
WiF = (Wi, W AW Wh) T, W = (W, W — AW L W) T
then writing
2 + _ -
vi e [, 0 (; _ C(Wir t+ At) — 2C(W, t + At) + C(W, t + At) L o)
OW Aw?
and rt erAt
d(e"C) C(W,t) — C(W,t+ At)
_dt = ’ ! O(At
ot At + O
with

Vi e [17 n]7 Aw; = v nAt

we get the simple explicit Euler scheme (see Duffie (1992) for a description of more sophisti-
cated schemes):

1 n
C(W,t) = e—fm% D C(WF, 4 At) + C(W, t+ At)
i=1

with the terminal boundary condition:

and the early exercise condition:
C(W(1),1) > F(X(1))

where X(t) = (xa(t), ..., X (t)) isobtained by the inverse formula:
Vie[ln], x(t)=x(0)exp ((r —dy — %k“)t—|- ZVijWk(t)) (4.2)
=1

We implemented the above numerica scheme for an arbitrary number n of underlying assets.
The method yields accurate results for n < 3, but its memory requirement is intrinsically
exponential in n. Hence, it cannot be used for n > 3 with a quantization step At small enough
to yield accurate results (See section 8). Many variants and generalizations of the above
finite-difference method have been studied by a number of authors (see Duffie (1992)).

An aternative technique consists in quantizing directly the Bellman equation (4.1). Thisis
the paradigm underlying the original Cox-Ross-Rubinstein approach (Cox et a. (1979)). The

Research Report No. 38 April 1994



14 Jérdbme Barraquand and Didier Martineau

Brownian motion W is approximated by an n-dimensional binomial process WA defined as
follows:

Ve=(e1,...,6n) € {=1,1}", Prob(WA(t 4+ At) = WA (1) + eV/AL) =

Then, the quantized Bellman equation writes:

C(W, 1) = exp(—rAt) max (f(X(t)),Zln > C(W—|—e\/E,t—|—At)) (4.3)

EE{—l,l}n

For n = 1, thetwo formulationsare exactly equivaent. In higher dimensions, they yield almost
identica results for small enough At. In summary, the finite-difference and binomial lattice
methods are essentialy equivalent, and both intractable for n > 3 due to their exponentia
memory requirement.

5 State aggregation

5.1 State aggregation price

Classical numerica methods being unable to deal with high-dimensional American valuation
problems, one must resort to aternate approximation schemes. State aggregation isaclassical
approximation techniquefor the numerical solution of stochastic optimal control problems (see
e.g. Bertsekas (1987), Kushner and Dupuis (1992)).

For the problem of American security pricing, the relevant state space in the Bellman equation
(4.1) is the n-dimensional space of the underlying assets values X = (X1,...,X%,). State
aggregation consists in partitioning the state space into a tractable number of cells, and in
computing an approximate early exercise strategy u(X, t) that is constant over those cells. The
hope is that, if the partition is appropriately chosen, the approximate strategy will be close to
the actual optimal strategy.

vt € {0,At,..., T}, let us consider afinite partition P(t) = (Py(t),. .., Py (t)) of the state
space R}, i.e. aset of k(t) subsets of R} verifying:

U PI =R} andV(i,j) € [Lk®)Zi£], Pty (Pt =0

We assume that the partition P(0) only hastwo cells:
P1(0) = {X(0)}, and P5(0) = RI\{X(0)}

Among the set CMS of all possible early exercise strategies, we consider the subset 2/ (P) of
piecewise constant strategies, i.e. of strategies u(X, t) that are constant over each cell P;(t) of
the partition.
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Numerical Valuation of High Dimensional Multivariate American Securities 15

Then, we define the state aggregation price C*(i, t) asthemaximum over all possiblepiecewise
constant strategiesin ¢/ (P) of the expected risk-neutral discounted future cash-flow condition-
aly to theevent X(t) € Pi(t):

. = (-~ fX(7),7) |
C (i, t) = max (P)Eo(; W5(u(X(T),T))At|X(t)e Pi(t)] (5.2

u(X(r),r),7>t, uel

Since P1(0) = {X(0)}, and since /(P) C CMS, the state aggregation price at initid time
C*(1,0) is obviously upper bounded by the true American price C(X(0),0). Furthermore,
since the strategy Ug.ro corresponding to the European price consistsin never exercising before
theexpiration date, itisclearly constant over thecellsof any partition before expiration. Hence,
by definition of the state aggregation price, the European price is upper bounded by the state
aggregation price at the initial timeC*(1, 0). We can state

For any family of finite partitions P, the state aggregation price C* = C*(1,0) is
lower bounded by the European price and upper bounded by the American price.
CEuro < Cf < CAmer

We will now derive a recursive backward valuation formula for the state aggregation price,
under an additional Markovian assumption.

5.2 Markovian approximation

We will now assumethat the partition P is such that the process | (t) defined by X(t) € Py (t)
is approximately Markov under the risk neutral measure:

Viyj, 6, Eo(a(X(t+ 2At) | X(t) € Pi(t), X(t+ At) € Pj(t+At))
=~ Eo (¢(X(t+ 2At)) | X(t+ At) € Pj(t + At))

Applying again the law of iterated expectations to the definition of the state aggregation price
in equation (5.1), we get:

= [_f(X(®)
C (l(t),t) = ——=_§(u(X(t), 1)) At
(1w, Y u(X(t)T),aa(eu(P)Eo L(t, t+ At) (u(X(®), 1) —I_u(X(T),T),gat:(—At,ueL{(P)

)
E (T:zt;m%&(u(x(r)m))m X(1) € Puy(t), X(t+ A1) € Plesan(t+ At))
[X(t) € Py (1)

By examining successively thetwo casesu(X(t), t) = exer ci se andu(X(t),t) =no- exer ci se,
and applying formula (5.1) at timet + At:
C(I(1), ) =
e max (Eo(f (X(1)) | X(1) € Py (1), Eo (C(1 (t+ A0, t+ At) | X(1) € Py (1))
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16 Jérdbme Barraquand and Didier Martineau

where the substitution of formula (5.1) at time t + At is justified by the above Markovian
approximation.

By definition of a partition, we have:

K(t+At)

1= Z Lxtntyeptat)
=1

where 1, is the indicator variable of the event A (i.e. takesthe value 1 iff Aistrue, and O
otherwise). Combining thiswith the above recursive equation, we get:

K(t-+AL)
Vi e [LKM)], C(i,t) ~ e max (fi(t), 3 pij(t)C*(j,t—|—At))
j=1

where we have defined for notationa convenience
fi(t) = Eo(f (X(1)) | X(t) € Pi(1))

and
pij(t) = Prob (X(t + At) € Pj(t+ At) | X(t) € Pi(t))

Furthermore, the value at expiration date is determined by the terminal condition:

C(i,T) =fi(T)
5.3 Recursive state aggregation

We define the recursive state aggregation price Csa as the solution of the following program:

Csa(i, T) =fi(T)

K(t+At)
Caa(i, t) = e " max (fi ®, > pi (t)CSA(j,H—At))

j=1

When the partitions P(t) are chosen in such away that the process | (t) is actually Markovian,
the recursive state aggregation price Cs is exactly the true state aggregation price C*. The
implementation of arecursive state aggregation program proceeds in two steps.

1) Definition of an appropriate family of partitions,

2) Computation of the expected payoffsfi(t) and the conditional probability matrices pjj(t).

Then, the approximate price of an American contingent claim with termina payoff f can be
computed backwards in time using the above recursive equation.
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Numerical Valuation of High Dimensional Multivariate American Securities 17

Finite difference or |attice-based methods can be viewed as particular instances of therecursive
state aggregation method. Indeed, each grid point or latice point W' can be viewed as the

center of the hypercube Hyper(W') defined by:
; . ;1 ;1
Hyper(W') = {Z € R\ Vj € [L,n], W — zAvvj <z <w A+ EAW,-}

Although the process | (t) such that W(t) € Hyper(W,,) isnot actually Markovian, it can be
approximated by a Markov process with reasonable accuracy for afine enough latice grid. In
thelattice approach, thiscorrespondsto approximating the Brownian motion W by the binomial
process WAL, Then, the expected value over the hypercube fi(t) is approximated by the value
in the center f (X(V\/i)) . Similarly, the conditional probability is simply taken from that of the
binomia approximation, which yieldstherecursive formula(4.3). Asexplained in section4.2,
the limitation of thisapproach isthe exponential growth of the number of lattice hypercubesin
the number n of underlying assets.

One solution for generating a partition P(t) with a tractable number of cellsisto fix a priori
asmall number k and set for @l t > O, k(t) = k. Then, one can sample for each timet the
state space with k samples following the risk-neutral distribution of X(t). For example, if X(t)
follows ajointly lognormal distribution, the samples X/(t) can be computed from the samples
W through formula (4.2). In turn, the sampI%V\/i(t) can be generated following a jointly
standard normal distribution with variancet along each coordinate. Then, the cell P;(t) of the
partition P(t) can be defined, in the Brownian Motion space (i.e. the space of the variable W),
as the set of points W closer to W (t) than to any other sample. Such apartition is commonly
called the Voronoi partition associated with the samples W2(t), ..., WX(t). Unfortunately,
Voronoi partitions have an undesirable asymptotic property for large n. The cdls tend to
become so large that the probability pjj(t) of movingintocell j at timet+ At fromcell i at time
tisamost O for dl j's but one. Hence, a Voronoi partition of the n-dimensional state space
does not accurately reproduce the diffusion effect in the information vector X(t). In order to
devise partitions such that several of the conditional probabilitiespj;(t) are non-zero, one must
build cells having a small directional diameter in the Brownian Motion space, i.e. such that
the numbers

Di= sup inf
XEP; (t) S:(Srj_ ..... Sn)75%+~~~73%:1

areassmall aspossible. Indeed, thesmaller D; is, the higher isthe probability that the Brownian
motion process W(t) crosses the boundary of the cell P;(t).

5.4 Stratified state aggregation (SSA)

One solutionfor choosing a partition with small cell directional diametersisto fix areal-valued
function mapping the state that particularly influences the optimal strategy in the problem at
hand. We call such afunction astratification map. Then, the partition chosen isa stratification
of the state space into thin layers along this map. If the layers are chosen sufficiently thin, the
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18 Jérdbme Barraquand and Didier Martineau

diameters of the cells along the direction of the gradient of the map will be small. Hence, the
probability of crossing the boundary of a cell during a small time interval will be relatively
high, and the drawback of Voronoi-based partitionswill be avoided.

In order words, stratification consistsin limiting the search to strategiesthat only depend upon
the stratification map, and not upon the entire state itself. We call thistechnique Stratified Sate
Aggregation.

In general, we can consider avector-valued |-dimensional stratification map (I < n):
h: R"xR —R (5.2)
(X7 t) — h(x7 t)
and afamily Q of partitionsof R. From thefamily Q and the map h, we can build thereciprocal
image partition P = h=1(Q):
Pi(t) = {X € RL,h(X,1) € Qi(t)}
In the case of American security pricing, an obvious candidate for the stratification map is

the payoff of the security. When the stratification map chosen is the payoff of the American
security, we call the technique Stratified State Aggregation along the Payoff (SSAP).

L et usconsider an American security with asinglecash-flowf (X) onor beforean expiration date
T. Inparticular, inthe case of an American call option, the cash-flow isf (X) = max(0, g(X) —
K), whereK isthestrikeprice. In order toillustratethe SSAP method, we set | = 1 and choose
h(X,t) = f(X) for the stratification map. We also takek(t) = k constant for all timest € [0, T].
In the numerical examples developed in section 8, we assume that g(X) = maXic(1 4 X, and
that the process X is jointly lognormal, of the form described in section 4.2. The partitions
Q(t) of the image space R = Rare chosen logarithmicin all these examples, i.e. the interval
Qi(t), t > Oisof the form:

Vie[2,k-1], Q)= (A(t)eB(t)(i—ZLA(t)eB(t)(i—l)}
and
Qut) = (o0, A1), Q) = (AP, 4oo)
for adequate parameters A(t) and B(t). Thecell P;(t) is then by definition:
Vie[2,k-1], Pi(t)={XeR], AL)ED-2)  £(x) < At)eBOi-1y
and
Pi(t) = {Xe R, f(X)<A®M)}, Pt)={XeR], f(X)>Art)eVk-2y

In our experiments, the number k of cells is set to 100. The numbers A(t) and B(t) are
automatically adjusted so asto ensure:

Prob (X(t) € P1(t)) ~ Prob (X(t) € Py(t)) ~ 0.1%

The numerical results obtai ned with the SSAP method, presented in section (8), show that these
empirical parameters are adequate for a broad range of American security pricing problems.
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6 Monte Carlo estimation of American price

6.1 Generation of sample paths

Oncethefamily of partitionsP hasbeen chosen, for example using the SSAP method, it remains
to compute numerically the expected payoffs fi(t) and conditional probabilities pj(t). These
numbers can be expressed as integrals over the state space. In general, they must be computed
numerically. Theonly general tractable method for computing such high-dimensional integrals
isthe Monte Carlo method.

It consists in generating a given number M of sample paths for the underlying assets price
process X(t). In general, this can be done through direct numerical integration of the 1td
equation (3.3). A simple explicit Euler schemeis given by:

X (t+ At) = %(t) exp ((r — - %mi) (X(1), DA+ Y vy (X(t), ) VAL z})
j=1

Wherez} follow independent standard normal distributionsfor all j and t. d = T /At being the
number of time stepsin [0, T], we must draw atotal of M x d x n standard normal variatesin
order to generate M n-dimensional sample paths X(t), ..., XM(t) for al t > 0.

In general, At must be chosen small enough so as to reach a reasonable accuracy. In practice,
a number of time steps d = 100 is sufficient in most asset pricing applications. However,
when the joint process X(t) is assumed lognormal as in section (4.2), d can be chosen much
smaller. Indeed, the underlying assets price process X can then be obtained by formula (4.2)
from a standard Brownian mation W. In our experiments, we found that a number of time
stepsd = 10issufficient for American security pricing with lognormal underlying assets price
processes.

6.2 Conditional probabilities and payoff expectations
OncetheM samplepaths X1(t), ..., XM(t) are computed, the number & (t) of samplescrossing
P; (t) and the number bjj (t) of samples moving from P; (t) to Pj(t + At) are easily computed:

a(t) = Cad{ke[1,M],XXt) € Pi(t)}
bj(t) = Card{ke [1,M],X¥t) € Pi(t) and XX(t4At) € Pj(t+ At)}

Similarly, the sum ¢; (t) over of samples X* of payoff valuesf (XK(t)) is computed from:

G(t) = > FOX()

{ke[1,M],XK(t)ePi(t)}
By the law of large numbers, we have the following identities:

pij(t) = lim By (1) fi(t) = lim G

- M—eo a,(t) - M—eo (t)
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6.3 Backward integration algorithm

Using the above M onte-Carl o estimates of the conditional probabilities and payoff expectations,
an approximation of the American price can then be computed backwards in time using the
simple agorithm described bel ow.

e AttimeT, the approximate SSAP priceisinitialized at:

C@U:%%%

e AttimeT — At, we can computefor all i € [1,K]:

| o fe(T oAy &K by(T - Ay
C(i,T— At) = e " max (M7;C(17T)a:('rm))

e The above procedure is then applied recursively, backwards in time, to compute all the
pricesC(i, T — 2At), C(i, T — 3At), ..., C(1, 0) = Cssap.

Thememory required inthe SSAP methodis proportional tok? x d, corresponding to thestorage
of theconditional probabilitiespjj(t). Thecomputationtimeisproportional to M x n?xd+k?xd,
the first term corresponding to the drawing of theM Monte Carlo sampl e paths, and the second
to the backwards integration. Hence the memory and time complexities of the SSAP method
arepolynomial inn. Thisisto be contrasted with classical PDE methodswhich are exponential
inn.

7 Quadratic resampling

7.1 Quadratic resampling for multidimensional Monte Carlo integration

Each standard normal variable 4‘ is simulated by generating M standard normal deviates
z]-‘(l), .. .,4‘(M). Many variance reduction techniques exist to improve the computational
efficiency of the Monte Carlo method. In particular, we use the well known technique of
Antithetic Variables (AV), which consists in generating only M /2 standard normal deviates
Z(1),...,2(M/2) and take for the remaining samples Z(M/2+ 1),...,Z(M) the opposite
values—Z(1),...,—Z(M/2) (M is assumed even).

In addition to the technique of Antithetic Variables, we also use an extension of the Quadratic
Resampling technique. Quadratic Resampling was first presented in Barraquand (1993) for
reducing the variance of multivariate Monte Carlo integration.

We briefly present bel ow the original QR method before describing the extension we devel oped
for the purpose of the SSA method. We consider the problem of computing the integral:

E(X) = [ 1(X0pOX)dX
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where p is a given probability density function over RN, and f any integrable function. We
assume that the expected vector E(X) and the covariance matrix Kx have been precomputed.
In the application we consider here, p(X) isthe density of the N-dimensional standard normal
distribution. Hence E(X) = O and Kx = Iy.

Then, we can approximate theintegral E(f (X)) by:

f(X)=

Mz

1
M
i=1

In particular, the empirical meanis:

1<
g Ly
2

We can likewise define the empirical covariance:

Kx = (X = X)(X = X)T = XXT - XX"
We define the gain matrix (for M large enough, K is regular):

H = VR /()

and the new random variable:

= H(X - X) + E(X)
We consider theM samplesY' = H(X' — X) + E

1M
:MZ

_<

(X). For this particular sampling, we get:

<

Similarly:

Ky =(Y=Y)(Y=Y)T = (HX=X))(H(X = X))T = HKxH"
Using the definition of H we get:
Ky = Kx

Hence, the empirical first and second order moments using the samples Y are exactly equal
to the redl first and second order moments of X. In particular, the empirical mean of any
polynomial f of degreetwo or lessinthevariablesxg, . . ., Xy verifies:

f(Y) = MZf (YY) = E(f(X))
i=1

The method of quadratic resampling consists in using the samples Yi in place of the samples
X" in the quadrature formula. We can state:

Any numerical quadrature formula generated through quadratic resampling is
exact for any polynomial of degree two or less
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7.2 Quadratic resampling in spacelime
In the American pricing problem, we must sample not only the underlying assets prices X(T)
at expiration date, but aso those prices X(t) for all possible early exercise dates. Hence,

guadratic resampling must be applied to the underlying assets space domain elevated to the
power of thetime domain. In other words, we consider thevariable Z = (4‘) ie[Lnl teat,T) INthe

n x d-dimensional spacel!M€ domain R™9. Z isan x d-dimensional standard normal variable.
Given M standard normal deviates Z(1), . . ., Z(M) (with antithetic variables) for each of the
n x d variables 7, we can consider them asM vector samples 2*,..., ZMin R™d_ Then, we
can apply Quadratic Resampling to then x d-vector variable Z.

WehaveE(Z) = 0and Kz = 4. Sincethe samplesare generated using antithetic variables,
the empirical mean Z is 0. We can compute the empirical (n x d) x (nx d) covariance matrix
Kz. Then, we can apply to each sample Z' the transform:

Y= (@) _1Zi

Finally, we can replace in the Monte Carlo simulations presented in section (6) the samples
z]-‘(i) by the %mpl&yj‘(i), components of the n x d-vector ). Experimental results reported
in section (8) demonstrate the efficiency of the extended quadratic resampling method for
American option pricing.

8 Experimental results

8.1 A testcase

We implemented the method of Stratified State Aggregation along the Payoff function (SSAP).
We also used the quadratic resampling technique for drawing the Monte Carlo sample paths.
We present below some numerical results for several European and American option pricing
problems ranging from 1 to 400 underlying assets. In all the experiments, we assumed that
the American options can only be exercised at d = 10 different dates during the life of the
option. This corresponds to choosing atime step At = T/d = T/10. We experimented with
severa different payoff functions, in particular with payoffs corresponding to the maximum,
the minimum, or the average of the n underlying assets. We obtained similar results for all
these different payoff functions. We only present bel ow the case of an option on the maximum
of the underlying assets. Its payoff function is defined by:

g(xl7 SEE) Xn) = max(07 max(xl7 SEE) Xn) - K)
where K isthe strike price of the option.

In al the experiments, we assumed that the underlying assets price process X(t) islognormal,
with a covariance matrix of relative returns K of the form:

Vi e [1,n], ki=o0?
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Call option prices: x,(0) = $40, r = 5%

Parameters European American
o1 T| K Cgs | Cssap  4stdev | Cgs | Cssap  4stdev
35 515| 515 0001 | 515 515 0.002
1,40 1.00| 100 0006 | 100 | 1.00 0.008
45| 0.02 | 002 0001 | 002 | 0.02 0.001
35| 576 | 576 0003 | 576 | 576 0.005
20% | 4140 | 216 | 216 0.006 | 216 | 216 0.008
45 |1 050 | 050 0004 | 050 | 050 0.004
351 640 | 640 0.004 | 640 | 640 0.006
7140 300 299 0010 | 3.00| 3.00 0.010
451 1.09 | 109 0006 | 1.09 | 1.09 0.006
35 538 | 538 0.003 |538| 540 0.007
1140|191 191 0010 | 191 | 192 0.010
451 041 | 041 0003 | 041 | 041 0.003
351688 688 0010 | 688 | 6.90 0.020
40% | 4 |40 || 396 | 3.96 0.020 | 3.96 | 397 0.020
45| 208 | 208 0006 | 208 | 2.09 0.010
35| 807 | 808 0.010 | 807 | 810 0.020
7140535 ] 534 0024 | 535 | 536 0.040
45| 340 | 340 0012 | 340 | 342 0.020

Put option prices: x1(0) = $40, r = 5%

Parameters European American
o1 T K Pgs | Pssap 4stdev Prpe | Pssap 4stdev
35 000 | 000 0.001 | 000 | 000 o0.001
1[40 083 | 083 0.008 | 084 | 0.84 0.008
45 || 484 | 484 0.001 | 500 | 500 0.000
351019 019 0003 | 0.19 | 019 0.004
20% | 4 40| 150 | 150 0.006 | 156 | 156 0.010
45 || 477 | 477 0.004 | 506 | 507 0.010
351 041 | 041 0003 | 042 | 042 0.006
7140118 | 186 0010 | 196 | 196 0.012
45 || 4.82 | 482 0.006 | 524 | 523 0.016
351024 | 024 0003 | 024 | 0.24 0.003
140 1.74| 174 0.010 | .75 | 1.76 0.010
45 || 523 | 523 0.003 | 527 | 529 0.015
35 131 131 0010 | 1.32 | 1.33 0.020
40% | 4140 331 | 331 0020 | 336 | 3.37 0.020
45| 635 | 635 0.006 | 647 | 649 0.015
35 208 | 209 0012 | 212 | 213 0.015
7140|421 | 421 0.020 | 431 | 431 0.016
45| 712 | 713 0.012 | 736 | 7.34 0.030

Table 1. Results of the SSAP method with 1 underlying asset
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and
V(l,j) € [17 n]zvi 7£ j7 kl] = POi0j
forn+ 1 numberse; > 0,...,0n > 0and -1/(n—-1) < p < 1

Voldtilities (ai), correlations (p), and interest rate (r) are counted in percent per year. Thetime
to expiration T is counted in months, with the convention 1 month = 30 days. All asset and
strike prices are counted in dollars.

Since SSAP uses Monte Carlo simulation, we report confidence intervals together with all
results. These confidence intervals are computed from the central limit theorem, i.e. we
assume that at a confidence level of 99.95%, the error must be less than 4 times the observed
standard deviation of the result. The confidence interval reported is4 x stdev.

All the ssmulations were run on a DEC 3000 model 500X workstation, with an ALPHA AXP
processor running at aclock rate of 200 Mhz, and 1 Gigabyte of main memory.

8.2 One underlying asset

We first study the one-dimensional case. In this case, the SSAP price should converge toward
the theoretical arbitrage price when both the number of time steps d and the number of cellsk
converge towards infinity. Both European calls and European puts can be priced according to
the origina Black-Scholes formula. These prices are reported in the columns European Cgs
and European Pgg of table (1). The American call can also be priced according to the same
formula, since we assume the underlying asset pays no dividends. The price is reported in
column American Cgs. For the American put, we computed the price using thefinite-difference
method presented in section (4.2). We call thismethod PDE, sinceit consistsin solvingaPartial
Differential Equation. In dimension 1, it is essentially equivalent to the Cox-Ross-Rubinstein
binomial lattice method. We used 120 timestepsfor T (timeto expiration) ranging from 1to 4
months, and 210 time steps for T = 7 months. The corresponding price is reported in column
American Cppe. The SSAP priceswhere computed using M = 100, 000 samples, and k = 100
buckets. The number of time stepswas set tod = 10 in al the experiments.

The observed differences between the SSAP prices and the reference prices are below 0.7%.
The confidence interval values are bel ow 1% of thereference prices. American put pricesgiven
by the SSAP method are very accurate even when the difference with the European put prices
areimportant (up to 30 cents). The computationtimeof aprice using the SSAP method is about
21 seconds, compared with less than one second with a classical integration method (PDE). In
dimension 1, classica finite difference of binomia lattice methods should be preferred to the
SSAP method.

8.3 Two underlying assets
In this case the SSAP method only finds an approximation of the optimal price. However,

numerical experiments show that the SSAP price always remains within a few cents of the
optimal theoretical price.
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Call option prices: x;(0) = x2(0) = $40

o1 = 20%, o2 = 30%, r = 5%

Parameters European American
P T| K Crpe | Cssap 4stdev Crpe | Cssap 4stdev
35| 680 679 0010| 680 | 680 0.012
1|140| 210| 211 0.002| 210| 211 0.002
45| 018 | 018 0.003| 0.18| 0.18 0.003
35| 890| 889 0.010| 890 | 890 0.010
0% |4 |40 | 448 | 448 0015| 448 | 449 0.015
45| 166 | 166 0.006| 166| 1.66 0.008
35| 1043 | 1042 0.020 | 1043 | 1043 0.020
7140 615| 615 0.016| 6.15| 6.16 0.020
45| 310| 3.08 0.004| 310| 3.09 0.010
35| 636| 63 0004 636| 636 0.005
1|/40| 2187 | 187 0.006| 187 | 187 0.008
45| 017 | 017 0.004| 017| 0.17 0.004
35| 809| 808 0.015| 809| 809 0016
50% | 4 |40 | 399 | 398 0.010| 399| 399 0.010
45| 151 | 150 0.006| 151| 151 0.006
35| 941| 940 0.015| 941 | 941 0.015
740 | 548 | 547 0010| 548 | 547 0.016
45 || 277 | 277 0010| 277 | 278 0.012
35| 561| 561 0.002| 561| 561 0.006
1|/40| 145| 145 0.008| 145| 146 0.008
45| 116| 116 0.002| 116| 1.16 0.003
35| 669| 668 0.003| 6.69| 669 0.008
100% | 4 | 40 || 3.09| 307 0010| 3.09| 3.08 0.012
45| 124 | 124 0004 | 124| 125 0.010
3| 762| 761 0006 | 762 | 762 0.012
7140 | 423| 421 0020| 423| 422 0.020
45 || 224 | 222 0012 | 224 | 223 0.020

Table 2: Pricesfor acall option with 2 underlying assets
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Put option prices: x1(0) = X2(0) = $40

o1 = 20%, o2 = 30%, r = 5%

Parameters European American
P K Pppe | Pssap 4stdev Pppe | Pssap 4stdev
35| 0.00| 0.00 0.0000| 0.00| 0.00 0.0000
40 || 029 | 029 0.0030| 040 | 0.40 0.0040
45| 334 | 335 00060 | 500| 5.00 0.0000
35| 0.03| 003 0.0020| 004 | 0.04 0.0020
0% 40 || 053 | 054 0008 | 0.75| 0.75 0.0080
45 || 262 | 263 00200 | 500| 5.00 0.0000
35| 0.08| 008 0.0030| 010| 0.0 0.0040
40 || 066 | 0.67 00120 | 095| 0.95 0.0100
45 || 247 | 246 00200 | 500| 5.00 0.0000
35| 0.00| 0.00 0.0006 | 0.00| 0.00 0.0006
40 || 050 | 050 0.0030 | 056 | 0.57 0.0050
45| 3.78| 3.78 0.0080 | 500| 5.00 0.0000
35| 0.09| 009 00030 | 010| 0.0 0.0030
50 % 40 || 092 | 091 00100 | 1.08| 1.08 0.0100
45| 335| 335 00100 | 500| 5.00 0.0000
35| 021| 021 0.0040 | 024 | 0.24 0.0040
40 || 114 | 1.13 00080 | 1.38| 1.38 0.0120
45| 329 | 330 00120 | 500 | 5.00 0.0000
35| 0.01| 001 0.0008| 001| 0.01 0.0006
40 || 0.83| 0.83 00040 | 0.84| 0.85 0.0060
45 || 452 | 452 00040 | 500 | 5.00 0.0000
35| 019| 019 0.0040 | 019 | 0.20 0.0040
100 % 40 || 151 | 151 0.0060 | 156 | 156 0.0120
45| 458 | 459 00040 | 502 | 5.02 0.0120
35| 041| 041 0.0020 | 042 | 0.42 0.0060
40 || 187 | 186 00120 | 196 | 1.97 0.0100
45 || 474 | 473 00080 | 520| 521 0.0120

Table 3: Pricesfor a put option with 2 underlying assets
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Call option prices: x;(0) = %2(0) = x3(0) = $40

o1 = 20%, o2 = 30%, o3 = 50%, r = 5%

Parameters European American
P T| K Crpe | Cssap 4stdev Crpe | Cssap 4stdev
35| 859 | 858 0.008| 859| 859 0.010
1|/40| 384| 383 0010| 384 | 384 0012
45| 089 | 089 0.006| 089| 0.90 0.007
35| 1255 | 1253 0.020 | 1255 | 1255 0.016
0% |4 (40| 787| 785 0014| 787| 7.87 0.020
45 || 426 | 425 0014 | 426 | 427 0.014
35| 15.29 | 15.27 0.020 | 15.29 | 1530 0.030
7 |40 | 10.72 | 10.70 0.016 | 10.72 | 10.73 0.035
45| 696 | 695 0.020| 696 | 6.98 0.020
35| 778| 777 0010 778 | 7.78 0.012
1|40| 318 | 317 0.010| 318 | 318 0.012
45| 082 | 082 0.004| 082| 0.83 0.004
35| 10.97 | 10.95 0.010 | 10.97 | 1096 0.015
50% | 4 |40 | 669 | 667 0.016| 669| 6.69 0.020
45| 370| 369 0.012| 370| 371 0.025
35 1323 | 1321 0.016 | 13.23 | 13.24 0.030
7140 | 911 | 909 0.020| 911| 912 0.040
45| 598 | 598 0.016| 598| 599 0.020
35| 653| 652 0.006| 653| 654 0.010
1|140| 238| 237 0.010| 238 | 238 0.012
45| 074 | 074 0.002| 074| 0.74 0.003
35| 851| 850 0.008| 851| 853 0.016
100% | 4 |40 || 492 | 490 0012| 492 | 493 0.020
45 || 297 | 29 0.008| 297 | 299 0.020
35| 10.04 | 10.03 0.010 | 10.04 | 10.07 0.016
7140 664| 663 0016| 664| 6.67 0.030
45| 461 | 460 0016 | 461| 464 0.040

Table 4: Prices for a call option with 3 underlying assets
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Put option prices: x1(0) = X2(0) = x3(0) = $40

o1 = 20%, o = 30%, o3 = 50%, r = 5%

Parameters European American
P K Pppe | Pssap 4stdev Pppe | Pssap 4stdev
35| 0.00| 000 0.000| 0.00| 0.00 0.000
40| 013 | 013 0003 | 023| 0.23 0.003
45| 226 | 227 0012 | 500| 500 0.000
35| 0.01| 001 0002| 001 0.01 0.001
0% 40| 025| 025 0006 | 044 | 045 0.006
45| 155| 156 0010| 500| 500 0.000
35| 0.03| 003 0.004| 004| 004 0.002
40| 031| 032 0010| 057 | 058 0.015
45| 141 | 142 0020| 500| 500 0.000
35| 0.00| 000 0.000| 0.00| 0.00 0.000
40| 038 | 039 0003| 048 | 049 0.006
45| 300| 301 0010| 500| 500 0.000
35| 0.07| 008 0.006| 0.09| 009 0.004
50 % 40| 072 | 072 0006 | 093| 094 0.010
45| 265| 266 0010| 500| 500 0.000
35| 017 | 017 0.006| 020 | 020 0.005
40| 091| 091 0012| 119| 121 0.010
45| 263 | 265 0012 | 500| 500 0.000
35| 001| 001 0001| 001 001 0.001
40| 084 | 084 0004 | 084 | 085 0.006
45| 418 | 418 0003 | 500| 500 0.000
35| 019 019 0003| 019| 019 0.004
100% 40| 151 | 151 0006 | 156 | 157 0.008
45| 449 | 449 0005| 500| 500 0.008
35| 041 041 0.004| 042 | 042 0.004
40| 187 | 18 0010| 19| 197 0.012
45| 470 | 470 0008 | 520| 520 0.012

Table 5: Prices for a put option with 3 underlying assets

Digital PRL



Numerical Valuation of High Dimensional Multivariate American Securities 29

The European and American call and put option prices can be computed by the PDE method.
This integration requires 120 time stepsfor T = 1 and T = 4 months and 210 time steps for
T = 7 months. These results are reported in the columns European Cppg, Pppe and American
CrpE, Pppe intables (2) and (3). The SSAP method was run using M = 100, 000 samples,
and k = 100 buckets. The number of time stepswas set tod = 10 in al the experiments.

The observed differences between the SSAP prices and the reference prices are below 1%. The
confidence interval valueisbelow 1% of the reference prices, except for very low prices where
it remainsunder 1 cent. American put prices given by the SSAP method are very accurate. The
computation time of a price using the SSAP method is about 25 seconds, compared with 23
seconds for the classical integration method (PDE). In dimension 2, classical finite difference
or binomia lattice methods are essentially equivalent to the SSAP method.

8.4 Three underlying assets

Inthiscase again, the SSAP method only finds an approximation of the optimal price. However,
numerical experiments show that the SSAP price always remains within a few cents of the
optimal theoretical price. All parameters areidentical to those of the 2D case, both for the PDE
and the SSAP method. Results are presented in tables (4) and (5).

The observed differences between the SSAP prices and the reference prices are below 1%. The
confidence interval valueisbelow 1% of the reference prices, except for very low prices where
it remains under 1 cent. American put prices given by the SSAP method are very accurate.
The computation time of a price using the SSAP method is about 32 seconds, compared with
202 seconds for the classical integration method (PDE). In dimension 3, the SSAP method is
as accurate and about 6 times faster than the classical integration method PDE.

8.5 Ten underlying assets

In the previous subsections 8.2, 8.3 and 8.4, we compared the efficiency and accuracy of
the SSAP method with that of the classical integration method (PDE). In this subsection, we
report results obtained with the SSAP method on American option pricing problems with 10
underlying assets (tables (6) and (7)). Since no other method exists to compare to our results,
and since the SSAP method only provides an approximation of the optimal price, we cannot
guarantee the accuracy of the American premiumsreported below. However, both the observed
confidence intervals and the fact that the SSAP prices for the American callswithout dividends
equa the European prices lead us to believe that the SSAP method is reliable in general on
10-dimensional American pricing problems. The parameters of the SSAP method are again
M = 100, 000 and k = 100.

The differences between European and American call prices are below 0.5 %. Since the payoff
isthe maximum of n underlying assets prices without dividends, these two prices shouldindeed
be identical. Confidence intervals are around 1% in the worst case. The computation time
using the SSAP method is about 82 seconds.
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Call option prices: x;(0) = ... = x10(0) = $40
c1=...=010=40%,r =5%
Parameters European American
P K || Cssap 4stdev | Cssap 4stdev
35| 1266 0.010 | 12.66 0.010
40| 7.68 0.020| 7.68 0.020
45| 298 0020 | 2.98 0.020
35| 21.53 0.060 | 21.54 0.050
0% 40 || 16.62 0.030 | 16.62 0.030
45| 11.76 0.040 | 11.76 0.040
35| 2791 0.060 | 27.92 0.060
40 || 23.06 0.060 | 23.08 0.060
45 | 1824 0.040 | 18.25 0.040
35| 10.36 0.008 | 10.36 0.008
40| 554 0010| 554 0.010
451 190 0010| 1.90 0.010
35| 16,52 0.020 | 16.53 0.020
50 % 40 || 11.87 0.020 | 11.87 0.020
45| 7.81 0040 | 7.81 0.040
35| 2091 0.060 | 20.92 0.050
40 || 16.38 0.040 | 16.38 0.040
45 | 12.28 0.020 | 12.28 0.020
35| 541 0.003| 542 0.010
40| 193 0006 | 1.93 0.010
45| 042 0004 | 042 0.004
35| 693 0.006| 6.95 0.010
100 % 40| 4.00 0012 | 4.02 0.020
45| 211 0006 | 211 0.010
35| 814 0.010| 8.16 0.020
40| 540 0016 | 542 0.020
45| 344 0012 | 345 0.020

Table 6: Prices of acal optionwith 10 underlying assets
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Put option prices:x; (0) = ... = x10(0) = $40
c1=...=010=40%,r =5%
Parameters European American
p T | K || Pssap  4stdev | Pssap 4stdev
35| 0.00 0.0000 | 0.00 0.0000
1|40 | 0.00 0.0000 | 0.00 0.0000
45| 028 0.0060 | 5.00 0.0000
35| 0.00 0.0000 | 0.00 0.0000
0% | 4]40| 0.00 0.0008 | 0.01 0.0008
45| 0.06 0.0060 | 5.00 0.0000
35| 0.00 0.0000 | 0.00 0.0000
7|40| 000 0.0008| 0.01 0.0010
45| 004 0.0030 | 5.00 0.0000
35| 0.00 0.0008 | 0.00 0.0006
1|{40| 016 0.0030| 0.26 0.0040
45| 149 0.0120 | 5.00 0.0000
35| 0.05 0.0040 | 0.07 0.0030
50% | 4 | 40| 032 0.0060 | 0.52 0.0060
45| 1.17 0.0200 | 5.00 0.0000
35| 010 0.0060 | 0.15 0.0060
7 40| 042 0.0120 | 0.69 0.0080
45| 1.18 0.0200 | 5.00 0.0000
35| 024 0.0020 | 0.24 0.0020
1]{40| 173 0.0060 | 1.75 0.0080
45| 520 0.0040 | 5.27 0.0100
35| 130 0.0060 | 1.32 0.0100
100% | 4 | 40 || 3.28 0.0160 | 3.34 0.0120
45| 6.31 0.0060 | 6.45 0.0100
35| 206 00100| 211 0.0160
7|40| 418 0.0160 | 4.29 0.0160
45| 7.08 0.0150 | 7.30 0.0240

Table 7: Prices of aput option with 10 underlying assets
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Call confidence interval: 4stdev
X (0) = 409, o = 40%, p = 1/2, T = 4,r = 5%
European American

Dimension (N) no QR QR gan no QR QR gan

1 0.138842 0.0455633 3.04 | 0.116406 0.0522995 2.23

2 0.178123 0.0355280 5.01 | 0.150975 0.0372755 4.05

3 0.120440 0.0359650 3.35 | 0.122352 0.0416212 2.94

5 0.127231 0.0641982 1.98 | 0.117853 0.0523125 2.25

10 0.254137 0.0813637 3.12 | 0.253496 0.0858543 2.95

20 0.163366 0.1256530 1.30 | 0.159423 0.1439880 1.11

40 0.188222 0.1185550 1.59 | 0.188743 0.1212830 1.56

Put confidence interval: 4stdev
X (0) = 408%, o = 40%, p = 1/2, T = 4, r = 5%
European American

Dimension (N) no QR QR gan no QR QR gan
1 0.0837939 0.0454326 1.84 | 0.0717408 0.0364325 1.97
2 0.1112430 0.0202023 5.51 | 0.0712059 0.0270917 2.63
3 0.0703473 0.0362193 1.94 | 0.0650541 0.0231927 2.80
5 0.0649703 0.0236217 2.75 | 0.0762900 0.0177446 4.30
10 0.0504558 0.0215351 2.34 | 0.0412889 0.0240727 1.71
20 0.0351752 0.0216874 1.62 | 0.0338044 0.0144007 2.35
40 0.0192215 0.0115251 1.67 | 0.0199901 0.0104772 1.91

Table 8: Efficiency of quadratic resampling (QR)

8.6 Efficiency of extended quadratic resampling

In this subsection we analyse the efficiency of the Quadratic Resampling method presented in
section 7. The results shown in table (8) are the confidence intervals with (QR) and without
(noQR) quadratic resampling. The gain valueistheratio of these two figures (noOQR/QR). We
present in figure (1) the speed-up obtained through quadratic resampling. Since the accuracy
of the Monte Carlo method is proportional to the square root of the number of samples (central
limit theorem), the speedup obtained through Quadratic Resampling is the square of the gain
(speed — up = gaind). In these experiments, we used M = 10, 000 sample paths and k = 100
buckets.

Quadratic resampling is very efficient for a small number of underlying assets (up to 10). The
speed-up ranges from 5 to 30, with an average of about 10. The speed-up decreases in higher
dimensions. A speed-up of 2.5 is obtained with 40 underlying assets.

8.7 Experimental time complexity

We analyze in this subsection the computation time required by the SSAP method as afunction
of the number n of underlying assets. We compare these results when possible to those of
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Figure 1. Speed-Up factor obtained through quadratic resampling

classical integration methods (PDE). Observed computation times are presented in table (9).
The number of Monte Carlo samplesisM = 100, 000. The number of cellsisk = 100 as
before.

Figure (2) shows that for up to 40 underlying assets, the computationtimeislinear inn. The
dominating term is the computation of the payoff function which islinear inn (M x n x d).
Figure (3) showsthat for larger n the complexity is quadraticinn (M x n? x d), as expected.

For n = 2 the SSAP is comparable to the classical integral method. For n = 3 the SSAP
method is faster by a factor of 6. For n > 3 the SSAP method is the only one which can
compute the price accurately. Theintegral (PDE) method isimplemented using 60 time steps
in the Cox-Rubinstein tree to obtain comparable precision. The exercise condition is also
applied only 10 times during the life period of the option.

8.8 Parallel implementation

Weimplemented a parall€l version of the SSAP method on anetwork of 4 DEC 3000 model 500
ALPHA AXPworkstations equi pped with ahigh-bandwidth Gigaswitch fiber opticinterconnect
(called a workstation farm). We observed a speedup linear in the number of workstationsin
the network: the parale version is 4 times faster than the sequential implementation (table
(10)). We anticipate that these figures would scale up with the number of workstations in
the network. Indeed, the paraldlization paradigm for Monte Carlo simulation is particularly
simple. It consists in distributing on different processors the computation of different sample
paths, and finally adding the results obtained by all processors.

L et us assumethat we have ) independent computational units. The preliminary computations
of thevaluesa;(t), bjj(t), ci(t) (see section 6) by Monte Carlo simulation can be done separately
on each unit for M /A Monte Carlo samples. Then they must be consolidated on one unit, called
themaster unit. Thebackward integrationintimeisthen performed on the master unit usingthe

Research Report No. 38 April 1994



34 Jérdbme Barraquand and Didier Martineau

Dimension (N) | Time SSAP method (second) | Time PDE method (second)

1 21 0.12

2 25 23

3 32 202

5 46 Out of memory
10 8l Out of memory
20 151 Out of memory
40 309 Out of memory
60 567 Out of memory
80 894 Out of memory
100 1018 Out of memory
200 2438 Out of memory
400 7069 Out of memory

Table 9: Computation times as functions of the dimension

—®— Time SSAP

—— Time pde

Time (Second)

Dimension

Figure 2: Linear behavior of computationtimefor 0 < n < 60
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Figure 3: Quadratic behavior of computationtimefor 0 < n < 400
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Dimension (n) | A = 4 processors (measured) | A = 32 processors (estimated)
1 ” 1.65
2 ” 1.78
3 ” 2.00
5 2.44
10 3.53
20 5.72
40 10.65
60 18.72
80 28.94

100 32.82
200 77.19
400 220.91

Table 10: Linear speedup of the parallel implementation

consolidated values ;i (t), bj(t), ci(t). Thememory requirement ismultiplied by A as compared
to a sequentia implementation of the SSAP method. The gain in computation time is almost
linear, i.e. the time complexity can be divided by A. Indeed, the results of the previous
subsection have shown that the dominating terms are: (M x n x d) for the computation of
the payoffs and (M x n? x d) for drawing the Monte Carlo sample paths. But these two
operations are done on each computational unit separately. The computation time required for
the backward integration can be neglected. (~ 1 second with the parameters of the previous
subsection). The only overheads added by the parall€dlization are:

e )\ communicationsof an amount of memory proportional to n? x d (typically 2 Mbytes).

e Consolidation of the A\ sets of values.

For nand d fixed, thisoverhead is constant and can be neglected in practice (~ 1second for the
parameters of the previous subsection). We present in table (10) observed figures for A = 4,
and estimated figures for A = 32.

9 Conclusion

In this article, we described a systematic numerical technique for pricing arbitrarily complex
American contingent claims, i.e. generalized option contracts with possibilities of early ex-
ercise. Besides its obvious applications to trading and hedging in organized and Over The
Counter (OTC) capital markets, American security pricing has many important applications
in various areas of risk management such as assets and liabilities management and corporate
investment decision making. Using this technique, we were able to compute the prices of
complex American instruments in a few tens of seconds on a workstation, and within a few
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seconds on a network of workstations.

Our approach essentialy relies on appropriate state aggregation techniques that circumvent
the intractability of the computation of the early exercise boundary, combined with a classical
Monte Carlo simulation for the computation of the conditional probabilitiesin the backwards
pricing formula. We call this method Stratified State Aggregation along the Payoff function
(SSAP). We have successfully implemented the SSAP method for problems with up to 400
dimensions. To the best of our knowledge, no other method has ever been developed to date
for pricing American contingent claims with many (more than 3 or 4) underlying assets.

We fedl that the method presented in this paper and the experimental results thus obtained
make it possible to redisticaly envision the use of multidimensional stochastic models for
practical real-world quantitative risk management problems. This capability of computing
the joint influences of several tens of risk factors such as interest rates of various terms in
different currencies, equity and commoditiesof variouskinds, and any other rel evant economic
variables, may dramatically increase the competitive advantage of quantitative methods over
more traditional analysis techniques. An application of particular interest is the pricing and
hedging of complex long-dated commodity and index warrants offered on international OTC
markets. We plan to backtest on actual market data the performance of the SSAP method as
compared to more classica delta-hedging techniques currently used on capital markets.
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