
PROGRAMMING

MANUAL

LINe B

DIGITAL EQUIPMENT CORPORATION. MAYNARD, MASSACHUSETTS

LINC-B
PROGRAMMING

MANUAL

I-L85(A)

DIGITAL EQUIPMENT CORPORATION • MAYNARD, MASSACHUSETTS

1st Printing October 1966
2nd Printing May 1968
3rd Pri nti ng February 196'9
4th Printing July 1969

Copyright© 1966, 1968, 1969by Digital Equipment Corporation

Instruction times, operating speeds and the like are in
cluded in this manual for reference only; they are not to
be taken as specifications.

The following are registered trademarks of Digital
Equipment Corporation, Maynard, Massachusetts:

DEC
FLIP CHIP
DIGITAL

ii

PDP
FOCAL
COMPUTER LAB

PROGRAMMING THE LINC-8

PREFACE

This document is derived from several works developed by persons outside of DEC.

"Programming the LINC" LINC V16 Section 2 Programming and Use, April 1965, by Mary Allen Wilkes

and Wesley A. Clark, Washington University, St. Louis, Mo., was used, with some changes felt ap

propriate, for tne discussion of the instruction set of the LINC portion of the LINC-8. II A LINC Uti I ity

System" Technical Report 1, March 19,1965, written by M.D. McDonald, S.R. Davisson, and J.R.

Cox, Jr., Biomedical Computer Laboratory, Washington University, St., Louis, Mo., was used to

provide a basis for the discussion of the LAP4 and GUIDE systems. To the above ir-ldividuals, as well

as others at the Computer Research Laboratory of Washington University, the National Institutes of

Health, the National Aeronautics and Space Administration, and individual LINC users, we are greatly

indebted.

iii

1-1

1-2

2

2-1

2-2

2-3

2-3.1

2-3.2

2-3.3

2-3 .. 4

2-4

2-5

2-5.1

2-5.2

2-5.3

2-6

2-6.1

2-6.2

2-7

2-7. 1

2-7.2

2-7.3

2-8

2-9

2-10

2-10.1

2-11

2-12

2-13

2-13. 1

2.13.2

PROGRAMMING THE LINC-8

CONTENTS

INTRODUCT ION •.•.•....•..•.••.•..•.•.•••••••..•.•.••••..•••••.•...••

Manua I Organ i zat ion ...•.•...••••••••.••••••..•••.•....•.•.•••.....

N umber Systems ••••.••.•••••••.••••••..••••••..•..•••••••••••••••••

INSTRUCTIONS ...•••..••.•••••••••••.•••••••••••••.••••••••••••••..•••

Simple Instructions •••••••••..••.••.••••••.•••••••••••••••.••••••••••

Shifting ••.•••••••••••••••.•••••••••••••••••••••••••••••••.•...••••

L INC Memory and Memory Reference Instruct ions ..•...••.•••.•••••.••••

The Store-Clear Instruction (4000 + X) ..••...•.••.•••••••••••••••••

The ADD Instruction and Binary Addition (2000 + X)•.....•...•..

Instruct ion Locat ion Reg i ster ••.••••••..•..•••••••..•...•.•••••••.

The Jump Instruction (6000 + X) ••••..••••.•••••••••..•••..•.•.••••

Address Modification and Program Loops •••••••••••••••••.••••.•...••••

Index C I ass Instru ct ions I •..•.•..••••...••.••..•.•••••.•••....•..•.•.•

Indirect Addressing •..•••..•..••.••..••..••••••.•.•.•••••••.•..•.

Index Registers and Indexing•••••••••...•...•.•••••.•••.•••.

Logic Instructions •••...•.•.•..••••••..•....•••.••.•..••.•....•.•

Special Index Register Instructions •••...••••.•••••••.••.•.•..••••••..••

The Index and Skip Instruction ..•••••.••••.•.••..••••••••.•••.•.••

The SET Instruction ••..••••.•.•••••••••••••.•••••....••••••••••••

Index C lass Instruct ions II

Double Register Forms••.••••••••••••••••••••••••..••••.•••••

Multiple Length Arithmetic .•••.•••••••.••••••••••••••••••.•••••••

Multiplication ••••••.•••.•••.•••••••••••••••••••.•••••••••••••••

Half-Word Class Instructions •••••.••••••••••••••••••••••••••••••••••••

The Keyboard Instruction ••••••••••••••••••••••••••••••.•••••••••••••

The LINC Scopes and the Display Instructions •••••.•••••••••••••••••••••

Character Display ••••••••••••••••••••••••••••••••••••.•.••••.•••

Analog Input and the Sample Instruction .•••••.••••.•••••••••••.••••••••

The Skip Class Instructions •••••••••••••••••••••••••••••••••••••••.•••

Subrout i ne T ec hn iques ••••••••••.••••.•••••••••••••••••••••••••••••••

Ma in Program ••••.•••••••••••••••••••••••••••••••••••••••.•••••

Subrout i ne ••••.••••.••••.•••••••••••••••••••••••••••••.••••••••

v

2

2

2

2

8

9

9

10

11

12

18

18

20

22

23

23

25

28

28

31

36

41

45

46

49

55

59

62

63

64

2-14

2-14. 1

2-14.2

2-15

2-15. 1

2-15.2

2-15.3

2-15.4

2-15.5

3

3-1

3-2

3-3

3-4

3-5

4

4-1

4-2

4-3

4-4

4-5

Appendix

PROGRAMMING THE LINC-8

CONTENTS {continued}

.Pa~~

Processor Intercommunication ..••..•..••••••••••••••••.•••••••.•••••... 6,4

Control Transfer between Processors••.•••••••.•••.•••••••••••• 6,4

Example of Use of the OPR 13 Instruction {LINC Program} . • . • . • • . • • • • .• 70

Magnetic Tape Instructions ••..•..•....••••...•.••••••••••.•.•••••••.• 70

Block Transfers and Checking••••••.••.••..••.•.•••••.•••. 7:2

Group Transfers •.••••..•••••.•.•••..••.•••.•••...••••••.•••••••• 80

Tape Motion and the Move toward Block Instruction •••.•.•••••••••••• 8:2

T ape Format •.•...••..•••••••.••.••••••••••••••..•.••••••••••••• 8.5

Tape Motion Timing •••.••.•••.•.••.•••••••••.•.••.••••••••••••.• 8:8

GUIDE. . . • . • . . • • • • 91

General•..•..••.....••.••••••••........••.•.••.. 91

General Operating Procedure••.•••••..•••••••.•.•..••••...• 91

Basic System Commands ..••.......•.•......•.•..•.••..•.•.•••.•.••.... 91

Use of Basic Commands .••••••••••••.••••••..•••••••.••••••••••••••••. 9:2

Loading a User1s Program into Memory •••••••..••••••.••.•.••••••••••... 9,4

LAP4 . . . • . • . • . . . • • . • • • • . • • . • • • • • . • • • • • . • • • • • • . • . • • • • • • • • • . . • • • • . • . . • •• 9.5

Genera I ...•.................. 9.5

General Operating Procedure .•••.•.••..•••••••••.••...••••••••••..•.• 9.5

Basic System {Meta} Commands. • . • • • • • • . • • • . • • .• 9.5

Use of Basic {Meta} Commands ..•••••.••••••..•••.••••••.••.•..•••••.. 97

LAP4 Language ••....••..•.••......•. . • • • • • • • • • • . • • . . . • • • • • . . . • . . • • •. 1102

GLOSSARY •••...•.••••••..•...••••••..••••.••••••••.•••.••••.••••.. . • •. 107

2 CHARTS ••.•.•.•.•••••.•••••••••••••••••••••••••.••••••.••.•.•..•.••••.. 115

3 EXTENDED MEMORY PROGRAMMING •.••••••••.••••••....••.••...•••.•.• 1.25

4 INSTRUCTIONS ...••...••••....••.••...••••••••••••••••••••••.••••••.•.• 1.29

Index

INDEX OF PROGRAMMING EXAMPLES •••••••••••••••••••••••.•.••..•.•.•. 1·45

PAGE INDEX OF LINC-8 INSTRUCTIONS 146

vi

PROGRAMMING THE LINC-8

CHAPTER 1

INTRODUCTION

The Digital Equipment Corporation LINC-8 system is comprised of two subsystems: a standard

Programmed Data Processor-8 (PDP-8); and the LINC subsystem consisting of a central processing portion,

a display scope, and a dual tape transport. The two subsystems are interconnected by a special interface

section which mediates the interchange of data and control, and both share a dual console. The LINC-8

is designed to operate in one of two modes. In the first mode, it operates as a standard basic PDP-8 com

puter system. In the second, it operates essentially as a LINC having certain spec ial in/out and speed

characteristics. Despite these differences and improvements, the LINC subsystem will often be referred

to simply as the LINC throughout the manual.

In the LINC mode, the LINC section is controlled by an ordinary LINC program held in the

upper hal f of the PDP-8 memory (wh ich is arranged to correspond exactly to the standard LINC memory of

2048 words). The PDP-8 memory can be expanded to 32,768 words. The LINC section is designed to call

and carry out all instructions of the LINC program except MTP, OPR, and a new instruction called EXC.

Instructions of this excepted class, called the execute class, are carried out by interpretive routines held

in the lower hal f of the PDP-8 memory, wh ich also holds programs for the interpretation of console switch

actions and for the conversion of Teletype input to LINC keyboard code. The interpretive program is

named PROGOFOP (PROGram OF OPeration), and is automatically read into the PDP-8 memory from

magnetic t<lpe by a wired-in LOAD mode initiated at the console.

1-1 MANUAL ORGANIZA nON

Th is manual presents programm ing information relating to the LINC subsystem of the LINC-8

computer. The reg isters, switches, and indicators referenced in th is document are assoc iated with the

LINC section and are located on the left half of the LINC-8 dual console. The RIGHT SWITCHES used

in the LINe mode of operation also serve as the switch register for PDP-8 operation. Programming infor

mation for "the PDP-8 subsystem of the LINC-8 can be obtained from the PDP-8 Users Handbook, F-85 "

The first two chapters of th is document acquaint the reader with number systems, instructions,

and programm ing examples. Chapters 3 and 4 discuss the LINC Uti I ity System (GUIDE and LAP4) wh ich

provides the user with information necessary to use these basic system programs for compiling and manipu

lating LINC-8 programs.

!Like most digital computers, the LINC-8 operates by manipulating binary numbers held in various

registers under the control of a program of instructions which are themselves coded as binary numbers and

stored in other registers. LINC-8 instructions generally fall into types or classes, the instructions of a

class havinl~ certain similarities. In this description, however, instructions are introduced as they are

PROGRAMMING THE LINC-8

relevant to the discussion. Reference to chart I appendix 2 is therefore recommended when class charac

teristics are described. Furthermore, not all LINC-8 instructions are described here in detai I; therefore

this document should be read in conjunction with the LINC-8 order code summary in appendix 2.

1-2 NUMBER SYSTEMS

The best way to begin studying number systems is to consider only a few of the registers and

switches which are shown on the LINC-8 control console: the ACCUMULATOR (ACC) which is a register

of twelve I ights; the LINK bit (L); the LEFT and RIGHT SWITCHES, which are rows of twelve toggle

switches each; and one lever switch labeled DO. The number systems and operation of several of the

instructions can be understood in terms of these few elements.

The elements (bits) of each register or row of toggle switches are to be thought of as numbered

from left to right starting with 0. This will serve to identify the elements and to relate them to the numer

ical value of the binary integer held in the reg ister. C(ACC) denotes the contents of the accumu lator

register, etc. If the accumulator is illuminated thus

~-----------ACCUMULATOR--------------~

®oo o®o
3 4 5 6 7 8 9 10 11

then the binary number stored in the accumu lator is

C(ACC) = 010 011 100 101 (binary)

which has the decimal value

= 1 024 + 128 + 64 + 32 + 4 + 1

= 1253 (decimal)

@

o
Light off

Light on

This can also be considered as an octal number by considering each group of three bits in turn. In this

example, grouping and factoring proceed as follows:

C(ACC) = (210) + (2
7

+2
6

) + (2
5

) + (~2 +20)

-= (2 1).29 + (21+2°).2
6

+ (2
2
).2

3
+ (22+2°).2°

= (2) .83 + (3) .8
2

+ (4) .8
1

+ (5) .8°

=2 3 4 5

= 2345 (octal)

2

PROGRAMMING THE LINC-8

To put this more simply, each octal digit can be treated as an independent 3-bit binary number

whose v(llue (a, I, ... , 7) can be obtained from the weights 22, 21, and 20:

r------------ACCUMULATOR--------------~

o@o
~

3 = 2345 (octal)

This ease of representation (the eight possible combinations within a group are easi Iy perceived

and remembered) is the principal reason for using octal numbers; the octal system can be viewed simply as

a convenient notational system for representing binary numbers. Of course, octal numbers can also be

manipu IClted arithmetically.

Translation from one system to the other is easi Iy accomplished in either direction. Here are

some eXClmples:

1

1
073

1 1 \
a 2

1 1
6 5

J 1
7

1
2 4 6 (octal)

! 1 1
001 000 111 all 000 010 110 101 111 010 100 110 (binary)

Sometimes it is usefu I to view the contents of a register as a signed number. One of the bits

must be reserved for the sign of the number. The leftmost bit is therefore identified as the sign bit (0 for

+, 1 for -). To change the sign of a binary number, complement the number (replace all O's by l's and

vice versa). Examples:

000 000 000 all = +3

1 11 111 111 100 = -3

all 111 111 111 = +3777 } The largest positive and negative octal integers

100 000 000 000 = -3777
in the 12-bit signed-number system.

The pair of binary numbers 101111110011 and 01 00000011 00 (5763
8

and 2014
8

) are comple

ments of each other, and denote the complement of the number N by N. Note that the sum of each

binary d~git and its complement is the number I, and that the sum of each octal digit and its comple

ment is the number 7. Note also that there are two representations of 0:

000 000 000 000 = +0

1 1 1 11 1 1 11 11 1 =-0

Note finally that the sum of any binary number and its complement is always - a in this system.

3

PROGRAMMING THE LlNC-S

CHAPTER 2

I NSTRUCTI ONS

2-1 51 MPLE I NSTRUCTI ONS

CLR, COM,
ATR, RTA, RSW

LI NC-S instructions themselves are encoded as binary numbers and held in various registers.

The simplest of these instructions, namely those which operate only on the accumulator, are described

first with reference to the LEFT SWITCHES.

Raising the DO lever (DO means lido toggle instruction") causes the LlNC to execute the in-

struction whose binary code number is held in the LEFT SWITCHES. The LlNC then halts. For example,

if the LEFT SWITCHES are set to the code number for the instruction CLEAR, which happens to be 0011
S

'

and the DO lever is then momentari Iy raised, the ACCUMULATOR lights all go out as does the LI NK bit

light, so that C(ACC} = 0, and C(L} = O. In setting a switch, up corresponds to 1 •

DO

(@j
STOP

LEFT SW ITCHES
LEFT SWITCHES SET
TO 0011 (OCTA L),
THE CODE NUMBER
FOR "CLEAR."

Briefly: If C(LE FT SWI TC HES} = OOll
S

' DO has the effect 0 - C(ACC} and 0 - C(L}. (Read

"0 repl aces the contents of the accumu lator, ". etc.).

Clear (or CLR) is an instruction of the class known as miscellaneous instructions. A second

miscellaneous c lass instruction, COM (complement), with the code number 0017 S' directs the LI NC to

complement the contents of the accumu lator and therefore has the effect C(ACC) - C(ACC}. (Read:

lithe complement of the contents of the accumulator replaces the contents of the accumulator .")

Two other instructions of this class transfer information between the accumulator and the relay

register. The relay register, displayed on the control console, operates six relays which can be used to

control or run external equipment. An instruction with the code 0014
S

' called ATR (accumulator to relay),

directs the LI NC to transfer the contents of the right hal f of the accumu lator, i. e ., the rightmost six bits,

into the relay register. The accumulator itself is not changed when the instruction is executed. Another

instruction, called RTA (relay to accumulator), 0015
S

' causes the LlNC to clear the accumulator and

then transfer the contents of the relay register into the right half of the accumulator. In this case the relay

register is not changed and the left half of the accumulator remains cleared (i.e., contains OIS).

Another instruction called RSW (right switches), 0516
S

' directs the LlNC to copy the contents

of the RIGHT SWITCHES into the accumulator. By setting the LEFT SWITCHES to 0516
S

' the RIGHT

SWITCHES to whatever value wanted in the accumulator, and then momentarily'raising the DO lever,

5

PROGRAMMING THE LlNC-8

the operator can change the contents of the accumulator to any desired new value. The drawing

shows how the switches should be set to put the number 6451
8

into the accumulator:

DO 14 LEFT SWITCHES ~ ... RIGHT SWITCHES "I
C® j ~~~ J]~/] ~~~ 1J1J'fJ ~&~ O~~ ~~11 ~~&

STOP

CODE NUMBER FOR RSW 6451-. C (ACC) WHEN
INSTRUCTION: 0516 DO LEVER IS RAISED

2-2 SHIFTING

After a number has been put into the accumulator it can be repositioned (shifted) to the right

or left. There are two ways of shifting: rotation, in which the end-elements of the accumulator are

connected together to form a closed ring, and scaling, in which the end-elements are not so connected.

L a 11

D ,--I -'----'-_,I ~ 1....--1 --L--..L-----II ~ 1....--1 ~----II ~ 1...--1 --I------I---'I~
Scaling

Examples of shifts of one place:

Effect of rotating Effect of scaling
right 1 place right 1 place

Before 000 000 011 001 000 000 all 001 = +25 (decimal)

After 100 000 001 100 000 000 001 100 = +12

Before 1 11 1 1 1 100 110 1 1 1 1 11 100 110= - 25 (decimal)

After 011 11 1 110 all 1 11 1 11 110 all = -12

Note that, in seal i ng, bits are lost to the right, which amounts to an error of rounding off;

the original sign is preserved in the sign bit and replicated in the bit positions to the right of thE! sign bit.

This has the effect of reducing the size of the number by powers of two (analogous to moving the decimal

point in decimal calcu lations).

6

PROGRAMMING THE L1NC-8

ROR, ROL, SCR

The L1NC has three instructions, called the shift class instructions, which shift the contents

of the accumu lator: rotate right, rotate left, and scale right. Un I ike the simple instructions considered

so far, the code number for a shift class instruction includes a variable element which specifies the number

of places to shift. For example, write ROL n (rotate the contents of the accumulator n places to the left),

where n can be any number from 0-17
8

•

As a further variation of the shift class instructions, the link bit can be adjoined to the accum

ulatorduring rotation to form a 13-bit ring as shown below, or to bit 11 of the accumulator during scaling

to preserve the low order bit scaled out of the accumu lator:

~ H H ~ I I J
0 1 1

Rotation with Link Bit

Co I ~ ~ ~ I
]

0 11

Scaling with Link Bit

The code number of a shift class instruction, e.g., rotate left, therefore includes the number

of places to shift and an indication of whether or not to include the link bit. Use the full expression

ROL i n, which has the octal coding:

r{; :~:
ACC only

ROLin 0240 + 20i + n

i
number of places to shift

(n = 0, 1, ••• , 17)

so that, for example, rotate ACC left 3 places has the code 0243, and rotate ACC with link left 7 places

has the code 0267. Note the correspondence between the code terms and bit positions of the binary

coded instruction as it appears, for example, in the LEFT SWITCHES:

THE "i-BIT"

o •

~ ~ ~ ~ <U~ &&~
\ yr--------' ~~--__ y-----

ROL i 7

CODE NUMBER = 0267
ROL n

Similar coding is used with ROR i n (rotate right), 300 + 20i + n, and SCR i n (scale right), 340 + 20i + n.

7

PROGRAMMING THE LlNC-8

2-3 LlNC MEMORY AND MEMORY REFERENCE INSTRUCTIONS

Before proceeding to other instructions, it is necessary to introduce the LlNC memory. This

memory is to be regarded as a set of 1024
10

registers t each holding 12-bit binary numbers in the manner

of the accumulator. These memory registers are numbered 0, 1, ..• ,1023
10

, orO, 1, •.. ,1777
8

, IClnd

reference is made to lithe contents of register 3, II C(3), lithe contents of register X, II C(X), etc., refer

ring to "3" and "X" as memory addresses.

The memory actually consists of a remotely-located array of magnetic storage elements with

related electronics, but for introductory purposes view it in terms of two registers of lights, namely the

memory address register and the memory buffer register:

~- MEMORY ADDRESS

rn I11II111
MEMORY BUFFER

I I I I I I I I
L ACCUMULATOR

D I I I I I I I I I I I I~~ PDP-8

14 LEFT SWITCHES 14~--- RIGHT SWITCHES --~

~~~ ~~<t ~~~ ~~(~ 

By using these two registers in conjunction with the LEFT SWITCHES it is possible to find out 

what values the memory registers contain. For example, to find the contents of register 3, set the R~GHT 

SWITCHES to memory address 0003 and then operate the key labeled EXAM. As 0003 appears in the 

memory address register, the contents of register 3 appear in the memory buffer register. By setting the 

RIGHT SWITCHES toa memory address and pushing EXAM, the contents of any register in the LI NC memory 

may be examined. 

The contents of any selected memory register may be changed by using both the LEFT and 

RIGHT SWITCHES an,d the key marked FILL. For example, to make the memory register whose address is 

700 contain -1 (i. e., 7776
8

) set memory address 0700 into the RI GHT SWITCHES. Set the LEfT SWITCHES 

to 7776 and operate the FI LL key. A 0700 appears in the memory address register and 7776 appears in the 

memory buffer register, indicating that the contents of register 7QO are now 7776. Whatever value rE~gis

ter 700 may have contained before FILL was pushed is lost, and the new value takes its place. In this 

way any register in the LI NC memory can be filled with a new number. 

None of the LI NC instructions make explicit reference to the memory address register or memory 

buffer register; rather, in referring to memory register X, an instruction may direct the LI NC implicitly to 

put the address X into the memory address register and the contents of register X, C(X), into the memory 

buffer register. 

tSee appendix 3 for the discussion of extended memory programming. 

8 



PROGRAMMING THE L1NC-8 

STC, ADD 

2-3.1 The Store-Clear Instruction (4000 + X) 

Now it is possible to describe the first of the memory reference instructions, STC X (store-clear 

X), which has the code number 4000 + X, where a .::: X .::: 1777
8

• (From now on only octal numbers wi II 

be used for addresses.) Execution of STC X has two effects: 1) the contents of the accumu lator are copied 

into memory register X, C(ACC)-C(X), and 2) the accumulator is then cleared, O-C(ACC). (The link 

bit is not cleared.) Thus, for example, if C(ACC) = 0503 and C(671) = 2345, and the code number for 

STC 671, i.e., 4671, is set into the LEFT SWITCHES, raising the DO level puts a into the accumulator 

and 0503 into register 671. The original contents of register 671 are lost. 

It wi II be clear that the memory can be fi lied with new numbers at any time either by using 

the FI LL key and the switches, or by loading the accumulator from the RIGHT SWITCHES with the 

RSW instruction and the DO lever and then storing the accumulator contents with the STC X instruction 

and the DO lever. 

2-3.2 The ADD Instruction and Binary Addition (2000 + X) 

STC is one of three fu II-address c lass instructions. Another instruction in th is c lass, ADD X, 

has the code number 2000 + X where a .::: X'::: 1777. Execution of ADD X has the effect of adding the 

contents of memory register X to the contents of the accumulator, i.e., C(X) + C(ACC)- C(ACC). 

If the accumulator is first cleared, ADD X has the effect of merely copying into the accumulator the 

contents of memory register X, i.e., C(X) -C(ACC). In any case, the contents of memory register X 

are unaffected by the instruction. 

The addition itself takes place in the binary system, * within the limitations of the 12-bit 

registers. The basic rules for binary addition are simple: a + a = 0; 1 + a = 1; 1 + 1 = 10 (i .e., zero, 

with one to carry). A carry arising from the leftmost column (end-carry) is brought around and added 

into the rightmost column (end-around carry). Some examples (begin at the rightmost column as in 

decimal clddition): 

001 11 1 010 001 1 11 100 010 all 
000 010 111 001 001 010 010 000 

11 111 1 1 (Carries) ( 11 1 (Carries) 
010 010 001 010 (Sum) 000 110 100 all 

"'1 (End-around carry) 

11 (Carries) 
000 110 100 100 (Sum) 

* See Volume 16, Section 1, II An Intr oduction to Binary Numbers and Binary Arithmetic, II Irving H. Thomae. 

9 



PROGRAMMING THE LlNC-8 

HLT 
The reader should try some examples of his own, and verify the fact that adding a number t() 

itself with end-around carry is equivalent to rotating left one place. With signed-integer interpretation, 

some other examples are: 

000 000 000 101 = +5 111 111 111 010 = -5 

111 111 111 100 = -3 111 111 111 100 = -3 

( 111 111 111 ( 111 111 1 1 
000 000 001 1 11 111 110 110 000 ____ 1 

.1 
1 

000 000 000 010 = +2 1 11 11 1 110 1 1 1 = -8 (decimal) 

It can be seen that subtraction of the number N is accomplished by addition of the complement 

of N, N. Of course, if either the sum or difference is too large for the accumulator to hold, the result 

of the addition may not be quite the desired number. For example, adding 1 to the largest positive integer 

in this system (+ 3777
8

) resu Its in the I argest negative integer (- 3777
8

), Th i sis sometimes called over

flowi ng the capac i ty of the accumu lator. 

2-3.3 Instruction Location Register 

It is clear that the code numbers of a series of different instructions can be stored in consecu-

tive memory reg i sters. The LI NC-8 is designed to execute th i s stored program of instructions by fetch i ng 

and carrying out each instruction in sequence, using a special la-bit register called the instruction lo

cation register (P), to hold the address of the next instruction to be executed. Using the FILL key 

and the LEFT and RIGHT SWITCHES already discussed, can, for example, put into memoryregisters 20-24 

the code numbers for a series of instructions which divide by 8 the number held in memory register 30 and 

store the result in memory register 31: 

Memory Address Memory Buffer Effect 

Start 
.. 20 CLR 0011 Clear the accumulator. 

21 ADD 30 2030 Add the contents of register 30 to the 
accumu lator. 

22 SCR 3 0343 Scale C(ACC) right 3 places to divide by 8. 

23 STC 31 4031 Store in register 31. 

24 HLT 0000 Halt the computer. 
. 

30 N N Number to be divided by 8. 

31 +N/8 N/8 Resu It. 

Example 1 Simple Sequence of Instructions 

10 



PROGRAMMING THE LlNC-8 

JMP 

Use the FILL key and the LEFT and RIGHT SWITCHES to put the code numbers for the 

instructions into memory registers 20-24 and the number to be divided into register 30. Operoting the 

console kE~y labeled START 20 directs the LI NC to begin executing instructions at memory register 20. 

That is, the value 20 replaces the contents of the instruction location register. As each instruction of the 

stored program is executed, the instruction location register is increased by 1, C(P) + 1 - C(P). When 

the instruction location register contains 24, the computer encounters the instruction HLT, code 0000, 

which halts the machine. To run the program again, merely operate the START 20 key. (The code 

numbers f()r the instructions stay in memory registers 20-24 unless they are deliberately changed.) 

2-3.4 The Jump Instruction (6000 + X) 

The last full-address instruction, JMP X, code 6000 + X, has the effect of setting the instruc

tion location register to the value Xi X - C{P). That is, the LINC, instead of increasing the contents 

of the instruction location register by one and executing the next instruction in sequence, is directed by 

the JMP instruction to get its next instruction from memory register X. In the above example having a 

JUMP to 20 instruction, code 6020, in memory register 24 (in place of HLT) would cause the computer 

to repeat the program endlessly. If the program were started with the START 20 switch, the instruction 

location register (P) would hold the succession of values: 20, 21, 22, 23, 24, 20, 21, etc. (Later in

structions will be introduced which increase C{P) by extra amounts, causing it to skip.) 

JMP X has one further effect: if JMP 20, 6020, is held in memory register 24, then its execu

tion causes the code for JMP 25 to replace the contents of register 0; i.e., 6025-C(0). More generally, 

if JMP X is in any memory register p, O.:s p.:s 1777, then its execution causes JMP p+1 -C(O). 

Memory 
Memory Bu ffer Effect 

Address 

0 JMP p+1 6000 + p+1 . · · 
-+ p JMPX 6000 + X X -+ C{P), and JMP p+1 -+ C(O). 

p+1 C · · X - Next instruction. 

This JMP p+1 code replaces the contents of register 0 every time a JMP X instruction is executed 

unless X =: 0, in which case the contents of 0 are unchanged. Use of memory register 0 in this way is 

relevant to a programming technique involving subroutines which is described latert. 

tSee appe!ndix 3 for a discussion of JMP X when using extended memory. 

11 



PROGRAMMING THE LlNC-S 

The following programming example illustrates many of the features described so far. It finds 

one-fourth of the difference between two numbers Nl and N
2

, which are located in registers 201 and 

202, and leaves the result in register 203 and in the accumulator. After filling consecutive memory 

registers 175-210 with the appropriate code and data numbers, the program must be started at memory 

register 175. Since there is no START 175 key on the console, this is done by setting the RIGHT 

SWITCHES to 0175 and operating the console key labeled START RS (start RIGHT SWITCHES). 

Memory Address Memory Buffer Effect 

Start 
) 175 CLR 0011 0- C(ACC). 

176 ADD 201 2201 N
1

-C(ACC). 

177 COM 0017 Forms - Nl . 

200 JMP 204 6204 Jumps around data; 204-+ C (P), and 
JMP 201- C(O). 

201 Nl Nl } 202 N2 N2 Data and resu It. 

203 (N
2
-N

1 
)/4 (N

2
-N

1 
)/4 

204 ADD 202 2202 (N
2
-N

1
)- C(ACC). 

205 SCR 2 0342 Divides by 4. 

206 STC 203 4203 Stores result in 203; C(ACC) -C(203) 
O-C(ACC). 

207 ADD 203 2203 Recovers resu It in ACe. 

210 HLT 0000 Halts the LI NC. 

Example 2 Simple Sequence Using the Jump Instruction 

In executing this program, the instruction location register holds the succession of numbers: 175, 

1 76, 1 77, 200, 204, 205, 206, 207, 21 0 • 

2-4 ADDRESS MODIFICATION AND PROGRAM LOOPS 

Frequently a program of instructions must deal with a large set of numbers rather than just one or 

or two. For example, suppose one wishes to add 100
S 

numbers and that the numbers are stored in the 

memory in registers 1000-1077. The sum is to go into memory register 1100. It is possible, of course, to 

write out all the instructions necessary to do this, 

12 



PROGRAMMING THE LINC-a 

AZE 

Memory 
Memory Buffer Effect 

Address 

- 20 CLR 0011 0- C(ACC); 0- C(L) . 

21 ADD 1000 3000 Add 1 st number. 

22 ADD 1001 3001 Add 2nd number. 

23 ADD 1002 3002 Add 3rd number. 

24 ADD 1003 3003 Add 4th number. 

etc. etc. etc. 

but it is easy to see that the program would be more than 100a registers long. A more complex, but con

siderably shorter, program can be written using a programming technique known as address modification. 

Instead of writing 100a ADD X instructions, write only one ADD X Instruction, which is repeated 100a 
times, modifying the X part of the ADD X instruction each time it is repeated. In this case the computer 

first executes an ADD 1000 instruction; the program then adds one to the ADD instruction itsel f and re

stores it, so that it is now ADD 1001. The program then jumps back to the location containing the ADD 

instruction and the computer repeats the entire process, this time executing an ADD 1001 instruction. In 

short, the program is written so that it changes its own instructions wh i Ie runni ng . 

The process might be diagrammed: 

Add 1 to the 
ADD X instruction 

This technique introduces the additional prohlem of deciding when all 100 numbers have been 

summed and halting the computer. In this context a new instruction AZE (accumulator zero), code 

0450, should be introduced. This is one of a class of instructions known as skip instructions; it directs 

the L1NC to skip the instruction in the next memory register when C(ACC) = ±O (OOOOa or 7777a),11 If 

C(ACC) I- 0, the computer does not skip. For example, if C(ACC) = 7777, and one writes: 

13 



PROGRAMMING THE LlNC-8 

Memory Address Memory Buffer 

p AZE 0450 
- - ---

p+1 
I 

p+2 - <E-_I 

the computer takes the next instruction from p+2. That is, when the AZE instruction in register p is 

executed, p+2 replaces the contents of the instruction location register, and the computer skips the 

instruction at p+1. If C(ACC) I 0, then p+1 - C (P) and the computer executes the next instruction in 

sequence as usual. 

The followi ng example sums the numbers in memory registers 1000-1077 and puts the sum into 

memory register 1100, using address modification and the AZE instruction to decide when to halt the 

computer. (Square brackets indicate registers whose contents change while the program is running.) 

14 



PROGRAMMI NG THE LI NC-8 

Memory Address Memory Buffer Effect 

10 ADD 1000 3000 

} Constants used by program. 11 1 0001 

12 -(ADD 1100) 4677. 
· · 

Start ~ 20 
. . 

CLR 0011 

} ~ode for ADD 1000- C(25). 0 -C(ACC). 21 ADD10 2010 

22 STC 25 4025 

23 STC 1100 5100 0- C(11 ~O), for accumu lating sum. 

24 r7 CLR 0011 
} Clear ACC and add C(X) to C(ACC). 

25 [ADD X] [2000+X] 

26 ADD 1100 3100 Sum so far + C(ACC) -C(ACC). 

27 STC 1100 5100 Sum so for -C(11 00) • 

30 ADD 25 2025 } ADD X instruction in register 25-C(ACC). 

31 ADD 11 2011 
Add 1 to C(ACC) and replace in register 25. 

32 STC .25 4025 

33 ADD 25 2025 
C(25) + C(12) C(ACC) • If C(25) = ADD 11 ~O, 

34 ADD12 2012 then C(ACC) = 7777 • 

35 AZE 0450 Skip to re~ister 37 if C(ACC) = 7777. 

I 
-:-------, 

6024 I f not, return and add next number. 36 JMP 24 I 
I 
I 

0000 When C(ACC) = 7777, all numbers have been 37 HLT ~ __ I 
summed. Hal t the computer. 

· · · · · " 1000 N1 N1 

1001 N2 N2 
. · > Numbers to be summed. 

· . . · 
1076 N77 N77 

1077 N
100 

N
100 

1100 [Sum] [ Sum] 

Example 3 Summing a Set of Numbers Using Address Modification 

15 



PROGRAMMI NG THE LI NC-S 

The instructions at locations 20-22 initially set the contents of memory register 25 to the code 

for ADD 1000. At the end of the program, register 25 will contain 3100, the code for ADD 1100. 

Adding (in registers 33 and 34) C(25) to C(12), which contains the complement of the code for ADD '1100, 

results in the sum 7777 only when the program has finished summing all lOOS numbers. This repeatingl 

sequence of instructIons is called a loop, and instructions such as AZE can be used to control the number 

of times a loop is repeated. In this example the instructions in locations 24-36 will be executed 100S 

times before the computer halts. 

The following program scans the contents of memory registers 400 through 450 looking for 

registers which do not contain zero. Any non-zero entry is moved to a new table beginning at locati'on 

500; this has the effect of packing the numbers so that no registers in the new table contain zero. When 

the program halts, the accumu lator contains the number of non-zero entries. 

16 



PROGRAMMI NG THE LI NC-8 

Memory Address Memory Buffer Effect 

4 ADD 400 2400 " 
5 STC 500 4500 

6 1 0001 > Constants used by the program. 

7 -(ADD 451) 5326 

10 -(STC 500) 3277 
/ . . . 

Start . . . 

}COde for ADD 400-C(106). 

') 100 CLR 0011 

101 ADD 4 2004 

102 STC 106 4106 

103 ADD 5 2005 
} Code for STC 500 -C(112). 

104 STC 112 4112 

105 ~CLR 0011 

106 [ADD 400J [2000+XJ C(X) - C(ACC). 

107 AZE 0450 If C(ACC) = 0, skip to location 111 • - -,--- --I 

110 JMP 112 I 6112 C(ACC) I 0, therefore JMP to location 112. 
I 

1 11 JMP 116~ 6116 C(ACC) = 0, therefore JMP to location 116. 

112 ~[STC 500] [ 4000+X] Store non-zero entry in new table. 

113 ADD 6 2006 
}Add 1 to the STC instruction in register 112. 

114 ADD 112 2112 

115 STC 112 4112 

116 4ADD6 2006 

}Add 1 to the ADD instruction in register 106. 117 ADD 106 2106 

120 STC 106 4106 

121 ADD 106 2106 } C(I 06) + C(7) -C(ACC). If C (1 06) = AD D 451, 

122 ADD 7 2007 
then C(ACC) = 7777 • 

123 AZE 0450 If C(ACC) :: 7777, skip to location 125. -------
I 

124 JMP 105 I 6105 If not, return to examine next number. 
I 

125 ADD 112~ 2112 If C(ACC) = 7777, then number of non-zero 
entries -C(ACC) and computer halts. 

126 ADD10 2010 

127 HLT 0000 

Example 4 Packing a Set of Numbers 

17 



PROGRAMMI NG THE LI NC-8 

ADA 
At the end of the program, register 106 contains the code for ADD 451, and all numbers in 

the table have been examined. I f, say, 6 entries were found to be non-zero, registers 500-505 wi II 

contain the non-zero entries, and register 112 wi II contain the code for STC 506. Therefore by addin:g 

C(112) to the complement of the code for STC 500 (in registers 125-126 above), the accumulator is left 

containing 6, the number of non-zero entries. 

2-5 INDEX CLASS INSTRUCTIONS I 

2-5.1 Indirect Addressing 

The largest class of LlNC instructions, index class, addresses the memory in a somewhat in-· 

volved manner. The instructions ADD X, STC X, and J MP X are called fu II address instructions because 

the 1 O-bit address X, O2 X 2 1777, can address directly any register in the 2000
8 

register memory. The 

index class instructions, however, have only 4 bits reserved for an address, and can therefore address 

only memory registers 1
8

-17
8

• The instruction ADA i ~ (add to accumulator), 1100
8 

+ 20i + ~, 

is typical of the index class: 

10 bits, 

ADA i P 

i = 0 or 1 
~ 

1100 + 20i + B 
t t 

ADA 12 ~ 2 17 

Memory register ~ should be thought of as containing a memory address, X, in the rightmost' 

o 1 2 11 

LITI 
"-- ----- X ------------------~ 

and X(~}, as meaning the right 1 O-bit address part of register ~. The leftmost bit can have any value, 

and, for the present, bit 1 must be O. In addressing memory register ~, an index class instruction tells 

the computer where to find the memory address to be used in executing the instruction. This is called 

indirect addressing. 

For example, to add the value 35 to the contents of the accumulator, with 35 held in memctry 

register 270, use the ADA instruction in the following manner: 

18 



PROGRAMMI NG THE LI NC-8 

LDA, STA 

Memory 
Memory Buffer Effect Address 

~----- -7<§f0 0270 Address of register contain-
~ ./ ing 35. " /' 

" /' 

· " ,/ . 
~< · ,/ 

" 
. 

0270~ " 0035 0035 "-,. 
· '. · '''" - p A~A® 1100 + ~ C(270) + C(ACC) - C(ACC). 
· · · 

Note that the ADA instruction does not tell the computer directly where to find the number 35; 

it tells the computer instead where to find the address of the memory register which contains 35. By using 

memory registers 1-17 in th is way I the index c lass instructions can refer to any register in the memory. 

Two other index c lass instructions, LDA i ~ (load accumu lator), and ST A i ~ (store accumu la

tor), are used in the following program which adds the contents of memory register 100 to the contents 

of regi ster 101 and stores the resu I t in 102. The LDA i ~ instruction, code 100 + 20i + ~, clears the 

accumulatlor and copies into it the contents of the specified memory register. STA i ~, code 1040 + 20i +~, 

stores the contents of the accumulator in the specified memory register; it does not, however, clear the 

accumu lator. Addition wi th ADA uses 12-bit end-around carry arithmetic. 

Memory 
Memory Buffer Effect 

Address 

10 Xl 0100 Address of N 1 • 

1 1 X
2 

0101 Address of N
2

• 

12 X3 0102 Address of (N 1 +N
2

)· 
. . . 

~30 LDA 10 1010 N
1

, i.e., C(l 00), - C(ACC). 

31 ADA 11 1 1 11 N
2

, i.e., C(l 01), + C(ACC) - C(ACC). 

32 STA 12 1052 Nl +N
2 

-C(l 02). 

33 HLT 0000 . 
100 Nl -

101 N2 -

102 [ N
1
+N

2
] [ -] 

Example 5 Indirect Addressing 

19 



SAE 

2-5.2 

PROGRAMMING THE LlNC-8 

Index Registers and Indexing 

When i is used with an index class instruction, that is, when i = 1, the computer is directed to 

add 1 to the X part of memory register ~ before it is used to address the memory. This process is called 

indexing, and registers 1-17 are frequently referred to as index registers. In the example below, -6 is 

loaded into the accumulator after index register ~ is indexed from 1432 to 1433 by the LOA i ~ instruction. 

Memory 
Memory Buffer Effect 

Address 

~ [X] [ 1432] Address minus 1 of register 
containing 7771 • 

-+ p LOA i ~ 1 020+ ~ X + 1, i.e., 1433, -C(~), and 
C(1433) -C(ACC). 

1432 - -
1433 -6 7771 

When the LOA i ~ instruction is executed, the value X(~) + 1 replaces the address part of 

register ~ (the leftmost 2 bits of register ~ are unaffected). This new value, 1433, is now used to ad

dress the memory. Note that if the LOA instruction at p were repeated, it would deal with the contents 

of register 1434, then 1435, etc. Utility of index registers in scanning tables of numbers should be 

obvious. 

Indexing involves only 1 O-bit numbers, and does not involve end-around carry. Therefore the 

address following 1777 is 0000. (The same kind of indexing takes place in the instruction location register, 

which counts from 1777 to 0000.) 

The following example using indexing introduces another index class instruction, SAE i ~ (skip 

if accumulator equals), code 1440 + 20i +~. This instruction causes the LlNC to skip one register in the 

sequence of programmed instructions when the contents of the accumulator exactly match the contents 

of the specified memory register. If there is no match, the computer goes to the next instruction in 

sequence as usual. The program example clears (stores 0000 in) the set of memory registers 1400-1777; 

the SAE instruction is used to decide whether the last 0000 has been stored. 

20 



PROGRAMMING THE LlNC-8 

Memory Address Memory Buffer Effect 

3 [X] [ 1377] Initial address minus 1 for the STA instruction. 

4 356 0356 Address of test number. . 
Start . 
--)~350 ~CLR 0011 Clear the accumu lator. 

~351 STA i 3 1063 Index the contents of register 3; store C(ACC) in 
the memory register whose address == X(3). 

~J52 ADD 3 2003 C(3) - C(ACC) • 

~153 SAE 4 1444 Skip to 0355 if C(ACC) == C(356). ------, 
~154 JMP 350 I 6350 If not, return to store 0000 in next register. 

I 
~155 HLT~---I 0000 Halt the computer. 

356 1777 1777 

Example 6 Indexing to Clear a Set of Registers 

When the program halts at register 355, register 3 will contain 1777. The SAE instruction is 

used here (as the AZE instruction was used in earlier examples) to decide when to stop the computer. 

The instructions in registers 350-354, the loop, are executed 400
8 

times before the program halts. A 0 

is first stored in register 1400, next in 1401, etc. 

Another program scans the memory to see if a particu lar number, Q, appears in any memory 

register 0·-1777. Q is to be set in the RIGHT SWITCHES, and the address of any register containing Q 

is to be left in the accumulator. 

Memory Address Memory Buffer Effect 

17 [X] [ -] Address of register whose contents are to be com-
pared with RIGHT SWITCHES. 

Start 
) 20 RSW 0516 C(RS) -C(ACC). 

21 I >~~E_ ~ lJ_
1 

1477 Index register 17, and compare C(ACC) with C(X). 

22 JMP 21 I 6021 If not equal, return for next test. 
I 

} 23 CLR~-_I 0011 

24 ADD17 2017 
If equal, clear ACC, copy address of register 
containing Q into ACC, and halt. 

25 HLT 0000 

Example 7 Memory Scanni ng 

21 



ADM, BCl, 
BSE, BCO 

PROGRAMMI NG THE LI NC-8 

If no memory register 0-1777 contains the number Q, the program will run endlessly. The 

location of the first register to be tested depends on the initial contents of index register 17. 

An index class instruction, ADM i ~ (add to memory), code 1140 + 20i + ~, adds the contents 

of the specified memory register to C(ACC), using 12-bit end-around carry arithmetic (as ADD or ADA). 

The result is left, however, not only in the accumulator but in the specified memory register as well. The 

bit clear instruction, BCl i ~, code 1540 + 20i + ~, is one of three index class instructions which performs 

a so-called "logical II operation. BCl is used to clear selected bits of the accumulator. For every bit of 

the specified memory register which contains 1, the corresponding bit of the accumulator is set to O. 

In the following program two sets of numbers are summed term by term. The first set of numbers, 

each 6 bits long, is in registers 500-577, bits 6 through 11; bits 0-5 contain unwanted information. The 

second set of numbers is in registers 600-677, and the sums replace the contents of registers 600-677. 

Memory Address Memory Buffer Effect 

3 [Xl] [0477] Initial address minus 1 of first set. 

4 0410 0410 Address of BCl pattern . 

5 [X
2

] [0577] Initial address minus 1 of second set. 

6 0411 0411 Address of test number for halting. 

Sta~_)400 ~lDA i 3 1023 Index X(3) and load number from first set into AC. 

401 BCl4 1544 Clear the left 6 bits of the ACC. 

402 ADM i 5 1165 Index X(5). Add number from 'second set to C(ACC), 
and replace in memory. 

403 ClR 0011 

} Check to see if finished. 404 ADD 3 2003 

405 SAE 6 1446 ------
406 JMP 400 : 6400 C ( 3) I' C (411 ), i. e ., I' 0577 . 

I 
407 Hl T-E----I 0000 C(3) = 0577; halt the program. 

410 7700 7700 BCl pattern for clearing left hal f of ACC. 

411 0577 0577 Test number for hal ti ng . 

Example 8 Summing Sets of Numbers Term by Term 

2-5.3 logic Instructions 

The three logic instructions, BCl i ~, BSE i ~, and BCO i ~, are best understood by studying 

the following examples. These instructions affect only the accumulator; the memory register M containing 

the bi t pattern is unchanged. 

22 



PROGRAMMING THE LlNC-8 

BCl i ~ bit clear code: 1540 + 20i + ~ 

Clear correspondi ng bi ts of the accumu lator: 

If C(M) = 010 101 010 101 

and C(ACC) = 111 111 000 000 

then C(ACC)= 101 010 000 000 

BSE i ~ bit set code: 1600 + 20i + ~ 

Set to 1 corresponding bi ts of the accumu lator: 

If C(M) = 010 101 010 101 

and C(ACC) = 111 111 000 000 

th e n C (A C C) = 1 1 1 1 1 1 01 0 1 01 

BCOi ~ bit complement code: 1640 + 20i + ~ 

Complement corresponding bits of the accumulator: 

If C(M) = 010 101 01 0 101 

and C(ACC) = 111 111 000 000 

then C(ACC) = 101 010 010 101 

XSK 

These instructions have a variety of applications, some of which wi II be demonstrated later. 

2-6 SPECIAL INDEX REGISTER INSTRUCTIONS 

Before continuing with the index class, two special instructions which facilitate programming 

with the index class instructions will be introduced. These instructions do not use the index registers to 

hold memory addresses; rather they deal directly with the index registers and are used to change or ex

amine the contents of an index register. 

2-6.1 The Index and Skip Instruction 

The index and skip instruction, XSK i a, refers to registers 0-17 (0'::: a':::17).* It tests to see 

whether the address part of regi ster a has its maximum va lue, i.e., 1777, and di rects the LI NC to sk i p 

the next register in the instruction sequence if 1777 is found. I t wi II al so, when i = 1, index the address 

part (X) of register a by 1. Like the index class instructions, XSK indexes register a before examining it, 

and it indexes from 1777-0000 without affecting the leftmost 2 bits. These 2 bits can therefore have any 

value. In particular, both can be set to the value 1 and XSK i a can be assumed to have the effect of 

skipping the next instruction when it finds the number 7777, (-0), in register a. Now it is easy to see how 

to execute any given sequence of instructions exactly n times, where n .::: 1777 (octal): 

*cf. ~, 1 ~ ~.::: 17, which does not refer to register O. 

23 



PROGRAMMING THE.LlNC-a 

-n } - n stored in register a. 

Start 
----I~ ... Given Sequence of 

} Given sequence held in register X, X+ I, etc. 
~ Instructions 

+ 
XSK i a 
------, 

JMP X : 
I 

HLT +-_.....J 

Index a and test. After 1 st pass C(a) ::: - n + 1, 
after 2nd pass C(a) = - n + 2. After n passes 
C(a)= -n + n = -0 so skip over the JMP.x 
instruction and halt. 

For example, to store the contents of the accumu lator in regi sters 350-357, usi ng reg i ster 6 to 

count, the followi ng short program can be wri tten . 

._._._-'-._-

Memory Address Memory Buffer Effect 
_. ......... -...........•.•.. -- ..•.. -

5 [X] [0347] Initial address minus 1 for STA 
instruction. 

6 [ -10] [7767] - n, where n = number of times 
to store C(ACe). 

Start 
... 200 ~STA i 5 1065 Index register 5 and store 

C(ACC). 

201 XSK i 6 0226 Index register 6 and test for - - ---, 
X(6) = 1777. I 

202 JMP 200 : 6200 X(6) 11777, return . 

203 HL T4- ---.J 0000 X(6) = 1777, halt. 
----_ .. _ .. __ . __ .... _._ .. _---_ .. 

Example 9 Index Registers Used as Counters 

Using the XSK instruction with i = 0, which tests X(a) without indexing, example 6 

which stores 0 in memory registers 1400-1777, can be more efficiently written: 

24 



PROGRAMMING THE LlNC-8 

SET 

Memory Address Memory Buffer Effect 

3 [X] [ 1377] Initial address minus 1 for STA 
instruction. 

Start 
>350 CLR 0011 O-C(ACC). 

351 rSTAi3 1063 Index register 3 and store zero. 

352 XSK 3 0203 Test for X(3) = 1777. -------
1 

X(3) f 1777, 353 JMP 3511 6351 return • 
I 

354 HLT~-_I 0000 X(3) = 1777, halt. 

Example 10 Indexing and Counting to Clear a Set of Registers 

Here register 3 is indexed by the ST A instruction; the XSK then mere Iy tests to see whether 

X(3) = 1777, without indexing X(3). The reader shou Id see that example 8 on page 22 can also be 

more efficiently programmed using XSK. 

2-6.2 The SET Instruction 

The second special instruction which is often used with the index class instructions is SET i a, 

code 40 + 20i + a, where a again refers directly to the first 20
8 

memory registers, 02. a 2. 17. In some 

of the examples presented earlier, the contents of index registers are changed, either as counter values 

or as memory addresses, while the program is running. Therefore, in order to rerun the program the index 

registers must be reset to their initial values. 

The SET instruction directs the LI NC to set register a to the value in any specified memory 

register. It is different from the instructions so far presented in that the instruction itself always occupies 

two consecutive memory regi sters, say p and p + 1: 

Memory 
Address 

p 

p + 1 

p+2 

Memory Buffer 

SET i a 40 + 20i + a 

c c 

The computer automatically skips over the second register of the pair, p + 1; that is the con

tents of p + 1 are not interpreted as the next instruction. The next instruction after SET is always taken 

from p + 2. 

25 



PROGRAMMING THE L1NC-S 

The i-bit in the SET instruction does not control indexing. Instead, it tells the LI NC how to 

interpret the contents of regi ster p + 1. When i = 0, the LI NC is directed to interpret C(p + 1) as the 

memory address for locating the value which wi II replace C(a). That is, register p + 1 is thought of as 

containing X, 

Memory 
Memory Buffer Effect 

Address 

10 [N] [ -] 
· · · - p SET 10 0050 C(X), i .e ., N, -C(10). 

p + 1 X X 
· · · · 

X N N 

and the contents of register X replace the contents of 10, C(X) -C(10). In this case X is the rightmost 

10 bits, the address part, of regi ster p + 1; the leftmost bit of C(p + 1) may have any value and, for 

the present, bit 10 must be O. 

In the second case, when i = 1, the LI NC is directed to interpret C(p + 1) as the value wh iich 

replaces C(a). Thus, below, C(p + 1) -C(5): 

Memory 
Memory Buffer Effect 

Address 

5 [N] [ -] 
· · · · - p SET i 5 0065 C(p + 1), i .e., N, - C(5). 

p+l N N 

The following program scans 100
S 

memory registers looking for a value wh ich matches C(ACC). 

It halts with the location of the matching register in the accumulator if a match is found, or with - 0 in 

the accumulator if a match is not found. The numbers to be scanned are in registers 1000-1077. 

26 



PROGRAMMING THE LlNC-8 

Memory Address Memory Buffer Effect 

3 [ -1 OO} [ 7677} - (number of registers to scan). 

4 [X} [0777} Scanning address • . . . . . 0 

Start ~4 
0 0 

-- 00 SET i 3 0063 C(401), i oe 0, -100, - C(3) 0 

401 -100 7677 

402 SET i 4 0064 C(403), i.e 0, 777, - C(4). 

403 777 0777 

404 ~SAE i 4 1464 Index X(4) and compare C(X) with C(ACC). ._----, 
C(ACC) ., C(X), jump to 411 0 405 JMP 411 I 6411 

1 
406 CLR~--I 0011 

} 407 ADD 4 2004 
C(ACC) = C(X), copy location of matching 
register into ACC and halt. 

410 HLT 0000 

411 ~25~lS.l~_ 0223 I ndex reg i ster 3 and test for X(3) = 1777 0 

1 
412 JMP 4041 6404 X(3) 11777, return 0 

1 

} 
413 CLR~-_I 0011 

414 COM 0017 
X(3) == 1777; all numbers have been scanned 
so - 0 -C(ACC) and halt. 

415 HLT 0000 

Example 11 Setting Initial Index Register Values 

The two SET instructions are executed once every time the program is started at 400; initially 

registers :3 and 4 may contain any values since the program itself sets them to the correct values • 

. Suppose the programmer had wanted to SET two index registers to the same value, say -100. 

He could write either: 

27 



PROGRAMMING THE L1NC-8 

Memory 
Memory Buffer Effect 

Address 

-

11 [-100] [ 7677] 

12 [-100] [7677] . · . . · . 
· 

- 20 SET i 11 0071 C(21 ), i .e ., - 1 00, - C (11 ) • 

21 -100 7677 

22 SET 12 0052 C(21 ), i .e ., - 1 00, - C (1 2) • 

23 21 0021 

or: 

- 20 SET i 11 0071 C(21 ), i .e ., - 1 00, - C (11 ) . 

21 -100 7677 

22 SET 12 0052 (C11 ), i .e ., - 1 00, - C (1 2) • 

23 11 0011 

The programmer could also, of course, have written SET i 12 in register 22 with -100 in 

register 23, but there are applications appropriate to each form. 

2-7 INDEX CLASS INSTRUCTIONS II 

2-7.1 Double Register Forms 

The index class instructions have been thought of as addressing an index register ~, 1 ~ ~ <J 7, 

which contains a memory address X to be used by the instruction. They have been presented as single 

register instructions (un I ike SET) • However, when an index c lass instruction is written wi th ~ == 0, i1' 

becomes a double register instruction like SET, whose operand address depends on i and p + 1. These 

two interpretations are shown for STA. 

Case: i = 0, ~ = 0 

Memory 
Memory Buffer Effect Address 

-
450 STA 1 040 + 20(0) + 0 C(ACC) -C(330). 

451 330 0330 

28 



PROGRAMMING THE L1NC-8 

When i =0, the L1NC is directed to use C(p + 1), i.e., C(451) as the memory address at which 

to store C(ACC). The leftmost bit of C(p + 1) may have any value, and, for the present, bit 1 must be O. 

Case: i =: 1, ~ == 0 

Memory 
Memory Buffer Effect Address 

450 STA i 1060 C(ACC) -C(451) 

451 [ -] [ -] 

When i == 1, the LI NC is directed to use p + 1, i.e., 451, directly as the memory address, 

and the contents of the accumulator are stored in 451. Note that when ~ = 0 in an index class instruc

tion, it does not refer to memory register O. In fact, when ~ = 0, no reference is necessarily made to 

the index registers. As with SET, the computer automatically takes the next instruction from register p + 2. 

Index class instructions may be thought of as having four alternative ways of addressing the 

memory, which depend on i and ~, and which are summarized below: 

Index Class Address Variations 

Case i, ~ Example Form' Comments 

1 i=O LDA ~ Single Register ~ holds operand 
~IO Register address. 

-'-'-
2 i = 1 LDA i ~ Single First, index register ~ by 1 • 

~Jo Register Then, register ~ holds oper-
and address. 

3 i=O LDA Double Second register holds oper-
~=O X Register and address. 

4 i = 1 LDA i Double Second register holds op-
~=O N Register erand. 

The next programming example scans memory registers 1350-1447, counting the number of in

stances in which register contents are found to exceed some threshold value, T. In other words if C(X) > 
T, X = 1350, 1351, ••• , 1447, then C(CTR) + 1 - C(CTR), where CTR is a memory register used as a 

counter, initially set to O. The count, N, is to appear in the accumulator upon program completion. 

29 



PROGRAMMI NG THE LI NC-8 

Memory Address Memory Buffer Effect 

14 [X] [ -] Address of register to be tested. 

15 [ -n] [ -] -(number of registers to test). . . · · Start . . · > 30 SET i 14 0074 Set index register 14 to initial address minus 1 • 

31 1347 1347 

32 SET i 15 0075 Set index register 15 to -100. 

33 -100 7677 

34 ClR 0011 } Clear CTR; 0-C(51). 
35 STC 51 4051 

36 r7lDA i 1020 C(37), i.e., - T, - C(ACC). 

37 -T -T 

40 ADA i 14 1134 Index the address in register 14 and form C(X)-T 
in ACC. 

41 Bel i 1560 Clear all but the sign bit in ACC; C(42) = the bi t 
pattern for clearing. Then if C(X) > T, C(ACC) 
0000, but if C(X) <T, C(ACC) = 4000. 

42 3777 6777 

43 SAE i 1460 Does C(ACC) = C(44)? I f so, sk i p to 46. 

44 0000 0000 -----, 
45 JMP 52 I 6052 If not, C(X) ~ T. Jump to 52. 

I 

46 lDAi~1 1020 I f so, C(X) > T; 1 - C(ACC). 

47 1 0001 

50 ADMi 1160 C(ACC) + C(51), i.e., N,- C(51) and-C(AC~ :). 
51 [ N] [ -] 

52 ~~~~LL5_ 0235 I ndex reg i ster 15 and test for 7777 • 
I 

53 JMP 36 I 6036 C(15) 17777 • Return to check next register. 
I 

54 HlT<:---I 0000 C(15) = 7777, therefore halt. C(CTR), i.e., C( 51 ), 
left in ACC. 

Example 12 Scanning for Values Exceeding a Threshold 

Note that since the SAE instruction in locations 43 and 44 is written as a double register in

struction, the LlNC skips to location 46 (not 45) when the skip condition is satisifed. The next instruction 

in sequence is, in this case, at location 45. 

30 



PROGRAMMI NG THE LI NC-8 

LAM 

Note also that if a double register instruction is written following a skip instruction such as 

XSK, th4~ LI NC tries to interpret the second register as an instruction: 

Memory 
Address 

p 

p + 1 

p+2 

Memory Buffer 

XSK i ~ 

LDA i : 

3~ ___ 1 

Effect 

Go to' P + 1 when X(~) f 1777 • 

Go to P + 2 when X(~) = 1777 • 

Since the XSK instruction sometimes directs the L1NC to skip to P + 2, care must be taken to 

make sure that the LI NC does not skip or jump to the second register of a double register instruction. 

It is interesting to compare the above statement of the program made in rather detailed machine 

languagEl with the followjng compact but entire Iy adequate restatement: 

1. O-C(CTR). 

2. If C(X) > T then C(CTR) + 1 - C(CTR), for X = 1350, 1351, ••• , 1447. 

3. C(CTR)- C(ACC). 

4. HALT 

2-7.2 Mu Itiple Length Arithmetic 

An index class instruction, LAM i ~ (link add to memory), code 1200 + 20i + ~, makes arith

metic PQssible with numbers which are more than 12 bits long. Using LAM, one can work with 24-bit 

numbers for e'xample, using 2 memory registers to hold right and left halves. It should be remembered 

that addition with ADD, ADA, or ADM a~ways involves end-around carry. With LAM, however, a 

carry from bit 0 of the accumulator during addition is saved in the link bit; it is not added to bit 11 of 

the accumu lator. Th is carry, then, cou Id be added to the low-order bit of another number, providing a 

carry I inkage between right and left halves of a 24-bit number. For simpl icity I the illustration uses 3-bit 

registers,; the principles are the same for 12 bits: 

<, , 
I 

next 
addition 

Link ACC 

[Q] ( I III III 
I 
I 

end-carry 
with LAM 

31 



PROGRAMMI NG THE LI NC-8 

If, for example, the number in this 3-bit accumulator is 7 (all lis) and C(L) = 0, and 1 is (ldded 

with LAM, the link bit and accumulator will then look like: 

L ACC 

[!]~I a I a I a I 
Furthermore, LAM is an add-to-memory instruction, so that the memory register to wh ich the 

LAM instruction refers wi II now contain a (as does the accumulator). 

In addition to saving the carry in the link bit the LAM instruction also adds the contents of 

the link bit to the low order bit of the accumulator. That is, if, when the LAM instruction is executed 

C(L) = 1, then 1 is added to C(ACC). Using the resu It pictured above, add 2, where 2 is the contents 

of some memory register M: 

L 

Given: 

ACC 

000 

M 

010 

Using LAM, the LI NC is directed first to add C(L) to C(ACC), giving: 

l 

a 
ACC 

001 

M 

010 

There is no end-carry from this operation, so the link bit is cleared. The L1NC then adds 

C(ACC) to C(M), giving: 

L 

a 
ACC 

all 

M 

all 
which replaces both C(ACC) and C(M). Again there is no end-carry so the link bit is left unchanged. 

The operation of LAM may be summarized: 

1. C(L) + C(ACC) -C(ACC). 

2. End-carry - C(L). If no end-carry, 0- C(L). 

3. C(ACC) + C(M) -C(ACC), and - C(M). 

4. End-carry- C(L). If no end-carry, the link bit is left unchanged. 

As an example of double length arithmetic, postulate 2 numbers, Nl and N
2

, each 6 bits I()ng, 

which occupy a total of four 3-bit memory registers, Ml through M
4

: 

M2 Ml 

000 111 N = +7 1 

M4 M3 

101 001 N = -26 
2 

32 



PROGRAMMI NG THE LI NC-S 

The sum (octal) of +7 and -26 is -17. Using the LAM instruction to get this: 

1. Clear the I ink bit. 

2. Add C(M
l
) to C(M

3
) with LAM, saving any carry in the link bit. This sums 

the right halves of Nl and N
2

. 

3. Add C(M
2

) to C(M4) with LAM, which also adds in any carry from step 2. 

This sums the left halves of Nl and N
2

• Any new carry again replaces C(L). 

[Q] 
if' 
I 
I 
I 

2nd LAM 
No end-carry 

000 

101 

110 

OJ 
t 
I 
I 
I 

111 

001 

000 

1st LAM 
End-carry 

Note that only the first LAM produced an end-carry. 

N +N =-17 
1 2 

To complete the illustration, consider a case in which the final carry appears in the link bit, 

as in the addition of +12 and - 2. 

OJ 

001 

111 

t 000 
I 

2nd L~M 
End-carry 

[Q] 

010 

101 

i 111 
I 
I 

1 st LAM 
No end-carry 

+12 

- 2 

whose SUln, in lis complement notation is 001 000, or +10
S

' but which with LAM results in +7 and an 

end-carry in the link bit. Since lis complement representation depends on end-around carry, some extra 

programming must be done to restore the result to a true lis complement number. This is, of course, the 

equivalent of adding 1 to' the 2-register result. Assuming that the result is in Ml and M
2

, 

L 

000 111 

again USEl the LAM instruction. First clear the accumulator without clearing the link bit (this can be 

done with an STC instruction). Then execute LAM with C(M
1
) which gives 

L ACC Ml 

000 000 

33 



PROGRAMMI NG THE LI NC-8 

producing a new end-carry in the link bit. Again clear the accumulator (but not the link bit) and execute 

LAM with C(M
2

) which gives 

L ACC 

o 001 

The result in M2 and Ml now looks like: 

M2 Ml 

001 000 = + 1 0 (oc ta I ) 

It should be clear to the reader that adding in a final end-carry as an end-around carry cannot itself give 

ri se to a new final end-carry, 

The following program illustrates the technique of double length arithmetic with tables of 

numbers; similar techniques wou Id be used for other mu I ti pies of 12, Assume that 100 24-bi t numbers, 
8 

NO' N l' "" N 77, are to be added term by term to 100
8 

numbers, R
O

' R
l

, "" R
77

, so that NO + 

RO = SO' N 1 + Rl = 51' etc, All numbers occupy 2 reg i sters: the left halves of NO' N l' ". l N77 are 

in registers 100-177, the right halves in 200-277, The left halves of R
O

' R
l

, "" R77 are in 1000-1077, 

the right halves in 1100-1177, The left halves of the sums, SO' 51' "" 5
77

, replace the contents of 

1 000-1 077, the right halves replace the contents of 1100-1177, 

34 



PROGRAMMI NG THE LI NC-8 

Memory Address Memory Buffer Effect 

10 [Xl] [ -] 

1 1 [X
2

] [ -] 

12 [X
3

] [ -] 

13 [X
4

] [ -] 

14 [ -n] [ -] . . . 
377 [ -] [ -] 

Start " ;>400 SET i 10 0070 

401 77 0077 

402 SET i 11 0071 
Set index registers to initial addresses 

403 177 0177 minus 1 for the 4 tables. 

404 SET i 12 0072 

405 777 0777 
'/ 

406 SET i 13 0073 

407 1077 1077 

410 SET i 14 0074 Set index register 14 as a counter for 
100 loop repetitions. 

411 -100 7677 

412 ~CLR 0011 0- C(ACC); 0 -C(L). 

413 LDA i 11 1031 Right half of N. - C(ACC). 
I 

414 LAM i 13 1233 Right half of Nj + right half of R. - C(ACC), 
and - right hal f of R.. End-car~y - C(L). 

I 

415 LDA i 10 1030 Left half of N. - C(ACC). 
I 

416 LAM i 12 1232 C(L) + C(ACC) + left hal f of R. - C(ACC), 
I 

and - left hal f of R.. End-carry - C(L) • 
I 

417 STC 377 4377 Clear accumulator by storing in 377. Do 
not c lear I ink bit. 

420 LAM 13 1213 C(L) + right half of S. - C(ACC), and 
right hal f of S.. End!..carry - C(L). 

I 

421 STC 377 4377 Clear accumu lator. 

422 LAM 12 1212 C(L) + left hal f os S. - C(ACC), and 
left hal f of S. • I 

I 

423 XSK i 14 0234 Index 14 and test for 7777 • ------
I 

C(14) 17777, return to form next sum. 424 JMP 412 I 6412 
I 

425 HTL~- __ I 0000 C (1 4) = 7777, so h a It. 

Example 13 Summing Sets of Double Length Numbers Term by Term 

35 



PROGRAMMING THE LlNC-8 

MUL 

The instructions in locations 412-416 produce an initial 24-bit sum leaving any final carry in 

. the link bit. The instructions in locations 417-422 then complete the sum by adding in the final end

carry. The link bit always contains 0 after the computer executes the last LAM in location 422. RefJister 

377 is used simply as a "garbage"register so that the accumulator can be cleared without clearing the 

link bit. 

2-7.3 Mu Itipl ication 

Another index class instruction which needs special explanation is MUL i ~ (multiply), code 

1240 + 20i +~. This instruction directs the LlNC to multiply C(ACC) by the contents of the specified 

memory register, and to leave the result in the accumulator. The multiplier and multiplicand are treated 

as signed 11-bit lis complement numbers, and the sign of the product is left in both the accumulator (bit 

0) and the link bit. 

The LI NC may be directed to treat both numbers either as integers or fractions; it may not,r 

however, be directed to mix a fraction with an integer. The I eftmost bit (bit 0) of register ~ is used to 

specify the form of the numbers. 

When bit 0 of register ~ contains 0, the numbers are treated as integers; that is, the binary 

points are assumed to be to the right of bit 11 of the accumulator and the specified memory register. 

Given C(ACC) = -10, C«(3) = 400 (bit 0 of register ~ = 0), and C(400) = + 2, the instruction MUL ~ 

leaves - 20 in the accumulator, and 1 in the link bit. Overflow is, of course, possible when the product 

exceeds ±3777. Multiplying +3777 by +2, for example, produces +3776 in the accumulator; note that 

the sign of the product is correct, and that the overflow effectively occured from bit 1, not from bit O. 

When bit 0 of register ~ contains 1, the LI NC treats the numbers as fractions; that is, the 

binary point is assumed to be to the right of the sign bit (between bit 0 and bit 1) of the accumu lator and 

the specified memory register. Given C(ACC) = + .2, C(~) = 5120 (bit 0 of register ~ = 1), and C(1120) 

:= + .32, execution of MUL ~ leaves + .064 in the accumulator and 0 in the link bit. 

When the LlNC multiplies two 11-bit signed numbers, a 22-bit product is formed. For inl"egers 

the rightmost, or least significant, 11 bits of this product are left with the proper sign in the accumulator, 

and for fractions the most significant 11 bits of the product are left with the proper sign in the accumulator. 

If, for example, 

C(ACC) = 
and 

C(M) 

001100000000 
binary points .-J Lbinary points 
for fractions ---"1 r or integers 

000010000000 

then C(ACC) can be thought of as either + .3
8 

or + 1400
8

, and C(M) can be thought of as either + .04
8 

or 

+200
8

, The 22-bit product of these numbers looks like: 

36 



PROGRAMMING THE L1NC-8 

\. .000 001 100 0/\.00 000 000 000 '/ 
V Y 

.014 O. 

and if bit a of register ~ contains 1, the most significant 11 bits with the proper sign are left in the 

accumu lotor: 

C(ACC) :::: 0.000 001 100 00 
"--y-/~ '--y--/ 

(+ . 3)x (+ .04) :::: +. 0 1 4 

Had bit 0 of register J3 contained 0, the accumulator would be left with +0 as the result of 

multiplying (1400)x(200). It is the programmer's responsibility to avoid integer overflow by programming 

checks on his data and/or by scaling the values to a workable size. 

Use of bit 0 of register ~ is new to the concept of index registers and should be noted in con

nection with the four memory addressing alternatives which index class instructions employ. When ~ =/0 

then bit () of C(~), that is, bit 0 of the register which contains the memory address, is used. The same 

is true when i :::: 0 and J3 :::: 0, as in: 

Memory 
Address 

p 

p + 1 

Memory Buffer 

MUL 

h, X 

1240 

4000h + X 

That is, bit a of C(p + 1), the register containing the memory address, is used. This bit is 

sometimes called the h-bit, whether in an index register or in regist~r p + 1. When, however, i :::: 1 and 

J3 :::: 0, it will be recalled that p + 1 is itself the memory address: 

Memory 
Address 

p 

p + 1 

Memory Buffer 

MUL i 

N 

1240 

N 

There is no memory register which actually contains the memory address, and therefore there is 

no h-bit. The computer always assumes in th is case that h :::: 0, and the operands are treated as integers. 

In the following program, registers 1200-1377 contain a table of fractions whose values are in 

the range ±.0176, that is, whose most significant five bits after the sign (bits 1-5) duplicate the sign. 

Each number is to be multiplied by a constant, -.62, and the products stored at locations 1000-1177. 

To retain significance, the values are first shifted left 5 places. 

37 



PROGRAMMING THE LlNC-8 

Memory Address Memory Buffer Effect 

-
6 [Xl] [ -] 

7 [X
2

] [ -] 

10 [ -n] [ -] 

Start 
::>500 SET i 6 0066 Initial address minus 1 of table of fractions - C(6). 

501 1177 1177 

502 SET i 7 0067 Initial address minus 1 for STA instruction --+ C(7). 

503 777 0777 

504 SET i 10 0070 -n - C(10). 

505 -200 7577 

506 -7LDA i 6 1026 Fraction - C(ACC). 

507 ROL5 0245 C(ACC) .2
5 

- C(ACC). 

510 MUL 1240 Mu Itiply, as fracti ons, C(ACC) by C(516) OJ 

511 4000+516 4516 

512 STA i 7 1067 Store product. 

513 XSK i 10 0230 ------
I 

514 JMP 506 I 6506 If not finished, return. 
I 

515 HLT~- _I 0000 If finished, halt. 

516 -.62 4677 

Example 14 Multiplying a Set of Fractions by a Constant 

The ROL instruction at location 507 rotates OIS or lis, depending on the sign, into the low

order 5 bits of the accumulator. Since this amounts to a scale left operation, it introduces no new in

formation which might influence the product. The reader shou Id also note that the original values remain 

unchanged at locations 1200-1377. 

Another example demonstrates the technique of saving both halves of the product. Fifty (octal) 

numbers, stored at locations 1000-1047, are to be multiplied by a constant, +1633. The left halves ,of 

the products (the most significant halves) are to be saved at locations 1100-1147; the right halves (the 

least signi ficant halves) at locations 1200-1247 . 

38 



PROGRAMMING THE LlNC-8 

Memory Address Memory Bu ffer Effect 
- .-

1 3 [Xl] [ 1077] 

4 [X2] [ 1177] Addresses of products. 
./ 

5 [ 4000+X3] [ 4777] } 6 [X3] [0777] Addresses of mu Iti pi ier as fraction and integer. 

7 [-n] [7727] Counter • . . . 

} Set addresses for storing products. 

- 1400 SET i 3 0073 

1401 1077 1077 

1402 SET i 4 0074 

1403 1177 1177 

1404 SET i 5 0075 Set 5 to address mu Itipl ier as fraction. 

1405 4000+777 4777 

1406 SET i 6 0076 Set 6 to address mu Itipl ier as integer. 

1407 777 0777 

1410 SET i 7 0077 

1411 -50 7727 

'1412 r>lDA i 1020 } 1413 1633 1633 Form left half of product. in accumulator. 
I 

1414 MUli5 1265 

1415 SCR i 1 0361 C(bi t 11 of ACC) - C(l). 

1416 STA i 3 1063 Store left half of product .• 
I 

1417 STC 1434 5434 0- C(ACC). 

1420 ROR i 1 0321 C(l) - C(bit 0 of ACC). 

1421 STC 1427 5427 4000 or 0000 - C (1427) • 

1422 ADD 1413 3413 } 1423 MUli6 1266 
Form right half of product. in accumulator. 

I 

1423 MUli6 1266 

1424 BCl i 1560 Clear bit 0 of right half. 

1425 4000 4000 

1426 BSE i 1620 C(bit 11 of left half)-C(bit 0 of right half). 

1427 [ -] [ -] 

1430 STA i 4 1064 Store right half of product .• 

1431 XSK i 7 0227 
} Return if not finished. I 

1432 JMP141-i: 7412 
I 

1433 HlT(----1 0000 

1434 [ -] [ -] 

Example 15 Multiplication Retaining 22-Bit Products 

39 



PROGRAMMING THE LlNC-8 

ZTA 

The instructions at locations 1415, 1420-1421, and 1424-1427 have the effect of making the 

two halves of the product contiguousi the sign bit value of the right half is replaced by the low-order bit 

value of the left hal f, so that the product may be subsequently treated as a true double length number. 

Through the use of another instruction, Z T A, it is possible to do a double prec i sion mu I ti pll i

cation using only one MUL instruction. When the LI NC performs a mu Itipl ication, it uses three basic: 

registers: the accumulator for the multiplicand, the memory buffer register for the multiplier, and the 

Z register for partial containment of the initial 22-bit plus sign answer. The LI NC then decides if the 

mu Iti pi i cation was fractional or integer and puts into the accumu lator the correct hal f of the answer 

properly signed. In a fractional mu Itiply, the most significant bits of the product are found in the ac

cumu lator; however, the low-order protion of the product is not lost but is sti II in the Z reg ister as an 

unsigned number. By executing a Z to A instruction, ZTA (MSC 005), code 0005, the accumulator is 

cleared, and the contents of the Z register are copied into bits 1-11 of the accumulator. Bit 0 is always 

o and the number is unsigned. However, the link contains the sign of the product so that, if necessary, 

the low-order portion of the product may be complemented. 

Since bit 0 of the low-order portion does not contain a significant bit after a ZTA instruction 

(unless the product was 3777 or less), it is useful to transfer bit 11 of the most significant portion of the 

product into bit 0 of the low-order portion. The following example multiplies the number in the LEFT 

SWITCHES by the number in the RIGHT SWITCHES and stores the double precision product in memory 

into two consecutive locations. 

40 



PROGRAMMING THE LlNC-8 

Memory Address Memory Buffer Effect 

100 [Xl] [C(R.S.)] Contents of RIGHT SWITCHES 

101 [X
2

] [H.O.P.] High order product 

102 [~3] [L.O.P.] Low order product 
. . 

Start . 
--? 400 RSW 0516 Read RIGHT SWITCHES into A 

401 STC 100 4100 Store into location 100 

402 LSW 0517 Read LEFT SWITCHES into A 

403 MUL 1240 Mu Itiply (fractional) C(C(p + 1)) by C(A) 

404 [ 4000+01 00] 4100 

405 STC 101 4101 Store high order product into location' 101 

406 ZTA 0005 C(Z} -C(A) 

407 LZE 0452 Was product positive? 

410 COM 0017 No, complement A 

411 STC 102 4102 Store low order product in location 102 

412 ADD 101 2101 Get back high order product 

413 ROR i 1 0321 Rotate bit 11 into link, link (sign bit) 
into bit 0 

414 STC 101 4101 Store into 101 

415 ADD 102 2102 Get low order product 

416 ROL 1 0241 Rotate bit 0 into bit 11 

417 ROR i 1 0321 Rotate I ink into bit 0, bit 11 into I ink 

420 STC 102 4102 Store into 1 02 

421 HLT 0000 
Example 16 Multiplication for 22 Bit-Product Using ZTA 

There are two remaining index class instructions, SRO i ~ (skip rotate), and DSC i ~ (display 

character), which is discussed later in connection with programming the oscilloscope display. 

2-8 HALF-WORD CLASS INSTRUCTIONS 

The L1NC has 3 instructions which deal with 6-bit numbers or half-words (word is another term 

for contents of a register). These instructions use the index registers and have the same four addressing 

variations as the index class, but specify in addition either the left half or right half of the contents of 

memory register X as the operand. Think of LH(X) as meaning the contents of the left 6 bits of register X, 

and RH(X), meaning the contents of the right 6 bits. Then it is possible to think of C(X) = LHIRH, or 

C(X) = 100 LH+RH. 

41 



PROGRAMMING THE LlNC-8 

LDH, 5TH 

Half-word instructions always use the right half of the accumulator. The load half instruc-· 

tion, LDH i ~, code 1300 + 20i +~, clears the accumulator and copies the specified half-word into the 

right half of the accumulator; which half of C(X) to use is specified by bit 0, the h-bit, of register ~. 

When h = 0, LH(X)- RH(ACC). When h = 1, RH(X) - RH(ACC): 

Memory 
Memory Buffer Effect Address 

~ h, X 4000h+X h = 1 • 

. 
p LDH ~ 1300+~ RH(X) - RH(ACC) and 0- LH(ACC). 

. 
X LHIRH 100LH+RH C(X) unchanged. 

,,--

The same interpretation of the h-bit applies when i = 0 and ~ = 0, i.e., when the instructkm 

occupi es two regi sters: 

Memory 
Memory Buffer Effect 

Address 

40 LDH 1300 5 inc e h = 1, R H (500), i. e ., 76, 

41 1,500 4500 - RH(ACC). 0- LH(ACC). 
. 

500 32176 3276 
____ ._....l..-____ -'--___ ...... __ .• ___ .. _______________ _ 

If register 41 contained 500, i.e., h == 0, then LH(500), or 32, would replace RH(ACC). 

The store half instruction, 5TH i ~, code 1340 + 20i + ~, stores the right half of C(ACC) in 

the specified half of memory register X. C(ACC) and the other half of memory register X are unaffected. 

To illustrate the case of i = 1 and p = 0, write: 

Memory 
Memory Buffer Effect Address 

--~. 

1000 5TH i 1360 RH(ACC) - LH(l 001) 

1001 6015 6015 

42 



PROGRAMMING THE LlNC-8 

SHD 

This case, it will be remembered, uses p + 1 itself as the memory address. Since there is no 

h-bit, the computer assumes that h = 0, and therefore the left half of C(l 001) is affected. If, for example, 

C(ACC) == 5017,17 replaces LH(1001), and the contents of register 1001 become 1715. 

SHD i ~ (skip if half differs), code 1400 + 20i + ~, causes the LlNC to skip one memory register 

in the program sequence when the right half of the accumulator does not match the specified half of mem

ory register X. When it does match, the computer goes to the next memory register in sequence for the 

next instruction. Neither C(ACC) nor C(X) is affected by the instruction. If C(ACC) = 4371, and the pro-

grammer writes: 

Memory 
Memory Buffer Effect 

Address 

376 7152 7152 

- 377 SHD 1400 Skip to 402 if RH(376) f RH(ACC). 

400 4376 4376 
----I 

401 - I -
I 

402 -~-' -

The computer skips because RH(376), i.e., 52, f RH(ACC), or 71. Had he written 376 in 

location 400, that is, h = 0, RH(ACC) would equal LH(376) and the computer would not skip. 

When ~ f. 0, and when i = 1, the half-word class instructions cause the LlNC to index the 

contents of memory register ~, but in a more complex way than that used by the index class instructions. 

In order to have half-word indexing refer to consecutive half-words, the computeradds4000to C(~) with 

end-around carry. This has the effect of complementing h(~) every time register ~ is indexed, and 

stepping X(~) every other time. Suppose, for example, that the instruction is LDH i 3, and that register 

3 initially contains 4377, that is, it points to the right half of register 377. The computer first adds 

4000 to C(3): 

4377 
4000 

C03:~ 
0400 

Original C(3) = 1,377 
Index H(3) 

End-around carry 
New C(3) = 0,400 

which le~:lves h = 0 and X = 400; C(3) now points to the left half of register 400. The computer therefore 

loads the accumu lator from LH(400). Repeating the instruction, C(3) is indexed to 4400 and the accumu

lator is loaded from RH(400). Continuing, register 3 would contain the following succession of values 

or hal f-word references: 

43 



PROGRAMMI NG THE LI NC-8 

4400 RH(400) 

0401 LH(401 ) 

4401 RH(401 ) 

0402 LH(402) 

4402 RH(402) 

0403 LH(403) 

etc. etc. 

Since half-word indexing occurs before the contents of register ~ are used to address the 

memory, the memory address, when i = 1, can be described as 

Tl,X+h 

where h represents the indexed value of h, and X+h represents the indexed value of X. The succession 

of values which appear in register ~ can be written: 

h,X+h 

l,X+O 

O,X+l 

1, X+ 1 

O,X+2 

l,X+2 

etc. 

The four address variations for half-word class instructions are summarized in the following 

table. 

-

-

Hal f-Word Class Address Variations 

Case i, ~ Example Form Comments 

1 i=O LDH ~ Single Register ~ holds half-word operand addr1ess. 

~IO Register 

2 i = 1 LDH i ~ Single First, index register ~ by 4000 with end-arour 
Register carry. 

~IO Then, register ~ holds half-word operand addr ess. 

3 i=O LDH Double Second register holds hal f-word operand addrE !ss. 
~=O h,X Reg i ster 

4 i = 1 LDH i Double Left half of second register holds half-word 
~=O LHIRH Register operand. 

For h = 0, the operand is held in the left half of the specified memory register. For h = 1, the operc::md 
is held in the right half of the specified memory register. 

44 



PROGRAMMING THE LlNC-S 

KBD 
2-9 THE KEYBOARD INSTRUCTION 

Before continuing with half-word class programm ing examples, the keyboard instruction, KBD i, 

code 515 + 20i, is introduced. The LINC-S uses the ASR 33 as a keyboard for the LINC section. Each key 

has an eight level code which is converted to a 6-bit code by the interpretive program in the PDP-S 

(PROGOFOP) (see chart "). When a key is struck the 6-bit code for that character is transferred into the 

right hallf of the LINC's accumulator by the KBD i. The i-bit is used here in a special way to synchronize 

the keyboard with the computer. When i = 1 , if a key has not been struck, the computer wi" wait for a key 

to be struck before trying to read a key code into the LINC accumulator. When i = 0, the computer does not 

wait, and the programmer must insure that a key has been struck before the computer tries to execute the KBD 

instruction; otherwise a 0 wi" be transferred to the LINC accumulator. Use of the i-bit to cause the comput

er to pause is unique to a class of instructions known as the operate instructions, of which KBD is a member. 

As a class they are used to control or operate external equipment. 

The following program reads in key code numbers as keys are struck on the keyboard, and 

stores them at consecutive half-word locations, LH(100), RH(100), LH(l 01), .• 0' until the Z, code 

number 55
S

' is struck, which stops the program. 

Memory Address Memory Buffer Effect 

7 [h,X] [ -] Half-word index register. 
· · · · · · · · · .- 20 SET i 7 0677 Set index register 7 to one half-word location 

less than initial location. 

21 1,077 4077 

22 ~KBDi 0535 Read code number of struck key into RH(ACC), 
and release the key. 

23 SHD i 1420 Skip to location 26 if code number 155. 

24 5500 5500 - - ----
I 

25 HLT I 0000 Code = 55, so halt. 
I 
I 

26 STH i 7~1 1367 Half-word index register 7, store code number, 
and return to read next key. 

27 JMP 22 6022 

Example 17 Fi II ing Hal f-Word Table from the Keyboard 

Another example reads key code numbers and stores at consecutive half-word locations only 

those code numbers which represent the letters A-Z, codes 24
S

-55
8

• Other key codes are discarded, 

and the program stops when 100
8 

letters have been stored 0 

45 



PROGRAMMING THE L1NC-8 

DIS 

Memory 
Memory Buffer Effect 

Address 

5 [ h,X] [ -] 

6 [ -n] [ -] . . . . . 
- 100 SET i 6 0066 Set 6 to count 100 times ~ 

101 -100 7677 

102 SET i 5 0065 Set 5 for storing letters beginning at lH(1000 ) . 
103 1,777 4777 

104 ~KBD i 0535 Read keyboard. 

105 STA i 1060 C(ACC) -C(l 06); store key code in 106. 

106 [ -] [ -] 

107 ADA i 1120 C(ACC) - 23 -C(ACC) • 

110 -23 7754 

111 BCl i 1560 Clear all but the sign bit in ACC. 

112 3777 3777 

113 AZE 0450 If C(ACC) = 0, skip to location 115. 
------

114 JMP 104 : 6104 C(ACC) "I 0, so key code was less than 24. Return 
I to read next key. 
I 

115 lDH -E---I 1300 Key code 23 represents a letter. Therefore RH(106) 
RH(ACC) • 

116 1106 4106 

117 STH i 5 1365 Half-word index register 5 and store code for letter. 

120 XSK i 6 0226 Index register 6 and return if 100 letters have ------, 
been struck. 

1 

not 

121 JMP 104 
I 

6104 I 
I 

122 HlT~---1 0000 

Example 18 Selective Filling of Half-Word Table from the Keyboard 

2-10 THE L1NC SCOPES AND THE DISPLAY INSTRUCTIONS 

The L1NC has a cathode ray tube display device called a display scope, which is capable of 

presenting a square array of 512
10 

by 512
10 

spots (1000
8 

by 1000
8

). A special instruction, DIS i a 

(di splay), code 140 + 20i + a, momentari Iy produces a bright spot at one point in th is array. The hori

zonta� (H) and vertical (V) coordinates are specified in the accumulator and in a. The vertical coordinate, 

46 



PROGRAMMI NG THE LI NC-a 

-377
a 
~ V ~ + 377

a
, is held in the accumulator during a DIS i a instruction; the horizontal coordinate, 

° ~ H ~ 777 a' is held in register a, ° ~ a ~ 17. The spot in the lower left corner of the array has the 

coordincltes (0, - 377): 

(0, + 377) 

(0, 0) 

Square array, 3 11 x 3 11
, 

of lOOOa x lOOOa poi nts. 

'<IIE<'---- H ----~) 0 (H, V) 
.1' 
V 

(~, - 377) b-------~.:..-----o 

(777, + 377) 

(777, 0) 

(777, - 377) 

The coordi nates are he Id in the rightmost 9 bits of regi ster a and the accumu lator, 

sign 

ACC I I I I 1 I I I I 
'--y---/ 

I~ unused """=:---- (- 377 ~ V ~ + 377) ---->~ 

I I I 

h-bitj~ 1< 

so that if C(ACC) = 641, i.e., -136, and C(5) = 430, DIS 5 causes a spot to be intensified at (430, 

-136) on the scope. 

Both channels are positioned at the same time. The production of a bright spot on either channel 

depends upon the state of the leftmost bit (the h-bit) of register a and an external channel selector located 

on the face of the display scope. If h = 0, then the spot is produced via display channel 0; if h ~ 1, then 

the spot is produced via display channell. The scope may be manually set to intensify channel 0, chan

ne I 1, or both. 

The i-bit in DIS i a is used in the usual way to specify whether to index the right 10 bits of 

register a before brightening the spot. This indexing, of course, also increases the horizontal coordinate 

by one. To illustrate, the following program will display a continuous horizontal line through the middle 

(V=O) of the scope via display channel 0: 

47 



PROGRAMMING THE LlNC-8 

Memory 
Memory Buffer Effect 

Address 

--

5 [0, H] [ -] Horizontal coordinate and channel select ion. 

-+ 20 SET i 5 0065 Set 5 to channel 0 and horizontal coordi nate = O. 

21 0 0000 

22 CLR 0011 Vertical coordinate = 0 -+ C(ACC). 

23 [DIS i 5 0165 Index H (actually index entire rightmost 
display. Repeat endlessly. 

24 JMP 23 6023 

10 bits) and 

Example 19 Horizontal Line Scope Display 

Another example displays as a curve the values found in a set of consecutive registers, 14100-

1777. The vertical coordinates are the most significant 9 bits of each value. Since these are only 400
8 

poi nts to display, the curve wi II be positioned in the m idd Ie of the scope. Channe I 1 is used. 

Memory 
Memory Bu Her Effect 

Address 

10 [X] [ -] Address of vertical coordinates. 

11 [ 1, H] [ 4000+H] Channel select and horizontal coordinate. 

-"300 ~SET i 10 0070 Set 10 to beginning address minus 1 • 

301 1377 1377 

302 SET i 11 0071 Set 11 to select channel 1 and to begin curv e at 
H = 200. 

303 1, 177 4177 

304 r--?LDA i 10 1030 Load ACC with value and scale right 3 plac es to 
position it as vertical coordinate. 

305 SCR 3 0343 

306 DIS i 11 0171 Index the H coordinate and display. 

307 XSK 10 0210 Check to see if X(l 0) = 1777 • 
j 

------

310 JMP 304 
I 

6304 If 400
8 

.points have not been displayed, retu I 
I next pOI nt. 
I 

rn to get 

311 JMP 300~ 6300 If X(10) = 1777, return to repeat entire disp lay. 
! 

Example 20 Curve Display of a Table of Numbers 

48 



PROGRAMMING THE LlNC-8 

2-10.1 Character Display 

Display scopes are frequently used to display characters, for example keyboard characters, as 

well as data curves. Character display is somewhat more complicated since the point pattern must be 

carefully worked out in conjunction with the vertical and horizontal coordinates for each point. 

Forexample, to display the letter A, the array on the scope might look like: 

f-- 4---1 

Figure a 

I 
1 

Fi rst Second 
Word W'ord 
~ ,,---AA----.. 

6 0 6 0 

7 1 7 1 

8 2 8 2 

9 3 9 3 

10 4 10 4 

1 1 5 1 1 5 

Figure b 

where the shaded areas of figure a represent points which are intensified, and the white areas points not 

intensified; the total area represented is 6 vertical positions by 4 horizontal positions. If, for example, 

the lower left point has the coordinates (400, 0), then the upper right point has the coordinates (403, 5). 

The programmer could, of course, store the H and V coordinates for every intensified point of 

the charclcter in a table in the memory, but the letter A alone, for instance, would require 32
10 

registers 

to hold both coordinates for all the points which are intensified. Instead he arbitrarily decides upon a 

scope format, say 4 x 6, and makes up a pattern word in which l's represent points to be intensified and 

O's points which are not intensified. To specify a 4 x 6 pattern of 24 bits requires 2 memory registers. 

For efficiency of programming, the points are displayed in the order shown numerically in figure b, i.e., 

from lower left to upper right, column by column. Examining bit 11 of the pattern word first, bit 10 next, 

bit 9, etc., the pattern word for the left half of the letter A (the left two columns) looks like: 

First 012 3 4 5 6 7 8 9 10 11 
pattern word 

\1 10 10 I \1 10 I 0 I 11 I 1 I 1 I 

The pattern word for the right half of the letter looks like: 

49 



SRO 

Second 
pattern word 

o 2 

PROGRAMMING THE L1NC-8 

678 9 10 11 

/1 I 0 I 0 I /1 10 I u 
An index class instruction, SRO i ~ (skip rotate), code 1500 + 20i + ~, facilitates character 

display with the kinds of pattern words described above. SRO i ~ directs the LI NC to skip the next 

register in the instruction sequence when bit 11 of the specified memory register contains O. If bit 11 

contai ns 1, the computer does not sk i p. In either case, however, after exam in i ng bi t 11, the contents 

of the specified memory register are rotated 1 place to the right. Therefore, repeating the SRO instruc

tion (with reference to the same memory register) has the effect of examining first bit 11, then bit 10, 

bit 9, etc. Executing the SRO instruction twe Ive times, of course, restores the memory word to its 

origi nal configu ration. 

The following example repeatedly displays the letter A in the middle of the scope, using 

register 7 to hold the address of the first pattern word and register 6 to hold the H coordinate. Since 

4x 6 contiguous points on the scope array define an area too small to be readable, a delta of 4 is used 

to space the points, so that if the first point is intensified at coordinates (370, 0) the second point will 

be at (370, 4), the 7th point at (374, 0), etc. (This produces characters approximately 0.5 cm. high.) 

50 



PROGRAMMING THE L1NC-8 

Memory 
Memory Buffer Effect 

Address 

6 [0, H] [ -] Channel selection and H coordinate. 

7 [X] [ -] Address of pattern word. 
· . 
· . . 
· 

- 60 ---7 SET i 6 0066 Set H coordinate = 370 for lower left point. Select channel o. 
61 0,370 0370 

62 SET i 7 0067 Set 7 to address of fi rst hal f of pattern • 

63 110 011 0 

64 ~LDAi 1020 Initial V coordinate = -10- C(ACC). 

65 -10 7767 

66 ~SRO 7 1507 Skip to location 70 if bit 11 of pattern word is O. Rotate ------, 
the pattern word 1 place to right. 

I 

67 DIS 6 
I 

0140 If bit 11 of pattern word was 1, display one point. I 
I 

70 ADD 75~ 2075 Add 4 to V coordinate in ACC. 

71 SRO i 1520 Skip to location 74 when 6 bits of pattern word have been 
examined. Rotate C(72) 1 place to right. 

72 ~7_3Z. __ 3737 

73 JMP 66 : 6066 Return to examine next bit of pattern word when bit 0 of 
I C(72) = 1 . , 

74 LDA i~-1 1020 

75 4 0004 When bit 11 of C(72)=0, 6points have been examined. In 

76 ADM 1140 crease H coordinate by 4 to do next column. 

77 6 0006 

100 SRO i 1520 Check to see if 2columnshave been displayed. Rotate 
C(l 01) 1 place to right. 

101 2525 2525 ------
102 JMP 64 

I 
I 6064 Two columns have not been displayed; return to do next 
I column. I 

103 XSK i 7~ 0227 Two columns have been displayed; index address of the 
pattern word. 

104 SRO i 1520 Skip to 107 is both halves of pattern have been displayed. 

105 2525 2525 

106 JMP 64 6064 Return to display 2nd half of pattern. 

107 JMP 60 6060 Entire pattern has been displayed once. Return and repeat. 

110 4477 4477 } 111 7744 7744 
Pattern words for letter A. 

- -

Example 21 Character Display of the Letter A 

51 



PROGRAMMI NG THE LI NC-8 

DSC 

The SRO instructions at locations 71, 100, and 104 determine when 1 column, 2 columns, and 

4 columns have been displayed. After each column the H coordinate is increased by 4 and the V coclrdi

nate reset to -10. After 2 columns the address of the pattern word is indexed by one, and after 4 columns 

the entire process is repeated. 

DSC i ~ (display character), code 1740 + 20i +~, is the last of the index class instructions; it 

directs the LI NC to display the contents of one pattern word, or 2 columns of points. Register ~ holds 

the address of the pattern word and the i -bit is used in the usual way to index X(~). The points are dis

played in the format described above, i.e., 2 columns of 6 points each with a delta of 4 between points. 

The pattern word is examined from right to left beginning with bit 11 and points are plotted from 10wE~r 

left to upper right, as above. When executing a DSC instruction the computer always takes the H coordi

nate and channel selection from register 1. The delta of 4 is automatically added to X(l) every time a 

new column is begun; furthermore, this indexing is done before the first column is displayed, so that if 

register 1 initially contains 0364, the first column is displayed at H = 370, the second at H = 374, and 

register 1 contains 0374 at the end of the instruction. 

The vertical coordinate is, as usual, taken from the accumulator, and again +4 is automa1"ically 

added to C(ACC) between poi nts. The rightmost 5 bits (bits 7-11) of the accumu lator are always c le(lred 

at the beginning of a DSC instruction, so that if initially C(ACC) = + 273, the first point wi II be displayed 

at V = 240, the second at V = 244, etc. Characters can therefore be displayed using the DSC instruction 

only at vertical spacings of 40 on the scope, e.g., at initial vertical coordinates equal to -77, -37, 0, 

+ 40, + 100, etc. The rightmost 5 bits of the accumu lator always contain 30
8 

at the end of a DSC in

struction, so that if the initial C(ACC) = + 273, the initial V equals + 240 and C(ACC) equals + 270 Cit 

the end of the instruction. 

To display a character defined by a 4 x 6 pattern two DSC instructions are needed. The f()l

lowing example repeatedly displays the letter A in the middle of the scope, just as the program on pClge 

48 (exampie 20) does, but with greater efficiency using the DSC instruction. Since an initial V = -1 0 

is not possi ble wi th DSC, the program uses V = O. 

52 



PROGRAMMING THE LINC-8 

Memory 
Memory Buffer Effect 

Address 

1 [0, H] [ -] Channel selection and H coordinate. 
· · · · · · 7 [X] [ -] Address of pattern word. 
· · · · · · · 

- 60 CLR 0011 Initial V = 0 - C(ACC). 

61 rSET i 1 0061 Set 1 to initial H coordinate minus 4, and select channel O. 

62 0364 0364 

63 SET i 7 0067 Set 7 to address of first half of pattern. 

64 110 0110 

65 DSC 7 1747 Display, using 1 st pattern word, the left 2 columns of the 
letter A, at initial coordinates of (370, 0). 

66 DSC i 7 1767 Index address of pattern word, X(7), and di splay right 2 
columns of the letter A at initial coordinates of (400, 0). 

67 JMP 61 6061 Return and repeat. 
· · · · · } 110 4477 4477 

Pattern words for letter A. 
111 7744 7744 

Example 22 Character Display of the Letter A Using DSC 

After the first DSC instruction (at location 65), C(l) = 0374 and C(ACC) = 30. After the 

second DSC instruction, C(l) = 0404, C(7) = 0111, and C(ACC) = 30. C(110) and C(lll) are unchanged. 

By adding more pattern words at locations 112 and following locations,· and repeating the DSC i 7 instruc

tion, it is possible to display an entire row of characters. 

The following program repeatedly displays a row of six digits. The pattern words for the char

actors 0·-9 are located in a table beginning at lOOOi i.e., the pattern words for the character 0 are at 

1000 and 1001, for the character 1 at 1002 and 1003, etc. Keyboard codes for the characters to be dis

played eIre located in a half-word table from 1400-1402i i.e., the first code valJe is LH(1400), the 

second RH(1400), etc. The program computes the address of the first pattern word for each character as 

it is retri eyed from the tab I e at 1400. 

53 



Memory 
Address 

1 

2 

3 

4 

. 
- 20 

21 

22 

23 

24 

25 

26 

27 

30 

31 

32 

33 

34 

35 

36 

37 

40 

41 

42 

43 

Memory Buffer 

-

[ 1, H] [ -] 

[ -n] [ -] 

[ h,X] [ -j 

[X] [ -j 
. . 

~SET i 2 0062 

-6 7771 

SET i 3 0063 

1,1377 5377 

SET i 1 0061 

1,344 4344 

~LDH i 3 1323 

ROL 1 0241 

ADA i 1120 

1000 1000 

STC 4 4004 

DSC 4 1744 

DSC i 4 1764 

LDA i 1020 

4 0004 

ADM 1140 

1 0001 

XSK i 2 0222 -----, 
JMP 26 I 6026 

JMP 20J 6020 

PROGRAMMING THE LlNC-8 

Effect 

Channel selection and H coordinate. 

Counter for number of characters. 

Address of keyboard code values. 

Address of pattern word. 

Set 2 to count number of characters displayed. 

Set 3 for loading code values beginning at LH(140 0). 

1annel1 . Set 1 to initial H coordinate minus 4, and selectcl' 

Half-word index register 3 and put code value int o 
accumu lator • 

Compute address of pattern word by multiplying co de value 
by 2 and adding beginning address of pattern table 

Address of pattern word -+ C(4); 0- C(ACC). 

Display character at initial V = 0, and initial H= C(1)+4. 

Increase H by 4 to provide space between charact ers. 

Index X(2) and check to see if six characters have been 
f so, displayed. I f not, retu rn to get next character. I 

return to repeat entire display. 

Example 23 Displaying a Row of Characters 

Suppose, for example, that one of the six code values is 07. The pattern words for the chc:lr

acter 7 are at locations 1016 and 1017. Multiplying the code value 07 by 2 (7 x 2 = 16
8

) and addin~l the 

beginning address of the pattern table (16 + 1000 = 1016) gives us the address of the first pattern word for 

the character 7. It shou Id be c lear that pattern words for all the keyboard characters cou Id be added to 

54 



PROGRAMMI NG THE LI NC-8 

SAM 

the pattern table; by organizing the pattern table to correspond to the ordering of the keyboard code 

values, the same technique of "table look-up" using the code values to locate the pattern could be used 

to di splay any characters on the keyboard. * 

2-11 ANALOG INPUT AND THE SAMPLE INSTRUCTION 

The sample instruction, SAM i n, refers to the LINC's miscellaneous inputs. The LINC has 

16 input lines (0-178) through which external analog signals may be received. The sample instruction 

samples the voltage on anyone of these I ines, and suppl ies the computer with instantaneous digital ized 

"Iooks" at analog information. Input lines 0-7 are built to receive signals in the range +5 to -5. These 

eight lines are equipped with potentiometers (which appear on the display panel as numbered black 

knobs) whose voltage is varied by turning the knobs. lines 10-17, located at the data terminal module, 

are for high frequency signals which may range from -1 to +lv at a maximum of circa 20,000 cps. 

The number n in the sample instruction specifies whi.ch line to sample. Built into the LlNC 

are analog-to-digital conversion circuits which receive the signal and convert it to a signed ll-bit binary 

number in the range ±377, leavi ng the resu I tin the accumu lator. Thus, for examp Ie, a vol tage of 0 on 

one of the high frequency lines wi II be converted to 0 when sampled with a SAM instruction, and the 

number 0 wi II be left in the accumulator. Voltages on the high frequency lines greater than or equal to 

+ 1 v wi II, when sampled, cause +377
8 

to be left in the accumu lator. Voltages less than or equal to -1 v 

wi II cause -377 to be left in the accumu lator. 

Memory 
Address 

- p 

Memory Buffer 

SAM n 100 + 20i + n 

Effect 

Conversion of voltage 
on line n - C(ACC). 

The value of this facility, which makes it possible to evaluate data while they are being gen

erated, CCIn easily be seen. The sample instruction is frequently used with the display instruction in this 

context. 

To illustrate use of this instruction, look first at a simple example of a sample and display 

program. The following sequence of instructions samples the voltage on input line 10, and displays 

continuously a plot of the corresponding digital values. It provides the viewer with a continuous picture 

of the anctlog signal on that line. The sample values left in the accumulator are used directly as the 

vertical coordinates. In this example, input lOis sampled. 

*See charlo III in appendix 2. 

55 



PROGRAMMING THE L1NC-8 

Memory 
Memory Buffer 

I 
Effect Address 

-_ ......... _--------------

17 [0, H] [ -] For channel selection and H coordinate. . . 
-.. 1000 SET i 17 0077 Set register 17 to begin H coordinate at H = 0; 

channel O. 

1001 1777 1777 

1002 ~SAM 10 0130 Sample input 10, leaving its value in the ACC as 
the V coordinate. 

1003 DIS i 17 0177 Index the H coordinate and display. 

1004 JMP 1002 7002 Return and repeat endlessly. 

Example 24 Simple Sample and Display 

Note that since here a continuous display is wanted, it isnot necessary to reset register 17 to 

any specific horizontal coordinate. 

A second example illustrates one of the uses of the potentiometers. This program plots the 

contents of a 512
10 

word segment of memory regi sters 0-1777. Location of the segment is se lected by 

rotating knob 5, whose value is used to determine the address at which to begin the display. As the 

viewer rotates the knob, the display effectively moves back and forth across the memory. 

56 



PROGRAMMI NG THE LI NC-8 

Memory 
Memory Buffer Effect 

Address 

12 [X] [ -] 

13 [ I, H] [ -] For channel selection, H coordinate, and counter. 
. . . 

- 20 ~SET i 13 0073 Set register 13 to select channel 1 and to begin dis-
playing at H = O. 

21 4777 4777 

22 SAM 5 0105 

23 ADA i 1120 

24 400 0400 
Sample knob 5, add 400 to make the value positive, 

~ rotate left 1 place to produce an address for di splay, 
25 ROLl 0241 and store in reg i ster 12. 

26 STC 12 4012 

27 -7LDA i 12 1032 } Index the address of the vertical coordinate, and put 
30 SCR 3 0343 the coordinate into the ACC. Position it for di splay, 

31 DIS i 13 0173 
index the H coordinate and display. 

32 XSK 13 0213 Check to see whether 51210 points have been displayed. -----1 
(X (1 3) = 1777?). 

I 

33 JMP 27 I 6027 If not, return to display next point. I 

34 JMP 20~1 6020 I f so, return to reset counter and get new address from 
knob 5. 

Example 25 Moving Window Display under Knob Control 

At locations 23-25, a m'emory address is computed for the first vertical coordinate by adding 

400 to the sample value. This leaves the value in the range +1 to + 777; it is then rotated left 1 place 

to produc:e an initial address in the range 2-1776 for the display. 

A final example illustrates the technique of accumulating a frequency distribution of sampled 

signal amplitudes appearing on line 12, and displaying it simultaneously as a histogram. The distribution 

is compiled in a table at locations 1401-1777, and the sample values themselves form the addresses for 

table entry. Regi sters 1401-1777 are ini tially set to - 377 so that the histogram wi II be from the bottom 

of the scope. 

Note, at locations 104 and 105, because of using memory registers 1401-1777, the same index 

register (register 2) may be interpreted both as address (location 104) and counter (location 105). A 

separate counter is not needed because the final address (1777) wi II serve also as the basi s of the sk i p 

decision for the XSK instruction. The same is true at location 124 and 134. 

57 



Memory 
Address 

2 

3 

100 

101 

102 

103 

104 

105 

106 

107 

110 

111 

112 

113 

114 

115 

116 

117 

120 

121 

122 

123 

124 

125 

126 

127 

130 

131 

132 

133 

134 

135 

136 

Memory Buffer 

[Xl [- 1 
[O~ H] [-:- ] 

SET i 2 0062 

1400 1400 

LDA i 1020 

-377 7400 

~STA i 2 1062 

XSK 2 0202 -----, 
JMP 104 I 6104 

--;..SET i 2~ 0062 

1400 1400 

SET i 3 0063 

200 0200 

~SAM 12 0112 

SCR 1 0341 

ADA i 1120 

1600 1600 

STC 123 4123 

LAD i 1020 

1 0001 

ADM 1140 

[ -] [- J 

LDA i 2 1022 

DIS i 3 0163 

~DIS 3 0143 

ADA i 1120 

-1 7776 

SAE i 1460 

-400 7377 -----l 
JMP 126 I 6126 

XSK 2 -E-.J 0202 ----, 
I 

JMP 113 I 6113 

JMP 1 07~ 6107 

PROGRAMMING THE LINC-8 

... 

J 

... 

J 

.... 

Effect 

Address of vertical coordinates. 

Channel selection and H coordinate. 

). Initial routine to set registers 1401-1777 to -377. 

Set register 2 to initial address minus one of vertic 01 coordi-
nates. 

Set register 3 to select channel 0 and begin displa y at H==201 . 

Sample input line 12. 

ess for Add 1400+200 to the sample value to form an addr _ 
>0 recording the event and store. 

)-

>-

Add 1 to the contents of the register just located b y the 

sample value to record the event. 

Index register 2 and put a histogram value in the a ccumulator. 

Index th.~ H coordinate and display. 

Display without indexing. 

Fill in the bar by decreasing the vertical coordinat e by 1 and 

V=-377. continuing the display until a point is displayed at 

When bar is finished, check to see whether 377 va~ ues hc)ve 
been displayed. (X (2) = 1777?). 

If not, return to get next sampl e. 

If so, return to reset vertical coordinate address, H coord i nate, 
and repeat. 

Example 26 Histogram Display of Sampled Data 

58 



PROGRAMMI NG THE LI NC-8 

SKP, SXL, APO 

2-12 THE SKIP CLASS INSTRUCTIONS 

Instructions be longing to the sk i p c lass test various condi tions of the accumu lator, the keyboard, 

the tapes, and the external level lines of the data terminal module. Coding for these instructions includes 

the condition or level line to be checked and an option to skip or not skip when the condition is met or 

the external level is negative. 

SKP i c: 

or 

SXL in: 

condition 
SKP 0 < c < 17 

t ~ 

440 + 20i + c 

t 

400 + 20i + n 
t t 

SXL 0 < n < 17 

i = 0: Skip only if condition c is met or level 
n is negative. 

i = 1: Skip only if condition c is not met or 
level n is not negative. 

levelT'ine number 

In these instructions the i-bit can be used to invert the skip decision. When i = 0, the computer 

skips the next register in the instruction sequence when the condition is met or external level is negative. 

However, when i == 1, the computer skips when the condition is not met or the external level is not neg

ative. Otherwise the computer always goes to the next register in the sequence. 

The four situations which may arise are summarized in the following table. The skip class in

struction is assumed to be in register p. 

Branching in Skip Class Instructions 

i Condition met of' level negative? Location of next instruction 

0 yes p + 2 (skip) 

0 no p + 1 

1 yes p + 1 

1 no p + 2 (skip) 

SKP i c instructions test 16 conditions, which, because of their variety, are described with 

different 3-letter expressions. Thus the AZE i instruction already presented is the same as SKP i 10. 

Another instruction, APO i, synonymous with SKP i 11, checks to see whether the accumulator is positive 

(bit 0 = 0): 

59 



LZE, SNS, KST 

Case: i = 0 

Memory 
Address 

p 

p + 1 

p+2 

Case: i = 1 

Memory 
Address 

p 

p + 1 

p+2 

PROGRAMMI NG THE LI NC-S 

Memory Buffer Effect 

APO 400+ 11 If C(bit 11 of ACC) = 0, go to P + 2 for 
----I 

the next instruction; if C(bit 11 of ACC) 
_~-l -

I = 1, go to P + 1 • 
1 

-.oE-: -

Memory Buffer Effect 

APOi 400+20+ 11 If C(bit 11 of ACC) ;::: 1, go to P + 2 for 
----I 

the next instruction; if C(bi t 11 of ACC) 
-~I -

1 = 0, go to P + 1 • 

--E-' -

Other SKP variations check whether C(L) ;::: 0, (LZE i, code 452 + 20i, which is synonymous 

with SKP i 12) or whether one of the 6 sense switches on the console is up (SNS i 0, SNS i 1, 0'" 

SNS i 5, synonymous with SKP i 0, SKP i 1, •• 0, SKP i 5). (The sense switches are numbered from ,I[eft 

to right, 0-50) 

The SXL i n instruction (skip on negative external level) checks for the presence of CI - 3v 

level on external level line n, 0 ~n ~ 13, at the data terminal module. It is often used with the operate 

instruction, discussed in the next section, to help synchronize the LI NC with external equipment 0 

The skip instruction KST i (key struck), code 415 + 20i, checks whether a keyboard key hels 

been struck. KST i is synonymous with SXL i 15. 

To illustrate the use of these instructions the following program counts the signal peaks above 

a certain threshold, 100
S

' for a set of 1000
S 

samples appearing on input line 130 The number of peaks 

exceedi ng the threshold wi II be I eft in the accumu lator • 

60 



PROGRAMMI NG THE LI NC-S 

Memory 
Memory Buffer Effect 

Address 
~ 

7 [ -n] [ -] Counter for 1000 samples. 

10 [ n] [ -] Counter for number above 1 OOS • 

-+ 1500 SET i 7 0067 Set regi ster 7 to count 1000 samples. 

1501 -1000 6777 

1502 SET i 10 0070 Clear register 10 to count peaks. 

150~3 0 0000 

1504 ~SAM 13 0113 

1505 ADA i 1160 
} Sample input line 13 and subtract 100 from the sample 

value. 
1506 -100 7677 

1507 APO i 0471 Is the accumu lator positive? -------I 
1510 XSK i 10 I 0230 If so, the value was above 100; add 1 to the counter. 

I If not, skip the instruction in location 1510. I 
I 

1511 XSK i 7~ 0227 Index register 7 and test. ------1 
1512 JMP 1504 I 7504 If 1000 samples have not been taken, return. 

I 
151 ~3 LDA~---I 1000 

1514 10 0010 
} If 1000 samples have been taken, put the number of 

those above 100 into the accumu lator and hal t . 
1515 HLT 0000 

Example 27 Counting Samples Exceeding a Threshold 

Another program samples and displays continuously the input from line 14 until a letter, i.e., 

a key whose code value is higher than 23
S

' is struck on the keyboard. 

61 



PROGRAMMING THE L1NC-8 

- ------------------
Memory 

Memory Buffer Effect 
Address 

1 [ 1, H] [ -] Channel selection and H coordin ate • 
· . 
· · . 

-+ 100 SET i 1 0061 Set register 1 to se lect channe I 1 and begin display 
at H = 1 • 

101 4000 4000 

102 ,-}SAM 14 0114 Sample line 14 and display its v alue. 

103 DIS i 1 0161 

104 KST 0415 Has a key been struck? ------, 
105 JMP 102 I 6102 If not, return and continue sampl 

I r\ 
ing and displaying. 

106 KBD~- -I 0515 

107 ADA i 1120 
:> If so, read the key code into the 

110 -23 7754 
subtract 23

8 
from its code value. 

) 

accumu lator and 

111 APO 0451 Is ACC positive? ------1 
112 JMP 102 I 6102 If not, the value was less than 2 

1 ti nue sampl ing • 
1 

3
8

, Return and con-· 

113 HLT~- - I 0000 If so, the value was 24 or greate ri halt . 
----

Example 28 Simple Sample and Disploy with Keyboard Control 

Note that the KBD instruction at location 106 is executed only when a key has been struck 

(because of KST at location 104) and therefore does not need to direct the computer to pause. 

2-13 SUBROUTINE TECHNIQUES 

Before describing the remaining instructions, some mention should be made of the technique 

of writing subroutines. Frequently a program has to execute the same set of instructions at severed dif

ferent places in the program sequence. In this case it is an inefficient use of memory registers to wri~e 

out the same set of instructions each time it is needed. It is more desirable to write the instructions once 

as a separate, or IIsub," routine to which the program can jump whenever these instructions are to be ex

ecuted. Once the instructions in the subroutine have been executed, the subrouti ne shou Id return cQ1ntroi 

(jump back) to the main program. 

For example, suppose that in two different places in a program we must execute the sClme s,et 

of arithmetic operations. Visualize the genera I structure of such a program as follows: 

62 



2-13. 1 

PROGRAMMING THE LlNC-8 

Ma i n Prog ram 

Memory Address 

Start 
---7) 100 

150 

151 

200 

201 

Memory Address 

Enter 
Subroutine - 1000 

1020 

Memory Buffer 

1 ~:~~am I nstruc tions 
JMP 1000 ) Jump out to subroutine 

Continue ~ Return from subroutine 

Main 

Program 

Instructions 

JMP 1000 > Jump out to subroutine 1 Continue -<;----- Return from subroutine 

Subroutine 

Subroutine 
Instructions 

~ 

Memory Buffer 

} 
Ari thmetic 
Operations 

JMP MP~Return to main program 

It appears from this example that jumping to the subroutine from the main program (at locations 

150 and :200) is straightforward. The subroutine must be able to return control to the main program, how

ever, reentering it at a different place each time the subroutine is finished. That is, the JMP instruction 

at location 1020 must be changed so that the first time the subroutine is used it wi II return to the main 

program via a JMP 151 and the second time via a JMP 201 . 

It wi II be remembered that every time the computer executes a JMP instruction (other than 

JMP 0) a:t any location p, the instruction JMP p + 1 replaces the contents of register 0 (see page 11). 

Thus, when JMP 1000 is executed at location 150, a JMP 151 is automatically stored in register 0, saving 

the return point for the subroutine. The subroutine might retrieve this information in the following way: 

63 



aPR, EXC 

2-13.2 Subroutine 

Memory Address 

Enter 
Subroutine -+ 1000 

PROGRAMMING THE LlNC-8 

Memory Buffer 

LDA 

Effect 

C(O) -+ C(ACC); i.e., JMP p + 1 
-+ C(ACC). 

1001 0 

1002 STC 1020 

1020 [JLp+1J } 

C(ACC) -+ C(l 020) . 

Execute arithmetic operations. 

Return to main program. 

A simple JMP 0 in location 1020 c I early su ffi ces when the su brouti ne does not, durinSI its 

executi on, destroy the contents of reg i ster O. In th i sease, the instructions in locations 1000-1002 wou Id 

be unnecessary. 

A problem arises in the above example when the subroutine is not free to use the accumulator 

to retrieve the return point. Another method, using the SET instruction, is possible when there is an 

available ~ register. 

2-14 

2-14.1 

Memory Address 

Enter 
Subroutine -+ 1000 

1001 

1020 

Memory Buffer 

SET 10 

o 

JMP10 

Effect 

C(O) -+ C(10; i.e., JMP p + 1 is saved 
in a free ~ register. 

} 
Execute arithmetic operations; the 
accumu lator has not been di sturbed • 
Return to main program by jumping 
to regi ster 10. 

------------------~-----------------------------------------

PROCESSOR INTERCOMMUNICATION 

Control Transfer Between Processors 

There are two cases to consider in transferring control between processors. The first and 

simplest case is where no dispatching is required: the processor not in use is required to execute only 

one subprogram. The second case requires selection among several subprograms or subroutines for execu

tion in the alternate processor mode. In such a case, modification of the alternate processor's program 

counter is necessary. 

64 



PROGRAMMING THE LINC-8 

OPR, EXC 

An example of the first, nondispatching case is that of a PDP-8 program using the LINC 

processor strictly for display. Another example would be a LINC program relying on the PDP-8 proces

sor to servi~e only one peripheral device, such as 138E/139E ADC and multiplexer control (not on 

interrupt). The second, more general, case is well exempl ified by the program of operation, PROGOFOP, 

a collection of subroutines to service many of the special LINC features. The appropriate subroutine is 

called into play for each particular condition to be serviced. 

Let us examine the nondispatching case first. No changes need be made to the program counter 

register" Transfer of control back and forth is straightforward. Since the PDP-8 processor is in data break 

when the LINC processor is operational, a simple (LINC) HLT instruction stops LINC operation and trans

fers con"trol back to the PDP-8. Program operation resumes in the PDP-8 at the location following the 

one in which control was transferred to the LINC. Similarly, to transfer control from the PDP-8 to the 

LINC, the instruction sequence, CLA, TAD (12), ICON, is executed. The LINC subprogram resumes 

where it· was interrupted by H LT. The programmer can arrange jumps and halts so that a C LA, TAD, 

ICON sequence is an effective call to a LINC processor subroutine. In the same wayaH LT can be 

effectively a call to a PDP-8 subroutine. An example follows below. 

The most efficient means by which the LINC scope is used in a PDP-8 program takes advantage 

of the shared memory between the two processors. Control is transferred to a short LINC program to dis

playa list of points. The LINC processor transfers control back to the 8-processor upon encountering 

a halt instruction (HL T). 

The PDP-8 program is given in detail below: 

Memory Address 

MAIN, 

EXIT , 

RETURN, 

Memory Buffer 

CLA 

TAD (12) 

ICON 

NOP 

65 

Effect 

/12 OCTAL, TRANSFERS 

/CONTROL TO LINC PROCESSOR 

/AT LOCATION IN LINC P 

/REGISTER (LAST PDP-8 INST.) 

/CONTROL IS RETURNED HERE 



20 

PROGRAMMING THE LINC-8 

The LINC program is given in detail below: 

Memory Address 

DISPL, 

SETUP, 

Memory Buffer 

LDA i 2 

DIS i 3 

XSK i 4 

JMP 20 
SET i 2 

LIST 1 

SET i 4 

POINTS 

SET i 3 
-1 

HLT 
JMP 20 

LINC INITIALIZATION (DONE ONCE ONLY) 

(A PDP-8 SUBPROGRAM) 

Effect 

/LOADS LINC AC WITH CONTENTS 
/OF LOC SPECIFIED BY XR2 

/DISPLAYS: X, Y 
/Y=(AC), (XR3)=(XR3)+ 1, X= 
/(XR3) 

/SEE IF ENTIRE LIST HAS BEEN 
/DISPLAYED 
/MORE DISPLAYING 
/RESET DISPLAY POINTER TO: 

/LOCATION PREVIOUS TO LIST 
/OF POINTS 

/RESET COUNTER TO: 

/NUMBER OF POINTS TO BE 
/DISPLAYED 
/RESET X-AXIS CONTROL 

/RETURN CONTROL TO PDP-8 
/NEXT CALL WILL RETURN TO 
/THIS LOCATION 

======================~==============~=========================== 

INITL, CLA 
TAD (SETUP 
ISSP 
CLA 
TAD (10) 
ICON 

TAD (2 

ICON 

NOP 

JMP MAIN 

66 

/8 AC TO LINC PROGRAM COUNTER 

/ENABLE LINC SECTION 

/12 IN AC, GET READY TO 
/TRANSFER CONTROL. SEE LINC-8 
/USERS HANDBOOK 

/GO TO LINe PROGRAM AT 
/IlSETUpll 

/SETUP IS COMPLETE (CONTROL 
/RETURNED HERE) 

/OTHE R INITIALIZA TIO I'JS 



PROGRAMMING THE LINC-8 

In the second case, control must be transferred to the appropriate other-processor subroutine. 

This can be done when going from the PDP-8 to the LINC by setting the LINC P register with an ISSP 

instruction before starting the LINC (with a CLA, TAD, ICON sequence). The LINC program then starts 

at the location spec ified in the P register. Control may be transferred from the LINC main program to a 

PDP-8 subroutine by means of the operate (OPR) and execute (EXC) classes of LINC instructions. LINC 

execution of these instructions transfers control to PROGOFOP, the "program of operation. II PROGOFOP 

determ ines that a call to the 8-processor has taken place. PROGOFOP has retrieved the instruction from 

the LINe processor and retains it in the PDP-8 accumulator. By examining the AC the user may determine 

which subroutine to call. He must change a few locations in PROGOFOP to accompl ish this. These 

changes along with the other programming required to implement such a subroutine are described below. 

PROGOFOP sections which need to be modified for user-defined OPR and EXC instructions 

follow: 

Memory Address 

PROGOFOP NOW READS: 

EXECUT, 

ALTERATION TO PROGOFOP 
EXECUT, 

Memory Bu ffe r 

TAD LINSTR 
NOP 

TAD LINSTR 
JMS EXCTAB 

Effect 

JLINC INSTR TO AC 

JLINC INSTR TO AC 
jJMP TO DISPATCHING 
jROUTINE 

The user would change the" NOP" to JMP EXCTAB, (jump to EXC class dispatching subroutine). 

JMS is a jump to subrout ine (in PDP-8 cod ing). The jump is made to EXCT AB + 1, and the 

PDP-8 program counter is stored in location EXCTAB. To return to PROGOFOP the user should jump to 

the location held in EXCTAB, that is JMP I EXCT AB. PROGOFOP recal Is the LINC processor at the 

location fol lowing the EXC. A program which transfers control to the appropriate EXC subroutine is 

shown b.~Iow (this is called dispatching). 

67 



Memory Address 

EXCTAB, 

JUMPEX, 

EXCGOT, 

EXCn, 
RETURN, 

PROGRAMMING THE LINC-8 

Memory Bu Her 

o 
AND (37) 
TAD (JMP I EXCGOT) 
DCA JUMPEX 
o 

EXCO 
EXC 1 
EXC 2 

JMP I EXCTAB 

The OPR class is handled in a similar fashion: 

PROGOFOP reads: 

OPERATE, NOP 

Effect 

IMASK FOR n of EXCn 

lAC HOLDS JMP I EXCGOT+n 
IWILL HOLD A JUMP 
IINSTRUCT ION 
ILOCATIONS OF 
IEXC SUBROUTINES 

IA SAMPLE EXC SUBROUTINE 
IRETURN TO LINC PROGRAM 

The user would change the "NOP" to "JMS, OPRDO" (jump to operate dispatching subroutine). 

Memory Address 

OPRDO, 

JUMP, 

OPRSORT, 

Memory Buffer 

o 

AND (37 
TAD (JMP I OPSORT 
DCA JUMP 
o 

OPRO 
OPRl 

Effect 

IHOLDS LOC IN PROGOFOP 
ITO WHICH RETURN SHOULD BEIv\ADE 
IMAS K FOR n of EXCn 
lAC HOLDS JMP INSTRUCTION 
I" JUMP" HOLDS JMP I OPSORT +n 
IWILL DO A JUMP TO 
IPROPER LOC IN TABLE 
ILOCATIONS OF OPR SUBROUTINES 

An operate subroutine would then be written in normal PDP-8 coding with control being 

returned through PROGOFOP to the LINC program. 

OPRn, 

IMP 10PRDO IRETURN TO LINC PROGRAM 

68 



PROGRAMMING THE LINC-8 

The following OPR instructions are already defined in PROGOFOP. 

OPR 13 

OPR 14 

OPR 15 
OPR 16 
OPR 17 

/EFFECTNELY JMS TO A 
/8-SUBROUTINE AT 
/LOCATION SPECIFIED 
/BY (NON-ZERO) LINC ACCUMULATOR 

/TYPE OUT ASCII CHARACTER 
/IN LINC ACCUMULATOR 

/READ KEYBOARD 
/READ RIGHT SWITCHES 
/READ LEFT SWITCHES 

A common subroutine calling sequence holds the locations of the arguments directly after the 

call ing location. What this implies is that PDP-8 subroutines must be able to read the LINC program 

counter ,and that LINC subroutines must be able to read the PDP-8 program counter. In the first case, 

parameh~rs can be accessed via the ISSP, IBAC sequence. Modification of the LINC program counter 

can be made while in the 8 mode by the ISSP instruction. This P register modification is necessary to 

prevent returning control to the LINC at the middle of a list of parameters. 

For parameter transmission from a PDP-8 program to a LINC subroutine, the LINC routine 

must be able to determ ine the contents of the PDP-8 program counter. In order to do this a sequence of 

instructions must be executed before control is transferred to the LINC. The sequence of instructions is 

as fo II ows: 

Memory Address 

GOLINC, 
PCSTOR, 

Memory Bu ffer 

JMS PCSTOR 
o 
TAD PCSTOR 
TAD (5 

DCA XR1 

TAD (12 
ICON 
A 
B 
C 

69 

Effect 

/GET PROGRAM COUNTER 
/WILL HOLD PC 
/GET PC INTO AC 
/(AC) + 5 IS LOCATION OF 
/ICON. AC HOLDS ICON LOCATION 
/STORE AC IN XR 1 
/XR1 IS ALPHA REGISTER 1 
/OF THE LINC PROCESSOR 
/TRANSFER CONTROL TO LINC 

/PARAMETER 
/PARAMETERS 
/PARAMETERS 



PROGRAMMING THE LINC-8 

The LINC alpha register 1 holds the PDP-8 location at which control was relinquished. Thus, 

a LINe processor instruction LDA i 1 gets the location of first parameter of the subroutine into the accumu

lator. The sequence LDA i 1, STC 2, LDA 2 gets the parameter itself. Succeeding parameters may be 

loaded into the accumulator through use of the same instruction sequence since index register 1 is incre

mented each time the sequence is executed. Control can be returned to the proper PDP-8 location via 

the OPR 13 instruction. Alpha register 1 holds the location of the last parameter. Control should then 

be returned to the PDP-8 at the location following the last parameter. 

2-14.2 Example of use of the OPR 13 instruction (LINC Program). 

Memory Address Memory Buffer Effect 

--====================~F===================~F===============:===========-===== 

GOT08 
RESUME, 

8 Subroutine 

SUBR8, 

LDA i 
SUBR8 
OPR 13 

o 

JMP I SUBR 

2-15 MAGNETIC TAPE INSTRUCTIONS 

/THE AC HOLDS PDP-8 LOCATION 
/TO WHICH CONTROL IS TRANSFERRED 
/GO TO PDP-8 PROGRAM 
/RESUME LINC PROGRAM 

/HOLDS LOCATION IN PROGOFOP 
/TO WHICH RETURN SHOULD BE 
/MADE FOR RESTARTING THE 
/LINC 

/PROGOFOP WILL RETURN 
/CONTROL TO THE LINC AT THE 
/LOCATION FOLLOWING THE OPR 13 

The last class of instructions, for rr.agnetic tape, requires some discussion of LINC tape units 

and tape format. The LINC uses small reel (3-3/4 inch diameter) magnetic tapes for storing programs 

and data. There are two tape units on a single panel: 

70 



PROGRAMMING THE LlNC-8 

RDE 
LlNC MAGNETIC TAPES 

TAPE HEADS 

TAPE UNIT #0 TAPE UNIT #1 

Any magnetic tape instruction may refer to either the tape on unit 0 or the tape on unit 1; 

which unit to use is specified by the instruction itself; only one unit,however, is every used at one time. 

In the original LlNC, handling of magnetic tape and its instructions was done entirely by the 

computer hardware • However, in the LI NC-8 system, the tape and its instructions is handled by software, 

a program which permanently resides in PDP-8 core memory area to handle magnetic tape, as well as other 

input/output and special feature functions. This program is called PROGOFOP (program of operation). 

PROGOFOP interprets some of the LlNC's instructions as well as handling most input/output for the LlNC. 

Th i s has no effect on the eventual resu I t of the LI NC instructions; it merely means that hardware functions 

have been replaced with software equivalents. 

A LI NC tape can hold 131, 072, 12-bit words of information, or the equivalent of 128
10 

fu II 

LI NC memories. It is divided into 512
10 

smaller segments known as blocks, each of which contains 256
10 

12-bit words, a size equal to one-quarter of LI NC memory. Blocks are identi fied on any tape by block 

numbers, 0-777
8

; magentic tape instructions specify which block to use by referring to its block number. 

A block number (BN) on the tape permanently occupies a 12-bit space preceding the 256 words of the 

block itself: 

~ I Block I Block ~ 
\L-____ ~_N_u_m_b_e_r~ __ ~ ____________________________ ~ ______ ~~ 
~ ,------------~v~------------I 

1 word 256 words 

There are other special words on the tape, serving other functions, which complete the tape 

format. Before describing these, however, look more specifically at one of the magnetic tape instruc

tions, RDE i u (read tape). 

71 



PROGRAMMING THE LlNC-8 

2-"15.1 Block Transfers and Checking 

Read tape is one of six magnetic tape instructions which copy information either from the lope 

into the LI NC memory (reading), or from the memory onto the tape (writing). These are generally ced led 

block transfer instructions because they transfer one or more blocks of information between the tape olnd 

the memory: 

LlNC Tape 

< 
256 word 256 word 

BN 
256 word 3 BN 

Block 
BN 

Block Block 

4~ 

Read 
LlNC Memory 

Read· 256 ... 
T ape to Memory - Memory 

Registers 
Write 

256 
Memory 
Regi sters 

256 
Write Memory 

Memory to Tape 
Registers -" 256 
Memory 
Registers 

All magnetic tape instructions are double register instructions. RDE, typical of a block tr(lnsfer 

instruction, is written: 

Memory 
Address 

p 

p + 1 

Memory Buffer 

RDE i u 

QNIBN 
3 bits 9 bits 

702 + 20i + lOu 

1000QN + BN 

The first register of the instruction has two special bits. The u-bit (bit 8) selects the tape unit: 

when u = 0, the tape on unit 0 is used; when u = 1, the tape on unit 1 is used. Magnetic tape instructions 

require that the tape on the selected unit move at a speed of approximately 60 ips. Therefore, if the tape 

is not moving when the computer encounters a magnetic tape instruction, tape motion is started automatically 

and the computer waits unti I the tape has reached the required speed before continuing with the instruction. 

72 



PROGRAMMING THE LlNC-8 

The i-bit (bit 7) specifies the motion of the tape after the instruction is executed. If i == 0, 

the tape wi II stop; if i == 1, it wi II continue to move at 60 ips. I t is sometimes more effic ient to let the 

tape continue to mover as, perhaps, to execute several magnetic tape instructions in succession. If it 

stopsr it is necessary to wait for it to start again at the beginning of the next tape instruction. Examples 

of this will be given later. 

In the second register of the RDE instruction, the rightmost 9 bits hold the requested block 

numberr BN; that is, they tell the computer which block on the tape to read into the memory. The left 

3 bits hold the quarter number, QNr which refers to the memory. QN specifies which quarter of memory 

to use in the transfer. The quarters of the LI NC memory are numbered 0-7, * and refer to the memory 

registers C1S follows: 

Quarter Memory Registers 
Number (octal) 

0 0-377 

1 400 - 777 

2 1000 - 1377 

3 1400 - 1777 

4 2000 - 2377 

5 2400 - 2777 

6 3000 - 3377 

7 3400 - 3777 

Suppose, for example, the programmer wishes to transfer data stored on tape into memory 

registers 1000-1377. The data is in block 267 and the tape mounted on unit 1: 

Memory 
Memory Buffer Effect 

Address 

- 200 RDE u 0712 Select unit 1; C(block 267) -
C(quarter 2). 

201 21267 1000x2+267 
.'-

This instruction will start to move the tape on unit 1 if it is not already moving. It then reads 

block 267 on that tape into quarter 2 of memory and stops the tape when the transfer is completed. The 

computer will go to location 202 for the next LlNC instruction. After the transfer the information in 

block 267 is still on the tape; only memory registers 1000-1377 and the accumulator are affected. Con

versely, writing affects only the tape and the accumulator: the memory is left unchanged. 

*See appendix 1 • 
73 



PROGRAMMI NG THE LI NC-8 

WRI 
Another special word on the tape, located immediately following the block, is called the 

checksum, CS: 

[ 13 l'----_BI: ___ Ck ----"Jj ] 
1 word 256 words 1 word 

The checksum, a feature common to many tape systems, checks the accuracy of the transf,sr of 

information to and from the tape. On a LI NC tape, the checksum is the complement of the sum of the 

256 words in the block. Such a number is formed during the execution of another block transfer instwc

tion, WRI i u (write tape). This instruction writes the contents of the specified memory quartelr in the 

specified block of the selected tape: 

Memory 
Address 

p 

p + 1 

Memory Bu Her 

WRI i u 

QNIBN 

706 + 20i + 1 Ou 

1000QN + BN 

During the transfer the words being written on the tape are added together without end-around 

carry in the accumulator. Thi.s sum is then complemented and written in the CS space following the 

block on the tape. After the operation the checksum is left in the accumu lator and the computer goes' to 

p + 2 for the next LI NC instruction. QN, BN, i, and u are all interpreted as for RDE. 

One means of checking the accuracy of the transfer is to form a new sum and compare it to 

the checksum on the tape. Th i s happens duri ng RDE: the 256 words from the block on the tape are cldded 

together without end-around carry in the accumulator whi Ie they are being transferred to the memor),'. 

This uncomplemented sum is called the data sum. The checksum from the tape is then added to this data 

sum and the result, called the transfer check, is left in the accumulator. If the information has been 

transferred correctly, the data sum wi II be the c'omplement of the checksum, and the transfer check wi II 

equal - 0 (7777): the block "checks." Thus, by examining the accumulator after an RDE instruction, 

the programmer can tell if the block was transferred correctly. The following sequence of instructions 

does this and reads block 500 again if it does not check: 

74 



PROGRAMMI NG THE LI NC-S 

ROC 

Memory 
Memory Buffer Effect 

Address 

- 300 c?ROE 0702 Read block 500, unit 0, into quarter 3. Leave the transfer 
check in the accumulator and stop the tape. 

301 31500 3500 

302 SAE i 1460 Skip to location 305 if C(ACC) = 777, i.e., if the block 
checks. If C(ACC) -/7777, return to read the block again. 

303 7777 7777 -------, 
304 JMP 300 I 6300 

305 - ~--.I -
. . . .' . 

The remaining block transfer instructions check transfers automatically. ROC i u (read and 

check), does in one instruction exactly what the above sequence of instructions does. That is, it reads 

the specified block of the selected tape into the specified quarter of memory and forms the transfer check 

in the accumulator. -If the transfer check does not equal 7777, the instruction is repeated (the block is 

reread, etc .). When the block is read correctly, 7777 is left in the accumulator and the computer goes 

on to the next LI NC instruction at p + 2. The ROC instruction is written: 

Memory 
Address 

p 

p + 1 

Memory Buffer 

ROC i u 

QNIBN 

700+ 20i + lOu 

1000QN+ BN 

One of the most frequent uses of instructions wh ich read the tape is to put LI NC programs stored 

on tape into the memory. Suppose the programmer is given a tape, for example, which has in block 300 

a program he wants to run. The program is 100S registers long, starting in register 1250. He can mount 

the tape on either unit and then set and execute either RDE or ROC in the LEFT and RIGHT SWITCHES. 

If he uses ROE, he should look at the ACCUMULATOR lights after the transfer to make sure the transfer 

check = 7777. When double register instructions are set in the toggle switches, the first word is set in the 

LEFT SWITCHES, and the second in the RIGHT SWITCHES. If the tape is on unit 1, to use ROC the toggle 

switches should be set as follows: 

75 



CHK 

PROGRAMMI NG THE LI NC-8 

Console 
location 

LEFT SWITCHES 

RIGHT SWITCHES 

Contents 

RDC u 

21300 

0710 

2300 

QN =2 because the program in block 300 must be stored in memory registers 1250-1347, which 

are located in quarter 2. Rai sing the DO lever will cause the LI NC to read the block into the proper 

quarter and check it. Start at 1250 from the console, using the RIGHT SWITCHES. 

The remaining block transfer instructions will be described later. 

A non-transfer instruction, CHK i u (check tape), makes it possible to check a block without 

destroying information in the memory. This instruction does exactly what RDE does, except that the 

information is not transferred into the memory; that is, it reads the specified block into the accumula1ror 

only, forms the data sum, adds it to the checksum from the tape, and leaves the reSlJ It, the transfer 

check, in the accumulator. Since this is a non-transfer instruction, QN is ignored by the computer. 

Otherwise this instruction is written as are the other instructions: 

Memory 
Address 

Memory Buffer 

p C HK i u 707 + 20i + lOu 

p + 1 BN BN 

The following program checks sequentially all the blocks on the tape on unit O. The program 

starts at location 200. If a block does not check, the program puts its block number into the accumu lator 

and halts at location 221. To continue checking, reenter the program at location 207. The program will 

halt at location 216 when it has checked the entire tape. 

76 



PROGRAMMI NG THE LI NC-8 

WRC 

Memory 
Memory Buffer Effect 

Address 

Start 
:> 200 CLR 0011 

} Store 0 in register 203 as first block number. 
201 STC 203 4203 

202 r7:J 0727 Check the ~Iock specified in register 203; transfer 
check - C(ACC); the tape continues to move. 

203 [BN] [-] 

204 SAE i 1460 If the transfer check == - 0, skip to location 207. 

205 7777 7777 

206 JMP 217 6217 If the block does not check, jump to location 217 • 

Reenter 
) 207 LDA i 1020 

...., 

210 1 0001 Add 1 to the block number in register 203, and 

211 ADM 1140 
> leave the sum in the accumu lator. 

212 203 0203 ,. 
213 SAE i 1460 

llf all the blocks have been checked, skip to loca-214 lQ.o_O ___ 1000 
I 

215 JMP 202 : 6202 J lion 216. Otherwise return to check next block. 

216 HLT~-_I 0000 

217 -7LDA 1000 } 220 203 0203 
Load the block number of the block which failed into 
the accumulator, and halt. 

221 HLT 0000 

Example 29 Simple Check of an Entire Tape 

A block transfer instruction,WRC i u, (write and check), combines the operations of the instruc

tions WRI and CHK, and, like read-and-check, repeats the entire process if the check fails. That is, 

WRC writes the contents of the specified memory quarter in the specified block, forms the checksum in 

the accumulator and writes the checksum on'to the tape. It then checks the block just written. If the 

resulting transfer check does not equal - 0, the block is rewritten and rechecked. When the block checks, 

7777 is left in the accumulator and the computer goes on to the next LI NC instruction at p + 2. WRC is 

written: 

77 



PROGRAMMI NG THE LI NC-8 

Memory 
Address 

p 

p + 1 

Memory Buffer 

WRC i u 

QNIBN 

704 + 20i + lOu 

1000QN + BN 

This write-and-check process may be diagrammed: 

No 

Memory ~ Tape 
Form & Write Check 
sum(WRI) 

Tape ~ ACC Form 
Transfer Check in 
ACC (CHK) 

The following sequence illustrates the use of some of the block transfer instructions. Since: 

the LI NC memory is small, a program must frequently be divided into sections which will fit into tape 

blocks, and the sections read into the memory as needed. Th is example saves (writes) the contents 

of quarter 2 of memory (registers 1000-1377) on the tape. It then reads a program section from the tClpe 

into quarters 1, 2, 3 (register 400-1777) and jumps to location 400 to begin the new section of the 

program. Assume that the tape is on unit O. Memory quarter 2 wi II be saved in block 50i the program 

to be read from the tape is in blocks 201 -203: 

78 



PROGRAMMI NG THE LlNC-8 

Memory 
Memory Buffer Effect 

Address 

-+ 100 WRC i 0724 C(quarter 2)-C(block 50); transfer is checked, and the 
tape continues to move. 

101 2150 2050 

" 102 RDC i 0702 

103 1\201 1201 
C( block 201) -+ C( quarter 1), and C( block 202) -
C( quarter 2); tra-nsfers are checked and the tape con-

104 RDC i 0720 tinues to move. 

105 21202 2202 1/ 

106 RDC 0720 C (block 203) - C( quarter 3); transfer is checked and the 
tape stops. 

107 3/203 3202 

110 JMP 400 6400 Jump to the new section. 

c::i 400 [- ] 

Example 30 Dividing Large Programs Between Tape and Memory 

At the end of the above sequence, the contents of memory registers 400-1777 and tape block 

50 have been altered; quarter 0 of memory, in which the sequence itself is held, is unaffected. 

Another program repeatedly fills quarter 3 with samples from input line 14 and writes the data 

in consecutive blocks on tape beginning at block 200. The number of blocks of data to collect and save 

is specified by the,setting of the RIGHT SWITCHES. When the requested number has been written, the 

program saves itse If in block 177 and ha Its. The tape is on un it 1 . 

79 



PROGRAMMI NG THE LlNC-8 

Memory 
Memory Buffer Effect 

Address 

10 [X] [- ] Memory address for storing samples. 

1 1 [ -n] [-] Counter. 

- 1000 RSW 0516 } C(RIGHT SWITCHES) -+ C(ACC). Comp' ement tl 

1001 COM 0017 and store in register 11 . 

1002 STC 11 4011 

1e number 

1003 ~SET i 10 0070 Set register 10 to store samples beginning at 1400 

1004 1377 1377 
" 

1005 -).SAM 14 0114 
Sample input line 14, store value and repeat unti 

1006 STA i 10 1070 ~ samples have been taken. 
1400

8 

1007 XSK10 0210 ------, 
1010 JMP 1005 I 7005 

I 

1011 WRC u{--_I 0714 When quarter 3 is full, write it on tape and checl ~ the 

1012 [3 200] [- ] tape stops. 

1013 LOA i 1020 
..... 

1014 1 0001 

1015 ADM 1140 
Add 1 to the BN in register 1012. 

1016 1012 1012 

1017 XSK i 11 0231 Index the counter and skip if the requested numbe r has -------, been collected. 
I 

1020 JMP 1003 : 7003 If not, return. 
I 

1021 WRC u~-J 0714 If so, write this program in block 177, check the transfer 
and stop the tape. 

1022 21177 2177 Ha It the computer. 

1023 HLT 0000 Halt the comp~_t~r. 

Example 31 Collecting Data and Storing on Tape 

Since the program saves itse If when fin ished, the operator can continue to collect data at (l 

later time by reading block 177 into quarter 2, and starting at 1000. Since the BN in location 1012 will 

have been saved, the data will continue to be stored in consecutive blocks. 

2-15.2 Group Transfers 

Two other block transfer instructions, similar to ROC and WRC, permit a program to transfer as 

many as 8 blocks of information with one instruction. These are called the group transfer instructions; 

80 



PROGRAMMING THE LlNC-8 

RCG, WCG 

they transfer information between consecutive quarters of the memory and a group of consecutive blocks 

on the tape. Suppost:, for example, that we want to read 3 blocks from the tape into memory quarters 1, 

2, and 3. The 3 tape blocks are 51, 52, and 53. Using the instruction RCG i u (read and check group), 

write: 

Memory 
Address 

Memory Buffer 

p RCG iu 701 +20i+10u 

p + 1 2151 2051 

The first register spec ifies the instruction, the tape unit, and the tape motion as usual. The 

second register, however, is interpreted somewhat differently. It uses BN to select the first block of the 

group. In addition, the rightmost 3 bits of BN specify also the first memory quarter of the group. That is, 

block 51 will be read into memory quarter 1, (block 127 would be read into memory quarter 7, etc.). The 

leftmost 3 bits (usually QN are used to specify the number of additional blocks to transfer. In the above 

example, block 51 is read into quarter 1, and 2 additional blocks are transferred: block 52 into quarter 2 

and block 53 into quarter 3. 

The format for WCG i u (write and check group) is the same as for RCG: 

Memory 
Address 

Memory Buffer 

p WCG i u 705 + 20i + lOu 

p+ 1 31300 3300 

The computer interprets the above example as: w.rite and check quarter 0 in block 300, and 

make 3 additional consecutive transfers: quarter 1 into block 301, quarter 2 into block 302, and quarter 3 

into block 303. When the leftmost 3 bits are 0, i.e., 0 additional transfers, the WCG instruction is 

I ike the WRC instruction in that only 1 block is transferred. 

The second word of a group transfer instruction may be diagramed: 

\ Initial Memory Quarter/ 
V 

9 10 11 

I- I I I 
p + 1 

0 2 3 4 5 

[ I I I I I 
6 7 8 

I I I 
# of additional- \ Initial Block Number--------I 

transfers 

81 



PROGRAMMING THE LlNC-8 

RCG and WCG a Iways operate on consecutive memory quarters and tape blocks. Spec ifying 

3 additional transfers when the initia I block is, say, 336, will transfer information between tape blocks 

336, 337, 340, and 341, and memory quarters 6, 7, 0, and 1; that is, quarter 0 succeeds quarter 7. 

The tranfers are always checked; when a transfer does not check, the instruction is repeated starting with 

the block that fa i led. With WCG, a II the blocks and the ir checksums are first written, and then a II are 

checked. If any block fails to check, the blocks are rewritten beginning with the block that failed, 

and then all blocks are checked again. As with RDC and WRC, group transfer instructions leave -0 in 

the accumulator and go to p + 2 for the next LlNC instruction. 

Using RCG instead of RDC, the program example on page 78 can be written more effeciently: 

Memory 
Memory Buffe r 

Address 
Effect 

===~=======;:====F===========:=====_C:::--======--==-_ 

100 

101 

102 

103 

104 

2-15.3 

WRC 

2150 

RCG 

21201 

JMP 400 

0724 

2050 

0701 

2201 

6400 

C(quarter 2) -+ C(block 50); transfer is checked and tape 
cont inues to move. 

Read blocks 201-203 into quarters 1-3; check the transfers 
and stop the tape. 

Jump to the new section. 

Example 32 Tape and Memory Exchange with Group Transfer 

Tape Motion and the Move Toward Block Instruction 

When the computer is searching the tape for a required block, it looks at each block number 

in turn until it finds the correct one. Since the tape may be positioned anywhere when the search is 

begun, it must be able to move either forward or backward to find the block. 

Forward means moving from the low block numbers to the high numbers; physically the tape 

moves onto the lefthand reel. 

FORWARD BACKWARD 

82 



PROGRAMMING THE LlNC-8 

Backward means moving from the high numbers to the low; the tape moves onto the righthand 

reel. 

When search ing for a requested block, the computer decides whether the tape must move f.orward 

or backward by subtracting each block number it finds from the requested number, and using the sign of 

the result to determine the direction of motion. If the difference is positive, the search continues in the 

forward direction; if negative, it continues in the backward direction. This may, of course, mean that 

the tape has to reverse direction in order to find the required block. 

Suppose, for example, that the computer is instructed to read block 50, and that the tape is 

presently moving forward just below block 75. The next block number found will be 75. The result of 

subtracting 75 from 50 is -25, which indicates not only that the tape is 25 blocks away from block 50, 

but also that block 50 is below the present tape position. The tape will reverse its direction and go 

backward. 

To facilitate searching in the backward direction a special word called a backward block -number, BN, follows the checksum for each block: 

BLOCK 

Ly-" 
1 word 

When searching in the forward direction, the computer looks at forward block numbers, BN; -when search ing in the backward direction, it looks at backward block numbers, BN. In either direction, 

each block number found is subtracted in turn from the requested number, and the direction reverses as 

necessary, until the result of the subtraction is -0 in the forward direction. Transfers and checks are 

made only in the forward direction. 

Thus, in the above example, the tape will continue to move in the backward direction until 

the result of the subtraction is positive, i.e., until the BN for block 49 is found and subtracted from 50, 

indicating that the tape is now be low block 50. The direction wi II be reversed, the computer wi II find 

50 as the next forward block number, BN, and the transfer will be made because -0 is the result of the 

subtraction and the tape is moving forward. 

For all magnetic tape instructions, if the tape is not moving when the instruction .is encountered, 

the computer starts the tape in the forward direction and waits until it is moving at the required speed be

fore reading a forward block number, BN, and reversing direction if necessary. If the tape is in motion, 

however, (including coasting to a stop), the computer does not change direction until block number com

parison requ ires it. 

For all tape transfer or check instructions with i = 1, the tape continues to move forward after 

the instruction is executed. 

83 



PROGRAMMING THE LlNC-8 

MTB 
For a II magnetic tape instructions stops are made in the backward direction. For transfer ()r 

check instructions this means that the tape always reverses before stopping. Furthermore, the tape then 

stops be low the last block involved in the instruction, so that when the tape is restarted, this block wi II 

be the first one found. This reduces delay in programs which make repeated references to the same block. 

The last magnetic tape instruction illustrates some to the tape motion characteristics. MTS, i u 

(move toward block) is written: 

Memory 
Address 

p 

p + 1 

Memory Buffer 

MTB i u 

BN 

703 + 20i + lOu 

BN 

As in the other magnetic tape instructions, the u-bit selects the tape unit. The tape motion 

bit (the i-bit) and the second register, however, are interpreted somewhat differently. MTB directs tlhe 

LINe to subtract the next block number it finds on the tape from the number spec ified in the second word 

of the instruction, and leave the result in the accumulator. QN is ignored during execution of MTB. 

For example, if the block number in the second register of the instruction is 0, and the tape is just below 

block 20 and moving forward, then - 20, or 7757, will be left in the accumulator. The MTB instruction 

can thus be used to find out where the tape is at any particular time. 

When i = 0, the tape is stopped as usua I after the instruction is executed. When i = 1, however, 

the tape is left moving toward the spec ified block. The result of the subtraction is left in the accumula

tor, and the tape direction is reversed if necessary as the computer goes on to the next instruction. "~BT i 

does not actually find the block; it merely orients the tape motion toward it. 

The initial direction of motion and possible reversal are determined for MTB just as they an3 for 

a II other magnetic tape instructions, as described above. Note, however, that since M TB i makes no 

further corrections to the direction of motion, the specified block may eventually be passed. 

The move-toward-block instruction serves not only to identify tape position, but also to save 

time. If, for example, a program must read block 700, and then, at some later time, write in block 50, 

it is efficient to have the tape move toward block 50 in the interim while the program continues to run: 

84 



PROGRAMMING THE LlNC-8 

Memory 
Memory Buffer Effect 

Address 

- 100 RDC i 0720 C(block 700) - C(quarter 3); tape moves forward. 

101 31700 3700 

102 MTB i 0723 CO 03)-next BN - C(ACC); tape reverses and moves 

I 
backward toward block 50. 

103 50 0050 I 
300 WRI 0706 

J Tape continues to move backward wh i Ie program continues 

C(quarter 0)- C(block 50); tape stops. 

301 50 0050 

In this example it would be inefficient to stop the tape (i = 0) with the RDC instruction at lo

cation 100 or to let it continue to move forward unti I block 50 is ca lied for. AI though the number left 

in the accumulator after executing the MTB at location 102 may not be of interest, the MTB does reverse 

the tape. Then, when block 50 is ca lied for, the de lay in finding it wi II not be so long. 

2-15.4 Tape Format 

Certain other facts about the tape format should be mentioned. Other special words on the 

tape are shown: 

512 Block Zones 
A 

I I ~ ( 
Inter 

End Block 
Zone Zone 

;;> 
, J 

• 
...... ........ 

........ 

about 5 feet ........ 
........ 

........ 
........ 

........ 
........ 

Block 

• • 
256 words 5 

At each end of the tape is an area called end zone which provides physical protection for the 

rest of the tape. When a tape which has been left moving as the result of executing a tape instruction 

with i = 1 reaches an end zone, the tape stops automatically. (This prevents the tape from being pulled 

off the reel.) Words marked C and G above do not generally concern the programmer except insofar as 

85 



PROGRAMMING THE lINC-8 

IBZ 
they affect tape tim ing. The computer uses words marked C to insure that the tape writers are turned off 

following a write instruction. Words marked G, ca lied guard words, protect the forward and backward 

block numbers when the write current is turned on and off. 

I nter-block zones are spaces between block areas which can be sensed by the skip closs instruc

tion, IBZ i, when either tape is moving either forward or backward. The purpose of such sensing is to 

make programmed block searching more efficient. For example, suppose that somewhere in a program 

block 500 must be read into quarter 2; assume it does not matter when as long it is before the program 

gets to the instructions beginn ing at location 650. The following illustration uses a subroutine to check 

the position of the tape and execute the read instruction if the tape is within 2 blocks of block 500. If 

the tape is not in an inter-block zone, the ma in program continues without having to wa it for a block 

number to appear. For purposes of simpl ic ity, assume that the tape (on un it 0) is moving. The program 

begins at location 400 and the subroutine at location 20. 

Note that the following example works only if the tape is stopped by the RDC instruction in 

register 32. If the tape is not stopped here, subsequent jumps to the subroutine may continue to find 

the tape at an inter-block zone (locations 20-22) and block 500 may be read repeatedly. The test with 

the APO instruction at location 646, which signifies if the transfer has been made or not, is necessary to 

guarantee that the transfer will occur before location 650. At this po int, if the transfer has not been 

made, the J MP 32 at location 647 wi II be executed. 

86 



Memory 
Address 

20 

21 

22 

23 

24 

25 

26 

27 

30 

31 

32 

33 

34 

35 

.... 400 

401 

402 

500 

600 

644 

645 

646 

647 

650 

( 

( 

PROGRAMMING THE LlNC-8 

Memory Buffer Effect 

IBZ 
- -- --

I 
JMP 0 I 

I 

MTBi~1 

500 

APO 
-------1 

COM I 
I 

ADAi~ 

-2 

APO i 
-----1 

JMP 0 I 
1 

RDC~I 

2500 

STC 645 

0453 

6000 

0723 

0500 

0451 

0017 

1120 

7775 

0471 

6000 

0700 

Enter subroutine and sense tape position. 

Return if tape is not at an inter-block zone. 

If it is, subtract BN or BN from 500. Tape continues 
to move toward block 500. 

Is result positive? 

If negative, complement it. 

Add -2 to see if tape is within 2 blocks of block 500. 

Is result positive? 

If result is positive, return to main program. 

I f negative, tape is within 2 blocks of block 500. 
Make the transfer and stop the tape. 

( J~P 0 

2500 

4645 

6000 } 
} 

Store the transfer check = - 0 in location 645 to indicate 
transfer has been made, and return. 

CLR 

STC 645 

JMP 20 ) 

J 
JMP 20 ) 

~ 
JMP 20 ) 

t 
LDA i 

[ -] 

0011 

4645 

6020 

t 
6020 

t 
6020 

t 
1020 

[ -] 

APO i 0471 ------1 
I 

JMP 32 ): 6032 

l~---! 

l 
I 

Store positive 0 in location 645 to indicate transfer has 
not been made. 

Jump to subroutine at these points; return to p + 1 and 
continue with main program. 

Put test number (either 0000 or 7777) into accumulator. 

Skip to location 650 if the transfer has been made; 
(C(ACC) = 7777). 

If not, jump to subroutine to make transfer, and return 
to location 650. 

Example 33 Block Search Subroutine 

87 



PROGRAMMI NG THE LI NC-8 

. 2-15.5 Tape Motion Timing 

When a tape is moving at a rate of 60 ips, it takes approximately 43 msec to move from one 

forward block number to the next, or 160 tlsec per word. The following table summarize s some of the 

timi ng factors: 

LlNC TAPE MOTION TIME 

START (from no motion to 60 ips) --0. 1 sec 

STOP (from 60 ips to no motion) --0.3 sec 

REVERSE DIRECTION (from 60 ips 
to 60 ips in opposite direction) ........ 0.1 sec 

CHANGE UNIT (from no motion 
to 60 ips on new unit) --0. 1 sec 

--~ 

BN to BN (at 60 ips) '" 43 msec 
.,---

END ZONE to END ZONE 
(at 60 ips) ....... 23 sec 

.. _-------

Some methods of using the tape instructions efficiently become obvious from the above table. 

Generally speaking, tape instructions should be organized around a minimum number of stops and a 

minrmum amount of tape travel time. When dealing with only one tape unit, it is usually efficient to 

use consecutive or nearly consecutive blocks in order to reduce the travel time between blocks. 

It is also efficient to request lower-numbered blocks before higher-numbered blocks, avoiding 

unnecessary reversals. The write-and-check instruction, requiring two reversals, is thus costly. It first 

must find and write in the block in the forward direction; the tape must reverse and go backward unti I it 

is below the block, and then reverse a second time and go forward to find and check the block: 

? IBN I 
Inter 

I I I ~~ Gs I Block BN G Block 
Zone 

y 

Requested Block 

Forward "I f~r;: 1 --I Write ., 
...... \ 

Reverse 

f4 1 f~r;: '4 .. 4 .. 4 .. 
Backward 

~--~~--~.---~.-------~~~-~ 
Reverse 

"- .. .1 f~r;: I ~ ..f Forward Check 

88 



PROGRAMMING THE LlNC-8 

Because of these reversals it is sometimes more efficient to use two tape instructions, WRI 

followed by CHK, than to use WRC. This is true, for example, when more than one block must be 

written and checked. For example, write quarters 1, 2, and 3 in blocks 100, 101, and 102, and check 

the transfers: using WRC, this would take a minimum of six reversals. The following sequence requires 

a minimum of two reversals: 

Memory 
Memory Bu ffer Effect 

Address 

- 20 r.>LDA 1000 

f 
Put the BN of the first block to be checked in register 32 

21 24 0024 

22 STC 32 4032 

23 WRI i 0726 

24 11100 1100 
Write 3 consecutive blocks on the tape on unit 0 and 

25 WRI i 0726 > leave the tape moving forward after each transfer. 

26 21101 2101 

27 WRI i 0726 

30 31 102 3102 

31 r-~CHK i 0720 Check the blocks, beginning with block 100. 

32 [BN] [ -] 

33 SAE i 1460 l 34 7777 7777 I f a block does not check, repeat entire process. ----- -, 
J 35 JMP 20 : 6020 

36 LDA i .(-_1 1020 

37 1 0001 

40 ADM 1140 

41 32 0032 Add 1 to the BN in register 32. If th e re su It f 1 1 03, 
>- not a II have been checked. Return and check the next 

42 SAE i 1460 block. 

43 11103 1103 
---- -

44 JMP 31 : 6031 

45 
, 

0703 } MTB+--I 

46 0 0000 When all have checked, execute move-toward-block 
to stop the tape, and halt. 

47 HLT 0000 

Example 34 Write and Check with Fewest Reversals 

89 



PROGRAMMING THE LlNC-8 

In this example the two reversals wi \I occur the first time the CHK instruction at location 31 

is executed. Other reversals may be necessary when the computer initially searches for block 100, '::lnd 

when a block does not check, but carefu I hand ling of the tape instructions can re uce some of these 

de lays. It shou Id be noted that there are 9 words on the tape between any CS and the next BN in the 

forward direction. When the tape is moving at speed, it takes 1440 fJsec to move over these 9 words. 

Thus the program has time to execute several instructions between consecutive blocks, i.e., before the 

next BN appears. In the above example, then, there is no danger that the next block will be passed 

whi Ie the instructions at locations 33-44 are being executed. 

90 



PROGRAMMI NG THE LI NC-8 

3-1 GENERAL 

CHAPTER 3 

GUI DE 

GUIDE is a system of routines which controls a file of binary programs stored on LlNC-tape. 

By using the keyboard, an operator may obtain from LI NC-tape any program in the file by its 6-character 

name, cause it to be read into the computer memory, and then execute it as a program. Using GUIDE, 

an operator :nay put a binary program located anywhere on either tape on the tape drives into the binary 

file on either drive. It is also possible to remove from a file a program which is no longer desired. GUIDE 

wi II, upon command, di splay to the operator an index of the bi nary programs currently in its fi Ie so that 

the operator may determine if a desired program is on the tape. GUIDE also provides direct communica

tion with the lAP system. GUIDE occupies blocks 400 to 477 on the tape. Blocks 410 to 477 are used 

for the storage of user's programs. 

3-2 GENERAL OPERATING PROCEDURE 

To set the basic GUIDE system into memory: 

1. Mount tape with GUIDE system on it on tape unit 0 

2. Set 0700 into the lEFT SWITCHES 

3. Set 3400 into the RIGHT SWITCHES 

4. Operate DO 

5. After tape stops moving, operate START RS 

The basic GUIDE system is now in memory and on the display the words "EXECUTE THE 

PROGRAM??????? II are presented. 

3-3 BASIC SYSTEM COMMANDS 

a. INDIS - This is a command to GUIDE to display to the operator the index of 

programs in the fi Ie area, The following information is displayed: 6-character 

title of each program, the first block number used to store the program, the num

ber of blocks (or quarters) the program occupies, and the starting address of the 

program, Only a portion of the index will be displayed at any given time. To 

advance to the next higher portion (h igher block numbers), type F on keyboard. 

To move back to a lower portion (lower b lock numbers), type B on keyboard, 

Typing EOl (1 key on keyboard) returns GUIDE to "EXECUTE, , ," display .. 

91 



PROGRAMMI NG THE II NC-8 

b. REWIND - This is a command to GUIDE to rewind the tape on the specified drive. 

REWIND or REWIND 0 rewind tape drive 0 and the computer halts. REWIND 1 

causes tape drive 1 to rewind and returns to the "EXECUTE ••• II display. 

c. lAPGO - This command causes GUIDE to read the lAP system into memory and 

start lAP with a cleared working area. 

d. lAPRTN - This command causes GUIDE to read the lAP system into memory and 

start lAP; the working area is the same as when lAP was last used. 

e. CAST - Use of th i s command causes GU I DE to copy onto the tape on tape drive 1 

the lAP and GUI DE systems from tape drive O. The tape on unit 1 must , however, 

have the mark and timing tracks already written on it. 

f. FllEBI - Use of this command allows the operator to file any binary program 

from either tape onto the other tape so that the program may be accessed by GUIDE 

and placed in memory. After the program has been filed, its statistics are entered 

in the index of binary programs, displayed by I NDIS, for reference. 

g. DELETE - When this command is used, GUIDE deletes a specified program from 

the binary file area. 

3-4 USE OF BASIC COMMANDS 

The following assumes the basic GUIDE system is in memory and running, and that thle presl~n

tation "EXECUTE ... " is on the display. Information typed to GUIDE is normally terminated 

with EOl (1 key). 

a. INDIS 

1. Type I NDIS (EOl). 

2. Type F to advance display to next four entries in index. 

3. Type B to retreat display to last four entries in index. 

4. Type EOl to return to basic display. 

b. REWIND 

1. Type REWI ND (EOl), REWI ND 0 (EOL) , or REWI ND 1 (EOl) to rewind 

specified unit. 

2. If unit 1 is rewound, basic GUIDE display is presented. 

1. I f unit 0 is rewound, liNe halts and gong chimes. 

92 



PROGRAMMI NG THE UNC-8 

c. LAPGO 

Type LAPGO (EOL). LAP is taken from unit 0 and uses the working area of unit O. 

d. LAPRTN 

Type LAPRTN (EOL). LAP is taken from unit 0, and uses the working area of unit O. 

e. CAST 

1. Type CAST (EOL). 

2. Mount a marked tape on unit 1 • 

3. Type 0 (EOL) or 1 (EOL) in answer to question asked on display. Question 

concerns the index on unit 1 • 

f. FILEBI 

1. Type FILEBI (EOl). 

2. Type origin of binary program, either name or block number of first block 

occupied by program, then (EOL). 

3. Type origi n ree I, then (EOL). 

4. Type destination reel, then (EOl). 

5. If block number was typed, assign a 6 character name to program, type it in, 

then type (EOl) . 

6. Type starti ng address (EOL), 

7. Type number of blocks of tape (or quarters of L\ NC memory) program occupies 

(EOl) • 

g. DELETE 

1. Type DELETE (EOl). 

2. Type name of program, then (EOl). 

3. Type unit number where program is located, then (EOl). 

3-5 LOADING A USER'S PROGRAM INTO MEMORY 

a. Get basic GUI DE system into memory and running. 

b. Type I NDI S (EOL) to search index to determine if desired program is on the tape. 

Return to "EXECUTE ••• II display after title has been found in index. 

c. Type 6-character title, then (EOL). GUI DE loads program into memory and starts 

it at the address indicated in the index as the program's starting address. 

93 





PROGRAMMING THE LlNC-8 

CHAPTER 4 

LAP 4 

4-1 GENERAL 

LAP4 (LINCAssemblyProgram4)isasystemwhichaids the programmer in creation and in manipu

lation of the symbolic text of source programs, and converts the symbolic text into binary so that it may 

be executed as a program. The symbol ic text is often ca lied a manuscript. 

LAP4 occupies blocks 270-377 on a reel of LI NC-tape. Blocks 270-327 are used for the storage 

of the system itself, and blocks 330-377 are used as working area for LAP4. It is here that the manuscript 

is written during generation of symbol ic text as we II as where the binary of the converted program is tem

porarily stored (the binary should be filed by GUIDE for permanent storage). 

The LAP4 system i$ operated from the keyboard and it is from here that the symbol ic text is in

putted and commands are given to the system. 

4-2 GENERAL OPERATING PROCEDURE 

To get the LAP4 system into memory: 

1. Read the basic GUIDE system into memory and start it running 

2, Type LAPGO (EOL) or LAPRTN (EOL) 

The LAP4 system is then rea':! into memory. LAPGO causes LAP4 to be read into memory with 

the working area cleared of all manuscript material (no symbolic text) and the number 0001 displayed on 

the scope to indicate the first I ine of symbolic text. LAPRTN causes LAP4 to be read into memory with 

the working area in the same condition as when LAP 4was lastused (manuscript is still intact if LAP4 was 

exited properly) and the first free line number displayed on the scope. Normally only the current line 

number and its contents are displayed. 

4-3 BASIC SYSTEM (META) COMMANDS 

a, REMOVE - Use of this command causes LAP4 to remove from the working area the 

specified line (or lines) of text thereby deleting it (or them), All succeeding lines 

are renumbered to maintain continuity of I ine numbers, 

b, INSERT - This command causes all text typed after the issuing of this command, 

until the END command is given, to be inserted before the specified line. All 

succeeding lines are renumbered to maintain continuity of line numbers, 

95 



PROGRAMMI NG THE LI NC-S 

c. PACK - The insertion and deletion of lines of text in the manuscript working 

area causes physical gaps in the text stored; thus the text is stored inefficiently. 

To remove these gaps, the command PACK is given which causes the text to be 

physi cally reposi tioned, fi II s the gaps, and makes room for more I ines of text to 

be stored in the working area. 

d. DI SPLAY - Use of th i s command causes consecutive I ines of text to be di splayed 

on the scope. The operator may display from 1 to 100
S 

lines of text at one time; 

however, no editing can take place while the display command is being executed. 

Typing F advances the display to the next higher (numerical) set of lines ot text; 

typing B retreats the display to the next lower set of lines of text. Typing F when 

at the highest set of I ines or typing B when at the lowest set of lines has no effect. 

Typing (EOl) causes LAP4 to return to the normal input mode. 

e. SAVE MANUSCRIPT - This is a command to LAP4 to write the manuscript in the 

LAP4 working area into the specified blocks anywhere on either reel of LlNC-tape. 

An unpacked manuscript is packed by LAP4 before i,t is saved. 

f. ADD MANUSCRIPT - This command adds a manuscript to the manuscript currently 

in the LAP4 working area . The added manuscript may be located anywhere on either 

tape as long as its location and size is known. 

g. CONVERT - The convert command causes LAP 4 to convert the manuscript in the 

LAP4 working area into its binary equivalent. The resultant binary is stored in 

blocks 330-333. Information for quarter 0 is in block 330, quarter 1 in block 331, etc. 

If multiply-defined or undefined symbolic addresses (tags) are encountered, LAP4 

displays these on the scope to inform the operator that such errors exist. 

h. CONVERT MANUSCRIPTS - To convert manuscripts not in the working area, 

give this command. Up to eight manuscripts may be converted by this command; 

however, all manuscripts must be on tape unit O. The result of the conversion will 

be in blocks 330-333 on unit O. The manuscript in the working area is neither 

affected or converted by th i s command. 

i. COpy - This command allows the operator to copy any number of blocks of in

formation from anywhere on tape to anywhere on tape. The information moved may 

be manuscripts, binary programs, or anything else written on tape. Care must be 

96 



PROGRAMMING THE LlNC-8 

taken when copying overlapping blocks to prevent destruction of data since only three 

blocks wi II be moved at a time. More than three blocks can be specified for any 

copy, but copy moves it in three block segments. 

i. START LAP 4 - To restart LAP4 with the working area cleared, give this command. 

k. START GUIDE - To transfer control of the computer to GUIDE to do something 

with GUIDE, this command saves the manuscript in the working area and then reads 

the basic GUIDE system into memory and starts it running. The operator can return 

to LAP4 from GUIDE with the saved manuscript in the working area by executing the 

GUIDE command LAPRTN. 

I. MANUSCRI PT CONTROL - This command allows the user to manipu late manu

scripts into and out of manuscript fi les and the LAP 4working area. After giving this 

command, the operator is given his choice of the several functions which LAP4 can 

do for him. He can examine the index of any of the eight manuscript fi les on each 

tape unit so that he may determine if a desired manuscript is filed there. He may 

add to the working area any manuscript in any fi Ie, or put into any fi Ie the manu

script currently in the LAP 4 work ing area. He may remove from any fi Ie manuscripts 

which he no longer wants fi led. He may c lear a file of all manuscripts. After doing 

all of the above the operator may then return to normal input with the LAP4 working 

area intact , or, if he prefers, may transfer control of the computer to GUI DE. 

4-4 USE OF BASIC (META) COMMANDS 

The following assumes that the current line is displayed on the scope and that it contains no 

text. If anything else is displayed, it is necessary to return to the normal input mode by the appropriate 

manner before the command is given. Commands issued to LAP 4 are termi nated by ME TA, as compared 

to lines of text which are terminated by EOL. Both are 1 key. 

a. REMOVE 

1. Type RE LN, n (META) or RE LN - LN + n (META) where LN is a 

line number (octal) and n is the number of lines (octal) to be de leted • 

2. If the RE LN - LN + n format is used, LAP4 will remove from line LN to 

LN + n -1 (n lines of text)., The higher line number will not be removed. 

97 



PROGRAMMING THE L1NC-8 

3. To remove all lines after a given line, type the first line number to 

be removed and then any value of n equal to or greater than the number 

of lines to be removed. 

4. Attempts to remove non-existent lines causes LAP4to respond with NO. 

5. LAP 4 returns to normal input mode after the specified lines have been 

removed. 

b. INSERT 

1. Type IN LN (META) where LN represents the number of the I ine before 

which the insertion should be made. All text typed is then inserted before 

the specified line until the termination command is given, at which time 

LAP 4 returns to the normal input mode. 

2. Type EN (META) on a separate line to terminate the insertion of text. 

LAP4thenreturnstothe normal input mode with a new line number displayed 

on the scope. 

3. LAP4aliowstheoperatorto insert up to 1108 lines on one INSERT com

mand. Attempts to exceed this cause LAP 4 to automatically terminate that 

insertion. However, an INSERT command can be given again immediately 

if desired. 

4. LAP 4 responds with NO if certain operator errors are made duri ng insertion, 

such as: inserting before a non-existent line, or inserting no lines after giving 

the INSERT command. LAP 4questions META commands other than EN (META) 

(end) issued during an insertion. 

c. PACK 

Type PA (META). LAP4thenpacksthe manuscript in the working area, filling in any 

physical gaps which may exist in the manuscript. LAP 4 returns to norma I input mode 

when packing is completed. 

d. DISPLAY 

1. Type DI LN, S (META), where LN is the number of the first line to be dis

played and S is the size (number of lines) of the display. The text is displayed 

S lines at a time, the first display starting with line number LN. 

98 



PROGRAMMING THE L1NC-8 

2. If LN is not specified, the number 0001 is assumed. If S is not specified, 

the number 10
8 

is assumed. Thus, typing D1 (META) causes 10 lines starting 

wi th line 0001 to be di splayed. 

3. Type F to advance display to next higher S I ines segment. 

4. Type B to retreat di splay to next lower S lines segment. 

5. Type EOL to return to normal input mode. 

o. Li nes of text are displayed along with their line numbers. 

7. LAP 4 packs an unpacked manuscri pt before di splayi ng it. 

8. Type NS to change size of display (number of lines) once the display of 

text has begun. 

9. Type LN L to change first line number of display once the display of text 

has begun. 

e. SAVE MAN USCRI PT 

1. Type SM (META). LAP 4 then displays to the operator the number of blocks 

of text to be moved and asks for the desti nation of the text. 

2. Type the destination block number, terminating with (EOL). 

3. Type unit number, terminating with (EOL). 

4. LAP 4 packs an unpacked manuscript before saving it. 

5. LAP4returnstonormai input mode when this command is completed. 

f. ADD MANUSCRIPT 

1. Type AM BN, U N (META) where BN represents the fi rst block occupied 

by the desired manuscriptand UN indicates the unit (number of tape drive) where the 

manuscri pt is located. 

2. LAP 4 returns to norma I input mode after executing this command. 

3. It is advisable to pack the working area after adding manuscripts. 

99 



PROGRAMMING THE LlNC-8 

4. LAP4respondswitha NO if there is no manuscript at the indicated lo

cation. Typing any key allows LAP4 to recover. 

g. CONVERT 

1. Type CV (META). LAP4colWerts~hemanuscript in the working area of 

LAP4and stores the binary in blocks 330-333. Manuscripts can be no longer 

than 37778 lines. 

2. If no errorsoccur. LAP4 returns to the normal input mode. 

3. The LAP4 system isable to detect certain types of errors in the manuscript/ 

mainly multiply-defined symbols and undefined symbols. If these errors occur/ 

LAP4 displays the error(s) and the symbols which caused them. Typing F ad

vances the error display to the next higher set/ while typing B retreats the 

error display to the next lower set. Multiply-defined symbols are displayed 

separately from undefined symbols. Typing (EOL) returns LAP4 to the normal 

input mode. 

h. CONVERT MANUSCRIPTS 

1. Type CM (META), 

2. Type in the block numbers of the first block of each manuscript to be 

converted. Separate each entry with a space. Terminate the string with 

(EOL). To delete en entry type (DEL) before the (EOL). 

3. All manuscripts must be on unit O. 

4. No si ng Ie manuscri pt may be longer than 2000
8 

lines. 

5. Manuscri pts are converted in the order typed. 

6. Up to eight manuscripts may be converted with each CM. 

7. Binary version of manuscripts is in blocks 330-333 as with CV. 

8. Multiply-defined symbols and undefined symbols are displayed the same 

way as with CV. 

100 



PROGRAMMING THE LlNC-8 

9. If no manuscript is found at the indicated block, LAP4 responds with NO. 

Striking any key returns LAP4 to the normal input routine. 

i. COpy 

1. Type CP (META). 

2. Type number of blocks to copy, then (EOL) .. 

3. Type first block number of origin, then (EOL). 

4. Type unit number of origin, then (EOL) .. 

5. Type first block number of destination, then (EOL). 

6. Type unit number of destination, then (EOL). 

7. LAP4 then copies the specified blocks, 3 at a time. Care must be taken 

when origin and destination blocks overlap. 

8. LAP 4 returns to norma I input mode when copyi ng is completed. 

9. No more than 7778 blocks may be copied. 

10. Individual entries (b), c), d), e), f)) may be deleted by typing (DEL) 

before final (EOL). 

11. I f an illegal (non-numeric) entry is made, LAP4 asks a II its questions 

again. 

i. START LAP4 

Type LA (META). LAP4 is restarted with the working area clear and the number 0001 

(I ine 0001) displayed. LAP 4wi II be in the normal input mode. 

k. START GUIDE 

Type GU (META). Control of the computer is transferred to the GUI DE system. 

The manuscript in the working area of LAP4 issaved for restoration by the GUIDE 

command LAPRTN. 

101 



PROGRAMMI NG THE LI NC-8 

I. MANUSCRIPT CONTROL 

NOTE: For most of the options presented to the operator, use of this META 
command causes LAP4toexaminesense switch O. If SSWO is 0, LAP4 performs 
the specified function on file 2, unit 0, which is commonly called the standard 
file. If SSWO is 1, LAP4performsthespecified operation on the specified file 
on either tape unit. The fi les are numbered 0 to 7 and start at blocks 000, 100, 
200, etc., respectively. All files except file 2 are 100 blocks long. File 2 
is 70 blocks long sinceLAP4 beginsat block 270. 

1. Type MC (META). LAP4 then displays a series of options from which the 

operator may choose the function he desires, LAP4 to perform. 

2. Type the desired option number, then (EOL). 

3. Type in the answers to each question LAP4asks, terminating each with 

(EOL). Typical questions concern manuscript name, file number, unit 

number, block number. The final (EOL) causes LAP 4 to execute the function. 

4. Except for going to LAP4 or GUIDE, after function is complete, LAP4 

returns to MC option display. 

5. I f a manuscri pt fi Ie is be i ng di splayed, typi ng F advances the di splay, 

typing B retreats the display, and typing EOL returns LAP4 to the Me option 

display. 

4-5 LAP4 LANGUAGE 

a. CHARACTER SET 

1. All 26 upper case letters of the alphabet. 

2. The octal number set (0-7). 

3. The following special or punctuation characters 

a. E3 
b. # 

c. 

d. u 

e. 

(origin) 

(number sign) 

(lower case I) 

(lower case U) 

(vertical bar) 

specifies an origin 

specifies a symbolic tag 

specifies bit 7 on a 1 

specifies bit 8 on a 1 

separates QN and BN in magnetic tape instructions 

102 



b. 

PROGRAMMING THE LlNC-8 

f. p (lower case P) 

g. + (plus) 

h. (minus) 

I. (equal) 

i· (left bracket) 

k. (EOL) 

I. (CASE) 

m. (META) 

n. (SPACE) 

o. (DEL) 

PROGRAMMI NG RULES 

spec i fi es the current location 

add values of syllables in lis complement 

subtract values of syllables in lis complement 

parameter assignment 

initiates a comment 

term i nate statement 

change case of keyboard for upper case characters 

terminates command to LAP4 

separation character for ease of reading text 

delete all information to previous line terminator 

1. The following elements must be alone on a I ine of text. 

a. Origins 

b. Comments 

c. Parameter assignments (use of =) 

2. Tags (a symbol used to represent a memory location) 

a. Must begin with #. 

b. Must be two characters of the format number-letter (e.g., #4E). 

On Iy octal numbers allowed, and capital letters. 

c. No tag delimiter is required. 

d. No space may occur in the tag. 

e. Tags defined by parameter assignment may not be used with a #. 

3. Spaces 

a. Not permitted on origin line except before the character 8. 
b. Not permitted before a [ . 

c. Not permitted before a #. 

d. Not permitted anywhere on a parameter assignment. 

e. Not permitted in the middle of the digits of a number. 

f. Not permitted in the middle of an address calculation. 

g. Not permitted in the middle ofa symbolic mnemonic. 

h. May be used to separate tag, operation, index, address, vertical bar 

fi e Ids 0 f a lin e • 

I. Not required anywhere on a line. 

103 



PROGRAMMING THE LlNC-8 

4. Symbol ic Mnemonics 

(l. Only the defined symbolic mnemonics may be used as instructions. 

5. Parameter Assignments 

(l. Defined by equal sign (=). 

b. Number-letter combination must appear on left of =. 

c. Octal assignment must be on right of =. 

d. Octal assignment may not be signed. 

e. Must appear alone on a line. 

f. No spaces allowed on the line. 

6. Address Calculation 

a. No spaces permitted in the address calculation. 

b. Symbolic or relative addressing allowed with any combination of 

number-letter combinations or p or octal numbers (e.g., JMP p-ll' 

ADD 500, ADA i 32.., STC 4P-l, 6E + 3, RDC i u). 

c. All undefined number-letter combinations are assigned the value 0000. 

d. All mu Itiply-defined number-letter combinations are assigned the last 

value speci fied. 

7. Example of a symbolic program and its octal equivalent. 

0001 [THI,s PROGRAM 
0002 [DI.sPLAY,s THE 
0003 [CONTENT,s 01--
0004 [ THE: kIGHT 
0005 [,sWITCHE:S A,s 
0006 [A DECIMAL 
0007 [NUMBEK AT 
0010 [ THt.: CENIEK 
0011 [ OF THE; .sCOPE 
0012 B3~4 

0013 [ TAt:3Lt.: Of 
0014 [CONSTANT,s 
001~ [ fOI\ IJI.sPLAY 
0016 [ OF DIGITS 

0354 0017 #~E 4136 4136 
0355 0020 3641 3641 
0356 0021 2101 2101 
0357 0022 0177 0177 
0360 0023 4523 4523 
0361 0024 21 ~ 1 2151 
0362 0025 4122 4122 
0363 0026 26~1 2651 
0364 0027 2414 2414 
0365 0030 0477 0477 
0366 0031 ~172 :)172 
0367 0032 4651 4651 

104 



PROGRAMMI NG THE LI NC-8 

0370 0033 1506 1506 
0371 0034 4225 4225 
0372 0035 4443 4443 
0373 0036 6050 6050 
0374 0037 5126 5126 
0375 0040 2651 2651 
0376 0041 5120 5120 
0377 0042 3651 3651 

0043 ( THESE 
0044 (IN,sTKUCTIONS 
0045 ('S[T INDEX 
0046 [k~GISIERS 

0047 ( "-OR 4 
0050 (CHAr<ACTERS .. 
0051 [HORIZONTAL 
0052 [COORDINATE 
0053 [ OF 320 .. A 
0054 [POINTER TO 
OOSS ( 6E .. AND A 
0056 [COUNTEr< 10 0 

0400 0057 #5H SET i 2P 0062 
0401 0060 -4 7773 
0402 0061 SET i IP 0061 
0403 0062 320 0320 
0404 0063 SET i 3P 0063 
0405 0064 6E 0453 
0406 0065 SET i 4P 0064 
0407 0066 0 

--
0000 

0410 0067 RSW 0516 
0411 0070 STC 6Z 4452 

0071 [ THESE 
0072 [INSTRUCTIONS 
0073 [DETERMINE 
0074 [HOW MANY 
0075 [ 1000 .. 100 
0076 (10 .. 1 .. 
0077 [DECIMAL .. 
0100 (ARE IN THE 
0101 (NUMBER .. ONE 
Oi02 (AT A- TIME --

.-
0412 0103 #6B CLR 0011 
0413 0104 ADA 3P 1103 
0414 0105 COM 0011 
04i5 Oi06 ADA i 1120 
0416 0107 1 0001 
0417 0110 LAM 1200 
0420 0111 6Z 0452 
0421 0112 XSK i 4P 0224 
0422 01 i 3 LZE 0452 
0423 0114 JMt> P-ll 641'2 
0424 OIlS LDA 3P- 1003 
0425 0116 LAM 1200 
0426 Oi17 6Z 0452 

0120 (THESE 
0121 (INSTRUCTIONS 
0122 (SET UP THE 
0123 ( TABLE ENTRy 
0124 [POINT TO 
0125 [DISPLAY THE 
0126 [CORRECT 
0127 [DIGIT 

105 



PROGRAMMI NG THE LI NC-8 

0427 0130 LOA i 1020 
0430 0131 -1 7776 
0431 0132 #6C ADD 4P 2004 
0432 0133 HOL 1 0241 
0433 0134 ADA i 1120 
0434 0135 5E 0354 
0435 0136 STC 5P 4005 

0137 (THESE 
0140 (INSTHUCTIONS 
0141 (DISPLAY THE 
0142 (DIGIT AT 0 V 
0143 (AND 320+ H 

0436 0144 DSC 5P 1745 
0437 0145 DSC i 5P i 765 

0146 [THESE 
0147 (INSTHUCTIONS 
0150 (SET UP FOR 
0151 (THE NEXT 
0152 [DIGIT 
0153 (DISPLAY 

0440 0154 LOA i 1020 
0441 0155 4 0004 
0442 0156 ADM 1140 
0443 0157 IP 0001 
0444 0160 SET i 4P 0064 
0445 0161 0 0000 
0446 0162 XSK i 3P 0223 

0163 (THIS XSK 
0164 (TESTS TO SEE 
0165 (IF 4 DIGITS 
0166 ( WERE 
0167 (DISPLAYED 

0447 0170 XSK i 2P 0222 
0450 0171 JMP 6B 6412 
0451 0172 JMP 5H 6400 
0452 0173 #6Z 0 0000 

0174 (TABLE OF 
0175 ( OCTAL VALUES 
0176 (OF 1000 .. 
0177 ( 100 .. 10 .. 

0453 0200 #6E 1750 1750 
0454 0201 144 0144 
0455 0202 i2 OOi2 
0456 0203 1 0001 

0204 (DEFINITION 
0205 (OF 
0206 [PARAMETERS 
0207 IP=1 
0210 2P=2 
0211 3P=3 
0212 4P=4 
0213 5P=5 

106 



A1-1 WORD DEFINITIONS 

PROGRAMMING THE LINC-8 

APPENDIX 1 

GLOSSARY 

Address A unique 11-bit binary number assigned to each 12-bit 

binary word {core storage location in" LINC-8 memory; 

allowable range for addresses is (0000-3777)8 • 

Assembler 

BN 

Binary 

Block 

Case 

Comment 

A program which translates program statements in a symbol ic 

language closely resembl ing machine language into machine 

language. 

Refers to bits 8-11 of certain LINC-8 instructions which 

may reference the ~-registers (addresses 0001-0017) • 

Abbreviation for block number; see Block. 

Used to refer to the aggregate of the machine language ins

tructions generated by the conversion (assembly) of a manu

script by LAP4. 

A numbered sect ion of a marked L INC tape capabl e of re

taining 400
8 

12-bit binary words; blocks are numbered 

consecutively from {000-777)8. 

The upper leftmost key on the L INC keyboard, used in input 

to this LINC-8 utility system to cause the system to treat the 

next struck character as upper case. 

In LAP4, an MS I ine beginning with the comment character 

((), used by the programmer to ill ustrate his MS, but ignored 

by LAP4 during conversion. 

107 



Compiler 

Control Block 

Control Console 

Conversion 

Core Storage 

Delete 

EOl 

Equal ity 

File 

PROGRAMMING THE LINC-8 

GLOSSARY {continued} 

A program wh ich translates program statements in a symbc)1 ic 

language closely resembl ing Engl ish or mathematics into 

machine language. 

See MS control block or fil e control block. 

The lINC-8 panel which contains the toggle switches, 

pushbuttons, levers, rotary switches, and indicator lights; 

operation of the LINC-8 util ity system is initiated via the 

control console. 

The assembly process whereby lAP4 translates a prclgram 

written in a symbol ic language into machine languCJgei 

MS is converted into binary. 

The lINC-8 memory. 

To remove a I ine of MS or an answer to a displayed quesi"ion 

in this LINC-8 Utility system, use the del key. 

Abbreviation for end of line; the key used to indicate to the 

utility system the end of a MS line or the end of an answer 

to a displayed question. 

An MS I ine in LAP4 used to assign an absolute numerical 

va lue to a tag4 

Either the file of binary programs maintained by GUIDE or 

a file of MS created and maintained under the control of 

the Me meta command in lAP4. 

108 



File Control Block 

Full-size Character 

GUIDE 

Half-size Character 

Index 

Keyboard Codes 

LAP4 

LN 

Line 

MS 

PROGRAMMING THE LINC-8 

GL OSSARY (cont i nued) 

The first block in an MS file; used in LAP4 by the MC meta 

command to retain titles, block numbers, etc., of filed MS. 

A character displayed on the scope via a 4 x 6 grid pattern, 

the grid spacing being 4 units between points. 

The GUIDE to binary programs; one of the two systems which 

comprise this LINC-8 utility system; used for the filing and 

execution of binary programs. 

A character displayed on the scope via a 4 x 6 point grid 

pattern, the grid spacing being 2 units between points. 

The i-bit; bit 7 of certain LINC-8 instructions. 

Either the index to the GUIDE file of binary programs or the 

index to an MS fil e. 

The 6-bit codes for the characters on the L INC keyboard; 

generated in the accumulator upon the execution of a KBD 

instruction after a key has been struck. 

LINC-8 Assembly Program 4; one of the two systems which 

comprise this LINC-8 utility system; used for the creation, 

convers ion, and fil i ng of MS. 

Abbreviation for I ine number; see line. 

A string of characters (keyboard codes) in a LAP4 manu

script, last character of which is EOL (or META). 

Abbreviation for manuscript; see manuscript. 

109 



MS Control Block 

MS Line 

Mac h i ne Lan guage 

Manuscript 

Marking 

Meta Command 

Mnemonics 

Object Program 

Order Code 

Origin 

PROGRAMMING THE LINC-8 

GL OSSARY (cont inued) 

The first block of every LAP4 MS, created during regular 

input of an MS by LAP4 in the working area; contains 

information about number of I ines, number of tape blocks 

occupied, etc. 

A line retained by LAP4 as a permanent part of an MS; i.e., 

program I ines, equal ities, origins and comments; as opposed 

to meta commands. 

The directly machine-interpretable, i.e., binary, form of 

the L INC-8 instructions. 

A series of one or more program I ines, equal ities, ori~~ins, 

and comments typed into the LAP4 system and stored o,n tape. 

The process whereby a virgin tape is readied for use on the 

LINC-8. 

A I ine not retained by LAP4 as part of an MSi a direct, 

immediately executed command to LAP4. 

Three-character acronyms or abbreviations for the LINC-8 

instructions. 

The binary generated by conversion of an MS. 

The LINC-8 instruction repertoire. 

An MS I ine used to locate sections of a program in core 

storage at absol ute addresses. 

110 



p 

Packing 

Palimpsest 

Pass 

Program 

Program Li ne 

Q 

QN 

Q&A 

Quarter 

Regular Input 

PROGRAMMING THE LINC-S 

GLOSSARY (continued) 

Keyboard character; interpreted by LAP4, on a program 

I ine, as referring to the present location; i.e., the ad

dress of the location in which the binary for the current 

I ine will reside. 

The process whereby gaps in MS left by the operation of 

the meta commands RE, IN, AM, or MC are removed. 

A parchment which has been re-used, the earl ier writing 

hav i ng been erased. 

In LAP4, a scan of an MS from beginning to end during 

conversion. 

A series of instructions to the L INC-S. 

An MS I ine which will cause binary to be generated; i.e., 

will occupy a location in core storage upon conversion. 

Abbreviation for quarter; see quarter. 

Abbreviation for quarter number; see quarter. 

Abbreviation for the Questions and Answers subroutine, used 

for displays by the GUIDE system commands, convenience 

programs, and the LAP4 meta commands CP and MC. 

One fourth of a 1024'0 word LINC-S memory bank; consists 

of 400
S 

contiguous 12-bit words. 

The section of LAP4 which accepts input from the keyboard 

of MC I ines and meta commands. 

111 



S 

ssw 

Scope 

Source Program 

Subroutine 

Symbol ic Address 

Symbol ic Operation 
Code 

System Tape 

Tag 

Tape Block 

UN 

Unit 

PROGRAMMING THE LINC-8 

GLOSSARY (continued) 

Abbreviation for size; refers to the number of lines l:>f MS 

displayed on the scope by the DI meta command. 

Abbreviation for SENSE switch. 

The standard L INC-8 display scope. 

MS. 

A program written to perform some special function; may 

be entered from another program, to which it will return 

control upon completion of its operation. 

A number, letter combination (tag) used to referenc·e a core 

location, the absolute value of which is assigned by LAP4 

during conversion. 

Mnemonics. 

A tape which contains the LAP4 and GUIDE systems. 

A number, letter combination used as a symbol ic address by 

LAP4. 

See Block. 

Abbreviation for unit number; see Unit ~ 

L INC-8 tape unit 0 (left) or 1 (right). 

112 



PROGRAMMING THE LINC-8 

Uti! ity System 

Working Area 

Al':'2 SYMBOL DEFINITIONS 

Al-2.1 Registers 

Symbol Function 

A Accumulator 

-B Memory buffer 

C Control 

L Link bit 

P Program counter 

R Output of relays 

S Memory address 

Z Odd jobs 

GLOSSARY (continued) 

A programming system for the LINC-8 composed of two 

communicating systems, LAP4 and GUIDE. 

That section of a system tape used by the LAP4 system for 

storing MS and the binary converted from MSj occupies 

blocks 330 and ff. 

113 



Al-2.2 Other Symbols 

Symbol 

A. 
1 

A. k 1-

u 

n 

p 

x 
X{f3) 

X{p+1 ) 

h 

h{f3) 

h{p+1) 

X{f3)ndx 

X{f3)hndx 

Y 

Y{p+1 ) 

Y{f3) 

PROGRAMMING THE LINC-8 

Definition 

Bit j of register A. 

Bits j-k, inclusive, of A. 

Bit 7 of the instruction word or of the contents of C. 

Bit 8 of the instruction word or of the contents of C. 

Bits 8-11 of the instruction word, when these bits are not used to 
refer to one of the first 16 memory locations as index registers. 

Bits 8-11 of the instruction word, in those instructions which may 
use these bits to specify the address of an index register. 

The address of the memory location from which the first word of 
the current instruction was obtained. 

Bits 2-11 of a twelve bit word. 

Bits 2-11 of the contents of index register f3. 

Bits2-11 of the contents of the memory location whose address is p+1. 

A bit which is used to specify which half of the operand word is used 
by a half-word instruction. 

Bit a of the contents of index register f3. 

Bit a of the contents of the memory location whose address is p+1 • 

1 + X(f3), using 1 a-bit 2 1s complement addition. 

X{f3)hndx = X(f3} if h{f3) = a 

x (f3)h d = X (f3) d i f h (f3) = 1 • n x n x 

The address of the operand of an instruction, 11 bits in length. 

Bits 1-11 of the contents of the memory location whose address is p+l • 

Bits 1-11 of the contents of index register f3. 

114 



PROGRAMMING THE L1NC-8 

APPENDIX 2 

CHARTS 

A2-1 CHART I CLASSES OF L1NC INSTRUCTIONS AND THEIR CODES 

Miscellaneous Shift 

*HLT 0000 *ROL (i) n 0240 

0001 *ROR (i) n 0300 

0002 *SCR(i) n 0340 

0003 

0004 
Skip On Level 

ZTA 0005 

0006 
*SZL (i) n 0400 

0007 
0401 

0010 
0402 

*CLR 0011 
0403 

0012 
0404 

(MARK) 0013 
0405 

*ATR 0014 
0406 

*RTA 0015 
0407 

*NOP 0016 
0410 

*COM 0017 
0411 

0412 

0413 
Alpha n 

0414 

*SET (i) a 0040 *KST (i) 0415 

* SAM (i) n 01 00 0416 

*DIS (i) a 0140 0417 

*XSK (i) a 0200 

*These mnemonics are defined to LAP4 

115 



PROGRAMMING THE lINC-8 

Skip On Condition Operate 

*SNS (i) n 0440 *OPR (i) n 0500 

0441 0501 

0442 0502 

0443 0503 

0444 0504 

0445 0505 

0446 0506 

0447 0507 

* AZE (i) 0450 0510 

*APO (i) 0451 0511 

*lZE (i) 0452 0512 

* IBZ (i) 0453 (PDP) 0513 

FLO (i) 0454 (TYP) 0514 

ZZZ (i) 0455 * KBD (i) 0515 

0456 *RSW 0516 

0457 *lSW 0517 

Magnetic Tape Unused Codes 

*RDC (i) (u) 0700 0540 

*RCG (i) (u) 0701 

*RDE (i) (u) 0702 

*MTB (i) (u) 0703 
Memory Bank Selection 

*WRC (i) (u) 0704 1MB 0600 

*WCG (i) (u) 0705 UMB 0640 

*WRI (i) (u) 0706 

*CH K (i) (u) 0707 
Fu II Address 

*ADD X 2000 

Execute PDP-8 *STC X 4000 

EXC 0740 *JMP X 6000 

*These mnemonics are defined to lAP4 

116 



PROGRAMMING THE LlNC-8 

Index (or Beta) 

*LDA (i) ~ 1000 r *LDH (i) ~ 1300 *BCL (i) ~ 1540 
Half

l *STA (i) ~ 1040 Word *STH (i) ~ 1340 *BSE (i) ~ 1600 

*ADA (i) ~ 1100 *SHD (i) ~ 1400 *BCO (i) ~ 1640 

*ADM (i) ~ 1140 *SAE (i) ~ 1440 1700 

*LAM (i) ~ 1200 *SRO (i) ~ 1500 *DSC (i) ~ 1740 

*MUL (i) ~ 1240 

*These mnemon ics are defined to LAP4. 

A2-2 CHART II ASR 33 L I NC CODE 

ASR 33 LlNC ASR 33 LlNC 
ASCII 

Symbol 
LlNC 

Symbol 
ASCII 

Symbol 
LlNC 

Symbol 
Code Code Code Code 

260 0 00 0 304 D 27 D 

261 01 1 304 E 30 E 

262 2 02 2 306 F 31 F 

263 3 03 3 307 G 32 G 

264 4 04 4 310 H 33 H 

265 5 05 5 311 34 I 

266 6 06 6 312 J 35 J 

267 7 07 7 313 K 36 K 

270 8 10 8 314 L 37 L 

271 9 1 1 9 315 M 40 M 

212/215 LF/CR 12 META/EOL 316 N 41 N 

377 RUBOUT 13 delete 317 0 42 0 
240 SPACE 14 SPACE 320 P 43 P 

275/246 =/& 15 =/i 321 Q 44 Q 

300/247 @/I 16 u/p 322 R 45 R 

254/255 , /- 17 ,/- 323 S 46 S 

256/253 ./+ 20 ./+ 324 T 47 T 

244/257 $// 21 9/ I 325 U 50 U 

333/243 {/# 22 [/# 326 V 51 V 

375 ALTMODE 23 CASE 327 W 52 W 

301 A 24 A 330 X 53 X 

302 B 25 B 331 y 54 Y 

303 C 26 C 332 Z 55 Z 

117 



PROGRAMMING THE LlNC-8 

A2-3 CHART III PATTERN WORDS FOR CHARACTER DISPLAY 

A table of 24-bit patterns for 4 x 6 display, using the DSC instruction, of all characters on the 

l I NC keyboard. The tabl e is ordered numeri cally as the characters are coded on the keyboard. Table 

entries for non-displayable characters are o. 

0 4136 A 4477 U 0177 
3641 7744 7701 
2101 B 5177 V 0176 
0177 2651 7402 

2 4523 C 4136 W 0677 
2151 2241 7701 

3 4122 D 4177 X 1463 
2651 3641 6314 

4 2414 E 4577 Y 0770 
0477 4145 7007 

5 5172 F 4477 Z 4543 
0651 4044 6151 

6 1506 G 4136 1212 
4225 2645 1212 

7 4443 H 1077 u 0107 
6050 7710 0107 

8 5126 7741 0500 
2651 0041 0006 

9 5120 J 4142 0001 
3651 4076 0000 

EOl 0000 K 1077 B 4577 
0000 4324 7745 

del 0000 l 0177 [ 4177 
0000 0301 0000 

SPACE 0000 M 3077 
0000 7730 
0101 N 3077 
0126 7706 

p 3700 0 4177 
3424 7741 
0404 P 4477 
0404 3044 

+ 0404 Q 4276 
0437 0376 
0000 R 4477 
0077 3146 

# 3614 S 5121 
1436 4651 

CASE 0000 T 4040 
0000 4077 

118 



PROGRAMMING THE lINC-8 

A2-4 UTILITY SYSTEM TAPE ALLOCATION 

Block 

000 - 012 

013 - 267 

270 - 327 

330 - 377* 

400 - 407 

410 - 477 

500 - 777 

A2-5 GUIDE TAPE ALLOCATION 

Block 

400 

401 

402 

403 

404 

405 

406 

407 

410 - 477 

Allocation 

Loaders 

Available to user (may be used for MS files) 

LAP4 system 

LAP4 working area 

GUIDE system 

GUIDE file area 

Available to user (may be used for MS files) 

Allocation 

I nput control 

Display index (lNDIS) 

Index of binary program file 

Questions and answers subroutine 

File a binary program (FILEBI) 

Create a system tape (CAST) 

File a binary program (FILEBI) 

Del ete a fil ed program (DEL ETE) 

Binary programs 

*LAP4 does not test for an upper limit on the length of a manuscript. Manuscripts of maximum length (4000
8 

I ines) in unpacked form might exceed the working area assigned above. 

119 



A2-6 LAP4 TAPE ALLOCATION 

Block 

270 
271 
272 
273 
274 
275 
276 
277 

300 

301 

302 

303 
304 
305 
306 

307 

310 

311 
312 

313 

314 
315 

316 

317 

320 

321 
322 

323 

324 
325 

326 

327 

330 
331 
332 
333 

334 

335 

336 and ff. 

PROGRAMMING THE LlNC-8 

Allocation 

MANUSCRIPT CONTROL meta command 

Regular input 

COpy meta command 

Temporary Storage 

CV and CM meta commands 

Reserved block 

SAVE MANUSCRIPT meta command 

DISPLAY meta command 

PAC K meta command 

I NSERT meta command 

ADD MANUSCRIPT meta command 

REMOVE meta command 

Pass III 

Regular input 

Temporary storage 

Temporary storage for INSERTED lines 

Pass I for conversion 

Pass II for convers ion 

Binary program after conversion 

Temporary storage 

Manuscript control block 

Manuscript 

120 



PROGRAMMING THE L1NC-8 

A2-7 LAP4 META COMMANDS 

Command 

REMOVE 

INSERT 
END 

PACK 

DISPLAY 

SAVE 
MANUSCRIPT 

ADD 
MANUSCRIPT 

CONVERT 

CONVERT 
MANUSCRIPTS 

COpy 

START LAP 

START GUIDE 

MANUSCRIPT 
CONTROL 

Required 
Format 

RE LN, n 
RE LN-LN+n 

IN LN 
EN 

PA 

DI LN, S 

SM 

AM BN,UN 

CV 

CM 

CP 

LA 

GU 

MC 

LN - I ine number 
n - number of lines 
s - size of display 

Information Requested 
During Operation 

none 

none 

none 

none 

un it number; 
initial block number 

none 

none 

initial block number{s) on 
unit 0 of each MS to be 
converted 

number of blocks to be 
copied; UN and initial BN 
of pi aces from and to wh ich 
copy will be made 

none 

none 

option number 0 - 4; various 
additional information re
quested by options 1-4 

Comments 

*Removes n I ines of MS beginn ing 
with line LN 

* Allows insertions of I ines prior to 
line LN; insertion terminated by EN 

*Removes gaps in MS I eft by RE, 
IN, AM, and MC (option 2) 

*Displays MS; F: forward; B: back
ward; L after octa I nos.: L N; S 
after octal nos.: S 

*Saves MS in any designated block 
on either unit 

Adds MS to work i ng area from any 
block on either unit 

*Converts MS 

Converts manuscripts residing any
where on un it 0 tape 

Copies up to 7778 blocks from either 
tape to either tape 

Starts LAP4 system 

Starts GUIDE system 

Allows manipulation of MS files; 
SSWO down - standard MS fil e; 
up - file requested 

BN - block number 
UN - unit number 

*Operates only on MS in working area 

121 



PROGRAMMING THE L1NC-8 

A2-8 GUIDE SYSTEM COMMANDS 

Command 

INDIS 

REWIND 

LAPGO 

LAPRTN 

CAST 

FILEBI 

DELETE 

Information Requested 
During Operation 

none 

none 

none 

none 

create basic index or 
retain old index 

name or block number of 
program; if necessary, short 
title, starting location and 
number of blocks, un its to 
and from; return option 0 - 1 

name and unit number; 
return options 0 - 2 

122 

--------- ---------------

Comments 

Displays index 

Rewinds tapes 

Starts LAP4 

Returns to LAP4 

Creates a systems tape 

Files a binary program by name or block number 
from and onto either unit 

Deletes a filed program by name from either unit 



PROGRAMMING THE LlNC-8 

A2-9 SUMMARY OF ANSWERING PROCEDURE FOR Q & A 

Status of Display 
Result when Key Struck 

del EOL CASE All others 

no questions inoperative proceed* display fades from inoperative 
scope until next 
character struck; 
any next character 
treated as upper 
case 

no entries in answers to all pre- current question display fades from struck character 
current question vious questions filled completely scope until next appears on scope 

deleted with blanks (14); character struck; in place of one 
any next character question mark 
treated as upper 
case 

partial entry in answer to current remaining question display fades from struck character 
current question, question del eted marks filled with scope until next appears on scope 
question marks blanks (14); character struck; in place of one 
remaining proceed* any next character question mark 

treated as upper 
case 

complete entry in answer to current proceed* display fades from inoperative 
current question, question del eted scope until next 
no quest ion marks character struck; 
remaining (EOL not any next character 
yet struck) treated as upper 

case 
-"-- --

*Proceed either back to program or to next question, whichever appl ies. 

123 





PROGRAMMING THE LlNC-8 

APPEND,IX 3 

EXTENDED MEMORY PROGRAMMING 

A3-1 DOUBLE MEMORY 

The LlNC has been presented as having a single 12-bit, 1024
10 

word memory. A second 

addressable memory provides 2048
10

, or 4000
8 

12-bit words. This second memory is addressable for data 

storage and retrieval; it can not, however, be used to hold running programs. 

Bit 1 of a register containing a memory address, e.g., a p register, is designated as the memory 

select bit. When this bit is 1, the second memory is addressed: 
pOlO 000 000 000 \..._--- ..---_ ....... / 

- ----It YX Memory select bit -

The addresses for the second memory may then be thought of as 2000 + X, where 0 ~ X ~ 1777, 

as usual. 

More simply perhaps, it is referred to as memory registers 2000-3777
8

, Whi Ie this scheme 

makes the memory addresses of the two memories continuous, they can not always be treated as such by 

the programmer. The i~struction location register, having only 10 bits, prohibits using the second mem

ory to hold running programs; the next sequential instruction location after 1777 is always 0 • Moreover, 

the full-address class instructions can address only registers 0-1777. 

All other memory reference instructions have available a memory select bit, and can address 

either memory. The instruction 

p LDA 

p+1 2133 

wi II load the accumu lator with the contents of regi ster 2133, i.e., regi ster 133 of the second memory., 

It must be remembered, however, that all instructions which index the first 16 registers (index class, 

hal f-word class, XSK, and DI S) index 10 bits on Iy, and thus index from 1777 to 0 without affecting the 

memory select bit. Therefore, by setting bit 1 the programmer can index through either memory he 

chooses, but he cannot index from one memory to the other, e.g.: 

Memory Address 

3 

~40 

41 
42 
43 

Memory Contents 

[2000 + X] 

SET i 3 
3777 

rLDA i 3 
JMP 42 

125 

[ -] 

0063 
3777 
1023 
6042 



PROGRAMMING THE L1NC-8 

In this example register 3 will contain the succession of values: 3777, 2000, 2001, •.. , 3777, 

2000, etc .,' repeatedly scanning the second memory. In order for the first execution of the LDA instruc-

tion at location 42 to index register 3 to 2000, register 3 must be set initially to 3777, i.e., X(3) = '1777 

and memory select bits = 1 . 

For many purposes th is indexing scheme presents no disadvantages. Often, however, one wou Id 

like to use both memories, for example to collect a large number of data samples. The following pro~~ram 

fills memory registers 400-3777 with sample values of the signal on input line 10. The sample-and-store 

part of the program is written as a subroutine (locations 31-40), and the sample rate is controlled by CJ 

OPR i n instruction: 

Memory 
Address 

Memory Contents 

[ -] 7 
10 r----7 [JMP X] 

[ -] 
[ -] 

~20 

21 
22 
23 
24 
25 
26 
27 
30 
31 
32 
33 

34 
35 
36 
37 
40 

SET i 7 
377 
JMP 31 
SET i 7 
3777 
JMP 31 
WCG 
6131 
HLT 

4SET 10 
o 

~OPR i 1 

SAM 10 
STA i 7 
XSK 7 
JMP 33-: 
JMP 10(-1 

0067 
0377 
6031 
0067 
3777 
6031 
0705 
6031 
0000 
0050 
0000 
0521 

0110 
1067 
0207 
6033 
6010 

Effect 

For memory address. 
For return poi nt • 

} 
Set 7 to initial address minus 1 and jump to 
subroutine. 

} 

Return from subroutine; set 7 to initial address 
minus 1 for second memory I and jump to sub
routine. 

} Return from subroutine; write memory quarters 1 
through 7 in blocks 31-37 and halt. 

Enter subroutine and save return point in 
reg i ster 10. 
Pause unti I restart signal appears on external 
level line 1 • 

} Sample input on line 10 and store: 

If X(7) ::: 1777, return to get next sample 

When X(7) ::: 1777, return to main program via 
register 10. 

__________ ~ __________________ ~ ______ _L __________________________________________ _ 

Example 35 Indexing Across Memory Boundaries 

A3-2 CHANGING MEMORY BANKS 

In actuality there are more than 2048
10 

words in the LlNC-8 computer. The basic L1NC-B 

contains 4096
10 

words with the capacity of expansion up to 32,768,10 words. From the L1NC point of view, 

126 



PROGRAMMING THE LlNC-8 

it is best to envision this 32K as 32 1 K segments numbered from 00
8 

to 378 (we wi" call these 1 K segments 

memolY banks in this discussion). In memory bank 0, PROGOFOP resides. Normally, L1NC programs 

reside in memory bank 2 (instructions) and 3 (data--see previous discussion). It is possible, however, to 

change this if such a condition is found desirable. 

15 Bit 

Absolute Addresses 

00000 to 01 777 

02000 to 03777 

04000 to 05777 

06000 to 07777 

1 0000 to 11 777 

12000 to 13777 

14000 to 15777 

16000 to 1 7777 

20000 to 21 777 

22000 to 23777 

70000 to 71777 

72000 to 73777 

74000 to 75777 

76000 to 77777 

00
8 

PROGOFOP 

01
8 

I 

02
8 

"NORMAL" Lower Memory Bank 

03
8 

"NORMAL" Upper Memory Bank, 

04
8 

05
8 

06
8 

07
8 

1 0
8 

118 

34
8 

35
8 

36
8 

37
8 

Diagramatic Representation of L1NC-8 Memory 

Basic Memory 
of LlNC-8 

1st 4K 
Expansion 

7th 4K 
Expansion 

An example of a desirable condition would be when a program requires more than 102410 data 

words to be in computer memory at one time. A decision is made to store the data in memory bank 1 and 

memory bank 3. The program wi II occupy memory bank 2 (where it normally is) and the double memory 

programming technique discussed previously will be used to access this data. The accessing of the data 

in bank 3 is no prob lem as bank 3 is the "norma I upper memory bank." However, when it is desired to 

access the data in bank 1 the" numberll of the upper memory bank must be changed. Th is is accomplished 

by executing the instruction UMB N (640 + N), change upper memory bank to N. N must be nonzero to 

change the upper memory bank selector. After this instruction is executed, all references to "upper mem

oryll wi II be to th is memory bank (1 in our example) unti I it is changed by another UMB N. 

127 



PROGRAMMING THE LlNC-8 

Another example of when it would be desirable to change memory banks would be if (J program 

were too large to occupy one memory bank and it was desirable to store a frequently used subroutine in a 

different memory bank. Again, let us use memory bank 1, th is time to hold the subroutine. The main 

program is in memory bank 2; the data, in bank 3. To change memory banks and transfer the control of 

a program, the instruction LMB N (600 + N), change lower memory bank to N (N i- 0), is given. Upon 

executing the next JMP X (X i- 0) control will be transferred to location X of bank N (1 in our example) 

and JMP p+l will be stored in location 0 of the new memory bank. To exit bank 1 to the original pro

gram in bank 2, a LMB 2 instruct~on is given, followed by a JMP O. 

o 

500 
501 
502 

Bank = 2 

LMB 1 
JMP 20 

o 

"--~ 20 

2000 

Bank = 1 

JMP 502 

LMB 2 
JMPO 

The upper memory bank number is not affected by the LMB instruction (nor is it directly af-· 

fected by the JMP X) . 

128 



PROGRAMMI NG THE LI NC-8 

APPENDIX 4 

I NSTRUCTI ONS 

A4-1 MSC CLASS I NSTRUCTI ONS 

HLT 0000 3 ~sec HLT 

Halt. The computer halts. The RUN light on the console is extinguished. The gong chimes if it 

is turned on. The computer can be restarted only from the console. 

ZTA 0005 3 ~sec ZTA' 

Z to A. The contents of Z, bits 0 to 10, replace the contents of A, bits 1 to 11. Bit 0 of A is 

set to o. Bi t 11 of Z is ignored. The contents of Z are not changed. 

CLR 0011 3 ~sec CLR 

Clear. Clear A, L, and Z. 

ATR 0014 3 ~sec ATR 

A to R. The contents of the right half of A (A
6
-A

11
) replace the contents of R. The contents 

of A are not changed. 

129 



PROGRAMMI NG THE LI NC-8 

RTA 0015 3 flsec RTA 

R to A. The contents of R replace the contents of the right half of A. The left half of A is cleared. 

The contents of R are not changed. 

NOP 0016 3 flsec NOP 

No operation. This instruction provides a delay of 3 flsec before proceeding to the next instruction. 

I t does noth i ng • 

I __ C_O __ M ______________ O_01_7 _______________________ 3_fl_se_c _______________ C=='_OM___ ~ 
Complement. Complement the contents of A. J 

A4-2 SK I P CLASS I NSTRUCTI ONS 

Address of Next Instruction to be Executed 
Following Skip Class Instruction 

Condition Address of Next Instruction 

° met p+2 

° not met p+1 
1 met p+1 
1 not met p+2 

130 



PROGRAMMING THE LINC-8 

AZE i 0450 + 20i 3 iJ sec AZE 

A zero. Check if A contains either 0000 or 7777.· 

APO i 0451 + 20i 3 iJsec APO 

A positive. Check if AO (the sign bit of A) is O. 

LZE i 0452 + 20i 3 iJ sec LZE 

L zero. Check if Lis O. 

IBZ i 0453 + 20i 3 iJsec IBZ 

Inter-block zone. Check if either tape unit is up to speed and reading an inter-block zone mark. 

FLO i 0454 + 20i 3 iJ sec FLO 

Overflow. Check if overflow flip-flop is in the one state. FLOFF (overflow flip-flop) will be set 

on ADD, ADA, ADM, or LAM if an overflow occurred. Overflow exists when the sum of two posi

tive numbers is negative or the sum of two negative numbers is positive. 

ZZZ i 0455 + 20 i 3 iJsec zzz 

Z bit 11 on a zero. Check if bit 11 of Z is a O. 

131 



PROGRAMMI NG THE LI NC-8 

SXL i n 0400 + 20i + n 3 fJsec SXL 

Skip on external level. Check if external level input line n (0 ~ n ~ 13
8 

is in its negative state. 

(-3v) 

KS1~ KST i 0415 + 20i 3 fJsec 

Key struck. Check if a key has been struck and is in the locked position. 

A4-3 SHIFT CLASS INSTRUCTIONS 

ROLin 0240 + 20i + n see table below ROl. 

Rotate left. Shift the contents of A n places to the left. If i=O, bit AO is shifted into bit All' and 

the contents of L are unchanged. If i=l, bit AO is shifted into Land L is shifted into bit All. l'lo 

effect on Z. 

RORin 0300 + 20i + n see table below ROR 

Rotate right. Shift the contents of A n places to the right. If i=O, bit All is shifted into bit A
O

' 

and Zo and the contents of L are unchanged. If i=l, bit All is shifted into Land L is shifted into 

bit A
O

' All is shifted into ZOo Zll is always lost. 

SCR in 0340 + 20i + n see table below SCR 

Scale right. Shift the contents of A n places to the right with bit AO never changing. If i=O, the 

information shiftedoutofA
ll 

isshi"ftedinto Zo and L is not changed. If i=l, bit All is shifted into 

L and the information shifted out of L is lost. All is shifted into ZOo Zll is always lost. 

132 



PR OGRAMMI N G THE LI NC-8 

A4-3.1 Execution Times for Shift Class Instructions 

n n 

0 3 jJ sec 10 9.0jJsec 
1 3 jJ sec 1 1 9.0 jJsec 
2 4.5 tJsec 12 10.5 jJsec 
3 4.5 jJsec 13 10.5 jJsec 
4 6.0 jJsec 14 12.0 jJsec 
5 6.0 jJsec 15 12.0 jJsec 
6 7 .5 jJsec 16 13.5 jJsec 
7 7.5 jJsec 17 13.5 jJsec 

A4-4 FULL ADDRESS CLASS INSTRUCTIONS 

ADD X 2000+X 3 jJsec ADD 

Add. Add the contents of memory register X to the contents of A, and leave the resulting sum in A. 

The addition is lis complement binary addition (i .e., with end-around carry). The contents of 

memory register X are not changed. 

STC X 4000+X 3 jJ sec STC 

Store and clear A. The contents of A are copied into memory register X and A is then cleared. 

JMPX 6000+X see note JMP 

Jump to X. If X 10, 6000 + P + 1 is stored into memory register O. Regardless of the value of X, 

the next instruction is taken from the memory location whose address is X. 

NOTE: If X 10, this instruction is executed in 3 jJsec. If X == 0, the instruction 
is executed in 1 .5 jJsec. 

133 



PROGRAMMING THE L1NC-8 

. A4-5 I NDEX CLASS I NSTRUCTI ONS 

Addressing and set up time in index class instructions. 

~ Y Indexing 

0 0 Y (p+l) 4.5 Ilsec -----------
1 0 p+l 3.0 11 sec -----------
0 1 ~ ~ ~ 17 Y(M 4.5 11 sec -----------
1 1 ~ ~ ~ 17 Y(~)ndx 4.5 Ilsec X(~)d X(M n x 

LDA i ~ 1000 + 20i + ~ t 11 sec LDA 

Load A. Copy the contents of memory register Y into A. The contents of memory register Yare 

not changed. 

STA i ~ 1040 + 20i + ~ t 11 sec + 1 • 5 Ilsec STA 

Store A. Copy the contents of A into memory register Y. The contents of A are not changed. 

ADA i ~ 1100 + 20i + ~ t 11 sec ADA 

Add to A. Add the contents of memory register Y to the contents of A and leave the resulting sum 

in A. The addition is l's complement binary addition (i .e. f with end-around carry). The contents 

of memory Yare not changed. 

ADM i ~ 1140 + 20i + ~ t + 3.0 11 sec ADM 

Add to memory. Add the contents of A to the contents of memory register Yand leave the sum 

both in A and in memory register Y. The addition is lis complement binary addition (i.e; f with 

end-around carry). The contents of L are not changed. 

134 



PROGRAMMI NG THE LI NC-8 

LAM i ~ 120.0. + 20i + ~ t + 3.0. I-Isec LAM 

Link-add to memory. First, add the contents of L (0. or 1) to the contents of A and leave the sum 

in A. The addition is 2 1s complement 12-bit binary addition with the end-carry replacing the 

original contents of L. If there is no end-carry, L is cleared. Next, add the contents of memory 

register Y to the contents of A and leave the sum in A and in memory register Y. If there is an 

end-carry, set L to 1 • 

MULi ~ 1 240. + 2o.i + f3 t + 30..0. I-Isec MUL 

Multiply. Multiply the contents of A oy the contents of memory register Yand leave half of the 

product in A. The contents of A and of memory registerY are treated as lis complement binary 

numbers with bit 0. serving as a sign bit. Their full product contains 22 bits plus a sign bit. If bit 

0. (the h bit) of ~ is 0., the multiplication is.carried out as an integer multiplication and the least 

significant 11 bits of the product are left:·in th.e least significant 11 bit positions in A. The left

most bit of A contai ns the sign of the product. I f the h bi tis 1, the mu Iti pi ication is carri ed out as 

a fraction multiplication and the most significant 11 bits of the product are left in the least signif

icant 11 bit positions in A. The left-most bit of A contains the sign of the product. The least 

significant bits of the product are in Z bits 0. to 10.. The sign of the product is also left in L in both 

cases. The contents of Yare unchanged. 

SAE i f3 1 440. + 2o.i + f3 t + 1 .5 I-Isec SAE 

Skip if A equals. If the contents of A exactly match the contents of memory regi ster Y, take the 

next instruction from memory location p+2. Otherwise take the next instruction from memory lo

cation p+ 1. The contents of A and of memory register Yare not changed. 

SRO i f3 150.0. + 2o.i + ~ t + 1 .5 I-Isec SRO 

Skip and rotate. Rotate the contents of memory register Yone place to the right. If, after the ro

tate, bit 0. of the contents of memory register Y is a 0., take the next instruction from memory loca

tion p+2. Otherwise, take the next instruction from memory location p+ 1 • 

135 



PROGRAMMING THE LlNC-S 

~-----------------------------------------------------------------------

BCl i ~ 1540 + 20i + ~ t fJ sec BCl 

Bit clear. For each bit position of memory register Y that contains a 1, clear the corresponding 

bit position in A. The contents of memory register Yare not changed. 

BSE i ~ 1600 + 20i + ~ t fJsec + 1.5 fJsec BSE 

Bit set. For each bit position of memory register Y that contains a 1, set the corresponding bit 

positi on inA to CI 1. The contents of memory reg i ster Yare not changed. 

----------_ ... _----_._._--_._-----------------------------

BCO i ~ 1640 + 20i + ~ t fJ sec BCO 

~------------------------------------------------------------

Bit complement. For each bit position of memory register Y that contains a 1, complement the 

corresponding bit position in A. The contents of memory register Yare not changed. 
1--_____________ ... __ . ____ . __ . ___ . __ . __ ..... __ ._ .... __ .. ____ . _____ .. _ .. __ .. 

DSC i ~ 1740 -I 20i + ~ 75-140 fJsec DSC 

Display character. Intensify points in a 2 x 6 grid on the display scope with the pattern displayed 

controlled by the contents of memory register Y. Each bit position of memory register. Y controls the 

intensification of one of the twelve points in the grid. The diagram below specifies the bit position 

control I i ng each grid poi nt . 

6 a 
7 1 

.. -

S 2 
t- ... -.-.. -.-- -.--

9 3 

10 4 

11 5 

Spac i ng between poi nts is +4 in both the horizontal and verti ca I di rections. The contents of memory 

register 1, augmented by +4, controls the horizontal position of the lefthand edge of the grid. Th'2 

contents of the accumulator, with bits 7-11 set to 0, controls the vertical position of the grid's 

lower edge. Bit 0 of memory register 1 selects one of two display channels for intensification. At 

the end of the instruction, the accumu lator has been augmented by 30
S 

and register 1 has been aUfl

mented by lOS. Memory register Y is left unchanged. The Z register is used by this instruction. 

136 



PROGRAMMING THE LINC-8 

A4-6 HALF WORD CLASS INSTRUCTIONS 

Addressing and set up time in half-word class instructions 

~ Y h Indexing 

0 0 Y(p+ 1) h(p+ 1) 4.5 usec ----------
1 0 p+1 0 3.0 usec ----------
0 1 < ~ < 17 Y(~) h(~) 4.5 usec ----------
1 1<~<17 Y(B)hndx h(i3) 4.5 usec See note below 

If h=O, the left half of memory register Y is the operand. If h=l, the right half of memory 

register half of memory register Y is the operand. 

LDH i ~ 1300 + 20i + ~ t !-,sec LDH 

Load half. Copy the contents of the designated half of memory register Y into the right half of A. 

The left hal f of A is cleared. The contents of memory regi ster Yare not changed. 

STH i ~ 1340 + 20i + ~ STH 

Store half. Copy the contents of the right half of A into the designated half of memory register Y. 

The contents of A and of the remaining half of memory register Yare not changed. 

SHD i ~ 1400 + 20i + ~ SHD 

Sk i P if hal f di Hers. Compare the contents of the righ thai f of A with the contents of the spec i fied 

half of memory regi ster Y. If they do not match exactly, take the next instruction from memory 

address p+2. I f they do match; take the next instruction from memory address p+ 1. The contents 

of A and of memory regi ster Yare not changed. 

137 



PROGRAMMI NG THE LI NC-8 

A4-7 ALPHA CLASS INSTRUCTIONS 

SET i a 40 + 20i + a i=l: 4.5 fJsec, i=O: 6.0 flsec SET 

Set. Set the contents of memory register a equal to the contents of memory register Y. The contents 

of memory reg i ster Yare not changed. 

._------------_._-------_. __ ...... __ ._ .. __ ..... _------------------------------- -----------

DIS i a 140 -+ 20i + a 18 flsec DIS 

Display. Index the contents of memory register a if i=l. Intensify a po'int on the scope whose 

horizonta I posi tion is spec i fi ed by bits 3-11 of memory reg i ster a and whose vertical posi tion is 

specified by bits3-11 of A. Bit 0 of memoryregistera selects one of two display channels for 

intensification. 

The leftmost point which can be displayed corresponds to the horizontal coordinate 000 octal, 

and the rightmost point to 777. The lowest point which can be displayed'corresponds to the vertical 

coordinate -377, and the highest to +377. Bits o through 2 ofmernory regider aand of Ado not 

effect the position of the point which is intensified. 
L-________________________________________________________________________ _ 

XSK i a 200 + 20i + a 4.5 flsec XSK 

Index and skip. Index the contents of memory register a if i=l. If contents of(q) equals 1777,take 

the next instruction from p+2. Otherwise, take the next instruction from p+ 1 . 

A4-8 SAMPLE CLASS I NSTRUCTI ONS 

SAM in 100 + 20i + n 19.5 flsec SAM 

Sample. Sample the signal on one of 16 input channels selected by n. Leave 'its binary value, 

seven bits plus sign bit, in the least significant bit positions of the accumulator. The sign bit is ex'

tended through bit O. O~n~ 7 selects one of the potentiometers on the display scope: 1 O~ n S 17 

selects one of the analog inputs in the terminal box. The i bit has no effect unless equipped with 

additional analog channels; then i selects the second 16 channels. 

138 



PROGRAMMING THE LlNC-S 

A4-9 MAGNETIC TAPE CLASS INSTRUCTIONS 

These instructions are used to transfer information between the internal core memory of the 

LI NC and digital tapes on either of the two LI NC tape transports. Two additional instructions in this 

class permit moving tapes and checking the integrity of information stored on tapes without modifying 

the contents of the tapes or the core memory. 

LI NC tapes are subdivided permanently into blocks by an initial process of marking which 

records a fixed pattern on certain portions of the tape. This pattern includes fixed block addresses which 

permit references to information stored on tape by means of a block number. Information is always trans

ferred and checked in units of complete blocks which are specified by their block addresses. Each block 

includes a checksum for verifying the integrity of information transfers to and from the tape. 

A standard LI NC tape contains 1000
S 

(512
10

) addressable blocks numbered consecutively from 

000-777. Each block on a standard tape contains 400
S 

(256
10

) words corresponding to the contents of 

one quarter of a LI NC core memory modu Ie. The first core memory address whose contents are transferred 

to or from a given block is the first address within the specified memory quarter. Quarter 0 begins with 

address 0, quarter 1 with address 400, and so on up to quarter 7, which begins with address 3400. The 

length of blocks as well as the format of the block addresses can be varied by using a non-standard tape 

which has been marked using a non-standard marking program. Once a given tape is marked, however, 

the format is fixed for that tape unless it is completely erased and remarked. 

A4-9.1 Tape Motion and Searching 

Tape motion and searching are essentially identical for all magnetic tape instructions. The 

tape system automatically searches for and finds the specified block on tape and then completes the de

sired operation. If the tape transport selected by a magnetic tape class instruction is not in motion at the 

time it is selected, it starts to move the tape in the forward direction (i.e., toward larger block addresses) 

until the next block address is read. If the tape unit selected is already in a state of motion, the initial 

direction of motion continues unti I the next block address is read. At this time the desired block number 

is compared with the block address just read and the tape is subsequently moved in the correct direction 

to approach the desi red block. When the desi red block address is reached and the tape is mov ing in the 

forward direction, the specified tape operation is carried out. 

At the conclusion of a tape instruction the i-bit of the tape instruction determines whether 

the motion of the tape is to continue or not. If the i-bit is a 1, tape motion continues in the direction 

it was moving at the completion of the instruction (usually forward). If the i-bit is a 0, the tape is moved 

backwards for a fraction of a second and is then stopped. In the event that the tape has been left in motion 

by ali n the i -bit position, the motion conti nues unti lei ther the end of the tape is reached, the computer 

is halted, or the next magnetic tape instruction is executed. Only one tape transport can be in motion 

under computer control at a given time. 

139 



PROGRAMMING THE LlNC-8 

A4-9.2 Transfer Check 

The term data sum refers to the sum (2 1s complement) of all the data words in a block. A data 

sum is automaticall y ca Icu I ated in the accumu lator whenever a block of tape is written, and its compl e

ment, called the checksum, is written in a special place at the end of the block. When a block of tope 

is read, a new data sum is automatically calculated in theaccumulatorand the checksum from tape is 

added to it. If the result, called the transfer sum, is not -0, there has been a transfer error. Usage of 

this feature varies from instruction to instruction and is, therefore, described in detail for each. 

A4-9.3 Instruction Format 

All magneti c tape c I ass instructions are two-word instructions. The fi rst word spec i fi es the 

instruction, selects the left or right tape unit, and determines the motion of the tape following the com

pletion of the instruction. The second word specifies the memory quarter(s) and the tape block address(es) 

used in the transfer. 

First word: 

Second word: 

Motion bit: 

Unit bit: 

0-"-----"0_0-'--_1, ,-1---=-_--=--0 i u 

tape class -------J! II 
motion bit _~ 
unit bit _ 

xxx 
\=- instruction 

xxx XXX XXX XXX 

QN bits 
BN bits 

See A4-9.1 

~_---i! 

If u=O, the lefthand unit is selected. 
If u=l, the righthand unit is selected. 

QN & BN bits: (for instructions RDC, RDE, WRC, WRI) 

The QN bits specify the quarter of memory involved. 
The BN bi ts spec i fy th e block of tape involved. 

QN & BN bits: (for instructions RCG and WCG) 

The QN bits speci fy the number of consecutive block-quarter transfers 
to occur, after the first block-quarter transfer. 

The BN bits specify the first block of tape involved in the transfer. 
Bits 0-2 of the BN bits specify the first quarter of memory involved 
in the transfer. 

QN & BN bits: (for instructions MTB and CHK) 

The QN oits have no meaning. In the CHK instrucf"ion, the BN bits 
specify the block involved. The use of the BN bits in the MTB in
struction is explained under that instruction. 

140 



PROGRAMMI NG THE LI NC-8 

RDC i u 700 + 20i + lOu RDC 

Read and check. The spec i fi ed block is read into the spec i fi ed quarter of memory and the accumu

lator is exam i ned for - O. I f it is - 0, the computer goes on to the next instruction. If not, the 

block is re-read unti lei ther a - 0 resu I ts or the computer is hal ted from the conso Ie. 

RCG IU 701 + 20i + lOu RCG 

Read and check group. The specified blocks are read into the specified quarters of memory. After 

each block is read, the accumulator is examined for - O. If it's not, the block is re-read until either 

a - 0 results or the computer is halted from the console. When all blocks have been read success-

fu Ily, the computer goes on to the next instructi on. 

RDE i u 702 + 20i + lOu RDE 

Read tape. The specified block of tape is read into the specified quar.ter of memory. The transfer 

sum is left in the accumulator and the computer goes on to the next instruction. 

~------------------------------------------'-------------------------------

MTB i u 703 + 20i + lOu MTB 

-------------------------------------------------------------------------------------------~ 

Move towards block. The first block address read from tape is subtracted from the block number 

spec i fi ed by the BN bi ts of the instruction and the di fference is left in the accumu lator . If i= 1, the 

tape is left in motion at the end of the instruction. Tape motion will be in the forward direction if 

the accumu lator is posi tive and in the backwards di rection if the accumu la tor is negative (i nc ludi ng 

-0). If i=O, tape motion stops at the end of the instruction. 

WRC i u 704 + 20i + lOu WRC 

Write and check. The specified quarter of memory is written in the specified block of tape. The 

tape then reverses, re-finds the spec i fi ed block, reads it, and exam i nes the accumu lator for - O. If 

it is - 0, the computer goes on to the next instruction. If not, the block is re-written and re-read 

unti lei ther - 0 resu I ts or the computer is hal ted from the console. Memory is not changed by th i s 

instruction. 

141 



PROGRAMMI NG THE LI NC-8 

WCG i u 705 + 20i + lOu WCG 

Wri te and check group. The spec i fied quarters of memory are wri tten into the spec i fi ed blocks of 

tape. After all the blocks are written, the tape reverses, re-finds the first block, and reads all 

the blocks just wri tten. The accumu lator is exam i ned for - 0 after each block is read, and if it is 

not - 0, the who Ie i nstruc tion is repeated, begi nn i ng wi th the block that fai led. When all blocks 

have been successfu Ily written, the computer goes on to the next instruction. Memory is not 

by this instruction. 

WRI i u 700 + 20i + lOu WRI 

Write tape. The specified quarter of memory is written in the specified block of tape. The checksum 

is left in the accumulator and the computer goes on to the next instruction. Memory is not changed 

by this instruction. 

CHK i u 707 + 20i + lOu CHK 

Check tape. The spec i fi ed block of tape is read and the transfer sum is left in the accumu la tor. 

Memory is not changed by this instruction. 

A4-l0 OPERATE CLASS I NSTRUCTI ONS 

OPR in 500 + 20i + n OPR 

Operate channel n. These instructions form a powerful, though complex, set of input-output com

mands whose functions are partially controlled by signals from external equipment. They are ex

ecuted by the PDP-8 portion of the LINC-8. 
L--__________________________________________ , __ , __ 

OPR i 13 513 + 20i < 200 f-Isec (PDP) 

Transfer control to PDP-8 mode by executing a PDP-8 JMS instruction to the absolute address speci·· 

fied in the Linc A register. Th is address is taken to be in the first 4K segment of LINC-8 memory. 

i B it has no effect. L-_________________________________________________________________________ _ 

142 



PROGRAMMING THE L1NC-8 

aPR 14 (TYP) 514 <200 IJsec TYP 
1---------------------------------------------... --

Print the ASCII Character in bits 4-11 of the Linc A register. If Teletype Printer is free, put charac

ter in printer buffer and immediately return to LINC programming. If printer is not finished, then 

pause until character can be put in printer buffer. 

aPR i 15 515 + 20i <200 IJsec KBD 

Read keyboard. If a key has been struck, the code number corresponding to the key is read into A, 

and the instruction is completed without pausing whether i=O or i=1. If no key has been struck and 

i= 1, the computer pauses unti I a key is struck, then reads the key code into A, and continues to the 

next instruction. If no key has been struck and i=O, there is no pause and the computer goes to the 

next instruction with A cleared. 

aPR i 16 516 + 20i <200 IJsec RSW 

Right switches. The contents of the RIGHT SWITCHES on the console are read into A. There is no 

pause. The i bit has no effect. 

aPR i 17 517 + 20i <200 IJsec LSW 

Left switches. The contents of the LEFT SWITCHES on the console are read into A. There is no 

pause. The i bit has no effect. 

143 





1 • 

2. 

3. 

4. 

5. 

6. 

7. 

8. 

9. 

10. 

1l. 

12. 

13. 

14. 

15. 

16. 

17. 

18. 

19. 

20. 

2l. 

22. 

23. 

24. 

25. 

26. 

27. 

28. 

29. 

30. 

3l. 

32. 

33. 

34. 

35. 

PROGRAMMING THE LINC-8 

INDEX OF PROGRAMMING EXAMPLES 

S i mpl e Sequence of Instructions ••••••••••••••••••••••••••••••••• 0 0 0 0 ••• 0 0 o. 0 

Simple Sequence Using the Jump instruction. 0 •• 0.00.0.00 •••• 0 ••• 0.00000000000 

Summing a Set of Numbers Using Address Modification 0.0.000000000 •• 000 ••• 0000 

Packing a Set of Numbers .....•.•....••.•.....•....••••••..••••••..•••••.•• 

Indirect Addressing ...........••........••..•..•..•.••..•...•...••......••• 

Indexing to Clear a Set of Registers 

Memory Scanning .••.•....••......•.•..•....••....•..•.•.••••...•..•..••.. 

Summing Sets of Numbers Term by Term .00.0.0000.00 ••• 0.0000000.0000000000 •• 

Index Reg isters Used as Counters .00 0 ••• 00 .0 • 0 0 000 00 • 00 0 .0 00 0 00 0 0 0 000 00 0 00 00. 

Indexing and Counting to Clear a Set of Registers 

Setting Initial Index Register Values 0.0000.00 ••• 0 •• 000.0.000.000000.00.000000 

Scanning for Values Exceeding a Threshold .0000000.0 •••••••••• 00 •• 0 ••• 0 •• 0 •• 0 

Summing Sets of Double Length Numbers Term by Term ••• 0 •• 0 •• 0 ••••••••••••••• 

Mu I ti pi yi ng a Set of Fractions by a Constant. 0 o •••••••• 0 0 • 0 •••• 0 ••••••• 0 •••• 0. 

Multiplication Retaining 22-Bit Products ••• 0 •••••••••••••••• 0 •••••••••••••• 0. 

Multiplication for 22-Bit Product Using ZTA 0 ••••• 0 •• 0.0.00 ••••••••• 0 ••• 00.0.0 

Filling Half-Word Table from the Keyboard 00 •••••••••••• 0. 0 •••••• 0 ••••••• 0 ••• 

Selective Filling of Half-Word Table from the Keyboard •••• 0 ••••••• 0.0 •••• O •••• 

Horizontal Line Scope Display. 0 0.0.0 •• 00 ••• 00.0 •••• 0 ••••••••••••••• 0 ••••••• 

Curve Display of a Table of Numbers 0 ••••••••••••• 0.0000.00. 0000. 000000 ••••• 

Character Display of the Letter A 000 00000 •• 0 00 •• 0 .000000000 ••• 0.0000 O ••••••• 

Character Display of the Letter A Using DSC .0 ••••••••••••••• 000 ••• 0 •••• 00 •• 0 

Displaying a Row of Characters 

Simple Sample and Display .....................•.. 'I) •••••••••••••••••••••••• 

Moving Window Display Under Knob Control ••••••••••• 0 •••••••••••••• O •••••• 0 

Histogram Display of Sampled Data ••••• 00.0.0000000000000.000000000000000 •• 0 

Counting Samples Exceeding a Threshold 00.00000000000000000000000.00000.00.0 

Simple Sample and Display with Keyboard Control 0000000.00.000000.000000.0000 

S impl e Check of an Entire Tape 00 00. o. 000 0 • 0 00 000 000 o. 000 .0 000 000 0 0 0 ••• 0 •••• 

Dividing Large Programs Between Tape and Memory •• 0 • O ••••••••• 00 ••••• 0 0 0 0 0 0 0 

Collecting Data and Storing on Tape .0 •• 0.000000 •• 00000.0000000.0.00000000.0 

Tape and Memory Exchange with Group Transfer 

Block Search Subroutine ••••••••••••••••••••••••••••••••••••••••••••••••••• 

Write and Check with Fewest Reversals . .................................... . 
Indexi ng Across Memory Boundaries 000 0 0 0 •• 0 00 0 0 0 .00 •••• 0 .00 00 0 0 Appendix 3: 

Display Contents of RIGHT SWITCHES as Decimal Number on Scope •......•...•.. 

145 

10 

12 

15 

17 

19 

21 

21 

22 

24 

25 

27 

30 

35 

38 

39 

41 

45 

46 

48 

48 

51 

53 

54 

56 

57 

58 

61 

62 

77 

79 

80 

82 

87 

89 

126 

104 



PROGRAMMING THE LINC-8 

PAGE INDEX OF LINC-8 INSTRUCTIONS 

ADA · ............. 18/ 134 MUL · ............. 36/ 135 

ADD · ............. 9/ 133 NOP •••••••••••••• 130 

ADM ............. 22/ 134 OPR · ............. 68/ 142 

APO · ............. 59/ 131 RCG · ............. 81/ 141 

ATR · ............. 5/ 129 RDC · ............. 75/ 141 

AZE ••••••••••••••• 13/ 131 RD E ••••••••••••••• ' 72/ 141 

BCl ••••••••••••••• 22/ 136 ROL ••••••••••••••• 7/ 132 

BCO · ............. 22/ 136 ROR · ............. 7, 132 

BSE · .............. 22/ 136 RSW · ............. 5, 143 

CHK · ............. 76/ 142 RTA · ............. 5/ 130 

CLR · 5/ 129 SAE ••••••••••••••• 20, 135 · ............. 
COM . . . . . . . . . . . . . 5/ 130 SAM · ............. 55, 138 

DIS · .............. 46/ 138 SCR · ............. 7, 132 

DSC · ............. 52, 136 SET ............... 25, 138 

EXC · ............. 67 SHD · ............. 43, 137 

FLO · ............. 131 S K P ••••••••••••••• 59 

H LT ••••••••••••••• 10/ 129 S NS ••••••••••••••• 60, 130 

IBZ • ••• II •••••••••• 86, 131 SRO · ............. 50, 135 

JMP · ............. 11/ 133 5 T A ••••••••••••••• 19, 134 

KBD · ............. 45/ 143 S TC ••••••••••••••• 9, 133 

KS T ••••••••••••••• 60/ 132 S TH ••••••••••••••• 42, 137 

LAM · ............. 31, 135 SXL ••••••••••••••• 59, 132 

LDA ••••••••••••••• 19/ 134 UMB · ............. 127 

LDH · ............. 42/ 137 WCG •••••••••••••• 81, 142 

LMB · ............. 128 WRC · ............. 77/ 141 

LSW ••••••••••••••• 143 WRI ••••••••••••••• 74/ 142 

LZE · .............. 60, 131 XS K ••••••••••••••• 23, 138 

MTB · ............. 84/ 141 ZTA · ............. 40, 129 

ZZZ · ............. 131 

146 



DIGITAL EQUIPMENT CORPORATION. MAYNARD. MASSACHUSET-rS 

PRINTED IN U.S.A. 


	0000
	0001
	0002
	0003
	0004
	0005
	0006
	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093
	094
	095
	096
	097
	098
	099
	100
	101
	102
	103
	104
	105
	106
	107
	108
	109
	110
	111
	112
	113
	114
	115
	116
	117
	118
	119
	120
	121
	122
	123
	124
	125
	126
	127
	128
	129
	130
	131
	132
	133
	134
	135
	136
	137
	138
	139
	140
	141
	142
	143
	144
	145
	146
	xBack

