SUBJECT: Programmed Data Processor Specifications

TO: PDP Distribution List FROM: John Koudela
A. Central Processor

1. Programming and Numerical System
a. Binary internal number system
b. Fixed word length of 18-bits, including sign
c. One instruction per word
d. Fixed point arithmetic
e. Single address
f. Multiple-step indirect addressing
g. Number of instructions (see complete instruction list for $P D P-1$)
(1) 29 basic, including 1 input-output
(2) 57 total, excluding input-output
(3) 43 specified input-output
(4) 100 total, including all input-output
2. Arithmetic Unit
a. Addition time: 10 microseconds, including all access.
b. Subtraction time: 10 microseconds, including all access.
c. Multiplication time: by subroutine, 325 microseconds average; automatic, 25 microseconds maximum.
d. Division time: by subroutine, 440 microseconds average; automatic, 40 microseconds maximum.
3. Instruction Execution Times (except arithmetic)
a. All instructions require either 5 or 10 microseconds for completion.
b. Each step of indirect addressing requires an additional 5 microseconds.
c. Input-output instructions require 5 microseconds in asynchronous operations, whereas in synchronous operations, the time depends upon the input-output device being used.
d. The "Execute" instruction requires 5 microseconds plus the time of the instruction executed.
e. Combined Skip instructions and combined Operate instructions require 5 microseconds.
4. Internal operation of the PDP-1 is parallel, synchronous, and sequential. Input-output is basically synchronous and sequential. Asynchronous and/or concurrent operations of input-output devices can be approached with proper programming techniques, or truly performed with inputoutput devices connected through high speed input-output channels.
5. Storage Unit
a. Random access, coincident-current, magnetic core (non-volatile).
b. Number of words: 4,096 to 32,768 in increments (modules) of 4,096.
c. Number of binary per word: 18
d. Equivalent number of decimal digits per word: $5+$
e. Equivalent number of alphanumeric characters per word: 3
f. Number of instructions per word: 1
g. Storage access time: 5 microseconds

B. Input-Output

1. Magnetic Tape

a. Naximum number of units: 24
b. Number of characters per inch: 200
c. Number of bits per character (6 binary or alphanumeric and 1 parity): 7
d. Inter-record (inches) : 3/4
e. Tape speed (inches per second): 75
f. Transfer rate (characters per second): 15,000
g. Start-stop time (milliseconds): 3
h. Width of tape (inches): $1 / 2$
i. Length of reel (feet): 2400
j. Variable tape format, including standard I.B.M.

The Basic Tape Control Unit transfers information one character at a time under program control. Read, write, and compute operations are performed sequentially.

The High Speed Tape Control Unit automatically transfers information in blocks of characters. Compute and read or write operations can be performed concurrently. Special features include scatter-read and gather-write; automatic, bit-by-bit read-compare with core memory; automatic sorting functions.
2. Punched tape
a. Number of line per inch: 10
b. Number of channels per line: $5,6,7$, or 8 (8 is standard).
c. Read speed (lines per second): 400
d. Punch speed (lines per second): 63
e. Reader is photoelectric and starts and stops on a line.
f. Character listing is alphanumeric plus special characters.
g. Compute and read or punch operations can be performed concurrently through the use of the Sequence Break System, or can be approached through proper programming.
3. Typewriter
a. 10 characters per second output.
b. Character listing is alphanumeric plus special characters.
c. Compute and input or output operations can be performed concurrently as with punched tape.
4. Line Printer
a. Lines per minute: 450
b. Columns per line: 72
c. Character listing is alphanumeric plus special characters.
d. Compute and print operations can be performed concurrently as with punched tape.
C. Special Equipment

1. Sequence Break System. Allows concurrent operation of several input-output devices and the main sequence. The standard PDP-1 is equipped with a one-channel sequence break whereas the 16-channel sequence break system is optional.
2. Cathode Ray Tube Display and Light Pen. Displays information at a rate of 20,000 points per second. Light Pen allows for the "Input" of information. The Visual 16" CRT Display has a resolution of 1 part in 1,024 , whereas the Precision 5" CRT Display has a resolution of 1 part in 4,096.
3. Eighteen-bit Real Time Clock. Provides real time synchronization to the Central Processor. The clock is an l8-bit
binary counter controlled by a crystal oscillator.
4. Punched Card Input-Output Control. Allows on-line operation of standard, 80 column card, input-output equipment. The control is for use with the I.B.M. 523 Summary Punch for both input and output at speeds of 100 cards per minute.
5. High Speed Input-Output Channels. Allows for high speed, concurrent operation of several input-output devices and the main sequence. The standard PDP-1 has provisions to add 3 high speed channels.
6. Input-Output Instruction Control Panel. Allows for simple addition of special input-output transfer instructions as required.
7. Basic Spare Parts Package. Provides one or two spare plug-in modules for each module-type used in the Central Processor.
D. Checking Features
8. Accumulator Overflow
9. Lateral Parity check on Magnetic tape
a. While reading using basic control.
b. While both reading and writing using high speed control.
10. Magnetic Tape Read-Compare instruction to compare data on tape with data in storage, bit by bit.
11. Built in Marginal Checking Facilities for all subassemblies in the Central Computer.
E. Power, Space, Weight, and Site Preparation
12. Power requirements, 115 volts, 60 cycles per second, single phase, 1500 watts.
13. Standard PDP-1 weight: 1500 pounds.
14. Standard PDP-1 dimensions, 98.5 inches wide, 24.5 inches deep, and 69.5 inches high.
15. Ambient room temperature and relative humidity
a. 50 to 110 degrees Fahrenheit
b. 20 to 70 percent relative humidity
16. Site preparation not required
F. Production Record
17. Time required for delivery, 6 to 9 months from date of order.
18. Number of systems produced, over 5 (6-61)
G. Services
19. Basic program and subroutine library supplied with each PDP-1:
a. FRAP, The PDP-1 Assembly Program for fixed or floating point arithmetic.
b. DECAL; The PDP-1 Compiler Program for fixed or floating point arithmetic.
C. Single Precision Floating Point Package for arithmetic using an 18-bit fraction and an l8-bit exponent. The package includes all standard function generator subroutines.
d. Double Precision Floating Point Package for arithmetic using a 36 -bit fraction and an 18-bit exponent. The package includes all standard function generator subroutines.
e. Basic Double Precision Fixed Point subroutines, including addition, subtraction, multiplication and division.
f. All standard function generator subroutines for single precision fixed point.
g. Utility Routine Package, including input-output subroutines and debugging aids.
20. Programming, operating, and maintenance training and materials are provided by the manufacturer.
21. Membership in the active PDP-1 User's Society is available. Definition of a Standard PDP-1 Computer System
A. Standard PDP-1 consists of:
22. Central Processor (with 4,096, 18-bit word core memory).
23. Control Console.
24. Punched Tape Reader (photoelectric), read speed 400 lines per second.
25. Punched Tape Punch, punch speed 63 lines per second.
26. Alphanumeric Typewriter (with l8-inch, pin-feed platen).
27. One Channel Sequence Break System.
28. Input-Output Instruction Control Panel.
29. Programmed multiply and divide using Multiply Step and Divide Step instructions.
30. Total number of instructions: 64.

Complete Instruction List for PDP-1
Y means the contents of memory location Y
N means number
AC means accumulator

IO means input-output register
PC means program counter
TW test word switches
A. Basic Instructions, including one input-output
Instruction Code Time(us) Definition

1. ADD Y
2. SUB Y
3. MUS Y
4. DIS Y

56
44
46

0210
$06 \quad 10$
04
20
24
26
30

22
32
34
10
60
10
10
10

10
10
10

10
10
10
10
10
14. LIO Y
15. DIO Y
16. DZM Y
17. XCT Y
18. JMP Y

40
42
54
7. AND Y
8. $X O R Y$
9. IOR Y
10. LAC Y
11. DAC Y
12. DAP Y
13. DIP Y

Instruction			Code	Time(us)	Definition
19.	JSP	Y	62	5	Save PC in AC and jump to Y
20.	CAL		16	10	Call subroutine
21.	JDA	Y	17	10	Deposit AC in Y and JSP $\mathrm{Y}+1$
22.	SAD	Y	50	10	Skip if AC different than Y
23.	SAS	Y	52	10	Skip if AC same as Y
24.	LAW	N	70	5	Load AC with N
25.	SFT	N	66	5	Shift-rotate group
26.	SKP		64	5	Skip group
27.	OPR		76	5	Operate group
28.	IOT		72		Input-output transfer group
29.	JFD	Y	12	10	Jump field according to Y (field switching for expanded memories)

B. Micro-Instructions, Except Input-output
30. LAW -N
71
5
Load AC with $-N$

Shift-rotate Group

31. RAR N	671	5	Rotate AC right N places
32. RAL N	661	5	Rotate AC left N places
33. SAR N	675	5	Shift AC right N places
34. SAL N	665	5	Shift AC left N places
35. RIR N	672	5	Rotate IO right N places
36. RIL N	662	5	Rotate IO left N places
37. SIR N	676	5	Shift IO right N places

Instruction	Code	Time(us)	Definition	
38. SIL N	666	5	5	Shift IO left N places
39. RCR N	673	$50 t a t e$ combined AC-IO right		
40. RCL N places				

Skip Group

43.	SZA		64	0100	5	Skip on zero AC
44.	SNA		65	01.00	5	Skip on non-zero AC
45.	SPA		64	0200	5	Skip on positive AC
46.	SMA		64	0400	5	Skip on minus AC
47.	Szo		64	1000	5	Skip on zero overflow
48.	SNO		65	1000	5	Skip on non-zero overflow
49.	SPI		64	2000	5	Skip on positive IO
50.	SMI		65	2000	5	Skip on minus Io
51.	SZS	N	64	00s0	5	Skip on zero sense switch N
52.	SNS	N	65	cos0	5	Skip on non-zero sense switch N
53.	SZF	N	64	000F	5	Skip on zero flag N
54.	SNF	N	65	000F	5	Skip on non-zero flag N

Instruction Code Time(us) Definition
Operate Group

| 55. CLI | 764000 | 5 | Clear IO |
| :--- | :--- | :--- | :--- | :--- |
| 56. LAT | 762000 | 5 | Load AC from TW |
| 57. CMA | 761000 | 5 | Complement AC |
| 58. HLT | 760400 | 5 | Halt |
| 59. CLA | 760200 | 5 | Clear AC |
| 60. CLF N | $76000 F$ | 5 | Clear flag N |
| 61. STF N | $76001 F$ | 5 | Set flag N |

C. Specified Input-Output Instructions (Micro IOT Instructions)

Reader

62. RPA	IOT 01	Read punched tape, Alphanumeric
63. RPB	IOT 02	Read punched tape, Bi-octal
64. RRB	IOT 30	Read reader buffer (for sequence break operations)

Punch
65. PPA IOT 05
66. PPB IOT 06

Typewriter
67.
68. TYI

IOT 04

Punch punched tape, Alphanumeric

Punch punched tape, Bi-octal

Type out

Type in

Trstruction Code Time(us) Definition
Display
69. DPY IOT 07

Card Reader
70. RAC
71. RSC

IOT 42
72. RAF
73. CKS

Card Punch
74. PAC

IOT 43
75. PSC
76. PAG

IOT 22

Basic Magnetic Tape

77. MCB IOT 70
78. MWC IOT 71
79. MRC IOT 72
80. MCS

IOT 34
81. MSM IOT 73

High Speed Magnetic Tape
82. MUF IOT 75
83. MIC IOT 76

Display one point on CRT

Read a card

Row synchronize and clear field counter

Read a field of 18 columns and index field counter

Check status of reader

Punch a card
Row synchronize and prepare to punch first field

Punch a field of 18 columns

Magnetic tape clear buffer
Magnetic tape write character
Magnetic tape read character
Magnetic tape check status
Magnetic tape select mode

Magnetic tape unit and final address

Magnetic tape initial address and command

Instruction	Code	Time(us)
84. MEL	IOT 35	Magnetic tape examine location
85. MES	IOT 36	Magnetic tape examine status
86. MRI	IOT 66	Magnetic tape reset initial address
87. MRF	IOT 67	Magnetic tape reset final address

Clock
88. RSK

IOT 47
89. RDK IOT 37

Timer
90. STM

IOT 24

Relay Buffer
91. SRB IOT 21

Analog to Digital Converter
92. CNV IOT 41
93. RCB IOT 31

Sequence Break System
94. ESM IOT 55
95. LSM IOT 54
96. ASC IOT 51
97. DSC IOT 50

Reset the clock
Read clock time into IO

Set timer with IO

Set Relay Buffer

Convert a voltage
Read converter buffer

Enter sequence break mode Leave sequence break mode Activate selected sequence break channel

Deactivate selected sequence break channel

$$
-15-
$$

3. Specified IOT instructions: 45
4. Total number of available instructions: 102
