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Abstract

We consider the problem of pricing an American contingent claim whose payoff depends on
several sources of uncertainty. Using classical assumptions from the Arbitrage Pricing Theory,
the theoretical price can be computed as the maximum over all possible early exercise strategies
of the discounted expected cash flows under the modified risk-neutral information process.

Several efficient numerical techniques exist for pricing American securities depending on one
or few (up to 3) risk sources. They are either lattice-based techniques or finite difference
approximations of the Black-Scholes diffusion equation. However, these methods cannot be
used for high-dimensional problems, since their memory requirement is exponential in the
number of risk sources.

In this paper, we present an efficient numerical technique that combines Monte Carlo simulation
with a particular partitioning method of the underlying assets space, which we call Stratified
State Aggregation (SSA). Using this technique we can compute accurate approximations of
prices of American securities with an arbitrary number of underlying assets. Our numerical
experiments show that the method is practical for pricing American claims depending on up to
400 risk sources. On all problems for which we could compare the method with known optimal
solutions, the price computed through stratified state aggregation was indistinguishable from
the optimal theoretical price. Several numerical examples are presented and discussed.
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Numerical Valuation of High Dimensional Multivariate American Securities 1

1 Introduction

Since the seminal work of Black and Scholes (1973) and Merton (1973) in the early 1970s,
the arbitrage principle underlying option valuation theory has been extended to a broad range
of other financial instruments (see e.g. Ross (1976), Cox and Rubinstein (1985)). Indeed,
any security whose returns are contractually related to the returns on some other security or
group of securities can theoretically be valuated using the same arbitrage principle. In some
cases, explicit closed form analytical formulas for the computation of the arbitrage price can be
derived from this theory. In particular, the original paper of Black and Scholes (1973) provides a
closed form solution for a European option on a single common stock. Unfortunately, few other
cases can be solved analytically, and computing the arbitrage price often requires numerical
simulations. Following an idea initially presented in an early edition of Sharpe (1985), Cox
et al. (1979) developed a discrete model for the valuation of an American option on a single
stock that can be easily computed numerically. However, the effective implementation of the
arbitrage principle is not always such an easy task, and may sometimes become intractable.
Tractable algorithms have been developed recently for pricing European contingent claims
with many underlying assets (see e.g. Barraquand (1993)). However, these algorithms cannot
be used for pricing American contingent claims.

There are several reasons motivating the development of efficient methods for multidimensional
contingent claim pricing. In particular, applications exist in the pricing of Over The Counter
(OTC) warrants, path dependent instruments (Barraquand and Pudet (1994)), multidimensional
interest rate term structure contingent claims (Heath et al. (1992)) such as mortgage-backed
securities, and life insurance policies (Fabozzi and Pollack (1987)), futures contracts with
quality delivery options (Cheng (1987); Boyle (1989)). Also, pricing models taking into
account the stochastic nature of volatility (Wiggins (1987); Dothan (1987); Hull and White
(1988)) require multidimensional modeling. Other applications exist in assets and liabilities
management, and in corporate capital budgeting (see e.g. Mason and Merton (1985); Coppeland
(1989); Brealey and Myers (1991)). Finally, applications exist in property/liability insurance
(Merton (1977); Smith (1979); Kraus and Ross (1982); Doherty and Garven (1986); Cummins
(1988); Shimko (1992)). The tremendous development of financial engineering during the past
decade can be expected to continue, and new types of securities requiring multidimensional
modeling are likely to appear at a sustained pace in the future.

For pricing purposes, financial assets can be divided into two majors classes. The first class is
that of assets whose future cash-flows cannot be influenced by decisions from the holder taken
after the purchase date. We will call European instruments all financial assets belonging to
this first class. In particular, stocks, bonds, futures contracts, European options, swaps, caps,
floors, mortgage-backed securities are European instruments. The second class is that of assets
whose cash flows can be influenced a posteriori by the holder. American options belong to this
class. As another example, the crediting policy of a Life Insurance company selling SPDAs
greatly influences the present value of the liabilities of the company. This crediting policy can
be adjusted by the company after signature of the contracts with the policyholders. Therefore,
the liability associated with the sale of SPDA can be viewed as an American security. We will
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2 Jérôme Barraquand and Didier Martineau

call American instruments all financial assets belonging to this second class.

Following the general theory of arbitrage pricing, the theoretical price of a European contingent
claim is the discounted expected value of its future cash flows under the so-called “risk-
neutral” probability distribution of the underlying economic factors (Harrison and Kreps (1979);
Harrison and Pliska (1981); Duffie (1988); Karatzas and Shreve (1988)). Mathematically,
computing the arbitrage price reduces to computing an integral (sum) over the space of the
underlying economic factors. When the dimension of the space of the underlying economic
factors is small, standard techniques for numerical integration can be used. In some cases,
the integral can even be computed analytically (e.g. Black-Scholes formula). However, the
computational complexity of evaluating the integral is clearly exponential in the dimension of
the space. Efficient numerical techniques for pricing high-dimensional European claims are
presented in Barraquand (1993).

The price of an American claim is the maximum over all possible cash flow monitoring strate-
gies of the associated present values of cash flows. For example, the price of an American
option is the maximum over all possible early exercise strategies of the corresponding present
values. Since the space of cash flow monitoring strategies is generally huge, direct maximiza-
tion of the present value is rarely practical (see Bossaerts (1989) for a discussion). However,
when the underlying economy is modeled as a Markov process, one can use the Bellman
principle of dynamic programming (Bellman (1957)) to compute the optimal monitoring strat-
egy. American options are typically priced using a discrete approximation of the dynamic
programming principle. This is the case in particular of the CRR model (Cox et al. (1979))
for American stock option pricing. This approach becomes however impractical when the
underlying economic space has many dimensions, since the dynamic programming algorithm
requires a memory space exponential in the number of dimensions. This fact is known as the
“curse of dimensionality” problem for dynamic programming.

In this paper, we present a particular state space partitioning technique that attempts to circum-
vent the curse of dimensionality problem for American security pricing. More precisely, we
partition the space of underlying assets (the state space) into a tractable number of cells, and
we compute an approximate early exercise strategy that is constant over those cells. The hope
is that, if the partition is appropriately chosen, the approximate strategy will be close to the
actual optimal strategy. Such a partitioning technique is classically called a state aggregation
technique.

Among the many possible ways of choosing a partition, one solution is to fix a particular
real-valued function mapping the state (i.e. the prices of the underlying assets) that particularly
influences the optimal strategy in the problem at hand. We call this function stratification map.
Then, the partition chosen is a stratification of the state space into thin layers along this map.
In other words, we limit our search to strategies that only depend upon the stratification map,
and not upon the entire state itself. We call this technique Stratified State Aggregation.

In the case of American security pricing, an obvious candidate for the stratification map is the
payoff of the security, i.e. the function representing the future cash-flows associated with the
security. When the stratification map chosen is the payoff of the American security, we call
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Numerical Valuation of High Dimensional Multivariate American Securities 3

the technique Stratified State Aggregation along the Payoff (SSAP).

After quantization of the payoff, the SSAP method can be combined with Monte Carlo sim-
ulation techniques in order to compute the set of conditional probabilities corresponding to
changes in the payoff value over time. Using these conditional probabilities, an approximation
of the American price can then be computed backwards in time using techniques reminiscent
from the classical CRR integration method.

We implemented the SSAP method on American option pricing problems in dimensions ranging
from 1 to 400. On all problems for which we could compare the SSAP method with known
optimal solutions, the SSAP price was indistinguishable from the optimal theoretical price. In
particular, in dimensions 1, 2, and 3, both put and call prices of options on the maximum of
the underlying assets were computed accurately by the SSAP method. Also, the SSAP price of
an American call on the maximum of n assets paying no dividends was indistinguishable from
the European price for n ranging from 1 to 400, in accordance with a well known theoretical
result1. In other cases, no other method exists to compare to our results. However, the SSAP
price seems to constitute an accurate approximation of the American price in arbitrarily high
dimensions.

To the best of our knowledge, the SSAP method is the first capable of computing American
prices and exercise strategies in high dimensional cases.

In order to speed-up the Monte Carlo simulation of conditional probabilities, we developed
an original variance reduction technique called Quadratic Resampling. Quadratic Resampling
was originally presented in Barraquand (1993) for European security pricing. In this paper, we
present an extension of the original QR method that applies to both European and American
asset pricing problems. Quadratic Resampling consists in correcting the samples obtained
through classical Monte Carlo simulation in such a way that the expected value of any polyno-
mial of degree two or less in the space variables is computed exactly. Our experiments show
that QR is very efficient for American pricing problems in up to 10 dimensions. The average
speedup obtained through QR ranges from 5 to 35, with an average of about 10. In higher
dimensions (11 and higher), the speedup is only of 2 to 3 in average, and slowly decreases with
the dimension.

We implemented a parallel version of the SSAP method on a network of workstations equipped
with a high-bandwidth interconnect (called a workstation farm). We observed a speedup linear
in the number of workstations in the network. Both measured and simulated parallelization
experiments are reported in this paper.

This paper is organized as follows. In Section 2, we relate our contribution to previous work
in American security pricing, multidimensional asset pricing, and Monte Carlo valuation. In
Section 3, we recall the usual assumptions on the stochastic processes governing the evolution
of securities prices, and the main results of the Arbitrage Pricing Theory. In Section 4, we

1Indeed, since the discounted prices of assets paying no dividends are martingales under the risk neutral measure,
the discounted maximum of such n assets prices is a submartingale. Hence, the corresponding European call price
is always higher than the immediate payoff.
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4 Jérôme Barraquand and Didier Martineau

briefly review the current numerical methods used for American security pricing. In Section
5, we present the method of Stratified State Aggregation. In Section 6, we show how SSA
prices can be computed through Monte Carlo simulation. In Section 7, we present the method
of Quadratic Resampling. In Section 8, we present numerical experiments illustrating the
efficiency of the SSAP method.

2 Relation to other work

The theoretical analysis of optimal stopping times for early exercise of American options dates
back to the work of McKean (1965). This theory has then been further developed by several
authors (Merton (1973); Harrison and Kreps (1979); Bensoussan (1984); Karatzas (1988);
Jaillet et al. (1988)). Myneni (1992) surveys the theory of American option pricing.

The most widely used valuation technique for American options with one underlying asset
is the binomial lattice approach of Cox et al. (1979). Cox and Rubinstein (1985) outline
the principle of the multidimensional extension. Other numerical valuation techniques are
presented in Geske and Johnson (1984), Barone-Adesi and Whaley (1987), Barone-Adesi and
Elliott (1991).

The valuation of options depending of several underlying assets has been extensively studied.
Brennan and Schwartz (1979) addresses the problem of pricing options under two sources
of risk by direct finite-difference approximation of the generalized Black-Scholes equation.
In this example the two sources of risk are the short term and the long term interest rates.
The approach is clearly limited to a few assets, since the memory space requirements and the
computation time are both exponential in the number of underlying assets. Boyle et al. (1989)
developed a multinomial lattice method for pricing multidimensional options, in the spirit of
the approach outlined in Cox and Rubinstein (1985). According to the authors, the computation
becomes very burdensome for more than two assets. In fact, the multinomial lattice approach
can be viewed as a finite-difference approximation of the generalized Black-Scholes equation
using an explicit Euler scheme and an appropriate change of variables (Brennan and Schwartz
(1978)).

Stulz (1982) presents an analytical solution to the problem of pricing a European option on
the maximum or minimum of two underlying assets. The analytical solution is generalized in
Johnson (1987) to the case of an arbitrary number of assets, taking as given the cumulative
multivariate normal distribution function. Boyle (1989) and Boyle and Tse (1990) developed
an approximate method for the same problem. Although the problem is solved analytically
in Johnson (1987), the approximate method does not require preliminary computation of the
cumulative multivariate normal distribution function. To the best of our knowledge, no closed
form solutions have ever been obtained for American pricing problems.

Good reviews of the Monte Carlo method and different variance reduction techniques such as
antithetic variables, covariates, stratified sampling, importance sampling can be found in many
sources such as Hammersley and Hanscomb (1964), Zaremba (1968), Haber (1970), Kalos and
Whitlock (1986), and references thereof.
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Numerical Valuation of High Dimensional Multivariate American Securities 5

The application of the Monte Carlo method to option pricing was first presented in Boyle
(1977), in the context of claims contingent to a single underlying asset. It has then been
used by several authors for the valuation of path dependent contingent claims. In particular,
the method has been used for pricing mortgage-backed securities (see Schwartz and Torous
(1989), Hutchinson and Zenios (1991)). Barraquand (1993) presents the method of Quadratic
Resampling for Monte Carlo valuation of European securities with many underlying assets.
The Quadratic Resampling method presented in this paper is an extension of this earlier work
to the American pricing problem.

3 Arbitrage pricing theory

The arbitrage pricing theory is described in many textbooks. We refer the reader to Duffie (1992)
for a comprehensive and rigorous presentation. In the following, we briefly present through
intuitive arguments the main results of the theory. These developments do not constitute
mathematical proofs, and are only aimed at illustrating the main concepts underlying the
computational approaches to arbitrage pricing.

3.1 Diffusion model of information process

We model the economy as a finite-dimensional vector of real-valued state variables X(t) =
(x1(t); : : : ; xn(t)), called factors, representing all the information available to investors at time
t. Since X(t) represents all information available to agents at time t, in a frictionless market,
prices of securities must be deterministic functions of time and X(t). It is said that securities
are contingent claims on the state variable X(t).

For the sake of simplicity, we will assume that the information process X(t) is a diffusion
process. However, our results on security valuation described in the next sections apply to
more general types of stochastic processes. If X(t) is a diffusion process, it is a solution of a
stochastic differential equation of the type (Itô and McKean (1965)):

dX = A(X(t); t)dt+ B(X(t); t)dW (3.1)

The vector A is called the drift of process X. A is the derivative of the expected value of X.
The matrix Γ = BBT is the derivative of the covariance of X. The vector W = (w1; : : : ;wn) is
a n-dimensional standard Brownian motion.

Often, the variables xi are prices of securities available on the market, and are therefore strictly
positive processes. The expected increments and covariance of increments are then expressed
in relative values:

8i 2 [1; n];
dxi

xi
= �xi(x1; : : : ; xn; t)dt +

nX
j=1

vij(x1; : : : ; xn; t)dwj

with
�xi = ai=xi; vij = bij=xi
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6 Jérôme Barraquand and Didier Martineau

The matrix V = (vij)(i;j)2[1;n]2 is called volatility matrix, and the covariance of relative returns
is the matrix K = (kij)(i;j)2[1;n]2:

K = VVT

3.2 European securities

A security is called European security iff future cash flows cannot be influenced by decisions
from the holder taken after the purchase date (besides of course selling back the security). Then
the cash flows are only functions of time and information.

The cash flow generated by a European security C during the time interval dt, assuming C is
held indefinitely, will be denoted by fC(X(t); t)dt.

If the price C(t) of a European security C is positive, we can define the instantaneous relative
cash flow rate or dividend yield as:

dC(X(t); t) = fC(X(t); t)=C(t)

Let �C denote the expected capital rate of return of C:

�Cdt = Et(
dC
C

)

In the above formula, Et denotes the expectation conditional to the information available at
time t. The expected total rate of return of C, i.e. the expected rate of return of the total gain
process is:

�GC
= �C + dC

The dividend yield of the money market account L, called short term interest rate, is denoted
by r(X). If the proceeds of the money market account are continuously reinvested, the total
gain process L(t0; t) follows the equation:

L(t0; t0) = 1; dL = r(X)L(t0; t)dt

or equivalently:

L(t0; t) = exp

�Z t

t0

r(X(�))d�

�

3.3 Arbitrage pricing

For any risk factor xi, let e(C=xi) denote the elasticity of price C to xi:

e(C=xi) =
xi

C
@C
@xi

The major result of the Arbitrage Pricing Theory is the following. There exist numbers
�1; : : : ; �n, called market prices for risk, such that for any security C, the following relationship
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Numerical Valuation of High Dimensional Multivariate American Securities 7

holds:

�GC
= r +

nX
i=1

e(C=xi)�i

Furthermore, if factor xi is traded, its market price for risk is the expected total rate of return
on xi in excess of the riskless interest rate. In particular, if all xi are traded, we have:

�GC
� r =

nX
i=1

e(C=xi)(�Gxi
� r) =

nX
i=1

e(C=xi)(�xi + dxi � r)

Using the properties of diffusion processes, the above results lead to the following partial
differential equation, called Black-Scholes equation:

� @C
@t

= (dC � r)C +
nX

i=1

@C
@xi

(�xi � �i)xi +
1
2

X
i;j

@2C
@xi@xj


ij (3.2)

If factor xi is the price of a traded security, the term �xi ��i is simply r�dxi . In particular, if all
factors are traded, the above equation does not depend on the market prices for risk. Therefore,
we can replace the information process X by the so-called risk-neutral information process for
which all market prices for risk are zero:

8i 2 [1; n];
dxi

xi
= (r� dxi)dt +

nX
j=1

vijdwj (3.3)

Using a theorem known under the name of Feynman-Kac Formula, we can represent explicitly
the solution of the above equation:

C(X(t); t) = Ẽt

�Z 1

t

fC(X(�); �)
L(t; �)

d�

�

where Ẽt represents the expectation under the fictitious risk-neutral information process X
following the equation (3.3).

3.4 American securities

A security is called American security iff it is not European, i.e. if future cash flows can be
influenced by decisions from the holder taken after the purchase date. Then, the cash flows
are not only functions of time and information, but also functions of the decisions taken by the
security’s holder. A cash flow monitoring strategy u is a stochastic process associating with
each time and information state a decision u(X(t); t) 2 U, U being an appropriate decision
space. We denote by CMS the space of cash flows monitoring strategies. For the sake of
simplicity, we will consider only finite American securities, i.e. those for which CMS is a finite
set. The cash-flow generated by an American security C during the time dt can be written:

fC(u;X; t)dt
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8 Jérôme Barraquand and Didier Martineau

Let C be an American security with a cash flow function fC(u;X; t). To each cash flow
monitoring strategy u we can associate the European security Cu whose cash flow function f u

C

is:
f u
C (X; t) = fC(u(X; t);X; t)

Let us assume that the market is complete, i.e. that any factor xi can be perfectly hedged by
building an appropriate dynamic portfolio of traded assets, called trading strategy. Then, for
any cash flow monitoring strategy u, the security Cu can be replicated by a trading strategy.
We can therefore consider its arbitrage price Cu. In particular, we can consider the European
security Cu� maximizing the market value:

Cu� = max
u2CMS

Cu

Barring arbitrage, we must have:

C = Cu� = max
u2CMS

Cu

Indeed, if C < Cu� , we can buy C, sell Cu�, and take the proceeds Cu� �C immediately. Then,
by selecting the cash flow monitoring strategy u� for C, all future cash outflows generated by
the sale of Cu� will be exactly compensated by the cash inflows generated by C, so that we
will not be obligated to any future payments. In effect, we will have made money without any
investment and without risk.

Reciproqually, if C > Cu� , let u0 be the cash flow monitoring strategy chosen by a purchaser
of security C. Since by definition of u� we have Cu� � Cu0 , we must have C > Cu0 . By selling
C and buying Cu0, the buyer can immediately take the proceeds C � Cu0 , without any change
in the future cash flows. This is again an arbitrage opportunity.

We can state:

In a complete market, the price of an American security is the maximum over all
possible cash flow monitoring strategies of the corresponding European prices.

In other words, computing the price of an American security C reduces to computing that of
the equivalent European security Cu� .

C(X(t); t) = max
u2CMS

Ẽt

�Z 1

t

fC(u(X(�); �);X(�); �)
L(t; �)

d�

�

Therefore, the differentiation between European and American securities is irrelevant in fi-
nancial terms in a complete market free of arbitrage opportunities. On the other hand, if the
market is not complete, there is no specific relationship between the American price and the
corresponding European prices.

As a computational problem however, American security pricing is much harder that European
security pricing. Indeed, the determination of the equivalent European security requires to
precompute the optimal cash flow monitoring strategy. In many cases, this precomputation
step is practically much more complex than the European price computation itself.
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Numerical Valuation of High Dimensional Multivariate American Securities 9

3.5 European and American options

3.5.1 European options

We consider an arbitrary asset S that can be replicated by an appropriate trading strategy. In a
complete market, we can assume that the information vector X = (x1; : : : ; xn) represents the
prices of n given traded securities.

For example, S could be the right to purchase any one of the n securities at a given expiration
date T . Barring arbitrage, the price S(X(T); T) at expiration date is

S(X(T); T) = max
i2[1;n]

xi(T)

More generally, the price S can be any contractual function g of the underlying securities prices
x1; : : : ; xn at expiration.

S(X(T); T) = g(x1(T); : : : ; xn(T))

The function g, which represents the unique cash-flow associated with the contractual asset S,
is called the payoff function.

By definition, a European call (resp. put) option on an asset S with expiration date T and strike
price K gives its owner the right to purchase (resp. sell) at time T the asset S for the price K.
Since they leave a choice to the owner, European options are theoretically American securities.
Indeed, the holder can choose to exercise or not exercise the option at expiration date. The
decision space corresponds to this choice: U = fexercise;no-exerciseg.

The cash flow monitoring strategy is any process associating the decision to the time t and the
available information at t. The space of admissible cash flow monitoring strategies CMS is
composed of all adapted processes u verifying:

8t < T; 8X; u(X; t) = no-exercise

and taking the two possible values at time T:

u(X; T) 2 fexercise;no-exerciseg

For the sake of simplicity, we will assume that the payoff of the option at exercise time T is
distributed during a small time interval [T; T +∆t]. We will also assume that exercise decisions
u(X(t); t)are piecewise-constant, i.e. change only at the beginning of time intervals of duration
∆t. For notational convenience, we will define the “spike” function �(u) associating the value
1=∆t to the decision exercise and the value 0 to the decision no-exercise.

The cash flow function of a call option is:

f (u;X; t) = (S(X; t)� K)�(u)

The optimal exercise strategy u� is easily identified:

8t 6= T; u�(X; t) = no-exercise
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10 Jérôme Barraquand and Didier Martineau

and

u�(X; T) =

�
exercise if S(X; T) > K
no-exercise otherwise

Therefore, we identify the call option with its canonically associated optimal European security,
whose cash flow function is:

f u�(X; t) = f (u�(X; t);X; t) = max(S(X; t)� K; 0)�(u�)

Hence, from a computational viewpoint, the European call option can be considered as a
European security.

If the payoff at expiration date T is g(X), the price of the European call option can be written:

C(X(t); t) = Ẽt

�
f (X(T))
L(t; T)

�

with
f (X) = max(0; g(X)� K)

More generally, any European contingent claim with a single cash flow f at date T can be
priced according to the above formula. Efficient numerical techniques based upon Monte
Carlo simulation exist for computing numerically the above expectation in arbitrarily many
dimensions (see e.g. Barraquand (1993)).

3.5.2 American options

By definition, an American call (resp. put) option on an asset S with expiration date T and
strike price K gives its owner the right to purchase (resp. sell) on or before time T the asset S
for the price K. The space of admissible cash flow monitoring strategies CMS is composed of
all adapted processes u taking the two possible values:

8t 2 [0; T]; u(X; t) 2 fexercise;no-exerciseg

and verifying:

8t � T; u(X(t); t) = exercise => 8� > t; u(X(�); �) = no-exercise

That is, exercise cannot occur twice. The cash flow function of an American call option is
identical to that of a European call option. Unfortunately, in this case, the computation of
the optimal early exercise strategy is not straightforward, since exercise can happen before
expiration. We can simplify the above formulation by noticing that if it is optimal to exercise at
a given underlying asset price S0, it is also optimal to exercise at any higher price. Therefore,
if we denote H(X(t); t) the smallest possible value of S0, the optimal early exercise stopping
time �� is the solution of the following equation:

�� = infft 2 R+; S(X(t); t) = H(X(t); t)g
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Numerical Valuation of High Dimensional Multivariate American Securities 11

The following arbitrage argument shows that

H = K + C

where C is the American call option price. Indeed, whenever C < S � K, any investor could
buy the option, exercise it immediately, and take the proceeds (S� K)� C > 0. Therefore, it
is optimal to exercise whenever S > K + C, hence H � K + C.

Reciprocally, if C > S � K, no investor holding the option would be willing to exercise it and
take S � K, since by just selling it he would make a higher immediate profit C > S � K. At
any time, and for any information state, the optimal stopping time �� verifies:

C(X(��); ��) = S(X(��); ��)� K

Hence, the optimal early exercise strategy can be written:

u�(X; t) =

�
exercise if C(X; t) � S(X; t)� K

no-exercise otherwise

We see that the computation of the optimal early exercise strategy requires to precompute the
pricing relationship between the option and the underlying asset, which is what we were trying
to compute in the first place.

If the payoff at the exercise date is g(X), the price of the American call (resp. put) option can
be written:

C(X(t); t) = max
u(X(�);�);��t;u2CMS

Ẽt

 
TX

�=t

f (X(�))
L(t; �)

�(u(X(�); �))∆t

!
(3.4)

with
f (X) = max(0; g(X)� K)

�
resp: max(0;K � g(X))

�
More generally, any contingent claim entitling its holder to the single cash flow f on or before
an expiration date T can be priced according to the above formula.

4 Numerical methods for American security pricing

4.1 Stochastic dynamic programming

The explicit numerical valuation of an American option using the above formula involves a
maximization over the set of of all possible early exercise strategies. The strategy u can be
any function associating to each current value of the underlying assets X = (x1; : : : ; xn) and
each current time t the binary decision to exercise or not exercise. Since the number of such
possible strategies is huge, direct maximization is rarely practical (see Bossaerts (1989) for a
discussion).

The only practical technique to date consists in using the Bellman principle of Dynamic
Programming. This principle can be applied since the information vector X is assumed to be a
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12 Jérôme Barraquand and Didier Martineau

Markov process, and therefore the optimal early exercise strategy u(X(t); t)only depends upon
time and the current vector X(t).

Assuming that exercise decisions can only be taken at discrete times intervals of constant dura-
tion ∆t, the maximization problem (3.4) can be rewritten using the law of iterated expectations
and the property L(t; t�) = L(t; t + ∆t)L(t + ∆t; t�):

C(X(t); t) = max
u(X(t);t);u2CMS

Ẽt

�
f (X(t))

L(t; t + ∆t)
�(u(X(t); t))∆t+

max
u(X(�);�);��t+∆t;u2CMS

Ẽt+∆t

 
TX

�=t+∆t

f (X(�))
L(t + ∆t; �)

�(u(X(�); �))∆t

!#

Examining successively the two cases u(X(t); t) = exercise and u(X(t); t) =
no-exercise, and using the expression of C(X(t + ∆t); t + ∆t) from equation (3.4), we
obtain

C(X(t); t) = exp(�r∆t)max
�
f (X(t)); Ẽt(C(X(t + ∆t); t+ ∆t))

�
(4.1)

assuming that the interest rate r is piecewise constant on intervals of duration ∆t. The above
recursive expression, called Bellman equation, allows to compute the price C of an American
option by proceedings backwards in time from the expiration date T . Using the properties
of diffusion processes (Itô’s formula), it can be shown (see e.g. Jaillet et al. (1988)) that
the solution of the above equation (4.1) converges towards the solution of the Black-Scholes
equation (3.2) when ∆t converges towards 0.

�@C
@t

= �rC +
nX

i=1

@C
@xi

(r� dxi)xi +
1
2

X
i;j

@2C
@xi@xj

kijxixj

with the additional time-dependent boundary condition:

C(X; t) � f (X)

4.2 Finite differences and the Cox-Ross-Rubinstein approach

The general method for solving the above partial differential equation (PDE) is to quantize it
using a finite difference method (see e.g. Duffie (1992), chapter 10).

We will illustrate this approach using a number of simplifying assumptions. We will assume that
the process of the underlying securities is jointly lognormal, i.e. that the mean and covariance
matrix of relative returns are constant. We will also assume that the interest rate r and the
dividend yields of the underlying securities are constant. Then, the change of variable below
simplifies the finite difference approximation. We consider the vector Y = (y1; : : : ; yn)T :

8i 2 [1; n]; yi = log xi � (r� dxi �
1
2

kii)t

and we then define the vector W = (w1; : : : ;wn)
T

W = V�1Y
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Numerical Valuation of High Dimensional Multivariate American Securities 13

By construction, Y = VW, and W follows a k-dimensional standard Brownian motion. The
Black-Scholes equation in the variable W writes:

�ert @(e
�rtC)

@t
=

1
2

X
i

@2C
@w2

i

Defining

W+
i = (w1; : : : ;wi + ∆wi; : : : ;wn)

T ; W�
i = (w1; : : : ;wi � ∆wi; : : : ;wn)

T

then writing

8i 2 [1; n];
@2C
@w2

i
=

C(W+
i ; t + ∆t)� 2C(W; t + ∆t) + C(W�

i ; t + ∆t)
∆w2

i
+ O(∆w2

i )

and

�ert @(e
�rtC)

@t
=

er∆tC(W; t)� C(W; t + ∆t)
∆t

+ O(∆t)

with
8i 2 [1; n]; ∆wi =

p
n∆t

we get the simple explicit Euler scheme (see Duffie (1992) for a description of more sophisti-
cated schemes):

C(W; t) = e�r∆t 1
2n

nX
i=1

C(W+
i ; t + ∆t) + C(W�

i ; t + ∆t)

with the terminal boundary condition:

C(W(T); T) = f (X(T))

and the early exercise condition:

C(W(t); t) � f (X(t))

where X(t) = (x1(t); : : : ; xn(t)) is obtained by the inverse formula:

8i 2 [1; n]; xi(t) = xi(0) exp

0
@(r � dxi �

1
2

kii)t +
nX

j=1

vijwk(t)

1
A (4.2)

We implemented the above numerical scheme for an arbitrary number n of underlying assets.
The method yields accurate results for n � 3, but its memory requirement is intrinsically
exponential in n. Hence, it cannot be used for n > 3 with a quantization step ∆t small enough
to yield accurate results (See section 8). Many variants and generalizations of the above
finite-difference method have been studied by a number of authors (see Duffie (1992)).

An alternative technique consists in quantizing directly the Bellman equation (4.1). This is
the paradigm underlying the original Cox-Ross-Rubinstein approach (Cox et al. (1979)). The
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14 Jérôme Barraquand and Didier Martineau

Brownian motion W is approximated by an n-dimensional binomial process W̃∆t defined as
follows:

8� = (�1; : : : ; �n) 2 f�1; 1gn; Prob(W̃∆t(t + ∆t) = W̃∆t(t) + �
p

∆t) =
1
2n

Then, the quantized Bellman equation writes:

C(W; t) = exp(�r∆t)max

0
@f (X(t));

1
2n

X
�2f�1;1gn

C(W + �
p

∆t; t + ∆t)

1
A (4.3)

For n = 1, the two formulations are exactly equivalent. In higher dimensions, they yield almost
identical results for small enough ∆t. In summary, the finite-difference and binomial lattice
methods are essentially equivalent, and both intractable for n > 3 due to their exponential
memory requirement.

5 State aggregation

5.1 State aggregation price

Classical numerical methods being unable to deal with high-dimensional American valuation
problems, one must resort to alternate approximation schemes. State aggregation is a classical
approximation technique for the numerical solution of stochastic optimal control problems (see
e.g. Bertsekas (1987), Kushner and Dupuis (1992)).

For the problem of American security pricing, the relevant state space in the Bellman equation
(4.1) is the n-dimensional space of the underlying assets values X = (x1; : : : ; xn). State
aggregation consists in partitioning the state space into a tractable number of cells, and in
computing an approximate early exercise strategy u(X; t) that is constant over those cells. The
hope is that, if the partition is appropriately chosen, the approximate strategy will be close to
the actual optimal strategy.

8t 2 f0;∆t; : : : ; Tg, let us consider a finite partition P(t) = (P1(t); : : : ;Pk(t)(t)) of the state
space Rn

+, i.e. a set of k(t) subsets of Rn
+ verifying:[

i2[1;k(t)]

Pi(t) = Rn
+ and 8(i; j) 2 [1; k(t)]2; i 6= j; Pi(t)

\
Pj(t) = ;

We assume that the partition P(0) only has two cells:

P1(0) = fX(0)g; and P2(0) = Rn
+nfX(0)g

Among the set CMS of all possible early exercise strategies, we consider the subset U(P) of
piecewise constant strategies, i.e. of strategies u(X; t) that are constant over each cell Pi(t) of
the partition.
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Numerical Valuation of High Dimensional Multivariate American Securities 15

Then, we define the state aggregation price C�(i; t) as the maximum over all possible piecewise
constant strategies in U(P) of the expected risk-neutral discounted future cash-flow condition-
ally to the event X(t) 2 Pi(t):

C�(i; t) = max
u(X(�);�);��t; u2U(P)

Ẽ0

 
TX

�=t

f (X(�); �)
L(t; �)

�(u(X(�); �))∆t j X(t) 2 Pi(t)

!
(5.1)

Since P1(0) = fX(0)g, and since U(P) � CMS, the state aggregation price at initial time
C�(1; 0) is obviously upper bounded by the true American price C(X(0); 0). Furthermore,
since the strategy uEuro corresponding to the European price consists in never exercising before
the expiration date, it is clearly constant over the cells of any partition before expiration. Hence,
by definition of the state aggregation price, the European price is upper bounded by the state
aggregation price at the initial time C�(1; 0). We can state

For any family of finite partitions P, the state aggregation price C� = C�(1; 0) is
lower bounded by the European price and upper bounded by the American price.

CEuro � C� � CAmer

We will now derive a recursive backward valuation formula for the state aggregation price,
under an additional Markovian assumption.

5.2 Markovian approximation

We will now assume that the partition P is such that the process I(t) defined by X(t) 2 PI(t)(t)
is approximately Markov under the risk neutral measure:

8i; j; �; Ẽ0
�
�(X(t + 2∆t)) j X(t) 2 Pi(t); X(t + ∆t) 2 Pj(t + ∆t)

�
� Ẽ0

�
�(X(t + 2∆t)) j X(t + ∆t) 2 Pj(t + ∆t)

�
Applying again the law of iterated expectations to the definition of the state aggregation price
in equation (5.1), we get:

C�(I(t); t) = max
u(X(t);t);u2U(P)

Ẽ0

�
f (X(t))

L(t; t + ∆t)
�(u(X(t); t))∆t+ max

u(X(�);�);��t+∆t;u2U(P)

Ẽ0

 
TX

�=t+∆t

f (X(�))
L(t + ∆t; �)

�(u(X(�); �))∆t j X(t) 2 PI(t)(t); X(t + ∆t) 2 PI(t+∆t)(t + ∆t)

!

j X(t) 2 PI(t)(t)
�

By examining successively the two cases u(X(t); t) = exercise and u(X(t); t) =no-exercise,
and applying formula (5.1) at time t + ∆t:

C�(I(t); t)�
e�r∆t max

�
Ẽ0(f (X(t)) j X(t) 2 PI(t)(t)); Ẽ0

�
C�(I(t + ∆t); t + ∆t) j X(t) 2 PI(t)(t))

��
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16 Jérôme Barraquand and Didier Martineau

where the substitution of formula (5.1) at time t + ∆t is justified by the above Markovian
approximation.

By definition of a partition, we have:

1 =

k(t+∆t)X
j=1

1X(t+∆t)2Pj(t+∆t)

where 1A is the indicator variable of the event A (i.e. takes the value 1 iff A is true, and 0
otherwise). Combining this with the above recursive equation, we get:

8i 2 [1; k(t)]; C�(i; t)� e�r∆t max

0
@fi(t);

k(t+∆t)X
j=1

pij(t)C
�(j; t + ∆t)

1
A

where we have defined for notational convenience

fi(t) = Ẽ0(f (X(t)) j X(t) 2 Pi(t))

and
pij(t) = Prob

�
X(t + ∆t) 2 Pj(t + ∆t) j X(t) 2 Pi(t)

�
Furthermore, the value at expiration date is determined by the terminal condition:

C�(i; T) = fi(T)

5.3 Recursive state aggregation

We define the recursive state aggregation price CSA as the solution of the following program:

CSA(i; T) = fi(T)

and

CSA(i; t) = e�r∆t max

0
@fi(t);

k(t+∆t)X
j=1

pij(t)CSA(j; t + ∆t)

1
A

When the partitions P(t) are chosen in such a way that the process I(t) is actually Markovian,
the recursive state aggregation price CSA is exactly the true state aggregation price C�. The
implementation of a recursive state aggregation program proceeds in two steps.

1) Definition of an appropriate family of partitions,

2) Computation of the expected payoffs fi(t) and the conditional probability matrices pij(t).

Then, the approximate price of an American contingent claim with terminal payoff f can be
computed backwards in time using the above recursive equation.
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Numerical Valuation of High Dimensional Multivariate American Securities 17

Finite difference or lattice-based methods can be viewed as particular instances of the recursive
state aggregation method. Indeed, each grid point or lattice point Wi can be viewed as the
center of the hypercube Hyper(Wi) defined by:

Hyper(Wi) = fZ 2 Rn; 8j 2 [1; n]; wi
j �

1
2

∆wj � zj < wi
j +

1
2

∆wjg

Although the process I(t) such that W(t) 2 Hyper(WI(t)) is not actually Markovian, it can be
approximated by a Markov process with reasonable accuracy for a fine enough lattice grid. In
the lattice approach, this corresponds to approximating the Brownian motion W by the binomial
process W∆t . Then, the expected value over the hypercube fi(t) is approximated by the value
in the center f (X(Wi)). Similarly, the conditional probability is simply taken from that of the
binomial approximation, which yields the recursive formula (4.3). As explained in section 4.2,
the limitation of this approach is the exponential growth of the number of lattice hypercubes in
the number n of underlying assets.

One solution for generating a partition P(t) with a tractable number of cells is to fix a priori
a small number k and set for all t > 0, k(t) = k. Then, one can sample for each time t the
state space with k samples following the risk-neutral distribution of X(t). For example, if X(t)
follows a jointly lognormal distribution, the samples Xi(t) can be computed from the samples
Wi through formula (4.2). In turn, the samples Wi(t) can be generated following a jointly
standard normal distribution with variance t along each coordinate. Then, the cell Pi(t) of the
partition P(t) can be defined, in the Brownian Motion space (i.e. the space of the variable W),
as the set of points W closer to Wi(t) than to any other sample. Such a partition is commonly
called the Voronoi partition associated with the samples W1(t); : : : ;Wk(t). Unfortunately,
Voronoi partitions have an undesirable asymptotic property for large n. The cells tend to
become so large that the probability pij(t) of moving into cell j at time t+∆t from cell i at time
t is almost 0 for all j’s but one. Hence, a Voronoi partition of the n-dimensional state space
does not accurately reproduce the diffusion effect in the information vector X(t). In order to
devise partitions such that several of the conditional probabilities pij(t) are non-zero, one must
build cells having a small directional diameter in the Brownian Motion space, i.e. such that
the numbers

Di = sup
X2Pi(t)

inf
s=(s1;:::;sn);s2

1+:::;s2
n=1

f�max � �min; �min = inff� 2 R;X + �s 2 Pi(t)g; �max = supf� 2 R;X + �s 2 Pi(t)gg

are as small as possible. Indeed, the smaller Di is, the higher is the probability that the Brownian
motion process W(t) crosses the boundary of the cell Pi(t).

5.4 Stratified state aggregation (SSA)

One solution for choosing a partition with small cell directional diameters is to fix a real-valued
function mapping the state that particularly influences the optimal strategy in the problem at
hand. We call such a function a stratification map. Then, the partition chosen is a stratification
of the state space into thin layers along this map. If the layers are chosen sufficiently thin, the
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18 Jérôme Barraquand and Didier Martineau

diameters of the cells along the direction of the gradient of the map will be small. Hence, the
probability of crossing the boundary of a cell during a small time interval will be relatively
high, and the drawback of Voronoi-based partitions will be avoided.

In order words, stratification consists in limiting the search to strategies that only depend upon
the stratification map, and not upon the entire state itself. We call this technique Stratified State
Aggregation.

In general, we can consider a vector-valued l-dimensional stratification map (l < n):

h : Rn � R �! Rl (5.2)

(X; t) �! h(X; t)

and a family Q of partitions of Rl. From the family Q and the map h, we can build the reciprocal
image partition P = h�1(Q):

Pi(t) = fX 2 Rn
+; h(X; t) 2 Qi(t)g

In the case of American security pricing, an obvious candidate for the stratification map is
the payoff of the security. When the stratification map chosen is the payoff of the American
security, we call the technique Stratified State Aggregation along the Payoff (SSAP).

Let us consider an American security with a single cash-flow f (X) on or before an expiration date
T . In particular, in the case of an American call option, the cash-flow is f (X) = max(0; g(X)�
K), where K is the strike price. In order to illustrate the SSAP method, we set l = 1 and choose
h(X; t) = f (X) for the stratification map. We also take k(t) = k constant for all times t 2 [0; T].
In the numerical examples developed in section 8, we assume that g(X) = maxi2[1;n] xi, and
that the process X is jointly lognormal, of the form described in section 4.2. The partitions
Q(t) of the image space Rl = R are chosen logarithmic in all these examples, i.e. the interval
Qi(t); t > 0 is of the form:

8i 2 [2; k� 1]; Qi(t) =
�

A(t)eB(t)(i�2);A(t)eB(t)(i�1)
i

and
Q1(t) =

�
�1;A(t)

�
; Qk(t) =

�
A(t)eB(t)(k�2);+1

�
for adequate parameters A(t) and B(t). The cell Pi(t) is then by definition:

8i 2 [2; k� 1]; Pi(t) = fX 2 Rn
+; A(t)eB(t)(i�2) < f (X) � A(t)eB(t)(i�1)g

and

P1(t) = fX 2 Rn
+; f (X) � A(t)g; Pk(t) = fX 2 Rn

+; f (X) > A(t)eB(t)(k�2)g

In our experiments, the number k of cells is set to 100. The numbers A(t) and B(t) are
automatically adjusted so as to ensure:

Prob
�
X(t) 2 P1(t)

�
� Prob

�
X(t) 2 Pk(t)

�
� 0:1%

The numerical results obtained with the SSAP method, presented in section (8), show that these
empirical parameters are adequate for a broad range of American security pricing problems.
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6 Monte Carlo estimation of American price

6.1 Generation of sample paths

Once the family of partitions P has been chosen, for example using the SSAP method, it remains
to compute numerically the expected payoffs fi(t) and conditional probabilities pij(t). These
numbers can be expressed as integrals over the state space. In general, they must be computed
numerically. The only general tractable method for computing such high-dimensional integrals
is the Monte Carlo method.

It consists in generating a given number M of sample paths for the underlying assets price
process X(t). In general, this can be done through direct numerical integration of the Itô
equation (3.3). A simple explicit Euler scheme is given by:

xi(t + ∆t) = xi(t) exp

0
@�r � dxi �

1
2

kii

�
(X(t); t)∆t+

nX
j=1

vij(X(t); t)
p

∆t zt
j

1
A

where zt
j follow independent standard normal distributions for all j and t. d = T=∆t being the

number of time steps in [0; T], we must draw a total of M � d � n standard normal variates in
order to generate M n-dimensional sample paths X1(t); : : : ;XM(t) for all t > 0.

In general, ∆t must be chosen small enough so as to reach a reasonable accuracy. In practice,
a number of time steps d = 100 is sufficient in most asset pricing applications. However,
when the joint process X(t) is assumed lognormal as in section (4.2), d can be chosen much
smaller. Indeed, the underlying assets price process X can then be obtained by formula (4.2)
from a standard Brownian motion W. In our experiments, we found that a number of time
steps d = 10 is sufficient for American security pricing with lognormal underlying assets price
processes.

6.2 Conditional probabilities and payoff expectations

Once the M sample paths X1(t); : : : ;XM(t) are computed, the number ai(t) of samples crossing
Pi(t) and the number bij(t) of samples moving from Pi(t) to Pj(t + ∆t) are easily computed:

ai(t) = Cardfk 2 [1;M];Xk(t) 2 Pi(t)g
bij(t) = Cardfk 2 [1;M];Xk(t) 2 Pi(t) and Xk(t + ∆t) 2 Pj(t + ∆t)g

Similarly, the sum ci(t) over of samples Xk of payoff values f (Xk(t)) is computed from:

ci(t) =
X

fk2[1;M];Xk(t)2Pi(t)g

f (Xk(t))

By the law of large numbers, we have the following identities:

pij(t) = lim
M�!1

bij(t)
ai(t)

fi(t) = lim
M�!1

ci(t)
ai(t)
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6.3 Backward integration algorithm

Using the above Monte-Carlo estimates of the conditional probabilities and payoff expectations,
an approximation of the American price can then be computed backwards in time using the
simple algorithm described below.

� At time T , the approximate SSAP price is initialized at:

C(i; T) =
ci(T)
ai(T)

� At time T � ∆t, we can compute for all i 2 [1; k]:

C(i; T � ∆t) = e�r∆t max

0
@ci(T � ∆t)

ai(T � ∆t)
;

kX
j=1

C(j; T)
bij(T � ∆t)
ai(T � ∆t)

1
A

� The above procedure is then applied recursively, backwards in time, to compute all the
prices C(i; T � 2∆t);C(i; T � 3∆t); : : : ;C(1; 0) = CSSAP.

The memory required in the SSAP method is proportional to k2�d, corresponding to the storage
of the conditional probabilities pij(t). The computation time is proportional to M�n2�d+k2�d,
the first term corresponding to the drawing of the M Monte Carlo sample paths, and the second
to the backwards integration. Hence the memory and time complexities of the SSAP method
are polynomial in n. This is to be contrasted with classical PDE methods which are exponential
in n.

7 Quadratic resampling

7.1 Quadratic resampling for multidimensional Monte Carlo integration

Each standard normal variable zt
j is simulated by generating M standard normal deviates

zt
j(1); : : : ; zt

j(M). Many variance reduction techniques exist to improve the computational
efficiency of the Monte Carlo method. In particular, we use the well known technique of
Antithetic Variables (AV), which consists in generating only M=2 standard normal deviates
zt

j(1); : : : ; zt
j(M=2) and take for the remaining samples zt

j(M=2 + 1); : : : ; zt
j(M) the opposite

values �zt
j(1); : : : ;�zt

j(M=2) (M is assumed even).

In addition to the technique of Antithetic Variables, we also use an extension of the Quadratic
Resampling technique. Quadratic Resampling was first presented in Barraquand (1993) for
reducing the variance of multivariate Monte Carlo integration.

We briefly present below the original QR method before describing the extension we developed
for the purpose of the SSA method. We consider the problem of computing the integral:

E(f (X)) =
Z

RN
f (X)p(X)dX
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Numerical Valuation of High Dimensional Multivariate American Securities 21

where p is a given probability density function over RN , and f any integrable function. We
assume that the expected vector E(X) and the covariance matrix KX have been precomputed.
In the application we consider here, p(X) is the density of the N-dimensional standard normal
distribution. Hence E(X) = 0 and KX = IN .

Then, we can approximate the integral E(f (X)) by:

f (X) =
1
M

MX
i=1

f (Xi)

In particular, the empirical mean is:

X =
1
M

MX
i=1

Xi

We can likewise define the empirical covariance:

KX = (X � X)(X � X)T = XXT � X XT

We define the gain matrix (for M large enough, KX is regular):

H =
p

KX

q�
KX
��1

and the new random variable:
Y = H(X � X) + E(X)

We consider the M samples Yi = H(Xi � X) + E(X). For this particular sampling, we get:

Y =
1
M

MX
i=1

Yi = E(X)

Similarly:

KY = (Y � Y)(Y � Y)T = (H(X � X))(H(X � X))T = HKXHT

Using the definition of H we get:
KY = KX

Hence, the empirical first and second order moments using the samples Yi are exactly equal
to the real first and second order moments of X. In particular, the empirical mean of any
polynomial f of degree two or less in the variables x1; : : : ; xN verifies:

f (Y) =
1
M

MX
i=1

f (Yi) = E(f (X))

The method of quadratic resampling consists in using the samples Yi in place of the samples
Xi in the quadrature formula. We can state:

Any numerical quadrature formula generated through quadratic resampling is
exact for any polynomial of degree two or less
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7.2 Quadratic resampling in spacetime

In the American pricing problem, we must sample not only the underlying assets prices X(T)
at expiration date, but also those prices X(t) for all possible early exercise dates. Hence,
quadratic resampling must be applied to the underlying assets space domain elevated to the
power of the time domain. In other words, we consider the variableZ = (zt

j)j2[1;n];t2[∆t;T] in the

n�d-dimensional spacetime domain Rn�d. Z is a n�d-dimensional standard normal variable.
Given M standard normal deviates zt

j(1); : : : ; zt
j(M) (with antithetic variables) for each of the

n � d variables zt
j, we can consider them as M vector samples Z1; : : : ;ZM in Rn�d. Then, we

can apply Quadratic Resampling to the n� d-vector variable Z .

We have E(Z) = 0 and KZ = In�d. Since the samples are generated using antithetic variables,
the empirical meanZ is 0. We can compute the empirical (n� d)� (n� d) covariance matrix
KZ . Then, we can apply to each sample Z i the transform:

Y i =
q�

KZ
��1

Z i

Finally, we can replace in the Monte Carlo simulations presented in section (6) the samples
zt

j(i) by the samples yt
j(i), components of the n � d-vector Y i. Experimental results reported

in section (8) demonstrate the efficiency of the extended quadratic resampling method for
American option pricing.

8 Experimental results

8.1 A test case

We implemented the method of Stratified State Aggregation along the Payoff function (SSAP).
We also used the quadratic resampling technique for drawing the Monte Carlo sample paths.
We present below some numerical results for several European and American option pricing
problems ranging from 1 to 400 underlying assets. In all the experiments, we assumed that
the American options can only be exercised at d = 10 different dates during the life of the
option. This corresponds to choosing a time step ∆t = T=d = T=10. We experimented with
several different payoff functions, in particular with payoffs corresponding to the maximum,
the minimum, or the average of the n underlying assets. We obtained similar results for all
these different payoff functions. We only present below the case of an option on the maximum
of the underlying assets. Its payoff function is defined by:

g(x1; : : : ; xn) = max(0;max(x1; : : : ; xn)� K)

where K is the strike price of the option.

In all the experiments, we assumed that the underlying assets price process X(t) is lognormal,
with a covariance matrix of relative returns K of the form:

8i 2 [1; n]; kii = �2
i

April 1994 Digital PRL



Numerical Valuation of High Dimensional Multivariate American Securities 23

Call option prices: x1(0) = $40, r = 5%
Parameters European American
�1 T K CBS CSSAP 4stdev CBS CSSAP 4stdev

35 5.15 5.15 0.001 5.15 5.15 0.002
1 40 1.00 1.00 0.006 1.00 1.00 0.008

45 0.02 0.02 0.001 0.02 0.02 0.001
35 5.76 5.76 0.003 5.76 5.76 0.005

20 % 4 40 2.16 2.16 0.006 2.16 2.16 0.008
45 0.50 0.50 0.004 0.50 0.50 0.004
35 6.40 6.40 0.004 6.40 6.40 0.006

7 40 3.00 2.99 0.010 3.00 3.00 0.010
45 1.09 1.09 0.006 1.09 1.09 0.006
35 5.38 5.38 0.003 5.38 5.40 0.007

1 40 1.91 1.91 0.010 1.91 1.92 0.010
45 0.41 0.41 0.003 0.41 0.41 0.003
35 6.88 6.88 0.010 6.88 6.90 0.020

40 % 4 40 3.96 3.96 0.020 3.96 3.97 0.020
45 2.08 2.08 0.006 2.08 2.09 0.010
35 8.07 8.08 0.010 8.07 8.10 0.020

7 40 5.35 5.34 0.024 5.35 5.36 0.040
45 3.40 3.40 0.012 3.40 3.42 0.020

Put option prices: x1(0) = $40, r = 5%
Parameters European American
�1 T K PBS PSSAP 4stdev PPDE PSSAP 4stdev

35 0.00 0.00 0.001 0.00 0.00 0.001
1 40 0.83 0.83 0.008 0.84 0.84 0.008

45 4.84 4.84 0.001 5.00 5.00 0.000
35 0.19 0.19 0.003 0.19 0.19 0.004

20 % 4 40 1.50 1.50 0.006 1.56 1.56 0.010
45 4.77 4.77 0.004 5.06 5.07 0.010
35 0.41 0.41 0.003 0.42 0.42 0.006

7 40 1.86 1.86 0.010 1.96 1.96 0.012
45 4.82 4.82 0.006 5.24 5.23 0.016
35 0.24 0.24 0.003 0.24 0.24 0.003

1 40 1.74 1.74 0.010 1.75 1.76 0.010
45 5.23 5.23 0.003 5.27 5.29 0.015
35 1.31 1.31 0.010 1.32 1.33 0.020

40 % 4 40 3.31 3.31 0.020 3.36 3.37 0.020
45 6.35 6.35 0.006 6.47 6.49 0.015
35 2.08 2.09 0.012 2.12 2.13 0.015

7 40 4.21 4.21 0.020 4.31 4.31 0.016
45 7.12 7.13 0.012 7.36 7.34 0.030

Table 1: Results of the SSAP method with 1 underlying asset
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and
8(i; j) 2 [1; n]2; i 6= j; kij = ��i�j

for n + 1 numbers �1 > 0; : : : ; �n > 0 and �1=(n� 1) � � � 1.

Volatilities (�i), correlations (�), and interest rate (r) are counted in percent per year. The time
to expiration T is counted in months, with the convention 1 month = 30 days. All asset and
strike prices are counted in dollars.

Since SSAP uses Monte Carlo simulation, we report confidence intervals together with all
results. These confidence intervals are computed from the central limit theorem, i.e. we
assume that at a confidence level of 99:95%, the error must be less than 4 times the observed
standard deviation of the result. The confidence interval reported is 4� stdev.

All the simulations were run on a DEC 3000 model 500X workstation, with an ALPHA AXP
processor running at a clock rate of 200 Mhz, and 1 Gigabyte of main memory.

8.2 One underlying asset

We first study the one-dimensional case. In this case, the SSAP price should converge toward
the theoretical arbitrage price when both the number of time steps d and the number of cells k
converge towards infinity. Both European calls and European puts can be priced according to
the original Black-Scholes formula. These prices are reported in the columns European CBS

and European PBS of table (1). The American call can also be priced according to the same
formula, since we assume the underlying asset pays no dividends. The price is reported in
column American CBS. For the American put, we computed the price using the finite-difference
method presented in section (4.2). We call this method PDE, since it consists in solving a Partial
Differential Equation. In dimension 1, it is essentially equivalent to the Cox-Ross-Rubinstein
binomial lattice method. We used 120 time steps for T (time to expiration) ranging from 1 to 4
months, and 210 time steps for T = 7 months. The corresponding price is reported in column
American CPDE . The SSAP prices where computed using M = 100; 000 samples, and k = 100
buckets. The number of time steps was set to d = 10 in all the experiments.

The observed differences between the SSAP prices and the reference prices are below 0.7%.
The confidence interval values are below 1% of the reference prices. American put prices given
by the SSAP method are very accurate even when the difference with the European put prices
are important (up to 30 cents). The computation time of a price using the SSAP method is about
21 seconds, compared with less than one second with a classical integration method (PDE). In
dimension 1, classical finite difference of binomial lattice methods should be preferred to the
SSAP method.

8.3 Two underlying assets

In this case the SSAP method only finds an approximation of the optimal price. However,
numerical experiments show that the SSAP price always remains within a few cents of the
optimal theoretical price.
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Call option prices: x1(0) = x2(0) = $40
�1 = 20%, �2 = 30%, r = 5%

Parameters European American
� T K CPDE CSSAP 4stdev CPDE CSSAP 4stdev

35 6.80 6.79 0.010 6.80 6.80 0.012
1 40 2.10 2.11 0.002 2.10 2.11 0.002

45 0.18 0.18 0.003 0.18 0.18 0.003
35 8.90 8.89 0.010 8.90 8.90 0.010

0 % 4 40 4.48 4.48 0.015 4.48 4.49 0.015
45 1.66 1.66 0.006 1.66 1.66 0.008
35 10.43 10.42 0.020 10.43 10.43 0.020

7 40 6.15 6.15 0.016 6.15 6.16 0.020
45 3.10 3.08 0.004 3.10 3.09 0.010
35 6.36 6.35 0.004 6.36 6.36 0.005

1 40 1.87 1.87 0.006 1.87 1.87 0.008
45 0.17 0.17 0.004 0.17 0.17 0.004
35 8.09 8.08 0.015 8.09 8.09 0.016

50 % 4 40 3.99 3.98 0.010 3.99 3.99 0.010
45 1.51 1.50 0.006 1.51 1.51 0.006
35 9.41 9.40 0.015 9.41 9.41 0.015

7 40 5.48 5.47 0.010 5.48 5.47 0.016
45 2.77 2.77 0.010 2.77 2.78 0.012
35 5.61 5.61 0.002 5.61 5.61 0.006

1 40 1.45 1.45 0.008 1.45 1.46 0.008
45 1.16 1.16 0.002 1.16 1.16 0.003
35 6.69 6.68 0.003 6.69 6.69 0.008

100 % 4 40 3.09 3.07 0.010 3.09 3.08 0.012
45 1.24 1.24 0.004 1.24 1.25 0.010
35 7.62 7.61 0.006 7.62 7.62 0.012

7 40 4.23 4.21 0.020 4.23 4.22 0.020
45 2.24 2.22 0.012 2.24 2.23 0.020

Table 2: Prices for a call option with 2 underlying assets
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Put option prices: x1(0) = x2(0) = $40
�1 = 20%, �2 = 30%, r = 5%

Parameters European American
� T K PPDE PSSAP 4stdev PPDE PSSAP 4stdev

35 0.00 0.00 0.0000 0.00 0.00 0.0000
1 40 0.29 0.29 0.0030 0.40 0.40 0.0040

45 3.34 3.35 0.0060 5.00 5.00 0.0000
35 0.03 0.03 0.0020 0.04 0.04 0.0020

0 % 4 40 0.53 0.54 0.0080 0.75 0.75 0.0080
45 2.62 2.63 0.0200 5.00 5.00 0.0000
35 0.08 0.08 0.0030 0.10 0.10 0.0040

7 40 0.66 0.67 0.0120 0.95 0.95 0.0100
45 2.47 2.46 0.0200 5.00 5.00 0.0000
35 0.00 0.00 0.0006 0.00 0.00 0.0006

1 40 0.50 0.50 0.0030 0.56 0.57 0.0050
45 3.78 3.78 0.0080 5.00 5.00 0.0000
35 0.09 0.09 0.0030 0.10 0.10 0.0030

50 % 4 40 0.92 0.91 0.0100 1.08 1.08 0.0100
45 3.35 3.35 0.0100 5.00 5.00 0.0000
35 0.21 0.21 0.0040 0.24 0.24 0.0040

7 40 1.14 1.13 0.0080 1.38 1.38 0.0120
45 3.29 3.30 0.0120 5.00 5.00 0.0000
35 0.01 0.01 0.0008 0.01 0.01 0.0006

1 40 0.83 0.83 0.0040 0.84 0.85 0.0060
45 4.52 4.52 0.0040 5.00 5.00 0.0000
35 0.19 0.19 0.0040 0.19 0.20 0.0040

100 % 4 40 1.51 1.51 0.0060 1.56 1.56 0.0120
45 4.58 4.59 0.0040 5.02 5.02 0.0120
35 0.41 0.41 0.0020 0.42 0.42 0.0060

7 40 1.87 1.86 0.0120 1.96 1.97 0.0100
45 4.74 4.73 0.0080 5.20 5.21 0.0120

Table 3: Prices for a put option with 2 underlying assets
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Call option prices: x1(0) = x2(0) = x3(0) = $40
�1 = 20%, �2 = 30%, �3 = 50%, r = 5%

Parameters European American
� T K CPDE CSSAP 4stdev CPDE CSSAP 4stdev

35 8.59 8.58 0.008 8.59 8.59 0.010
1 40 3.84 3.83 0.010 3.84 3.84 0.012

45 0.89 0.89 0.006 0.89 0.90 0.007
35 12.55 12.53 0.020 12.55 12.55 0.016

0 % 4 40 7.87 7.85 0.014 7.87 7.87 0.020
45 4.26 4.25 0.014 4.26 4.27 0.014
35 15.29 15.27 0.020 15.29 15.30 0.030

7 40 10.72 10.70 0.016 10.72 10.73 0.035
45 6.96 6.95 0.020 6.96 6.98 0.020
35 7.78 7.77 0.010 7.78 7.78 0.012

1 40 3.18 3.17 0.010 3.18 3.18 0.012
45 0.82 0.82 0.004 0.82 0.83 0.004
35 10.97 10.95 0.010 10.97 10.96 0.015

50 % 4 40 6.69 6.67 0.016 6.69 6.69 0.020
45 3.70 3.69 0.012 3.70 3.71 0.025
35 13.23 13.21 0.016 13.23 13.24 0.030

7 40 9.11 9.09 0.020 9.11 9.12 0.040
45 5.98 5.98 0.016 5.98 5.99 0.020
35 6.53 6.52 0.006 6.53 6.54 0.010

1 40 2.38 2.37 0.010 2.38 2.38 0.012
45 0.74 0.74 0.002 0.74 0.74 0.003
35 8.51 8.50 0.008 8.51 8.53 0.016

100 % 4 40 4.92 4.90 0.012 4.92 4.93 0.020
45 2.97 2.96 0.008 2.97 2.99 0.020
35 10.04 10.03 0.010 10.04 10.07 0.016

7 40 6.64 6.63 0.016 6.64 6.67 0.030
45 4.61 4.60 0.016 4.61 4.64 0.040

Table 4: Prices for a call option with 3 underlying assets
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Put option prices: x1(0) = x2(0) = x3(0) = $40
�1 = 20%, �2 = 30%, �3 = 50%, r = 5%

Parameters European American
� T K PPDE PSSAP 4stdev PPDE PSSAP 4stdev

35 0.00 0.00 0.000 0.00 0.00 0.000
1 40 0.13 0.13 0.003 0.23 0.23 0.003

45 2.26 2.27 0.012 5.00 5.00 0.000
35 0.01 0.01 0.002 0.01 0.01 0.001

0 % 4 40 0.25 0.25 0.006 0.44 0.45 0.006
45 1.55 1.56 0.010 5.00 5.00 0.000
35 0.03 0.03 0.004 0.04 0.04 0.002

7 40 0.31 0.32 0.010 0.57 0.58 0.015
45 1.41 1.42 0.020 5.00 5.00 0.000
35 0.00 0.00 0.000 0.00 0.00 0.000

1 40 0.38 0.39 0.003 0.48 0.49 0.006
45 3.00 3.01 0.010 5.00 5.00 0.000
35 0.07 0.08 0.006 0.09 0.09 0.004

50 % 4 40 0.72 0.72 0.006 0.93 0.94 0.010
45 2.65 2.66 0.010 5.00 5.00 0.000
35 0.17 0.17 0.006 0.20 0.20 0.005

7 40 0.91 0.91 0.012 1.19 1.21 0.010
45 2.63 2.65 0.012 5.00 5.00 0.000
35 0.01 0.01 0.001 0.01 0.01 0.001

1 40 0.84 0.84 0.004 0.84 0.85 0.006
45 4.18 4.18 0.003 5.00 5.00 0.000
35 0.19 0.19 0.003 0.19 0.19 0.004

100% 4 40 1.51 1.51 0.006 1.56 1.57 0.008
45 4.49 4.49 0.005 5.00 5.00 0.008
35 0.41 0.41 0.004 0.42 0.42 0.004

7 40 1.87 1.86 0.010 1.96 1.97 0.012
45 4.70 4.70 0.008 5.20 5.20 0.012

Table 5: Prices for a put option with 3 underlying assets
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The European and American call and put option prices can be computed by the PDE method.
This integration requires 120 time steps for T = 1 and T = 4 months and 210 time steps for
T = 7 months. These results are reported in the columns European CPDE , PPDE and American
CPDE , PPDE in tables (2) and (3). The SSAP method was run using M = 100; 000 samples,
and k = 100 buckets. The number of time steps was set to d = 10 in all the experiments.

The observed differences between the SSAP prices and the reference prices are below 1%. The
confidence interval value is below 1% of the reference prices, except for very low prices where
it remains under 1 cent. American put prices given by the SSAP method are very accurate. The
computation time of a price using the SSAP method is about 25 seconds, compared with 23
seconds for the classical integration method (PDE). In dimension 2, classical finite difference
or binomial lattice methods are essentially equivalent to the SSAP method.

8.4 Three underlying assets

In this case again, the SSAP method only finds an approximation of the optimal price. However,
numerical experiments show that the SSAP price always remains within a few cents of the
optimal theoretical price. All parameters are identical to those of the 2D case, both for the PDE
and the SSAP method. Results are presented in tables (4) and (5).

The observed differences between the SSAP prices and the reference prices are below 1%. The
confidence interval value is below 1% of the reference prices, except for very low prices where
it remains under 1 cent. American put prices given by the SSAP method are very accurate.
The computation time of a price using the SSAP method is about 32 seconds, compared with
202 seconds for the classical integration method (PDE). In dimension 3, the SSAP method is
as accurate and about 6 times faster than the classical integration method PDE.

8.5 Ten underlying assets

In the previous subsections 8.2, 8.3 and 8.4, we compared the efficiency and accuracy of
the SSAP method with that of the classical integration method (PDE). In this subsection, we
report results obtained with the SSAP method on American option pricing problems with 10
underlying assets (tables (6) and (7)). Since no other method exists to compare to our results,
and since the SSAP method only provides an approximation of the optimal price, we cannot
guarantee the accuracy of the American premiums reported below. However, both the observed
confidence intervals and the fact that the SSAP prices for the American calls without dividends
equal the European prices lead us to believe that the SSAP method is reliable in general on
10-dimensional American pricing problems. The parameters of the SSAP method are again
M = 100; 000 and k = 100.

The differences between European and American call prices are below 0.5 %. Since the payoff
is the maximum of n underlying assets prices without dividends, these two prices should indeed
be identical. Confidence intervals are around 1% in the worst case. The computation time
using the SSAP method is about 82 seconds.
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Call option prices: x1(0) = : : : = x10(0) = $40
�1 = : : : = �10 = 40%, r = 5%

Parameters European American
� T K CSSAP 4stdev CSSAP 4stdev

35 12.66 0.010 12.66 0.010
1 40 7.68 0.020 7.68 0.020

45 2.98 0.020 2.98 0.020
35 21.53 0.060 21.54 0.050

0 % 4 40 16.62 0.030 16.62 0.030
45 11.76 0.040 11.76 0.040
35 27.91 0.060 27.92 0.060

7 40 23.06 0.060 23.08 0.060
45 18.24 0.040 18.25 0.040
35 10.36 0.008 10.36 0.008

1 40 5.54 0.010 5.54 0.010
45 1.90 0.010 1.90 0.010
35 16.52 0.020 16.53 0.020

50 % 4 40 11.87 0.020 11.87 0.020
45 7.81 0.040 7.81 0.040
35 20.91 0.060 20.92 0.050

7 40 16.38 0.040 16.38 0.040
45 12.28 0.020 12.28 0.020
35 5.41 0.003 5.42 0.010

1 40 1.93 0.006 1.93 0.010
45 0.42 0.004 0.42 0.004
35 6.93 0.006 6.95 0.010

100 % 4 40 4.00 0.012 4.02 0.020
45 2.11 0.006 2.11 0.010
35 8.14 0.010 8.16 0.020

7 40 5.40 0.016 5.42 0.020
45 3.44 0.012 3.45 0.020

Table 6: Prices of a call option with 10 underlying assets
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Put option prices:x1(0) = : : : = x10(0) = $40
�1 = : : : = �10 = 40%, r = 5%

Parameters European American
� T K PSSAP 4stdev PSSAP 4stdev

35 0.00 0.0000 0.00 0.0000
1 40 0.00 0.0000 0.00 0.0000

45 0.28 0.0060 5.00 0.0000
35 0.00 0.0000 0.00 0.0000

0 % 4 40 0.00 0.0008 0.01 0.0008
45 0.06 0.0060 5.00 0.0000
35 0.00 0.0000 0.00 0.0000

7 40 0.00 0.0008 0.01 0.0010
45 0.04 0.0030 5.00 0.0000
35 0.00 0.0008 0.00 0.0006

1 40 0.16 0.0030 0.26 0.0040
45 1.49 0.0120 5.00 0.0000
35 0.05 0.0040 0.07 0.0030

50 % 4 40 0.32 0.0060 0.52 0.0060
45 1.17 0.0200 5.00 0.0000
35 0.10 0.0060 0.15 0.0060

7 40 0.42 0.0120 0.69 0.0080
45 1.18 0.0200 5.00 0.0000
35 0.24 0.0020 0.24 0.0020

1 40 1.73 0.0060 1.75 0.0080
45 5.20 0.0040 5.27 0.0100
35 1.30 0.0060 1.32 0.0100

100 % 4 40 3.28 0.0160 3.34 0.0120
45 6.31 0.0060 6.45 0.0100
35 2.06 0.0100 2.11 0.0160

7 40 4.18 0.0160 4.29 0.0160
45 7.08 0.0150 7.30 0.0240

Table 7: Prices of a put option with 10 underlying assets
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Call confidence interval: 4stdev
xi(0) = 40$; �i = 40%; � = 1=2; T = 4; r = 5%

European American
Dimension (N) no QR QR gain no QR QR gain

1 0.138842 0.0455633 3.04 0.116406 0.0522995 2.23
2 0.178123 0.0355280 5.01 0.150975 0.0372755 4.05
3 0.120440 0.0359650 3.35 0.122352 0.0416212 2.94
5 0.127231 0.0641982 1.98 0.117853 0.0523125 2.25
10 0.254137 0.0813637 3.12 0.253496 0.0858543 2.95
20 0.163366 0.1256530 1.30 0.159423 0.1439880 1.11
40 0.188222 0.1185550 1.59 0.188743 0.1212830 1.56

Put confidence interval: 4stdev
xi(0) = 40$; �i = 40%; � = 1=2; T = 4; r = 5%

European American
Dimension (N) no QR QR gain no QR QR gain

1 0.0837939 0.0454326 1.84 0.0717408 0.0364325 1.97
2 0.1112430 0.0202023 5.51 0.0712059 0.0270917 2.63
3 0.0703473 0.0362193 1.94 0.0650541 0.0231927 2.80
5 0.0649703 0.0236217 2.75 0.0762900 0.0177446 4.30
10 0.0504558 0.0215351 2.34 0.0412889 0.0240727 1.71
20 0.0351752 0.0216874 1.62 0.0338044 0.0144007 2.35
40 0.0192215 0.0115251 1.67 0.0199901 0.0104772 1.91

Table 8: Efficiency of quadratic resampling (QR)

8.6 Efficiency of extended quadratic resampling

In this subsection we analyse the efficiency of the Quadratic Resampling method presented in
section 7. The results shown in table (8) are the confidence intervals with (QR) and without
(noQR) quadratic resampling. The gain value is the ratio of these two figures (noQR=QR). We
present in figure (1) the speed-up obtained through quadratic resampling. Since the accuracy
of the Monte Carlo method is proportional to the square root of the number of samples (central
limit theorem), the speedup obtained through Quadratic Resampling is the square of the gain
(speed � up = gain2). In these experiments, we used M = 10; 000 sample paths and k = 100
buckets.

Quadratic resampling is very efficient for a small number of underlying assets (up to 10). The
speed-up ranges from 5 to 30, with an average of about 10. The speed-up decreases in higher
dimensions. A speed-up of 2.5 is obtained with 40 underlying assets.

8.7 Experimental time complexity

We analyze in this subsection the computation time required by the SSAP method as a function
of the number n of underlying assets. We compare these results when possible to those of
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Figure 1: Speed-Up factor obtained through quadratic resampling

classical integration methods (PDE). Observed computation times are presented in table (9).
The number of Monte Carlo samples is M = 100; 000. The number of cells is k = 100 as
before.

Figure (2) shows that for up to 40 underlying assets, the computation time is linear in n. The
dominating term is the computation of the payoff function which is linear in n (M � n � d).
Figure (3) shows that for larger n the complexity is quadratic in n (M � n2 � d), as expected.

For n = 2 the SSAP is comparable to the classical integral method. For n = 3 the SSAP
method is faster by a factor of 6. For n > 3 the SSAP method is the only one which can
compute the price accurately. The integral (PDE) method is implemented using 60 time steps
in the Cox-Rubinstein tree to obtain comparable precision. The exercise condition is also
applied only 10 times during the life period of the option.

8.8 Parallel implementation

We implemented a parallel version of the SSAP method on a network of 4 DEC 3000 model 500
ALPHA AXP workstations equipped with a high-bandwidth Gigaswitch fiber optic interconnect
(called a workstation farm). We observed a speedup linear in the number of workstations in
the network: the parallel version is 4 times faster than the sequential implementation (table
(10)). We anticipate that these figures would scale up with the number of workstations in
the network. Indeed, the parallelization paradigm for Monte Carlo simulation is particularly
simple. It consists in distributing on different processors the computation of different sample
paths, and finally adding the results obtained by all processors.

Let us assume that we have � independent computational units. The preliminary computations
of the values ai(t); bij(t); ci(t) (see section 6) by Monte Carlo simulation can be done separately
on each unit for M=� Monte Carlo samples. Then they must be consolidated on one unit, called
the master unit. The backward integration in time is then performed on the master unit using the

Research Report No. 38 April 1994
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Dimension (N) Time SSAP method (second) Time PDE method (second)
1 21 0.12
2 25 23
3 32 202
5 46 Out of memory
10 81 Out of memory
20 151 Out of memory
40 309 Out of memory
60 567 Out of memory
80 894 Out of memory

100 1018 Out of memory
200 2438 Out of memory
400 7069 Out of memory

Table 9: Computation times as functions of the dimension
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Figure 2: Linear behavior of computation time for 0 < n � 60
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Figure 3: Quadratic behavior of computation time for 0 < n � 400
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Dimension (n) � = 4 processors (measured) � = 32 processors (estimated)
1 ?? 1.65
2 ?? 1.78
3 ?? 2.00
5 2.44
10 3.53
20 5.72
40 10.65
60 18.72
80 28.94

100 32.82
200 77.19
400 220.91

Table 10: Linear speedup of the parallel implementation

consolidated values ai(t); bij(t); ci(t). The memory requirement is multiplied by� as compared
to a sequential implementation of the SSAP method. The gain in computation time is almost
linear, i.e. the time complexity can be divided by �. Indeed, the results of the previous
subsection have shown that the dominating terms are: (M � n � d) for the computation of
the payoffs and (M � n2 � d) for drawing the Monte Carlo sample paths. But these two
operations are done on each computational unit separately. The computation time required for
the backward integration can be neglected. (' 1 second with the parameters of the previous
subsection). The only overheads added by the parallelization are:

� � communications of an amount of memory proportional to n2� d (typically 2 Mbytes).

� Consolidation of the � sets of values.

For n and d fixed, this overhead is constant and can be neglected in practice (' 1second for the
parameters of the previous subsection). We present in table (10) observed figures for � = 4,
and estimated figures for � = 32.

9 Conclusion

In this article, we described a systematic numerical technique for pricing arbitrarily complex
American contingent claims, i.e. generalized option contracts with possibilities of early ex-
ercise. Besides its obvious applications to trading and hedging in organized and Over The
Counter (OTC) capital markets, American security pricing has many important applications
in various areas of risk management such as assets and liabilities management and corporate
investment decision making. Using this technique, we were able to compute the prices of
complex American instruments in a few tens of seconds on a workstation, and within a few

April 1994 Digital PRL



Numerical Valuation of High Dimensional Multivariate American Securities 37

seconds on a network of workstations.

Our approach essentially relies on appropriate state aggregation techniques that circumvent
the intractability of the computation of the early exercise boundary, combined with a classical
Monte Carlo simulation for the computation of the conditional probabilities in the backwards
pricing formula. We call this method Stratified State Aggregation along the Payoff function
(SSAP). We have successfully implemented the SSAP method for problems with up to 400
dimensions. To the best of our knowledge, no other method has ever been developed to date
for pricing American contingent claims with many (more than 3 or 4) underlying assets.

We feel that the method presented in this paper and the experimental results thus obtained
make it possible to realistically envision the use of multidimensional stochastic models for
practical real-world quantitative risk management problems. This capability of computing
the joint influences of several tens of risk factors such as interest rates of various terms in
different currencies, equity and commodities of various kinds, and any other relevant economic
variables, may dramatically increase the competitive advantage of quantitative methods over
more traditional analysis techniques. An application of particular interest is the pricing and
hedging of complex long-dated commodity and index warrants offered on international OTC
markets. We plan to backtest on actual market data the performance of the SSAP method as
compared to more classical delta-hedging techniques currently used on capital markets.
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and Ascánder Suárez. January 1990.

Research Report 5: The WAM: A (Real) Tutorial. Hassan Aı̈t-Kaci. January 1990.y

Research Report 6: Binary Periodic Synchronizing Sequences. Marcin Skubiszewski. May
1991.

Research Report 7: The Siphon: Managing Distant Replicated Repositories. Francis J.
Prusker and Edward P. Wobber. May 1991.

Research Report 8: Constructive Logics. Part I: A Tutorial on Proof Systems and Typed
�-Calculi. Jean Gallier. May 1991.

Research Report 9: Constructive Logics. Part II: Linear Logic and Proof Nets. Jean Gallier.
May 1991.

Research Report 10: Pattern Matching in Order-Sorted Languages. Delia Kesner. May
1991.

yThis report is no longer available from PRL. A revised version has now appeared as a book: “Hassan Aı̈t-Kaci,
Warren’s Abstract Machine: A Tutorial Reconstruction. MIT Press, Cambridge, MA (1991).”



Research Report 11: Towards a Meaning of LIFE. Hassan Aı̈t-Kaci and Andreas Podelski.
June 1991 (Revised, October 1992).

Research Report 12: Residuation and Guarded Rules for Constraint Logic Programming.
Gert Smolka. June 1991.

Research Report 13: Functions as Passive Constraints in LIFE. Hassan Aı̈t-Kaci and Andreas
Podelski. June 1991 (Revised, November 1992).

Research Report 14: Automatic Motion Planning for Complex Articulated Bodies. Jérôme
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Ferbach and Jérôme Barraquand. September 1993.

Research Report 35: The Typed Polymorphic Label-Selective �-Calculus. Jacques Garrigue
and Hassan Aı̈t-Kaci. October 1993.

Research Report 36: 1983–1993: The Wonder Years of Sequential Prolog Implementation.
Peter Van Roy. December 1993.

Research Report 37: Pricing of American Path-Dependent Contingent Claims. Jérôme Bar-
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