
OECUSNO.

TITLE

AUTHOR

COMPANY

DATE

SOURCE LANGUAGE

11-68

ALGEBRA - A PROGRAM FOR MANIPULATING
LOGICAL EXPRESSIONS

P. J. Brown and R. C. Saunders

University of Kent at Canterbury
Canterbury, Kent, Eng land

July 21, 1972

PAL-11

Although this program has been tested D1'the contributor, no warranty, express or implied, is made by the contributor,

Digital Equipment Computer Users Society or Digital Equipment Corporation as to the accuracy or functioning ::Jf the

program or related program material, and no responsibility is assumed by these parties in connection therewith.

DECUS Program Library Write-up DECUS NO. 11-68

Background

The Algebra ~r9gram [l] has been implemented for the
PDP-11 using the LOWL L2J versfon of the logic, and the ICL 4130
version of ML/I [.3] to do the mappingo

This document describes the version of Algebra which
runs under DOS (Disk Operating System) for the PDPll/20.

An earlier version of Algebra is available to run ,.Al

PDPll's which do not support DOS. As this 11 stand-alone" version
allows interrupt,·driven teletype input/output only, and there is
normally no probl~m of limited workspace with Algebra, the DOS
version, which allows the use of command strings to assign input/
output channels,is recommended.

The following is effectively a re-write of the des
cription of the Algebra program [ll with changes for the I/O
facilities under DOS. ·

The appendix describes the differences between the
DOS V3rsion and the "stand-alone" program.

Introduction

The ALGEBI{A program allows the user to declare a set
of objects and then to define a number of operators that can
be applied to thes~ objects. The objects are called values.
Once the operators and values have been defined the user can
investigate their prop~rties by evaluating expressions involving
variables, operators and values.

The follmling is an introductory example, where th2re
are two values, TRUE and FALSE, and the operators are the well
known Boolean operators "implies 11 and ''not". The underlined
parts are typed by the computer and the remainder by the console
user. A commentary appears to the right of the example.

Introductory example

jRUN ALGEBRA

ALGEBRA V~~l

f± KB:<KB:

VALUES= TRUE FALSE

OPERATOR -

UNARY OR BINARY= UNARY

PRECEDENCE= 100

-TRUE= FALSE

-FALSE= TRUE

OPERATOR HOOK

UNARY OR BINARY= BINARY

PRECEDENCE= 50

2

Bring ALGEBRA into action

ftesults to keyboard <
Data from keyboard
Declare values.

Define an operator. This is
the operator "not", which is
represented by a minus sign.

See below for meaning of this.

J Define meaning of "not"
1.for all possible values.

Define another operator. This
is the operator '1 implies 11

,

which is represented by the
s yrnbo 1 "HOOI< 11

Precedence has been specified
as less than that of "not 11

•

This means that if "implies"
and 11 not 11 are used in the same
expression, then "not" is done
first, i.e.
-A HOOK B
is taken as
(-A) HOOK B
and not as
-(A HOOK B)

TRUE HOOK TRUE = TRUE

TRUE HOOK FALSE = FALSE

FALSE HOOK TRUE = TRUE

FALSE HOOK FALSE= TRUE

TABI .. E A HOO!{ - (A HOOK B)

A B ~ VALUE ------- - - - -
TRUE TRUE FALSE

TRUE FALSE TRUE

FALSE TRUE TRUE

FALSE FALSE TRUE

TABLE -(P HOOK Q) HOOK(P

p _Q_ . VALUE . - - - - - - - -
TRUE TRUE TRUE

TRUE FALSE TRUE

FALSE TRUE TRUE

FALSE FALSE TRUE

TRY A HOOK -A (HOOK B)

IS A CONTINGENCY

'

....

....
i

I
I

"

;
~

HOOK

' /

3

w•Q)

Now that the operators and
values have been defined / 5. C.
is possible to evaluate
expressions involving them.
Any symbol in an expression
that has not been defined as
a value or an operator is taken
as a variable and is enumerated
for all possible values. The
TABLE statement illustrates
this.

This entire table is typed out
by the computerv The last
colunm is the value of the ex
pression for the given values
of the variables A and B.

Table typed by the computer.

Th~ TRY stntomcnt is an
abbreviated form of the TABLE
statement, e.g.

This means that the value of
the expression depends on-the
values of its variables.

4

TRY -(P HOOK Q) HOOK (P.HOOK -Q)

=TRUE This means that the expression
has the same value, TRUE, for
all values of its variables.

tc

.EN

#-+c

. KI

1

end of KB input with

CTRL c FN carriage return

line feed

.t-J: asks for another conunand

string (i.e. to continue process

with new dataset specifications).

to exit type CTRL C KI carriage

return

Basic Units

The above example should have given the user enough
knowledge to use the system for himself, and this he is recommended
to do.

The rest of this manual explains more exactly the
concepts that have been illustrated by example. Firstly the
fundamental units with which ALGEBRA deals, namely symbols,
expressions and statements, will be described.

Symbols

A symbol is used to represent the name of a value,
operator or variable. A symbol must be either

(a) a name symbol., which is a sequence of one or more
letters or digits. The sequence may be arbitrarily
long and all characters are significant, but symbols
will be truncated to six characters if they appear
in tables.

or (b) a punctuation symbol, which is a single character
that is not any of the followin~: a letter, a digit,
a comma, a tab, a space, a semi-colon, a left
parenthesis, a right parenthesis or tha newline
character.

For example the following are legitimate symbols:

ABLE,A,l,12A3,+,/,. ,VERYLONGNAME

and the following are not:

A B, P. J.B. , (,l:.+

5

Expressions

An expression is a series of operators with values or
variables as operands. Any symbol that is not the name of an
existing operator or value can be used as the name of a variable.

(To be precise the syntax of an expression is, in
Backus Normal Form:

<expression>::= <expression> <binarv oper0tor> <:~::{i_:;ression> I
<una.ry Ot?or0tor> <c'.~".Pr .::-nion> I «·~xnr.c~ssio11>) I <v0ri,"'.blo> I <value..7

where <unary operator> etc. are all symbols.)

During the evaluation of an expression, operators of
highest precedence are performed first. Subject to this,
operators are evaluated from left to right. Parentheses can be
used to override precedence and redundant pairs of parentheses
are permissible.

Thus if "+" and n*" arc binary operators and ii* II has
the higher precedence then:

A+B*C is taken as A+ (B*C)

A+B+C is taken as (A+B)+C

A*B+C*D is taken as (A*B)+(C*D)

A*(B+C)*D is taken as (A* (B+C)) *D

The choice of precedence for operators is a matter of
convention and no fixed rules can be stated save that unary
operators should normally be given higher precedence than binary
operators.

Statements

Each line of data fed to ALGEBRA must be a statement.
There are four kinds of statement: the OPERATOR statement, the
TABLE statement, the TRY statement and the null statement. The
first syrr.bol on a line identifies ".-That statement it is.

A comment may be appended to any statement. The comment
must be preceded by a semicolon, e.g.

OPERATOR + THIS IS THE ~OR' OPERATOR

6

If two adjacent name symbols occur within a statement,
they must be separated by one or more spGces, corrtlllas· or tabs.
Redundant commas, tabs and spnces are ignored. Thus

TRY (A, , + B ,) ; XXX

is equivalent to

TRY (A+D)

but

TRY A AND B

is not the same as

TRY AANDB

Similar formatting rules apply to the answers to the
questions asked by ALGEBRA, i.e. these may also contain redundant
spacas, tabs and commas and they may also have comments anpended
to them.

Declaration of values

r-:rhen ALGEBRA is initially enten~d it asks the question

VALUES =
At this 9oint the user types a list of different symbols,

separated by spaces, commas and/or tabs. These symbols are used
thereafter as tho value names. They cannot be changed without
starting again from scratch.

Note that it is possible to define any number of value
names. For example ALGEBRA has proved very useful in examining
three-valued logics.

After the values have been declared ALGEBRA proceeds to
execute the sequence of statements fed to it. The four different
kinds of statement are described below.

The null statement

Null statements are completely ignored and can be used
to place comments, for example

;TRY DE MORGAN'S LA~-J

7

The OPERATOR statement

Syntax: OPERATOR symbol

Any symbol that is not the name of a value may be used
as the name of an operator. If the operator symbol being defined
is the same as an existing operator then, provided the OPERATOR
statement is completed without error, the new definition overrides
the old. Operators can therefore be redefined. OPERATOR sto.b'~·
ments need not necessarily be at the start of the data; it i~
quite legal to add new operators at any time during the use of
ALGEBRA.

The OPERATOR statement is followed by a series of data
questions-and-answers.

The first question is

UNARY OR BINARY=

and the answer must be either "UNARY" or nBINARY".

The second question is

PRECEDENCE=

and the answer must be an integer in the range [0,999]. The
magnitude of the integer does not matter in itself - it is its
magnitude relative to the precedence of other operators that
counts. For example a precedence of one is the same as a pre
cedence of 998 if the only other operator has precedence 999.

After the above two question-and-answers a series of
question~and-ans,·1ers follows that define the value of the operator
for all possible values of its operands. This takes the form

~ar 1 symbol var 1 =

var 1 symbol var 2 =

var 2 symbol var 1 =

where var 1 is the first value defined in the answer to the

VALUES =

question, var 2 is the second, and so on. For a unary operator
the above questions are abbreviated, as shown in the introductory
example.

If the answer to any of the above questions is incorrect,
then the message

EH
is output and the question is repeated.

In some uses of ALGEBRA the user may wish to define
operators that are undefined for certain values. This can be done,
albeit rather tediously, by including an extra value, called
UNDEF say, in the list of values.

The TABLE statement

Syntax: TABLE expression

A table is output of the values of the expression for
all possible values of its variables. The expression must in
clude at least one variable. There is no upper limit on the
permitted number of variables in the expression, but if the size
of the rows of the table exceeds the width of a line the format _
of the table is upset.

The TRY statcmGnt

Syntax: TRY Gxprcssion

If the expression has the same value, V say, for all
possible values of its variables, then the result

= v

is given; otherwise the result

IS A CONTINGENCY

is given.

Abbreviations

Statements are, in fact, identified only by the first
two characters of the initial symbol on a line. Thus OPERATOR
may be written OP (or even OPZQP). The same applies to the
answers to the "UNARY OR BINARY =" question.

User-defined symbols, however, cannot be abbreviated.
Thus, for example, if IMPOSSIBLE is chosen as a value name this
must be spelt out in full every time it is used.

9

Errors

All errors are diagnosed and give rise to a message on
the keyboard. These messages should be self explanatory. Except
for some errors in answers to questions, which cause the question
to be repeated, all errors cause the current statement to be
abandoned, and the next one taken.

Interface with DOS

Finally the interface between ALGEBRA and DOS will be
described.

Entry and exit

ALGEBPA is entered by the command

$RUN ALGEBRA

The N and final A in this conunand may be omitted because only the
first two characters of monitor conunands, and the first six of
filenames arc significant. The separator between the two words
may be a comma and/or a space.

ALGEBRA then requests a command in CSI format. C[4] J
3.4.1) by printing a +f on the keyboard. The user types a
command with one output dataset specification and at most three
input dataset specifications,

e.g. KB:<DTl~PLGDAT,PR:,KB:

which means that i,nput is taken from the file named ALGDAT
catalogued under the user's ic1.entifier on dectape unit l and
output is sent to the keyboard; at the end of the ALGDAT file,
the current process is continued (i.e. all previously defined
value names and operators remain in existence) , but data is taken
from the fast paper tape reader, results still going to the
teletype keyboard; finally data is taken from the keyboard with
results sent to the keyboard.

Note that it is possihle to send results to disc with
the command +fRCS<DTl:ALGDAT,KB: (1)

or dectape with

=f+oT~:PJB<DTl:ALGDAT,KB: (2)

In (1), a dataset named RCS is created on the disc (DF9}:) and in
(2), a dataset PJB on the dectape loaded on unit 9}.

10

When results are sent to devic~sother than the console
(KB:), all input lines and questions-and~answers are also sent
to the dev~ce, so that the complete process may be liste<l later
using PIP 1_4] •

Questions and answers

In the non-conversational case, all questions-and
answers are compulsory, and if a question is not matched after
ignoring all spaces and tabs, the message

***UNMATCHED QUESTION - OFFENDING LINE IS :-

appears on the console, and data is then taken from the next
input stream, if any. If there is no more input, ALGEBRA asks
for another command with a =f+.:

End of data on datasets

For disk and dectape files, end of data is signified by
the end of file, but a problem arises with paper tapes read from
the console reader (PT~) and with data typed in at the keyboard
(KB~) ,

To signify end of data type the monitor command

ENd . KB.: carriage return linefeed
j ' : PTf

To give this conunand 1 the user must f.irst type CTRL c to set the
monitor in listening mode. If the argument is omitted, KB is
assumed.

Breaks

To break ALGELRA, press CTRL C which sets the monitor
in listening mode. The user may then type one of the following
four conunands:

(1) a BEgin command will r(~start ALGEBRA from the
beginning, and. all operators will be lost;

(2) a WAit will return to command status and
the current process may then be continued
~ .. 1ith a continue;

(3) a Kill will close all open files and :::emoves
ALGEBRA from core, ready for the next program;

;l.l

(4) a REstart will return to command status if no
values have yet been defined; otherwise the program
a~ks for another line of input, with all current
values and operators saved.

Continuing the process and exiting

When ALGEBRA has completed the actions specified by the
command string, it returns to command status. Three differP!'.·:..
actions may be taken by the user; to continue the run keeping all
current operators and value names in existence, type in a command
in CS! format as beforD specifying new datasets; to start ALGEBRA
from the beginning deleting all currant data, type 'CTRL C BEgin
carriage return'; to call in another program type 'CTRL C Kill
carriage return', follo~1ed by GEt or RUn and the nm1 program name.

12

APPENDIX

The "stand-alone" version of Alqc~bra

A completely self contained Algebra program is available
in two forms on paper tape:

1) PAL source in ASCII code.

2) absolute loader format.

Differences from DOS version

1) Teletype input/output onlyo

The low speed paper tap~ reader and punch may be used,
and there is no problem with read-in speed because
type~·ahead is allowed.

2) + is backspace, not 'rubout'

is line erase, not CTRL u.

alone on a line signifies end of data.

CTRL G is the break signal. If this occurs
before values have been declared, an oxit
is made; otherwise all breaks cause ALGEBRA
to ask for another line of input, with
previously defined values and operators
still in operation.

3) The message

EDITOR'S NOTE:

ILLEGAL INPUT CHARACTER

is printed if an undefined character is input
from the keyboard.

1. The "stand-alone" version on paper tape is not available from DECUS. Please
contact the author for further information. --

2. ML/I is available from DECUS as DECUS NO. 11-69.

13

Acknowledqement

This irnnlcrnc:ntation of 1' .. LGEBRA was supportee by a
Scicnc·~ Researd1 Council Grant to investigate the iMpl.:~montation,
of machine-indencndent software usinc:r the r1L/I Macro nrocessor.

References

[l]

[4]

Brot:m, P. J. and Lowe, J. Do A computer program for
symbolic logic. Bulletin Inst. Maths Apolics 7,11
(Nov. 1971)

Brown, P.J. Implementing software using the LOWL
language. Computing Laboratory, University of Kent
at Canterbury, 1971.

Brown, PoJ. Using a macro processor to aid
software implementation. Comput. Jo 12.4
·cNov. 1969), 327 - 331.

PDPll Disk Operating System Monitor, Programmer's
Handbook, Digital Equipment Corporation, 1971

