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Abstract

The path planning problem, i.e. the geometrical problem of finding a collision-free path
between two given configurations of a robot moving among obstacles, has been studied by
many authors in recent years. The interest inconstrained motion planningis more recent.
Constrained motion planning consists in finding motion sequences for robotic systems whose
free space in not an open subset of the configuration space. In particular,manipulation
planning is an important instance of the general constrained motion planning problem. It
consists in planning the motions of a system including robots and movable bodies that are
constrained by grasping relationships. In a manipulation planning problem, the dimension of
the free space may be dynamically changing along the solution path.

In this report, we establish necessary and sufficient conditions under which grasping constraints
are holonomic. Then we present a systematic approach to motion planning in the presence of
grasping constraints deriving from this theory. Its principle is to replace a constrained problem
by a convergent series of less constrained subproblems increasinglypenalizingmotions that do
not satisfy the constraints. Each subproblem is solved using a standard path planner. We use the
method of Variational Dynamic Programming for solving the subproblems. We report several
experiments in manipulation planning with multiple redundant robots and multiple moving
objects in configuration spaces having up to 12 degrees of freedom (DOF). The implemented
planner has solved manipulation planning problems of unprecedented complexity.
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Résumé

Le problème de la planification de trajectoire, i.e. the probl`eme géométrique consistant `a trouver
des chemins sans collisions entre deux configurations d’un robot en pr´esence d’obstacles, a
été largement ´etudié ces derni`eres ann´ees. L’intérêt pour les probl`emes de planificationsous
contraintesest plus récent. La planification de mouvement sous contraintes consiste `a trouver
des séquences de mouvements pour des syst`emes robotis´es dont l’espace libre n’est pas un sous
espace ouvert de l’espace des configurations. En particulier, le probl`eme de la planification
de manipulation est une instance importante du probl`eme général de la planification sous
contraintes. Il consiste `a planifier les mouvements d’un syst`eme incluant des robots et des
objetsà manipuler liés entre eux par des contraintes de pr´ehension. Dans un probl`eme de
manipulation, la dimension de l’espace libre peut changer dynamiquement le long du chemin
solution.

Dans ce rapport, nous ´etablissons les conditions n´ecessaires et suffisantes sous lesquelles une
contrainte de pr´ehension est holonome. Nous pr´esentons ensuite une approche syst´ematique
pour la planification sous contraintes de pr´ehension d´erivant de cette th´eorie. Son principe
est de remplacer un probl`eme sous contraintes par une suite convergeante de sous-probl`emes
moins contraints p´enalisant de fa¸con croissante les mouvements qui ne satisfont pas les
contraintes. Chaque sous-probl`eme est r´esolu grâceà un planificateur de trajectoire classique.
Nous utilisons la m´ethode de Programmation Dynamique Variationnelle pour r´esoudre les
sous-probl`emes. Des simulations effectu´ees sur plusieurs probl`emes de manipulation sont
présentées dans ce rapport, incluant plusieurs robots redondants et plusieurs objets `a manipuler
dans des espaces ayant jusqu’`a 12 degres de libert´e. Le planificateur peut r´esoudre des
problèmes de manipulation d’une complexit´e sans pr´ecédent.
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A penalty function method for constrained motion planning 1

1 Introduction

We present a systematic approach toconstrained motion planningfor robotic systems with
many degrees of freedom (DOF). Constrained motion planning consists in finding motion
sequences for robotic systems whose free space in not an open subset of the configuration space.
In general, constraints in motion planning problems can be classified into two categories:

� Path-independent constraints, i.e. constraints that only depend on the current configu-
ration of the robot. Path-independent constraints are often calledholonomic constraints.

� Path-dependent constraints, that depend on more than a single configuration along the
path. Path-dependent constraints are generally callednonholonomicconstraints. An
important class of path-dependent constraints is that of constraints on the first derivative
(velocity) that are not integrable.

In particular, manipulation planningis an important instance of the general constrained
motion planning problem. Given an environment containing robots, stationary obstacles, and
movable bodies, the manipulation problem consists in finding a sequence of free robot motions,
grasping and ungrasping operations, to reach a given state from a given initial state in the joint
configuration space of all robots and movable bodies. In a manipulation planning problem,
the dimension of the free space may be dynamically changing along the solution path.

We first develop a theory of manipulation planning. We show that in general a grasping
constraint is nonholonomic, since it involves the first derivative of the path followed by the
movable objects. We characterize conditions under which grasping constraints can be made
holonomic. Loosely stated, a grasping constraint is holonomic if and only if the set of
stable configurations for the movable object is a series of disconnected points calleddocking
positions.

Then, we present an implemented planner derived from this theory. This planner is capable of
planning manipulation tasks when the number of docking positions is finite. This simplification
makes the problemholonomic. The principle of our approach is to replace the original equality-
constrained problem by a convergent series of more and more difficult inequality-constrained
planning problems with open free spaces increasinglypenalizingmotions that do not satisfy
the grasping constraints. We call this approach apenalty functionmethod. In other words,
grasping constraints are handled by our planner in aprogressivefashion. We first solve the
problem assuming that the movable objects can move without being grasped by a robot. Then,
this path is used as an input for a series of more and more difficult problems forcing the objects
to get closer and closer to the robots in order to move. Each subproblem is solved using
a standard path planner. We use the method of Variational Dynamic Programming (VDP)
described in Barraquand and Ferbach 1993 [2] for solving the subproblems. However, in
theory, any other variational planner could be used instead of VDP. We call the overall method
Progressive Variational Dynamic Programming(PVDP).

The planner has successfully solved manipulation planning problems of unprecedented
complexity. We report several manipulation planning experiments for systems with up
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2 Pierre Ferbach and Jérôme Barraquand

to 12 DOF.

Initially, this penalty function approach was developed in Barraquand and Ferbach 1993 [2] as
a variant of the VDP method for solving difficult instances of the basic path planning problem
in open free space. Indeed, given any variational path planning method, one can replace the
collision avoidance constraints in a classical path planning problem by a convergent series
of simpler constraints increasingly penalizing motions that do not satisfy collision avoidance
constraints. The resulting planner is less general in theory than the original VDP planner, since
it uses problem-specific heuristics to guide the search. On the other hand, it is dramatically
faster. In fact, it can solve some problems in a time comparable to that of potential-field based
methods (see Barraquand and Ferbach 1993 [2]).

This report is organized as follows. In Section 2, we relate our contribution to previous work in
motion planning. In Section 3, we develop a theory of manipulation planning, and characterize
in particular conditions under which grasping constraints can be made holonomic. In Section
4 we describe the general principle underlying the penalty function approach to manipulation
planning in the presence of holonomic grasping constraints. We also describe our implemented
planner PVDP. In Section 5, we present experimental results illustrating the capabilities of the
implemented planner. In section 6, we discuss current limitations and possible generalizations
of the PVDP approach to manipulation planning. We also review possible applications of
the penalty function method to other constrained motion planning problems. Section 7 is the
conclusion.

2 Relation to other work

The path planning problem, i.e. the geometrical problem of finding a collision-free path
between two given configurations of a robot moving among obstacles, has been studied by
many authors in recent years (Latombe 1990 [8]).

The interest in constrained motion planning is more recent in the roboticsliterature. The
problem of planning the path of a convex polygonal robot translating in a two-dimensional
polygonal workspace in the presence of multiple convex polygonal movable objects is
addressed in Wilfong 1988 [12]. The general manipulation problem is described in a series
of papers from Alami, Laumond, and Simeon (e.g. Alami Simeon and Laumond 1989 [1],
Laumond and Alami 1989 [10]).

To the best of our knowledge, although nonholonomic rolling constraints in motion planning
have been investigated by several authors (e.g. Laumond 1986 [9] and subsequent papers, Li
and Canny 1989 [11], Barraquand and Latombe 1989 [4], 1993 [6]), the nonholonomic nature
of grasping constraints in manipulation tasks has never been investigated to date.

An implemented algorithm for manipulation task planning with a 2 DOF robot grasping a
single object at a time and several 2 DOF bodies translating in the plane is presented in Alami
Simeon and Laumond 1989 [1]. The planner has two components: a classical path planner, and
a manipulation task planner (MTP). The MTP plans a sequence a robot motions, grasping and
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A penalty function method for constrained motion planning 3

ungrasping operations, and transfer motions (i.e. motions of the robot together with a grasped
object). The approach is in practice limited to non-redundant robots with few DOF, and
requires an exhaustive exploration of the robot’s configuration space. Koga and Latombe 1992
[7] present several implemented planners solving various dual-arm manipulation planning
problems of increasing difficulty. They use and extend the framework of Alami Simeon and
Laumond 1989 [1]. The planner is again the combination of a path planner and a manipulation
task planner. For problems with many degrees of freedom, the path planner used is the
potential field based planner RPP (Barraquand and Latombe 1991 [5]).

Our approach to manipulation task planning is fundamentally different. We do not decompose
the problem into a sequence of robot motions and manipulation tasks. Our planner is not a
combination of a path planner and a manipulation task planner. Instead, we simply consider
the whole manipulation problem as a special instance of the basic path planning problem in the
joint configuration space of the robot and the movable objects. The major advantage of this
approach is to avoid the artificial decoupling between motion planning and task planning. As a
consequence, PVDP can solve manipulation planning problems of unprecedented complexity.

3 Manipulation tasks, grasping, and nonholonomy

3.1 The manipulation planning problem

We consider one or more robotsR1; . . .;Rl with respective configuration spacesCR1; . . .; CRl ,
one or more movable objectsM1; . . .;Ms with respective configuration spacesCM1; . . .; CMs,
evolving in a workspaceW populated by stationary obstacles. We assume that for any object
A 2 fR1; . . .;Rl;M1; . . .;Msg, the manifoldCA is bounded (hence compact, since it is a closed
subset of the Euclidean space) and connected. The joint configuration space of the robots is
denoted byCrobots=

Ql
i=1 C

Ri . Similarly, the joint configuration space of the movable objects
in denoted byCobj =

Qs
j=1 C

Mj . The joint configuration space of the robots and movable
objects is simply the cartesian productC = Crobots� Cobj. We denote its dimension, i.e. the
total number of degrees of freedom of all the robots and movable objects, byn.

For any robot or movable objectA 2 fR1; . . .;Rl;M1; . . .;Msg, we can define theprojection
that maps any configuration for all robots and objectsq = (qR1; . . .; qRl ; qM1; . . .; qMs) 2 C to
the corresponding configurationqA 2 CA of A.

X : C �! CA

q 7�! �A(q) = qA

We assume that an appropriate distance metricd(q; q0) has been defined overC. The collision
avoidance space, i.e. the set of configurationsq 2 C such that robots, movable objects, and
stationary obstacles do not collide witheach other in denoted byCavoid. We assume thatCavoid

can be represented as
Cavoid = fq 2 C; gavoid(q) < 0g

where gavoid is an appropriate function defined overC. For example,gavoid could be the
opposite of the minimum distance between any robot or object with other robots, objects, or
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4 Pierre Ferbach and Jérôme Barraquand

with obstacles. We see that the collision avoidance constraint is aninequality constraintin
configuration space.Cavoid is an open subset ofC.

Let qinit be the initial configuration of the system, andqgoal its desired configuration. The
problem of manipulation planning consists in finding a sequence of free robot motions,
grasping and ungrasping operations, to reachqgoal from qinit in the joint configuration spaceC
of the robot and all movable bodies.

This sequence can be simply represented by a path
 inC joining
(0) = qinit and
(1) = qgoal.
As in any classical path planning problem, the path
 must not cross colliding configurations,
i.e. we must have:

8t 2 [0; 1]; 
(t) 2 Cavoid

However, there are two other kinds of constraints that must also be satisfied by
: grasping
constraints, and stability constraints. These constraints are due to external forces (e.g.
gravitational forces) applied to the movable objects. First, the movable objects can only
move when they are grasped by some robot. Hence, the forbidden paths
 are not only those
for which the robots or the movable objects hit the stationary obstacles or collide witheach
other, but also all those for which the movable objects are moving without being grasped by
a robot. Second, movable objects can be ungrasped by robots only within the subset of stable
configurations, i.e. the subset of configurations where exterior forces sum to zero.

The formalisation of these notions is the object of the next subsection.

3.2 Grasping and stability constraints

We first introduce the notion of grasping constraint by a simple example. More complex
examples are presented in Section (5). Let us consider a 2-dimensional workspaceW , with
a single serial robot manipulatorR with nrobot = 2 revolute jointsa1 and a2 as illustrated
in Figure (1). We assume that the robot base is fixed at the position(x0; y0) in W . The
coordinates(xeff; yeff) of the end-effector satisfy theforward kinematic equations:

xeff(a1; a2) = x0 + L1 cosa1 + L2 cosa2

yeff(a1; a2) = y0 + L1 sina1 + L2 sina2

whereL1 andL2 are the respective lengths of the two robot arms. A configuration ofR is
a coupleqR = (a1; a2). We assume that the workspace is populated by a single movable
diskM with nobj = 2 DOF translating in the plane, and whose configuration is defined by the
coordinates of its centerqM = (xm; ym). The total dimension of the joint configuration space
is n= nrobot+ nobj = 4. We define a grasp betweenRandM as the setGgraspof configurations
q = (a1; a2; xm; ym) of the whole system verifying:

g1
grasp(a1; a2; xm; ym) = xeff � xm = 0

and
g2

grasp(a1; a2; xm; ym) = yeff � ym = 0
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A penalty function method for constrained motion planning 5

a1

a2

Yeff

XeffX0

Y0

Ym

Xm

L1

L2

Figure 1: A simple two-dimensional grasping problem in a two-dimensional configuration
space

The numberh of coordinates of the grasping constraintggrasp = (g1
grasp; g

2
grasp)

T is h = 2.
We say thatggrasp is a h = 2-dimensional grasping constraint. Hence, we see thatGgrasp is
a n� h = 2-dimensional submanifold ofC. The dimension of a typical grasping constraint
for a classical industrial robot withnrobot = 6 DOF manipulating a solid object withnobj = 6
DOF in a three dimensional configuration space ish = 6. A robot with nrobot DOF designed
for satisfying grasping constraints of dimensionh = nobj, i.e. for grasping objects withnobj

DOF, is said to be non-redundant iffnrobot = h = nobj. The robot is said to be redundant iff
nrobot > h= nobj.

More generally, given a robotRi and an objectMj , anh-dimensional grasping constraintg
Ri ;Mj
grasp

is represented by then� h dimensional set of valid grasping configurationsGRi ;Mj :

GRi ;Mj = fq 2 C; g
Ri ;Mj
grasp(�

Ri(q); �Mj(q)) = 0g

whereg
Ri ;Mj
grasp is a continuous mapping fromCRi � CMj ontoRh.

g
Ri ;Mj
grasp : CRi � CMj �! Rh

(qRi ; qMj) 7�! g
Ri ;Mj
grasp(qRi ; qMj) =

�
g

Ri ;Mj
grasp

1
(qRi ; qMj); . . .; g

Ri ;Mj
grasp

h
(qRi ; qMj)

�T

In general, a robot can grasp a given object in several different ways. For example, if the robot
at hand has two arms, and the object to be manipulated is a long bar, there are two possible
ways of grasping the long bar using both arms at both extremities of the bar, that correspond
to the possibility of swapping the two arms. Such problems are calleddual armmanipulation
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6 Pierre Ferbach and Jérôme Barraquand

planning problems. An example of such problem is presented in Section (5). Also, any finite
set of robots can be viewed as another robot. Hence, the above formalism applies to complex
problems such as multifingered manipulation planning. We take the setGRi ;Mj as the set of all
possible valid grasping configurations, regardless of the way the object is being grasped.

A manipulation path satisfies the grasping constraints iff for any movable objectMj, the object
is either stationary or grasped by some robotRi. Formally:

8t 2 [0; 1];
�
9i 2 [1; l]; g

Ri ;Mj
grasp(�

Ri(
(t)); �Mj(
(t))) = 0
� _ �

d
dt
�Mj(
(t)) = 0

�
(1)

We see that a grasping constraint may benonholonomic, since it involves the first derivative
of the path followed by the movable object. We will formally prove this intuitive fact in the
next subsection. Before, we introduce a simplified concept of stability.

An object Mj can be ungrasped by some robot only if its configurationqMj is stable with
respect to exterior forces, e.g. with respect to the gravitational force and reaction forces from
stationary obstacles. It may be that the configuration of other objects influences the stability
of Mj. Here we only consider absolute stability, i.e. stability in the absence of other objects.
Hence, the set of stable configurations ofMj is a well-defined subset ofCMj . It is denoted by
STABLE(Mj). We assume that STABLE(Mj) is a closed set.

3.3 Nonholonomy of grasping constraints

3.3.1 An introductory example

We first consider the example above, and then turn to the general case. Applying formula (1)
to the example of Figure (1), we get:

8t 2 [0; 1];
�
xeff(t)� xm(t) = yeff(t)� ym(t)) = 0

�_�
dxm

dt
(t) =

dym

dt
(t) = 0

�
(2)

If the above two-dimensional constraint were holonomic, we couldintegrate it, i.e.
we could find a couple of real-valued functionsF1 and F2 such that a path
(t) =

(a1(t); a2(t); xm(t); ym(t)) satisfies the constraint iff

8t 2 [0; 1]; F1(a1(t); a2(t); xm(t); ym(t)) = F2(a1(t); a2(t); xm(t); ym(t)) = 0

If we define the real-valued functionF =

q
F2

1 + F2
2 = jj(F1;F2)

TjjR2, the above constraint
can be rewritten:

8t 2 [0; 1]; F(a1(t); a2(t); xm(t); ym(t)) = 0

We consider an arbitrary object location(x0
m; y

0
m) reachable by the robot, i.e. such that

there exists(a0
1; a

0
2) verifying xeff(a0

1; a
0
2) = x0

m andyeff(a0
1; a

0
2) = y0

m. We write(x0
m; y

0
m) 2

REACH(M). We consider a path starting ata1(0) = a0
1; a2(0) = a0

2; xm(0) = x0
m; ym(0) =

y0
m consisting of immediately ungrasping the object and bringing the robot to an arbitrary other

locationa1
1 = a1(1); a1

2 = a2(1). Along such a path, the object will not move since it must
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A penalty function method for constrained motion planning 7

satisfy (2). Hence, we havexm(1) = x0
m andym(1) = y0

m. By holonomy, we must have at
t = 1:

F(a1
1; a

1
2; x

0
m; y

0
m) = 0;

We have just shown that for any reachable couple(x0
m; y

0
m), the functionF takes the value0 no

matter the value taken by its first two variablesa1
1 anda1

2:

8(a1
1; a

1
2) 2 C

R; 8(x0
m; y

0
m) 2 REACH(M); F(a1

1; a
1
2; x

0
m; y

0
m) = 0

Hence, F is identically null over the set of reachable configurations. Now, given any
configuration(a1

1; a
1
2; x

0
m; y

0
m) such that(x0

m; y
0
m) is reachable, we take any other reachable

configuration(x1
m; y

1
m) different from(x0

m; y
0
m), and we can consider the path:

8t 2 [0; 1]; a1(t) = a1
1; a2(t) = a1

2; xm(t) = x0
m + t(x1

m� x0
m); ym(t) = y0

m + t(y1
m� y0

m)

Along this path,F is identically null by the above result. But this path obviously does not
satisfy constraint (2). Hence, we have a contradiction. The constraint (2) cannot be holonomic.

3.3.2 General case

We now turn to the general case. Before stating the result, we first define formally the notion
of reachable configuration for a movable object. Given an objectMj , the configurationqMj is
reachableand we writeqMj 2 REACH(Mj) iff there exists a robotRi that can graspMj atqMj .
The set of reachable configurations REACH(Mj) can be defined as follows.

REACH(Mj) = fqMj 2 CMj ; 9i 2 [1; l]; 9qRi 2 CRi ; g
Ri ;Mj
grasp(qRi ; qMj) = 0g

Clearly, REACH(Mj) is closed, since the constraintsg
Ri ;Mj
grasp are continuous andC is compact.

We calldocking positionan object configuration that is both stable and reachable, and we write

DOCK(Mj) = STABLE(Mj) \ REACH(Mj)

By the above results, we see that DOCK(Mj) is a closed bounded subset ofCMj . Hence,
DOCK(Mj) is compact. We will prove the following result.

Characterization of holonomic grasps

We consider the grasping constraint (1) for an object Mj . The following two
statements are equivalent.

i) All pathwise-connected components of the set of stable reachable object positions
DOCK(Mj) = STABLE(Mj) \ REACH(Mj) are singletons.

ii) The constraint is holonomic

In other words, a grasping constraint is holonomic iff there is no path composed only of stable
reachable configurations connecting two different stable reachable configurations.
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8 Pierre Ferbach and Jérôme Barraquand

Proof of ii) => i).

We first proveii) => i) by generalizing the argument developed above for the example in
Figure (1).

Assume the constraint (1) is holonomic. We consider a functionF mappingC ontoRsuch that
(1) is equivalent to:

8t 2 [0; 1]; F(
(t)) = 0

We take an arbitraryqMj

0 2 DOCK(Mj). SinceqMj

0 is reachable, there exists a robotRi and a
configurationqRi

0 such that

g
Ri ;Mj
grasp(q

Ri
0 ; q

Mj

0 ) = 0
Without loss of generality, we can consider all other objects and robots as static, and limit our
study to paths inCRi � CMj . We define the path
 starting at
(0) = (qRi

0 ; q
Mj

0 ), consisting
of ungraspingMj and bringingRi to an arbitrary other locationqRi

1 . This path is valid since

qMj
0 is a stable configuration. By the grasping constraint (1) we must have
(1) = (qRi

1 ; q
Mj
0 ).

By holonomy, we haveF(qRi
1 ; q

Mj

0 ) = 0. SinceCRi is connected, this is true for any couple

(qRi
1 ; q

Mj
0 ) 2 CRi � DOCK(Mj). We can write:

F(CRi � DOCK(Mj)) = 0 (3)

Now, we take any other object configurationqMj
1 2 DOCK(Mj). We will show that there can

be no path� in DOCK(Mj) linking �(0) = qMj
0 and�(1) = qMj

1 . This will in turn provei).
Indeed, if such a path exists, we can define the path
(t) = (qRi(t); qMj(t)) in CRi � CMj :

8t 2 [0; 1]; qRi (t) = qRi
1 ; qMj(t) = �(t)

By (3) andii), this path
 satisfies the grasping constraint. But clearly
 cannot satisfy (1)
since� joins two different configurations. Hence� cannot exist, and we get the desired result.

Proof of i) => ii).

Reciprocally, let us assumei). We define the following real-valued function overC:

F(q) = min

 
min
i2[1;l]

�
jjg

Ri ;Mj
grasp(�

Ri(q); �Mj(q))jj
�
; min

D2DOCK(Mj)

�
d(�Mj(q);D)

�!
(4)

Since DOCK(Mj) is a compact set, the minimum minD2DOCK(Mj)

�
d(�Mj(q);D)

�
is well-

defined by the Bolzano-Weierstrass theorem. Hence,F(q) is a well-defined function.

We will show that the grasping constraint (1) is equivalent to the following holonomic
constraint:

8t 2 [0; 1]; F(
(t)) = 0 (5)
Indeed, the above holonomic constraint can be rewritten:

8t 2 [0; 1];
�
9i 2 [1; l]; g

Ri ;Mj
grasp(�

Ri(
(t)); �Mj(
(t))) = 0
� W

�
9D(t) 2 DOCK(Mj); �Mj(
(t)) = D(t)

�
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A penalty function method for constrained motion planning 9

Hence, it suffices to show the following implication for any interval [t1; t2] � [0; 1]
�
8t 2 [t1; t2]; 9D(t) 2 DOCK(Mj); �Mj(
(t)) = D(t)

�
=>

�
8t 2 [t1; t2]; d

dt�
Mj(
(t)) = 0

�

But, since DOCK(Mj) verifiesi), the pathD(t) is necessarily constant:

8t 2 [t1; t2]; �Mj(
(t)) = D(t) = D

Deriving the above identity with respect tot, we get the desired result.

3.4 Docking positions and holonomic grasp planning

In this paper, we consider only manipulation planning problems for which the grasping
constraints are holonomic. From the above result, this implies that we impose to the set
of stable reachable configurations (i.e. docking positions) to be composed of pathwise-
connected components containing a single element. In practice, we will restrict ourselves to
problems for which a movable objectMj is only stable at afinitenumber of docking positions
8u 2 [1; dj];Du

j 2 C
Mj , unless it is grasped by a robot. Formally:

DOCK(Mj) = fD1
j ; . . .;D

dj
j g

We call free space and denote byCfree the subset ofCavoid satisfying the (holonomic) grasping
constraints. We see that in general,Cfree is not an open subset ofC, since the grasping
constraints are equality constraints. The dimension ofCfree can dynamically change along the
solution path. This may happen when a robot grasps an object (reduction of the dimension)
or ungrasps it (increase in the dimension). Hence, a standard path planner only capable
of planning motions in open free spaces of constant dimension cannot be used for solving
the manipulation planning problem. In the next section, we introduce a new paradigm for
circumventing this limitation of path planning techniques.

4 A penalty function method for holonomic manipulation planning

In this section, we present a new paradigm for solving motion planning problems in the
presence of holonomic constraints. This approach applies in particular to manipulation
planning problems when the set of docking positions for movable objects is finite and
prespecified as part of the planning problem.

4.1 An introductory example

We first illustrate the approach on a manipulation planning example using the setup of Figure
(1). We assume that initially the robotR is at the configuration(ainit

1 ; ainit
2 ) = (a0

1; a
0
2), and
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10 Pierre Ferbach and Jérôme Barraquand

that the objectM is located at an arbitrary reachable configuration(xinit
m ; yinit

m ) = (x0
m; y

0
m).

We define the goal configuration for the robot as(agoal
1 ; agoal

2 ) = (a0
1; a

0
2), and the goal

configuration for the object as(xgoal
m ; ygoal

m ) = (x1
m; y

1
m) 6= (x0

m; y
0
m). We see that the task

assigned to the robot is simply a pick and place operation consisting of movingM to another
location. Hence, in this case, it is easy to imagine how the problem should be addressed. First,
the robot must move its end effector towards the object and grasp it. Second, both the robot and
the grasped object must move in order to bring the end-effector (hence the object) to the goal
configuration. Third, the robot must ungrasp the object and get back to its initial configuration.
The above manipulation problem can be decomposed into a sequence of three basic motion
planning problems in open free space. One may argue that it is not necessary to develop
planners capable of dealing with grasping constraints, since manipulation problems can be
decomposed into sequences of classical path planning problems without grasping constraints.
However, the task of planning the sequence of motions, called manipulation task planning, is
often much more complex than in the above pick and place problem. For example, there can
be more than one object to manipulate, and the geometry of the workspace may imply that
different objects interact with each other. As another example, the object to manipulate can
be a long bar that must be grasped at the same time by two robot arms. In such a case, the
robot arms may have to switch their respective grasps at the two ends of the bar. Examples
of such problems will be presented in Section (5). For those more difficult problems, the
task of planning the sequence of motions, grasping, and ungrasping operations may become
a hard problem in itself. Then, a manipulation planner should be the combination of two
planners: 1) a classical path planner in open free space computing motions between grasping
and ungrasping operations 2) a manipulation task planner computing the sequence of grasps.
This is the way the problem has been addressed in previous work (see Section (2)).

Here, we take an opposite approach, and attempt to solve the whole manipulation planning at
once. This enables us to deal with intricated interactions between geometric and task planning
constraints that cannot be taken into account by other planners decoupling the two problems.

We first define two docking positions for the objectM, namely its initial and goal positions.

DOCK(M) = f(x0
m; y

0
m); (x

1
m; y

1
m)g

In a more difficult problem, we might have to define intermediate docking positions. Examples
of such intermediate docking positions are given in Section (5). This raises the problem of
defining these docking positions as part of the planning task. Although the issue is still open
in the general case, we briefly discuss it in Section (6).

Following the results of the previous section, the grasping constraint can be replaced by the
following scalar holonomic constraint:

8t 2 [0; 1]; F(a1(t); a2(t); xm(t); ym(t)) = 0

with

F(a1; a2; xm; ym) = min

"q
(xeff � xm)

2 + (yeff � ym)
2; min

u2f1;2g

q
(xm� xu

m)
2 + (ym� yu

m)
2

#

September 1993 Digital PRL



A penalty function method for constrained motion planning 11

We define a decreasing sequence of positive numbers�k; k > 0 converging towards0. For
example, we can choose�k = 1=k. We replace the pick and place problemP defined above by
the sequence of problemsPk for which the grasping constraint is replaced by:

8t 2 [0; 1]; F(a1(t); a2(t); xm(t); ym(t)) < �k

We see that the free space for problemPk is an open subset of the configuration space. Hence,
we can use a standard path planner to solvePk.

The idea underlying the penalty function method is that, since the difficulty of solvingPk

increases withk, it is better to first solve problemP1, and then use the solution path of problem
P1 as a heuristic to solve problemP2. In turn, the solution hopefully obtained of problemP2
can be used as an input heuristic for solving problemP3, and so on until the grasping constraint
is satisfied up to a prespecified accuracy�kmax = 1=kmax.

Hence, the penalty function method will work well if one can devise a path planner that makes
efficient use of the solution path of problemPk�1 in order to solve problemPk. Such a path
planner is called avariational path planner. Variational planning is discussed in the next
subsection.

4.2 Variational planning

Variational path planning consists of iteratively improving an initial path possibly colliding
with obstacles (or any other inequality constraint) in order to obtain a collision free path.

We use the method of Variational Dynamic Programming (VDP) developed by Barraquand and
Ferbach 1993 [2]. VDP consists in perturbing at each iteration the current path by performing
a dynamic programming search around the current path in am-dimensional submanifold of
then-dimensional configuration spaceC. In practice,m is chosen equal to 2,3, or 4, in order
to make the dynamic programming search tractable. Them-dimensional submanifold is an
arbitrarily chosen ruled surface containing the current path. This surface is quantized into a
m-dimensional grid of configurations. Then, the grid is searched using Dijkstra’s algorithm
with an additive cost function proportional to the number of configurations colliding with
obstacles. Hence, the new path obtained is guaranteed to collide obstacles less than the
previous path. Then, the operation is repeated until a free path is found. See Barraquand and
Ferbach 1993 [2] for more detail on the VDP algorithm.

Experiments reported in Section 5 show that VDP is well suited to using the output solution
of problemPk�1 in order to solve efficiently problemPk. However, other planners capable of
planning paths in high dimensional configuration spaces could be adapted in theory to imbed
the same feature. For example, the RPP planner described in Barraquand and Latombe 1991
[5] is not a variational planner in its original form, but could be adapted in the following
fashion.

Given a solution path
k�1 of problemPk�1, and since the solution of problemPk should not
differ significantly from
k�1, one could estimate the maximum distancedmaxover allt 2 [0; 1]
between configuration
k�1(t) and the corresponding configuration
k(t) on a solution path
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12 Pierre Ferbach and Jérôme Barraquand

for problemPk. Then,
k�1 could be used to include the additional heuristic constraint on the
free configuration spaceCk

free of problemPk:

8q 2 Ck
free; 9t 2 [0; 1]; d(q; 
k�1(t)) < dmax

This additional heuristic constraint would force the path planner RPP to limit its search for a
solution path
k of problemPk to a “tubular neighborhood” of the previous solution path
k�1.
We plan to investigate this alternative in future research.

4.3 General case

We consider the general manipulation planning problem of Section (3). We assume a finite
number of docking positions for the objects have been prespecified as part of the planning
problem. From the results of subsection (3.3), and more specifically from formula (4), we see
that the grasping constraints for objectMj can be expressed:

8t 2 [0; 1]; Fj(
(t)) = 0

with

Fj(q) = min

 
min
i2[1;l]

�
jjg

Ri ;Mj
grasp(�

Ri(q); �Mj(q))jj
�
; min

D2DOCK(Mj)

�
d(�Mj(q);D)

�!

For each objectMj , we can choose a positive decreasing sequence of numbers�
j
k converging

towards zero, an replace our original manipulation planning problemP by a sequence of
problemsPk using the partially relaxed grasping constraints:

8j 2 [1; s]; 8t 2 [0; 1]; Fj(
k(t)) < �
j
k

The penalty function method consists in first solving the simpler problemP1 as a standard path
planning problem in open free space using a variational path planner such as VDP, to obtain a
first path
1. Then, for anyk > 1, problemPk is solved using as input to the variational planner
the solution
k�1 of the previous problemPk�1. The algorithm is stopped when the numbers
Ek = (�1

k; . . .; �s
k) are all smaller than a prespecified tolerance value�kmax. The overall method

is calledProgressive Variational Dynamic Programming(PVDP), since the penalties on the
grasping constraints are applied in a progressive fashion.

The vector sequence(Ek)k>0 is called�-strategy. Both the rate of convergence towards0 and
the relative values for a givenk of the various numbers�1

k; . . .; �s
k may influence the overall

computation time and even the nature of the solution found by the planner.

More complex�-strategies can be devised. Indeed, many different functionsFj can be used
to represent the same holonomic grasping constraints applying to the objectMj . For example,
when the dimensionh of a given grasp between robotRi and objectMj is higher than1, one
may choose any other equivalent norm instead of the standardL2 Euclidean norm to compute
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A penalty function method for constrained motion planning 13

the numberjjg
Ri;Mj
graspjj. One may find it preferable to use a weightedL2 norm instead of the

standard norm:

jj(g1; . . .; gh)
Tjj

weighted
L2 =

vuut hX
i=1

�ig2
i

where�1; . . .; �h are adequately defined positive numbers depending on the type of grasp
considered. Alternatively, one may use the weightedL1 norm:

jj(g1; . . .; gh)
Tjj

weighted
L1 = max

i2[1;h]
�i jgij

Also, any other additional heuristic constraints can be added to improve the progressiveness in
the difficulty of the sequence of problemsPk when facing a particularly complex manipulation
problem. In general we call�-strategy the whole set of empirical parameters that can be used
to define the holonomic constraintsFj and their rate of convergence towards0. Examples of
efficient problem-specific strategies are presented in Section (5).

5 Experimental results

We have implemented PVDP in a program written in C, running on a DEC3000-500 Alpha
AXP workstation. We have experimented with PVDP using a variety of manipulation planning
problems. The most significant of these experiments are described below.

5.1 10-DOF non-serial manipulator robot grasping a 2-DOF disk.

We consider the planar non-serial manipulator robot depicted in Figure 2, which includes three
prismatic joints (telescopic links) and seven revolute joints. The task assigned to this robot is a
simple pick and place operation consisting in grasping the disk in the lower right corner of the
workspace, bringing it to the lower left corner, and then returning to its initial configuration.
The total number of degrees of freedom for the whole problem is 12. Figure 2 illustrates a
manipulation plan found by PVDP.

In this example, the robot is said to have grasped the disk when the following conditions are
satisfied:

� the centerM of the disk coincides with the middleR=
E1+E2

2 of the two end-effectors
E1 andE2 of the robot.

� the distancejjE1E2jj between the two end effectorsE1 andE2 is equal to the diameterD
of the disk.

There are two admissible docking positionsM1 andM2 for the disk, namely its initial and goal
configurations.
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14 Pierre Ferbach and Jérôme Barraquand

The grasping constraint8t;F(
(t)) = 0 is replaced in the approximating problemP� by the
constraint8t;F(
(t))< � with the following expression forF(q).

F(q) = min

 
max(jjE1E2jj � D; jjRMjj); min

i2f1;2g
jjMMijj

!

In other words, in problemP�, either the disk is at distance less than� of a docking position,
or if satisfiesbothconditionsjjE1E2jj < D + � andjjRMjj < �.

We denote byF1E1 the segment representing one of the two terminal fingers of the robot,F2E2
the other one. In addition to the�-strategy defined above, we use in problemP� the following
heuristic constraint, systematically satisfied in the original definition of the grasp. IfM is at
distance longer than� from bothM1 andM2, it must always lie in the domain of the workspace
bounded by 1) the two straight lines prolongating the two robot fingers, i.e. the lines passing
throughF1;E1 andF2;E2, and 2) the lineF1F2. This additional heuristic constraint enhances
the progressiveness in the difficulty of problemP�.

The initial value of� is one fourth of the size of the workspace. Then, it is decreased at each
iteration of the penalty function method by0:001, i.e. 0:1% of the size of the workspace. The
tolerance value was set to�kmax = 0:006, i.e 0:6% of the workspace. The path was computed
in about half an hour.

Figure 2: A pick and place operation using a 10-DOF non-serial manipulator
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A penalty function method for constrained motion planning 15

5.2 3-DOF serial manipulator robot manipulating two 2-DOF disks.

We consider the planar serial manipulator robot depicted in Figure 3, which includes two
revolute joints and one telescopic link. The robot is composed of 1) a single telescopic arm,
and 2) an end effector that can rotate at the end of the telescopic arm. The task assigned to this
robot is to move both disks from the right-hand bucket to the left-hand bucket on the bottom
of the workspace. Additionally, the two disks must be put in the left-hand bucket in a last-in
first-out order, i.e. the disk on the top of the right-hand bucket at the initial configuration must
be on the top of the left-hand bucket at the final configuration. Hence, the robot must first
move the top disk to an intermediate docking position, then put the disk at the bottom of the
right-hand bucket into the left-hand bucket, and finally bring the top disk from its intermediate
position to the top of the left-hand bucket.

The total number of degrees of freedom for the whole problem is 7. Figure 3 illustrates a
manipulation plan found by PVDP.

Let E1 andE2 be the two points at the extremities of the two fingers on the end-effector. LetM
be the center of any one of the two disks. LetD be the diameter of the disks. In this example,
the robot is said to have grasped a disk iff the distancesE1M andE2M are both equal toD=2.

There are three docking positions for the top disk: 1) the initial position, 2) the goal position,
3) the intermediate docking position on top of the central obstacle separating the two buckets
(see figure (3)). There are two docking positions for the bottom disk: 1) the initial position, 2)
the goal position.

The grasping constraints in the partially relaxed problemsP� were defined in a fashion similar
to that of the previous example. The total computation time in the example shown in figure
(3) was 45 minutes. The planner PVDP was also capable of solving the same problem using
a randomly selected intermediate docking position on top of the obstacles, instead of the
prespecified position in the center (Figure 4).

5.3 Two 3-DOF manipulator arms manipulating a 3-DOF bar

We consider the dual-arm manipulating planning problem depicted in Figure 5. There are two
identical 3-DOF arms. Each arm has two links. The first link has fixed length, and can rotate
around the base. The second link is telescopic and has two degrees of freedom, one revolute
and one prismatic. The bar has 3-DOF. The bar can only move when it is grasped by both
arms. The task assigned to the two arms is to move the bar from the right side to the left
side of the workspace. Because of the presence of an obstacle, the two arms must swap their
respective grasps before reaching the goal. The total number of degrees of freedom for the
whole problem is 9. Figure 5 illustrates a manipulation plan found by PVDP. The path was
computed in about 40 minutes.

The definitions of the grasping constraints and of the approximating problemsP� are similar
to that of the previous examples. Three docking positions are allowed for the bar: its initial
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16 Pierre Ferbach and Jérôme Barraquand

Figure 3: A 3-DOF arm manipulating two disks

position, its goal position, and an intermediate vertical position in the middle of the workspace.
The specification of this intermediate position is critical for the success of the manipulation
plan. We have chosen this intermediate docking position in an ad-hoc fashion. If this
intermediate position had been randomly chosen in the workspace, the planner would have
most probably failed to find a manipulation plan. This example demonstrates that the choice
of intermediate docking positions is a serious limitation of our manipulation planner in its
current implementation. In Section (6), we briefly discuss how intermediate docking positions
could be dynamically determined by the planner itself in a less ad-hoc fashion.

5.4 Three robots manipulating a 2-DOF disk

We consider the planar manipulation planning problem depicted in Figure 6. The robot on the
lower left side is a kind of piston that can extend vertically. It has 1 DOF, which corresponds
to the prismatic extension link. It can grasp the 2-DOF disk on the middle of the horizontal
shelf. Another robot with 1 DOF on the upper left corner can only rotate around its base. The
third manipulator is composed of one telescopic arm, another arm with fixed length and two
revolute joints. This manipulator has 3 DOF. The task assigned to these manipulators is to
move the 2-DOF disk from the right side to the left side of the picture. At the end the disk is
placed on the piston in the lower left corner.

The total number of degrees of freedom for the whole problem is 7. Figure 6 illustrates a
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A penalty function method for constrained motion planning 17

Figure 4: The same problem with a randomly chosen intermediate docking position

manipulation plan found by PVDP in 13 minutes.

This example shows a solution where several manipulators have to cooperate with each other:
one robot picks the disk and brings it to a second manipulator that gives the object to a third
one. The solution has been found without using any docking position or predefining the
positions where the manipulators transmit the disk between each other.

6 Discussion

6.1 Current limitations and possible extensions

6.1.1 Automatic selection of docking positions

The examples presented above show that the penalty function method is capable of dealing
with manipulation planning problems of unprecedented complexity. However, the method has
a severe limitation in its current form: an appropriate set of docking positions must be chosen
for each manipulation problem. Often, a simple and natural choice consists in considering only
docking positions that correspond to the initial or goal configurations for the movable objects.
But in some more complex problems, intermediate docking positions must be prespecified in a
somewhat ad-hoc fashion. We believe this limitation of the current planning algorithm could
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Figure 5: A dual arm manipulation planning problem

be removed by defining the set of docking positions dynamically while the manipulation plan
is constructed. Indeed, one could define the intermediate docking positions in the following
way. Using the notations of Subsection (4.3), and given an objectMj, we can consider the
grasping function:

Gj(q) = min
i2[1;l]

jjg
Ri;Mj
grasp(�

Ri(q); �Mj(q))jj

Then, we can subdivide the current solution path
k of problemPk into a sequence0 = t0 <

t1 < . . .< t2r < t2r+1 = 1 verifying:

8p 2 [0; r]; 8t 2 [t2p; t2p+1];Gj(
k(t)) � �
j
k

and
8p 2 [0; r � 1]; 8t 2]t2p+1; t2p+2[;Gj(
k(t)) < �

j
k

In other words, we can subdivide the current path into subintervals where the object is
successively close (i.e. at distance less than�

j
k) to some robot end-effector, of far from any

robot’s end-effector. Then, for each subinterval [t2p; t2p+1] for which the object is far from
all robots, we can define dynamically the intermediate docking position in the middle of the
subinterval:

Dj
p = �Mj(
k(

t2p + t2p+1

2
))

The r + 1 intermediate docking positionsDj
0; . . .;Dj

r then defined can be used as the new set
of docking positions for problemPk+1. We plan to investigate this idea in future research.
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Figure 6: A pick and place operation with three cooperating robots

6.1.2 Computation of efficient �-strategies

Besides the problem of defining intermediate docking positions, another important issue is
to define an appropriate�-strategy. Although we have found that the planner is relatively
robust with regards to the choice of the�-strategy, future research is needed to reduce the
number of empirical parameters associated with the definition of the�-strategies. Devising
efficient computational techniques for automatically selecting the appropriate strategies is an
open problem.

6.1.3 Combining the penalty function method with other path planners

Finally, although the method of Variational Dynamic Programming has proven efficient for
solving the subproblemsPk, other variational planners could be used in theory to solve the
same problem. In Subsection (4.2), we have briefly described how standard planners such
as RPP capable of dealing with many degrees of freedom could possibly be adapted for this
purpose. We believe this idea is also worth investigating.
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20 Pierre Ferbach and Jérôme Barraquand

6.2 Other applications of the penalty function method

6.2.1 Application to standard path planning problems

Initially, this penalty function approach was developed in Barraquand and Ferbach 1993 [2] as
a variant of the VDP method for solving difficult instances of the basic path planning problem
in open free space. Indeed, given any variational path planning method, one can replace the
collision avoidance constraints in a classical path planning problem by a convergent series
of simpler constraints increasingly penalizing motions that do not satisfy collision avoidance
constraints. The resulting planner is less general in theory than the original VDP planner, since
it uses problem-specific heuristics to guide the search. On the other hand, it is dramatically
faster. In fact, it can solve some problems in a time comparable to that of potential-field based
methods (see Barraquand and Ferbach 1993 [2] for more detail).

6.2.2 Applications in assembly planning

More generally, the penalty function method can be used to representanykind of holonomic
constraints in motion planning. This opens a broad range of new possibilities. In particular,
most constraints in assembly planning problems are holonomic equality constraints. Hence, an
assembly planning problem can in theory be approximated by a sequence of simpler problems
P� where the different objects to be assembled are allowed to overlap with each other by
a distance not greater than�. Although we do not have investigated the application of the
penalty function method to assembly planning, we feel that this line of research is particularly
promising.

7 Conclusion

This report described a new approach to motion planning with holonomic constraints, which
essentially consists of replacing a constrained problem by a convergent series of less constrained
subproblems increasingly penalizing the motions that do not satisfy the constraints. Each
subproblem is solved using a variational path planner.

We have applied the approach to manipulation planning problems in the presence of holonomic
grasping constraints. To this end, we have characterized the conditions under which grasping
constraints can be made holonomic. In practice, a grasping constraint on a movable object is
holonomic if the number of stable reachable configurations is finite.

This approach has been implemented in a program, called PVDP, which was run successfully
on several difficult manipulation planning problems. We used the method of Variational
Dynamic Programming to solve the subproblems, although other variational planners could be
used in theory.

The penalty function method could be applied to any other kind of holonomic constraint.
A very promising line of research is the application of this method to assembly planning
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problems.
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Barraquand. June 1991.

Research Report 15: A Hardware Implementation of Pure Esterel. Gérard Berry. July 1991.

Research Report 16: Contribution à la Résolution Numérique des Équations de Laplace et
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