
c:
- RESEARCH, INC.

CRAY X-MP AND CRAY-1®
COMPUTER SYSTEMS

SYMBOLIC MACHINE INSTRUCTIONS
REFERENCE MANUAL

SR-0085

Copyright© 1986 by CRAY RESEARCH, INC. This manual or
parts thereof may not be reproduced in any form without
permission of CRAY RESEARCH, INC.

Cli=li tIJf'h,.."
RECORD OF REVISION RESEARCH, INC. PUBLICATION NUMBE R SR-0085

Each time this manual is revised and reprinted, all changes issued against the previous version are incorporated into the new version
and the new version is assigned an alphabetic level.

Every page changed by a reprint with revision has the revision level in the lower righthand corner. Changes to part of a page are noted
by a change bar in the margin directly opposite the change. A change bar in the margin opposite the page number indicates that the
entire page is new. If the manual is rewritten, the revision level changes but the manual does not contain change bars.

Requests for copies of Cray Research, Inc. publications should be directed to the Distribution Center and comments about these
publications should be directed to:

CRAY RESEARCH, INC.
2520 Pilot Knob Road

Suite 310
Mendota Heights, Minnesota 55120

Revision Description
January 1986 - Original printing.

SR-0085 ii

PREFACE

This manual provides information on CRAY X-MP and CRAY-l Symbolic Machine
Instructions, and is intended to be used as a reference with CAL
Assembler Version 2.

Specific information on CAL Assembler Version 2 can be found in the
following manual:

SR-2003 CAL Assembler Version 2 Reference Manual

SR-0085 iii

CONTENTS

PREF ACE • • • • • . . • . . • • • • • • . . • • . • • • •. iii

1. INTRODUCTION • . • . . . • • • • • . . • . . • . • • . • • . .

2. INSTRUCTION SYNTAX . . · · ·
2.1 INSTRUCTION FORMAT · · · · ·

2.1.1 I-parcel instruction format with
k fields · · · · · · · · · · ·

2.1.2 I-parcel instruction format with
k fields · · · · · · · · · · ·

2.1.3 2-parcel instruction format with
and m fields · · · · · · · · . ·

2.1.4 2-parcel instruction format with
j, k, and m fields · · · · ·

2.2 SPECIAL REGISTER VALUES · · ·
2.3 SYMBOLIC NOTATION · · · · · · · · ·

2.3.1 General syntax · ·
2.3.1.1 Register designators ·
2.3.1.2 Location field ·
2.3.1.3 Result field · ·
2.3.1.4 Operand field
2.3.1.5 Comment field

2.3.2 Special syntax forms ·
2.4 MONITOR MODE INSTRUCTIONS

3. MACHINE INSTRUCTION DESCRIPTIONS · · · · . ·

APPENDIX SECTION

A. SYMBOLIC INSTRUCTION SUMMARY

A.l
A.2
A.3

SR-0085

FUNCTIONAL UNITS . • •
CRAY-l SYMBOLIC MACHINE INSTRUCTIONS .
CRAY X-MP SYMBOLIC MACHINE INSTRUCTIONS

v

· · · ·
· · · · ·

discrete j and

· · · · · · · · combined j and

· · · · · · combined j, k,

· · · · · · · · combined i,

· · · ·
· · · ·
· · · ·

· · · · · · ·
· · · ·

· · · · · · · ·

· · · · · · ·

1-1

2-1

2-1

2-2

2-2

2-3

2-4
2-5
2-5
2-5
2-6
2-7
2-7
2-7
2-8
2-8
2-9

3-1

A-I

A-I
A-2
A-5

B. FUNCTIONAL INSTRUCTION SUMMARY · · · · · · B-1

B.1 REGISTER ENTRY INSTRUCTIONS · · · · · · · · · · B-1
B.1.1 Entries into A registers · B-1
B.1.2 Entries into S registers · B-1
B.1.3 Entries into V registers · B-2
B.1.4 Entries into semaphore registers · B-3

B.2 INTER-REGISTER TRANSFER INSTRUCTIONS B-3
B.2.1 Transfers to A registers · · · · · B-3
B.2.2 Transfers to S registers · · B-4
B.2.3 Transfers to V registers · · B-5
B.2.4 Transfer to Vector Mask register · B-5
B.2.5 Transfer to Vector Length register B-5
B.2.6 Transfer to Semaphore register · · B-5

B.3 MEMORY TRANSFERS · · · · · · · · · · B-6
B.3.1 Bidirectional memory transfers · B-6
B.3.2 Memory references · · · · B-6
B.3.3 Stores · · · · · · B-6
B.3.4 Loads · · · · · · · · · · B-7

B.4 INTEGER ARITHMETIC OPERATIONS B-8
B.4.1 24-bit integer arithmetic B-9
B.4.2 64-bit integer arithmetic B-9

B.5 FLOATING-POINT ARITHMETIC · · · · · B-10
B.S.1 Floating-point range errors B-10
B.S.2 Floating-point addition and subtraction · . . . B-10
B.5.3 Floating-point multiplication B-11
B.S.4 Reciprocal iteration · · · B-12
B.5.5 Reciprocal approximation · B-12

B.6 LOGICAL OPERATIONS · · · · · · B-13
B.6.1 Logical products · · · · . · B-13
B.6.2 Logical sums · · · · · · · B-14
B.6.3 Logical differences · · · · B-14
B.6.4 Logical equivalence · · · · B-15
B.6.5 Vector mask B-15
B.6.6 Merge · · · · B-16

B.7 SHIFT INSTRUCTIONS · · . B-16
B.8 BIT COUNT INSTRUCTIONS B-17

B.8.1 Scalar population count B-18
B.8.2 Vector population count B-18
B.8.3 Scalar population count parity · B-18
B.8.4 Scalar leading zero count B-18

B.9 BRANCH INSTRUCTIONS · · · · · · · · · B-18
B.9.1 Unconditional branch instructions · · · B-19
B.9.2 Conditional branch instructions B-19
B.9.3 Return jump B-19
B.9.4 Normal exit B-20
B.9.5 Error exit · B-20

B.10 MONITOR INSTRUCTIONS B-20
B.10.1 Channel control · · · · B-20
B.10.2 Set real-time clock · · · · · · . · B-21

SR-0085 vi

B.10 MONITOR INSTRUCTIONS (continued)
8.10.3
B.10.4
8.10.5
B.10.6
8.10.7

Programmable clock interrupt instructions
Interprocessor interrupt instructions
Cluster number instructions • • • • . • . •
Operand range error interrupt instructions •
Performance counters • • • • . • • . • • • .

FIGURES

2-1 General Form for Instructions . . . · · · . · · ·
2-2 1-parcel Instruction Format with Discrete j and k Fields
2-3 1-parcel Instruction Format with Combined j and k Fields
2-4 2-parcel Instruction Format with Combined j, k, and m Fields
2-5 2-parcel Instruction Format with Combined i, j, k,

and m Fields · · · · · · .
2-6 2-parcel Instruction Format for a 24-bit Immediate Constant

with Combined i, j, k, and m Fields · · · · · · .

TABLE

.

.

2-1 Special Register Values . . . • • • • • • • • . . . • . • • •

INDEX

SR-0085 vii

B-21
B-21
8-22
B-22
8-22

2-1
2-2
2-3
2-4

2-4

2-5

2-6

INTRODUCTION

Each Cray mainframe (CRAY X-MP and CRAY-1) machine instruction can be
represented symbolically in Cray Assembly Language (CAL). This manual
provides information on the Symbolic Machine Instructions used with the
CRAY X-MP and CRAY-1.

1

For a general description of the Cray mainframe, refer to the appropriate
Reference Manual:

• HR-0004 CRAY-1 Hardware Reference Manual

• HR-0029 CRAY-1 S Series Mainframe Reference Manual

• HR-0064 CRAY-1 M Series Mainframe Reference Manual

• HR-0088 CRAY X-MP Series Models 11, 12, and 14 Mainframe
Reference Manual

• HR-0032 CRAY X-MP Series Models 22 and 24 Mainframe Reference
Manual

• HR-0097 CRAY X-MP Series Model 48 Mainframe Reference Manual

Section 2 of this manual provides information on Symbolic Machine
Instruction format for a 1-parcel (16-bit) instruction or a 2-parcel
(32-bit) instruction. It also describes special register values that may
be referenced by the instructions and the symbolic notation used for
coding the machine instructions.

Section 3 provides detailed information on the CAL instructions that
operate on the CRAY X-MP and CRAY-1. Each instruction begins with boxed
information consisting of the CAL syntax format, an operand if required,
a brief description of each instruction, and the machine instruction.

Following the boxed information is a detailed description of the
instruction and an example.

Appendix A provides a
machine instructions.
References to section
provided.

SR-0085

summary of functional units and the symbolic
Appendix B lists the instructions by function.

3 for a detailed description of the instruction are

1-1

INSTRUCTION SYNTAX 2

Each CRAY X-MP and CRAY-1 mainframe machine instruction can be
represented symbolically in Cray Assembly Language (CAL). The assembler
identifies a symbolic instruction according to its syntax and generates a
corresponding binary machine code. An instruction is generated in the
assembly section in use when the instruction is interpreted.

This section describes the format of symbolic machine instructions,
special register values, and notation used for coding symbolic machine
instructions for CAL Assembler Version 2 on a CRAY X-MP and CRAY-1.

2.1 INSTRUCTION FORMAT

Each instruction is either a 1-parcel (16-bit) instruction or a 2-parcel
(32-bit) instruction. Instructions are packed 4 parcels per word.
Parcels are numbered 0 through 3 from left to right and any parcel
position can be addressed in branch instructions. A 2-parcel instruction
begins in any parcel of a word and can span a word boundary. For
example, a 2-parcel instruction beginning in parcel 3 of a word, ends in
parcel 0 of the next word. No padding to word boundaries is required.
Figure 2-1 illustrates the general form of instructions.

First Parcel Second Parcel

g h i j k m

4 3 3 3 3 16 Bits

Figure 2-1. General Form for Instructions

Four variations of this general format use the fields differently. The
formats of the following variations are described in this section:

• 1-parcel instruction format with discrete j and k fields

• 1-parcel instruction format with combined j and k fields

SR-0085 2-1

• 2-parcel instruction format with combined j, k, and m fields

• 2-parcel instruction format with combined i, j, k, and m
fields

2.1.1 I-PARCEL INSTRUCTION FORMAT WITH DISCRETE j AND k FIELDS

The most common of the I-parcel instruction formats uses the i, j,
and k fields as individual designators for operand and result registers
(see figure 2-2). The g and h fields define the operation code. The
i field designates a result register and the j and k fields
designate operand registers. Some instructions ignore one or more of the
i, j, and k fields. The following types of instructions use this
format:

•
•
•
•

Arithmetic
Logical
Double shift
Floating-point constant

g h i j k

4 3 I 3 3 3

Operation
Code

Register
Designators

Bits

Figure 2-2. I-parcel Instruction Format
with Discrete j and k Fields

2.1.2 I-PARCEL INSTRUCTION FORMAT WITH COMBINED j AND k FIELDS

Some I-parcel instructions use the j and k fields as a combined 6-bit
field (see figure 2-3). The g and h fields contain the operation
code, and the i field is generally a destination register. The
combined j and k fields generally contain a constant or a B or T
register designator. The branch instruction 005 and the following types
of instructions use the I-parcel instruction format with combined j and
k fields:

• Constant
• Band T register block memory transfer
• Band T register data transfer
• Single shift
• Mask

SR-0085 2-2

g h

4 3
--..-
Operation

Code

i jk

3 6 I Bits

1\
Result Constant or

Register Register
Designator

Figure 2-3. 1-parcel Instruction Format
with Combined j and k Fields

2.1.3 2-PARCEL INSTRUCTION FORMAT WITH COMBINED j, k, AND m FIELDS

The instruction type for a 22-bit immediate constant uses the combined
j, k, and m fields to hold the constant. The 7-bit gh field contains
an operation code, and the 3-bit i field designates a result register.
The instruction type using this format transfers the 22-bit jkm
constant to an A or S register.

The instruction type used for Scalar Memory transfers also requires a
22-bit jkm field for an address displacement. This instruction type
uses the 4-bit g field for an operation code, the 3-bit h field to
designate an address index register, and the 3-bit i field to designate
a source or result register. (See special register values.)

Figure 2-4 shows the two general applications for the 2-parcel
instruction format with combined j, k, and m fields.

SR-0085

NOTE

When using an immediate constant which has both
relocatable and parcel attributes, the result of the
relocation will be incorrect if the loader-determined
actual address (within the user's field length) is
greater than 1,048,575. This is because the resulting
relocated value will have more than 22 significant
bits. A CAL caution message is issued if this occurs.
The exception to this is when "Ah exp" executes on a
CRAY X-MP/48.

2-3

First Parcel Second Parcel

g h

4 3

Operation
Code

i j k m

3 I 22 ,---------
Result Constant

Register

First Parcel Second Parcel

g h

I 4 3

t .
Operatl.on

Code

Address
Register
Used as
Index

i j k m

22

Address or
Displacement

Source or
Result Register

Bits

Bits

Figure 2-4. 2-parcel Instruction Format
with Combined j, k, and m Fields

2.1.4 2-PARCEL INSTRUCTION FORMAT WITH COMBINED i, j, k, AND m
FIELDS

The 2-parcel branch instruction type uses the combined i, j, k, and
m fields to contain a 24-bit address that allows branching to an
instruction parcel (see figure 2-5). A 7-bit operation code (gh) is
followed by an ijkm field. The high-order bit of the i field is
unused.

First Parcel Second Parcel

g h i j k m

4 3 1/1 22 12 I Bits

+ + Operation 1 Address Parcel
Code Unused Select

Bit

Figure 2-5. 2-parcel Instruction Format with
Combined i, j, k, and m Fields

SR-0085 2-4

The 2-parcel instruction type for a 24-bit immediate constant (figure
2-6) uses the combined i, j, k, and m fields to hold the constant.
This instruction type uses the 4-bit g field for an operation code and
the 3-bit h field to designate the result address register. The
high-order bit of the i field is set.

First Parcel Second Parcel

g h i j k m

I 4 I 3 111 24 Bits

oper1tion!
Code

t--------~------~
High-bit

Set
Constant

Result
Register

Figure 2-6. 2-parcel Instruction Format for a 24-bit Immediate
Constant with Combined i, j, k, and m Fields

2.2 SPECIAL REGISTER VALUES

If the SO and AO registers are referenced in the j or k fields of
certain instructions, the contents of the respective register is not
used; instead, a special operand is generated. The special operand is
available regardless of existing AO or SO reservations (and in this case
is not checked). This use does not alter the actual value of the SO or
AO register. If SO or AO is used in the i field as the operand, the
actual value of the register is provided. Table 2-1 shows the special
register values.

2.3 SYMBOLIC NOTATION

The following information describes the notation used for coding symbolic
machine instructions. CAL contains two syntax forms: general and
special.

2.3.1 GENERAL SYNTAX

Register designators and the location, result, operand, and comment
fields have the following general syntax requirements.

SR-0085 2-5

2.3.1.1 Register desiqnators

A, B, SBt, s, T, STt, SMt, and V registers can be referenced with
numeric or symbolic designators. The symbolic designators can be entered
uppercase, lowercase, or any mixture of case.

In the symbolic notation, the h, i, j, and k designators indicate
the field of the machine instruction into which the register designator
constant or symbol value is placed. An expression (exp) occupies the
jk, ijk, jkm, or ijkm fields depending on the operation code and
magnitude of the expression value.

Supporting registers have the following designators:

Designator

CA
CL
CI
CE
RT
MC
SB
SMt
VL
VM
XA

Register

Current Address
Channel Limit
Channel Interrupt Flag
Channel Error Flag
Real-time Clock
Master Clear
Sign Bit (Sk, with k=O)
Semaphore
Vector Length
Vector Mask
Exchange Address

Table 2-1. Special Register Values

Field Operand
Value

Ah, h=O o

Ai, i=O (AO)

Aj, j=O o

Ak, k=O 1

Si, i=O (SO)

Sj, j=O o

Sk, k=O 2**63

t CRAY X-MP Computer Systems only

SR-0085 2-6

2.3.1.2 Location field

The location field of a symbolic instruction optionally contains a
symbol. When a symbol is present, it is assigned a parcel address as
indicated by the current value of the location counter after any required
force to parcel boundary occurs.

2.3.1.3 Result field

The result field of a symbolic machine instruction can consist of one,
two, or three subfields separated by commas. A subfield can be null or it
can contain a register designator or an expression. The expression
specifies a memory address which indicates the register or memory location
to receive the results of the operation. The result field may contain a
mnemonic indicating the function being performed (for example, J for jump
or ex for exit). The mnemonics are case sensitive and must be entered in
either all uppercase or all lowercase letters, they cannot be mixed. For
example, EX is a valid mnemonic for exit, while Ex is not.

2.3.1.4 Operand field

The operand field of a symbolic machine instruction consists of no
subfield or one, two, or three subfields separated by commas. A subfield
can be null, contain an expression (with no register designators), or
consist of register designators and operators.

The following special characters can appear in the operand field of
symbolic machine instructions and are used by the assembler in determining
the operation to be performed.

Character

SR-0085

+

*
/

>
(

&

\

Operation

Arithmetic sum of specified registers
Arithmetic difference of specified registers
Arithmetic product of specified registers
Reciprocal of approximation
Use ones complement
Shift value or form mask from left to right
Shift value or form mask from right to left
Logical product of specified registers
Logical sum of specified registers
Logical difference of specified registers

2-7

In some instructions, register designators are prefixed by the following
letters which have special meaning to the assembler. These letters can
be entered either uppercase or lowercase (case insensitive).

F Floating-point operation
H Half-precision floating-point operation
R Rounded floating-point operation
I Reciprocal iteration
P Population count
Q Parity count
Z Leading-zero count

2.3.1.5 Comment field

The comment field of the symbolic machine instructions begins in column
35. By convention, the comment should be preceded by a semicolon (;) in
column 35, and a space.

2.3.2 SPECIAL SYNTAX FORMS

The CAL instruction repertoire has been expanded for the convenience of
programmers to allow for special forms of symbolic instructions. Because
of this expansion, certain Cray machine instructions can be generated
from two or more different CAL instructions. For example, both of the
following instructions generate instruction 00200, which causes a 1 to be
entered into the VL register:

VL AO
VL 1

The first instruction is the basic form of the Enter VL instruction,
which takes advantage of the special case where (Ak}=l if k=O; the
second instruction is a special syntax form providing the programmer with
a more convenient notation for the special case.

Any of the operations performed by special instructions can be performed
using instructions in the basic set. Instructions having a special
syntax form are identified as such in the instruction description found
later in this section.

In several cases, a single syntax form of an instruction can result in
any of several different machine instructions being generated. In these
cases, which provide for entering the value of an expression into an A
register or into an S register or for shifting S register contents, the
assembler determines which instruction to generate from characteristics
of the expression.

SR-0085 2-8

2.4 MONITOR MODE INSTRUCTIONS

The monitor mode instructions (channel control, set real-time clock, and
programmable clock interrupts) perform specialized functions that are
useful to the operating system. These instructions execute only when the
CPU is operating in the monitor mode. If an instruction is executed
while not in the monitor mode, it is treated as a no-oPe

SR-0085 2-9

MACHINE INSTRUCTION
DESCRIPTIONS

3

This section contains detailed information about individual instructions
or groups of related instructions. Each instruction begins with boxed
information consisting of the Cray Assembly Language (CAL) syntax
format. This consists of a result field description, an operand field
description, a brief description of each instruction, and the machine
instruction (octal code sequence defined by the gh fields). The
appearance of an m in a format description designates an instruction
consisting of two parcels. An X in the format description signifies
that the field containing the x is ignored during CRAY-1 instruction
execution. CAL will insert a 0 for each occurrence of x.

Following the boxed information is a detailed description of the
instruction or instructions, and an example using the instruction.

CAUTION

Instructions with g, h, i, j, k, and m fields not
explicitly described in the following instructions may
produce indeterminate results.

Specific information about the CPU parameter (including the primary and
charac options) of the CAL invocation statement is found in the
following manual:

SR-2003 CAL Assembler Version 2 Reference Manual

SR-0085 3-1

, , Result Operand , , , , ERR ,
ERRt , exp ,

t Special CAL syntax on

INSTRUCTION 000

Description

Error exit

Error exit

CRAY-1 Computer Systems only

Machine
Instruction

000000

OOOijk

The 000 instruction is treated as an error condition and an exchange
sequence occurs. The contents of the instruction buffers are voided by
the exchange sequence. If monitor mode is not in effect, the Error Exit
flag in the Flag (F) register is set. All instructions issued before
this instruction are run to completion.

When the results of previously issued instructions have arrived at the
operating registers, an exchange occurs to the Exchange Package
designated by the contents of the Exchange Address (XA) register. The
program address stored in the Exchange Package on the terminating
exchange sequence is advanced by 1 parcel from the address of the error
exit instruction.

The error exit instruction is not generally used in program code. This
instruction is used to halt execution of an incorrectly coded program
that branches to an unused area of memory or into a data area.

The expression in the operand field is optional and has no effect on
instruction execution; the low-order 9 bits of the expression value are
placed in the ijk fields of the instruction.

Example:

'Code generated ,LocationlResult I Operand I Comment

'====================~1~1=======1~1~0========~12~Q~===========1~3~5~==========

, '" , , 000000 " ERR I ,
I I I I I
, 000017 "ERR I D' 15 I

SR-0085 3-2

Result Operand

CA,Ajt Ak

PASStt

INSTRUCTION 0010

Description

Set the Current Address (CA)
register, for the channel
;Y'ln;I"'~~gn hu 1'1:..-i\ t-n l'1:..g\
- ------- -~ ' •• J" -- ,_._-,

and activate the channel

Pass

t Privileged to monitor mode
tt Special CAL syntax

Machine
Instruction

0010jk

001000

The 0010jk instruction sets the Current Address (CA) register for the
channel indicated by the contents of Aj to the value specified in
Ak. It then activates the channel.

Before this instruction is issued, the Channel Limit (CL) register should
be initialized. As the transfer progresses, the address in CA is
increased. When the contents of CA equals the contents of CL, the
transfer is complete for the words at the initial address in CA through 1
less than the address in CL.

When the j designator is 0 or when the contents of Aj is less than 2
or greater than 25, the instruction executes as a pass instruction. When
the k designator is 0, CA is set to 1.

Example:

ICode generated ILocationlResult I Operand I Comment

1====================~1~1b======z11~0~========1=20~===========c13~5~==========
I I I I I
1001035 I ICA,A3 lAS I
I I I I I
1001000 I I Pass I I

SR-0085 3-3

1
1

1

Result Operand

INSTRUCTION 0011

Description Machine
Instruction

I==================~===
I
I CL,Ajt Ak

1

Set the channel (Aj) limit
address to (Ak)

OOlljk

I __________ ~--------~------------------------------~--------------
t Privileged to monitor mode

The 0011jk instruction sets the Channel Limit (CL) register for the
channel indicated by the contents of Aj to the address specified in Ak.

The instruction is usually issued before issuing the CA,Aj Ak
instruction.

When the j designator is 0 or when the contents of Aj is less than 2
or greater than 25, the instruction is executed as a pass instruction.
When the k designator is 0, CL is set to 1.

Example:

ICode generated I LocationlResult I Operand I Comment

1=====================1=1========11=0~========12=0~==========~13~5~==========
1 1 1 1 I
1001134 1 ICL,A3 IA4 1

SR-0085 3-4

Result Operand

CI,Ajt

MC,Ajtt

INSTRUCTION 0012

Description

Clear Channel (Aj) Interrupt
flag

Clear Channel (Aj) Interrupt
flag and Error flag; set device
master-clear (output channel);
clear device ready-held
(input channel)

t Privileged to monitor mode

Machine
Instruction

0012jO

0012j1

tt Privileged to monitor mode on CRAY X-MP Computer Systems only

Instruction 0012jO clears the Interrupt flag and Error flag for the
channel indicated by the contents of Aj.

When the j designator is 0 or when the contents of Aj is less than 2
or greater than 25, the instruction is executed as a pass instruction.

Instruction 0012j1 sets the device Master Clear. If (Aj) represents
an output channel, the master clear is set; if (Aj) represents an input
channel, the ready flag is cleared.

Example:

ICode generated ILocationlResult I Operand I Comment

1======================~1~1~======1~1~Q~========~12~O~ __ -= __ ======.1~3~5==-= __ ======
I I I I I
1001210 I ICI,A1 I I
I I I I I
1001241 I IMC,A4 I I
I I I I I
1001201 I IMC,AO I I

SR-0085 3-5

INSTRUCTION 0013

Result Operand Description

Aj Enter XA register with (Aj)

t Privileged to monitor mode

Machine
Instruction

0013jO

The 0013jO instruction transmits bits 12 through 19 of register Aj to
the Exchange Address (XA) register.

If the j designator is 0, the XA register is cleared.

A monitor program activates a user job by initializing the XA register
with the address of the user job's Exchange Package and then executing a
normal exit (EX).

Example:

ICode generated ILocationlResult I Operand I Comment
1 __ ======-==-==========~11~=====d1~1~06========d1~2~Q6============d1~3~5============
1 I 1 I I
1001350 I IXA IA5 I

SR-0085 3-6

Result Operand

RT Sj

exp

SIPIt tt

CLNt ttt exp

Sj

INSTRUCTION 0014

Description

Enter RTC with (Sj)

Set interprocessor interrupt
request of CPU exp; 0~exp~3

Set interprocessor interrupt
request

Clear interprocessor interrupt

Cluster number = exp
where 0~exp~5

Set program interrupt interval

Clear clock interrupt

Enable clock interrupts

Disable clock interrupts

Machine
Instruction

0014jO

0014j1

001401

001402

0014j3

0014j4

001405

001406

001407

t CRAY X-MP Compute Systems with two or four CPUs. This
instruction is available when the numeric trait NUMCPUS, which is
specified on the CPU parameter of the CAL invocation statement, is
greater than one.

tt Special CAL syntax
ttt CRAY X-MP Computer Systems only. This instruction is available

when the numeric trait NUMCLSTR, which is specified on the CPU
parameter of the CAL invocation statement, is greater than zero.

,r Programmable clock (optional on CRAY-1 Models A and B). This
instruction is available through the logical trait PC specifi~d on
the CPU parameter of the CAL invocation statement.

SR-0085

NOTE

Instruction 0014 is privileged to monitor mode and is
treated as a pass instruction if the monitor mode bit
is not set.

3-7

INSTRUCTION 0014 (continued)

The 0014jO instruction transmits the contents of register Sj to the
Real-time Clock register. When the j designator is 0, the Real-time
Clock register is set to O.

The 001401 and 001402 instructions handle interprocessor interrupt
requests. When the k designator is 1, the instruction sets the
internal CPU interrupt request in another CPU. If the other CPU is not
in monitor mode, the ICP (Interrupt from Internal CPU) flag sets in the F
register, causing an interrupt. The request remains until cleared by the
receiving CPU.

When the k designator is 2, the instruction clears the internal CPU
interrupt request set by another CPU.

The 0014j3 instruction sets the cluster number to j to make the
following cluster selections:

CLN = 0 No cluster; all shared register and semaphore operations are
no-ops, (except SB, ST, or SM register reads, which return a
o value to Ai or Silo

CLN = 1 Cluster 1

CLN = 2 Cluster 2

CLN = 3 Cluster 3

CLN 4 Cluster 4

CLN 5 Cluster 5

Each of clusters 1, 2, 3, 4, and 5 has a separate set of SM, SB, and ST
registers.

The 0014j4 instruction loads the low-order 32 bits from the Sj
register into the Interrupt Interval register (II) and the Interrupt
Countdown counter (leD). The Interrupt Countdown counter is a 32-bit
counter that is decreased by one each clock period until the contents of
the counter is equal to O. At this time, the real-time clock (RTC)
interrupt request is set. The counter is then set to the interval value
held in the Interrupt Interval register and repeats the countdown to 0
cycle. When an RTC interrupt request is set, it remains set until a
clear clock interrupt (CCI) instruction is executed.

The 001405 instruction clears an RTC interrupt.

SR-0085 3-8

INSTRUCTION 0014 (continued)

The 001406 instruction enables RTC interrupts at a rate determined by the
value in the Interrupt Interval (II) register.

The 001407 instruction disables RTC interrupts until an enable clock
interrupt (ECI) instruction is executed.

Example:

Code generated Location Result
1 10

001420 RT

001400 RT

001401 SIPI

001402 CIPI

001403 CLN

001413 CLN

001423 CLN

001433 CLN

001434 PCI

001405 CCI

001406 ECI

001407 DCI

SR-0085 3-9

Operand
20

S2

so

1

o

1

2

3

S3

Comment
35

; Set clock to
; low-order 32

bits

Set clock to 0

Set
; interprocessor

interrupt
; request

Clear
; interprocessor

interrupt
request

; Load the
low-order 32

; bits from (S3)
; to (II)

Clear clock
; interrupt

Enable clock
; interrupt

; Disable clock
; interrupt

Result Operand

INSTRUCTION 0015t

Description

Select performance monitor

Set maintenance read mode

Load diagnostic checkbyte
with Sl

Set maintenance write mode 1

Set maintenance write mode 2

NOTE

Machine
Instruction

0015jO

001501

001511

001521

001531

The 0015 instructions are not supported by CAL at this
time.

Instruction 0015jO selects one of four groups of hardware related events
to be monitored by the performance counters.

Instructions 001501 through 001531 check the operation of the modules
concerned with SECDED and to verify error detection and correction.

Instructions 001501 and 001521 verify check bit memory storage.
Instructions 001511 and 001531 verify error detection and correction.

t CRAY X-MP Computer Systems only

SJ;t-0085 3-10

1
1 Result

1
1
1
1 VL

1
1 VLt

1
t Special CAL

Operand

Ak

1

syntax

INSTRUCTION 0020

Description

Transmit (Ak) to VL

Enter 1 into VL

Machine
Instruction

00200k

002000

Instruction 00200k and its special form (002000) enter the low-order 7
bits of the contents of register Ak into the VL register.

The contents of the VL register determines the number of operations
performed by a vector instruction. Since a vector register has 64
elements, from 1 to 64 operations can be performed. The number of
operations is (VL) modulo 64. When (VL) is 0, the number of operations
performed is 64.

In this publication, a reference to register vi implies operations
inVOlving the first n elements where n is the vector length unless a
single element is explicitly noted as in the instructions Si Vj,Ak
and Vi,Ak Sj.

Vector operations controlled by the contents of VL begin with element 0
of the vector registers and operate on consecutive elements.

Examples:

In the first example, if (A3)=6 then (VL)=6 following instruction
execution and subsequent vector instructions operate on elements 0
through 5 of vector registers.

ICode generated I Locationl Result I Operand I Comment

1=======================z1.1======~1~1~0==========.1~2~0==============~1~3~5=============
1 1 1 1 1
1002003 1 IVL IA3 1

SR-0085 3-11

INSTRUCTION 0020 (continued)

In the second example, since the k designator is assembled as 0, (VL)=l
and vector instructions operate on only one element, element O.

ICode generated I Locationl Result I Operand I Comment

1======================~11========1~1~Q~========'~2~Q=============d1~3~5============
I I I I I
I 002000 I I VL 11 I

Lastly, if (A5)=0, then (VL)=64 and vector instructions operate on all 64
elements of the vectors.

ICode generated I Locationl Result I Operand I Comment

1======================~11========1~1~Q=========='~2~Q=======-=====d1~3~5============
1 I I I I
1002005 I IVL IA5 1

SR-0085 3-12

INSTRUCTIONS 0021 - 0027

Result Operand Description Machine
Instruction

EFI

DFI

ERIt

Enable floating-point interrupt

Disable floating-point interrupt

Enable interrupt on address
range error

Disable interrupt on address
range error

Disable bidirectional memory
transfers

Enable bidirectional memory
transfers

Complete memory references

002100

002200

002300

002400

002500

002600

002700

t CRAY X-MP Computer Systems only

The EFI and DFI instructions provide for setting and clearing the
Floating-point Interrupt flag in the Mode register. These instructions
do not check the previous state of the flag.

CAUTION

The operating system has status bits reflecting whether
interrupts on floating-point range errors are enabled
or disabled. Such software status bits need to be
modified to agree with the Floating-point Mode flag.

The ERI and DRI instructions set and clear the Operand Range Mode flag in
the Mode register. The two instructions do not check the previous state
of the flag. When set, the Operand Range Mode flag enables interrupts on
operand address range errors.

SR-0085 3-13

INSTRUCTIONS 0021 -0027 (continued)

The DBM and EBM instructions disable and enable the bidirectional memory
mode. Block reads and writes can operate concurrently in bidirectional
memory mode. If the bidirectional memory mode is disabled, only block
reads can operate concurrently.

The CMR instruction assures completion of all memory references within a
particular CPU issuing the instruction. This instruction does not issue
until all memory references before this instruction are at the stage of
execution where completion occurs in a fixed amount of time. For
example, a load of any data that has been stored by the CPU issuing
instruction CMR is assured of receiving the updated data if the load is
issued after the CMR instruction. Synchronization of memory references
between processors can be done by this instruction in conjunction with
semaphore instructions.

Example:

Code generated Location Result Operand Comment
1 10 20 35

002300 ERI

002400 DR!

002500 DBM

002600 EBM

002700 CMR

SR-0085 3-14

INSTRUCTIONS 0030, 0034, 0036, and 0037

Result Operand

VM Sj

o

1,TS

SMjktt o

SMjktt 1

t Special CAL syntax

Description

Transmit (Sj) to VM

Clear VM

Test and set semaphore jk,
0~k~31 (decimal)

Clear semaphore jk, 0~jk~31

(decimal)

Set semaphore jk, 0~jk~31
(decimal)

tt CRAY X-MP Computer Systems only

Machine
Instruction

0030jO

003000

0034jk

0036jk

0037jk

Instruction 0030jO and its special form transmit the contents of
register Sj to the VM register. The VM register is zeroed if the j
designator is 0; the special form accommodates this case.

This instruction may be used in conjunction with the vector merge
instructions where an operation is performed depending on the contents of
the VM register.

Instruction 0034jk tests and sets the semaphore designated by jk. If
the semaphore is set, issue is held until another CPU clears that
semaphore. If the semaphore is clear, the instruction issues and sets
the semaphore.

If all CPUs in a cluster are holding issue on a test and set, the DL flag
is set in the Exchange Package (if it is not in monitor mode) and an
exchange occurs. If an interrupt occurs while a test and set instruction
is holding in the CIP register, the WS flag in the Exchange Package sets,
CIP and NIP registers clear, and an eXChange occurs with the P register
pointing to the test and set instruction.

The SM register is 32 bits with SMO being the most significant bit.

The 0036jk instruction clears the semaphore designated by jk.

Instruction 0037jk sets the semaphore designated by jk.

SR-0085 3-15

INSTRUCTIONS 0030, 0034, 0036, and 0037 (continued)

Example:

Code generated Location Result Operand Comment
1 10 20 35

003040 VM S4

003000 VM 0 ; Clear VM

003407 SM7 1,TS

003607 SM7 0

003707 SM7 1

SR-0085 3-16

1
1 Result Operand
1
1
1
1 EX
1

Ext 1 exp
1
t Special CAL syntax on

INSTRUCTION 0040

Description

Normal exit

Normal exit

CRAY-l Computer Systems only

Machine
Instruction

004000

004ijk

Instruction 004000 and its special form cause an exchange sequence. The
contents of the instruction buffers are voided by the exchange sequence.
If monitor mode is not in effect, the Normal Exit flag in the F register is
set. All instructions issued before this instruction are run to completion.

When the results of previously issued instructions have arrived at the
operating registers, an exchange occurs to the Exchange Package designated
by the contents of the Exchange Address (XA) register. The program address
stored in the executing Exchange Package is advanced 1 parcel from the
address of the normal exit instruction. This instruction is used to issue
a monitor request from a user program, or to transfer control from a
monitor program to another program.

The expression in the operand field is optional and has no effect on
instruction execution; the low-order 9 bits of the expression value are
placed in the ijk fields of the instruction.

Example:

ICode generated I LocationlResult I Qperand I Comment
1-=-===================dl~1-=====-a1~1~0=======--=1~2yQ== __ == __ -=-==-lw3~5~=====-=-===
1 1 1 1 1
1004000 1 lEX 1 I
1 1 I 1 1
1004027 1 lEX 127 1

SR-0085 3-17

Result Operand

J Bjk

INSTRUCTION 0050

Description

Jump to (Bjk)

Machine
Instruction

0050jk

The 0050jk unconditional branch instruction sets the P register to the
parcel address specified by the contents of register Bjk. Execution
continues at that address.

Example:

ICode generated I Locationl Result I Operand I Comment

1=-____ ===-=-========~1~1======~11~0~======~12~0~==========~13~5~==========
I 1 1 1 I
1005017 1 IJ IB17 I
1 1 1 1 I
1005003 1 IJ IB.RTNADDR IRTNADDR=03 (octal

SR-0085 3-18

Result Operand

J exp

INSTRUCTION 0060

Description

Jump to exp

Machine
Instruction

006ijkm

The 006ijkm unconditional branch instruction sets the P register to the
parcel address specified by the low-order 24 bits of the expression.
Execution continues at that address.

Example:

1 Code generated ILocationlResult I Operand I Comment
1 11 110 120 135
1 1 1 1 1
1006 00002124b+ 1 IJ ITAG1 1
1 1 1 1 1
1006 00001753a+ 1 IJ ILDY3+1 1
1 1 1 1 1
1006 00004533c+ 1 IJ 1*+3 I

SR-0085 3-19

Result Operand

R exp

INSTRUCTION 0010

Description

Return jump to exp; set BOO to
(P)+2

Machine
Instruction

007ijkm

Instruction 007ijkm sets register BOO to the address of the parcel
following the instruction. The P register is then set to the parcel
address specified by the low-order 24 bits of the expression. Execution
continues at that address.

The purpose of the instruction is to provide a return linkage for
subroutine calls. The subroutine is entered via a return jump. The
subroutine returns to the caller at the instruction following the call by
executing a branch to the contents of the B register containing the saved
address.

Example:

ICode generated I LocationlResult I Operand I Comment

1====================dl~1======~ll~0========~12~0~==========~13~5============
I I I I I
1007 00001142d+ I I R I HELP I

SR-0085 3-20

INSTRUCTIONS 010 - 013

Result Operand Description Machine
Instruction

JAZ exp Branch to exp if (AO)=O 010ijkm

JAN exp Branch to exp if (AO)~O 011ijkm

JAP exp Branch to exp if (AO) positive 012ijkm

JAM exp Branch to exp if (AO) negative 013ijkm

NOTE

When executing the above instructions on CRAY X-MP/48,
the high-order bit of i must be O.

The above instructions test the contents of AO for the specified
condition. If the condition is satisfied, the P register is set to the
parcel address specified by the low-order 24 bits of the expression.
Execution continues at that address.

If the condition is not satisfied, execution continues with the
instruction following the branch instruction. For the JAP and JAM
instructions, a 0 value in AO is considered positive.

Example:

I Code generated Location Result Operand Comment
I 1 10 20 35
I
1010 00002243d+ JAZ TAG3+2
I
1011 00004520a+ JAN P.CON1
I
1012 00002221c+ JAP TAG2
I
1013 00002124b+ JAM TAG 1

SR-0085 3-21

INSTRUCTION 014 - 011

Result Operand Description Machine
Instruction

JSZ exp Branch to exp if (SO)=O 014ijkm

JSN exp Branch to exp if (SO)~O 015ijkm

JSP exp Branch to exp if (SO) positive 016ijkm

JSM exp Branch to exp if (SO) negative 011ijkm

NOTE

When executing the above instructions on CRAY X-MP/48,
the high-order bit of i must be O.

The above instructions test the contents of SO for the specified
condition. If the condition is satisfied, the P register is set to the
parcel address specified by the low-order 24 bits of the expression.
Execution continues at that address.

If the condition is not satisfied, execution continues with the
instruction following the branch instruction. For the JSP and JSM
instructions, a zero value in SO is considered positive.

Example:

I Code generated Location Result Operand Comment
I 1 10 20 35
I
1014 00002221c+ JSZ TAG2
I
1015 00002124d+ JSN TAG1+2
I
1016 00004533c+ JSP *+3
I
1017 00002361c+ JSM TAG4

SR-0085 3-22

I
I
I

Result Operand

INSTRUCTION 01h

Description Machine
Instruction

I==========~======~============================~===========
I
I Aht exp

I
Transmit ijkm to Ah; where the
high-order bit of i is I

01hijkm

I __________ ~------~------------------------------~------------
t CRAY X-MP Computer Systems only. This instruction is available

through the logical trait EMA specified on the CPU parameter of the
CAL invocation statement, and CAL will then generate one of these
instructions: 01h, 022, or 031.

Instruction 01h will not be generated if NOEMA is specified.

This instruction enters a 24-bit value into Ah that is composed of the
low-order 24 bits of the ijkm field. The high-order bit of the ijkm
field must be set to distinguish the Olh instruction from the 010 to
017 branches.

Example:

I Code generated ILocationlResult I Operand I Comment
I 11 110 120 135
I I I I I
lOa 0114 00000200 I IA1 10' 200 I
I I I I I
I c 0174 00001001 I IA7 I SYMBOL I
I I I I I
I I SYMBOL 1= 10'1001 I

SR-0085 3-23

I
I
I

Result Operand

INSTRUCTIONS 020 - 022

Description Machine
Instruction

I==========~======d===========================~=============
I
I Ait exp Enter exp into Ai 020ijkm or

021ijkm or
022ijk

I
I
I _______________ ~~---------~--~--------------------
t These instructions are available through the logical trait NOEMA

specified on the CPU parameter of the CAL invocation statement, and
CAL will generate one of these instructions: 020, 021, 022, 031.

Instructions 020 and 021 wil not be generated of EMA is specified.

The above instruction enters a quantity into Ai. The syntax differs
from most CAL symbolic instructions in that the assembler generates any
of three Cray machine instructions depending on the form, value, and
attributes of the expression.

The assembler generates an instruction 022ijk where the jk fields
contain the 6-bit value of the expression if all of the following
conditions are true:

• The value of the expression is positive and less than 64

• All symbols (if any) are previously defined within the expression

• The expression has a relative attribute of absolute

If any of the conditions are not true, the assembler generates either the
2-parcel instruction 020ijkm or 021ijkm. If the expression has a
positive value, or has a relative attribute of either relocatable or
external, instruction 020ijkm is generated with the value entered in
the 22-bit jkm field. If the expression value is negative and has a
relative attribute of absolute, instruction 021ijkm is generated with
the ones complement of the expression value entered into the 22-bit jkm
field except where the exp value is explicitly "-1".

SR-0085 3-24

INSTRUCTION 020 - 022 (continued)

Example:

Code generated Location Result °Eerand Comment
1 10 20 35

022310 A3 0'10

0212 00000010 A2 #0'10

AREG = 2
0212 00000007 A.AREG -0'10

0202 00000130 A2 0'130

0203 00000021 A3 VAL+1 ; VAL=20 (octal)

0204 01777777 A4 0'1777777

0205 00051531 A5 A'SY'R

0226 00000000 A6 #MINUS1 ; MINUS1=-1

EXT X
0204 17777777 A4 X-1 · 020ijkm used if ,

· expression is ,

· external ,

SR-0085 3-25

1
I Result Operand

1
I
I
I Ai Sj
I

Ait I VL

1
t CRAY X-MP Computer

INSTRUCTION 023

Description

Transmit (Sj) to Ai

Transmit (VL) to Ai

Systems only

Machine
Instruction

023ijO

023i01

Instruction 023ijO transmits the low-order 24 bits of the contents of
register Sj to register Ai. Ai is zeroed if the j designator is o.

Instruction 023iOl enters the contents of the VL register into Ai.

Example:

ICode generated I Location I Result I Operand I Comment

1== __ -= __ =-__ ==========1~1=======1~1~0==========12~0~==========~1~3~5============
1 1 1 1 1
1023420 1 IA4 IS2 1
1 I 1 1 1
1 1 1 1 1
1023201 ! IA2 !VL I

SR-0085 3-26

Result Operand

Ai Bjk

Bjk Ai

INSTRUCTIONS 024 - 025

Description

Transmit (Bjk) to Ai

Transmit (Ai) to Bjk

Machine
Instruction

024ijk

025ijk

Instruction 024ijk enters the contents of register Bjk into register Ai.

Instruction 025ijk enters the contents of register Ai into register Bjk.

Example:

I Code generated Location Result Operand Comment

1 1 10 20 35

1
1024517 A5 B17

1
1 SVNTN = 0'17
1024517 A5 B. SVNTN

1
1025634 B34 A6

I
1025634 B.THRTY4 A6 ; THRTY4=34 (octal

SR-0085 3-27

INSTRUCTION 026

Result Operand Description

Ai PSj Population count of (Sj) to Ai

Ait QSj Population count parity of (Sj)
to Ai

Aitt SBj Transfer (SBj) to Ai

t Population Count (optional on CRAY-1 Models A and B)
tt CRAY X-MP Computer Systems only

Machine
Instruction

026ijO

026ij1

026ij7

Instruction 026ijO counts the number of 1 bits in the contents of Sj
and enters the result into Ai. Ai is zeroed if the j designator is o.

Instruction 026ij1 enters a 0 in Ai if Sj has an even number of 1
bits in Sj and enters a 1 in Sj if it has an odd number of 1 bits.

These two instructions execute in the Scalar Leading Zero/Population
Count functional unit.

Instruction 026ij7 transfers the contents of the SBj register shared
between the CPUs to Ai.

Example:

Code generated Location Result
1 10

026720 A7

026211 A2

026007 AO

026017 AO

SR-0085 3-28

Operand
20

PS2

QS7

SBO

SB1

Comment
35

; Pop count of
S2 to A7

; Pop count
; parity of

S7 to A2

INSTRUCTION 027

I
I Result Operand Description Machine
I Instruction
1
I
1 Ai ZSj Leading zero count of (Sj) to Ai 027ijO
I
I SBjt Ai Transfer (Ai) to SBj 027ij7
I
t CRAY X-MP Computer Systems only

Instruction 027ijO counts the number of leading zeros in the contents
of Sj and enters the result into Ai. Ai is set to 64 if the j
designator is 0, or if the Sj register contains o.

This instruction executes in the Scalar Leading Zero/Population Count
functional unit.

Instruction 027ij7 transfers the contents of register Ai into
register SBj, which is shared between the CPUs in the current cluster.

Example:

ICode generated I Locationl Result I Operand I Comment

1=========-__ -=========�~1~====~1~1~0=_====== __ 1~2~O __ ==========-*1~3.5====== ____ _=

I 1 1 1 I
1027130 I IA1 IZS3 I
I I I I I
1027007 I ISBO lAO I
1 I I I I
1027107 I ISBO IA1 I

SR-0085 3-29

INSTRUCTIONS 030 - 031

Result Operand Description Machine
Instruction

Ai Aj+Ak Integer sum of (Aj) and (Ak) 030ijk
to Ai

Ait Aj+1 Integer sum of (Aj) and 1 to Ai 030ijO

Ait Ak Transmit (Ak) to Ai 030iOk

Ai Aj-Ak Integer difference of (Aj) less 031ijk
(Ak) to Ai

Ait Aj-1 Integer difference of (Aj) less 031ijO
1 to Ai

Ait -Ak Transmit negative of (Ak) to Ai 031iOk

Ait -1 Enter -1 into Ai 03liOO

t Special CAL syntax

Instruction 030ijk and its special form (030ijO) add the contents of
register Aj to the contents of register Ak and enter the result into
register Ai. Ak is transmitted to Ai when the j designator is 0
and the k designator is nonzero. The value 1 is transmitted to Ai
when the j and k designators are both O. (Aj)+1 is transmitted to
Ai when the j designator is nonzero and the k designator is o. The
assembler allows an alternate form of the instruction when the k
designator is O.

The instruction executes in the Address Integer Add functional unit.

Instruction 030iOk enters the contents of register Ak into register
Ai. The value 1 is entered if the k designator is o.

The instruction 030iOk executes in the Address Integer Add functional
unit.

SR-0085 3-30

INSTRUCTIONS 030 - 031 (continued)

Instruction 031ijk and its special form (031ijO) subtract the
contents of register Ak from the contents of register Aj and enter
the result into register Ai. The negative of Ak is transmitted to
Ai when the j designator is 0 and the k designator is nonzero. A
-1 is transmitted to Ai when the j and k designators are both O.
(Aj)-l is transmitted to Ai when the j designator is nonzero and
the k designator is o.

The instruction 031ijk executes in the Address Integer Add functional
unit.

The special form represents the case where (Ak)=l if k=O.

Instruction 031iOk enters the negative (twos complement) of the
contents of register Ak into register Ai. The value -1 is entered
into Ai if the k designator is O.

The instruction 031iOk executes in the Address Integer Add functional
unit.

Instruction 031iOO is generated in place of instruction 020ijkm if
the operand is explicitly -1.

This instruction executes in the Address Add functional unit.

Example:

Code generated Location Result Operand Comment
1 10 20 35

030123 A1 A2+A3

030102 A1 A2

030230 A2 A3+1

030602 A6 A2

031456 A4 A5-A6

031102 A1 -A2

031450 A4 AS-A1

031703 A7 -A3

031300 A3 -1

SR-008S 3-31

Result Operand

Ai Aj*Ak

INSTRUCTION 032

Description

Integer product of (Aj) and
(Ak) to Ai

Machine
Instruction

032ijk

Instruction 032ijk forms the integer product of the contents of
register Aj and register Ak and enters the low-order 24 bits of the
result into Ai. Ai is cleared when the j designator is o. Aj is
transmitted to Ai when the k designator is 0 and the j designator
is nonzero.

The instruction executes in the Address Integer Multiply functional
unit. There is no overflow detection.

Example:

ICode generated I Locationl Result I Operand I Comment

1======================dl~1========1~1~0==========~12~O~============~1~3~5=============
I I I I I
1032712 I IA7 IA1*A2 I

SR-0085 3-32

Result Operand

Ai CI

Ai CA,Aj

Ai CE,Aj

INSTRUCTION 033

Description

Channel number of highest
priority interrupt request

Address of channel (Aj) to
(j~O)

Error flag of channel (Aj)

to Ai

Ai

to Ai

Machine
Instruction

033iOO

033ijO

033ijl

Instruction 033iOO enters the channel number of the highest priority
interrupt request into Ai.

Instruction 033ijO enters the contents of the Current Address (CA)
register for the channel specified by the contents of Aj into register
,. :
HoL.

Instruction 033ij1 enters the error flag for the channel specified by
the contents of Aj into the low-order 7 bits of Ai. The high-order
bits of Ai are cleared. The error flag can be cleared only in monitor
mode using the CI,Aj instruction, or the CRAY X-MP instruction MC,Aj.

Example:

,Code generated Location Result Operand Comment , 1 10 20 35 ,
1033100 A1 CI
1
1
1033230 A2 CA,A3
1 ,
1033341 A3 CE,A4

SR-0085 3-33

INSTRUCTIONS 034 - 031

Result Operand Description Machine
Instruction

Bjk,Ai ,AO Read (Ai) words starting at 034ijk
Bjk from memory starting at (AO)

Bjk,Ait O,AO Read (Ai) words starting at 034ijk
Bjk from memory starting at (AO)

,AO Bjk,Ai Store (Ai) words starting at 035ijk
Bjk to memory starting at (AO)

O,AOt Bjk,Ai Store (Ai) words starting at 035ijk
Bjk to memory starting at (AO)

Tjk,Ai ,AO Read (Ai) words starting at 036ijk
Tjk from memory starting at (AO)

Tjk,Ait O,AO Read (Ai) words starting at 036ijk
Tjk from memory starting at (AO)

,AO Tjk,Ai Store (Ai) words starting at 037ijk
Tjk to memory starting at (AO)

O,AOt Tjk,Ai Store (Ai) words starting at 037ijk
Tjk to memory starting at (AO)

t Special CAL syntax

Instruction 034ijk and its special form are used to transfer words from
memory directly into B registers. AO contains the address of the first
word of memory to be transferred. The jk designator specifies the
first B register to be used in the transfer. The low-order 24 bits of
consecutive words of memory are loaded into consecutive B registers.

Processing of B registers is circular. BOO is loaded after B77 if the
count specified in Ai is not exhausted after B11 is loaded. The
low-order 1 bits of the contents of Ai specify the number of words
transmitted. Wraparound occurs if the low-order 7-bits of (Ai) are
greater than 64.

If (Ai)=O, no words are transferred. Note also that if i=O, (AO) is
used for the block length as well as the starting memory address. The
CAL assembler issues a warning message in this case.

SR-0085 3-34

INSTRUCTIONS 034 - 037 (continued)

Instruction 035ijk and its special form are used to store words from B
registers directly into memory. AO contains the address of the first
word of memory to receive data. The jk designator specifies the first
B register to be used in the transfer. Subsequent B register contents
are stored in consecutive words of memory.

Processing of B registers is circular.
count specified in Ai is not exhausted
low-order 7 bits of the contents of Ai
transmitted. Wraparound occurs if the
greater than 64.

BOO is processed after B77 if
after B77 is processed. The
specify the number of words
low-order 7-bits of Ai are

If (Ai)=O, no words are transferred. Note also that if i=O, (AO) is
used for the block length as well as the starting memory address. The
CAL assembler issues a warning message in this case.

the

Instruction 036ijk and its special form are used to transfer words from
memory directly into T registers. AO contains the address of the first
word of memory to be transferred. The jk designator specifies the
first T register to be used in the transfer. The loading of T registers
is circular. TOO is loaded after T77 if the count specified in Ai is
not exhausted after T77 is loaded. The low-order 7 bits of the contents
of Ai specify the number of words transmitted. Wraparound occurs if
the low-order 7-bits of Ai are greater than 64.

If (Ai)=O, no words are transferred. If i=O, (AO) is used for the
block length and the starting memory address. The CAL assembler issues a
warning message in this case.

Instruction 037ijk and its special form are used to store words from T
registers directly into memory. AO contains the address of the first
word of memory to receive data. The jk designator specifies the first
T register to be used in the transfer. Subsequent T register contents
are stored in consecutive words of memory. Processing of T registers is
circular. TOO is processed after T77 if the count specified in Ai is
not exhausted after T77 is processed. The low-order 7 bits of the
contents of register Ai specify the number of words transmitted.
Wraparound occurs if the low-order 7-bits of Ai are greater than 64.

If (Ai)=O, no words are transferred. Note also that if i=O, (AO) is
used for the block length as well as the starting memory address, and CAL
issues a warning message.

SR-0085 3-35

INSTRUCTIONS 034 - 037 (continued)

Example:

Code generated Location Result I Operand Comment
1 10 120 35

I
034407 B7,A4 I,AO

I
BB = 10' 22
FWAR = 15

034522 B.BB,A.FWAR O,AO

035522 ,AO B22,A5

BB = 0' 22
FWAR = 5

035522 O,AO B.BB,A.FWAR

036407 T7,A4 ,AO

TT = 0' 22
FWAR = 15

036522 T.TT,A.FWARIO,AO
I
I

37522 ,AO IT22,A5
I

TT = 10' 22
FWAR = 15

037522 O,AO IT.TT,A.FWAR

SR-0085 3-36

Result Operand

Si exp

INSTRUCTIONS 040 - 041

Description

Enter exp into Si

Machine
Instruction

040ijkm or
041ijkm

The above instruction enters a quantity into Si. Either the 2-parcel
040ijkm instruction or the 2-parcel 041ijkm instruction is generated,
depending on the value of the expression.

If the expression has a positive value or a relative attribute of either
relocatable or external, instruction 040ijkm is generated with the
22-bit jkm field containing the expression value. If the expression
has a negative value and a relative attribute of absolute, instruction
041ijkm is generated with the 22-bit jkm field containing the ones
complement of the expression value.

Refer to the 042-043 instructions for additional information on Si exp
instructions.

Example:

Code generated Location Result
1 19

0402 00000130 S2

SREG =
0403 00000021 S.SREG

0404 01777777 S4

0405 00051531 S5

0406 00000000 S6

0413 00000002 S3

0414 01777776 S4

0414 00000003 S4

EXT
0401 17777777 Sl

SR-0085 3-37

I Operand
129
1
10'130
1
13
VAL+1

0'1777777

A'SY'R
3
IMINUS1

#2

-0'1777777

#VAL2

X
X-I

Comment
35

; VAL=20 (octal)

; MlNUS1=-1

; VAL2=3

; 040ijkm used
; if expression
; is external

INSTRUCTIONS 042 -043

Result Operand Description Machine
Instruction

Si <exp Form ones mask in Si 042ijk
from right

Sit #>exp Form zeros mask in Si 042ijk
from left

Sit 1 Enter 1 into Si 042i77

Sit -1 Enter -1 into Si 042iOO

Sit 0 Clear Si 043iOO

Si >exp Form ones mask in Si from left 043ijk

Sit #<exp Form zeros mask in Si from right 043ijk

t Special CAL syntax

Instruction 042ijk generates a mask of ones from the right. The
assembler evaluates the expression to determine the mask length.

In the first instruction, the mask length is the value of the
expression. In the second instruction, the mask length is 64 minus the
expression value. The mask length must be a positive integer not
exceeding 64; 64 minus the mask length is inserted into the jk fields
of the instruction. If the value of the expression is 0 for the first
instruction or 64 for the second instruction, the assembler generates
instruction 043iOO.

Instruction 042ijk executes in the Scalar Logical functional unit.

Instructions 042i77, 042iOO, and 043iOO are initially recognized by
the assembler as the symbolic instruction Si expo The assembler then
checks the expression to see if it has one of these three forms. If it
finds one of the forms in the exact syntax shown, it generates the
corresponding Cray machine instruction. If none of these forms is found,
instruction 040ijkm or 041ijkm is generated. These special forms
allow more efficient instructions for entering often used values into S1.

Instructions 043iOO, 042i77, and 042iOO execute in the Scalar Logical
functional unit.

SR-0085 3-38

INSTRUCTIONS 042 - 043 (continued)

Instruction 043ijk generates a mask of ones from the left. The
assembler evaluates the expression to determine the mask length.

In instruction 043ijk, the mask length is the value of the expression.
In the special syntax form, the mask length is 64 minus the expression
value. The mask length must be a positive integer not exceeding 64 and
is inserted into the jk fields of the instruction. If the expression
value is 64 for the first instruction or 0 for the second instruction,
the assembler generates instruction 042iOO.

Instruction 043ijk executes in the Scalar Logical functional unit.

Example:

Code generated Location Result Operand Comment
1 10 20 35

042200 S2 -1

042273 S2 <5

042273 S2 # >0' 73

042366 S3 <D'10

042400 S4 <0'100

043500 S5 <0

043600 S6 0 ; Clear S6

042677 S6 1 ; Set S6 to 1

043205 S2 >5

043205 S2 #<0' 73

043500 S5 <0

SR-0085 3-39

t

INSTRUCTIONS 044 - 051

Result Operand Description Machine
Instruction

Si Sj&Sk Logical product of (Sj) and (Sk) 044ijk
to si

sit Sj&SB Sign bit of (Sj) to Si 044ijO

Sit SB&Sj Sign bit of (Sj) to Si; j:i:O 044ijO

Si #Sk&Sj Logical product of (Sj) and 045ijk
#(Sk) to Si

Sit #SB&Sj (Sj) with sign bit cleared to Si 045ijO

Si Sj\Sk Logical difference of (Sj) and 046ijk
(Sk) to Si

Sit Sj\SB Enter (Sj) into Si with sign bit 046ijO
toggled

Sit SB\Sj Enter (Sj) into Si with sign bit 046ijO
toggled; j:i:O

Si #Sj\Sk Logical equivalence of (Sj) and 047ijk
(Sk) to Si

Sit #Sj\SB Logical equivalence of (Sj) and 047ijO
sign bit to Si

Sit #SB\Sj Logical equivalence of sign bit 047ijO
and (Sj) to Si; j:i:O

Special CAL syntax

NOTE

When the above instructions execute on a CRAY X-MP, SB
with no register designator is the sign bit, not
Shared Address register.

SR-0085 3-40

t

INSTRUCTIONS 044 - 051 (continued)

Result Operand Description Machine
Instruction

Sit iSk Transmit ones complement of 047iOk
(Sk) to Si

Sit iSB Enter ones complement of sign 047iOO
bit in Si

Si Sj!Si&Skl Scalar merge of (Si) and (Sj) 050ijk
I to Si

Sit
I

Sj!Si&SB Scalar merge of (Si) and sign 050ijO
bit of (Sj) to Si

Si Sj!Sk Logical sum of (Sj) and (Sk) 051ijk
to Si

Sit Sj!SB Logical sum of (Sj) and sign bit 051ijO
to Si

Sit SB!Sj Logical sum of sign bit and (sj) 051ijO
to Si; j~O

Sit Sk Transmit (Sk) to Si 051iOk

Sit SB Enter sign bit into Si 051iOO

Special CAL syntax

NOTE

When the above instructions execute on a CRAY X-MP, SB
with no register designator is the sign bit, not
Shared Address register.

Instruction 044ijk forms the logical product of the contents of sj
and Sk and enters the result into Si. If the j and k designators
have the same nonzero value, the contents of Sj is transmitted to Si.

SR-0085 3-41

INSTRUCTIONS 044 - 051 (continued)

If the j designator is 0, register Si is zeroed. If the j
designator is nonzero and the k designator is 0, the sign bit of the
contents of Sj is extracted. The two special forms of the instruction
accommodate this case. The two forms perform identical functions, but
j must not be equal to 0 in the second form. If j is equal to 0, an
assembly error results.

Instruction 045ijk forms the logical product of the contents of Sj
and the ones complement of the contents of Sk and enters the result
into Si. If the j and k designators have the same value or if the
j designator is 0, r,egister Si is zeroed.

If the j designator is nonzero and the k designator is 0, the
contents of Sj with the sign bit cleared is transmitted to Si. The
special syntax form accommodates this case.

Instruction 046ijk forms the logical difference of the contents of Sj
and the contents of Sk and enters the result into Si. If the j and
k designators have the same nonzero value, Si is zeroed.

If the j designator is 0 and the k designator is nonzero, the
contents of Sk is transmitted to Si. If the j designator is
nonzero and the k designator is 0, the sign bit of the contents of Sj
is complemented and the result is transmitted to Si. The two special
syntax forms provide for this case. The two forms perform identical
functions; however, in the second form, j must not equal O. If j
equals 0, an assembly error results.

Instruction 047ijk forms the logical equivalence of the contents of
Sj and the contents of Sk and enters the result into Si. Bits of
Si are set to 1 when the corresponding bits of the contents of Sj and
the contents of Sk are both 1 or both O.

If the j and k designators have the same nonzero value, the contents
of Si is set to all ones. If the j designator is 0 and the k
designator is nonzero, the ones complement of the contents of Sk is
transmitted to Si. If the j designator is nonzero and the k
designator is 0, all bits other than the sign bit of the contents of Sj
are complemented and the result is transmitted to Si.

The two special forms of the instruction accommodate this case. The two
forms perform identical functions; however, in the second form, j must
not equal O. If j equals 0, an error results.

SR-0085 3-42

INSTRUCTIONS 044 - 051 (continued)

Instruction 047iOk forms the ones complement of the contents of
register Sk and enters the value into Si. The complement of the sign
bit is entered into Si if the k designator is o.

Instruction 047iOO clears the sign bit and sets all other bits.

Instructions 050ijk and 050ijO merge the contents of Sj with the
contents of Si depending on the ones mask in Sk.

The result is defined by (Sj&Sk)!(Si&ISk) as in the following
example:

(Sk) = 11110000
(Si) = 11001100
(Sj) = 10101010
(Si) = 10101100

This instruction is intended for merging portions of 64-bit words into a
composite word. Si bits are cleared when the corresponding Sk bits
are 1 if the j designator is 0 and the k designator is nonzero. The
sign bit of Sj replaces the sign bit of Si if the j designator is
nonzero and the k designator is 0 as provided for by the special syntax
form of the instruction. The sign bit of Si is cleared if the j and
k designators are both O.

Instruction 051ijk forms the logical sum of the contents of Sj and
the contents of Sk and enters the result into Si. If the j and k
designators have the same nonzero value, the contents of Sj are
transmitted to Si. If the j designator is 0 and the k designator
is nonzero, the contents of Sk are transmitted to Si.

If the j designator is nonzero and the k designator is 0, the
contents of Sj with the sign bit set to 1 are transmitted to Si. The
two special syntax forms provide for this case. If the j and k
designators are both 0, a ones mask consisting of only the sign bit is
entered into Si.

The two special forms perform an identical function but in the second
form j~O; if j=O, an assembly error results.

Instruction 051iOk enters the contents of register Sk into register
Si. The sign bit is set to 1 in Si if the k designator is o.

Instruction 051iOO can be used to set the sign bit of Si and zero all
other bits.

Instructions 044ijk through 051 execute in the Scalar Logical
functional unit.

SR-0085 3-43

INSTRUCTION8 044 - 051 (continued)

Example:

Code generated Location Result °Eerand Comment
1 10 20 35

044235 82 S3&S5

044655 86 S5&S5 · S5 to S6 ,

044160 81 S6&SB · Get sign of S6 ,

044160 81 SB&86 · Get sign of S6 ,

045271 82 #81&87

045430 84 #8B&83 ; Clear sign bit
; of 83 and

· enter into 84 ,

045506 85 #86&80 ; Clear S5

045670 86 #8B&87 ; Clear sign bit

046123 81 S2\S3

046455 S4 S5\S5 · Clear S4 ,

046506 S5 SO\86 ; 86 to S5

046770 S7 S7\SB ; Toggle sign
bit

047345 S3 #84\S5

047260 S2 #S6\SB

047260 S2 #SB\S6

047203 S2 #S3

047200 S2 #SB

050123 Sl S2!81&S3

050760 S7 S6!S7&SO

SR-0085 3-44

INSTRUCTIONS 044 - 051 (continued)

Example (continued) :

Code generated Location Result I Operand Comment
1 10 29 35

051472 S4 S7!S2

051366 S3 S6!S6

051710 S7 SB!Sl

051701 S7 S1

I = 1
051100 S.I SB

SR-0085 3-45

INSTRUCTIONS 052 - 055

Result Operand Description Machine
Instruction

SO Si<exp Shift (Si) left exp places 052ijk
to SO

SO Si>exp Shift (Si) right exp places 053ijk
to SO

Si Si<exp Shift (Si) left exp places 054ijk
to Si

Si Si>exp Shift (Si) right exp places 055ijk
to Si

Instruction 052ijk shifts the contents of Si to the left by the amount
specified by the expression and enters the result into SO. The shift
count must be a positive integer value not exceeding 64. The shift is
end off with zero fill. If the shift count is 64, instruction 053000 is
generated and SO is zeroed.

Instruction 053ijk shifts the contents of Si to the right by the amount
specified by the expression and enters the result into SO. The shift
count must be a positive integer value not exceeding 64. The assembler
stores 64 minus the shift count in the jk field of the instruction.
The shift is end off with zero fill. If the shift count is 0,
instruction 052000 is generated and the contents of SO is not altered.

Instruction 054ijk shifts the contents of Si to the left by the amount
specified by the expression and enters the result into Si. The shift
count must be a positive integer value not exceeding 64. The shift is
end off with zero fill. If the shift count is 64, instruction 055iOO
is generated and Si is zeroed.

Instruction 055ijk shifts the contents of Si to the right by the amount
specified by the expression and enters the result into Si. The shift
count must be a positive integer value not exceeding 64. The assembler
stores 64 minus the shift count in the jk field of the instruction. If
the shift count is 0, instruction 054iOO is generated and the contents
of Si is not altered. The shift is end off with zero fill.

Instructions 052ijk, 053ijk, 054ijk, and 055ijk execute in the Scalar
Shift functional unit.

SR-0085 3-46

INSTRUCTIONS 052 - 055 (continued)

Example:

Code generated Location Result Operand Comment
1 10 20 35

052305 SO S3<5

052724 SO S7<VAL+4

053373 SO S3>5

053066 SO SO>D'10

053754 SO S7>VAL+4

052100 SO S1>0

054703 S7 S7<3

054622 S6 S6<VAL+2

055775 S7 S7>3

055656 S6 S6>VAL+2

SR-0085 3-47

INSTRUCTIONS 056 - 051

I
Result Operand I Description Machine

I Instruction
I

I
Si Si,Sj<Akl Left shift by (Ak) of (Si) and 056ijk

I (Sj) to Si
I

Si,Sj<1 I Left shift by 1 of (Si) and (Sj) 056ijO
I to Si
I

Si<Ak I Left shift by (Ak) of (Si) to Si 056iOk
I

Si Sj,Si>Akl Right shift by (Ak) of (Sj) and 051ijk
I (Si) to Si
I

Sj,Si>1 I Right shift by 1 of (Sj) 051ijO
I and (Si)to Si
I

Si>Ak I Right shift by (Ak) of (Si) 051iOk
I to Si
I

t Special CAL syntax

Instruction 056ijk and its special forms produce a 128-bit quantity by
concatenating the contents of Si and the contents of Sj, shifting the
resulting value to the left by an amount specified by the low-order bits
of Ak and entering the high-order bits of the result into Si. The
shift is end off with zero fill.

Replacing the Ak reference with 1 is the same as setting the k
designator to 0; a reference to AO provides a shift count of 1. Omitting
the Sj reference is the same as setting the j designator to 0; the
contents of Si are concatenated with a word of zeros.

Si is cleared if the shift count exceeds 121. The shift is a left
circular shift of the contents of Si if the shift count does not exceed
64 and the i and j designators are equal and nonzero. The instruction
produces the same result as the si Si<exp instruction if the shift
count does not exceed 63 and the k designator is O. The contents of
Sj are not affected if the i and j designators are unequal.

Instruction 051ijk and its special forms produce a 128-bit quantity by
concatenating the contents of Sj and the contents of Si, shifting the
resulting value to the right by an amount specified by the low-order 1
bits of the contents of Ak and entering the low-order bits of the
result into Si. The shift is end off with zero fill.

SR-008S 3-48

INSTRUCTIONS 056 - 057 (continued)

Replacing the Ak reference with 1 is the same as setting the k
desiqnator to 0; a reference to AO provides a shift count of 1. Omittinq
the Sj reference is the same as settinq the j desiqnator to 0; the
contents of Si are concatenated with a word of zeros.

Si is cleared if the shift count exceeds 127. The shift is a riqht
circular shift of the contents of Si if the shift count does not exceed
64 and the i and j designators are equal and nonzero. The instruction
produces the same result as the Si Si>exp instruction if the shift
count does not exceed 63 and the j desiqnator is o. The contents of
Sj are not affected if the i and j desiqnators are unequal.

Instruction 056ijk and 057ijk executes in the Scalar Shift functional
unit.

Example:

Code generated Location Result Operand Comment
1 10 20 35

056235 S2 S2,S3<A5

056340 S3 S3,S4<1 ; Left 1 place

056604 S6 S6<A4

057235 S2 S3,S2>A5

057604 S6 S6>A4

057340 S3 S4,S3>1 ; Right 1 place

SR-0085 3-49

INSTRUCTIONS 060 - 061

Result Operand Description Machine
Instruction

Si Sj+Sk Integer sum of (Sj) and (Sk) 060ijk
to Si

Si Sj-Sk Integer difference of (Sj) less 061ijk
(Sk) to Si

Sit -Sk Transmit negative of (Sk) to Si 061iOk

t Special CAL syntax

Instruction 060ijk adds the contents of register Sk to the contents
of register Sj and enters the result into si. Sk is transmitted to
Si if the j designator is 0 and the k designator is nonzero. The
sign bit is entered in Si and all other bits of Si are cleared if the
j and k designators are both O.

Instruction 061ijk subtracts the contents of register Sk from the
contents of register Sj and enters the result into Si. The
high-order bit of Si is set and all other bits of Si are cleared when
the j and k designators are both O. The negative (twos complement)
of Sk is transmitted to Si if the j designator is 0 and the k
designator is nonzero.

Instruction 061iOk enters the negative (twos complement) of the
contents of Sk into Si. The sign bit is set if the k designator is o.

Instructions 06oijk, 061ijk, 061iOk execute in the Scalar Integer
Add functional unit.

Example:

1 Code generated Location Result Operand Comment
1 1 10 20 35
1
1060237 S2 S3+S7
1
1060405 S4 SO+S5
1
1061123 S1 S2-S3
1
1061506 S5 -S6

SR-0085 3-50

Result Operand

Si Sj+FSk

Sit +FSk

Si Sj-FSk

Sit -FSk

t Special CAL syntax

INSTRUCTIONS 062 - 063

Description

Floating-point sum of (Sj) and
(Sk) to Si

Normalize (Sk) to Si

Floating-point difference of
(Sj) less (Sk) to Si

Transmit the negative of (Sk)
as a normalized floating-point
value

Machine
Instruction

062ijk

062iOk

063ijk

063iOk

Instruction 062ijk and its special form produce the floating-point sum
of the contents of the Sj and Sk registers and enters the result into
Si. The result is normalized even if the operands are unnormalized.
The k designator is not normally O. In the special form, the j
designator is assumed to be 0 so that the normalized contents of Sk are
entered into Si.

Instruction 063ijk forms the floating-point difference of the contents
of register Sj less the contents of register Sk, and enters the
normalized result into Si. The result is normalized even if the
operands are unnormalized.

The negative (twos complement) of the floating-point quantity in Sk is
transmitted to Si as a normalized floating-point number if the j
designator is 0 and the k designator is nonzero. The special form
accommodates this special case. The k designator is normally nonzero.

Instructions 062ijk, 063ijk, and 063iOk execute in the Floating-point
Add functional unit.

SR-0085 3-51

INSTRUCTIONS 062 - 063 (continued)

Example:

ICode generated Comment Location Result Operand
1 10 20 1====================~======~========~============~3~5==========

1
1062345
1
1062404
1
1063302
1
1063761

SR-0085

S3

S4

S3

S7

S4+FS5

+FS4

-FS2

S6-FSI

3-52

INSTRUCTIONS 064 - 067

Result Operand Description Machine
Instruction

Si Sj*FSk Floating-point product of (Sj) 064ijk
and (Sk) to Si

Si Sj*HSk Half-precision rounded 065ijk
floating-point product of (Sj)
and (Sk) to Si

si Sj*RSk Rounded floating-point product 066ijk
of (Sj) and (Sk) to Si

Si Sj*ISk 2-floating-point product of (Sj) 067ijk
and (Sk) to Si

Instruction 064ijk forms the floating-point product of the contents of
Sj and Sk and enters the result into Si. The result is not normalized
if either operand is unnormalized.

Instruction 065ijk forms the half-precision rounded floating-point
product of the contents of the Sj and Sk registers and enters the
result into Si. The result is not normalized if either operand is
unnormalized. The low-order 18 bits of the result are zeroed. This
instruction can be used in a divide algorithm when only 30 bits of
accuracy are required.

Instruction 066ijk forms the rounded floating-point product of the
contents of the Sj and Sk registers and enters the result into Si.
The result is not normalized if either operand is unnormalized. This
operation is used in the reciprocal approximation sequence.

Instruction 067ijk forms 2 minus the floating-point product of the
contents of Sj and Sk and enters the result into Si. The result is
not normalized if either operand is unnormalized.

Instructions 064ijk, 065ijk, 066ijk, and 067ijk execute in the
Floating-point Multiply functional unit.

SR-0085 3-53

INSTRUCTIONS 064 - 067 (continued)

Example:

ICode generated Location Result Operand Comment
1 1 10 20 35
1
1064234 S2 S3*FS4
1
1065167 SI S6*HS7
1
1066147 SI S4*RS7
1
1067324 S3 S2*IS4

SR-0085 3-54

Result Operand

Si IHSj

INSTRUCTION 070

Description

Floating-point reciprocal
approximation of (8j)to Si

Machine
Instruction

070ijO

Instruction 070ijO forms an approximation to the reciprocal of the
floating-point value in Sj and enters the result into 8i. The result
is meaningless if the contents of Sj is unnormalized or O. This
instruction is used in the divide sequence as illustrated in the
following example.

Instruction 070ijO executes in the Floating-point Reciprocal functional
unit.

Example:

Code generated Location Result I Operand I Comment
1 10 120 135

I I
* Divide Sl by S2; result to S1

070320 83 IHS2 ; Approximate
reciprocal

064113 81 S1*FS3 ; Approximate . result I

82 82*1S3 . Correction I 067223
; factor

064112 81 81*FS2

* Divide Sl by S2 with result accurate to
* 30 bits I

070320 83 I/HS2
I

065313 83 I 81*HS3

SR-0085 3-55

INSTRUCTION 070 (continued)

Example (continued):

Code generated Location Result I Operand
1 10 120

* Integer divide Al by A2;
071222 82 +FA2

071121 81 +FAI

062202 82 SO+F82

062101 81 80+F81

070220 82 IH82

065110 SI SI*HS2

071230 S2 0.6

062112 81 SI+F82

023310 A3 81

SR-0085 3-56

I Comment
135

I
Result to A3

; Denominator

; Numerator

; Normalize

;

;

; . ,
;

Reciprocal
approximation
to lID

Rounded
half-precision
multiply

Fix quotient

24-bit signed
result to A3

Result Operand

Si Ak

Si +Ak

Si +FAk

Si 0.6

Si 0.4

Si 1.

Si 2.

Si 4.

INSTRUCTION 071

Description

Transmit (Ak) to Si without sign
extension

Transmit (Ak) to Si with
sign extension

Transmit (Ak) to Si as an
unnormalized floating-point
value

Enter 0.75*(2**48) into Si as
normalized floating-point
constant

Enter 0.5 into Si as normalized
floating-point constant

Enter 1 into Si as normalized
floating-point constant

Enter 2 into Si as normalized
floating-point constant

Enter 4 into Si as normalized
floating-point constant

Machine
Instruction

071iOk

071i1k

071i2k

071i30

071i40

071i50

071i60

071i70

Instruction 071iOk transfers the 24-bit value in register Ak into the
low-order 24 bits of register Si. The value is treated as an unsigned
integer. The high-order bits of Si are zeroed. A value of 1 is
entered into Si when the k designator is o.

Instruction 071i1k transfers the 24-bit value in register Ak into the
low-order 24 bits of register Si. The value is treated as a signed
integer and the sign bit of the contents of register Ak is extended to
the high-order bits of Si. A value of 1 is entered into Si when the
k designator is O.

Instruction 071i2k transmits the contents of register Ak to si as an
unnormalized floating-point value. The result can then be added to 0 to
normalize. When the k designator is 0, an unnormalized floating-point 1
is entered into Si.

SR-0085 3-57

INSTRUCTION 071 (continued)

Instructions 071i3k through 071i7k are initially recognized by
the assembler as the symbolic instruction Si exp. The assembler then
checks the expression to see if it has any of the indicated forms. If it
finds one of the instructions in the exact syntax shown, it generates
the corresponding Cray machine instruction. If none of the indicated
forms are found, instruction 040ijkm or 041ijkm is generated as
previously described. These special forms allow more efficient
instructions for entering commonly used values into Si.

The syntax form si 0.6 (071i30) is useful for extracting the integer
part of a floating-point quantity (that is, fix) as illustrated in the
examples.

Example:

Code generated Location Result Operand Comment
1 10 20 35

071707 S7 A7

071717 S7 +A7

071324 S3 +FA4

FIX = 6
071630 5.FIX 0.6

071240 52 0.4

071350 53 1.

071460 S4 2.

071570 S5 4.

* Fix a float~ng-point number in 51

* Separate integer and fractional parts

071230 52 0.6

062312 S3 S1+FS2

A1 S3 · Integer part , 023130

063332 S3 53-FS2 ; Floating-point
; integer part

S1 S1-FS3 · Fractional , 063113

· part ,

SR-0085 3-58

Result Operand

Si RT

SM

STj

VM

SRj

Si

Si

Si Tjk

Tjk Si

INSTRUCTIONS 072 - 075

Description

Transmit (RTC) to Si

Read semaphore to Si

Read (STj) register to Si

Transmit (VM) to Si

Read performance counter into Si

Increased performance counter

Clear all maintenance modes

Transmit (SRj) to Si; j=O

Load semaphores from si

Transfer (Si) to STj

Transmit (Tjk) to Si

Transmit (Si) to Tjk

Machine
Instruction

072iOO

072i02

072ij3

073iOO

073ill

073i21

073i31

073ijl

073i02

073ij3

074ijk

075ijk

t CRAY X-MP Compute Systems only. This instruction is available
when the numeric trait NUMCLSTR, which is specified on the CPU
parameter of the CAL invocation statement, is greater than zero.

tt Not supported by CAL at this time
ttt CRAY X-MP computer systems only. This instruction is available

through the logical trait STATRG specified on the CPU parameter of
the CAL invocation statement.

Instruction 072iOO enters the 64-bit contents of the real-time clock
into register Si. The clock is increased by 1 each clock period. The
real-time clock can be reset only when in monitor mode using instruction
072iOO.

Instruction 072i02 enters the values of all of the semaphores into Si.
The 32-bit SM register is left justified in Si with SMOO occupying the
sign bit.

Instruction 072ij3 enters the contents of register STj into register Si.

SR-0085 3-59

INSTRUCTIONS 072 - 075 (continued)

Instruction 073iOO enters the 64-bit contents of the VM register into
register Si. The VM register is normally read after having been set by
instruction 1750jk.

Instruction 073ij1 enters the contents of the Status register into Si.

Instruction 073i02 sets the semaphores from 32 high-order bits of Si.
SMOO receives the sign bit of Si.

Instruction 073ij3 transfers the contents of register Si into register
STj, which is shared between the CPUs in the current cluster.

Instruction 074ijk enters the contents of register Tjk into register Si.

Instruction 075ijk enters the contents of register Si into register Tjk.

Example:

Code generated Location Result Operand Comment
1 10 20 35

072700 S7 RT

072002 SO SM

072602 S6 SM

072003 SO STO

072013 SO ST1

073200 S2 VM

073001 SO SRO

073301 S3 SRO

073002 SM SO

073102 SM Sl

073502 SM S5

073003 STO SO

073103 STO Sl

SR-0085 3-60

INSTRUCTIONS 072 - 075 (continued)

Example: (continued)

ICode generated Location Result I Operand Comment

1======================1=========10=========-1~2~Q============~3~5==========_
I I
1074306 83 I T6
I I
1074566 85 I T66
I I
1075306 T6 183
I I
1075567 T67 185

8R-0085 3-61

Result Operand

Si Vj,Ak

Vi,Ak Sj

Vi,Akt 0

t Special CAL syntax

INSTRUCTIONS 076 - 077

Description

Transmit (Vj, element (Ak)
to Si

Transmit (Sj) to vi element (Ak)

Clear element (Ak) of register
vi

Machine
Instruction

076ijk

077ijk

077iOk

Instruction 076ijk enters the contents of the element of vj indicated
by the contents of the low-order 6 bits of Ak into Si. The second
element (that is, element 1) is selected if the k designator is o.

Instruction 077ijk transmits the contents of register Sj to an element
of vi as determined by the low-order 6 bits of the contents of Ak.
Element 1, the second element of vi, is selected if the k designator
is o.

Instruction 077iOk zeros element (Ak) of register vi. The low-order
6 bits of Ak determine which element is zeroed. The second element of
register vi is zeroed (that is, element 1) if the k designator is o.

Example:

Code generated Location Result Operand Comment
1 10 20 35

076456 S4 V5,A6

I = 4
J = 5
K = 6

076456 S.I V.J,A.K

077167 V1,A7 S6

077602 V6,A2 0

SR-0085 3-62

INSTRUCTIONS lOh - l3h

Result Operand Description Machine
Instruction

Ai exp,Ah Read from ((Ah) + exp) to Ai 10hijkm

Ait exp,O Read from (exp) to Ai 100ijkm

Ait exp, Read from (exp) to Ai 100ijkm

Ait ,Ah Read from (Ah) to Ai 10hiOOO

exp,Ah Ai Store (Ai) to (Ah) + exp Ilhijkm

exp,ot Ai Store (Ai) to exp 110ijkm

exp,t Ai Store (Ai) to exp 110ijkm

,Aht Ai Store (Ai) to (Ah) IlhiOOO

Si exp,Ah Read from ((Ai) + exp) to Si 12hijkm

Sit exp,O Read from (exp) to Si 120ijkm

Sit exp, Read from (exp) to si 120ijkm

Sit ,Ah Read from (Ah) to Si 12hiOOO

exp,Ah Si Store (Si) to (Ah) + exp 13hijkm

exp,ot Si Store (Si) to exp 130ijkm

exp,t Si Store (Si) to exp 130ijkm

,Aht Si Store (Si) to (Ah) 13hiOOO

t Special CAL syntax

SR-0085 3-63

INSTRUCTIONS 10h - 13h (continued)

For these instructions, only the value of the expression is used if the
h designator is 0 or if a zero or blank field is used in place of
Ah. Only the content of Ah is used if the expression is omitted. An
expression, if present, must not have a parcel-address attribute or an
assembly error occurs.

Instructions 10hijkm through 10hiOOO load the low-order 24 bits of a
memory word directly into an A register. The memory address is
determined by adding the address in the register Ah to the expression
value. Only the value of the expression is used if the h designator is
0, or a 0 or blank field is used in place of Ah. Only the contents of
Ah is used if the expression is omitted. An assembler error will occur
if an expression has a parcel-address attribute

Instructions Ilhijkm through I1hiOOO store 24 bits from register Ai
directly into memory. The high-order bits of the memory word are
zeroed. The memory address is determined by adding the address in
register Ah to the expression value.

Instructions 12hijkm through 12hiOOO load the contents of a memory
word directly into an S register. The memory address is determined by
adding the address in register Ah to the expression value. Only the
value of the expression is used if the h designator is 0 or a zero or
blank field is used in place of Ah. Only the contents of Ah is used
if the expression is omitted. An assembler error will occur if an
expression has a parcel-address attribute.

Instructions 13hijkm through 13hiOOO store the contents of register
Si directly into memory. The memory address is determined by adding
the address in register Ah to the expression value.

SR-0085 3-64

INSTRUCTIONS 10h - 13h (continued)

Example:

Code generated Location Result Operand Comment
1 19 20 35

1001 00004520+ A1 CON1,AO

1002 00004520+ A2 CON1,0

1013 00004521+ A3 CON1+1,A1

1024 17777777+ A4 -1,A2

1005 00003000+ A5 ADDR,

1046 00004647+ 'A6 CON,A4

1046 00000000+ A6 ,A4

1061 00000001+ A1 1,A6

1072 00000177+ A2 O'177,A7

1101 00004520+ CON1,AO A1

1102 00004520+ CON1,0 A2

1113 00004521+ CON1+1,A1 A3

1124 17777777+ -1,A2 A4

1105 00003000+ ADDR, A5

1146 00004647+ CON,A4 A6

1146 00000000+ ,A4 A6

1161 00000001+ 1,A6 A1

1172 00000177+ O'177,A7 A2

SR-0085 3-65

INSTRUCTIONS 10h - 13h (continued)

Example: (continued)

Code generated Location Result Operand I Comment
1 10 20 135

I
1201 00004520+ 81 CON1,AO I

I
1202 00004520+ 82 CON1,0 I

I
1213 00004521+ S3 CON1+1,A1 l

1224 17777777+ 84 -1,A2

1205 00003000+ S5 ADDR,

1246 00004647+ S6 CON,A4

1246 00000000+ 86 ,A4

1261 00000001+ S1 1,A6

1272 00000177+ 52 O'177,A7

1301 00004520+ CON1,AO S1

1302 00004520+ CON1,0 52

1346 00000000+ ,A4 S6

1324 17777777+ -1,A2 S4

1305 00003000+ ADDR, S5

SR-0085 3-66

INSTRUCTIONS 140 - 147

Result Operand Description Machine
Instruction

vi Sj&Vk Logical products of (Sj) and 140ijk
(Vk) to vi

vi vj&Vk Logical products of (Vj) and 141ijk
(Vk) to vi

vi Sj!Vk Logical sums of (Sj) and (Vk) 142ijk
to vi

Vit vk Transmit (Vk) to vi 142iOk

vi vj!Vk Logical sums of (vj) and (Vk) to 143ijk
vi

vi sj\Vk Logical differences of (Sj) and 144ijk
(Vk) to vi

vi vj\Vk Logical differences of (vj) and 145ijk
(Vk) to vi

vit 0 Clear vi 145iii

vi Sj!Vk&VMI Vector merge of (Sj) and (Vk) 146ijk
I to vi

vit #VM&Vk
I
I Vector merge of (Vk) and zero 146iOk
I to vi
I

vi vj!Vk&VMI Vector merge of (Vj) and (Vk) 147ijk
I to vi
I

t Special CAL syntax

Instruction 140ijk forms the logical products of the contents of Sj
and the contents of elements of vk and enters the results into elements
of vi. If the j designator is 0, elements of register vi are zeroed.
The number of operations performed by this instruction is determined by
the contents of the VL register.

SR-0085 3-67

INSTRUCTIONS 140 - 141 (continued)

Instruction 141ijk forms the logical products of the contents of
elements of register Vj and elements of register vk and enters the
results into elements of vi. If the j designator is the same as the
k designator, the contents of the vj elements are transmitted to the
vi elements.

The number of operations performed by this instruction is determined by
the contents of the VL register.

Instruction 142ijk forms the logical sums of the contents of Sj and
the contents of elements of vk and enters the results into elements of
vi. The contents of the vk elements are transmitted to the vi elements
if the j designator is O. The VL register determines the number of
operations performed by this instruction.

Instruction 142iOk transmits the contents of the elements of register
vk to the elements of register vi. The VL register determines the
number of elements performed by this instruction.

Instruction 143ijk forms the logical sums of the contents of elements
of Vj and elements of vk and enters the results into elements of vi.

If the j and k designators are equal, the contents of the Vj elements
are transmitted to vi. The VL register determines the number of
operations performed by this instruction.

Instruction 144ijk forms the logical differences of the contents of Sj
and the contents of elements of vk and enters the results into elements
of vi. If the j designator is 0, the contents of the Vk elements
are entered into the vi elements. The VL register determines the
number of operations performed by this instruction.

Instruction 145ijk forms the logical differences of the contents of
elements of vj and elements of vk and enters the results into elements
of vi. If the j and k designators are equal, the vi elements are
zeroed. The VL register determines the number of operations performed
by this instruction.

Instruction 145iii zeros elements of vi. The VL register determines
the number of elements performed by this instruction.

Instruction 146ijk transmits the contents of Sj or the contents of
element n of vk to element n of vi depending on the ones mask in the
VM register. The content of Sj is transmitted if bit n of VM is 1; the
content of element n of vk is transmitted if bit n of VM is O.

SR-0085 3-68

INSTRUCTIONS 140 - 147 (continued)

Element n of vi is 0 if the j designator is 0 and bit n of VM is 1.
The VL register determines the number of operations performed by this
instruction.

Instruction 146iOk zeroes element n of register vi or transmits the
contents of element n of vk to element n of vi depending on the ones
mask in the VM register. If bit n of VM is 1, element n of vi is
zeroed; if bit n is 0, element n of vk is transmitted. The VL register
determines the number of operations performed by this instrction.

Instruction 147ijk transmits the contents of element n of Vj or element
n of vk to element n of vi depending on the ones mask in the VM
register. The content of the vj element is transmitted if bit n of VM is
1; the content of the vk element is transmitted if bit n of VM is O. The
VL register determines the number of operations performed by this
instruction.

Instructions 140ijk through 147ijk execute in the Vector Logical
functional unit.

For these instructions (except 145iii), a warning level message is
issued if the logical trait VRECUR is specified on the CPU parameter of
the CAL invocation statement and either i=j or i=k (for V registers
only). A comment level message is issued of NOVRECUR is specified on the
CPU parameter of the CAL invocation statement.

Examples:

Code generated Location Result I Operand Comment
1 10 120 35

I
140123 V1 IS2&V3

I
141257 V2 IV5&V7

I
141033 VO V3&V3

142615 V6 Sl!V5

142102 V1 V2

143714 V7 Vl!V4

144267 V2 S6\V7

145513 V5 V1\V3

145500 V5 0

SR-0085 3-69

INSTRUCTIONS 140 - 147 (continued)

Examples: (continued)

I Code generated I Location I Resul t I Operand I Comment

1===================-==~1~1b======='~1~0~========~12~0~============~1~3~5============
I I 1 1 1
1146726 1 I V7 1 S2 !V6&VM 1

For the above instruction, assume the following initial register
conditions exist:

(VL) = 4
(VM) = 0 60000 0000 0000 0000 0000
(S2) = -1

Element a of V6 = 1
Element 1 of V6 = 2
Element 2 of V6 = 3
Element 3 of V6 = 4

After instruction execution, the first four elements of V7 are modified
as follows:

Element a of V7 = 1
Element 1 of V7 = -1
Element 2 of V7 = -1
Element 3 of V7 = 4

The remaining elements of V7 are unaltered.

Examples: (continued)

1 Code generated I Location I Resul t I Operand I Comment

1====================='~1~====~1~10~========'~20~==========~13~5~==========
I 1 1 1 1
1146607 1 IV6 I#VM&V7 1

Assume the following initial register conditions for the above
instruction:

(VL) = 4
(VM) = 0 50000 0000 0000 0000 0000

Element 0 of V7 = 1
Element 1 of V7 = 2
Element 2 of V7 = 3
Element 3 of V7 = 4

SR-0085 3-70

INSTRUCTIONS 140 - 147 (continued)

After instruction execution, the first four elements of V6 have been
modified as follows:

Element 0 of V6 = 1
Element 1 of V6 = 0
Element 2 of V6 = 3
Element 3 of V6 = 0

Examples: (continued)

ICode generated I LocationlResult I Operand I Comment

1======================~1~1========1~1~0~========21~2~0==============~1~3~5=============
I I I I I
1147123 I IV! IV2!V3&VM I

Assume the following initial register conditions exist for the above
instruction:

(VL) = 4
(VM) = 0 60000 0000 0000 0000 0000

Element 0 of V2 = 1
Element 1 of V2 = 2
Element 2 of V2 = 3
Element 3 of V2 = 4
Element 0 of V3 = -1
Element 1 of V3 = -2
Element 2 of V3 = -3
Element 3 of V3 = -4

After instruction execution, the first four elements of vi have been
modified as follows:

Element 0 of V1 = -1
Element 1 of V1 = 2
Element 2 of V1 = 3
Element 3 of V1 = -4

The remaining elements of V1 are unaltered.

SR-0085 3-71

INSTRUCTIONS 150 - 151

Result Operand Description Machine
Instruction

vi Vj<Ak Shift (Vj) left (Ak) places 150ijk
to vi

Vit Vj<l Shift (vj) left one place to vi 150ijO

vi Vj>Ak Shift (Vj) right (Ak) places 151ijk
to vi

Vit Vj>l Shift (Vj) right one place to vi 151ijO

t Special CAL syntax

Instruction 150ijk and its special form shift the contents of the
elements of register Vj to the left by the amount specified by the
contents of Ak and enter the results into the elements of vi. The VL
register determines the number of elements performed by this
instruction. For each element, the shift is end off with zero fill.
Elements of vi are zeroed if the shift count exceeds 63. Element
contents are shifted left one place if the k designator is 0; this can
be specified through the special form of the instruction.

Instruction 151ijk and its special form shift the contents of the
elements of register vj to the right by the amount specified by the
contents of Ak and enter the results into the elements of vi. The VL
register determines the number of elements performed by this
instruction. For each element, the shift is end off with zero fill.
Elements of vi are zeroed if the shift count exceeds 63. Element
contents are shifted right one place if the k designator is 0; a
special form of the instruction accommodates this feature.

Instructions 150ijk and 151ijk execute in the Vector Shift functional
unit.

Example:

ICode generated I LocationlResult I Operand I Comment

1=======================*1~1========1~1~0~========~1~2~0==============~13~5~===========
1 1 I 1 1
1150123 1 IV1 IV2<A3 1
1 1 1 1 1
1150450 I IV4 IV5<1 I; Left 1 place

SR-0085 3-72

INSTRUCTIONS 150 - 151 (continued)

Examples: (continued)

ICode generated I Locationl Result I Operand I Comment
1== __ ====~==========~11~=====*1_19&========-12~9&======= __ ==~1~3~5== __ ==== __ ~
I I I I I
1151341 I IV3 IV4>A1 1
1 I I I 1
1151450 I IV4 IV5>1 I; Right 1 place

SR-0085 3-73

INSTRUCTIONS 152 - 153

I
Result Operand I Description Machine

I Instruction
I

I
vi Vj,Vj<Akl Double shift (Vj) left (Ak) 152ijk

I places to vi
I

Vj,vj<1 I Double shift (Vj) left one place 152ijO
I to vi
I

vi Vj,vj>Akl Double shift (Vj) right (Ak) 153ijk
I places to vi
I

Vj,Vj>1 I Double shift (vj) right one 153ijO
I place to vi
I

t Special CAL syntax

Instruction 152ijk and its special form shift 128-bit quantities from
elements of Vj by the amount specified in Ak and enter the result
into elements of vi. Element n of Vj is concatenated with element
n+1 and the 128-bit quantity is shifted left by the amount specified in
Ak. The shift is end off with zero fill. The high-order 64 bits of
the results are transmitted to element n of vi.

The VL register determines the number of elements performed by this
instruction. The last element of Vj, as determined by VL, is
concatenated with 64 bits of zeros. The 128-bit quantities are shifted
left one place if the k designator is 0; the special form of the
instruction accommodates this feature.

Instruction 153ijk and its special form shift 128-bit quantities from
elements of Vj by the amount specified in Ak and enter the result
into elements of vi. Element n-1 of vj is concatenated with
element n and the 128-bit quantity is shifted right by the amount
specified in Ak. The shift is end off with zero fill. The low-order
64 bits are transmitted to element n of vi.

The VL register determines the number of elements performed by this
instruction. The first element of Vj is concatenated with 64 bits of
zeros. The 128-bit quantities are shifted right one place if the k
designator is 0; the special form of the instruction accommodates this
feature.

Instructions 152ijk and 153ijk execute in the Vector Shift functional
unit.

SR-0085 3-74

INSTRUCTIONS 152 - 153 (continued)

Example:

ICode generated ILocationlResult I Operand I Comment

1=====================1~1~====~11~0~========1~20~==========~13~5~==========
I I I 1 I
1152541 1 IV5 IV4,V4<A1 1

Assume the following initial register conditions for the above
instruction:

(VL) = 4
(AI) = 3

Element 0 of V4 = a 00000 0000 0000 0000 0007
Element 1 of V4 = 0 60000 0000 0000 0000 0005
Element 2 of V4 = 1 00000 0000 0000 0000 0006
Element 3 of V4 = 1 60000 0000 0000 0000 0007

After instruction execution, the first four elements of V5 have been
modified as follows:

Element a of V5 = 0 00000 0000 0000 0000 0073
Element 1 of V5 = a 00000 0000 0000 0000 0054
Element 2 of V5 = 0 00000 0000 0000 0000 0067
Element 3 of V5 = 0 00000 0000 0000 0000 0070

The remaining elements of V5 are unaltered.

SR-0085 3-75

INSTRUCTIONS 152 - 153 (continued)

Example:

ICode generated I Locationl Result I Operand I Comment

'======================1~1~======1~1~0=========d1~2~0==============1~3~5============
I I I I I
1153026 I IVa IV2,V2>A6 I

Assume the following initial register conditions for the above
instruction.

(VL) = 4
(A6) = 3

Element a of V2 = a 00000 0000 0000 0000 0017
Element 1 of V2 = a 60000 0000 0000 0000 0005
Element 2 of V2 = 1 00000 0000 0000 0000 0006
Element 3 of V2 = 1 60000 0000 0000 0000 0007

After instruction execution, the first four elements of va have been
modified as follows:

Element a of va = a 00000 0000 0000 0000 0001
Element 1 of va = 1 66000 0000 0000 0000 0000
Element 2 of va = 1 30000 0000 0000 0000 0000
Element 3 of va = 1 56000 0000 0000 0000 0000

The remaining elements of va are unaltered.

SR-0085 3-76

INSTRUCTIONS 154 - 157

Result Operand Description Machine
Instruction

vi Sj+Vk Integer sums of (Sj) and (Vk) 154ijk
to vi

vi Vj+Vk Integer sums of (Vj) and (Vk) 155ijk
to vi

vi Sj-Vk Integer differences of (Sj) and 156ijk
(Vk) to vi

vit -vk Transmit twos complement of (Vk) 156iOk
to vi

vi Vj-Vk Integer differences of (Vj) less 157ijk
(Vk) to vi

t Special CAL syntax

Instruction 154ijk adds the contents of Sj to each element of vk
and enters the results into elements of vi. Elements of vk are
transmitted to vi if the j designator is o.

The VL register determines the number of operations performed by this
instruction.

Instruction 155ijk adds the contents of elements of register Vj to
the contents of corresponding elements of register vk and enters the
results into elements of register vi.

The VL register determines the number of operations performed by this
instruction.

Instruction 156ijk subtracts the contents of each element of vk from
the contents of register Sj and enters the results into elements of
register vi. The negative (twos complement) of each element of vk is
transmitted to vi if the j designator is o.

The VL register determines the number of operations performed by this
instruction.

SR-0085 3-77

INSTRUCTIONS 154 - 157 (continued)

Instruction 156iOk transmits the twos complement of the contents of
elements of register vk to the elements of register vi. The VL register
determines the number of elements performed by this instruction.

Instruction 157ijk subtracts the contents of elements of register vk
from the contents of corresponding elements of register Vj and enters
the results into elements of register vi.

The VL register determines the number of operations performed by this
instruction.

Instructions 154ijk through 157ijk execute in the Vector Integer Add
functional unit.

Example:

Code generated Location Result Operand Comment
1 10 20 35

154213 V2 S1+V3

155456 V4 V5+V6

156712 V7 S1-V2

156102 V1 -V2

157345 V3 V4-V5

SR-0085 3-78

INSTRUCTIONS 160 -167

Result Operand Description Machine
Instruction

vi Sj*FVk Floating-point products of (Sj) 160ijk
and (Vk) to vi

vi Vj*FVk Floating-point products of (Vj) 161ijk
and (Vk) to vi

vi Sj*HVk Half-precision rounded 162ijk
floating-point products of (Sj)
and (Vk) to vi

vi Vj*HVk Half-precision rounded 163ijk
floating-point products of (Vj)
and (Vk) to vi

vi Sj*RVk Rounded floating-point products 164ijk
of (Sj) and (Vk) to vi

vi Vj*RVk Rounded floating-point products 165ijk
of (Vj) and (Vk) to vi

vi Sj*IVk 2-floating-point products of 166ijk
(Sj) and (Vk) to vi

vi Vj*IVk 2-floating-point products of 167ijk
(vj) and (Vk) to vi

Instruction 160ijk forms the floating-point products of the contents of
Sj and elements of vk and enters the results into elements of vi. The
results are not normalized if either operand is unnormalized. The number
of operations performed is determined by the contents of the VL register.

Instruction 161ijk forms the floating-point products of the contents of
elements of Vj and elements of vk and enters the results into elements
of vi. The results are not normalized if either operand is unnormalized.
The number of operations performed is determined by the contents of the
VL register.

SR-0085 3-79

INSTRUCTIONS 160 -167 (continued)

Instruction 162ijk forms the half-precision rounded floating-point
products of the contents of the Sj register and the contents of
elements of the vk register and enters the results into elements of
vi. The results are not normalized if either operand is unnormalized.
The low-order 18 bits of the results are zeroed.

The number of operations performed by this instruction is determined by
the contents of the VL register. This instruction can be used in a
divide algorithm when only 30 bits of accuracy are required.

Instruction 163ijk forms the half-precision rounded floating-point
products of the contents of elements of the vj register and elements of
the vk register and enters the results into elements of vi. The
results are not normalized if either operand is unnormalized. The
low-order 18 bits of the results are zeroed.

The VL register determines the number of operations performed by this
instruction. This instruction can be used in a divide algorithm when
only 30 bits of accuracy are required.

Instruction 164ijk forms the rounded floating-point products of the
contents of the Sj register and the contents of elements of vk and
enters the results into elements of vi. The results will not be
normalized if either operand is unnormalized. The VL register determines
the number of operations performed by this instruction.

Instruction 165ijk forms the rounded floating-point products of the
contents of elements of Vj and elements of vk and enters the results
into elements of vi. The results will not be normalized if either
operand is unnormalized. The VL register determines the number of
operations performed by this instruction.

Instruction 166ijk forms 2 minus the floating-point products of the
contents of Sj and the contents of elements of vk and enters the
results into elements of vi. The results are not normalized if either
operand is unnormalized. The VL register determines the number of
operations performed by this instruction.

Instruction 167ijk forms 2 minus the floating-point products of
contents of elements of Vj and elements of vk and enters the results
into elements of vi. The results are not normalized if either operand
is unnormalized. This instruction is used in the divide sequence. The
VL register determines the number of operations performed by this
instruction.

Instructions 160ijk through 167ijk execute in the Floating-point
Multiply functional unit.

SR-0085 3-80

INSTRUCTIONS 160 -167 (continued)

Example:

Code generated Location I Result I Operand Comment
1 110 120 35

I I
160627 IV6 IS2*FV7

I I
161123 V1 V2*FV3

162456 V4 S5*HV6

163712 V7 V1*HV2

164314 V3 Sl*RV4

165567 V5 V6*RV7

166123 V1 S2*IV3

161456 V4 V5*IV6

SR-0085 3-81

Result Operand

vi Sj+FVk

Vit +FVk

vi Vj+FVk

vi Sj-FVk

Vit -Fvk

vi Vj-FVk

t Special CAL syntax

INSTRUCTION 170 - 173

Description

Floating-point sums of (Sj) and
(Vk) to vi

Normalize (Vk) to vi

Floating-point sums of (vj) and
(Vk) to vi

Floating-point differences of
(Sj) less (Vk) to vi

Transmit normalized negative of
(Vk) to vi

Floating-point differences of
(Vj) less (Vk) to vi

Machine
Instruction

170ijk

170iOk

171ijk

172ijk

172iOk

173ijk

Instruction 170ijk forms the floating-point sums of the contents of
Sj and elements of register vk to elements of register vi. The results
are normalized even if the operands are unnormalized. The VL register
determines the number of operations performed by this instruction.

The special form of the instruction (170iOk) normalizes the contents
of the elements of vk and enters the results into elements of vi.

Instruction 171ijk forms the floating-point sums of the contents of
elements of Vj and elements of vk and enters the results into the
elements of register vi. The results are normalized even if the
operands are unnormalized. The number of operations performed is
determined by the contents of the VL register.

Instruction 172ijk forms the floating-point differences of the contents
of Sj and elements of register vk and enters the results into register
vi. The results are normalized even if the operands are unnormalized.
The negatives (twos complements) of floating-point quantities in elements
of vk are transmitted to vi if the j designator is o. The special
form (172iOk) accommodates this special case. The number of
operations performed is determined by the contents of the VL register.

SR-0085 3-82

INSTRUCTION 170 - 173 (continued)

Instruction 173ijk forms the floating-point differences of the contents
of elements of register Vj less the contents of elements of registers
vk and enters the results into elements of register vi. The results
are normalized even if the operands are unnormalized. The VL register
determines the number of operations performed by this instruction.

Instructions 170ijk through 173ijk execute in the Floating-point Add
functional unit.

Example:

Code generated Location Result
1 10

170712 V7

170501 V5

171234 V2

172516 V5

173712 V7

SR-0085 3-83

Operand
20

S1+FV2

+FV1

V3+FV4

S1-FV6

V1-FV2

Comment
35

Normalize (V1)
to V5

Result Operand

vi IHVj

INSTRUCTION 174

Description

Floating-point reciprocal
approximation of (Vj) to vi

Machine
Instruction

174ijO

Instruction 174ijO forms the approximations to the reciprocals of the
floating-point values in elements of Vj and enters the results into
elements of vi. The results are meaningless if the contents of elements
are unnormalized or O. This instruction is used in the divide sequence.
The VL register determines the number of operations performed by this
instruction.

Instruction 174ijO executes in the Floating-point Reciprocal functional
unit.

Example:

Code generated

174320

161413

167532

161645

174320

165613

174320

160413

167532

161645

SR-0085

Location
1

*
*

*
*

*

Result I Operand I Comment
10 120 135

I I
Divide elements of V1 by elements of V2;
Result to V6
V3 I/HV2

I
V4 IV1*FV3

I
V5 IV3*IV2

I
V6 IV4*FV5

I
Divide elements of V1 by elements of V2;
Results accurate to 30 bits, result to V6
V3 I/HV2

I
V6 IV1*HV3

I
Divide 81 by elements of V2; Result to V6
V3 I/HV2

V4

V5

V6

3-84

I
IS1*FV3

I
IV3*IV2

I
IV4*FV5

I
I
I

Result Operand

INSTRUCTIONS 174ij1 - 174ij2

Description Machine
Instruction

I==========z==
I
I Vit
I
I
I

PVj

QVj

Population count of (vj) to (Vi)

Population count parity of (Vj)
to (Vi)

174ij1

174ij2

I __________ ~--------~------------------------------~--------------
t Vector Population Count (optional on CRAY-1 Models A and B)

Instruction 174ij1 counts the number of 1 bits in the elements of
register Vj and enters the result into the elements of register vi.
The VL register determines the number of elements performed by this
instruction.

Instruction 174ij2 enters a 0 or 1 into the elements of vi depending
on whether the elements of Vj have an even or odd number of 1 bits. A
o is entered into element n of vi if there is an even number of I-bits
in element n of Vj; a 1 is entered into element n of vi if there is an
odd number of 1 bits in element n of vj. The number of elements involved
is determined by the VL register.

Instructions 174ij1 and 174ij2 execute in the Reciprocal Approximation
functional unit.

Example:

I Code generated 1 LocationlResult IOEerand I Comment
I 11 11Q I~Q 135
I I I I I
1174311 I IV3 IPVI I ; Pop count
I I I I I ; V1 to V3
I I I I I
1174522 I IV5 IQV2 I ; Pop count

of

I I I I I ; parity of V2
I I I I I ; to V5

SR-0085 3-85

INSTRUCTION 175

Result Operand Description Machine
Instruction

VM Vj,Z Set VM bits for zero elements of 1750jO
Vj

VM Vj,N Set VM bits for nonzero elements 1750j1
of Vj

VM vj,p Set VM bits for positive 1750j2
elements of Vj

VM vj,M Set VM bits for negative 1750j3
elements of Vj

Vi,VMt vj,Z Set VM bits and register vi 175ij4
to Vj, for zero elements of Vj

Vi,VMt Vj,N Set VM bits and register vi to 175ij5
vj, for nonzero elements of Vj

Vi,VMt Vj,p Set VM bits and register vi to 175ij6
Vj, for positive elements of vj

Vi,VMt Vj,M Set VM bits and register vi to 175ij7
Vj, for negative elements of vj

t CRAY X-MP Computer Systems only

Instructions 1750jO through 1750j3 create a mask in the VM register.
The 64 bits of the VM register correspond to the 64 elements of Vj.
Elements of Vj are tested for the specified condition. If the
condition is true for an element, the corresponding bit is set to 1 in
the VM register. If the condition is not true, the bit is zeroed.

The number of elements tested is determined by the contents of the VL
register; however, the entire VM register is zeroed before elements of
vj are tested. If the contents of an element is 0, it is considered
positive. Element 0 corresponds to bit 0, element 1 to bit 1, and so on,
from left-to-right in the register.

Instructions 175ij4 through 175ij7 create an identical vector mask as
in the above instructions, and in addition create a compressed index list
in register vi based on the results of testing the contents of the
elements of register Vj.

SR-0085 3-86

INSTRUCTION 175 (continued)

These instructions execute in the Vector Logical functional unit.

Example:

ICode generated Comment Location Result Operand
1 10 20 1====================~======~~========~==========~~3~5===========

1
1175050
1
1175061
1
1175072
1
1175013

SR-0085

VM

VM

VM

VM

V5,Z

V6,N

V7,P

V1,M

3-87

Result Operand

vi ,AO,Ak

,AO,1

,AO,Vk

,AO,Ak Vj

,AO,1 Vj

,AO,Vktt vj

t Special CAL syntax

INSTRUCTIONS 176 - 177

Description

Read from memory starting at
(AO) increased by (Ak) and load
into vi

Read from consecutive memory
addresses starting with (AO)
and load into vi

Read from memory using memory
address (AO) + (Vk) and load
into vi

Store (Vj) to memory starting
at (AO) increased by (Ak)

Store (Vj) to memory in
consecutive addresses starting
with (AO)

Store (vj) to memory using
memory address (AO) + (Vk)

tt CRAY X-MP Computer Systems only

Machine
Instruction

176iOk

176iOO

176ilk

1770jk

1770jO

1771jk

Instruction 176iOk and 176iOO load words into elements of register
vi directly from memory. AO contains the starting memory address. This
address is increased by the contents of register Ak for each word
transmitted. The contents of Ak can be positive or negative allowing
both forward and backward streams of references. If the k designator
is 0 or if 1 replaces Ak in the operand field of the instruction, the
address is increased by 1.

The number of elements transferred is determined by the contents of the
VL register.

For instruction 176i1k, register elements begin with 0 and are increased
by 1 for each transfer. The low-order 24 bits of each element of vk
contain a signed 24-bit integer which is added to (AO) to obtain the
current memory address.

SR-0085 3-88

INSTRUCTIONS 116 - 117 (continued)

The VL register determines the number of words transferred.

Instructions 1770jk and 1770jO store words from elements of register
Vj directly into memory. AO contains the starting memory address.
This address is increased by the contents of register Ak for each word
transmitted. The contents of Ak can be positive or negative allowing
both forward and backward streams of references. If the k designator
is 0 or if 1 replaces Ak in the result field of the instruction, the
address is increased by 1.

The VL register determines the number of elements transferred.

For instruction 1771jk, register elements begin with 0 and are increased
by 1 for each transfer. The low-order 24 bits of each element of Vk
contains a signed 24-bit integer which is added to (AO) to obtain the
current memory address.

The VL register determines the number of elements transferred.

Example:

ICode generated Comment

1====================~======~~======~~===========d~3~5===========
1
1176201

1
1176500

1
1177032

1
1177030

SR-0085 3-89

APPENDIX SECTION

SYMBOLIC INSTRUCTION
SUMMARY

A

This appendix contains two (CRAY X-MP and CRAY-l) symbolic instructions
summary charts. It also lists the functional units for both the CRAY X-MP
and CRAY-1 Computer Systems.

A.l FUNCTIONAL UNITS

Instructions other than simple transmits or control operations are
performed by specialized hardware known as functional units. Each unit
implements an algorithm or a portion of the instruction set. For more
information on Functional Units, refer to the appropriate hardware
reference manual.

Clock Periods
Functional Unit CRAY-1

Address Integer Add 2
Address Integer Multiply 6
Scalar Integer Add 3
Scalar Logical 1
Scalar Shift 2

3
Scalar Pop/Parity/ 4t

Leading Zero 3
Vector Integer Add 3
Vector Logical 2
Second Vector Logical
Vector Shift 4

Vector Pop/Parity 6t
Floating-point Add 6
Floating-point Multiply 7
Floating-point Reciprocal 14
Memory (Scalar) 11tt

Memory (Vector) 7,r,r

t Only with vector population
tt For Serial 1: scalar 10, vector 6
ttt 2-and 4-processor X-MP
~ Single-processor X-MP
,r,r For CRAY -1 M Series: 8, 9, or 10

SR-0085 A-1

CRAY X-MP

2
4
3
1
2
3
4
3
3
2
4
3
4
5
6
7

14
14ttt
17,r

Instructions

030, 031
032
060, 061
042-051
052-055
056, 057
026
027
154-157
140-147, 175
140-145
150, 151, 153
152
174ij1, 174ij2
062, 063, 170-173
064-067, 160-167
070, 174ijO
100-130
100-130
176, 177

A.2 CRAY-l SYMBOLIC MACHINE INSTRUCTIONS

LOGICAL OPERATIONS

Si Sj&Sk vi Sj&Vk vi vj&Vk
Si Sj&SB
Si SB&Sj

Si #Sk&Sj
Si #SB&Sj

Si Sj!Sk vi Sj!Vk vi Vj!Vk
Si Sj!SB
Si SB!Sj

Si Sj\Sk vi Sj\Vk vi vj\Vk
Si Sj\SB
Si SB\Sj

Si #Sj\Sk
Si #Sj\SB
Si #SB\Sj

VM Vj,Z
VM Vj,N
VM vj,p
VM Vj,M

Si Sj!Si&Sk
Si Sj!Si&SB vi Sj!Vk&VM vi Vj!Vk&VM

vi #VM&Vk

FLOATING-POINT OPERATIONS

EFI
DFI

Si Sj+FSk vi Sj+FVk vi Vj+FVk
Si +FSk vi +Fvk

Si Sj-FSk vi Sj-FVk vi Vj-FVk
Si -FSk vi -Fvk

Si Sj*FSk vi Sj*FVk vi vj*FVk
Si Sj*HSk vi Sj*HVk vi Vj*HVk
Si Sj*RSk vi Sj*RVk vi Vj*RVk
Si Sj*ISk vi Sj*IVk vi Vj*IVk
Si IHSj vi IHVj

SR-0085 A-2

SHIFT INSTRUCTIONS REGISTER ENTRY INSTRUCTIONS

SO Si<exp SO Si>exp Ai exp Si <exp
Si Si<exp si Si>exp Ai -1 Si i>exp

Si Si,Sj<Ak Si Sj,Si>Ak Si >exp
Si Si,Sj<1 si Sj,Si>1 si exp Si i<exp
si Si<Ak Si Si>Ak

Si 0 Si sa
vi Vj<Ak vi Vj>Ak Si 1 si iSB
vi Vj<1 vi vj>1 si -1

si 1 Vi,Ak 0
vi vj,Vj<Ak vi Vj,Vj>Ak Si 2 vi 0
vi vj,Vj<1 vi Vj,Vj>1 si 4 Si 0.4

Si 0.6
_________________ 1 _________

PROGRAM BRANCHES AND EXITS BIT COUNT INSTRUCTIONS

J exp
J Bjk

JAZ exp
JAN exp
JAP exp
JAM exp

R exp

EX
EX exp

PASS

Ai
Ai
Ai
Ai
Ai

si
Si

SR-0085

JSZ exp
JSN exp
JSP exp
JSM exp

ERR
ERR exp

Ai PSj
Ai QSj
Ai ZSj

vi PVj
vi Qvj

MONITOR OPERATIONS

CA,Aj Ak ceI
CL,Aj Ak ECI
CI,Aj DCI

XA Aj
RT Sj
PCI Sj

_1 ________ _

INTEGER ARITHMETIC OPERATIONS

Aj+Ak
Aj+1
Aj-Ak
Aj-1
Aj*Ak

Sj+Sk vi Sj+Vk vi vj+Vk
Sj-Sk vi Sj-Vk vi vj-Vk

A-3

INTER-REGISTER TRANSFERS

Ai Ak Si Sk
Ai -Ak Si -Sk

Si #Sk
Ai Sj Si Ak

Si +Ak
Si +FAk

Ai Bjk Si Tjk

Ai CI Si Vj,Ak
Ai CA,Aj Si VM
Ai CE,Aj Si RT

Bjk Ai Tjk Si

vi vk
vi -vk
Vi,Ak Sj

VL Ak VM Sj
VL 1 VM 0

MEMORY TRANSFERS

(store)
,AO Bjk,Ai
O,AO Bjk,Ai

,AO Tjk,Ai
,AO Tjk,Ai

exp,Ah Ai
exp,O Ai
exp, Ai
,Ah Ai

exp,Ah Si
exp,O Si
exp, Si
,Ah Si

,AO,Ak vj
,AO,l vj

(load)
Bjk,Ai ,AO
Bjk,Ai O,AO

Tjk,Ai ,AO
Tjk,Ai O,AO

Ai exp,Ah
Ai exp,O
Ai exp,
Ai ,Ah

Si exp,Ah
Si exp,O
Si exp,
Si ,Ah

vi ,AO,Ak
vi ,AO,l

__________________ 1 _________________ _

REGISTER VALUE LOGICAL OPERATORS

Ah, h=O 0 & 0101
AND 1100

Ai, i=O (AD) 0100

Aj, j=O 0
0101

Ak, k=O 1 OR 1100
1101

Si, i=O (SO)

Sj, j=O 0 \ 0101
XOR 1100

Sk, k=O 263 1001

SR-0085 A-4

A.3 CRAY X-MP SYMBOLIC MACHINE INSTRUCTIONS

LOGICAL OPERATIONS

Si Sj&Sk vi Sj&Vk vi Vj&Vk
si Sj&SB
si SB&Sj

Si iSk&Sj
Si iSB&Sj

si Sj!Sk vi Sj!Vk vi vj!Vk
Si Sj!SB
Si SB!Sj

si Sj\Sk vi Sj\Vk vi Vj\Vk
Si Sj\SB
Si SB\Sj

Si iSj\Sk
Si iSj\SB
Si iSB\Sj

VM Vj,Z Vi,VM vj,Z
VM Vj,N Vi,VM Vj,N
VM Vj,p Vi,VM Vj,p
VM Vj,M Vi,VM Vj,M

Si Sj!Si&Sk
Si Sj!Si&SB vi Sj!Vk&VM vi Vj!Vk&VM

vi iVM&Vk

FLOATING-POINT OPERATIONS

EFI
DFI

Si Sj+FSk vi Sj+FVk vi Vj+FVk
Si +FSk vi +Fvk

Si Si.-FSk vi Sj-FVk vi Vj-FVk
Si -FSk vi -FVk

Si Sj*FSk vi Sj*FVk vi Vj*FVk
Si Sj*HSk vi Sj*HVk vi Vj*HVk
Si Sj*RSk vi Sj*RVk vi vj*RVk
Si Sj*ISk vi Sj*IVk vi vj*IVk
Si IHSj vi IHVj

SR-0085 A-5

SHIFT INSTRUCTIONS REGISTER ENTRY INSTRUCTIONS

SO Si<exp SO Si>exp Ah exp Si <exp
Si Si<exp Si Si>exp Ai -1 Si #>exp

Si >exp
Si Si,Sj<Ak Si Sj,Si>Ak Si exp Si #<exp
Si Si,Sj<l Si Sj,Si>1
Si Si<Ak Si Si>Ak Si 0 Si SB

Si 1 Si #SB
vi Vj<Ak vi Vj>Ak Si -1
vi Vj<1 vi Vj>1 Si 1 Vi,Ak 0

Si 2 vi 0
vi Vj,Vj<Ak vi Vj,Vj>Ak Si 4
vi Vj,Vj<l vi Vj,Vj>1 Si 0.4 SMjk 1,TS

Si 0.6 SMjk 0
SMjk 1

_________________ 1 _________________

PROGRAM BRANCHES AND EXITS

J exp
J Bjk

JAZ exp
JAN exp
JAP exp
JAM exp

R exp

EX
PASS

JSZ exp
JSN exp
JSP exp
JSM exp

ERR

BIT COUNT INSTRUCTIONS

Ai PSj
Ai QSj
Ai ZSj

vi PVj
vi QVj

MONITOR OPERATIONS

CA,Aj Ak CCI
CL,Aj Ak ECI
CI,Aj DCI
MC,Aj ERI
XA Aj DRI
RT Sj CLN exp
PCI Sj
SIPI exp
SIPI
CIPI

_________________ 1 ________________ _

INTEGER ARITHMETIC OPERATIONS

Ai Aj+Ak
Ai Aj+1
Ai Aj-Ak
Ai Aj-1
Ai Aj*Ak

Si Sj+Sk vi Sj+Vk vi Vj+Vk
Si Sj-Sk vi Sj-Vk vi Vj-Vk

SR-0085 A-6

INTER-REGISTER TRANSFERS MEMORY TRANSFERS

Ai Ak Si Sk DBM
Ai -Ak Si -Sk EBM

Si ISk CMR
Ai Sj Si Ak

Si +Ak (store) (load)
Ai VL Si +FAk ,AO Bjk,Ai Bjk,Ai ,AO

O,AO Bjk,Ai Bjk,Ai O,AO
Ai Bjk Si Tjk
Ai SBj Si STj ,AO Tjk,Ai Tjk,Ai ,AO

O,AO Tjk,Ai Tjk,Ai O,AO
Ai CI Si Vj,Ak
Ai CA,Aj Si VM exp,Ah Ai Ai exp,Ah
Ai CE,Aj Si RT exp,O Ai Ai exp,O

Si SM exp, Ai Ai exp,
Si SRj ,Ah Ai Ai ,Ah

Bjk Ai Tjk Si exp,Ah Si Si exp,Ah
SBj Ai STj Si exp,O Si Si exp,O

exp, Si Si exp,
vi vk ,Ah Si si ,Ah
vi -vk
Vi,Ak Sj ,AO,Ak Vj vi ,AO,Ak

VL Ak VM Sj ,AO,1 Vj vi ,AO,l
VL 1 VM 0

,AO,Vk Vj vi ,AO,Vk
SM si

_________________ 1 ___________________

REGISTER VALUE LOGICAL OPERATORS

Ah, h=O 0 & 0101
AND 1100

Ai, i=O (AO) 0100

Aj, j=O 0
0101

Ak, k=O 1 OR 1100
1101

si, i=O (SO)

Sj, j=O 0 \ 0101
XOR 1100

Sk, k=O 263 1001

SR-0085 A-7

FUNCTIONAL INSTRUCTION
SUMMARY

B

This appendix contains an instruction summary, listed by function, for
CRAY X-MP and CRAY-l Computer Systems. A detailed description may be
found on the referenced pages.

B.l REGISTER ENTRY INSTRUCTIONS

Instructions in this category provide for entering values such as
constants, expression values, or masks directly into registers.

B.1.1 ENTRIES INTO A REGISTERS

Machine
Instruction

01hijkmt

020ijkm or
021ijkm or
022ijk

031iOOtt

CAL

Ah exp

Ai exp

Ai -1

B.1.2 ENTRIES INTO S REGISTERS

Machine
Instruction

040ijkm or
041ijkm

042ioott

CAL

Si exp

Si -1

Description

Transmit ijJcm to Ah, where the
high-order bit of i is 1

Enter exp into Ai

Enter -1 into Ai

Description

Enter exp into si

Enter -1 into Si

t CRAY X-MP Computer Systems only
tt Special CAL syntax

SR-0085 B-1

3-23

3-24

3-30

3-37

3-38

Machine
Instruction CAL

042ijk Si <exp

042ijkt Si #>exp

042i77t Si 1

043iOOt Si 0

043ijk si >exp

043ijkt Si #<exp

047ioot Si #SB

051iOot Si SB

011i30 Si 0.6

011i40 Si 0.4

011i50 Si 1.

071i60 Si 2.

011i70 Si 4.

B.1.3 ENTRIES INTO V REGISTERS

Machine
Instruction

077iOkt

145iiit

CAL

Vi,Ak 0

vi 0

t Special CAL syntax

SR-0085

Description

Form ones mask in si from right

Form zeros mask in si from left

Enter 1 into Si

Clear Si

Form ones mask in Si from left

Form zeros mask in si from
right

Enter ones complement of sign
bit in Si

Enter sign bit into si

Enter 0.75*(2**48) into Si
as normalized floating-point
constant

Enter 0.5 into Si as normalized
floating-point constant

Enter 1 into Si as normalized
floating-point constant

Enter 2 into Si as normalized
floating-point constant

Enter 4 into Si as normalized
floating-point constant

Description

Clear element (Ak) of register
vi

Clear vi

B-2

Page

3-38

3-38

3-38

3-38

3-38

3-38

3-41

3-41

3-51

3-51

3-51

3-51

3-51

3-62

3-61

B.1.4 ENTRIES INTO SEMAPHORE REGISTER

Machine
Instruction

0034jkt

0036jkt

0037jkt

CAL

SMjk 1,TS

SMjk 0

SMjk 1

Description

Test and set semaphore jk,
O~jk~31 (decimal)

Clear semaphore jk,
O~jk~31 (decimal)

Set semaphore jk,
O~jk~31 (decimal)

B.2 INTER-REGISTER TRANSFER INSTRUCTIONS

3-15

3-15

3-15

Instructions in this group provide for transferring the contents of one
register to another register. In some cases, the register contents can
be complemented, converted to floating-point format, or sign extended as
a function of the transfer.

B.2.1 TRANSFERS TO A REGISTERS

Machine
Instruction CAL Description Page

023ijO Ai sj Transmit (Sj) to Ai 3-26

023i01t Ai VL Transmit (VL) to Ai 3-26

024ijk Ai Bjk Transmit (Bjk) to Ai 3-27

026ij7t Ai SBj Transfer (SBj) to Ai 3-28

030iOktt Ai Ak Transmit (Ak) to Ai 3-30

031iOktt Ai -Ak Transmit negative of (Ak) to Ai 3-30

033iOO Ai CI Channel number to Ai 3-33

033ijO Ai CA,Aj Address of channel (Aj) to Ai 3-33

033ij1 Ai CE,Aj Error flag of channel (Aj) to Ai 3-33

t CRAY X-MP Computer Systems only

tt Special CAL syntax

SR-0085 B-3

B.2.2 TRANSFERS TO S REGISTERS

Machine
Instruction

025ijk

027ij7t

047iOktt

051iOktt

061iOktt

071iOk

071i1k

071i2k

072iOO

072i02t

072ij3t

073iOO

073ij1t

073ij3t

074ijk

075ijk

076ijk

CAL

Bjk Ai

SBj Ai

Si ISk

Si Sk

Si -Sk

Si Ak

si +Ak

Si +FAk

Si RT

Si SM

Si STj

Si VM

Si SRj

STj Si

Si Tjk

Tjk Si

Si Vj,Ak

Description Page

Transmit (Ai) to Bjk 3-27

Transfer (Ai) to SBj 3-29

Transmit ones complement of (Sk) 3-41
t;.o Si

Transmit (Sk) to Si 3-41

Transmit negative of (Sk) to Si 3-50

Transmit (Ak) to Si without sign 3-57
extension

Transmit (Ak) to Si with sign
extension

Transmit (Ak) to Si as an
unnormalized floating-point value

Transmit (RTC) to Si

Read semaphore to Si

Read (STj) register to Si

Transmit (VM) to Si

Transfer (SRj) to Sj; j=O

Transmit (Si) to STj

Transmit (Tjk) to Si

Transmit (Si) to Tjk

Transmit (vj, element (Ak»
to Si

3-57

3-57

3-59

3-59

3-59

3-59

3-59

3-59

3-59

3-59

3-62

t CRAY X-MP Computer Systems only
tt Special CAL syntax

SR-0085 B-4

B.2.3 TRANSFERS TO V REGISTERS

Machine
Instruction CAL Description

077ijk Vi,Ak Sj Transmit (Sj) to vi element

142iOkt vi vk Transmit (Vk) to vi

156iOkt vi -vk Transmit twos complement
(Vk) to vi

B.2.4 TRANSFER TO VECTOR MASK REGISTER

Machine
Instruction

0030jO

003000t

CAL

VM Sj

VMO

Description

Transmit (Sj) to VM

Clear VM

B.2.5 TRANSFER TO VECTOR LENGTH REGISTER

Machine
Instruction

00200k

002000t

CAL

VL Ak

VL 1

Description

Transmit (Ak) to VL

Enter 1 into VL

B.2.6 TRANSFER TO SEMAPHORE REGISTER

Machine
Instruction

073i02tt

CAL

SM Si

t Special CAL syntax

Description

Load semaphores from si

tt CRAY X-MP Computer Systems only

SR-0085 B-5

of

Page

(Ak) 3-62

3-67

3-77

3-15

3-15

3-11

3-11

3-59

B.3 MEMORY TRANSFERS

This category contains instructions that transfer data between registers
and memory, enable and disable concurrent block memory transfers, and
assure completion of memory references.

B.3.1 BIDIRECTIONAL MEMORY TRANSFERS

Machine
Instruction CAL

002500t DBM

002600t EBM

B.3.2 MEMORY REFERENCES

Machine
Instruction

002700t

B.3.3 STORES

Machine
Instruction

035ijk

035ijktt

037ijk

037ijktt

CAL

CMR

CAL

,AO Bjk,Ai

O,AO Bjk,Ai

,AO Tjk,Ai

O,AO Tjk,Ai

Description

Disable bidirectional memory
transfers

Enable bidirectional memory
transfers

Description

Complete memory references

Description

Store (Ai) words starting at
Bjk to memory starting at (AO)

Store (Ai) words starting at
Bjk to memory starting at (AO)

Store (Ai) words starting at
Tjk to memory starting at (AO)

Store (Ai) words starting at
Tjk to memory starting at (AO)

t CRAY X-MP Computer Systems only
tt Special CAL syntax

SR-0085 B-6

Page

3-13

3-13

3-13

Page

3-34

3-34

3-34

3-34

Machine
Instruction CAL Description Page

llhijkm exp,Ah Ai Store (Ai) to (Ah) + exp 3-63

llhiOOOt ,Ah Ai Store (Ai) to (Ah) 3-63

110ijkmt exp,O Ai Store (Ai) to exp 3-63

110ijkmt exp, Ai Store (Ai) to exp 3-63

13hijkm exp,Ah Si Store (Si) to (Ah) + exp 3-63

130ijkmt exp,O Si Store (Si) to exp 3-63

130ijkmt exp, Si Store (Si) to exp 3-63

13hiOOOt ,Ah Si Store (Si) to (Ah) 3-63

1770jk ,AO,Ak vj Store (Vj) to memory starting 3-89
at (AO) incremented by (Ak)

1770jOt ,AO,l Vj Store (vj) to a memory in 3-89
consecutive addresses starting
with (AO)

1771jktt ,AO,Vk Vj Store (Vj) to a memory using 3-89
memory address (AO)+(Vk)

B.3.4 LOADS

Machine
Instruction CAL Description Page

034ijk Bjk,Ai ,AO Read (Ai) words starting at 3-34
Bjk from memory starting at (AO)

034ijkt Bjk,Ai O,AO Read (Ai) words starting at 3-34
Bjk from memory starting at (AO)

036ijk Tjk,Ai ,AO Read (Ai) words starting at 3-34
Tjk from memory starting at (AO)

036ijkt Tjk,Ai O,AO Read (Ai) words starting at 3-34
Tjk from memory starting at (AO)

t Special CAL syntax
tt CRAY X-MP Computer Systems only

SR-0085 B-7

Machine
Instruction CAL Description Page

10hijkm Ai exp,Ah Read from «Ah) + exp) to Ai 3-63

10hiooot Ai ,Ah Read from (Ah) to Ai 3-63

100ijkmt Ai exp,O Read from (exp) to Ai 3-63

lOOijkmt Ai exp, Read from (exp) to Ai 3-63

12hijkm Si exp,Ah Read from ((Ai) + exp) to Si 3-63

120ijkmt Si exp,O Read from (exp) to Si 3-63

120ijkmt Si exp Read from (exp) to Si 3-63

12hiooot Si ,Ah Read from (Ah) to Si 3-63

176iok vi ,AO,Ak Read from memory starting at (AO) 3-89
incremented by (Ak) and load
into vi

176iOOt vi ,AO,1 Read from consecutive memory 3-89
addresses starting with (AO) and
load into vi

176i1ktt vi ,AO, vk Read from memory using memory 3-89
address (AO) + (Vk) and load into
vi

B.4 INTEGER ARITHMETIC OPERATIONS

Integer arithmetic operations obtain operands from registers and return
results to registers~ No direct memory references are allowed.

The assembler recognizes several special syntax forms for increasing or
decreasing register contents, such as the operands Ai+1 and Ai-1;
however, these references actually result in register references such
that the 1 becomes a reference to Ak with k=O.

All integer arithmetic, whether 24-bit or 64-bit, is twos complement and
is so represented in the registers. The Address Add functional unit and

t Special CAL syntax
tt CRAY X-MP Computer Systems only

SR-0085 B-8

Address Multiply functional unit perform 24-bit arithmetic. The Scalar
Add functional unit and the Vector Add functional unit perform 64-bit
arithmetic.

No overflow is detected by Integer functional units.

Multiplication of two fractional operands can be accomplished using the
floating-point multiply instruction. The Floating-point Multiply
functional unit recognizes the conditions where both operands have zero
exponents as a special case and returns the high-order 48 bits of the
result as an unnormalized fraction. Division of integers would require
that they first be converted to floating-point format and then divided
using the floating-point units.

B.4.1 24-BIT INTEGER ARITHMETIC

Machine
Instruction CAL Description Page

030ijk Ai Aj+Ak Integer sum of (Aj) and (Ak) 3-30
to Ai

030ijOt Ai Aj+l Integer sum of (Aj) and 1 to 3-30
Ai

031ijk Ai Aj-Ak Integer difference of (Aj) less 3-30
(Ak) to Ai

031ijot Ai Aj-l Integer difference of (Aj) less 3-30
1 to Ai

032ijk Ai Aj*Ak Integer product of (Aj) and 3-32
(Ak) to Ai

B.4.2 64-BIT INTEGER ARITHMETIC

Machine
Instruction CAL Description Page

060ijk Si Sj+Sk Integer sum of (Sj) and (Sk) 3-50
to si

061ijk Si Sj-Sk Integer difference of (Sj) less 3-50
(Sk) to Si

t Special CAL syntax

SR-0085 B-9

Machine
Instruction CAL Description Page

154ijk vi Sj+Vk Integer sums of (Sj) and (Vk) 3-77
to vi

155ijk vi Vj+Vk Integer sums of (Vj) and (Vk) 3-77
to vi

156ijk vi Sj-Vk Integer differences of (Sj) and 3-77
(Vk) to vi

157ijk vi Vj-Vk Integer differences of (Vj) less 3-77
(Vk) to vi

B.5 FLOATING-POINT ARITHMETIC

All floating-point arithmetic operations use registers as the source of
operands and return results to registers.

Floating-point numbers are represented in a standard format throughout
the CPU. This format is a packed representation of a binary coefficient
and an exponent or power of 2. The coefficient is a 48-bit signed
fraction. The sign of the coefficient is separated from the rest of the
coefficient. Since the coefficient is signed magnitude, it is not
complemented for negative values.

B.5.1 FLOATING-POINT RANGE ERRORS

Machine
Instruction

002100

002200

CAL

EFI

DFI

Description

Enable floating-point interrupt

Disable floating-point interrupt

B.5.2 FLOATING-POINT ADDITION AND SUBTRACTION

Machine
Instruction

062ijk

SR-0085

CAL

si Sj+FSk

Description

Floating-point sum of (Sj)
and (Sk) to Si

B-10

3-13

3-13

3-51

Machine
Instruction

062iOkt

063ijk

O.63iOkt

170ijk

170iOkt

171ijk

172ijk

172iOkt

173ijk

CAL

Si +FSk

Si Sj-FSk

Si -FSk

vi Sj+FVk

vi +Fvk

vi Vj+FVk

vi Sj-FVk

vi -Fvk

vi Vj-FVk

Description

Normalize (Sk) to Si

Floating-point difference of
(Sj) less (Sk) to Si

Transmit the negative of (Sk)
as a normalized floating-point
value

Floating-point sums of (Sj)
and (vk) to vi

Normalize (Vk) to vi

Floating-point sums of (vj)
(Vk) to vi

Floating-point differences of
(Sj) less (Vk) to vi

Transmit normalized negative of
(Vk) to vi

Floating-point differences
of (Vj) less (Vk) to vi

B.5.3 FLOATING-POINT MULTIPLICATION

Machine
Instruction

064ijk

065ijk

066ijk

CAL

Si Sj*FSk

Si Sj*HSk

Si Sj*RSk

t Special CAL syntax

SR-0085

Description

Floating-point product of (Sj)
and (Sk) to Si

Half-precision rounded floating
point product of (Sj) and (Sk)
to Si

Rounded floating-point product
of (Sj) and (Sk) to Si

B-11

3-51

3-51

3-51

3-81

3-81

3-81

3-81

3-81

3-81

3-53

3-53

3-53

Machine
Instruction CAL

160ijk vi Sj*FVk

161ijk vi Vj*FVk

162ijk vi Sj*HVk

163ijk vi Vj*HVk

164ijk vi Sj*Rvk

165ijk vi Vj*RVk

8.5.4 RECIPROCAL ITERATION

Machine
Instruction CAL

067ijk Si Sj*ISk

166ijk vi Sj*IVk

167ijk vi vj*Ivk

8.5.5 RECIPROCAL APPROXIMATION

Machine
Instruction

070ijO

174ijO

SR-0085

CAL

Si IHSj

vi IHVj

Description

Floating-point products of (Sj)
and (Vk) to vi

Floating-point products of (Vj)
and (Vk) to vi

Half-precision rounded floating-
point products of (Sj) and (Vk)
to vi

Half-precision rounded floating-
point products of (Vj) and (Vk)
to vi

Rounded floating-point products
of (Sj) and (Vk) to vi

Rounded floating-point products
of (Vj) and (Vk) to vi

Description

2-floating-point product of
(Sj) and (Sk) to Si

2-floating-point products of
(Sj) and (Vk) to vi

2-floating-point products of
(Vj) and (Vk) to vi

Description

Floating-point reciprocal
approximation of (Sj) to Si

Floating-point reciprocal
approximation of (vj) to vi

8-12

Page

3-79

3-79

3-79

3-79

3-79

3-79

Page

3-53

3-79

3-79

3-55

3-84

B.6 LOGICAL OPERATIONS

The Scalar and Vector Logical functional units perform bit-by-bit
manipulation of 64-bit quantities. Operations provide for logical
products, logical differences, logical sums, logical equivalence, and
merges.

A logical product (& operator) is the AND function.

A logical difference (\ operator) is the EXCLUSIVE OR function.

A logical sum (! operator) is the INCLUSIVE OR function.

A logical merge combines two operands depending on a ones mask in a third
operand. The result is defined by (operand 2 & mask) ! (operand 1 & #mask).

B.6.1 LOGICAL PRODUCTS

Machine
Instruction CAL Description Page

044ijk Si Sj&Sk Logical products of (Sj) and (Sk) 3-40
to Si

044ijOt Si Sj&SB Sign bit of (Sj) to Si 3-40

044ijOt Si SB&Sj Sign bit of (Sj) to Si; j/;O 3-40

045ijk Si #Sk&Sj Logical product of (Sj) 3-40
and #(Sk) to Si

045ijOt Si #SB&Sj (Sj) with sign bit cleared to Si 3-40

140ijk vi Sj&Vk Logical products of (Sj) and (Vk) 3-67
to vi

141ijk vi Vj&Vk Logical products of (Vj) and (Vk) 3-67
to vi

t Special CAL syntax

SR-0085 B-13

B.6.2 LOGICAL SUMS

Machine
Instruction

051ijk

051ijot

051ijOt

142ijk

143ijk

B.6.3 LOGICAL

Machine
Instruction

046ijk

046ijOt

046ijOt

144ijk

145ijk

CAL

Si Sj!Sk

Si Sj!SB

Si SB!Sj

vi Sj!Vk

vi Vj!Vk

DIFFERENCES

CAL

Si Sj\Sk

si Sj\SB

Si SB\Sj

vi Sj\Vk

vi Vj\Vk

t Special CAL syntax

SR-0085

Description

Logical sum of (Sj) and (Sk) to
Si

3-41

Logical sum of (Sj) and sign bit 3-41
to Si

Logical sum of sign bit and (Sj) 3-41
to Si; jiO

Logical sums of (Sj) and (Vk) 3-61
to vi

Logical sums of (Vj) and (Vk) 3-61
to vi

Description Page

Logical differences of (Sj) and 3-40
(Sk) to Si

Enter (Sj) into Si with sign 3-40
bit toggled

Enter (Sj) into Si with sign 3-40
bit toggled; jiO

Logical differences of (Sj) and 3-67
(Vk) to vi

Logical differences of (vj) and 3-67
(Vk) to vi

B-14

B.6.4 LOGICAL EQUIVALENCE

Machine
Instruction

047ijk

047ijot

047ijOt

B.6.5 VECTOR MASK

Machine
Instruction

1750jO

1750j1

1750j2

1750j3

175ij4tt

175ij5tt

175ij6tt

175ij7tt

CAL

Si iSj\Sk

Si iSj\SB

Si iSB\Sj

CAL

VM Vj,Z

VM Vj,N

VM Vj,p

VM Vj,M

Vi,VM vj,Z

Vi,VM Vj,N

Vi,VM vj,p

vi,VM Vj,M

t Special CAL syntax

Description Page

Logical equivalence of (Sj) and 3-40
(Sk) to Si

Logical equivalence of (Sj) and 3-40
sign bit to Si

Logical equivalence of sign bit 3-40
and (Sj) to Si; jl:.O

Description Page

Set VM bits for zero elements of 3-87
Vj

Set VM bits for nonzero elements 3-87
of vj

Set VM bits for positive elements 3-87
of Vj

Set VM bits for negative elements 3-87
of vj

Set VM bits and register vi to 3-87
Vj, for zero elements of Vj

Set VM bits and register vi to 3-87
Vj, for nonzero elements of Vj

Set VM bits and register vi to 3-87
vj, for positive elements of vj

Set VM bits and register vi to 3-87
Vj, for negative elements of Vj

tt CRAY X-MP Computer Systems only

SR-0085 B-15

B.6.6 MERGE

Machine
Instruction

050ijk

050ijot

146ijk

146iOkt

147ijk

CAL

Si Sj!Si&Sk

Sj!Si&SB

vi Sj!Vk&VM

vi #VM&Vk

vi Vj!Vk&VM

B.7 SHIFT INSTRUCTIONS

Description

Scalar merge of (Si) and
(Sj) to Si

Scalar merge of (Si) and sign
bit of (Sj) to Si

Vector merge of (Sj) and
(Vk) to vi

Vector merge of (Vk) and zero
to vi

Vector merge of (Vj) and
(Vk) to vi

3-41

3-41

3-67

3-67

3-67

The Scalar Shift functional unit and Vector Shift functional unit shift
64-bit quantities or 128-bit quantities. A 128-bit quantity is formed by
concatenating two 64-bit quantities. The number of bits a value is
shifted left or right is determined by the value of an expression for
some instructions and by the contents of an A register for other
instructions. If the count is specified by an expression, the value of
the expression must not exceed 64.

Machine
Instruction CAL Description Page

052ijk SO Si<exp Shift (Si) left exp places 3-46
to SO

053ijk SO Si>exp Shift (Si) right exp places 3-46
to SO

054ijk Si Si<exp Shift (Si) left exp places 3-46
to Si

055ijk Si Si>exp Shift (Si) right exp places 3-46
to Si

056ijk Si Si,Sj<Ak Left shift by (Ak) of 3-48
(Si) and (sj) to Si

t Special CAL syntax

SR-0085 B-16

Machine
Instruction CAL Descri:etion Page

056ijOt Si Si,Sj<l Left shift by one of (Si) and 3-48
(Sj) to Si

056iOkt Si Si<Ak Left shift by (Ak) of (Si) to 3-48
Si

057ijk Si Sj,Si>Ak Right shift by (Ak) 3-48
of (Sj) and (Si) to Si

057ijOt Si Sj,Si>l Right shift by one of (Sj) 3-48
and (Si) to Si

057iOkt si Si>Ak Right shift by (Ak) of (Si) to 3-48
si

150ijk vi Vj<Ak Shift (Vj) left (Ak) places to vi 3-72

150ijOt vi Vj<l Shift (Vj) left one place to vi 3-72

151ijk vi vj>Ak Shift (Vj) right (Ak) places 3-72
to vi

151ijOt vi Vj>1 Shift (Vj) right one place to vi 3-72

152ijk vi Vj,Vj<Ak Double shift (Vj) left (Ak) 3-74
places to vi

152ijOt vi Vj,Vj<l Double shift (Vj) left one 3-74
place to vi

153ijk vi Vj,Vj>Ak Double shift (Vj) right 3-74
(Ak) places to vi

153ijOt vi Vj,vj>l Double shift (Vj) right 3-74
one place to vi

B.8 BIT COUNT INSTRUCTIONS

The instructions described in this category provide for counting the
number of bits in an S or V register or counting the number of leading 0
bits in an S or V register.

t Special CAL syntax

SR-0085 B-17

B.8.1 SCALAR POPULATION COUNT

Machine
Instruction

026ijO

CAL

Ai PSj

B.8.2 VECTOR POPULATION COUNT

Machine
Instruction

174ij1t

CAL

vi PVj

Description

Population count of (Sj) to Ai

Description

Population count of (Vj) to (Vi)

B.8.3 SCALAR POPULATION COUNT PARITY

Machine
Instruction CAL

026ij1t Ai QSj

174ij2t vi QVj

B.8.4 SCALAR LEADING ZERO COUNT

Machine
Instruction

027ijO

CAL

Ai ZSj

B.9 BRANCH INSTRUCTIONS

Description

Population count parity of (Sj)
to Ai

Population count parity of (vj)
to (Vi)

Description

Leading zero count of (Sj) to Ai

3-28

3-86

Page

3-28

3-86

3-29

Instructions in this category include conditional and unconditional
branch instructions. An expression or the contents of a B register
specify the branch address. An address is always taken to be a parcel
address when the instruction is executed. If an expression has a
word-address attribute, the assembler issues an error message.

t Optional on CRAY-1 (Models A and B)

SR-0085 B-18

B.9.1 UNCONDITIONAL BRANCH INSTRUCTIONS

Machine
Instruction

0050jk

006ijkm

CAL

J Bjk

J exp

Description

Jump to (Bjk)

Jump to exp

B.9.2 CONDITIONAL BRANCH INSTRUCTIONS

Machine
Instruction

010ijkm

011ijkm

012ijkm

013ijkm

014ijkm

015ijkm

016ijkm

017ijkm

B.9.3 RETURN JUMP

Machine
Instruction

001000t

007ijkm

CAL

JAZ exp

JAN exp

JAP exp

JAM exp

JSZ exp

JSN exp

JSP exp

JSM exp

CAL

PASS

R exp

t Special CAL syntax

SR-0085

Description

Branch to exp if (AO)=O

Branch to exp if (AO)~O

Branch to exp if (AO) positive

Branch to exp if (AO) negative

Branch to exp if (SO)=O

Branch to exp if (SO)~O

Branch to exp if (SO) positive

Branch to exp if (SO) negative

Description

Pass

Return jump to exp; set BOO
to (P)+2

B-19

3-18

3-19

Page

3-21

3-21

3-21

3-21

3-22

3-22

3-22

3-22

3-3

3-20

B.9.4 NORMAL EXIT

Machine
Instruction CAL Description Page

004000 EX Normal exit 3-17

004ijkt EX exp Normal exit 3-17

B.9.5 ERROR EXIT

Machine
Instruction CAL Description Page

000000 ERR Error exit 3-2

OOOijkt ERR exp Error exit 3-2

B.10 MONITOR INSTRUCTIONS

Instructions described in this category are executed only when the CPU is
in monitor mode. An attempt to execute one of these instructions when
not in monitor mode is treated as a no-oPe

The instructions perform specialized functions useful to the operating
system.

B.10.1 CHANNEL CONTROL

Machine
Instruction

OOlOjk

OOlljk

CAL

CA,Aj Ak

CL,Aj Ak

Description

Set the Current Address (CA)
register, indicated by (Aj), to
(Ak) and activate the channel

Set the channel (Aj) limit
address to (Ak)

t Special CAL syntax on CRAY-l Computer Systems only

SR-0085 B-20

3-3

3-4

Machine
Instruction CAL Description

0012jO CI,Aj Clear Channel (Aj) Interrupt flag

0012j1t MC,Aj Clear Channel (Aj) Interrupt flag
and Error flag; set device
master-clear (output channel);

0013jO XA Aj

B.10.2 SET REAL-TIME CLOCK

Machine
Instruction

0014jO

CAL

RT Sj

clear device ready-held (input
channel)

Enter XA register with (Aj)

Description

Enter RTC with (Sj)

B.10.3 PROGRAMMABLE CLOCK INTERRUPT INSTRUCTIONStt

Machine
Instruction CAL Description

0014j4 PCI Sj Set program interrupt interval

001405 CCI Clear clock interrupt

001406 ECI Enable clock interrupts

001407 DCI Disable clock interrupts

B.10.4 INTERPROCESSOR INTERRUPT INSTRUCTIONSt

Machine
Instruction

0014j1

CAL

SIPI exp

Description

Set interprocessor interrupt
request of CPU exp; 0~exp~3

t CRAY X-MP Computer Systems only
tt Optional on CRAY-1 (Models A and B)

SR-0085 B-21

Page

3-5

3-5

3-6

3-7

Page

3-7

3-7

3-7

3-7

3-7

Machine
Instruction CAL Description

001401t SIPI Set interprocessor interrupt
request

001402 CIPI Clear interprocessor interrupt

B.10.5 CLUSTER NUMBER INSTRUCTIONStt

Machine
Instruction

0014j3

CAL Description

CLN exp Cluster number = exp

B.10.6 OPERAND RANGE ERROR INTERRUPT INSTRUCTIONStt

Machine
Instruction CAL Description

002300 ERI Enable interrupt on (address)
range error

002400 DRI Disable interrupt on (address)
range error

B.10.7 PERFORMANCE COUNTERStt ttt

Machine
Instruction

0015jO

001501

001511

001521

CAL

t Special CAL syntax

Description

Select performance monitor

Set maintenance read mode

Load diagnostic checkbyte with
S1

Set maintenance write mode 1

tt CRAY X-MP Computer Systems only
ttt Instructions not supported by CAL at this time

SR-0085 B-22

Page

3-7

3-7

3-7

Page

3-13

3-13

3-10

3-10

3-10

3-10

Machine
Instruction

001531

073i11

073i21

073i31

SR-0085

CAL Description

Set maintenance write mode 2 3-10

Read performance counter into Si 3-59

Increment performance counter 3-59

Clear all maintenance modes 3-59

B-23

INDEX

INDEX

I-parcel instruction format with combined
j and k fields, 2-3

I-parcel instruction format with discrete
j and k fields, 2-2

16-bit instruction, 2-1
2-parcel branch instruction, 2-4
2-parcel instruction format for a 24-bit

immediate constant with combined i,
j, k, and m fields, 2-5

2-parcel instruction format with combined
i, j, k, and m fields, 2-4

2-parcel instruction format with combined
j, k, and m fields, 2-4

22-bit immediate constant, 2-3
24-bit integer arithmetic, 8-9
32-bit instruction, 2-1
64-bit integer arithmetic, 8-9

A registers, 8-1, 8-3
Address Integer Add functional unit, 3-30,

3-31
Address Integer Multiply functional unit,

3-32
Arithmetic instructions, 2-2

8 registers, 3-34, 3-35
8idirectional memory

mode, 3-14
transfers, 8-6

8inary machine code, 2-1
8it count instructions, 8-17

CRAY-l, A-3
CRAY-XMP, A-6
scalar leading zero count, 8-18
scalar population count, 8-18
scalar population count parity, 8-18
vector population count, 8-18

8ranch instructions, 2-1, 8-18
conditional, 8-19
error exit, 8-20
normal exit, 8-20
return jump, 8-19
unconditional, B-19

Channel control, 8-20
Channel Limit (CL) register, 3-3, 3-4
Channel number, 3-33
Check bit memory storage, 3-10
CIP register, 3-15
Clear clock interrupt (CCI) instruction, 3-8

SR-0085 Index-l

Cluster number, 3-8
instructions, 8-22

CMR, 3-14
Composite word, 3-43
Compressed index, 3-88
Conditional branch instructions, 8-19
CRAY-1 symbolic machine instructions, A-2
CRAY X-MP symbolic machine instructions, A-5
Current Address (CA) register, 3-3, 3-33

DBM, 3-14
DFI, 3-13
Disable floating-point interrupt, 3-13
DL flag, 3-15
Double shift instructions, 2-2
DRI, 3-13

EBM, 3-14
EFI, 3-13
Enable floating-point interrupt, 3-13
ERI, 3-13
Error condition, 3-2
Error detection and correction, 3-10
Error Exit flag, 3-2
Error exit, 8-20
Error flag, 3-5, 3-33
Exchange Address (XA) register, 3-2, 3-17
Exchange

package, 3-2, 3-15
sequence, 3-2, 3-17

Flag (F) register, 3-2, 3-8, 3-17
Floating-point

Add functional unit, 3-51, 3-83
addition and subtraction, B-I0
arithmetic, 8-10

addition and subtraction, 8-10
multiplication, 8-11
range errors, 8-10
reciprocal approximation, 8-12
reciprocal iteration, 8-12

constant instructions, 2-2
difference, 3-51, 3-82
Interrupt flag, 3-13
multiplication, B-l1
Multiply functional unit, 3-53, 3-80
operations

CRAY-l, A-2,
CRAY X-MP, A-5

Floating-point (continued)
product half-precision rounded of,

3-53
products half-precision rounded,

3-80
products, 3-80
quantity, 3-51
range errors, B-I0
reciprocal approximation value, 3-55
Reciprocal functional unit, 3-55, 3-84
reciprocals, 3-84
sum, 3-51, 3-82

Functions
AND, B-13
EXCLUSIVE OR, B-13
INCLUSIVE OR, B-13

Functional instruction summary, B-1
Functional units, A-I

Gather, 3-87
General instruction form, 2-1

ICP flag, 3-8
Instruction buffers, 3-2, 3-17
Instruction format, 2-1

I-parcel instruction format with
discrete j and k fields, 2-2

I-parcel instruction format with
combined j and k fields, 2-2

2-parcel instruction format with
combined j, k, and m fields, 2-3

2-parcel instruction format with
combined i, j, k, and m
fields, 2-4

Instruction
32-bit, 2-1
arithmetic, 2-2
bit count, B-17

CRAY-1, A-3
CRAY-XMP, A-6
scalar leading zero count, B-18
scalar population count, B-18
scalar population count parity, B-18
vector population count, B-18

branch, 2-1, B-18
conditional, B-19
error exit, B-20
normal exit, B-20
return jump, B-19
unconditional, B-19

buffers, 3-2, 3-17
clear clock interrupt, 3-8
cluster number, B-22
conditional branch, B-19
double shift, 2-2
functional summary, B-1
general form, 2-1
JAM, 3-21
JAP, 3-22
JSM, 3-22
JSP, 3-22

SR-0085 Index-2

Instruction (continued)
monitor, B-20

channel control, B-2'0
cluster number, B-22
interprocessor interrupt, B-21
operand range error interrupt, B-22
performance counters, B-22
programmable clock interrupt, B-21
set real-time clock, B-21

shift, A-3, A-6, B-16
summary, B-1
syntax, 2-1

format, 2-1
monitor mode, 2-9
special register values, 2-5
symbolic notation, 2-5

types, 2-2
vector, 3-11

merge, 3-15
Integer arithmetic operations

CRAY-1, A-3
CRAY-XMP, A-6
operations, B-8

24-bit integer arithmetic, B-9
64-bit integer arithmetic, B-9

Integer-register transfers, B-3
A registers, B-3
CRAY-1 A-4
CRAY-XMP, A-7
S registers, B-4
semaphore register, B-5
V registers, B-5
vector Length register, B-5
vector Mask register, B-5

Internal CPU interrupt request, 3-7, 3-8
Interprocessor interrupt

instructions, B-21
requests, 3-7

Interrupt Countdown counter (ICD), 3-8
Interrupt flag, 3-5
Interrupt Interval register (II), 3-8
Introduction, 1-1

JAM instructions, 3-21
JAP instruction, 3-21
JSM instructions, 3-22
JSP instruction, 3-22

Loads, B-7
Logical

differences, 3-42, B-14
equivalence, B-15
instructions, 2-2
operations, B-13

CRAY-l, A-2, A-4
CRAY-XMP, A-5, A-7
differences, B-14
equivalence, B-15
merge, B-16
products, 3-41, 3-42, B-13
sums, B-14
vector mask, B-15

Logical (continued)
products, B-13
sums, 3-43, B-14

Mask length, 3-38, 3-39
Master Clear, 3-5
Memory

references, B-6
completion, 3-14

transfers, B-6
bidirectional, B-6
CRAY-1, A-4
CRAY-XMP, A-7
loads, B-7
references, B-6
stores, B-6

Merge, B-16
Mode register, 3-13
Monitor instructions, 8-20

channel control, 8-20
cluster number, 8-22
interprocessor interrupt, B-21
operand range error interrupt, B-22
performance counters, 8-22
programmable clock interrupt, B-21
set real-time clock, B-21

Monitor mode, 3-2, 3-17
instructions, 2-9
operations

CRAY-1, A-3
CRAY-XMP, A-6

Monitor program, 3-6

NIP register, 3-15
Normal Exit flag, 3-17
Normal exit, B-20

Operand range error interrupt instructions,
B-22

Operand Range Mode flag, 3-13

P register, 3-15, 3-18, 3-19, 3-20, 3-21,
3-22

Parcel address, 3-18, 3-19, 3-20
Parcel-address attribute, 3-64
Parcels, 2-1
Pass, 3-3
Performance counters, 3-10, 8-22
Population count

scalar, 8-18
scalar parity, B-18
vector, B-18

Program branches and exits
CRAY-1, A-3
CRAY-XMP, A-6

Programmable clock interrupt instructions,
B-21

Ready flag, 3-5
Real-time clock (RTC) interrupt request, 3-8

SR-0085 Index-3

Real-time Clock register, 3-7
Real-time clock, 3-59
Reciprocal

approximation, 8-12
iteration, 8-12

Reciprocal Approximation functional unit,
3-85

Register entry instructions, 8-1
A registers, B-1
CRAY-1, A-3
CRAY-XMP, A-6
S registers, B-1
V registers, B-2
semaphore registers, 8-3

Register values
CRAY-1, A-4
CRAY-XMP, A-7

Return jump, 8-19
Return linkage, 3-20

S registers, 8-1, B-4
Scalar

leading zero count, 8-18
parity, B-18
population count, B-18

Scalar Integer Add functional unit, 3-50
Scalar Leading Zero/Population Count, 3-29
Scalar Leading Zero/Population, 3-28
Scalar Logical functional unit, 3-38, 3-39,

3-43
Scalar Memory transfers, 2-3
Scalar Shift functional unit, 3-46, 3-49
Scatter, 3-87
SECDED, 3-10
Semaphore registers, 8-3, 8-5
Set real-time clock, 8-21
Shift count, 3-46, 3-48, 3-49
Shift instructions, B-16

CRAY-1, A-3
CRAY-XMP, A-6

Sign bit, 3-43, 3-50
SM register, 3-15, 3-59
Special characters, 2-7
Special register values, 2-5, 2-6
Status register, 3-60
Stores, B-6
Summary, B-1
Symbolic instruction summary, A-1

functional units, A-1
CRAY-1 symbolic machine instructions,

A-2
CRAY X-MP symbolic machine

instructions, A-5
Symbolic notation, 2-5

general syntax, 2-5
special syntax forms, 2-8

Syntax, 2-5
comment field, 2-8
location field, 2-7
operand field, 2-7
register designators, 2-6
result field, 2-7

T register, 3-35
Twos complement, 3-50, 3-77

Unconditional branch instruction, 3-18,
3-19, 8-19

Unnormalized floating-point value, 3-57

V registers, 8-2, 8-5
Vector instruction, 3-11
Vector Integer Add functional unit, 3-78
Vector length register, 8-5
Vector Logical functional unit, 3-69
Vector mask, 3-86, B-15

register, B-5
Vector merge instruction, 3-15
Vector population, B-18
Vector Shift functional unit, 3-72, 3-74
VL register, 3-11, 3-26, 3-67, 3-69, 3-77,

3-78, 3-80, 3-82, 3-90
VM register, 3-15, 3-60, 3-69, 3-87

Word boundary, 2-1
WS flag, 3-15

XA register. 3-6

SR-0085 Index-4

READER COMMENT FORM

CRAY X-MP and CRAY-l Symbolic Machine Instructions
Reference Manual

SR-0085

Your comments help us to improve the quality and usefulness of our publications. Please use the space provided
below to share with us your comments. When possible, please give specific page and paragraph references.

NAME ____________________________________ __

JOB TITLE ________________________________ _

FIRM ____________________________________ _
RESEARCH. INC.

ADDRESS ________________________________ _

CITY _________________ STATE _______ ZI P ______ _
DATE __ __

---~

IIIII1

BUSINESS REPLY CARD
FIRST CLASS PERMIT NO 6184 ST PAUL. MN

POSTAGE WILL BE PAID BY ADDRESSEE

RESEARCH, INC.

2520 Pilot Knob Road
Attention: Suite 350
PUBLICATIONS Mendota Heights, MN 55120

U.S.A.

NO POSTAGE
NECESSARY

IF MAILED
IN THE

UNITED STATES

---~

(")
C
-i
~
r o
Z
G)

-i
I
iii
r
:2
m

READER COMMENT FORM

CRAY X-MP and CRAY-l Symbolic Machine Instructions
Reference Manual

SR-0085

Your comments help us to improve the quality and usefulness of our publications. Please use the space provided
below to share with us your comments. When possible, please give specific page and paragraph references.

NAME ____________________ ___

JOB TITLE ________________ _

FIRM ___________________ _
RESEARCH, INC.

ADDRESS _________________ __

CITY _________ STATE ____ ZIP ___ _

DATE __ ___

,---~

111111

BUSINESS REPLY CARD
FIRST CLASS PERMIT NO 6184 ST PAUL MN

POSTAGE WILL BE PAID BY ADDRESSEE

RESEARCH. INC.

2520 Pilot Knob Road
Attention: Suite 350
PUBLICATIONS Mendota Heights, MN 55120

U.S.A.

NO POSTAGE
NECESSARY
IF MAILED

IN THE
UNITED STATES

---~

n
c
-t
»
r o
:z
G)

-t
:::r:
en
r
Z
m

