MIIO6

DATE June 8, 1961
SUBJECT CORE MEMORY EXPANSION FOR THE PDP-1
TO PDP Distribution List FROM Gordon Bell

Introduction

Two core memory expansion methods are available for PDP-l. The Type 11 Memory System allows a PDP-1 to have a memory of up to 16,384 l8-bit words, while the Type 14 system allows a total memory capacity of 32,768 words.

If memory Type 11 Control is used, three Type 12 memory modules may be added to make up the 16,384 words.

If type 14 memory control is incorporated, seven Type 12 memory modules may be added to form the 32,768 words.

Memory Type 11 should be used unless it is necessary to have a storage capacity of over 16,384 words.

Type 11 Memory Switching

Two 3-bit registers address a memory field. In this case, each memory module containes two 2,048 word fields. Either one of two 3-bit registers; field A register (FA) or field B register (FB) selects one of eight, 2,048 word memory fields to be used. If bit 6 of the memory address register (MA) is a 0 when calling for a memory register, then FA selects the memory field. If MA-6 is a 1 , then $F B$ is used to select the memory field. Thus, memory references $0-2047$ ($0-3777$ octal) come from Field A and references 2048 - 4095 (4000-7777 octal) come from Field B.

Two commands modify $F A$ and $F B$. The first command is jump field, jfd Y, operation code 120000. This command uses the contents of memory register Y as a code word. When $j f d Y$ is given, bits 5-17 of the contents of the memory register Y replace the program counter (PC), bits $0-2$ replace FB , and bits $3-5$ replace $F A$.

With jfd Y, the defer bit of the command has a special meaning. If the defer bit is a 0 , then the contents of memory register Y replace $F B, F A$, and $P C$. If bit 5 is a $1, F B, F A$, and PC replace the contents of the accumulator (AC), and the instruction proceeds
as stated above. The instructions, jsp, jda, and cal also place the previous contents of FB, FA, and PC in the accumulator.

The second command, change fields - cfd, has an operation code 72 XX 74 , and requires 5 microseconds. When cfd is given, bits 6-11 of cfd replace the contents of the $F B$ and $F A$ registers, and the program counter is unchanged.

Type 11 High Speed Channel and Sequence Break Operation

When high speed channel transfers are involved, the high speed channel specifies a l4-bit address for one of 16,384 words.

When a sequence break interrupt occurs, FB and FA are both set to 0 , and the previous contents of $F B, F A$, and PC are stored in the second register of the registers of the interrupt. The first and third registers of the interrupt receive the contents of the AC and IO, while the next instruction is taken from the fourth register.

A sequence break is terminated by giving $j f d Y$, where Y is one of the 16 registers holding $F B, F A$, and PC. FA, of course, must $=0$ 。

Type 14 Memory Switching
Two 3-bit registers are incorporated in a PDP-1 for Type 14 switching. These two registers are the Data Field register (DF) and the Instruction Field register (IF). Each of these 3-bit registers address one of eight 4,096 word memory modules. A particular memory location, within a possible $32,768\left(2^{12}+3\right)$ locations, is selected by using either the IF and Memory Address register (MA), or the DF and MA.

The memory address and the instruction field registers select the core memory register for all instructions. Similarly, if the instruction is deferred, the deferred addresses come from the MA and IF. The operand address (bits 5-17) of an instruction and the DF select the actual operand location in most cases. Only in the case of instructions $j d a Y, j f d Y, j m p Y$ and $j s p Y$ is the address formed with the Y portion (MA) and IF.

Two commands are available to the programmer to allow memory field switching. The command, jump field, $j f d Y$, is the first command for memory switching. This command has an operation code of 120000 , and is a two cycle instruction which does the following:

The contents of memory location Y are taken as an l8-bit memory selection code word. The program counter (PC) is reset to bits 5-17 of the code word, bits $0-2$ replace the contents of DF, and bits 3-5 replace IF.

The defer bit used with jfd has special meaning. The defer bit specifies that the $j f d$ is to save the previous contents of DF, IF, and PC. Thus, if the defer bit is a l, the accumulator is cleared and the previous DF, IF, and PC contents are stored in the AC. If the defer bit is a 0 , and $j f d$ given, the accumulator is unaffected. Thus, jfd (no defer bit) and jfd (with a defer bit) are analogous to jmp and.jsp.

The commands, jda, cal, and jsp, which are normally affected with the AC holding the previous PC contents, also receive DF and IF just as in the jfd (with a defer bit) case.

The second command, change data field - cdf, is used to change the contents of DF. This is a single cycle instruction with an operation code of 720X74. The command, cdf, changes only the data field register (DF) and does not affect the program counter or the IF register. Bits 9-11 of cdf specify the new contents of DF.

Type 14 High Speed Channel and Sequence Break System Operation
When high speed channel transfers are involved, the high speed channel specifies a $15(12+3)$ bit address for one of the 32,768 words.

When a sequence break interrupt occurs, the previous DF and IF states must be stored. In this case, a sequence break to a channel means that the contents of the AC are stored in the first register of the break channel, IF, DF, and PC are stored in the second register, and the IO are stored in the third, and the fourth register contains the next instruction to be executed. The sequence break addresses are always taken from memory module 0 . Thus, when a sequence break occurs, both IF and DF are set to 0. A sequence break is terminated by giving the $j f d Y$ command, with $I F=0$. Register Y must be one of the 16 registers holding IF, DF, and PC of the interrupt.

Example Of Programming

The following subroutines form $\mathrm{c}_{\mathrm{i}}=\mathrm{a}_{\mathrm{i}}+\mathrm{b}_{\mathrm{i}}$, $\mathbf{i}=1, \ldots .$. n. The elements are stored continuously. The number of elements, 3.n, must fit into the available memory in all examples.

$$
-4-
$$

Three examples are given, the first assumes no field switching, the second is for Type 11, and the third is for Type 14.

The subroutines are overly general in that the matrices are assumed to be stored in different fields of memory, and may extend from field to field.

Both extra memory routines use subroutines which "fetch" the desired word from a possible 2^{14} or $2^{l 5}$ words, and these subroutines are called "setmem".

APPENDIX


```
gMATRIX ADOITION - TYPE 11 - OPERATES IN FIELD B BRINGS DATA TO.FIELD A
,}\mathrm{ REQUIRES SUBROUTINES: CONVERT AND SETMEM
O: JFD * MATADOW ,MATADDW IS CODE FOR CALLING SUB.
,R LOC CODEA
,R&1 LOC CODEB
gR&2 LOC CODEC
,R&C3 - N
, R&4
,MATADD DAC MATEND
    JDA CONVERT
    DAC & & 2
    JDA SETMEM
    LOC
    LAC * FALOC
    JDA CONVERT
    DAC AINDEX
    IOX FALOC
    LAC * FALOC
    JDA CONVERT
    OAC BINDEX
    IDX FALOC
    LAC * FALOC
    JDA CONVERT
    DAC CINDEX
    IDX FALOC
    LAC * FALOC
    DAC NCOUNT ,END SETUP
    JDA SETMEM
O
    LAC * FALOC
    JDA SETMEM
BINDEX O
    ADD * FALOC
    JDA SETMEM
CINDEX O
    DAC * FALOC
    IDX AINDEX
    IDX BINDEX
    IDX CINDEX
    ISP NCOUNT
        JMP LOOP
        LAW4
        ADD MATEND
        DAC MATEND
        JFD MATEND
MATEND O
NCOUNT O
```

, 14 BIT ADDRESS FIRST ELEMENT OF "A"
, 14 BIT ADDRESS FIRST ELEMENT OF "B"
, 14 BIT ADDRESS FIRST ELEMENT OF "C"
, NUMBER OF ELEMENTS IN MATRIX
, RETURN
, RETURN MACHINE STATE
, THE FOLLOWING INSTRUCTIONS
, SETUP THE INITIAL VALUES FOR , INDICES
, END SETUP
, STORAGE FOR RETURN
, NUMBER OF ELEMENTS

```
;, JDA CONVERT ,AC HAS I8 BIT CODEWORD FOR MACHINE STATE
,R ,AC HAS 14 BIT CODEWORD FOR THE MEMOR
    CONVERT O
        DAP CONEND
        LAC CONVERT
        RCL s6
        SMA
        RIR S3 ,SELECTS EITHER FA OR FB FOR 3 BITS
        RAL SI
        RCR S7
CONEND
        JMP
            JDA SETMEM
            .. CODEWORD
        ,SELECTS EITHER FA OR FB FOR 3 BITS
        , AC CONTAINS 14 BITS - MEMORY REGISTEF
        ,}14\mathrm{ BIT COOE WORD FOR CELL
    GR&I .SUBROUTINE LOCATION
    ,"FALOC" CONTAINS A NUMBER LESS THAN 4OOO FOR CELL. FA IS SET TO BITS 4-7.
SETMEM
DAP SETEND
LAC * SETEND
AND FIELDMASK
DAC FALOC ,FORM AN 11 (12) BIT ADDRESS
XOR * SETEND
RAR S5
ADD THISCFD
DAC & & 1
.. ,CFD I GIVEN
IDX SETEND
LAC SETMEM
JMP 
O
JMP END.
```


DIGITAL EQUIPMENT CORPORATION • MAYNARD, MASSACHUSETTS

```
,bECOMES CDF TO FiELD OF CW
```

,bECOMES CDF TO FiELD OF CW
, INSTRUC (E.G. LAC) Whose ADDRESS IS
,PICK UP CODEWORD
DAP CWPICK
IDX PICK
DAP SETEND
LAC * PICK
DAP CDFP
IDX PICK
LAC * PICK
DAP - INSTP
CWPICK
CDFP
i:
INSFP
SETENO
CDFCON
SETMI
SETM2 }777
LAC
AND SETMI
Rar s6
ADD CDFCON
DAC
LAC * CWPICK
AND SETM2
MP
CDF

```
```

