
mitra 15
-

Reference manual

Contents Genera I
Introduction
MITRA 15 main features
Models MITRA 15/20, MITRA 15/30
MITRA 15 opera ti ng system
Applications

GENERAL LAYOUT
Core memory
Processing units
Micro-programmed ROM (or micro-processor)
Registers
Logical and arithmetical operator
Indi cators
Communication with the environment
Interrupts, suspensions, traps
Mode and protection

STRUCTURE OF A PROGRAM
Definition of modularity
Definition of a section
Section and segment bases
Consequences of modularity on MITRA 15 programs
Constituents of a program
Section calls
System's management concepts

ASSEMBLY LANGUAGE
Source line forma t
Ba si c c ha ra cter set
Symbols
Constants
Expressions

ADDRESSING MODES
Symbolic representation of the instruction
Addressing mode representation

PSE UDO-IN STR UCTION S
Source text segmentation
Assembly pseudo-instructions
Page pseudo-i nstructi on

@)compagnie internationale pour I'informatique 1973

compagnie internationale
pour I'informatique

1 -1
1 -1
1 -1
1 -3
1 -8

1 -11

2-1
2 -1
2 -1
2-2
2-4
2-4
2-5
2-6
2-6
2-9

3-1
3-1
3-1
3-1
3-2
3-5
3-7

3-10

4-1
4-2
4-2
4-2
4-3
4-4

5-1
5-1
5-2

6-1
6-1
6-6

6-14

4057 U/EN
203 pages

4057

Contents IN STR UCTION S 7-1
General 7-1
Sy mbolic notations 7-2
Load and store instructions 7-6
LBL 7-8
SBL 7-9
LBR 7-10
SBR 7-10
LBX 7-12
LDA 7-13
STA 7-14
LDE 7-15
STE 7-16
LOX 7-17
STX 7-18
LOR 7-19
STR 7-20
LEA 7-21
SPA 7-22
STS 7-23
OLD 7-24
DST 7-25

Fixed-point arithmeti c 7-25
ADD 7-26.
ADM 7-27
SUB 7-28
MUL 7-29
DIV 7··30

Logi ca I opera ti ons 7-31
lOR 7-31
EaR 7-32
AND 7-33
CMP 7-34

Register incrementation and decrementation 7-35
ICX 7-35
DCX 7-36
ICL 7-37
DCL 7-37

Shift operations 7-38
SHR 7-40
SLLS 7-41
SRCS 7-42
SAD 7-43
SLCD 7-44
SLCS 7-45
SAS 7-46
SRLS 7-47
SRCD 7-48
SHC 7-49
SLLD 7-51
SRLD 7-52
PTY 7-53
NLZ 7-54

4057

Contents I nter-regi ster opera ti ons 7-55
SRG 7-56
XAE 7-57
XAX 7-57
XEX 7-58
XAA 7-58
CCE 7-59
ACE 7-59
CCA 7-60
AEE 7-60
CNX 7-61
AlE 7-61
AAE 7-62
lNE 7-62
CNA 7-63
CMX 7-63

Floating-point arithmetic 7-64
FAD 7-66
FSU 7-67
FMU 7-68
FDV 7-69

Byte stri ng processi ng 7-70
MVS 7-70
CPS 7-71
TRS 7-72

Branch instructions 7-73
BRU 7-74
BRX 7-75
BCT 7-76
BOT 7-77
BCF 7-78
BOF 7-79
BAZ 7-80
BAN 7-81
BE 7-82
BZ 7-83
Bl 7-84
BlZ 7-85
BNE 7-86
BNZ 7-87
BGE 7-88
BPZ 7-89

System communi cation instructions 7-90
ClS 7-90
RTS 7-93
CSV 7-94
RSV 7-96
DIT 7-97
DITR 7-100

Control instructions 7 -101
TES 7-102
STM 7-103
ClM 7-103

4057

Contents RD
WD
LDP

INPUT/OUTPUT CONTROL SYSTEM
Input/output system organization
Input/output interface
T ra nsfers f.:
Operationa I labels
Handler uti lization

LIST OF PSEUDO-INSTRUCTIONS

LIST OF INSTRUCTIONS

ADDRESSING MODES

ASSEMBLER OPERATION

The informations contained in this manual can be modified without warning.

7-104
7-104
7-105

8-1
8-1
8-1
8-6

8 -11
8-14

A-1

B-1

C-1

D-1

mitra 15

1. General

1-1. INTRODUCTION

MITRA 15 is a real time computer relying on a modular design and advanced micro-programmed structure
for an efficient approach to numerOU5 application fields, such as process control, scientific computation,
remote-processing or transaction management.

The system includes up to four processing units specialized through read-only micro-programmed memories
(ROM) and arranged around a planar structure core memory. According to their micro-programs, these units
become CPU's, lOP's or special-purpose units. Each processing unit is provided with a "MIN I BUS" for
connecting a comprehensive range of periphera I units.

MITRA 15 is available in two fully compatible models which only differ by their processing capacity and
the range of connectable peripheral units. Thus, each user can select the model and configuration best
suited to its specific requirements.

1-2. MITRA 15 MAIN FEATURES

1-2.1 • Core memory

MITRA 15's memory is a lithium-ferrite core random access memory organized in 16-bit words with 2 addi
tional bits, 1 for parity and 1 for protection. The very short 800 nanoseconds word read/write cycle provi
des an outsta ndi ng tra nsfer ra te of 2.5 Mbytes per second (m ill ions of bytes/second) •

Memory contents are adressable on a byte basis and alterable on a byte, half-word or word basis.

The memory is made up of 4 096-word blocks (i.e. 8 192 bytes) up to a maximum of eight. Its capacity can
thus be extended from 4096 words to 32 768 words per 4 096-word increments.

• Dynamic memory protection

This feature provides full protection to any memory area against unwanted attemps to alter its contents.
The protection its assigned on a dynamic basis (LDP instruction).

A I-bit protection "lock" is associated with every memory word. Besides, an indicator of the program
status acts as a "key" : when this indicator is set to I, the program is able to gain access to all memory
locations; otherwise the program can only gain access to unprotected areas.

• Parity

Full parity ckeck is provided both in the memory an during I/O operations.

1-2.2. Processing units

The functions available in a conventional computer are shared between a wired module, indentical for all
processing units, the so-called "micro-processor", and the contents of a ready-only control memory which
"specializes" the micro-processor to provide the functions of a CPU, lOP or special-purpose unit.

A processing unit comprises a fast register block, five program indicators, a micro-programmed read-only
memory, an operator and an interrupt/suspension system.

1-1

4057 U

• Fast register memory

This memory is implemented in MSI bipolar integrated circuit registers which are organized in eight 16-bit
program-adressable register blocks. The capacity of each processing unit can be extended from two to eight
8-register blocks per 2-block modules. Access time: 60 nanoseconds per word.

In the CPU, the first block (block 0) is assigned to the program context, the remaining blocks being availa
ble for peripheral transfers.

In an lOP, all block are available for peripheral transfers.

P Program counter

L Loca I base

G Genera I base
Block 0 of CPU Program context

A Accumulator

E Extended A reg.

X Index

• Program indicators

C Carry or operation test

a Overflow or opera ti on test

MS Mode: master/slave

MA Interrupt Mask

PR M em ory prote cti on

For detailed description of indicators see chapter II.

• Instructions

MITRA 15 has a set of 86 instructions including:

- 40 memory reference instructions,

- 29 register instructions,

- 12 shift instructions,

- 5 special instructions.

All instructions have a fixed format:

3 5 8

I Mode I Function Displacement

or
4 4 8

/Mode 'Function Displacement

1-2

4057 U

They operate on bytes (half-words), words, double-words or unlimited length byte strings.

Addressing modes:

- immediate addressing for operands which can be coded in one byte;

- direct, indirect and indexed addressing with respect to the local base;

- direct, indirect and indexed addressing with respect to the general base.

• Micro-programmed read-only memory

This non-destructive read out permanent memory is pre-recorded. Each 16-bit word contains one micro
instruction. The memory is implemented in MSI bipolar IC 's and its access time is 60 nanoseconds. Its
capacity is 512 or 1024 words per processing unit.

Three different versions are avai lable for the following functions:

MCl executes the basic instruction code and the coupling functions for peripherals which are connec
table to CPU's Minibus only.

MC2 executes the complementary code (optional instructions) and the coupling functions for peripherals
which are connectable to the Minibus of either the CPU or an lOP.

MC3 executes the coupling for peripherals which are connectable to an lOP's Minibus.

• Interrupts (IT)

32 priority interrupt levels are available which can be armed, masked or triggered by program. They provide
up to 112 discrete external interrupts by grouping.

When an interrupt is triggered, the program context is automatically swapped in 30 ps.

For a special high speed interrupt level, this swapping is effected in 5 ps only, by register block switching.

• Suspensions

MITRA 15 also offers 32 suspension levels organized on a priority basis for micro-program coupling of
periphera Is requiring urgent or frequent transfers.

The maximum response time is 300 J.,IS.

• Minibus

Each processing unit is provided with a Minibus for device controllers connection. This Minibus is implemen
ted as a printed circuit located in the chassis wiring and provides non-specialized plug-in locations for all
controller cards.

1-3. MODELS MITRA 15/20, MITRA 15/30

MITRA 15/20

• MITRA 15/20 CPU comprising, as standard:

- 512-word micro-programmed ROM (MCl),

- 64 fast access registers,

- Basi c code providing for 77 instructions,

- Priority interrupt system.

1-3

4057 U

• Core memory

4K to 32K 16-bit words per 4K increments.

• Performance

- Addressing mode: direct, indirect, indexed, relative, immediate, local and general.

- 1 index, 2 bases.

- 77 instructions, including 33 memory reference instructions.

- Load, store or add word in 2.1).Is.

• Main options

- Up to 3 direct memory accesses (DMA)

- Additional micro-programmed ROM (MC2)

- Up to 32 priority interrupt levels per 1 or 4 levels modules.

- Wired MULjDIV (7 and 8).Is).

- Floating point operator (OVF).

- Power fa i I ure protection.

• Software

- MITRAS 1 Assembler;MITRAS 2 Extended Assembler; LP 15; BASIC; FORTRAN IV.

- li nka ge edi tor.

- 2 Monitors: Basic Monitor MOB and Real-Time Monitor MTR.

- Libraries.

• Basic peripherals (Range I)

- Console typewriter (with paper tape reader/punch),

- 300 char ./sec. paper tape reader,

- 60 char./sec. paper tape punch,

- Logging slow printer (15 char./sec.),

- 2 to 128 16-bit digital input lines for logical levels, or filtered, or relayed,

- 2 to 64 16-bit digital output lines for logical levels or relayed,

- Counter inputs; real-time clock,

- Ana log inputs.

1-4

4057 U

CORE MEMORY

4K 4K 4K 4K 4K 4K 4K 4K

words words words words words words words words

Logging

Real time clock

digital inputs

digital outputs

analog inputs

counter inputs

interrupts

MITRA 15/20 general layout

1-5

4057 U

MITRA 15/30

• MITRA 15/30 CPU comprising, as standard:

- 1024-word mi cro-programmed ROM,

- 32 fast access registers,

- Extended operation code for 86 instructions,

- Priority interrupt system,

- Wired MUL/DIV,

- Power failure protection.

• Core memory

4K to 32K 16-bit words per 4K increment

• Performance

- Addressing modes: direct, indirect, indexed, relative, immediate, local and general.

- 1 index, 2 bases

- 86 instructions, including 40 memory reference instructions

- Load, read, write or add word in 2.1 ps

- M UL/DIV in 7 and 8 ps, respectively.

• Main options

- Up to 3 direct memory accesses (DMA)

- Up to 3 input/output processors (lOP)

- Extension to 128 fast access registers per processing unit (64-level modules)

- 32 priority interrupt levels per 1 or 4 level modules

- Floating-point operator (OVF)

Ii Software

- MITRAS i Assembler; MITRAS 2 Extended Assembler; Macro-generator; LP 15; BASIC; FORTRAN IV;
Librarian; File management system.

- :3 Monitors: Basic Monitor MOB; Real-Time Monitor MTR; Disk Real-Time Monitor MTRD.

• Peri phera Is

• Range I (Model 20)

• Range II :

- One head per track fixed-disks; average access time 10 ms, transfer rate 150 kbyte/sec, capacity 100 to
1600 kbytes.

- Movable head disk-pack units; average access time 60 or 90 mSi transfer rate 100 or 150 kbyte/sec;
capncity 2.5 to 5 Mbytes or 6.2 to 24.8 Mbytes.

- Card reader: 200 or 600 cpm.

- Card punch: 20 or 40 cpm.

1-6

4057 U

Logging

Real-time clock

digital inputs

CORE MEMORY

1 K

or 4K 4K 4K 4K 4K 4K 4K

4 K words words words words words words words
words

Cartridge disk

Card reader

Card punch

High-speed printer

digital outputs
Tape handlers

analog inputs

interrupts

"'~ Synchronous ••• ---
data links :.II.~

, .. ,
jI"'" .. ".-

--"" Asynchronous ••••• "
data links •• 11

.. , ••••

MITRA 15/30 genera I layout

I nterface for
10000and IRIS
series peripherals

Card reader

Line printer

Disk packs

1-7

4057 U

- Line printers: 132 columns; 200, 400 or 600 Ipm.

- Communication controller for 1 synchronous data link, full duplex, 1200/4800 bauds

- Communication controller for 2 asynchronous data links, full duplex, 50 to 1200 bauds.

• Range III :

- OCTET interface for connecting all CillO 000 or IRIS Series peripherals: (card readers, printers, tape
handlers, etc •••).

1-4. MITRA 15 OPERATING SYSTEM

Depending on the availability of a fast access disk unit, the software is offered in two different versions:
the resident system and the disk system.

• The resident system provides:

- 2 Monitors: the Basic Monitor MOB and the Real-time Monitor MTR

- Assemblers: MITRAS and LP 15; Compilers: BASIC and FORTRAN and a Macro-generator.

• The disk system provides:

- The real-time Monitor MTRD

- The resldent system processors, a librarian and a linkage module.

In addition, the software includes:

- Debugging commands avai lable as extension of each monitor.

- A comprehensive library of "real-time" mathematical programs, and a file management system.

- MITRA 15 Simulators available for use on CillO 070, IRIS 50, IRIS 80, IBM 360, etc.

M!TRAS 1 Assembler

Translates the symbolic MITRAS language generates in one single pass a relocatable binary object-listing
a nd a list of error dia gnosti cs.

i
Both source and relocatable binary programs are normally on paper tape; memory requirement: 4K words.

M!TRAS 2 Extended Assembler

Translates the symbolic MITRAS language; has a larger set of pseudo-instructions than MITRAS I. Memory
requirement: 8K words.

LINKAGE EDITOR

Operates in two passes for converting binary relocatable programs generated during various assembly or
compilation runs, into a relocatable memory image format which can be loaded for execution by the Basic
Monitor.

The linkage editor also provides a memory map of the relative location of the various modules and a listing
of the common sub-routines which are called. Memory requirement: 4K words.

1-8

4057 U

BASIC MON ITOR MOB

Perform computer control and handles user's communications with the system and the basic processors. Its
main functions are

- trap processing,

- internal interrupt control,

- program loading,

- i nput/ output control,

- program execution control.

Memory requirement: 4K words.

REAL-TIME MON IT OR MTR

Handles simultaneously interrupt-dependent batched jobs in core. Controls and supervises all privi leged
operations, such as I/O handling or memory protection, and provides operator communication. Memory
requirement: 8K words.

4 Kwords 8 Kwords 12 Kwords 16 Kwords Simulation

OPERA TlNG
SYSTEM
resident Basic Monitor Real-time control command
system MOB Monitor MTR ana Iyzer

interpreter

disk disk real-time linkage
system Monitor MTRD module

PROGRAM
GENERATION
resi dent MITRAS I MITRAS 2 lP 15 FORTRAN IV Assembler
system linkage editor BASIC linkage editor

loader-editor

disk MITRAS 2 FORTRAN IV Macro- lP 15
system linkage editor generator

BASIC
lP 15
librarian

LIBRARY Mathematical programs real-time
programs communication programs
file management system packages

Structure of MITRA 15 standard software

1-9

4057 U

DISK REAL-TIME MONITOR MTRD

This disk-oriented version of the MTR Monitor has additional capabilities for overlay control and user's
libraries management, as well as for automatic linking of batched programs (com pi Ie-link, .Ioad-and-go);
requires 8K words memory and a fast access disk unit.

LOADER - LINKAGE EDITOR

Operates in one pass for loading binary relocatable programs for immediate execution.

This processor can only accept binary programs generated by MITRAS I. Memory requirement: 4K words.

LP 15

This assembler type language has a syntax which is closely related to that of sophisticated languages such
as ALGOL, but with the feature of direct access to MITRA 15's registers.

The binary object programs thus generated have an efficiency which is practically equivalent to that of
assembled programs. Memory requirement: 12K words without a disk unit.

BASIC

This conversational compiler provides for time-shared operation and alphanumerical data processing.
Memory requirement: 8K words.

FORTRAN IV

This compiler generates in one single pass a relocatable binary object-program in the format required by
the linkage editor. May call sub-routines written in another language and translated in relocatable binary
format; compatible with C II 10020, IRIS 45 and IRIS 50. Memory requirement: 16K words or 12K words
with a disk unit.

AMAP EXTENSION (DEBUGGING AIDS)

An AMAP extension available with every monitor as a debugging aid and provides instruction execution
records, halt on address, memory dumps and contents alteration, through special monitor commands.

LINKAGE MODULE

Provides for automatic linking of batched programs in the deffered processing area with concurrent real
time programs.

This processor is controlled by the disk real-time monitor MTRD; requires 12K memory words and a fast
access disk unit.

MACRO-GENERATOR

Translation program using user-defined procedures. It provides in one pass a program in assembly or compi
lation language. Memory requirement: 16K words.

LI BRARIAN

Provides for handling the system library constitutive files through commands such as: insert, replace, copy,
load, dump on external medium ••• Memory requirement: 8K words and a fast access disk unit.

1 -10

4057 U

UTI LlTY PROGRAMS

These programs are available for:

- Updating and correcting source programs on sequential access media (paper tape, magnetic tape, etc.).

- Handling and updating library programs on sequential access media. Memory requirement: 4K words.

MITRA 1 5 S I MULA TOR S

These simulation programs are available for CillO 070, IRIS 50, IRIS 80, IBM 360, etc. computers and
include:

- a MITRA 15 interpreter,

- MITRAS Assembler and Linkage editor,

- a system genera tor,

- LP 15 Compiler.

They perform assembly, linkage edition and debugging functions on programs intended for later exploitation
on any MITRA 15 configuration.

1-5. APPLICATIONS

LA BORA TOR IES

MEDECINE

ENGINEERING

INDUSTRY
Monitoring
Automation
Process control

REMOTE PROCESSING
Front-end computers
Sa te II i te sta ti ons
Front ends

SCIENTIFIC COMPUTATION
Time-shari ng
Data centers

TRAN SACTION PROCESSIN G
Data collection
File management

Spectrometry
Gazeous chromatography
Crista IIography

Chemical analysis
E I ectrocardi ography

Components testing
Seismography
Ranging

Chemicals
Oil and derivates
Steel industry
Mechani ca I engineering, aerospace, etc.

Deconcentrated companies
Public Administrations
Universities

Education
Desi gn offi ce
Private companies

Insurance companies
Banks
Public services •••

1-11

mitra 15
2. General layout

MITRA 15 is built around a planar structure core memory the capacity of which can be extended modularly
by 4K 16-bit words blocks. This core memory has four access ports for connecting up to four processing units
or direct memory access controllers.

Each processing unit includes a micro-programmed read-only memory (ROM); a specific micro-program pre
recorded in this memory specializes the associated processing unit for performing the functions of :

- a central processing unit (CPU),

- an input/output processor (lOP), or

- a special-purpose unit for a particular process.

Each processing unit controls a so-called MINIBUS which is a peripheral bus designed for direct connection
of peripheral controllers.

11-1 • CORE MEMORY

The core memory is basically organized in 18-bit words each comprising 16 data bits, 1 parity bit and 1
memory protection bit.

Read/write operations are executed in two separate half-cycles. A read cycle includes a destructive read
out ha If-cycle followed by a rewrite ha If-cycle. A write cycle includes a clear ha If-cycle followed by a
write half-cycle.

Memory access time is 400 ns (1/2 cycle) and a full read/write cycle lasts 800 ns.

Though memory transfers are performed on a word basis, micro-commands allow the programmer to operate
on bytes, i.e. on half-words. Thus, all MITRA 15 addresses point to byte locations, even-numbered
addresses corresponding to word locations.

The memory is built up with 4096-word modules, i.e. 8192 bytes. MITRA 15 is designed for a maximum of
eigh modules corresponding to a maximum capacity of 32 768 words (or 65 536 bytes).

The control logic supplies the timing signals required for operating the memory proper (half-cycles timing
control), and the transfer signals for data exchanges with the processing units; in addition it deals with the
four accesses relative priorities.

11-2. PROCESSING UNITS

The operation of a MITRA 15 processing unit, and more specifically of the CPU, may be described at two
fully distinct levels:

• A first level corresponding to what may be termed "user-level" and the knowledge of which is sufficient
for programming an application on MITRA 15.

it includes the following features:

- the standard instruction set detailed in chapter VII;

- six general registers of block 0;

- the five program i ndi cators;

- the interrupt system.

11-1

4057~U~' __ __

• A second level corresponding to what may be termed "micro-processor" level

This micro-processor includes the following features:

- a set of about forty hardware-implemented basic micro-instructions;

- a read-only memory implemented on module boards and which contains the sub-routine set, (also called
"micro-programs") defining MITRA 15's standard instructions set and peripheral coupling functions;

- operational registers;

- micro-processor sta tus i ndi ca tors;

- a so-called "suspension system" corresponding, for the second level, to the interrupt system of the first
level.

The following sections describe the various components of a processing unit, viz:

- micro-programmed ROM

- Sand M memory transfer registers

- fast-access register blocks

- status indi cators

- interrupt and suspension systems.

11-3. MICRO-PROGRAMMED ROM (OR MICRO-PROCESSOR)

This non-destructive ROM is pre-recorded in factory and implemented in integrated circuits (access time:
60 ns per word) .

Each memory word is 16 bits long and contains one micro-instruction.

The control ROM of a processing unit contains either 512 words (Mel), or 1024 words (MCl + MC2).

Any micro-instruction is executed in 300 ns.

The address of the currently executed micro-instruction is contained in a 10-bit register called T-register.

A micro-instruction has the following format:

o 2

M OP

Each micro-instruction has a dual purpose:

1) It controls a number of functions, viz. :

- memory control (2 bits: M-field)

6 7

CC

- basic operation code (generally 5 bits: OP-field)

9 10 15

AD

- complementary operation code (3 bits: CC-field) defining for instance a general register address

2) It defines the address of the next micro-instruction (through a 6-bit modifier: AD-field), by updating
T-re;Jister contents.

In fact, micro-instructions are not stored sequentially.

No indexing adder is associated with T-register, since its contents is not incremented by one unit from a
m i cro-i nstructi on to the nex t, as ina seq uentia I a ddressi ng sc heme.

11-2

4057 U

CPU's and lOP's are differenciated by the kind and contents of their respective control memories.

In the CPU, MCl control memory (512 words) executes the basic operation code and the coupling functions
for peripherals which are connectable to its Minibus only (Range I).

MC2 control memory provides for executing the complementary operation code (optional instructions) and
the coupling functions for peripherals which are connectable either to the Minibus of the CPU, or to the
Minibus of an lOP (Range II).

The CPU's control memory then includes 1024 words (MCl + MC2).

MC3 control memory executes the coupling functions for peripherals which are connectable to the Minibus
of an lOP only (Range III).

CORE MEMORY

1 K
4K 4K 4K 4K 4K 4K 4K or

words 4K words words words words words words

words

I J I I

t MEMORY BUS -
address -
read/write -

S I U I M I PR

~ r----l
J I I T 1-1 I I I

Operator I I
I I~~

Register I ROM I
memory - I r-I

micro-processor

L _____ J

interrupt~ 0LG suspen- MS command
sions execution

MINIBUS --
commands -
read -
write

-
i nterrupts - -----
suspensions

Processing unit layout

11-3

4057 U

11-4. REGISTERS

11-4.1 . Memory transfer registers

S-register is a 15-bit address register, though actual addresses are 16 bits long. The rightmost bit of an
address, which specifies the desired byte within the addressed word, is in fact ignored by the memory logic.

M-register is an 18-bit data register receiving the transferred memory words. Two of these bits are reserved
for parity and protection tests; the 16 other bits are used for date exchanges with U-register.

11-4.2. Fast-access registers

A standard MITRA 15 processing unit includes eight register blocks each comprising eight 16-bit integrated
circuit registers numbered 0 through 7. Eight optiona I blocks are avai lable on 15/30 model.

These registers have different assignments in the CPU and in an lOP.

In the CPU, the first block (block 0) is reserved for program execution; its first six registers have the follo
wing functions:

A Accumulator,

E Accumulator extension,

P Program counter,

X Index register,

L Local base register,

G General base register,

the last two registers, V and W ared used by micro-programs.

The other blocks are normally assigned to peripheral transfers through the suspension system (channel memo
ries) .

In an lOP, all register blocks are available for peripheral transfers.

Each register has a unique address form 0 to 63 (or 127). In the micro-programs, a general register address
is generated from:

- the contents of the corresponding field of the micro-instruction format (3 bits).

- the contents of J-register.

:t will be seen in section 11-8. that a high-speed interrupt causes an automatic switching of the register
block. In the new block, the registers have then the same assignment as in block 0, but for other programs.

! 1-5. lOG ICAl AN D ARITHMETICAL OPERATOR

The logical and arithmetical operator includes a universal register, or U-register, and a dual-input opera
tor ~ The 16-bit U-register cannot be directly accessed by the instructions, but constitutes an accumulation
register for the micro-processor. In this respect it can contain one operand of a micro-instruction and/or
store the result. Both operands of a micro-instruction may also be provided by :

- a general register (operand 2)

- M-register in connection with the core memory (operand 1)

- the I/O interface (operand 2)

- the control memory (operand 2)

11-4

4057 U

- the stack (operand 2)

- the indicators (operand 2)

The results of the operation are stored in the following devices:

- U-register (universa I)

- M-register {data}
for core memory transfers

- S-regi ster {a ddress}

- a general register

- the indicators

11-6. IN DICATORS

MITRA 15's central processor includes nine indicators:

• Four i ndi ca tors reserved for micro-processor use :

B-indicator

Tz-indicator

To-indicator

Ao-indicator

assigned to U-register overflows

for a zero micro-instruction result

for the sign of a micro-instruction result

address of the processed byte.

• Five program-accessible indicators

C = Carry

-; his indi cator has two different meanings according to the last instruction by which it is set.

• Carry/borrow {arithmeti c type instruction}

- When a positive number is added {negative number subtracted}, if the result is obtained without becoming
zero, C is reset (C = O).

- When a positive number is added {negative number subtracted}, if the result is obtained after becoming
zero, C is set (C = 1).

- When a negative number is added {positive number subtracted}, if the result is obtained without becoming
zero, C is set (C = 1).

- When a negative number is added (positive number subtracted), if the result is obtained after becoming
zero, C is reset {C = O}.

• For other instructions using C-indicator, the status C-indicator, the status C = 1 after execution denotes
a zero value in a register or, in the case of a comparison, equality of two values.

o = Overflow

This indicator also has two different meanings according to the last instruction executed.

• For arithmetic type instructions, O-indicator is used for overflow. More precisely, when both operands
have the same sign, if the result is of the opposite sign, 0 is set (0 = 1). Otherwise, 0 is reset (0 = O).

• For other instructions using O-indicator, the status 0 = 1 after execution denotes a negative value in a
register (leftmost bit set) or, in the case of a comparison, that A-register value is less than the addressed
word value.

11-5

4057 U

MS = Master/Slave mode

For programs executed in Master mode, this indicator is set to 1, otherwise the program is executed in nor
mal or "slave" mode.

See chapter VII "Instructions" for detailed description of the above three indicators for every instruction.

MA = Interrupt mask indicator

This indicator is set to 1 for masked interrupts, otherwise MA = O.

PR = Memory protection "key"

When PR = 1, the program is able to gain access to any memory location.

When PR = 0, the program is only allowed to gain access to unprotected memory areas ("protection lock"
cleared) .

These five indicators are incl\Jded in the context of a specific program.

11-7. COMM UN ICA TlON WITH THE ENVIRONMENT

The processing unit is coupled to the peripheral controllers via a so-called MINIBUS which is accessible
through mi cro-instructions. The interface includes:

- for data: 16 output bit lines and 16 input bit lines;

- three functi on bi t lines;

- for addresses: 6 bit lines or 10 bit lines in particular cases;

- a sync line;

- a reset line.

The peripheral Minibus, on which the peripheral controllers are connected, includes 16 unidirectional data
lines, both for input and output, an address and peripheral control bus, as well as interrupt and suspension
lines.

11-8. INTERRUPTS - SUSPENSIONS - TRAPS

11-8.1 • Interrupts

ihe interrupt system operates when

- a fl interrupt si gna I occurs;

- a special micro-instruction, located by definition at specific "interrupt point", occurs;

- interrupts are unmasked;

- tf·,0 priority level of the current program is lower than that of the incoming interrupt.

There are 32 interrupt levels (IT levels). Each of these levels has an associated memory address containing
the context pointer of a program specifically assigned to this level. These 32 context pointers are stored in
a table pointed to by the contents of memory address 10.

WheOl an interrup,t condHio.n occ..lIrs :

- the condition is stored in a flip-flop (one per signal),

- its IT-level is hardware-coded and compared with that of the task currently processed (register 8),

11-6

4057 U

- if the interrupt is accepted, its specific IT-level (0 through 32) is stored in the hardware of the micro
processor when the interrupt test m i cro-j nstructi on is executed,

- then, the micro-program performs the following operations:

• Storage of the interrupted task context at an address depending on its rank (the latter being stored in
register 8) •

• Loading of the interrupting task context from an address depending on its rank.

Call of the first instruction of the interrupting task. (See "Communication with the micro-processor"
page 11-8).

When the task is over or must wait for the occurence of a specific event, it releases the processing unit
through an interrupt de-activation and context swapping instruction OIT which:

- acknowledges the interrupt ca lIing for the task,

- stores the task's context, and

- calls for the next task waiting at the same IT-level, or, if there is no such task, for a task waiting at the
next lower IT-level.

If no task is waiting, the computer executes a wait loop until an external event occurs at the lowest level.

The total number of interrupt levels is 32, 4 internal and 28 external. Besides, up to 4 interrupts may be
on a same level, providing a total number of multiplexed external interrupts equel to 112 (28 x 4).

As a rule, standard periphera I controllers use one interrupt level each.

Internal interrupt levels are assigned to the following tasks:

- operator's console interrupt request,

- power turn on,

- power shut down,

- program (level 0).

High-speed interrupt

Optionally, one external IT-level may be of the "high-speed" type, i.e. may call fora task the context
of which is stored in a register block other than block 0, which contains the interrupted task context.
Consequently, the task switching only requires that the indicators be transferred in block 0; it lasts about
2 }JS.

When this "high-speed task" is acknowledged, the control is returned to the interrupted task (the context
of which is still in block 0) through a special OITR instruction by-passing the usual context swapping in
block O.

11-8.2. Suspensions

The suspension system is able to interrupt the current micro-program at the end of every micro-instruction,
and to launch a special micro-program. The suspension request is either issued by a peripheral or internal
to the micro-processor (processi ng uni t) .

On occurence of a suspension, the micro-processor's status, i.e. the contents of U-, J-, T-registers and
of 8, Tz, To, Ao indicators are transferred in a stack. The suspension micro-program is then executed.

At the end of the suspension program, the initial contents of U-, J-, T- •.• registers are restored from the
values previously saved in the stack.

11-7

4057 U

11-8

REGISTERS

• • ..
I
•

CORE MEMORY

o 78

i = IT rank

15

VM Mode violation
PM Memory protection violation
A I Non-existing address
PA Parity error
II Non-implemented instruction
ES I/O error
MS Mode indicator (Master/Slave)
MA
C,O
SRD(k}

PG
PR

Interrupt mask
Program indicators
Double-word specifying the
assi gnment of Supervi sor 's k-secti on
Trap in a program or I/O
Access to protected areos

PRTS (PRT Supervisor)

4k

associated deactivation words

-----~ --------
group IT no IT group

Communication with the micro-processor

~ SRD(k)

~ SRD(o)

4057 U

The stack has a capacity of four suspensions, i.e. the number of suspension levels is four. The number of
suspension signals is 32, or 8 per level, assigned as follows:

- 5 i nterna I suspensi ons :

traps (1)
interrupts (2)
control panel (1)
power failure (1)

- 27 external suspensions associated with peripherals.

/1-8.3. Traps

The origin of a trap is an abnormal condition detected at the end of a micro-instruction.

The trap processing micro-program:

- protects bytes 4 to 9 of the memory which contain L- and P-register values and the indicators status of
the context of the instruction which initiated the trap;

- signals the cause of the trap by setting a bit in memory word 2;

- performs a ca II to supervisor section o.
The following abnormal conditions initiate a standard trap:

- non-existing memory address: the user has specified an address exceeding the available memory.

- memory protection violation: the user attempts to write in a protected memory area with a zero PR-key.

- parity fault in core memory read-out signals.

Other traps may be initiated by the following causes:

- operating mode violation: attempt to use privi ledged instructions in a slave mode program.

- invalid instruction: incorrect OP-code specified.

- "watch-dog" timer runout.

In all these situations:

- the current instruction is ~borted,

- the micro-processor's stack is not triggered,

- a special micro-program generates a supervisor call.

The operations performed by the standard monitors in response to a trap condition are described in the
corresponding utilization manuals. The trap status word is described in "Communication with the micro
processor" diagram page 11-8.

11-9. MO DE AN D PROTECTION

11-9.1 . Operating modes

- Normal or "slave" mode.

In this mode, priviledged instructions cannot be executed and any attempt to execute such an instruction
causes a "mode violation" trap. MS indicator is reset (MS = 0).

11-9

4057 U

- Privi ledged or "master" mode.

In this mode all instructions, whether priviledged or not, are executable. MS indicator is set (MS = 1).

The various supervisor modules are examples of programs which must be executed in master mode. (See
CSV and RSV instructions).

It should be noted that addressing modes are different in master and slave modes (see Chapter V "Addressing
modes") to provi de absolute addressing capabi lity in master mode.

11-9.2. Memory protection system

The protection system becomes operative whenever PM key-switch is turned on the control panel.

The operation is as follows:

- a l-bit protection "lock" is associated with each memory word and may be set by a LDP instruction
(Loa D Protection).

- the program status includes a PR-indicator which acts as a "key".

If key value is 1 (override key), the program may gain access to all memory locatiom.

If key value is 0, the program may only gain access to memory locations whose lock value is O •

• PR-key loading

The PR indicator is loaded with the program context.

It is preserved before being forced to 1 during any supervisor call SVC and restored to its previous value
when the supervi sor returns the control to the ca II i ng program.

• Protection violation

If a "zero key" program attemps an access to any location having a 1 lock value, the protection system
operates and initiates a "protection violation" trap.

Memory protection and operating mode are independent.

11-10

mitra 15

3. Structure of a program

111-1. DEFINITION OF MODULARITY

In programming art, as in other techniques, the modularity consists in breaking down a system in to smaller
elements with standard interfaces.

Since the introduction of the "sub-program" concept, modularity is an acomplished fact in programmation.
As a main program may also be considered as a module, we rather call them "sections". The following
advantages are due to modularity:

- easier system specification,

- easier software writing, by sharing the work between a number of programmers,

- identical sections may be used in different system without rewriting,

- easier debugging and assistance on software products.

111-2. DEFINITION OF A SECTION

A section mainly comprises an instruction sequence called a program segment. The purpose of these instruc
tions is to process data which are either assigned to the section, or shared between a number of sections.

Data which pertain to a section in proper make up a "local data segment" (LOS).

Data which are common to several sections make up a "common data section" (CDS).

Accordingly a section is either the common data section CDS, or a local data segment (LOS) plus an execu
table program segment (Loca I Program Segment = LPS).

The CDS is accessible from any point in the program.

More particularly, the CDS may be accessed from a LOS in general addressing mode (direct, indirect or
indexed indirect).

Symbols and labels defined in the CDS are applicable to the whole program.

A LOS is accessed from the associated LPS in local addressing mode (direct, indirect or indexed indirect).

Symbols and labels defined in a LOS are applicable to the section only. Nevertheless, they may be referen
ced in the CDS. A program segment is exclusively made up of unalterable items (instructions), and this
improves relocatabi lity and simplifies writing of re-entrant sub-routines.

111-3. SECTION AND SEGMENT BASES

• Genera I base G

General base G is uniquely assigned to the program; it constitutes an implicit base to which every address
referenced by this program is related. Accordingly, the micro-processor automatically adds this base value
to all addresses specified in the instructions •

• Loco I base L

Local base L is the implicit base value for all local data contained in a local data segment (LOS).

111-1

4057 U

• Program base P

Program base P is assigned to a loca I program segment (LPS).

Initially, base P is the starting address of the section and from there on acts as a program counter for the
currently executed section (see Chapter 111-2.).

The actual values of L- and P-bases may be unknown at the time a program is written. At linkage edition
time, they are automatically generated in relative value with respect to the general base of the program
and stored in the associated PRT.

111-4. CONSEQ UENCES OF MODULARITY ON MITRA 15 PROGRAMS

From the hardware viewpoint, modularity implies the existence of special instructions for section calls and
returns.

From the software viewpoint, program modularity is a fundamental concept of the assembly language which
includes so-called "segmentation" pseudo-instructions:

CDS Common Data Section

LDS Loca I Data Segment

LPS Local Program Segment

FIN End of segment or section (LDS, LPS or CDS)

I DS Indirect Data Segment.

We shall call "program module" the result of an assembly or compilation processing. When a module is
written in assembly language it is rather ca lied "assembly module". Every assembly module must conclude
with an END pseudo-instruction. A program may be built up from modules of various origins (differing by
their source language, author, creation date, etc.).

The linkage editor interconnects the various modules into a complete executable program.

Remark:

To facilatate the programming, particularly in the case of re-entrant sub-routines, the assembler recognizes
so-called "dummy data segments" which are images of later-defined data or of data belonging to another
LDS (or CDS) than the LDS in which the dummy area is defined.

These dummy segments are treated as formal parameters, in particular for defining relative displacements
with respect to the beginning of the segment (description of dynamic data blocks, index values, etc.) but
generate no object code.

Example 1 : Typical organization of a program

COMMON
TWa
C1

LOCAL

C2

SPROG
DEB

111-2

CDS
RES
DATA
FIN

LDS
RES
DATA
FIN

LPS
LDA
AND
RTS
FIN

16
1

2
&FO

LOCAL
=3
C2

DEB

common
data

section

local
data

section

program
section

Section 1

4057 U

Example 1 : Typical organization of a program (continued)

LOCP LDS
RES 2

U DATA,l 28
V DATA,l 31
TAB DATA ATAB
ATAB RES 1024

FIN

PRINC LPS LOCP
INIT LDA U

ADD = C1
STA TAB
CLS SPROG
CSV M:EXIT
FIN INIT
END PRINC

End of file code (%EOD on card and paper tape).

Example 2 : Other possible special organizations

PROG

LPS1

LDS1

LPS1

LPS2

..

CDS

FIN

LPS

FIN
END

CDS

. .
FIN

LDS

FIN

LPS

FIN

LPS

FIN
END

PROG

LPS1

LDS1

LDS1

LPS1

local
data

section

program
section

Secti on 2

This LPS having no associated LDS cannot use
the local addressing mode; it must use the
genera I addressing mode

These two LPS are both associated with the
same LDS. The local symbols are deleted at
the beginning of the next LDS. Nevertheless,
there are two distinct sections (two items in
the PRT).
The local base L being initially the same for
both sections, no mutual calls are allowed
(through C LS pseudo-instructions).

" 1-3

4057 U

Example 2 : Other possible special organizations (continued)

LDS1

LDS2

LPS2

Example 3 :

First module

PROG CDS
RES 16

C1 DATA 2
C2 RES 4
C3 DATA D1
C4 RES 2
C5 DATA C2

FIN

CDS

FIN

LDS

FIN

LDS

FIN

LPS

FIN
END LPS2

Second module

PROG CDS DUM
RES 16

C1 DATA 2
C2 RES 4
C3 DATA D1
C4 RES 2
C5 DATA C2

FIN

This LPS having no associated LPS, it is only
accessible through indirect addressing via an
item of the CDS.

This LPS cannot refer to the LDS called LDS2,
since loca I symbols are deleted after every
occurence of an LDS pseudo-instruction.

Third module Remarks

PROG CDS DUM These CDS reflet each others.
RES 16 The dummy CDS DUM do not

C1 DATA 2 generate any ob ject code.
C2 RES 4 They use to satisfy the general
C3 DATA D1 addressing modes and the refe-
C4 RES 2 rences. Also they enable each
C5 DATA C2 program to have in clear the

FIN elements it uses.

--------------------- -------------------- -------------------- ----------------------------
LDS1 lDS

RES 2
D1 DATA C1

FIN
LPS1 LDS LDS1
DE B1 LDA D1

ClS lPS2
ClS lPS3
CSV M:EXIT
FIN DEB1
END lPSl

--------------------- -------------------- -------------------- ---------------------------

" 1-4

4057 U

Example 3 :

. First module Second module Third module Remarks

LDS2 LOS LDS2 LOS DUM The two program segments
RES 2 RES 2 LPS2 and LPS3 are linked to

02 DATA 4 02 DATA 4 the same data segment LDS2.
RES 5 RES 5 They are separely assembly,

03 DATA C2 03 DATA C2 but one of the two references
04 DATA C4 04 DATA C4 a dummy segment DUM whi ch

FIN FIN also uses to satisfy the local
LPS2 LPS LDS2 addressing modes and allows
DEB2 LOA 02 the programmer to have in

LOX =2 clear the elements he uses.
STA Ch,x The DUM segment do not
RTS generate any object code.
FIN DEB2
END

LPS3 LPS LDS2
DEB3 LOA 04

LOX =0
STA C4
RTS
FIN DEB3
END

--------------------- -------------------- ------------------- ----------------------------

After these three modules be linked, a executable IMT of the following forme will be obtain.

CDS LOS LPS LOS LPS LPS
PROG LDSl LPSl LDS2 LPS2 LPS3

~
Running

section

111-5. CONSTITUENTS OF A PROGRAM

• Task Working Block (TWB)

The first sixteen words of the CDS are called the "Task Working Block" or TWB.

This 16-word area is reserved to the Monitor which may store therein the return address to the calling task,
as well as the caller's local data base (L) and the program indicators.

The Monitor may maintain in the TWB a pointer to the system's common data area (ZC).

All programs which require Monitor Calls must reserve 16 words at the beginning of their respective CDS.

This feature allows for monitor sections re-entry, the latters operating in the calling program.

111-5

4057 U

• Program Relocation Table (PRT)

The sections are assigned through a section relocation double-word (SRD), which contains the initial values
of Land P with respect to G :

o 15

1= L - G
Section relocation double-word (SRD)

p = P - G

The PRT is made up of all the SRD of the program sections.

This PRT is stored in the locations immediately preceding G-address, thus the SRD of section no. n has an
address given by :

G - 4n

This table is built at linkage edition time.

Note:

The Monitor's PRT is pointed to by the contents of a fixed address as that of the micro-processor (address 12).

The PRT is the communication area between the different sections of a same program or between a program
and the Monitor (for the Monitor's PRT).

Context

Level I
I

Indi cators

Pointer
X

E

A CTX

G

I L

P

\
IN
pN

Ii
PRT (2 N words) .·.0

pi

11 , ..

G'
pI

TWB ! CDS

\ Initia I J

(secti on
Sections 1 throug h N

Where Ii = Li - G and pi = Pi - G

Structure of a program

111-6

4057 U

Remark:

The CDS, which is accessible from any section of a program, constitutes an implicit communication area
between the sections.

• De-activation word table or DeVice Table (DVT)

This 32-word table precedes in core memory the Context Pointer Table (CPT) which is also 32-word long.

A DVT word has the following format:

o 2 3 14 15

-----------~~----------Trigger_-----J

E na b Ie _---------4 IT no. in the group group no.

Arm

Bits 3 to 15 are also called "interrupt configuration".

The interrupt system and the DVT are described in Chapter II.

• Context (CTX)

The context is the communication area between a priority level and an associated program. It groups seven
words:

Word 1 Status indicators

Word 2 Initial X va lue

Word 3 In itia I E value

Word 4 Initial A value

Word 5 Initia I G value

Word 6 Initia I L va lue

Word 7 Initial P value

The context is used for initializing and restarting a task, and for protecting its status when the correspond
ing level is activated or de-activated.

When activated, a task level defines in the context table (CTX) the specifi c pointer fo the associated
context. P-, l-, G-, A-, E- and X-registers, as well as the status indicators are loaded from the context
area and program execution begins at address P.

Conversely, when a level is interrupted by a higher priority level, or when it is acknowledged, the current
contents of P-, L-, G-, A-, E- and X-registers and of the status indicators are stored in the context area.

For further details, see DIT instruction description (Chapter VII).

111-6. SECTION CAllS

There are two kinds of sections:

-sections pertaining to a given program, accessible through a CALL SECTION (CLS).

- sections available to all programs: supervisor section or common library section, accessible through a
CALL SUPERVISOR (CSV).

111-7

4057 U

• Program section call (CLS instruction)

During the execution of a CLS instruction, the processor:

- stores the contents of P (program address) and L (local data base) in the first two words of the called
section's loca I area (after subtracting G-base). These elements are required for "returning" to the task
and therefore must be saved.

- Loads P- and L-registers with the starting address and the loca I data segment address, respectively, of
the called section which may then be executed.

During the execution of a RTS (ReTurn Section), the processor:

- Restores in P- and L-registers the values which had been saved at the beginning of the called section's
loca I segment.

Note

When several sections of a program are separately assembled, if one contains a call to another, it is not
necessary to declare that the calling section is external to the module. This declaration is implicit and the
linkage editor performs the necessary checks.

The transfer diagram is given in the description of CLS instruction (Chapter VII "Instructions").

• Supervisor ca II (CSV instruction)

The supervisor sections and the sections constitued by common sub-programs make up the "resident operat
i ng system" .

Hereafter, we shall call "system section" a section of the operating system.

A "system section" :

a) remains at the calling program's priority level;

b) processes both the calling task's data and its own local data;

c) is automatically executed in master mode.

Moreover, since a task is identified by its G-base value it is logical to associate the call with this base
rather than L-base.

In the CALL SUPERVISOR, i.e. in a system section, G has the same function as L in the CALL SECTION.

Paragraph (c) above, which is associated with class 0 addressing modes (see chapter V), implies paragraph
(b) since a system section may:

- access its own data in LD, LI and LlX addressing modes, it being understood that these data have absolute
oddresses and, therefore, system sections are resident with an implicit zero local base. (In this respect,
the operating system is a single program).

- access the calling task data in GD and GIX addressing modes, since the general base G remains that of
the caPing task.

When executing a RETURN SUPERVISOR instruction (RSV), the processor restores in L- and P-registers the
values which had been previously saved in the calling program's TWB.

The mode of the calling program is automatically re-established by RSV instruction.

The communication diagram of a supervisor call is given in the description of CSV instruction (Chapter VII).

111-8

4057 U

Example of re-entrant section programmation

M:MOVE module of MOB Monitor for moving a byte string .

• Main program

PRINC CDS
RES
FIN

LDS1 LOS
CH1 TEXT
CH2 RE S, 1

FIN

LPS1 LPS
DEB LEA

XAX
LEA
LDE
CSV
FIN
END

• M:MOVE re-entrant module

FICTIV

TO
11
T2
T3
14
T5
T6
T7
N3
N2
N1
NO

SUPER

M:MOVE

R:MOVE

C

CDS
RES
RES
RES
RES
RES
RES
RES
RES
RES
RES
RES
RES
RES
FIN

LOS
FIN

LPS
SPA
BRU
RSV

XEX
DST

DCX
BCF
LBR
SBR
BRU

16 ~ TWB

"ABC DEFG H IJK L"
12

LDS1
CH2

CH1
=12
M:MOVE
DEB
LPS1

DUM
4
1
1
1
1
1
1
1
1
1
1
1
1

SUPER
#NO
$+2

#TO

=1
o
@#11,X
@#TO,X
C

I Pa,amet." loading

Dummy TW B. Genera tes no ob ject code.
Used for proper generation of instruction displacements
in the LPS.
Since a CSV does not alter G-base value, M:MOVE
will operate in the main program's TWB.

Entry point of the module for the CSV.

Entry point of the module for a branch instruction

111-9

4057 U

o LDA
BRU
FIN
END

#T1
@ # NO

111-7. SYSTEM'S MANAGEMENT CONCEPTS

• Functions of the Supervisor

- Task management: connection at interrupt levels, queuing and "distribution" functions.

- Input/Output management: initialization on user's call, checking of interrupt-initiated transfers
termination, etc •••

- Resource management: reservation and release on user's call.

- Event management.

- Delay management.

- Etc .••

Operation and re-entrance of Supervisor ca lis

Supervisor S.
I S·

I
Return

ITi .. ~- -- - - -+--..... 1....-------------71-
DIT

ITi .. __ -- - - - ---------------_

_____ Supervisor's processing at task's level

Return

The Supervisor operates at the level of the calling task and this provides supervisor context protection at
this level.

B,esides, for full re-entrance capability, variable data operated upon by the Supervisor must be stored in
an area specified by the calling task: this is the purpose of the TWB described in paragraph 111-5.

• Data area management

• System common data area

In order that a relative address may always be positive with respect to any G-base value, this area is loca
ted in the upper portion of the memory.

It comprises a group of fixed-length blocks which are dynamically assigned on user's request.

To have the program relocatable with respect to this area, it is the address ZC of the whole common area
which the Supervisor stores in G + 6, in relative value with respect to G, the address of the actually
as .. igned block being provided in a register (preferably X) as a relative value with respect to ZC. This
Cl~C;'ess is assigned by the Loader.

111-10

4057 U

The task will address this block in GIX mode with:

- D = 6,

-(G+6)=ZC,

- (X) = Block address with respect to ZC.

To progress in the block, the task increments or decrements X-register.

This procedure has an obvious advantage:

When a program is dynamically relocated, e.g. after a swapping, the only action of the system is to
update (G + 6) contents with the new ZC relative address to provide the connection with its data, without
any attention from the user.

Thus, the main purpose of this area is :

- to provide communication between separate programs,

- to allow for dynamic relocatability of the programs.

• Program common data area

Every program includes a common data section (CDS) accessible in general addressing mode. This address
ing mode. This addressing being a Iways relative to G-base, the actua I location of the program may be
unknown to the user without any influence on the programmation •

• Local data areas

Since every program section may have a local data area, the corresponding base must be updated at the
beginning of the section (when a called section is entered) or upon return to the calling section.

This updating is automatic and requires no attention from the programmer who needs only state the name
of the section to be executed.

The linkage editor builds a relative location table in which every section is defined by the relative
addresses of its entry point and local data segment.

Some programs may require a direct access to more than 256 bytes in a data segment; this is provided for
by instructions for incrementing and decrementing L-base, where by the direct access area is shifted. The
Assembler is made aware of such shifting by a BASE pseudo-instruction.

111-11

mitra 15

4. Assembly language

The Assembler isa language translation processor which converts a source program, written in "symbolic
assembly language", into an object program.

The programmer is assisted in its task by the following convenient features:

- assembly "pseudo-instructions" for generating data of various kinds,

- possibi lity of sharing the job between severa I programmers (program divided into segments and sections),

- possibility of easily writing re-entrant sub-routines owing to full separation of data and work areas.

The source program is processed in a single assembly pass during which:

- every source line is read,

- symbols are entered into tables,

- relative addresses are assigned at the beginning of declared segments,

- pseudo-i nstructi ons a re executed,

- the "relocatable binary" (RB) object text is edited along with a directory of satisfied references, the
object listing and a list of errors which have been detected at this level,

- "forward" or downstream references, which cannot be solved by the Assembler, are actually processed
by the Linkage Editor.

MITRAS 1 Assembler requires the following minimum hardware resources:

- 4 K-words of core memory (including I/O processing), and

- a console typewriter (Teletype ASR33).

MITRAS 2 Extended Assembler requires an additional 4 K-word memory module.

Remarks:

1 • Hereafter the features which are available with. MITRAS 2 only are distinctly pointed out by a vertical
dotted line in the margin.

Pseudo-instructions which are not accepted by MITRAS I are underlined.

2. MITRAS 1 Assembler requires about 4800 bytes (without label table) thus leaving, under MOB basic
monitor, about 1000 bytes of table space, i.e. 100 common labels.

Source language instructions are of two kinds:

- Machine code instructions, which are each converted into a single machine word specifying an instruc
tion executable by MITRA 15's internal logic. In the following they will be called "instructions".

- Assembly instructions which are command statements controlling the assembler either for assembly proce
dure, or for data or text generation. In the following they wi II be ca lied "pseudo-instructions".

IV-l

4057 U~ __ __

IV-1. SOURCE LINE FORMAT

IV-1 .1 . Instruction or pseudo-instruction line

An instruction or pseudo-instruction line has a maximum of four fields:

.. a label field:

Always beginning at column 1 and containing a 1 to 6-character symbol beginning with an alpha character
and ending with a blank column.

- a command field:

Beginning at the first non blank column after the label field (or at the first non blank column after column
1 when the label field is unused) and ending with a blank column. This field must contain a command
statement both for an instruction and a pseudo-instruction.

- an argument field:

Beginning at the first non blank column after the command field and ending with a blank column, except
if the first non blank column contains a special character "*" in which case this field is ignored as such.

The argument field cannot extend beyond column 57 with MITRAS I and column 72 with MITRAS 2.

- a comment field:

Beginning at the first column after the special character "if".

IV-l .2. Comment lines

A comment line is a line the first non blank character of which is a special character ,.*,. These lines are
ignored by the Assembler but appear in the object listing.

IV-l .3. Blank lines

Blank lines are accepted and treated as empty comment lines.

IV -2. BASIC CHARACTER SET

The Assembler accepts all the following characters:

- a Iphabeti c characters: letters A through Z and

.. numeric charact ers : digits 0 through 9 •

11.11 . .

... special characters: blank + - * / . , () ,. = # $ % & @ etc.

Furthermore it accepts all characters recognized by the peripherals. These characters make up a subset of
EBCDIC.

No check is performed on the characters which are included in a comment field or a byte string.

IV-3. SYMBOLS

A s"mbol is an identifiable group of up to 6 alphanumerical characters, the first of which is alphabetical.
No olanK or special characters are allowed.

A svmbol is defined when it appears in the label field of a source line.

In ai i cases, a symbol identifies the source line to which it belongs.

IV-2

4057 U

It may also identify the memory address of the code generated by the source line. In such a situation, a
numerical value is assigned to the symbol and is equal to the most significant byte memory address.

IY-3.1. Pseudo-instructions prohibiting assignment of a value to the label

Those are:

GOTO, BASE, BND, DEF, REF, FIN, END, PAGE

A symbol may appear in the label field, but no value is assigned to it.

Its only purpose is to mark the corresponding line in the argument field of a GOTO pseudo-instruction.

IY-3.2. Commands for assigning an address value to the label

- Assignment commands:

the EQU pseudo-instruction provides for assigning a numerical value to the symbol in a label field.

- Generation commands:

Machine instructions
Generation of pseudo-instructions:

RES, DATA, GEN, TEXT, DO •

• Segmentation pseudo-instructions:

CDS, LOS, IDS, LPS, BASE.

Any symbol appearing in the label field of such a command is entered into the assembly symbol table and
an address value is assigned to it.

The address value is always relative to the beginning of the segment which contains the symbol in a label
field.

An address value specified in operand field of DATA and GEN pseudo-instructions will be relocated, at
linkage edition time, by the value of L or P base of the segment in which it has been defined, so as to
become relative to the genera I base G of the program.

In resident programs declared in Master Mode, the loader will generally relocate the address values by the
general base G, since, in that case, local mode indirect addresses must be absolute.

However, in a LOS, it is possible to force a label expression to remain relative to the base, even for a
program executable in Master Mode.

For this, the label expression must be preceded by the special character "#" .
This procedure is allowed in a CDS, though it is basically ineffective.

IY 4. CONSTANTS

Data may be directly entered in assembly language as alphanumerical constants. Three types of constants
are permitted in statements:

IY-4.1. Decimal integer constants

A decimal integer constant is represented by a decimal integral numbtr'Of 5 digits or less, with or without
a sign:

Example: + 75 75 -75

IY-3

4057_U~ __ ___

The maximum absolute value for an unsigned number is 2 16 - 1 = 65,535.

The constant generated by the Assembler is in pure binary form (in two's complement for negative va lues)
and occupies the area specified in the g'e~eration pseudo-instruction.

IV-4.2. Hexadecimal constants

A hexadecimal constant is represented by an integral hexadecimal number of 4 digits or less, preceded by
the special character "&".

Exo:~~ple: &lA &E3FF

iV -4.3. Character string constants

A character string constant is a sequence of alphabetical, numerical or special characters in quotation
marks. The internal representation of normalized characters is "EBC~IC".

A translation module included in all stand~rd monitors' provides for automatic translation ASCII·EBCDIC and
EBCDIC-ASCII, should they be required; this translation is performed by the input-output system.

Example: "C HARACTER STRJN G"

A quotation mark is represented in the string by two consecutive quotation marks.

Example:

"NEXT""CHARACTER" represents: NEXT"CHARACTER

IV-5. EXPRESSIONS I'.
An (:"':pression is made up of one or several symbols or constants combined through arithmetic oP,e;a:to~~
,\r\ expression is represented by a single value which is computed by the Assembler or by the lin'k,age '"
Editor according to the rules specified in section IV-3.2. ,(

An expression is said to be computable when its value may be
it must contain no forward or exter~al references. ,"

!

IV-5.1. 0eerators

The Assembler accepts the following operators:

"Minds" unary operator (example: -3)

S:Jbtraction operator (example: A-3)

+ Addition operator

,-

determ i ned at the fi rst en counter; therefore,
• t.

b" I,.'
'f

. ~' I

WI· .::" the unary minus operator is followed by a constant, the Assembler generates the latter in pure binary
two': c:)mplement form.

:\,-5,'1. Expression evaluation

TWO kinds of expressions are to be consiClered

- label expression: /",:'

A s',(mbol identifying a specific m!mory loca'tion whose addres!;'s !?'evalue of the label. .'

::'.lc(l (1 symbol may be reduced to • special tharacter $ in whiA case it specifies the current location
CC)'.:" +er va lue.

IV-4

4057 U

- Predefined symbol:

A predefined symbol specifies no memory location; its value is absolute and defined by EQU pseudo-instruc
tions preceding its utilization.

- (Forward) reference

A forward reference is a symbol which has not yet been defined. It may be defined later on either by a
label, or through an EQU or REF pseudo-instruction.

- Conventional representations:

Elements of assembly language syntax are represented by their denominator contained between square
brackets (e.g. : <expression».

The definition is given as an identity relation the lefthand portion of which is the representation of the
elements to be defined. The identity symbol is ": : =" and the righthand portion specifies the various
compositions of the elements to be defined. When this portion contains several elements in succession, the
latters must appear in the same order. However, when such elements are separated by "slash marks" (/),
one must select one or the other.

Example 1 :

<ab> :: = - < va lue>/ < va lue>

In this case, "ab" may be indentical with "-value" or "value".

Example 2 :

<value> :: = <term>/<value><sign><term>

In this case, "value" may be identical with "term" or "value" followed by "sign" followed by "term". This
is equivalent to the statement that "value" is a sequence of "term" separated by a "sign".

MITRAS I Version

<Term> : : = < constant> / <predefined symbol>

<Constant> :: = <integral decimal constant>/<integral hexadecimal constant>

< Label expression> :: = < label >/< label> <sign>< term>

<Reference expression> :: = < reference>/<-reference>< sign> <term>

< Sign> :: = + / -

<Predefined expression> :: =< term>/-<term>/<Iabel expression>

Predefined expressions are always computable by the Assembler. Some expressions may be-computable at
linkage edition time only.

M ITRAS 2 Version

< Constant> :: = < integral decimal constant>/< integral hexadecimal constant>

< Term> :: = < constant>/ < predefi ned sym bol>

< Displacement> :: = < label >-<Iabel>

< Va I ue > :: = <term>/ < displacement>/ <va lue>+<displacement>/ <va lue><sign>< term>

< Label expression> :: = < labe!>/ <Iabel><sign><value>

<Reference expression> :: =< reference>/<reference><sign> <value>

< Predefined expression> :: = <value>/-<value>/< label expression>

<Expression> : same structure as for "predefined expression", but any label may be replaced by an address
reference.

IV-5

4057 U

Predefined expressions are always computable by the Assembler. Some expressions may be computable at
linkage edition time only.

Remark:

A label may be reduced to the special character $ {current value of the location counter} but only as the
fi rst term of an expressi on.

Example of such label expressions:

$ + 2

2 + $

valid

invalid

mitra 15

5. Addressing modes

V-1. SYMBOLIC REPRESENTATION OF THE INSTRUCTIONS

V-1 .1 • Representation conventions

Hereafter the followi ng representation conventi ons wi II be used:

One of the terms between braces may be specified and excludes all others (possible terms are
stacked vertica IIy).

- [] The term between square brackets may be omitted being either optional or implicit.

The expression bounded by the end separator immediately preceding the ellipsis mark and the
associated begin separator may be repeated.

Examples:

[,0]

One term out of A, Band C must be specified, 0 is optional.

One term out of A, Band C must be specified, but A may be omitted when selected.

~ ~ [,B] ... , C ~ ...

The expression between braces may be repeated; in the first possible term, B element is optional but may
be repeated.

V-1 .2. Instruction representation

All instructions are represented in accordance with the following format:

[label] OP

o

o
o

[,x]

1 ,x

V-1

4057 U

Wherein:

OP Operation code

D Displacement

= Immediate addressing (parameter) operand va lue = displacement

@ Indirect addressing

Relative addressing with respect to genera I base (C DS)

,X Indexing

Remark

For instructions or pse'udo-instructions whose name has four characters, the first three only are used for
operati on code recognition purpose.

V-2. ADDRESSIN G MODE REPRESENTATION

V-2.1. Addressing class

MITRA 15 addressing capabi lities are adapted according to the various instruction operation codes.

Addressing functions may be classified into three main groups corresponding to three instruction classes:

• Class 0 instructions

These instructions control the following operations

- register load and store operations

- fixed-or floating-point arithmetic operations

- logical operations

- byte string operations

- comparaison

• Class 2 instructions

These are conditional or unconditional branch instructions.

• Class 1 instructions

'" shift operations

- index operations

- base operations

- section or supervisor calls

- input/output operations

- register operations

- interrupt and interrupt masking operations

These three groups make up a very comprehensive instruction set which will be discussed later on after a
brief description of addressing forms pertaining to each type.

V-2

4057 U

The following conventions are used in the dicussion :

- L Loca I base

- G General base

- G' Genera I base in slave mode or zero in master mode

- X Index register

- P Program base

- D Displacement

- () Contents of

• Class 0 addressing

Mode
Assembly

Addressed data
Addressing

language function

Direct, Local IDENT Byte, word or double-word Y=(L)+D
DL located in the first 256 bytes

of the loca I segment.

Indirect, Local
@ IDENT Byte, word or double-word Y=G '+((L)+D)

IL
located anywhere and pointed
at through the loca I segment.

Indirect, Loca I, Indexed @ IDENT,X Element of a byte, word or Y=G '+((L)+D)+(X)
ILX double-word array located

anywhere and pointed at
through the loca I segment.

Direct, General # IDENT Byte, word or double-word Y=(G)+D
DG located in the first 256 bytes

of the common segment.

Indirect, General, Indexed _ @#IDENT,X Element of an array pointed Y=(G) +((G) +D)+(X)
IGX at through the common

segment.

Parameter or immediate =OPERAND A l-byte operand is specified (Y) = D
P in the instruction. This byte Y = (P)

may be extended on the left
by 8 leading zeroes, if
required.

V-3

4057 U

Example of class 0 addressing

Common segment

(G) __ _

CSCAl INFO 6

CTAB ACTAB

ACTAB

INFO 5

INFO 5

I Instruction Operand

r~·OA #CSCAl

I OlO @#CTAB, X

INFO 6

INFO 5

V-4

I (X)

Instruction

lOA = INFO 4

loca I segment

(l) __ _

SCAl INFO 1

ATAB

POINT APOINT - f---

APOINT INFO 2 I--

ATAB (X)

INFO 3

Instruction Operand

lOA SCAl INFO 1

lOA @POINT INFO 2

lBR @TAB, X INFO 3

Operand

INFO 4

4057 U

• Class 1 addressing

This class includes:

- either instructions without actual operand, i.e. register contents swapping, section end, etc .••

- or instructions whose operand is generally known (possibly through an unknown modifier) at programmation
time: shift, increment, index, etc.

The following modes are permitted:

Mode
Assembly

Operand
Addres~ing

Language functi on

Parameter or immediate ==PARAM· Operand defined by displacement va lue (Y)==D
p Y==(P)

Parameter, Indexed ==PARAM,X Operand defined by value plus X-register (Y)==D+(X)

PX contents. Y==(P)

Direct, Local IDENT Operand located in the first 256 bytes of Y==(L)+D
DL the local segment.

Remark 1 :

To simplify program writing, a number of symbolic instruction codes recognized by the Assembler specify

both the operation code and the displacement.

For example SRG, which is a register instruction, is specified through its displacement:

SRG

SRG

SRG

SRG

etc.

== 02

== 04

== 06

==IC

In actual practice, for the Assembler,

XAE

XAX

XEX

CNA

etc.

exchange A and E

A and X

E and X

-A--A

is equiva lent to SRG == 02

SRG == 04

SRG == 06

SRG == 1 C

In addition, MITRAS 2.Assembler recognizes 14 shift instruction mnemonics which specialize the two opera

tion codes SHR and SHC.

V-5

4057 U

Examples:

SHR = &23

SHR = &E8

SHC = &OB

SHC = &4E

Remark 2 :

equiva lent to

equiva lent to

equivalent to

equiva lent to

SRCS = 3

SRCD = 8

SLLD = 11

SRLD=14

(shift, ri g ht, circular, single)

(shift, ri g ht, circular, double)

(shift, left, logical, double)

(shift, ri g ht, logical, double)

Instructions CLS and CSV may be used in two different ways:

a} The operand is a LPS name; the Assembler generates a blank word and the Linkage Editor determi.,es,
one the one hand, if the instruction to be generated is a CLS or a C5V according to the section type
(monitor or user section) and, on the other hand, the corresponding section number.

This is the normal case wherein the user is not concerned with the section number.

b} The operand is not a LPS name. These instructions are treated as any class 1 instruction, the three
addressing modes being availa~le.

Example for a program module

PROG CDS
RES 16
FIN

Ll LDS
FIN

P1 LPS Ll
RTS
FIN P1

L2 LDS
FIN

P2 LPS L2
RTS
FIN P2

L3 LDS
FIN

P3 LPS L3
RTS
FIN P3

L4 LDS
RES 3

N UMSEC DATA 3
FIN

P4 LPS L4
DEB CLS Sl

CLS =2
LDX = 1
CLS = 2, X
CLS N UM5EC
CSV M:EXIT
FIN DEB

l..--.. END P4

~

~ ---

Ca II Sl
Ca II 52

Call S3
Ca II 53
Call monitor

Note: CLS NUMSEC is not available with MITRAS 1.

V-6

These uti lizations require the knowledge
of the section number in the program's PRT

4057 U

• Class 2 addressing

Normally, instructions pointed at by a branch instruction belong to the same section as the branch instruc
tion. However program section length is unlimited.

Four addressing modes are permitted:

Mode
Assembly

Branch i nstructi on
Addressing

language functi on

Relative downstream LABEL Any instruction within 512 bytes downstream Y={P)+2D
(plus) RP

Relative upstream LABEL Any instruction within 512 bytes upstream Y={P)-2D
(minus) RM

Indirect, Local @LABEL Any instruction pointed at through the Y=G '+({L)+D)
IL loca I segment.

Indirect, General @#LABEL Any instruction pointed at through the Y=G '+({G)+D)
IG common segment.

In addition, an indexed unconditional branch instruction is also available. For indirect branch instructions,
the index is used for pre-indexation (more convenient for "Branch table" processing), contrary to data
indexation which is a post-indexation (more convenient for accessing element of an array).

Examples:

Common

DATA B4

c:::
B3

B4

B5

Program section

BRU B2

BAZ B1

BE @BL

BOT @#BC

BRX @ TB

~

-
Local

BL
DATA B3 .~

TB

(X)

B5
;

~
V-7

4057 U

V-2.2. Permitted expressions

• ClassO

Predefined or reference expression

• Class 1

P va lue

PX value

DL predefined or reference expression

• Class 2

R P reference expressi on

RM label expression

DL predefined or reference expression

DG predefined or reference expression

mitra 15

6. Pseudo-instructions

VI-1. SOURCE TEXT SEGMENTATION

VI-1.1. General

The source text is translated by the Assembler into an object module in "relocatable binary" format (RB).
The Assembler can only satisfy the reterences to symbols of the assembled source text.

The Assembled modules are converted by the Linkage Editor into a complete program represented by a
"relocatable memory image" (RMI). All external references (section names) between program modules are
then sa ti sfi ed .

The RMI is loaded into core by the Loader starting from a general base address G which is only defined at
loading time.

VI-1 .2. Source text

The source text is the assembly unit. It comprises one or several segments and must be terminated by an
END pseudo-i nstructi on.

Source
Module

MITRAS
I or II

Linkage
editor

RMI
program

MITRAS
1 or 2

RB module
copied in the
library

VI-i

4057 U

VI-l .3. Common data section

If the assembly module is to include an actual or dummy common data section (COS), the latter must always
be declared before any other segment of the assembly module.

VI-l .4. Sections

Every section must include an executable local program segment (LPS) which defines the section. A local
data segment (LOS) is normally associated with aLPS.

When such a LOS is actua IIy defined in the same module as the LPS, it must precede the latter in the source
text. Several LPS may be associated with a single LOS and the number of sections is equal to the number of

LPS.

VI-l.5. Identifier scopes

Identifiers may be classified into internal labels defined within the assembly module, and external labels
declared through OEF and REF pseudo-instructions.

• Internal labels

• Labe Is defi ned in the COS

These labels are defined for the whole assembly module and may be referenced from any segment. However,
they connot be redefined as local labels without causing a "double definition" error.

• Labels defined in a LOS

These labels are defined until the appearance of another LOS pseudo-instruction.

They may be referenced from the C OS, from the LOS itself and from any LPS following the LOS in which the
label is defined, up to a new LOS.

• Labels defined in aLPS

They may be referenced from LPS itself, from the COS or from the associated LOS (which normally precedes

the LPS).

• Externa I labels

A label is said to be "external" when it has a meaning outside the assembly module in which it has been
defned (where it appears in label field).

Thus, being known at linkage edition time, it provides a convenient link to other modules without resorting
toa COS {actual or dummy} or toa Call Section.

A label is external when declared through a OEF pseudo-instruction which must appear in the segment in
whi ch the label has been defined.

The external label may be referenced in another module provided that it is declared in the latter module
through a REF pseudo-instruction. The REF pseudo-instruction must appear in the segment where the external
label is used.

The "external" status does not modify the notions of "common" or "local" labels, for the Assembler.

When a label belonging to the COS is to be declared in a REF pseudo-instruction, it must be preceded by
a u#" special character.

VI··2

4057 U

Example:

REF #LAB1, #LAB2, #LAB3

Do not confuse external labels and segment names. The latters, though known outside the assembly module
at linkage edition time, are only accessible through Call Section or Call Supervisor.

Example:

PROG

ETlQO

LDSl

ETlQl

LPSl

z

LDS2

X
ETlQ2
ETlQ3

LPS2
y

Remark:

CDS
DEF
RES
DATA
FIN

LDS
RES
DEF
REF
DATA
DATA
FIN

LPS
REF
LDA
FIN
END

LDS'

REF
REF
DATA
DATA
DATA
FIN

LPS
LDA
STA
LDA
FIN

ETIQO
16
1

8
ETlQl
ETlQ3
2
ETlQ3

LDS1
ETlQ2
ETIQ2
Z

ETlQl
#ETIQO
ETlQl
o
4

LDS2
#ETlQO
X
ETIQ1
X

It is important to remember that, for local external labels, the displacement is generated relative to the
LDS of the section containing the corresponding DEF but used relative to the LDS of the section containing
the corresponding REF.

VI-l .6. Location counter

The location counter contents is a byte address with a maximum value of 2 16 - 1 = 65535.

The location counter is symbolically represented by the special character "$".

This counter is reset to zero at every segment declaration, so that a II references ca Iculated at assembly
time are always relative to the starting address of the declared segment.

VI-3

4057 U

YI-l .7. Segmentation pseudo-instructions

These pseudo-instructions define the assembly module structure in terms of sections and segments.

They are:

- Common data section: CDS

- Loco I data segment: LDS

- Indirect data segment: IDS

- Executable local program segment: LPS

~ End of segment: FIN

- End of module: END

Every segment opened by a segmentation pseudo-instruction must conclude with a FIN pseudo-instruction •

• CDS/FIN pseudo-instruction

This pseudo-instruction identifies the common data section CDS.

Format:

Label Command

< Name> CDS
·

[< label>] FIN

Result:

- The location counter is reset.

Argument

[DUM]

- All labels may be referenced form the module declared sections.

- If DUM option is specified, no code is generated and the section is dummy •

• LDS/FIN pseudo-instruction

This pseudo-instruction identifies a local data segment LDS.

Format:

Label Command

<Name> LDS
· · · ·

[<Iabe!>] FIN

Result:

- The location counter is reset.

Argument

[DUM]

- "Nome" defined in label field is an implicit external definition.

- If)UM option is specified, no code is generated and the segment is dummy.

VI-4

4057 U

• I DS/F I N pseudo-i nstructi on

This pseudo-instruction identifies an indirect access data segment within a LOS or CDS. This segment is
such that any label located between the IDS pseudo-instruction and the associated FIN pseudo-instruction
is defined in relative value within the declared indirect segment.

Format:

i

Label Command Argument

<Name> IDS [DUM]

[<label>] FIN

Resu It :

- The location counter is reset, but its current value is saved.

When the indirect segment IDS has been terminated by a FIN pseudo-instruction, the location counter is
restored to its previous value incremented by its current relative value {zero if the IDS is dummy}.

- If the DUM option is used, no code is generated and the segment is dummy.

- A label defined in an IDS pseudo-instruction is treated as a normal LOS label for an actual IDS, or as a
• zero va lue for a dummy IDS •

• LPS/FIN pseudo-instruction

This pseudo-instruction identifies an executable program segment LPS and thus a program section.

Format:

Label Command Argument

<Name-l> LPS <Name-2>

[<label>] FIN <label-2 >

Result:

- The location counter is reset.

- < Name-l> identifies the LPS and the section; this is an external implicit definition.

The name referenced in a CALL SECTION is the corresponding external implicit reference.

- <label-2> is the effective starting address for section execution.

- < Name-2> references the associated LDS.

VI-5

4057 U

• EN D pseudo-instruction

This pseudo-instruction marks the end of an assembly module.

Format:

Label Command Argument

[dabe!>] END [<Section name>]

Result:

- The assembly of the module is terminated.

- <section name> specified in argument field defines the first section executed after program loading. This
label constitues an implicit external reference.

- At linkage edition time, only one END pseudo-instruction may be encountered and its argument field
must declare a section name •

• Processing of %EOD

It should be noted that the Assembler's symbolic input file is a source file terminated by a standard end-of
file record (%EOD).

This file end marker is not strictly necessary for program end recognition, however the absence of %EOD
will cause an undetermined operation sequence, particularly under linking module control.

An %EOD record detected before an END pseudo-instruction (i .e. in the course of a program) is indicated
by a third level error causing immediate assembly aborti on.

V 1-2. ASSEM BL Y PSE UDO-IN STRUCTION S

These statements are used either to direct common or loca I data assembly or executable program segment
assembly.

Assembly pseudo-instructions are classified as follows:

I Pseudo-i nstructi on
Data Program

~
Segment Segment

I

1. Addressing

RCf" X X;)

BND X
BASE X

2. 51mbol definition

EQU X X

3, Assembll control

GOTO X X

~ DO
X

.. ~~AGE X

,

VI-6

4057 U

Pseudo- i nstructi on

4. Data generation

DATA
TEXT
GEN --

5. Externa I definition identification

DEF
REF

VI-2.1. Assembly of a data segment

• Addressing statements

• RES pseudo-instruction

Reservation of a memory area.

Format:

Result:

Label

[<Label>]

TOTO

Data Program
Segment Segment

X
X
X X

X X
X X

Command Argument

RES [,1] <Value>

RES 3

RE S, 1 5

- The [,1] option specified in the command field, indicates that the reservation unit is the byte, other
wise it is the word.

- If the selected unit is the word, the location counter is first advanced to the word boundary.

- The value which is assigned to the symbol defined in label field points at the first address of the reserved
area.

• BN D pseudo-instruction

The location counter is advanced to a word boundary.

Format:

Label Command

[<Label>] BND

TOTO BND

Argument

VI-7

4057 U

Result:

The locati on counter is advanced to an even va lue, i. e. a word boundary.

• Symbol definition statement: EQ U pseudo-instruction

Format:

Label Command Argument

Name EQU <predefined expression>

/" <character>"

/" <character> <character> "

ZON RES 4

TOTO EQU ZON

TATA EQU ZON+2

TUTU EQU 5

TlTI EQU "AB"

Result:

- An expression specified an argument field defines the symbol which is declared in label field. No forward
reference is allowed in the expression.

- One or two alphanumeric characters between quotes (") may appear in argument field.

- The $ symbol representing the current value of the location counter is allowed in argument field.

- Any symbol specified in label field of an EQU pseudo-instruction cannot be redefined.

- No string is allowed with MITRAS I.

• Assembly control statements

• GOT 0 pseudo-i nstructi on

Format:

Label

<Label>

TOTO

NN

TATA

VI-8

Command Argument

GOTO ,k --- <label 1>,

<label 2>,

<label n>

GOTO ,2 BRI, BR2, BR3, ..• , BRn

EQU2

GOTO,NN BRI ,BR2, BR3

4057 U

Result:

- The assembler jumps to the source line whose label field contains the K label declared in argument field
of the GOTO pseudo-instruction.

- K is a "value" type expression (see page IV-6 and IV-7) which may be calculated when the GOTO
pseudo-instruction is processed.

- All labels declared in argument field must refer to source lines following the GOTO pseudo-instruction.

- When K is not comprised between 1 and n, an error message is edited and assembly is resumed at the line
following the GOTO pseudo-instruction.

- If an EN 0 pseudo-instruction appears before the selected label is reached, the assembly process is inter
rupted and an error message is issued.

• DO pseudo-instruction

Iterative assembly of an instruction.

Format:

Label Command Argument

[<Label>] DO - <value>

TOTO DO 7

DATA &78A2

Result:

- The absolute expression declared in argument field must be computable and provides an integral value
less than 128 representing the number of iterative assemblies of the next line in sequence.

- The iteration index is symbolically represented by the special character "%" and may be included in the
line to be assembled. At each iteration step it is replaced by the iteration counter contents.

- The iteration counter is initially set to 1 during the first loop.

- When the iteration is over, the assembly process is normally resumed at the second line after the DO
pseudo-instruction.

- If the absolute expression is negative or zero, or if it is not computable (in the second case, an error
message is issued), the Assembler directly steps to the second line after the DO pseudo-instruction.

- When a label is specified in label field, it is associated with the first generated byte.

• Data and text generation statements

• DATA pseudo-instruction

Da ta genera ti on .

Format:

Label

[<Labe!>]

TOTO

Command

DATA [,1]

DATA
DATA,1

Argument

G¥] <exp 1> [,[#]<exp 2>] ...
ETlQl, #ETIQ2, ETlQl-ETlQ2, 3, &8AF2
7, &8E, 5+4

VI-9

4057 U

Result:

- A DATA pseudo-instruction generates data items having the values of "i-expressions".

- An "i-expression" is an expression as defined in IV-5.2. or a string of 1 or 2 characters. (The string is
not a" owed wi th MITRA S I).

- Every generated data item is right justified on one or two bytes, according to the selection or omission
of [,1] option in command field.

- When a label is specified in label fi eld, it is associated with the first generated byte.

- If <exp 1> is preceded by a # symbol, the corresponding expression must be left relative to G during a
master mode loading.

Remark:

Under MITRAS 2, operational labels (standard and user's) are common explicit symbols. Thus, an operation
al label may be specified in an I/O control block just by writing:

DATA,1 M:BI

in the case of M:BI operational label.

Under MITRAS I the operational number must be either specified directly or defined through an EO U pseudo
instruction.

For further information on operationa I labels, see chapter 8 "Input/Output control system".

Example:

MITRAS 2

CDS

FIN

LDS1 LDS
CB DATA 0

DATA,l &80
DATA,1 M:EO
DATA # STRING
DATA 8

STRING TEXT "WRITING"
FIN

LPSl LPS LDS1
DEB LEA CB

CSV M:IO
LEA CB
CSV M:WAIT
CSV M:EXIT
FIN DEB

END LPSl

END OF FILE

VI-10

4057 U

M ITRAS t

CDS CDS
M:EO EQU 6

FIN FIN

LDS1 LDS LDSl LDS
CB DATA 0 CB DATA 0

DATA, 1 &80 DATA,1 &80
DATA,1 6 DATA,1 M:EO
DATA /I STRING DATA /I STRING
DATA 8 DATA 8

STRIN G TEXT "WRITING" STRING TEXT "WRITING"
FIN FIN

LPS1 LPS LDSt LPS1 LPS LDS1
DEB LEA CB DEB LEA CB

CSV M:IO CSV M:IO
LEA CB LEA CB
CSV M:WAIT CSV M:WAIT
CSV M:EXIT CSV M:EXIT
FIN DEB FIN DEB

END LPS1 END LPS1

END OF FILE EN D OF FILE

• GEN eseudo-instruction

Value generation

Format:

Label Command Argument

[<Label>] GEN, area list Expression list

GEN,4,2,2 7, 1 ,1

TOTO GEN,1,1 ,3,8,2,1 0,1 ,2,&F2,3, 1

Result:

- The GEN pseudo-instruction generates a byte or word having a specific binary configuration.

- "Area list" is a sequence of term-type expressions each specifying the length (in bits) of an area to be
generated. The generated areas must have a tota I length of 8 or 16 bits, and no zero-length area is
allowed.

- "Exeression list" a sequence of expressions of the same type as those which are defined by a DATA pseudo
instruction, defining the contents of every generated area. At assembly time, the listed values are inserted
in the corresponding areas on a rank basis from left to right (first value in first area, and so on).

All va lues are right justified in their respective areas. The first area contains the most signifiant va lue.

The items of area list and expression list are separated by commas.

VI-11

4057 U

• TEXT pseudo-instruction

Generation of a character string.

Format:

Label

[<label>]

TOTO

Result:

Command Argument

TEXT " <character string>"

TEXT "c HARACTER STRIN G"

- The character string is assemblied in EBCDIC format in an area beginning at the current address of loca
tion counter and ending at an address corresponding to the last generated character.

- The first character of the string is stor~d in the first byte of the area, and so on.

- If a label is specified in label field, it is associated with the first generated byte.

• DEF pseudo-instruction

Format:

Result:

Label

[<Label-I>]

- Labels are declared as external definitions.

- Labels are defined in the current section.

Command Argument

DEF <Label-2 > ••

DEF ETlQ

- A label must be declared as external definition prior to being used in the section.

• REF pseudo-instruction

Format:

Result:

Label

[<Labeb]

ETlQI

- Labels are declared as external definitions.

Command Argument

REF [#] <label> ••

REF ETlQI

REF # ETIQ2

- The labels must be defined prior to being used in the current section and will be defined later on at assem-
bly time.

VI-12

4057 U

- A label belonging to the CDS must be preceded by the symbol #

VI-2.2. Program segment assembly

• Addressing statements

• RES pseudo-instruction

Reservation of a memory area (see section VI-2.1 • page VI-7).

• BASE pseudo-instruction

Directs relative addressing.

Format:

Result:

Label

[<Label>]

ETlQ

ETIQ1

Command

BASE

BASE

BASE

- The label declared in argument field is a lDS label.

Argument

[<Label>]

ETlQ2

- All LDS labels referenced in the program segment between two BASE pseudo-instructions are generated
in relative va lue with respect to the address specified in argument field.

- A BASE pseudo-instruction without label declaration in argument field simply terminates the relative
addressing specified by the preceding BASE pseudo-instruction.

- A new relative addressing requires another BASE pseudo-instruction with a label declaration in argument
fi eld.

- A BASE pseudo-instruction with label declaration in argument field terminates the relative addressing of
the preceding BASE pseudo-instruction and opens a relative addressing on the new label declared in argu
ment field.

- A BASE pseudo-instruction with label declaration is closed either by a new BASE pseudo-instruction or
by a. F IN pseudo-instruction which terminates the assembly of the program segment.

• Symbol definition statement: EQU pseudo-instruction

See section VI-2.1 • page VI-7.

• Assembly control statements

• GOTO pseudo-instruction

Conditional assembly branch (see section VI-2.1 • page VI-8).

VI-13

4057 U

• Instruction generation statements

• G E N pseudo-i nstructi on

Generates a value. (See section VI-2.1 • page VI-IT).

This pseudo-instruction used in an executable program area allows to generates non-standard instructions
specific to a special configuration.

If, after GEN pseudo-instruction, the incremented location counter is not on a word boundary (generation
of an odd number of bytes), the Assembler signals an error, generates a zero value byte and steps the
locati on counter by one unit.

• External definition identification statements

• DEF pseudo-instruction

See section VI-2.1 • page VI-12.

• REF pseudo-instruction

See section VI-2.1. page VI-12.

VI-3. PAGE PSE UDO-IN STR UCTION

This pseudo-instruction asks for printing the assembly listing on the next page, when the output device is
a printer.

Format:

Label Command Argument

[<Label>] PAGE ---
ETIQ PAGE

VI- i 4

mitra 15

7. Instructions

V 11-1 • G ENE RA L

This chapter describes MITRA 15's instruction set which is divided into eleven functional categories:

- Load and store instructions

- Fixed-point arithmetic operations

- Logical operations

- Register incrementation

- Shift operations

- Inter-register operations (SRG or set register)

- Floating-point arithmetic operations

- Stri ng processi ng i nstructi ons

- Branch instructions

- System communication instructions

- Control instructions

I n a ddi ti on, every i nstru cti on has three fundamenta I attri butes :

• Class: indicating the permitted addressing modes and thus the exact meaning of the calculated address
in each case.

Class

o

0'

Permitted addressing modes

DL
P
DG
IL
IGX
ILX

DL
DG
IL
IGX
ILX

Direct, Local
Parameter
Direct, Genera I
Indirect, Local
Indirect, Genera I, Indexed
Indirect, Local, Indexed

Direct, Local
Direct, Genera I
Indirect, Local
Indirect, General, Indexed
I ndi rect, Loca I, Indexed

DL Direct, Local
PX Parameter, Indexed
P Parameter

V 11-1

4057 U

Class

2 RP
RM
IL
IG

Perm i tted a ddressi ng modes

Relative, PI us
Relative, Minus
Indirect, Local
Indirect, General

The functions of these addressing modes are described in chapter V.

However, as regards addressing a few instructions have a particular behavior which will be described
individually. These instructions are BRX and TES.

• Mode: indicates the operational mode(s) of the CPU in which the instruction may be executed. A so
cai'T;d"priviledged" instruction is executable in master mode only. These instructions give rise to an addi
tional trap condition: "mode violation".

• Option. Some "optional" instructions are not standard on all CPUs. They give rise to an additional trap
condition: "non-implemented instruction".

However SHC, DIV, FAD, FSU, FMU and FDV may be simulated by a special monitor module (TRAP modu
I e) .

VII-2. SYMBOLIC NOTATIONS

• Used in instruction function description

A

(A.)

AO-7

Aa-15

C

D

E

E, A

G

G'

L

MA

MS

N

Nll - 15

VII-2

Accumulator register

Logical complement of A

Most signifiant byte of A

Least signifiant byte of A

Carry indi cator

Displacement value (rightmost byte in the instruction format extended to the left by a zero va lue
byte). Thus:

xxxxxxxxyyyyyyyy -- I nstructi on

OOOOOOOOyyyyyyyy - Displacement

Accumulator extension register

Extended accumulator: juxtaposition of E and A in this order. Most signifiant word in E.

Genera I base va lue

In Master mode G' = G
in Slave mode G = 0

Local base value

Interrupt mask indicator

Mode i ndi cator (Master/Slave)

Calculated operand (Contents of Y-address word)

Contents of bits 11-15 of calculated operand

4057 U

o Overflow indi cator

P Program base value

PR Memory protection indicator

Rn n-number general register

X Index register

Y Calculated memory address (Displacement value processed according to addressing mode function)

Y2 Word address corresponding to y

If Y is even:
If Y is odd:

Current rank in a byte or word string processed by an instruction; the first byte or word in the
string is rank zero.

bp Protecti on bit

r Contents of R-register

rn Contents of Rn-register

y Y -a ddress byte

Y2 Y2 -address word

() Contents of .•. E. g.

Replaces

Exchanged

Altered but non-signifiant

e Exclusive OR

/\ Logical AN D

V Logical OR

• Used in examples

The purpose of this chapter is to fami liarize the user with assembly language writing, thus with every ins
truction examples are given to show various possibilities which will enable him to program without a comple
te knowledge of Assembler capabilities.

The following conventions will be used in order to simplify example representation:

Identifiers include four letters followed by a serial number. These letters have the following meaning:

1 st letter
E ~ Label
S Symbol (defined through an EQ U pseudo-instruction)

2nd letter
P ~ Predefi ned
A Anticipated

3rd letter
D ~ Defined in a data segment
P Defined in a program segment

4th letter
C ~ Common
L Local

Example:

EPDC27 denotes a predefined label of the common data.

YI/-3

4057 U

Thus a II examples are written relatively to a CDS and a LDS having the following form:

EXEMPL

EPDC1
EPDC2
EPDC3
EPDC4
EPDC5
EPDC6
EPDC7
EPDC8
EPDC9

EPDC10
EPDClT
EPDC12
E PDC1 3
E PDC14
E PDC15

E PDC1 6
EPDC17
EPDCT 8

EPDC19
EPDC20

EPDC21

EPDC22

EPDC23
EPDC24

EPDC25
EPDC26

EPDC27

EPDC28
EPDC29
SPDCl
SPDC2

VII-4

CDS

DATA
DATA
DATA
RES
DATA,1
DATA
DATA
RES,1
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
TEXT
DATA
DATA,1
DATA,1
DATA,1
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
RES
DATA
DATA
DATA
DATA
RES,1
DATA
DATA
DATA
DATA
DATA
DATA
RES
DATA
EQU
EQU

7
EPDC1
EPDC4
20
&FF,OO
EPDC5
EPDC8
10
"AB"
"CD"
EPDC9
6
&82
EPPL2
EPPL3
EPPLl
EPPL2
EPPL3
EPPL4
"ABCDEFGH IJ"
EPDC16
"A"
"E"
"X"
EPDC18
EPDC21
EPDC21 + 2
EPDC21 + 4
3
4
5
EPDC23
EPDC23 + 2
EPDC23 + 4
EPDC23 + 6
EPDC23 + 8
10
EPDC25
EPDC25 + 1
EPDC25 + 2
EPDC25 + 3
5
&30A2
&400B
&40FA
&BF01
EPD26
EPDC26 + 4
5
EPDC28
-EPDlt
3

<~':'
f:~'
-.-;.:i\.
'":! ;~

4057 U

SPDC3 EQU SPL2
SPDC4 EQU EPDL14

FIN

LDSI LOS

EPDLl DATA 7
EPDL2 DATA EPPL1
EPDL3 DATA EPDL4
EPDL4 RES 20
EPDL5 DATA,1 &FF,OO
EPDL6 DATA EPDL5
EPDL7 DATA EPDL6
EPDL8 RES,1 10
EPDL9 DATA "AB"

DATA "CD"
EPDLl 0 DATA EPDL9
EPDLll DATA 6
EPDLl2 DATA &82
EPDLl3 DATA EPPL2
EPDLl4 DATA EPPL3
EPDLl5 DATA EPPL1

DATA EPPL2
DATA EPPL3
DATA EPPL4

EPDLl6 TEXT "ABCDEFGHIJ"
E PDLl7 DATA EPDL 16
EPDLl8 DATA, T "A"

DATA,l "E"
DATA, T "X"

EPDLl9 DATA EPDL18
E PDL20 DATA EPDL21

DATA EPDL21 + 2
DATA EPDL21 + 4
DATA 3
DATA 4
DATA 5

EPDL22 DATA EPDL23
DATA EPDL23 + 2
DATA EPDL23 + 4
DATA EPDL23 + 6
DATA EPDL23 + 8

E PO L23 RES 10
EPDL24 DATA EPDL25

DATA EPDL25 + 1
DATA EPDL25 + 2
DATA EPDL25 + 3

E PO L25 RES,1 5
EPDL26 DATA &30A2

DATA &400B
DATA &40FA
DATA &BFOI

EPPL27 DATA EPPL26
DATA EPPL26 + 4

VI/-5

4057 U

E PDL28
E PDL29
SPDLl
SPDL2
SPDL3
SPDL4

LPS1

RES
DATA
EQU
EQU
EQU
EQU
FIN
LPS

FIN
END

I nstructi ons

5
EPDL28
EPDLl
3
SPDL2
EPDLl4

LDS1

EPPLl
LPS1

VII-3. LOAD AN D STORE IN STRUCTION S

\/11-3.1. Introduction

The following table contains the load and store instruction which are individually described hereafter.

Byte Word Double word

Load Store Load Store Load Store

I Data LBL SBL LDA STA DlD DST
LBR SBR LDE STE :
LBX LDX STX

LDR STR

Address LEA SPA

Selective STS

VII-3.2. Description

These instructions are described in the following order:

\
LBL Load Byte Left in A
SBL Store Byte Left inA

Byte (LBR Load Byte Right in A
SBR Store Byte Right in A
LBX Load Byte right in X

LDA LoaD A
STA STore A
LDE LoaD E
STE STore E
LDX LoaD X
STX STore X
LDR Loa D Register
STR STore Register

\ LEA Load Effective Address

VII-6

4057 U

Word ~ SPA Store Program Address
STS STore Selective in A

Double word ~ DLD Double Loa D of E, A extended accumulator
DST Double STore of E, A extended accumulator

VII-7

4057 U

NAME : Load Byte Left in A

Class : 0 N on-privi ledged

Instruction format:

Displacement

o o
o 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Addressing mode Hexadecimal code Execution time (us)

DL OD 2,6

P 2D 3

DG 4D 2,6

IL 6D 3,6

IGX 8D 3,6

ILX AD 3,6

Function: y - (A o_7)

(A a- 15) unaffected

Y-address operand loaded in leftmost byte of A-register.
Rightmost bytl~ of A-register unaffected.

Modified elements:

... Registers: AO_7

- Memory locations
- Indi cators : C-O

Indicators:

Trap conditions: standard

Examples:

LBL
LBL
lBL
LBL
LBL
LBL

'111·8

EPDLl + 1
=0
EPDCl
@ EPDL6
@# EPDC7,x
@ EPDL7,x

C

0

0

1

0 Upon execution

0 (A) > 0

1 (A) < 0

0 (A) = 0

LBL
Standard

4057 U

N AM E : Store Byte left inA

Class: 0' N on-privi ledged

Instruction format:

Address Displacement

o o o
o 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Addressi ng mode Hexadecimal code Execution time (/-ls)

Function: (A O-7) -- y
(A) unaffected

Dl

DG

Il

IGX

IlX

14

54

74

94

B4

leftmost byte of A-register stored at V-address in core memory.

Modified elements:

- Memory locations: y

Trap conditions: standard

Examples:

SBl
SBl
SBl
SBl
SBl

EPDl8
#. EPDC8 + 3
@EPDl24
@# EPDC24,x
@EPDl24,x

2,5

2,5

3,5

3,5

3,5

SBL
Standard

YII-9

4057 U

NAME : Load Byte Right in A

Class : 0

Instructi on format:

Address

o o
o 2 3 4 5 6 7

Addressing mode

Function: y -- (A a- 15)

o -- (AO- 7)

DL

P

DG

IL

IGX

ILX

Non-priviledged

Displacement

8 9 10 11 12 13 14 15

Hexadecimal code Execution time (us)

OE 2,6

2E 3

4E 2,6

6E 3,6

8E 3,6

AE 3,6

Y-address operand loaded in rightmost byte of A-register.
Leftmost byte of A-register cleared.

Modified elements:

- Register: A
- Memory locati ons
- Indicators: C-O

i ndi co tors:

,Trap conditions: standard

Exampies :

LBR
LBR
LBR
LBR
LBR
LBR

VII-1J

SPDL4
=SPDL2
EPDCl
@EPDL6
@# EPDC7,x
@EPDLl,x

C

0

1

0 Upon execution

"

0 (A) > 0

0 (A) = 0

LBR
Sta ndard

4057 U

NAME : Store Byte Right in A

Class: 0' N on-privi ledged

Instruction format:

Address

o 0

o 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Addressing mode Hexadecimal code Execution time (",s)

Function: (As-Is) - y
(A) unaffected

DL

DG

IL

IGX

ILX

15

55

75

95

B5

Rightmost byte of A-register stored at V-address in core memory.

Modified elements:

- Memory locations: y

Trap conditions: standard

Examples:

SBR
SBR
SBR
SBR
SBR

EPDL8 + 3
EPDC8
@ EPDL7
@# EPDC24,x
@# EPDL24,x

2,5

2,5

3,5

3,5

3,5

SBR
Standard

VII-ll

4057 II

NAME : Load Byte Right in X

Class: 0

Instruction format:

Address

o
o 2 3 4 5 6 7

Addressi ng mode

Function : y ----. (X S - 15)

o -- (X O-7)

DL

P

DG

IL

IGX

ILX

Non-priviledged

8 9 10 11 12 13 14 15

Hexadecimal code Execution time (JJs)

OF 2,6

2F 3

4F 2,6

6F 3,6

8F 3,6

AF 3,6

Y -address operand loaded in rightmost byte of X-register.
Leftmost byte of X-register cleared.

Modified elements:

- Register: X
- Memory locations
- Indicators: C-O

Indicators:

Trap conditions: standard

- I l:xamples :

LBX
LBX
LBX
LBX
LBX

LBX

EPDL5
=1
EPDC5
@EPDL6
@= EPDC7,x
@ EPDL7,x

C 0 Upon execution

0 0 (X) > 0

1 0 (X) = 0

LBX
Standard

4057 U

NAME : LoaD A

Class : 0 N on-privi ledged

Instruction format:

Address Displacement

o 0 o o o
o 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Addressing mode Hexadecimal code Execution time (,us)

DL

P

DG

IL

IGX

ILX

Function: Y2 __ (A)

A-register loaded with Y2 -address operand.

Modified elements:

- Register: A
- Memory locations
- Indicators: C-O

Indicators:

Trap conditions: standard

Examples:

LDA
LDA
LDA
LDA
LDA
LDA

EPDLl
=7
EPDCl
@EPDL2
@# EPDC3,x
@EPDL3,x

C

0

0

1

0

0

1

0

00 2,3

20 2,5

40 2,2

60 3,4

80 3,4

AO 3,4

Upon executi on

(A) > 0

(A) <. 0

(A) = 0

LOA
Standard

VII-13

4057 U

NAME : STore A

Class : 0 I N on-privi ledged

Instruction format:

Address Displacement

o 0 0

o 2 3 4 5 6 7 8 9 10 11 12 13 14 15

A ddressi ng mode Hexadecima I code Execution time (lJs)

DL 11 2,2

DG 51 2,2

IL 71 3,2

IGX 91 3,2

ILX B1 3,2

~nction: (A) - Y2
(A) unaffected

A-register contents stored at Y2 -address in core memory.

Modified elements:

- Memory locations: Y2

Trap conditions: standard

Examples:

STA
STA
STA
STA
STA

V 11-14

EPDL23 + 4
EPDC23
@ EPDL3
@#EPDC22,x
@ EPDL22,x

STA
Standard

4057 U

NAME : LoaD E

Class : 0

Instruction format:

Address

o o o o
o 2 3 4 5 6 7

Addressing mode

DL

P

DG

IL

IGX

ILX

Function : Y2 -- (E)

Y2 -address operand loaded in E-register.

Modified elements:

- Registers: E
- Memory locations
- Indi cators : C-O

Indicators:

Trap conditions: standard

Examples:

LDE
LDE
LDE
LDE
LDE
LDE

SPDLl
=&FF
SPDC1
@EPDL3
@# EPDC3,x
@EPDL3,x

C

0

0

1

LDE
N on-privi ledged Standard

Displacement

8 9 10 11 12 13 14 15

Hexadecimal code Execution time (J.,Is)

01 2,3

21 2,5

41 2,3

61 3,4

81 3,4

A1 3,4

0 Upon execution

0 (E) > 0

1 (E) < 0

0 (E) = 0

VII-15

4057 U

NAME : STore E

Class: 0' N on-privi ledged

Instruction format:

Address Displacement

o o o
o 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Addressing mode Hexadecima I code Execution time (/-Is)

DL 12 2,2

DG 52 2,2

IL 72 3,2

IGX 92 3,2

ILX B2 3,2

Function: (E) - Y2
(E) unaffected

E-register contents stored at Y2 -address memory location.

Modified elements:

- Memory locations: Y2

Trap conditions: standard

Examples:

STE
STE
STE
STE
STE

V 11-16

EPDL4
#EPDC4 + 2
@EPDL3
@# EPDC22,x
@ EPDL22,x

STE
Standard

4057 U

NAME : LoaD X

Class : 0 N on-privi I edged

Instruction format:

Address Displacement

o o o o
o 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Addressing mode

DL

P

DG

IL

IGX

ILX

Function: Y2 -- (X)

Y2 -address operand loaded in X-register.

Modi fied elements:

- Registers: X
- Memory locations:
- Indi ca tors: C-O

Indicators:

Trap conditions: standard

Examples:

LDX
LDX
LDX
LDX
LDX
LDX

EPDL2
=4
#EPDCl
@EPDL3
@# EPDC3,x
@EPDL3,x

C

0

0

1

Hexadecimal code Execution time (JJs)

02 2,3

22 2,5

42 2,3

62 3,4

82 3,4

A2 3,4

0 Upon execution

0 (X) > 0

1 (X) < 0

0 (X) = 0

LOX
Sta nda rd

VII-17

4057 U

NAME : STore X

Class : 0' N on-privi ledged

Instruction format:

Address Displacement

o o
o 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Addressing mode Hexadecimal code Execution time (us)

DL 13 2,2

DG 53 2,2

IL 73 3,2

IGX 93 3,2

ILX A3 3,2

Function: (X) -- Y2
(X) unaffected

X-register contents stored at Y2 -address memory location.

Modified elements:

- Memory location: Y2

Trap conditions: standard

Examples:

STX
STX
STX
STX
STX

VII-IS

EPDL23 + 6
EPDC23 + 2
@ EPDL22
@# EPDC22,x
@ EPDL22,x

STX
Standard

4057 U

NAME Loa D Register

Class :

Instruction format:

Address

o o
o 2 3 4 5 6 7

A ddressi ng mode

Function: (Rn) -- A
(Rn) unaffected
with n = (Y)

DL

PX

P

N on-privi ledged

Displacement

8 9 10 11 12 13 14 15

Hexadecima I code Execution time (ps)

39 3,7

E9 3,7

F9 3,7

A-register loaded with the contents of n-register (n = register no.).

Modified elements :

- Registers: A
- Indicators: C-O

Indicators:

Trap conditions: standard

Examples:

LDR
LDR
LDR

EPDLl
=O,x
=22

C

0

0

1

0 Upon execution

0 (A) > 0

1 (A) < 0

0 (A) = 0

LOR
Standard

VII-19

4057 U

NAME STore Register

Class : Privi I edged

Instruction format:

Address Displacement

o

Function

o o
2 3 4 5 6 7

Addressing mode

(A) - (Rn)
(A) unaffected
with n = (Y)

DL

PX

P

8 9 10 11

Hexadecima I code

3A

EA

FA

A-register contents stored in n-register (n = register no.).

Modified elements:

- Registers: R

Trap conditions:

- Standard and mode violation

Miscellaneous:

12 13 14

Execution

4

4

4

STR
Standard

15

time (~s)

This instruction is executable in master mode only since it alters the contents of a given register (specifical
ly I/O registers). Normally reserved for monitor or operating system use.

Examples:

STR
STR
STR

YII-20

EPDLl
=2,x
=4

4057 U

NAME : Load Effective Address LEA

Class: 0 N on-privi ledged Standard

Instruction format:

Address Displacement

o o o o
o 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Addressing mode Hexadecima I code Execution time (vs)

DL 04 2,7 3,3

P 24 3, 1 3,7

DG 44 2,7 3,3

IL 64 3,7 4,3

IGX 84 3,7 4,3

ILX A4 3,7 4,3

----- ------Master Slave
mode mode

Function: Y - (G) - A

G-register contents subtracted from computed address. Result, representing the actual address, stored in
A-register.

Modified elements:

- Registers: A

Trap conditions: standard

Examples:

LEA
LEA
LEA
LEA
LEA
LEA

EPDC7
=&2F
EPDLll
@EPDC2
@# EPDC22,x
@EPDL22

V 11-21

4057 U

NAME : Store Program Address SPA
Class: 0' N on-privi ledged Standard

Instruction format:

Address Displacement

o 0 0

o 2 3 4 5 6 7 8 9 10 11 12

A ddressi ng mode Hexadecima I code Execution time (us)

DL 18 3, 1 3,4

DG 58 3, 1 3,4

IL 78 4,2 4,5

IGX 98 4,2 4,5

ILX B8 4,2 4,5

~r Slave
mode mode

Function: (P) + G' - Y2

This instruction is normally followed by an indirect branch to a sub-routine. Therefore, the current address
incremented by four (P-register contents + 4) is stored in A-register. This new address is generally the sub
routi ne return address.

Modified elements:

- Registers
- Memory locations: Y2
- I ndi ca tors

Trap conditions: standard

Examples:

SPA EPDL28
BRU @

... _------
·

SPA # EPDC28
BRU @

· ·
· · SPA @EPDL29

BRU @

·
· SPA @# EPDC29 , x

BRU @

""vk __ •

· ·
SPA @EPDL29 , x
BRU @

V 11-22

Return

BRU @EPDL28

·
·

BRU @# EPDC28

· ·
BRU @ EPDL29

·
·

BRU @ # EPDC29

· · , ·
BRU @EPDL29

4057 U

NAME : STore Selective in A

Class : 0'

Instruction format:

Address

o o
o 2 3 4 5 6 7

Addressing mode

DL

DG

IL

IGX

ILX

Functions: Y2 1\ (E) v (A) 1\ (E) -- Y2
(A) and (E) unaffected

STS
N on-privi ledged Standard

Displacement

8 9 10 11 12 13 14 15

Hexadecimal code Execution time (~s)

19 3,4

59 3,4

79 4,4

99 4,4

B9 4,4

The bits of A-register which correspond to set bits in E-register are stored into corresponding position of
Y2 memory address. Remaining bits of the memory word are not modified. Thus, for instance:

10 ,0, 1 , 0, 0, 0 I 0 I 0 I 0, 1 , 0 I 0, 0, 0, 0, 0 I Y2

11,1,0,0,0,1,0,011,1,1,1,0,0,1,11

1011,lIO,011,0IOI0IOI11110'PIO,11

Modified elements:

- Registers
- Memory locations: Y2
- Indicators: C-O

Indi cators :

Trap conditions:
Examples:
STS
STS
STS
STS
STS

standard

EPDL4
EPDC23
@EPDL3
@# EPDC22,x
@ EPDL22, x

C

0

0

1

E

0

0

1

0

Before executi on

Upon execution

Upon executi on

Result >- 0

Result < 0

Resul t = 0

VII-23

4057 U

NAME : Double Loa D of A and E DLD

Class : 0' N on-privi ledged Sta nda rd

Instruction format:

Address Displacement

o o o o
o 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Addressing mode Hexadecima I code Execution time (I-Is)

DL 10 3,6

DG 50 3,6

IL 70 4,8

IGX 90 4,8

ILX BO 4,8

Function: (Y2) - (E)
(Y2 + 2) _ (A)

E-register loaded with the contents of Y2 memory address and A-register loaded with the contents of Y2 + 2
memory address.

Modified elements:

- Registers: E-A
- Memory locations
- Indi cators : C-O

!ndicators:

l.::~nditions: standard

Examples:

DLD
DLD
DLD
DLD
DLD

VII-24

EPDL9

EPDC9
@EPDLlO
@# EPDC3,x
@EPDL3,x

C

0

0

1

0 Upon executi on

0 (E) > 0

1 (E) < 0

0 (E) = 0

4057 U

NAME : Double STore of A and E DST
Class : 0' N on-privi ledged Sta ndard

Instruction format:

Address Displacement

o o
o 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Addressing mode Hexadecima I code Executi on time (~s) !

DL 16 3,6

DG 56 3,6

IL 76 4,7

IGX 96 4,7

ILX B6 4,7

Function: (E) -(Y2)
(A) -- (Y2 + 2)
(A) and (E) unaffected

E-register contents stored at Y2 -memory address and A-register contents stored at Y2 + 2 memory address.

Modified elements:

- Registers
- Memory locations: (Y 2) and (Y2 + 2)
- Indicators

Trap conditions: standard

Examples:

DST
DST
DST
DST
DST

EPDL4
EPDC4
@EPDL3
@# EPDC22,x
@ EPDL22,x

YII-4. FIXED-POINT ARITHMETIC

VII-4.1. Introduction

Operands are signed numbers on one or two words.

mantissa on 15 bits mantissa on 31 bits

I e I I I • I I It. , I , I ' I , I , I I I , I I • I • , I I , 1 ,

Sign Sign
Negative numbers are represented by two's complement of their absolue va lue.

YII-4.2. Description

Fixed-poi nt a ri thmeti c i nstructi ons perform the four operati ons a nd are descri bed in the foil owi ng order :

ADD
ADM
SUB

A DDition in A
A Dd to Memory
SUBtract

MUL
DIY

MUltiply integer
DIVide integer

VII-25

4057 U

NAME : ADDition in A

Class : 0 Non-priviledged

Instruction format:

Address Displacement

o o o
o 2 3 4 5 6 7 8 9 10 11 12 13 14 15

A ddressi ng mode Hexadecima I code Execution time

DL 05 2,3

P 25 2,5

DG 45 2,3

IL 65 3,4

IGX 85 3,4

ILX A5 3,4

Functi on: (A) + Y2 - (A)

Y2 -address operand added with A-register contents; result in A.

Modified elements:

- Registers: A
- Memory locations
- Indicators: C-O

Indicators:

Trap conditions: standard

Exa.~:

ADD
ADD
ADD
ADD
ADD
ADD

VII-26

EPDL12
=122
#EPDC12
@EPDL2
@# EPDC20,x
@ EPD ~20, x

C 0 Upon executi on

1 - Carry

- 1 Overflow

ADD
Standard

(~s)

4057 U

NAME : A Dd to Memory

Class: 0' Non-privi ledged

Instruction format:

Address Displacement

o
o 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Addressing mode Hexadecima I code Execution time (J,Js)

DL 17 2,6

DG 57 2,6

IL 77 3,7

IGX 97 3,7

ILX B7 3,7

Function: Y2 + (A) - Y2 and A

A-register contents added to Y2 -address contents; result in A and at Y2 -address.

Modified elements:

- Registers: A
- Memory locations: Y2
- Indi cators : C-O

I ndi cators :

Trap conditions: standard

Examples:

ADM
ADM
ADM
ADM
ADM

EPDL4
EPDC4
@ EPDL3
@# EPDC20,x
@ EPDL20,x

C 0 Upon executi on

- 1 Carry

1 - Overflow

ADM
Standard

VII-27

4057 U

NAME : SUBtract in A

Class : 0 N on-privi I edged

Instruction format:

Address Displacement

° ° o
o 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Addressing mode Hexadecima I code Execution time

DL 06 2,3

P 26 2,5

DG 46 2,3

IL 66 3,4

IGX 86 3,4

ILX A6 3,4

Function: (A) - Y2 - (A)

Y2 -address operand subtracted from A-register contents; result in A.

Modified elements:

- Registers: A
- Memory locations
- Indicators: C-O

Indi cators :

Trap conditions: standard

Examples:

SUB
SUB
SUB
SUB
SUB
SUB

VII-28

EPDLll
=2
EPDCll
@EPDL20
@# EPDC20,x
@EPDL20,x

C 0 Upon executi on

1 - Carry

- 1 Overflow

SUB
Sta nda rd

(I-'s)

4057 U

NAME : MUltiply integer

Class : °
Instruction format:

Address

° ° ° o 2 3 4 5 6 7

Addressing mode

DL

P

DG

IL

IGX

ILX

n = no. of set bits in multiplier

Function: (A) x Y2 -(E,A)

N on-privi ledged

Displacement

B 9 10 11 12 13 14 15

Hexadecima I code Execution time (,.,s)

OC 8,1 38,4+0,9n

2C 8,5 38,8+0,9 n

4C 8, 1 38,8+0,9 n

6C 9,1 39,4+0,9 n

8C 9,1 39,4+0,9 n

AC 9,1 39,4+0,9 n

Y2 -address operand multipl ied a Igebrai ca lIy by A-register contents; result in E and A.

The most significant portion of the result is stored in E, the least significant in A.

Modified elements:

- Registers: E-A
- Memory locations
- Indicators: C-O

Indicators:

Trap conditions: standard

Examples:

MUL
MUL
MUL
MUL
MUL
MUL

EPDL11
=&2E
EPDCl
@EPDL20
@# EPDC20,x
@EPDL20,x

C

°
°
1

0 Upon execution

° E > °
1 E < °
° E = °

MUL
Standard

VII-29

4057 U

NAME DIVide integer

Class: 0 Non-priviledged

Instruction format:

Address

o o o o
o 2 3 4 5 6 7

Addressing mode

DL

P

DG

IL

IGX

ILX

n = no. of set bits in the quotient.

Function: (E,A): Y2 - (A)
remainder ---- E

8

Displacement

9 10 11 12 13 14 15

Hexadecima I code Execution time ().Is)

08 9,1 42 +0,3 n

28 9,5 42,4+0,3 n

48 9,1 42 +0,3 n

68 10, 1 43 +0,3 n

88 10, 1 43 +0,3 n

A8 1 0, 1 43 +0,3 n

~~~ 

Wired Mi cro-programmed 

Remainder sign same as dividend sign (except when zero, in which case the sign is +). 

DIV 

Optional 

Extended accumulator contents (least significant portion of the dividend in A, most significant portiQn in 
E) divided by Y2 -address operand (divisor). Quotient in A, remainder in E. 

The remainder is of the same sign as E-register initia I contents, except when there is no remainder, in 
which case the sign is +. 

Modified elements: 

- Registers: E-A (unaffected if divisor = 0 or if an overflow occurs). 
- Memory locations 
- Indicators: C-O 

Indicators: 

C 0 Upon execution 

# 1 Overflow or zero divisor 

Trap conditions: standard and non-implemented instruction 

Examples: 

DIV 
DIV 
DIV 
DIV 
DIV 
DIV 

V 11-30 

EPDLl 
=5 
# EPDCll 
@EPDL2 
@# EPDC20,x 
@EPDL20,x 



4057 U 

V 11-5. lOG ICAl OPERATION S 

lOR 

EaR 

AND 

CMP 

Inclusive OR 

Exclusive OR 

AND 

CoMPare 

NAME : Inclusive OR 

Class : 0 

Instruction format: 

Address 

o o 
o 3 4 5 6 7 

Addressing mode 

Dl 

P 

DG 

Il 

IGX 

IlX 

Function: (A) V Y2 - (A) 

N on-priviledged 

Displacement 

8 9 10 11 12 13 14 15 

Hexadecimal code Execution time (~s) 

07 2,3 

27 2,5 

47 2,3 

67 3,4 

87 3,4 

A7 3,4 

Inclusive ORing between Y2 -address operand and A-register contents; result in A. 

Modified elements : 

- Registers: A 
- Memory locations 
- Indicators: C-O 

Indicators: 

Trap conditions: standard 

Examples: 
lOR 
IRa 
lOR 
lOR 
lOR 
lOR 

EPDl21 
=&01 
#EPDl9 
@EPDl20 
@# EPDC20,x 
@EPDl20,x 

C 

0 

0 

1 

a Upon execution 

0 (A) > 0 

1 (A) < 0 

0 (A) = 0 

lOR 

Standard 

VII-31 



4057 U 

NAME : Exclusive OR 

Class : 0 Non-priviledged 

Instruction format: 

Address Displacement 

o o o 
o 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

Addressing mode Hexadecima I code Execution time (~s) 

DL 03 2,3 

P 23 2,5 

DG 43 2,3 

IL 63 3,4 

IGX 83 3,4 

ILX A3 3,4 

Function: (A) e Y2 - (A) 

Exclusive ORing between Y2 -address operand and A-register contents; result in A. 

Modified elements : 

- Registers: A 
- Memory locations 
- Indicators: C-O 

Indicators: 

Trap conditions: standard 

Examples: 

EOR 
EOR 
EOR 
EOR 
EOR 
EOR 

VII-32 

EPDLl 
=&80 
# EPDCl 
@EPDL2 
@# E PDC20,x 
@EPDL20 

C 

0 

0 

1 

0 Upon execution 

0 (A) > 0 

1 (A) < 0 

0 (A) = 0 

EOR 
Standard 



4057 U 

NAME : Logica I AN D 

Class : 0 Non-priviledged 

Instruction format: 

Address Displacement 

o o o 
o 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

Addressing mode Hexadecimal code Execution time ()Js) 

DL 09 2,3 

P 29 2,5 

DG 49 2,3 

I L 69 3,4 

IGX 89 3,4 

ILX A9 3,4 

Function: (A) 1\ Y2 -- (A) 

Logical ANDing (intersection) between Y2 -address operand and A-register contents; result in A. 

Modified elements: 

- Registers: A 
- Memory locations 
- Indicators: C-O 

Indicators: 

Trap conditions: standard 

Examples: 

AND 
AND 
AND 
AND 
AND 
AND 

EPDLl 
=&OF 
# EPDCl 
@EPDL20 
@# EPDC20,x 
@EPDL20,x 

C 

0 

0 

1 

0 Upon execution 

0 (A) > 0 

1 (A) < 0 

0 (A) = 0 

AND 
Sta nda rd 

VII-33 



4057 U 

NAME : CoMpare 

Class : 0 N on-privi ledged 

Instruction format: 

Address Displacement 

o o 
o 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

A ddressi ng mode Hexadecima I code Execution time (us) 

DL OB 

P 2B 

DG 4B 

IL 6B 

IGX 8B 

ILX AB 

Function: Algebraic comparaison between (A) and Y2 
Result in indicators 

> < = 

4, 1 4,5 3,2 

4,5 5 3,6 

4, 1 4,5 3,2 

5, 1 5,6 4,2 

5,1 5,6 4,2 

5,1 5,6 4,2 

CMP 
Standard 

A-register contents compared to Y2 -address operand; result of comparaison in Carry and Overflow indica
tors. 

A-register contents is treated as the first term of the comparaison, Y2 -address operand as the second. 

Modified elements: 

- Indicators: C-O 

Indicators: 

Trap conditions: standard 

~xamples : 

CMP 
CMP 
CMP 
CMP 
CMP 
CMP 

VII-34 

EPDLl 
=3 
# EPDCl 
@ EPDL2 
@# EPDC20,x 
@ EPDL20,x 

C 

0 

0 

1 

0 Upon executi on 

0 (A) > Y2 

1 (A) < Y2 

0 (A) = Y2 



4057 U 

VII-6. REGISTER INCREMENTA liON AN D DECREMENTATION 

ICX 

DCX 

ICl 

DCl 

InCrement X 

DeCrement X 

InCrement l 

DeCrement l 

NAME InCrement X 

Class : 

Instruction format: 

Address 

000 

o 2 3 4 5 6 7 

Addressing mode 

Dl 

PX 

P 

Function: (X) + Y2 - (X) 

N on-privi ledged 

Displacement 

8 9 10 11 12 13 14 15 

Hexadecima I code Execution time ().Is) 

32 2,2 

E2 2,2 

F2 2,2 

X-register contents incremented by Y2 -address operand; result in X-register. 

Modified elements: 

- Registers: X 
- Indicators: C-O 

Indicators: 

Trap conditions: standard 

Examples: 

ICX 
ICX 
ICX 
ICX 

EPDLll 
=&lA,x 
=22 
=O,X 

C 0 Upon execution 

1 - Carry 

- 1 Overflow 

X multiplied by 2. 

lex 
Standard 

V 11-35 



4057 U 

NAME DeCrement X 

Class : N on-privi I edged 

Instruction format: 

Address Displacement 

o 0 

o 2 3 4 5 6 7 8 g 10 11 12 13 14 15 

A ddressi ng mode Hexadecima I code Execution time (jJs) 

DL 33 2,2 

PX E3 2,2 

P F3 2,2 

Function: (X) - Y2 - (X) 

X-register contents decremented by Y2 -address contents; result in X-register. 

Modified elements : 

- Registers: X 
- Indicators: C-O 

Indicators: 

Trap conditions: standard 

Examples: 

DCX 
DCX 
DCX 

V 11-36 

EPDLl 
=3,x 
=9 

C 0 Upon executi on 

1 - Carry 

- 1 Overflow 

DCX 
Standard 



4057 U 

NAME InCrement L 

Class : N on-privi ledged 

Instruction format: 

Address Displacement 

o o 
o 2 3 4 5 6 7 

Addressing mode Hexadecimal code Execution time ()Js) 

DL 35 2,2 

PX E5 2,2 

P F5 2,2 

Function: (L) + Y2 - (L) 

L-register contents incremented by Y2 -address operand; result in L-register. 

Modified elements: 

- Registers: L 

Trap conditions: standard 

Examples: 

ICL 
ICL 
ICL 

EPDL5 
=50,x 
=255 

NAME DeCrement L 

Class : 

Instruction format: 

Address 

o 
o 2 3 4 

o 
5 6 7 

Addressing mode 

DL 

PX 

P 

Function: (L) - Y2 - (L) 

N on-privi I edged 

Displacement 

8 9 10 11 12 13 14 15 

Hexadecimal code Executi on time (J-ls) 

36 2,2 

E6 2,2 

F6 2,2 

L-register contents decremented by Y2 -address contents; result in L-register. 

Modified elements: 

- Registers: L 

Trap conditions: standard 

ICL 
Sta ndard 

DCL 
Standard 

VII-37 



4057 U 

Examples: 

DCl 
DCl 
DCl 

EPDl5 
=5,x 
=&IF 

VII-7. SHIFT OPERATIONS 

VIf-7.1. Introduction 

There are two basic shift instructions: SHR (SHift Register) and SHC (SHift speCial). Both use a word 
located at Y2 memory address to specify the shift type and the number of shift steps. 

Address Code Displacement -____ -_ _ _ _--_~A~_-_ 
I • t I I , f , 'it I \ I , r 

(P)-address word 

~ ~",I",' Y 2 -a ddress word 

Shift No. of 
type posi ti ons 

In most cases, the addressing mode is parameter (immediate) and these two words are obviously identi ca I. 

For the sake of clarity, each instruction derived from SHR and SHC wi II be described separately. 

Their mnemonics are recognized by MITRAS If. 

Remark 1 : 

A particular case of the SHC family, DITR, is not a shift instruction. Though mentionad with SHe derivates, 

it will be fully described with system branch instructions. 

Remark 2 : 

"Direct, local" addressing is only applicable to SHR and SHC themselves, since it is meaningless for their 

derivates (SLlS"" SLlD •.• ). 

VIf-7.2. Description 

SHR 

SllS 
SRCS 
SAD 

SHR derivates 

SHC derivates 

VIf-38 

SLCD 
SLCS 
SAS 
SRlS 
SRCD 

SHC 
SLlD 
SRLD 
PTY 
NLZ 

SHift Register 
Shift left logical Single (A) 
Shift Right logical Single (A) 
Shift Arithmetic Double (E, A) 
Shift Left Circular Double (E , A) 
Shift left Circular Single (A) 
Shift Arithmetic Single (A) 
Shift Right logical Single (A) 
Shift Right Circular Double (E, A) 

SHift speCial 
Shift left logical Double (E, A) 
Shift Right logical Double (E , A) 
compute PariTY (A) 
NormaliZe length (E , A) 



4057 U 

The following notation will be used in the description of the hexadecimal code of SHR and SHC families. 

xx y - n 

I 
+ 

~ ~o. of shift steps 
additional code in hexadecimal 

hexadecima I code of SHR 
or SHC instruction 

Example: 

SRLS = 5 

Address 0 0 0 0 11 o 10 0 
o 3 4 7 8 10 11 15 

EO C-n n=5~ EO C5 

VII-39 



4057 U 

NAME : SHift Register 

Class : Non-privi ledged 

Instruction format: 

Address Displacement 

o 0 o 0 

o 2 3 4 5 6 7 8 9 10 -----Shift type 

11 

-~ Number of shift steps 

A ddressi ng mode Hexadecima I 

DL 

PX 

P 

Ex ecuti on ti m e depe ndi ng on opera ti on type. 

Function: r shifted - r (r denoting A or E, A) 

30 

EO 

FO 

- arithmetic shift: ro repeated at each shift step 
- circular shift : ro considered as following r 

N l1 - 15 number of shift steps (0~Nl1-15 ~ 31) 

Na- 1o shift type 

- 0 Left, Logical, single (A) SLLS 
- 1 Right, circular, single (A) SRCS 
- 2 Arithmetic, double (E, A) SAD 
- 3 Left, circular, double (E, A) SLCD 
- 4 Left, circular, single (A) SLCS 
- 5 Arithmetic, single (A) SAS 
- 6 Right, logical, single (A) SRLS 
- 7 Right, circular, double (E, A) SRCD 

Modified elements: 

- Registers: A (and E for double length shifts) 
- Memory locations 
- Indicators: C-O 

Indicators: 

code 

C 0 Upon executi on 

Trap conditions: standard 

Examples: 

0/1 

# 
f 

# 

EPDL5 (equivalent to SRCD = 31) 

Last bit shifted out of r 

I f step no. = zero 

SHR 
SHR 
SHR 

=11 ,x (if (x) = 0, equivalent to SLLS = 11) 
=&41 (equivalent to SAD = 1) 

VII-40 

SHR 
Sta ndard 



4057 U 

NAME Shift Left, Logical, Single 

Class : 

Instruction format: 

Address 

o 0 o o 
o 2 3 4 5 6 7 

Addressi ng mode 

PX 

P 

n = number of shift steps 

Function: (A) shifted - (A) 

n = ((P))11-15 = N 11-15 

N on-privi I edged 

o o o 
8 9 10 11 12 13 14 15 

Hexadecimal code Execution time (lJs) 

EO O-n 4,3 + 1,2 n 

FO O-n 4,3 + 1,2 n 

Contents of A -regi ster shi fted n posi ti ons to the I eft. Lower order bi ts repla ced by 0 's. 

Modified elements: 

- Registers: A 
- Indicators: C-O 

Indicators: 

Trap conditions: standard 

Examples: 

SLLS 
SLLS 
SLLS 
SLLS 

=SPDL3,x 
=2 
=2 
=4,x 

C 0 Upon executi on 

0/1 ;f Last bit shifted out of A 

# # If initial shift = 0 

~ equivalent to SLLS = 6 

SLLS 
Standard 

VII-41 



4057 U 

NAME : Shift Right, Circular, Single 

Class : 1 Non-priviledged 

Instruction format: 

Address 

o 0 o o o 0 

o 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

Addressing mode Hexadecima I code Execution time (J,ls) 

PX EO 2-n 4,3+1,5n 

P EO 2-n 4,3+1,5n 

n = number of shi ft steps 

Function: (A) shifted arith. (A) 

n = ((P»ll-15 = N l1 - 15 

Contents of A-register shifted circularly n positions to the right, bit 0 following bit 15. 

Modified elements: 

- Registers: A 
- Indicators: C-O 

Indicartors: 

Trap conditions: standard 

Examples: 

SRCS 
SRCS 

VII-42 

::::5, x 
=SPDL3 

C 0 Upon executi on 

0/1 f Last bit shifted out of A 

# # If initial shift = 0 

SRCS 
Standard 



4057 U 

NAME Shift Arithmetic, Double SAD 
Class : N on-privi ledged Sta nda rd 

Instruction format: 

Address Number of shift steps 

o 0 o o o o 
o 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

Addressing mode Hexadecima I code Execution time (us) 

PX EO 4-n 4,3+2,ln 

P FO 4-n 4,3+2,ln 

n = number of shift steps 

Function: (E, A) shifted - (E,A) 

n = ((P))11-15 = N 11 - 15 

Contents of E,A extended register shifted arithmetically n positions to the right. Bit 0 (sign bit) restored 
after ea c h shi ft step. 

Modified elements: 

- Registers: E-A 

- Indicators: C-O 

Indicators: 

Trap conditions: standard 

Examples: 

SAD 
SAD 

=SPDL2, x 
=&03 

C 

0/1 

# 

0 Upon execution 

I Last bit shifted out of A 

# If initial shift = 0 

VII-43 



4057 U 

NAME Shift Left, Circular, Double SLeD 
Class : Non-priviledged Standard 

Instruction format: 

Address ________ ....-_______ =Number of shift steps 

o 0 o 0 o 
o 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

Addressing mode Hexadecimal code Execution time (/Js) 

PX EO 6-n 4,3 +2,1 n 

P FO 6-n 4,3+2,1 n 

n = number of shift steps 

Function: (E, A) shifted -- (E, A) 

n = ((P))11-15 = N l1 - 15 

Contents of E, A extended register shifted circularly n positions to the left, bit 31 following bit O. 

Modified elements: 

- Registers: E-A 
- Indi cators: C-O 

Indicators: 

Trap conditions: standard 

Examples: 

SLCD 
SLCD 

V 11-44 

=15,x 
=1 

C 

0/1 

# 

0 Upon executi on 

I Last bit shifted out of E 

# If initia I shift = 0 



4057 U 

NAME Shift left, Circular, Single 

Class : 

Instruction format: 

Address 

o o o o 
o 2 3 4 5 6 7 

Addressing mode 

PX 

P 

n = number of shift steps 

Function: (A) shifted - (A) 

n = ((P))1l-15 = N l1 - 15 

N on-privi ledged 

o 0 

8 9 10 11 12 13 14 15 

Hexadecima I code Execution time (us) 

EO 8-n 4,3+1,5n 

FO 8-n 4,3+1,5n 

Contents of A-register shifted circularly n positions to the left, bit 15 following bit O. 

Modified elements: 

- Registers: A 
- Indicators: C-O 

Indicators: 

Trap conditions: standard 

Examples: 

SlCS 
SlCS 

=2,x 
=7 

C 

0/1 

# 

0 Upon execution 

~ last bit shifted out of A 

# If initial shift = 0 

SLCS 
Standard 

VII-45 



4057 U 

NAME Shift right, Arithmetic, Single SAS 
Class : Non-priviledged Standard 

Instruction format: 

Address 

a a a a a 
o 2 3 4 5 6 7 B 9 10 11 12 14 15 

Addressing mode Hexadecima I code Execution time ().Is) 

PX EO A-n 4,3+1,5n 

P Fa A-n 4,3+1,5n 

n = number of shift steps 

Function: (A) shifted (A) 

n = ((P))1l-15 = N ll -15 

Contents of A-register shifted arithmetically n positions to the right. Bit a (sign bit) is restored after each 
shift step. 

Modified elements: 

- Registers: A 
- Indicators: C-O 

Indi cators : 

Trap conditions: standard 

Examples: 

SAS 
SAS 

YII-46 

=&2,x 
=SPDL2 

C 0 Upon execution 

0/1 I Last bit shifted out of A 

# # If initial shift = 0 



4057 U 

NAME : Shift Right, Logical, Single 

Class : Non-privi ledged 

Instruction format: 

Address Number of shift steps 
'!!11!!!!!!!7JWJB 

o o o 0 o 
o 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

Addressing mode Hexadecimal code Execution time (,.,s) 

PX EO C-n 4,3 + 1,5 n 

P FO C-n 4,3+1,5n 

n = number fo shift steps 

Function: (A) shifted (A) 

. n = ((P))1l-15 = N ll - 15 

Contents of A-register shifted n positions to the right. Upper order bits replaced by 0 's. 

Modified elements: 

- Registers: A 
- Indicators: C-O 

Indicators: 

Trap conditions: standard 

Examples: 

SRLS 
SRLS 

=O,x 
=8 

C 

0/1 

# 

0 Upon execution 

I" Last bit shifted out of A 

# If initial shift = 0 

Standard 

VII-47 



4057 U 

NAME : Shift Right, Circular, Double SRCD 
Class : N on-privi ledged Standard 

Instruction format: 

Address 

o 0 o o 
o 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

Addressing mode Hexadecimal code Execution time (,.,s) 

PX EO E-n 4,3+2,7n 

P FO E-n 4,3+2,7n 

n = number of shift steps 

Function: (E, A) shifted - (E, A) 

n=((P))1I-15 ==N l1- 15 

Contents of E, A ext~nded register shifted circularly n positions to the right, bit 0 following bit 31. 

Modified elements: 

- Registers: E-A 
- Indi cators: C-O 

Indicators: 

Trap conditions: standard 

Examples: 

SRCD 
SRCD 

YII-48 

=18,x 
=&12 

C 

0/1 

# 

0 Upon executi on 

I' Last bit shifted out of A 

# If initial shift == 0 



4057 U 

NAME SHift speCial 

Class : N on-privi ledged 
(Except DITR when N 10 =1) 

Instruction format: 

Address Displacement 

o o 
o 2 3 4 5 6 7 e 9 10 11 12 13 14 15 ------ --_____ --v~--____ __ 

Instruction 

If N 10 =1, N 11-15 is meaningless 

Addressing mode 

DL 

PX 

P 

Execution times vary according to shift types. 

Function: r shifted - r (r is A or E, A) 
NIl-IS number of shift step 

0~Nl1_15 ~ 32 

- 0 

- 4 

- 2 

Ne- 10 i nstructi on type 

Shift left logical in E, A (SLLD) 

N 11-15 = number of shift steps 

Shift right logical in E, A (SRLD) 

N 11-15 = number of shift steps 

Compute parity in A (PTY) 
N l1 - 15 = number of shift steps 

Number of shift steps 

Hexadecimal code 

3C 

EC 

FC 

Upon execution, E contains the number of set bits shifted out of (A) 

- 6 Double lengh normalize in E, A 

NIl-IS = maximum number of shift steps 

SHe 
Optional 

1 
3 
5 
7 

High-speed interrupt de-activation (DITR). Only bit NIO is taken into consideration when set. 

Modified elements : 

- Registers: A {and E for double shifts} 

- Indicators: C - 0 

YII-49 



4057 U 

Indi cators : 

C 0 Upon execution 

0/1 # Last bit shifted out 

# # If step no. = zero 

Remark: 

This page only describes the general usage of SHC. For further details see the individual description of 

each particular case. 

Trap conditions: Standard and non-implemented instruction 
(Mode violation for DITR) 

Miscellaneous: DITR will be described separately with the control instruction. 

Examples: 

SHC 
SHC 
SHC 

VII-50 

EPDL12 (equivalent to SRLD = 2) 
=5,x (if x = 5, equivalent to SLLS = 10) 
&48 (equivalent to PTY = 8) 



4057 U 

NAME Shift Left, Logical, Double SLLD 

Class : N on-privi ledged Optional 

Instruction format: 

Address 

o o o o 0 

o 2 3 4 5 6 7 B 9 10 11 12 13 14 15 

Addressing mode Hexadecimal code Execution time (us) 

PX EC O-n 4,9 +1,2 n 

P FC O-n 4,9+1,2n 

n = number of shift steps 

Function: (E, A) shifted (E, A) 

n = ((P))1l-15 = N ll - 15 

Contents of E, A extended regi ster shi fted n posi ti ons to the I eft. Lower order bi ts rep la ced by 0 's. 

Modified elements: 

- Registers: E-A 
- Indicators: C-O 

I ndi ca tors: 

C 0 Upon execution 

0/1 I Last bit shifted out of E 

# # If step no. = zero 

Trap conditions: Standard and non-implemented instruction 

Examples: 

SLLD 
SLLD 

=5,x 
=&OE 

VII-51 



4057 U 

NAME : Shift Right, Logical, Double SRLD 
Class : Non-priviledged Optional 

I nstructi on forma t : 

Address 

o o o o 
o 2 3 4 5 6 7 8 9 10 

Addressing mode Hexadecima I code Execution time (,.,s) 

PX EC 8-n 4,9 +1,8 n 

P FC 8-n 4,9 +1,8 n 

n = number of shift steps 

Function: (E, A) shifted - (E, A) 

n = ({P)) 11-15 

Contents of E, A extended register shifted n positions to the right. Upper order bits replaced by O's. 

Modified elements : 

- Regi sters : E-A 
- Indicators: C-O 

Indi cators : 

C 0 Upon executi on 

0/1 # Last bit shifted out of A 

# # If step no. = zero 

Trap conditions: Standard and non-implemented instruction 

Examples: 

SRLD 
SRLD 

VII-52 

=3,x 
=31 



4057 U 

NAME : ParitY check in A 

Class : N on-privi ledged 

Instruction format: 

Address 

o o o o 
o 2 3 4 5 6 7 8 9 10 11 

Addressing mode Hexadecima I code 

PX EC 4-n 

P FC 4-n 

n = number of shift steps 
m = number of set bits detected 

Function: (A) shifted __ (A) 
(E) = number of set bits shifted out of (A) 
n = ((P))11-15 = N l1 - 15 

12 13 14 15 

Execution time (us) 

5,8 +1,2 n +O,3m 

5,8 +1,2 n +O,3m 

PTV 

Optional 

A -regi ster contents shi fted circu la rly in posi ti ons to the left. W hen the i nstructi on is over, E -regi ster 
contains the number of set bits which have been shifted out of A. 

Modified elements: 

- Registers: A 
- Indicators: C-O 

Indicators: 

C 0 Upon execution 

0/1 - Last bit shifted out of A 

- 0/1 (E15) = parity bit 

# # If step no. = zero 

Trap conditions: Standard and non-implemented instruction 

Examples: 

PTY 
PTY 

=2,x 
=&F 

Y II-53 



4057 U 

NAME double length NormaliZe (option) 

Class : N on-privi ledged 

Instruction format: 

Address Number of shift steps 

o o o 
o 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

Addressing mode Hexadecima I code Execution time 

PX EC C-n 

P FC C-n 

n = number of shift steps 

Function: (E, A) shifted (E, A) 
X is decremented by the actual number of shift steps 

n = ((P))1I-15 = NII-15 

4,9 +1,8 n 

4,9 +1,8 n 

NLZ 
Optional 

().Is) 

The contents of E, A extended register is shifted to the left until bit 0 is different from bi 1 or up to a 
maximum of n positions. X-register is decremented by the actual number of shift steps. 

Modified elements : 

- Registers: E - A - X 
- Indicators: C-O 

Indicators: 

C 0 Upon execution 

0 0 Normalization 01 ........ 
0 1 Stop on zero count 

1 0 Normalization 10 ........ 

Trap conditions: Standard and non-implemented instruction 

Examples: 

NLZ 
NLZ 

VII-54 

=10,x 
==20 



4057 U 

V II-S. INTER-REG ISTER OPERATION S 

VII-S.l. Introduction 

SRG (SeT Register) is the basic instruction for inter-register operations. A word located at Y memory 
address is used to specify the operation type. 

I nstructi on 
Address Displacement 

code 

------~ -------
, I , I I , , I I , , I , , , I Y2 

Operation 
type ---_~,!!I Y 2 -a ddress word 

In parameter addressing mode which is normally used, these two words are obviously identical. 

For the sake of clarity, each instruction derived from SRG will be described separately. 

Their mnemonics are recognized by MITRAS I and II. 

Remark 1 : 

Two particular cases of SRG, RTS and RSV, do not belong to the inter-register operation class. Though 
mentioned with SRG, they will be fully described with system branch instructions. 

Remark 2 : 

Any addressing mode other than "parameter" is meaningless for SRG-family instructions. 

VII-S.2. Description 

Inter-register operations will be described in the following order: 

SRG derivates 

SRG 
XAE 
XAX 
XAA 
CCE 
ACE 
CCA 
AEE 
CNX 
AlE 
AAE 
lNE 
CNA 
CHX 

Set Re G i ster 
eXchange A and E 
eXchange A and X 
eXchange left byte of A and right byte of A 
Copy Complement E 
Add Carry and E 
Copy Complement A 
A Exclusive OR with E 
Copy Negative X 
A Inclusive OR with E 
A And E 
load Negative E 
Copy Negative A 
Copy Half X 

VII-55 



4057 U 

NAME : Set ReGister 

Class : N on-privi ledged 

Instruction format: 

Address Displacement 

o 0 0 

o 2 3 4 5 6 7 10 11 12 13 14 15 

-Instruction type -

A ddressi ng mode Hexadecima I 

DL 

PX 

P 

Execution time depending on operation type. 

Function: Nll-14 

- 0 ReTurn Section --- (RTS) 
- 1 Exchange contents of A and E -- (XAE) 
- 2 Exchange contents of A and X -- (XAX) 
- 3 Exchange contents of E and X -- (XEX) 
- 4 Exchange (AO- 7 ) and (AS-15) -- (XAA) 
- 5 Complement E -- (CCE) 
- 6 Return SuperVisor - (RSV) 
- 7 Add Carry in E - (ACE) 
- 8 Complement A ---(CCA) 
- 9 A Exclusive OR E in A -- (AEE) 
- A Copy Negative X - (CNX) 
- B A OR E in A -- (A IE) 
- C A and E in A -- (AAE) 
- D Load Negative in E -- (LNE) 
- E Copy Negative A (CNA) 
- F Compute Half X - (CHX) 

Modified elements: 

- Registers: see individua I instructions 
- Indicators: see individual instruction 

Trap conditions: standard 

Examples: 

SRG 
SRG 
SRG 

VII-56 

EPDLl1 (equivalent to XEX) 
=&10,x ((x) = &E, equivalent to CHX) 
=14 (equivalent to ACE) 

31 

E1 

F1 

code 

SRG 

Sta nda rd 



4057 U 

NAME : eXchange contents of A and E 

Class : N on-privi I edged 

Instruction format: 

Address I nstruction type 

o '0 o o o o 
o 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

Addressing mode Hexadecimal code Execution time (~s) 

p Fl 

Function: (A) _ (E) 

Contents of A-register and E-register exchanged 

Modified elements: 

- Registers: E-A 

Trap conditions: standard 

Examples: XAE 

NAME : eXchange contents of A and X 

02 

Class : N on-privi ledged 

Instruction format: 

4,3 

Address Instruction type 

0 ·0 0 0 

0 2 3 4 5 6 7 8 9 10 11 

Addressi ng mode Hexadecima I code 

p Fl 

Function: (A) _ (X) 

Contents of A-register and X-register exchanged. 

Modified elements : 

- Registers: A - X 

Trap conditions: standard 

Examples: XAX 

04 

0 0 

12 13 14 15 

Execution time (lJs) 

4,3 

XAE 
Standard 

XAX 
Sta ndard 

VII-57 



4057 U 

NAME : eXchange contents of E and X 

Class : Non-priviledged 

Instruction format: 

Address I nstruction type 

o . 0 0 o o 
o 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

Addressing mode Hexadecima I code Execution time (}Js) 

p Fl 

Function: (E) - (X) 

Contents of E-register and X-register exchanged. 

Modified elements: 

- Registers: E - X 

Trap conditions: standard 

Examples: XEX 

NAME : eXchange left byte of A and right byte of A 

06 4,3 

Class : Non-priviledged 

Instruction format: 

Address Instruction type 

o ·0 o o o o 
o 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

Addressing mode' Hexadecima I code Execution time (}Js) 

p Fl 

Function: (A 0-7) - (A 8-15 ) 

Rightmost and leftmost bytes of A-register exchanged. 

Modified elements: 

- Registers: A 

Trap conditions: standard 

Examples: XAA 

VI/-58 

08 2,8 

XEX 
Standard 

XAA 
Standard 



4057 U 

NAME Copy Complement, logical E 

Class : N on-privi ledged 

Instruction format: 

Address Instruction type 

00 o o o 
o 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

Addressing mode Hexadecima I code Execution time 

p Fl OA 2,8 

Function: (E) --- (E) 

One's complement of E-register contents (bit 1 -- 0, bit 0 -- 1). 

Modified elements: 

- Registers: E 

Trap conditions: standard 

Examples: CCE 

NAME : Add Carry in E 

Class : 

Instruction format: 

Address 

o "0 

o 2 3 4 5 

o 
6 

N on-privi ledged 

Instruction type 

o 
7 8 9 10 11 12 13 14 15 

(us) 

Addressing mode Hexadecima I code Execution time (us) 

p Fl OE 

Function: (E) + C "- (E) 

Carry indi cator va lue added to E-register contents; result in E. 

Modified elements : 

- Regi sters: E 
- Indicators: C-O 

3,4 

Indicators: 
C 0 Upon executi on 

Trap conditions: standard 

Examples: ACE 

1 

-
- Carry 

1 Overflow 

CCE 

Standard 

ACE 
Standard 

VII-59 



4057 U 

NAME : Copy Complement, logical A 

Class : N on-privi ledged 

Instruction format: 

Address I nstruction type 

o o o o o o 
o 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

Addressing mode Hexadecimal code Execution time 

p F1 10 2,8 

Function: (A) --- (A) 

One's complement of E-register contents (bit 1 --- 0, bit 0 --- 1). 

Modified elements: 

- Registers: A 

Trap conditions: standard 

Examples: CCA 

NAME : A Exclusive OR E in A 

Class : 1 

I nstru cti on forma t : 

Address 

o . 0 o 
o 2 3 4 5 6 7 

Addressing mode 

p 

Function: (A) (j) (E) _ (A) 

N on-privi ledged 

Instruction type 

o o 
8 9 10 11 12 13 14 15 

Hexadecima I code Execution time 

F1 12 3, 1 

(J,Js) 

(JJs) 

Exclusive OR between A-register contents and E-register contents; result in A. 

Modified elements: 

- Registers: A 
- Indicators: C-O 

Indicators: 

Trap conditions: standard 
Examples: AAE 

VII-60 

C 

0 

0 

1 

0 Upon execution 

0 A>O 

1 A < 0 

0 A=O 

CCA 
Standard 

AEE 
Standard 

/ 



4057 U 

NAME : Copy Negative X 

Class : _ 1 Non-priviledged 

Instruction format: 

Address Instruction type 

0-0 o o o 
o 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

Addressing mode Hexadecima I code Execution time (JJs) 

p Fl 14 3, 1 

Functi on: - (X) _ (X) 

Two's complement (complement to 216 ) of X-register contents; result in X. 

Modified elements : 

- Registers: X 

Trap conditions: standard 

Examples: CNX 

NAME : A Inclusive or E in A 

Class : 1 

Instruction format: 

Address 

o -0 

o 2 3 4 5 

o 
6 7 

Addressing mode 

p 

Function: (A) V (E) -- (A) 

N on-privi I edged 

Instruction type 

o 
8 9 10 11 12 13 14 15 

Hexadecima I code Execution time (J-ls) 

Fl 16 3,1 

Inclusive OR between A-register contents and E-register contents; result in A. 

Modified elements : 

- Registers: A 
- Indi cators : C-O 

I ndi ca tors: 

Trap conditions: standard 

Examples: AlE 

C 

0 

0 

1 

0 Upon executi on 

0 A > 0 

1 A<O 

0 A = 0 

CNX 
Sta nda rd 

AlE 
Standard 

V 11-61 



4057 U 

NAME : A And E in A 

Class : Non-priviledged 

Instruction format: 

Address Instruction type 

o ·0 o o o 
o 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

Addressing mode Hexadecima I code Executi on time (}Js) 

p F1 18 3,1 

Function: (A) A (E) - (A) 

Logi ca I AN D (intersection) between A-register contents, and E-register contents; resu It in A. 

Modified elements: 

- Registers: A 
- Indicators: C-O 

Indicators: 

Trap conditions: standard 

Examples: AAE 

NAME Load, Negative in E 

Class : 

Instruction format: 

Address 

o . 0 

o 2 3 4 5 

C 

0 

0 

1 

o 
6 7 

Addressing mode 

p 

Function: - 1 - (E) 

-1 va lue loaded into E-register. 

Modified elements: 

- Registers: E 

Trap conditions: standard 

Examples: LN E 

VII-62 

0 Upon executi on 

0 A > 0 

1 A < 0 

0 A = 0 

Non-priviledged 

Instruction type 

o 
8 9 10 11 12 13 14 

Hexadecimal code Execution timE 

F1 1A 3,1 

AAE 
Sta nda rd 

LNE 
Standard 

/ 



4057 U 

NAME : Copy Negative A 

Class : N on-privi I edged 

Instruction format: 

Address Instruction type 

o . 0 o o 
o 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

Addressing mode Hexadecima I code Execution time 

p Fl I lC 3,4 

Function: - (A) - (A) 

Two's complement (complement to 216 ) of A-register contents; result in A. 

Modified elements: 

- Registers: A 
- Indicators: C-O 

Indi cators : 

Trap conditions: standard 

Examples: CNA 

NAME: Compute Half X 

Class : 

Instruction format: 

Address 

o ·0 0 

o 2 3 4 5 6 7 

C 0 Upon execution 

1 - Carry 

- 1 Overflow 

N on-privi I edged 

Instruction type 

8 9 10 11 12 13 14 15 

(,.,s) 

Addressing mode Hexadecimal code Execution time (,us) 

p Fl lE 3,1 

Function: (X) / 2 - (X) 

CNA 
Sta nda rd 

CHX 
Sta nda rd 

X-register contents shifted one position to the right. Sign bit (bit 0) restored. As a result, X-register 
contents is divided by two. 

Modified elements: 

- Registers: X 

Trap conditions: standard 

Examples: C HX 

VII-63 



4057 U 

VII-9. FLOATING-POINT ARITHMETIC 

VII-9.1. Introduction 

These instructions operate on single precision floating-point format operands and are implemented in an 
optional device called "floating-point operator" or OVF. 

In single precision floating-point format, the numbers are represented on a double-word. This double-word 
has the following structure 

- A sign bit (position 0) 

- A base-16 exponent whose value 1S increased by 64 to provide the "characteristic" (positions 1 through 7). 

- A 6 hexadecimal digit mantissa (positions 8 through 31) • 

..... ~ 
Characteristic C --------------~~~~----------------Mantissa M 

S' \ 0 Positive number 
Ign (1 Negative number 

A floating-point number N has the following formel definition 

- If N;;;,O N = M x 16 c - 64 

with M = 0 or 16-6 <M <1 and O<C <127 

- A positive floating-point number having a zero mantissa must also have a 2:ero characteristic; it represents 
the zero va I ue . 

- A positive floating-point number is "normalized" if its mantissa satisfies the relation: 1/16<M<1. 

- A negative number is represented by the two's complement of its absolute value. More specifically the 
representation of a negative number N includes a sign bit (0), a characteristic and a mantissa on a double
word length. The number N is represented by the two's complement of this dc)uble-word. 

Normally floating-point arithmetic instructions operate on normalized operands (no pre-normalization 
effected) and provide normalized results. 

For non-norma lized operands, the results are norma lized or not, as the case may be. 

Limits of normalized floating-point format: 

0.86362 x 10-76 < N<0.72370 x 10+76 

VII-9.2. Description 

The floating-point instructions perform the four operations and are described in the following order: 

FAD 

FSU 

FMU 

FDV 

VII-64 

Floating ADd 

Floating SUbtract 

Floating MUltiply 

Floating DiVide 



4057 U 

Examples of floating-point representations: 

Nombre Decimal SINGLE PRECISION FLOATING FORMAT Hexadecimal 

+ C M 
value 

-

+(16+63 )(1 _2- 24 ) a 111 1111 1111 1111 1111 1111 1111 1111 7F FFFFFF 

+(16+ 3)(5/16) a 100 0011 0101 0000 0000 0000 0000 0000 43 500000 

+(16- 3)(209/256) a all 1101 11 01 0001 0000 0000 0000 0000 3D D10000 

+(16-63 )(2047/4096) a 000 0001 0111 1111 1111 0000 0000 0000 01 7FFOOO 

+(16-64 )(1/16) a 000 0000 0001 0000 0000 0000 0000 0000 00 100000 

a 0 000 0000 0000 0000 0000 0000 0000 0000 00 000000 

-(16- 64 )(1/16) 1 111 1111 1111 0000 0000 0000 0000 0000 FF FOOOOO 

-(16- 63 )(2047/4096) 1 111 1110 1000 0000 0001 0000 0000 0000 FF 801000 

-(16- 3)(209/256) 1 100 0010 0010 1111 0000 0000 0000 0000 C2 2FOOOO 

-(16 +3)(5/16) 1 011 11 00 1011 0000 0000 0000 0000 0000 BC BOOOOO 

-(16+63)(1 _2- 24 ) 1 000 0000 0000 0000 0000 0000 0000 0001 80 000001 

VII-65 



4057 U 

NAME : Floating A Dd (option) FAD 

Class : 0' N on-privi ledged Optional 

Instruction format: 

Address Displacement 

o o 
o 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

Addressi ng mode Hexadecima I code 

DL lA 

DG 5A 

IL 7A 

IGX 9A 

ILX BA 

Function: (E, A) + (Y2 ' Y2 + 2) -- (E,A) 

Contents in floating format of E, A extended accumulator added with floatin~l operand contained in 
Y2 -address double-word; result in E, A. 

Modified elements: 

- Registers: E - A 
- Indi cators: C-O 

Indicators: 

Tiap conditions: standard 

Examples: 

FAD 
FAD 
FAD 
FAD 
FAD 

V" -66 

EPDL26 
# EPDC26 
@EPDL27 
@# EPDC27,x 
@EPDL27, x 

C 

0 

0 

1 

1 

0 Upon execution 

0 Result/O, no overflow 

1 Overflow 

0 Result = 0 

1 Underflow 



4057 U 

NAME : Floating SUbtract FSU 
Class : 0 I N on-privi ledged Optional 

Instruction format: 

Address Displacement 

o 
o 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

Addressing mode Hexadecimal code 

DL 1 B 

DG 5B 

IL 7B 

IGX 9B 

ILX BB 

Function: (E, A) - (Y2' Y2 + 2) - (E, A) 

Floating operand contained in Y2 -address double-word subtracted from contents in floating format of E, A 
extended accumulator; result in E, A. 

Modified elements : 

- Registers: E - A 
- Indicators: C-O 

Indicators: 

Trap conditions: standard 

Examples: 

FSU 
FSU 
FSU 
FSU 
FSU 

EPDL26 
# EPDC26 
@EPDL27 
@# EPDC27,x 
@EPDL27,x 

C 

0 

0 

1 

1 

0 Upon execution 

0 Result 10, no overflow 

1 Overflow 

0 Result = 0 

1 Underflow 

YII-67 



4057 U 

NAME : Floating MUltiply FMU 
Class : 0' N on-privi I edged Optional 

Instruction format: 

Address Displacement 

o o 
o 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

Addressing mode Hexadecimal code 

DL lC 

DG 5C 

IL 7C 

IGX 9C 

ILX BC 

Function: {E, A} x {Y2' Y2 + 2} -- E, A 

Contents in floating format of E, A extended accumulator {multiplicand} multiplied by floating operand 
contained in Y2 -address double-word {multiplier}; result in E, A. 

Modified elements : 

- Registers: E - A 
- Indicators: C-O 

Indicators: 

Trap conditions: standard 

Examples: 

FMU 
FMU 
FMU 
FMU 
FMU 

VII-68 

EPDL26 

# EPDC26 
@ EPDL27 
@# EPDC27,x 
@ EPDL27 ,x 

C 

0 

0 

1 

1 

0 Upon execution 

0 Result/O, no overflow 

1 Overflow 

0 Result = 0 

1 Underflow 



4057 U 

NAME : Floating DiVide FDV 

Class : 0' Non-priviledged Optional 

Instruction format: 

Address Displacement 

o 
o 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

A ddressi ng mode Hexadecima I code 

DL 1 D 

DG 5D 

IL 7D 

IGX 9D 

ILX BD 

Function: (E, A) : (Y2 , Y2 + 2) - (E, A) 

Contents in floating format of E, A extended accumulator (dividend) divided by floating operand contained 
in Y2 -address double-word (divisor); result in E, A. 

Modified elements: 

- Registers: E - A 
- I ndi cators: C- 0 

Indicators: 

Trap conditions: standard 

Examples: 

FDV 
FDV 
FDV 
FDV 
FDV 

EPDL26 
# EPDC26 
@ EPDL27 
@# EPDC27,x 
@ EPDL27 ,x 

C 

0 

0 

1 

1 

0 Upon execution 

0 Result f 0, non overflow 

1 Overflow 

0 Result = 0 

1 Underflow 

VII-69 



4057 U 

VII-10. BYTE STRING PROCESSING 

Byte or character string operations are performed by three instructions: 

MVS 
CPS 
TRS 

MoVe byte String 
ComPare byte String 
TRanslate byte String 

NAME : MoVe byte String 

Class : 0' 

I nstru cti on forma t : 

Address 

o 2 3 4 5 6 7 

N on-privi I edged 

Displacement 

8 9 10 11 12 13 14 15 

Addressing mode Hexadecimal code Execution time (jJs) 

DL 1F 

DG 5F 

IL 7F 

IGX 9F 

ILX AF 

n = n um ber fo shift steps 

Function: For a varying on a byte basJs from (E) - 1 to 0, 
(( G) + (A) + a) -- (Y + a) 
When transfer is over -1 - E 

3 + 3,3 n 

3 + 3,3 n 

4 + 3,3 n 

4 + 3,3 n 

4 + 3,3 n 

MVS 
Optional 

A byte string beginning at an address defined with respect to G-base by the contents of A-register and 
whose length (in bytes) is specified in E-register, is stored in core memory starting from V-address. 

When the transfer is over, E-register contents is -1 and A-register contents is unmodified. 

Modified elements : 

- Registers: E 
- Memory locations: (Y) to (Y + (E) - 1) 

_Trap conditions: standard and non-implemented instruction 

Miscellaneous: This instruction is interruptible between each byte transfer 

t::xamples : 

MVS 
MVS 
MVS 
MVS 
MVS 

V 11-70 

EPDL4 
# EPDC4 
@ EPDL3 
@# EPDC3,x 
@ EPDL3,x 



4057 U 

NAME : ComPare byte String 

Class : 0 Non-priviledged 

I nstructi on forma t : 

Address Displacement 

o o o 
o 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

Addressing mode Hexadecimal code Execution time (/Js) 

DL OA 

P 2A 

DG 4A 

IL 6A 

IGX 8A 

ILX AA 

n = number of comparaison made 

Function: For a varying on a byte basis from 0 to (E) - 1, 
y = ((G) + (A) + a) 

Upon executi on : 

4,2+3,4n 

4,6+3,4n 

4,2+3,4n 

5,2 + 3,4 n 

5,2 + 3,4 n 

5,2 + 3,4 n 

- if found 
- if not found 

: A = address of reference byte within the string 
: A = address of first non-processed byte 

CPS 
Optional 

A byte y read at V-address in core memory is sequentially compared to every byte of a string beginning at 
an address defined with respect to G-base by the c~ntents of A-register and whose length is specified in 
E -regi ster . 

Upon executi on : 

If the reference byte is found in the string, its address with respect to G-base is in A-register and E-regis
ter contains the unprocessed string length. 

If the reference byte y is not found in the string, A-register contains the starting address with respect to 
G-base and E-register final contents is zero. 

Modified elements: 

- Registers: E - A 
- Indi cators: C-O 

Indicators: C 0 Upon execution 

0 0 Character found 

0 1 C hara cter no found 

Trap conditions: standard and non-implemented instruction 
Miscellaneous: This instruction is interruptible between byte comparisons. 
Examples: 

CPS 
CPS 
CPS 

EPDLl8 
=&6C 
# EPDC18 

CPS 
CPS 
CPS 

@ EPDLl9 
@# EPDC19,x 
@EPDLl9,x 

VII-71 



4057 U 

NAME : TRanslatable byte String 

Class: 0' Non-privi ledged 

I nstructi on forma t : 

Address Displacement 

o 
o 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

A ddressi ng mode Hexadecima I code Execution time (~s) 

DL 1 E 

DG 5E 

IL 7E 

IGX 9E 

ILX BE 

n : number of bytes to be translated 

Function: For a varying on a byte basis from 0 to (E) - 1 
(Y + ((A) + (G) +r.x) e) - ((A) + (G) + a) 
When transfer is over, 0 -- (E) 

4,5 + 2,75 n 

4,5 + 2,75 n 

5,5 + 2,75 n 

5,5 + 2,75 n 

5,5 + 2,75 n 

TRS 
Optional 

Given: an origin code 0 and a result code R, as well as a 256 consecutive byte translation table starting 
at Y-calculated address and organized as follow: 

Table relative beginning 
Contents 

address hexadecimal) 

00 Value of R-code corresponding to 00 value in O-code. 

01 Value of R-code corresponding to 01 value in O-code. 

02 Value of R-code corresponding to 02 value in O-code. 

. 

. 
FF Value of R-code corresponding to FF value in O-code. 

A string beginning at an address defined with respect to G-base by the contents of A-register and whose 
length is specified in E-register is translated byte per byte through the translation table by TRS instruction. 

Starting from Y calculated address, the origin string is overwritten byte per byte by the result string. 

Translation table creation is obviously the user's responsibility. 

Modified elements: 

- Registers: A (if initial E I 0) - E 
- Memory locations: ((A)) to ((A) + (E) - 1) 

.!rap conditions: standard and non-implemented instruction 
Examples: 
TRS 
TRS 
TRS 

V 11-72 

EPDL18 
# EPDC18 
@EPDL19 

TRS 
TRS 

@# EPDC19,x 
@ EPDL19,x 



4057 U 

VII-ll. BRANCH INSTRUCTIONS 

These instructions normally provide for interrupting the sequential instruction execution in a program 
segment. 

They include: 

BRU 

BRX 

BCT 

BOT 

BCF 

BOF 

BAZ 

BAN 

BE 

BZ 

BL 

BLZ 

BNE 

BNZ 

BGE 

BPZ 

Remark 1 : 

BRanch Unconditional 

BRanch with indeX 

Branch on Carry True 

Branch on Overflow True 

Branch on Carry False 

Branch on Overflow Fa Ise 

Branch on A Zero 

Branch on A Negative 

Branch on Equel to 

Branch on Zero 

Branch on Less than 

Branch on Less than Zero 

Branch on Not Equal to 

Branch on Not Zero 

Branch on Greater than or Equa I to 

Branch on Positive or Zero 

An indicator is "true" when set and "false" when reset. 

Remark 2 : 

If P-register contents is even, the executed instruction is located at {P} absolute address. 

If P-register contents is odd, the executed instruction is located at {P} - 1 absolute address. 

Remark 3 : 

Several conditional branches correspond to the same basic instruction. These additional mnemonics (not 
recognized by MITRAS I) are provided for easier program writing when used after a load or compare 
i nstructi on. 

Basi c instruction Mnemonics for use after loading Mnemoni cs for use after comparison 

BCT BZ BE 

BOT BLZ BL 

BCF BNZ BNE 

BOF BPZ BGE 

VII-73 



4057 U 

NAME : BRanch Unconditional 

Class : 2 N on-privi I edged 

I nstructi on forma t : 
Displacement 

o 
o 2 3 4 5 6 7 B 9 10 11 12 13 14 15 

Addressi ng mode Hexadecima I code Execution time (",s) 

RP C7 1,8 

RM CF 1,8 

IL 07 3 

IG OF 3 

Function : Y - (P) 

V-address is loaded into P-register and execution proceeds at V-address. 

Modified elements: 

- Registers: P 

Trap conditions: standard 

Examples: 

EPPL2 
EPPL3 

VII-74 

BRU 
BRU 
BRU 
BRU 
BRU 

@EPDL14 
EPPL3+1 
@# EPDC13 
EPPL3-1 Equivalent to BRU EPPL2 
$ 

BRU 
Standard 



4057 U 

NAME : BRanch indeXed 

Class : 2 N on-privi ledged 

Instruction format: 

Address Displacement 

o o 0 

o 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

A ddressi ng mode Hexadecima I code Execution time (,.,s) 

Function: RP 
RM 
IL 
IG 

RP C1 

RM C9 

IL D1 

IG D9 

(P) + 2 De + 2 (X) _ (P) 
(P) - 2 De - 2 (X) - (P) 
(De + (L) + (X)) + G' -- (P) 
(De + (G) + (X)) + G' _ (P) 

2,1 

2, 1 

3,2 

3,2 

BRX 
Sta ndard 

Y calculated address is loaded into P-register and execution proceeds at V-address. In indirect addressing, 
the index is used for a pre-indexing executed prior to indirect addressing. 

V-address is calculated according to the above formulae. 

Remark: 

BRX may be used with relative plus or minus addressing modes, but its most frequent application is based on 
indirect addressing to provide multiple branch capability through an address table. 

Modified elements: 

- Registers: P 

Tra~ conditions: standard 

Exam~les : 

EPPLO BRX EPPLl (for X = 2, branch at EPPL3) 

EPPLl BRX EPPL3 (for X = 1, branch at EPPL4) 

EPPL2 BRX EPPL3 (for X =0, branch at EPPL3) 

EPPL3 BRX EPPL2 (for X = 1 , branch at EPPLl) 

EPPL4 BRX EPPL2 (forX=2, branch at EPPLO) 

BRX @ EPDLl5 (forX=O, branch at EPPLl) 

BRX @# EPDC15 (for X = 2, branch at EPPL2) 

BRX @ EPDLl5 (for X = 4, branch at EPPL3) 

BRX @# EPDC15 (for X = 6, branch at EPPL4) 

VII-75 



4057 U 

NAME : Branch on C True BCT 
Class: 2 N on-privi I edged Standard 

I nstructi on forma t : 

Displacement 

o o o o 
o 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

Addressing mode Hexadecima I code Executi on time (",s) 

RP CO 2, 1 1 ,9 

RM C8 2, 1 1 ,9 

IL DO 3,3 1,9 

IG D8 3,3 1 ,9 

~~ 

L • Llf continue in sequence 
.. ----If branch 

Function: If C = 1 ~ y -- (P) 
If C = 0 ~ (P) + 2 __ (P) 

If Carry indicator is set (1), Y calculated address in loaded into P-register and execution continues at 
Y -address. 

If Carry indicator is reset (O), execution proceeds in sequence. 

Modified elements: 

- Registers: P 

Indicators: 

C 0 Function according to initial value 

0 Continue in sequence 

1 Branch 

Trap conditions: sta ndard 

ExamEles : 

BCT @# EPDC14 

EPPL2 BCT $+1 

EPPL3 BCT EPPL3+1 Equivalent to BCT $+1 

BCT @EPDL13 

V 1/-76 



4057 U 

NAME : Branch on 0 True BOT 
Class : 2 N on-privi ledged Standard 

Instruction format: 

Address Displacement 

o o o 
o 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

Addressing mode Hexadecimal code Execution time (,.,s) 

RP C2 2,1 1,9 

RM CA 2,1 1,9 

IL 02 3,3 1,9 

IG DA 3,3 1,9 

T LeonHnue;n 'equenee 
If branch 

Function: If 0 = 1 ~y - (P) 
If 0 = 0 ~ (P) + 2 - (P) 

If Overflow indicator is set (1), Y calculated address is loaded into P-register and execution continues at 
Y -address. 

If Overflow indicator is reset (O), execution proceeds in sequence. 

Indicators: 

C 0 Function according to initial value 

0 Continue in sequence 

1 Branch 

Tra~ conditions: standard 

Exam~les : 

EPPL4 BOT EPPLl 

EPPLl BOT @ # EPOC14 

EPPL3 BOT @EPOLl3 

EPPL2 BOT EPPL4 

V"-77 



4057 U 

NAME : Branch on C False BCF 
Class : 2 N on-privi ledged Standard 

Instruction format: 

Address 

o o 
o 2 3 4 5 6 7 

Addressing mode 

RP 

RM 

IL 

IG 

Function: If C = 0 ~ Y - {P} 
If C = 1 ~ {P} + 2 - {P} 

Displacement 

8 9 10 11 

Hexadecimal code 

C3 

CB 

D3 

DB 

12 13 14 15 

Execution time {.us} 

2, 1 1,9 

2,1 1,9 

3,3 1,9 

3,3 1,9 

~~ 

L Lf continue in sequence 
___ If branch 

If Carry indicator is reset {O}, Y calculated address is loaded into P-register and execution continues at 

V-address. 

If Carry indicator is set {1}, execution proceeds in sequence. 

Modified elements: 

- Registers: P 

Indicators: 

Tra~ conditions: 

Examples: 

EPPL4 

EPPL3 

':PPL2 

EPPLl 

VII-lB 

standard 

BCF 

BCF 

BCF 

BCF 

C 0 Function according to initial value 

0 Branch 

1 Continue in sequence 

EPPLl 

EPPL4 

@ EPDLl4 

@# EPDC13 



4057 U 

NAME : Branch on 0 False BOF 
Class : 2 Non-priviledged Standard 

Instruction format: 

Address Displacement 

o o 
o 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

A ddressi ng mode Hexadecimal code Execution time (/Js) 

RP C6 2,1 1,9 

RM CE 2,1 1 ,9 

IL 06 3,3 1 ,9 

IG DE 3,3 1 ,9 

T L conHnue ;n ,equence 
If branch 

Functi on: If 0 = 0 :::::::} Y - (P) 
If 0 = 1 ~ (P) + 2 - (P) 

If Overflow indicator is reset (0), Y calculated address is loaded into P-register and execution continues 
at V-address. 

If Overflow indicator is set (1), execution proceeds in sequence. 

Modified elements: 

- Registers: P 

Indicators: 

C 0 Function according to initial value 

0 Branch 

1 Continue in sequence 

Tra~ conditions: standard 

Exam~les : 

EPPLl BOF EPPL2+2 

E PPL2 BOF @EPDL14 

E PPL3 BOF @# EPDC13 

BOF EPPL2-1 - Equivalent to BOF EPPLl 

VII-79 



4057 U 

NAME : Branch on A Zero BAZ 

Class: 2 N on-privi ledged Standard 

Instruction format: 

Address Displacement 

o o 
o 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

Addressing mode Hexadecima I code Execution time {)Js} 

RP C5 2,4 2,2 

RM CD 2,4 2,2 

IL D5 3,5 2,2 

IG DD 3,5 2,2 

T Ton,;nu. 
If branch 

in sequence 

Function: If {A} = 0 :=:::> Y -- {P} 
If {A} "I 0 ~ {P} + 2 -- {P} 

If A-register contents is zero, Y calculated address is loaded into P-register and execution continues at 
V-address. 

If A-register contents is not zero, execution proceeds in sequence. 

Modified elements: 

- Registers: P 

Tra~ conditions: standard 

Exam~les : 

EPPL2 BAZ @# EPDC14 

BAZ $+2 

EPPL2 BAZ $-1 

BAZ @EPDLl3 

VII-SO 



4057 U 

NAME : Branch on A Negative BAN 
Class : 2 N on-privi I edged Sta ndard 

Instruction format: 

Displacement 

o o o 
o 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

Addressing mode Hexadecimal code Execution time (}Js) 

RP C4 2,4 2,2 

RM CC 2,4 2,2 

IL D4 3,5 2,2 

IG DC 3,5 2,2 

~~ 

L Lf continue in sequence 
___ If branch 

Function: If (A) < 0 - Y - (P) 
If (A) ~ 0 - (P) + 2 - (P) 

If A-register contents is negative, Y calculated address is loaded into P-register and execution continues 
at V-address. 

If A-register contents is zero or positive, execution proceeds in sequence. 

Modified elements: 

- Registers: P 

Trap conditions: standard 

Examples: 

EPPLl 

EPPL3 

EPPL2 

BAN 

BAN 

BAN 

BAN 

$+2 

EPPLl 

@ EPDLl3 

@#EPDC14 

VII-81 



4057 U 

NAME : Branch if Equal 

Class : 2 N on-privi ledged 

Instruction format: 

Address Displacement 

o o o 0 
o 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

Addressing mode Hexadecima I code Execution time (/.Is) 

RP CO 

RM C8 

IL DO 

IG 08 

Function IfCarry=l )Y (P) 
If Carry = 0 ==> (P) + 2 (P) 

Normally, this instruction is preceded by a comparison. 

2,1 1,9 

2, 1 1,9 

3,3 1,9 

3,3 1,9 

~T I If continue in sequence 
L! ----If branch 

BE 
Standard 

If the first term of the comparison was equal to the second, Y calculated address is loaded into P-register 
and execution continue at V-address. 

If the first term of the comparison was different from the second, execution proceeds in sequence. 

Modified elements: 

- Registers: P 

Indi cators : 

C 0 

0 

1 

Trap conditions: standard 

Miscellaneous: This instruction is equivalent to a BCT 

Examples: 

EPPLl 

EPPL4 

EPPL2 

EPPL3 

V 11-82 

BE 

BE 

BE 

BE 

EPPL4 

@#EPDC13 

@ EPDLl4 

EPPLl 

Function according to initial value 

Continue in sequence 

Branch 



4057 U 

NAME : Branch if Zero BZ 

Class : 2 N on-privi ledged Standard 

Instruction format: 

Address Displacement 

o o o 0 
o 2 3 4 5 6 7 8 9 10 11 

A ddressi ng mode Hexadecima I code 

RP CO 

RM C8 

IL DO 

IG 08 

Function: If Carry = 1 ~ Y - (P) 
If Carry = 0 ~(P) + 2 _ (P) 

This instruction is normally preceded by a load instruction. 

12 13 14 15 

Execution time (/.Is) 

2,1 1,9 

2,1 1,9 

3,3 1,9 

3,3 1,9 

T L conHnue;n ,equence 
If branch 

If the previously stored value is zero, Y calculated address is loaded into P-register and execution continues 
at V-address. 

If the previously stored value is different from zero, execution proceeds in sequence. 

Modified elements: 

- Registers: P 

Indicators: 

Trap conditions: standard 

C 0 

0 

1 

Miscellaneous: This instruction is equivalent to a BCT 

Examples: 

EPPL4 BZ @EPDLl4 

E PPL2 BZ EPPLl 

E PPL3 BZ @# EPDC13 

EPPLl BZ EPPL4 

Function according to initial value 

Continue in sequence 

Branch 

VII-83 



4057 U 

NAME : Branch if Less BL 
Class: 2 Non-privi ledged Standard 

Instruction format: 

Displacement 

o o o 
o 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

Addressing mode Hexadecima I code Execution time (J,Js) 

RP C2 2, 1 1 ,9 

RM CA 2, 1 1 ,9 

IL D2 3,3 1 ,9 

IG DA 3,3 1 ,9 

~~ 

1 Llf continue 
____ If branch 

in sequence 

Function If Overflow = 1 > y -- P 
If Overflow = 0 ~ (P) + 2 - (P) 

Normally, this instruction is preceded by a comparison. 

If the first term of the comparison was less than the second, Y ca Iculated address is loaded i'nto P-register 
and execution continues at Y -address. 

If the first term of the comparison was equal to or greater than the second, execution proceeds in sequence. 

Modified elements: 

- Registers: P 

Indi cators : 

C 0 Function according to initial 

0 

1 

.!rap conditions: standard 

Miscellaneous: This instruction is equivalent to a BOT 

Examples: 

EPPL4 

E PPL2 

E PPL3 

EPPLl 

V" -84 

BL 

BL 

BL 

BL 

@EPDLl4 

E PPLl 

@# EPDC13 

EPPL4 

Continue in sequence 

Branch 

value 



4057 U 

NAME : Branch if Less Zero BLZ 

Class : 2 N on-privi I edged Sta ndard 

Instruction format: 

Address Displacement 

o o o 
o 2 3 4 5 6 7 8 9 10 11 

Addressi ng mode Hexadecima I code 

RP C2 

RM CA 

IL D2 

IG DA 

Function: If Overflow = 1 ~ Y -~ (P) 
If Overflow = 0 )(P) + 2 _ {P} 

This instruction is normally preceded by a load instruction. 

12 13 14 15 

Execution time (us) 

2, 1 1,9 

2,1 1 ,9 

3,3 1 ,9 

3,3 1 ,9 
~ 

L Lntinue in sequence 
.,0. __ If branch 

If the previously stored value was less than zero, Y calculated address is loaded into P-register and 
execution at V-address. 

If the previously stored value was equal to or greater than zero, execution proceeds in sequence. 

Modified elements: 

- Registers: P 

Indicators: 

C 0 Function according to initial 

0 

1 

Trap conditions: standard 

Miscellaneous: This instruction is equivalent to a BOT 

Examples: 

EPPLO 

EPPL2 

EPPL3 

EPPLl 

BLZ 

BLZ 

BLZ 

BLZ 

@# EPDC14 

EPPLl 

@EPDLl3 

$-3 Equiva lent to BLZ 

Continue in sequence 

Branch 

EPPLO 

value 

VII-85 



4057 U 

NAME : Branch if Not Equal BNE 
Class : 2 Non-priviledged Standard 

Instruction format: 

Address Displacement 

o o 
o 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

Addressing mode Hexadecima I code Execution time (~s) 

RP C3 2, 1 1,9 

RM CB 2, 1 1,9 

IL D3 3,3 1,9 

IG DB 3,3 1,9 

~~ 

t Lf continue in sequence 
~lfbranch 

Function: If Carry = 0 ~ Y -- (P) 
If Carry = 1 ~(P) + 2 __ (P) 

Normally, this instruction is preceded by a comparison. 

If the first term of the comparison was different from the second, Y calculated address is loaded into 
P-register and execution continues at V-address. 

If the first term of the comparison was equal to the second, execution proceeds in sequence. 

Modified elements: 

- Registers: P 

Indicators: 

C 0 Function according to initial 

0 

1 

Trap conditions: standard 

Miscellaneous: This instructi on is equiva lent to a BCF 

Examples: 

EPPL2 

EPPL3 

V 11-86 

BNE $+1 

BNE @ EPDLl3 

BNE 

BNE 

@#EPDC14 

$-3 

Branch 

Continue in sequence 

value 



4057 U 

NAME : Branch if Not Zero BNZ 
Class : 2 N on-privi ledged Standard 

Instruction format: 

Address Displacement 

o o 
o 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

Addressing mode Hexadecimal code Exe cuti on ti m e (lJs) 

RP C3 2, 1 1,9 

RM CB 2,1 1,9 

IL D3 3,3 1,9 

IG DB 3,3 1,9 

~~ 

t Llf continue in sequence 
~Ifbranch 

Function: If Carry = 0 ===7 Y -- (P) 
If Carry = 1 ~ (P) + 2 - (P) 

This instruction is norma lIy preceded by a load instruction. 

If the previously stored value was different from zero, Y calculated address is loaded into P-register and 
execution continues at V-address. 

If the previously stored value was equal to zero, execution proceeds in sequence. 

Modified elements: 

- Registers: P 

Indicators: 

Trap conditions: standard 

C 0 

0 

1 

Miscellaneous: This instruction is equivalent to a BCF 

Examples: 

EPPL3 

EPPL4 

EPPL2 

EPPLl 

BNZ 

BNZ 

BNZ 

BNZ 

EPPLl 

@EPDLl3 

@# SPDC14 

EPPL4 

Function according to initia I va lue 

Branch 

Continue in sequence 

VII-87 



4057 U 

NAME : Branch if Greater or Equa I 

Class : 2 N on-privi I edged 

Instruction format: 

Address Displacement 

o o 
o 2 3 4 5 6 7 8 9 10 11 

A ddressi ng mode Hexadecima I code 

RP C6 

RM CE 

IL 06 

IG DE 

Function If Overflow = 0 ~ Y {P} 
If Overflow = 1 ===::? {P} + 2 {P} 

Normally, this instruction is preceded by a comparison. 

12 13 14 15 

Execution time (us) 

2, 1 1 ,9 

2, 1 1 ,9 

3,3 1 ,9 

3,3 1 ,9 

~~ 

L~f continue in sequence 
If branch 

BGE 
Standard 

If the first term of the comparison was greater than or equal to the second, Y calculated address is loaded 
into P-register and execution continue at Y-address. 

If the first term of the comparison was less than the second, execution proceeds in sequence. 

Modified elements: 

- Regi sters: P 

I ndi ca tors: 

0 Function according to initia I 

0 Branch 

1 Continue 

Jrap conditions: standard 

Miscellaneous: This instruction is equivalent to a BOF 

Examples: 

EPPL4 

E PPLl 

E PPL2 

EPPL3 

V 11-88 

BGE 

BGE 

BGE 

BGE 

EPPLl 

@EPDLl3 

@# EPDC14 

EPPL4 

in sequence 

value 



4057 U 

NAME : Branch if Positive or Zero 

Class : 2 Non-priviledged 

Instruction format: 

Address Displacement 

o o 
o 2 3 4 5 6 7 8 9 10 11 

Addressing mode Hexadecima I code 

RP C6 

RM CE 

IL 06 

IG DE 

Function: If Overflow = 0 ~ V - {P} 
If Overflow = 1 ~ {P} + 2 - {P} 

This instruction is normally preceded by a load instruction. 

12 13 14 15 

Execution time (,us) 

2, 1 1,9 

2, 1 1,9 

3,3 1,9 

3,3 1,9 

~ -------L J continue in sequence 
If branch 

BPZ 
Standard 

If the previously stored value was greater than or ,equal to zero, V calculated address is loaded into 
P-register and execution continues at V-address. 

If the previously stored value was less than zero, execution proceeds in sequence. 

Modified elements : 

- Registers: P 

Indicators: 

Trap conditions: standard 

0 

0 

1 

Function according to initial 

Branch 

Continue in sequence 

Miscellaneous: This instruction is equivalent to a BOF 

Examples: 

EPPL2 

E PPL3 

BPZ 

BPZ 

BPZ 

BPZ 

@EPDL14 

$+2 

@#EPDC13 

$-2 -.- Equivalent to BRU EPPL3 

value 

VII-89 



4057 U 

VII-12. SYSTEM COMMUNICATION INSTRUCTIONS 

These instructions perform sophisticated call and communication operations between system constituents: 
program modules, monitor modules, interrupt subroutines. 

They include: 

ClS 

RTS 

CSV 

DIT 

DITR 

Ca I l Secti on 

ReTurn Section 

Ca II SuperVisor 

De--activate InTerrupt 

De--activate high-speed InteRrupt 

NAME : Call Section 

Class : 1 Non-privi ledged 

Instruction format: 

Address Displacement 

o 0 0 

o 2 3 4 5 6 7 8 9 10 11 12 

Addressing mode Hexadecima I code Execution time (us) 

Dl 38 

PX E8 

P F8 

Function: (P) - G' --. (((G) - 4 N) + (G)) 
(l) - G' -- (((G) - 4 N) + (G) +2) 

(G) + ((G) - 4 N) - (l) 
(G) + ((G) - 4 N + 2) - (P) 

where N is the ca Iculelted operand, i. e - (Y2 ) 

N 10 

Not,.; 

8,3 7,9 

8,3 7,9 

8,3 7,9 

~ ----------
L 'n master mode 

--.-In slave mode 

CLS 

Standard 

As discussed before, a program is made up of a number of sections individually characterized by a local 
base l and a program base P. These characteristic values are entered in the program's PRT (one SRD per 
secti on) . 

Purpose of the C lS 

A CLS is basically a blranch instruction providing connection between a given section ("calling") and 
another section ("cailEld") of the same program, while ensuring permanent communications between the 
two sections as well as an easy return means. 

\/11-90 



4057 U 

Involved elements 

- Program's PRT 

- First two words of the calling section's LDS 

- Contents of CLS calculated address which contains the called section number. (Note that Assemblers and 
Compilers which operate with a Linkage Editor offer the convenient possibility of calling a section by its 
name; thus, the actual number of the section may be unknown to the programmer). 

Operation of the CLS 

- L- and P-base values, relative to G, of the calling section are stored in the first two words of the called 
section's LDS. 

- With the section number, L- and P-base values of the called section are fetched and stored in the corres
pondi ng reg i sters. 

- A branch is made at the called section. 

Communi cation with the ca lIing section 

Three methods are available for transferring the parameters between calling and called sections: 

1) Through the Common Data Section (C DS) 

2) In indirect loca I (I L) or indirect loca I indexed (I LX) addressing modes, via the second word of the LDS. 

3) Via A, E, X-registers and/or C-O indicators. 

VII-91 



4057 U 

Operation flow chart 

i = called section no. 
i = ca lIing section no. 

Modified elements: 

- Registers: L - P 

PRT 

G 

Si 

Li 

Pi 

Si 

Pi 

I 
-L 

-P 

LDSi I 

, 
LPSi 

Pi 

SRDi ! Ii 

pi 

I 
I 
I 
I 

SRDI ! I 
II 

pI 

I 
I 
I 
I 
I 

LDSi I 

LPSi 

CLS i 

-----------

I 
I 
I 
I 
I 

1 Pi - G' 
I T 

Li - G' 

-------------
I 
t 

RTS 

, 

- Memory locations: first two words of ca lied section's LDS. 

Trap conditions: standard 

I 
T I 

I 
I 
I 
I 
I 
I 

I 
I 
I 
I 
I 
I 
I 

I 
I 
I 
I 
I 

I 

Ii + G' - L 

pi + G' - P 

Miscellaneous: The CLS operating with elements of the called section is not re-entrant. It may be used 
both in Master mode and Slave mode. 

Examples: 

CLS 
CLS 
CLS 

VII-92 

LPSI 
=2 
=2,x 



4057 U 

NAME : ReTurn Section 

Class : 

Instruction format: 

Address 

o . 0 o 
o 2 3 4 5 6 7 

Addressing mode 

P 

Function: ((L)) + G' + 2 --- (P) 
((L) + 2) + G' - (L) 

Non-privi ledged 

Instruction type 

o 0 o o 
8 9 10 11 12 13 14 15 

Hexadecima I code Execution time (}Js) 

Fl 00 4,3 4,7 

~T L in master mode 
In slave mode 

RTS 

Standard 

The RTS placed in a section called by a CLS provides the return to the calling section by restoring in L 
and P-registers the corresponding values contained in the first two words of the called section's LDS. 

The operation of the RTS is illustrated on the CLS diagram. 

Modified elements : 

- Registers: L - P 

Trap conditions: standard 

Examples: RTS 

VII-93 



4057 U 

NAME Call SuperVisor 

Class : 

Instruction format: 

Address 

o 
o 2 3 4 5 6 7 

Addressing mode 

Function 

DL 

PX 

P 

(P) - (G) -- ((G)) 
(L) - (G) -- ((G) + 2) 
Indi cators -- ((G) + 4) 

1 -- PR 
1 -- MS 
((12) - 4 N) -- (L) 
((12) - 4 N + 2) -- (P) 

N on-privi ledged 

Displacement 

Hexadecima I code Execution 

37 9/9 

E7 9/9 

F7 9/9 

Where N is the ca Iculated operand, i. e. (Y2) 

Note: 

csv 
Standard 

time ().Is) 

As discussed before/ a monitor is made up of a number of sections individually characterized by a local 
base L and a program base P. These characteristic values are entered in the PRTS (Supervisor's PRT) located 
anywhere in the memory and pointed at through absolute address 12 (decima I). A monitor operates in 
Master mode and overrides memory protection. 

Purpose of the C SV 

A CSV is basically a branch instruction providing connection between a user program section and a super
visor section/ while ensuring the re-entrance of the Supervisor section and an easy return to the user 
program. 

Involved elements 

- PRTS (Supervisor's PRT) 

- PRTS pointer 

- First three words of the calling program's CDS 

- Contents of CSV calculated address which contains the called section number. (Note that Assemblers and 
Compilers which operate with a Linkage Editor offer the convenient possibility of calling a supervisor 
section by a name M:xxxx; thus/ the actual number of the section may be unknown to the programmer). 

Operation of the CSV 

- L- and P-base values, relative to G/ of the current section/ and its indicators are stored in the first 
three words of the ca II i ng program's CDS. 

- With the section number/ L- and P-base values are fetched. 

- MA and PR indicators are forced to 1 • 

VII-94 



4057 U 

- A branch is made at the called section. 

Communication with the calling section 

These communications are made in indirect general indexed {IGX} addressing mode via the second word of 
the calling program's CDS. 

However I it is sti II possible to transfer the parameters via A, E and X-registers. 

Re-entrance 

For full re-entrance , the supervisor section stores all variable elements it handles in the calling program's 
CDS {addressing mode: direct general or direct general indexed}. 

Standard modules use a 16-word TWB for this purpose. 

Operation flow chart 

lute Abso 
addr ess 12 

PRTS pointer L.......I.-, , , . · t LDSs 
, · , 

Ls- L 

LPSs Ps- P 
1 - MS 
1 - PR 

Start 

I~ execution --- r--I 

~ 
RSV 

, 
, , , , 
, , 
, , 
I I 

User program 

G 
PRT 

Pa - G' ----------
La - G' - f-- ------ - -

La-L f--- Indicators 
Pa-P , , 

Indicators , , 
, , , 

restored , 
I , , , , , , , · LDSa I I I 

LPSa 

Pa 
CSV s - - - - - --- '-

, 

PRTS (Supervisor) 1 Ls I 
I Ps I 

; : . , , , , 
I 

, 
, , 

Indicator storing fo rmat in G + 4 

I I : I I I IPRIMA1MS; C 0 I 

VII-95 



4057 U 

Modified elements: 

- Registers: L-P 

- Memory locations: The first three words of the calling's program's CDS, i.e. (G) through (G+5) 

- Indicators: MS set 
PR set 

Trap conditions: standard 

Miscellaneous: The program is interruptible between a CSV and the immediately following instruction 
(for interrupt masking, should it be required). 

Examples: 

CSV 
CSV 
CSV 

M:IO 
==2 
==2, x 

NAME: Return SuperVisor 

Class : 

Instruction format: 

Address 

00 

o 2 3 4 5 

o 
6 7 

Addressing mode 

P 

Function: ((G) + 4) - Indi cators 
(G) + ((G) + 2) __ (L) 
(G) + 2 + ((G)) --- (P) 

RSV 
Priviledged Standard 

Instruction type 

o o 
8 9 10 11 12 13 14 15 

Hexadecima I code Execution time (,..s) 

Fl CO 6,7 

The RSV placed in a monitor section (Master mode) called by a CSV provides the return to the calling 
section by restoring in L- and P-registers the corresponding va lues contained in the first two words of the 
CDS of the program to which the calling section belongs. It also restores the initial status of the indicators. 

Modified elements: 

- Registers: L-P 
- Indicators: All indicators are restored (to the value they had before the CSV if the G-base has not been 
cha:1ged in the meantime). 

Trap conditions: standard and mode violation 

Examples: RSV 

VII-96 



rAME 

Class : 

De-active InTerrupt 

Instructi on format: 

Address 

o o o 
o 2 3 4 5 6 7 

Addressing mode 

P 

Function 

Note 

DIT 

Priviledged Sta nda rd 

8 9 10 11 12 13 14 

Hexadecima I code Execution time (~s) 

F4 32,5 

As discussed before, the level of a program is the interrupt level at whi ch it may be activated. A program 
which cannot be activated at any interrupt level is said to be "at zero level". 

MITRA 15's interrupt system is based on structure of hierarchized levels. 

When an interrupt is received at a higher level than that of the current program, the latter is interrupted 
otherwise. If the interrupt level is lower than that of the current program the interrupt is placed in waiting 
state unitl the upper level is de-activated. 

Purpose of the Dil 

Since the acceptance of an interrupt causes a branch to the corresponding subroutine, the function of Dil 
is to terminate this interrupt subroutine and to return control to the interrupted program. 

In this respect, the DIT instruction is an actual system branch. 

Elements involved 

The program context comprises the current contents of X, E, A, G, L, P registers and indicators. 

Every interrupt has an associated pointer indicating a memory area in which the context may be saved on 
occurence of an interrupt at this level. The memory area for saving the context at a given level is actually 
reserved only if a program is connected to this level. Genera lIy, this area is located immediately after the 
program storage area. 

This area contains the register and indicator values at the last interrupt time (either if a higher level 
interrupt has been accepted, or if the level has been de-activated). If the program is never interrupted, 
the saving area contains the initial program contents (at the time its execution is started). 

The 32 context pointers (indicating the saving area of each level) are stored in increasing level order in 
the context pointer table (at increasing addresses starting from CPT address). 

Saved elements are stored on a one-element-per-word basis at increasing addresses starting from the pointed 
address in the following order: 

- Indicators, X, E, A, G, L, P. 

VII-97 



4057 U 

Example of interrupt process 

Level i 

Level i < i 

Level 0 

Reception of an 
interrupt at level i 

De-activation of level i 

Reception of an interrupt 
at leve! i 

I 

I 

I 
I 

I 

I--

/ 

I I 

I 
I I 

I I 

~ // 

/L 
I De-activation of level i 

De-activation of level i 

Reception of an interrupt 
at level i 

Recepti on of ani nterrupt 
at level i 

J 

~-------~-----------.., 

Operation of the DIT 

- P-register incremented by 2 

- Current level de-activated 

De-activation of level 

De-activation of level i and 
acceptance of the interrupt 

waiting at level i 

Reception of an interrupt at level if 
placed in waiting state 

- Context stored from the address which is pointed by the corresponding context pointer 

- Acceptance of the highest priority waiting level (R8 updated) 

- Context loaded with the contents of the saving area whi ch is pointed at by the new level's pointer 
(execution is started). 

VII-98 



4057 U 

Acceptance of an interrupt 

Oil performs the return branch of the interrupt subroutine which had been call at the time the correspond
ing interrupt was accepted. This instruction: 

- Stores the interrupted level context from the memory address indicated by the associated context pointer. 

- Accepts the level of the highest priority interrupt (R8 up-dated) 

- Loads the context from the saving area which is pointed at by the new level (execution is started). 

Interrupt confi gura ti ons 

There are 31 interrupt configurations (obviously zero level needs none). These configurations are used by 
OIT to know located exactly the interrupt level to be de-activated. 

They are stored in ascending level order in OVT table (in descending address order starting from CPT 
address) • 

OVT 

OVT i 

31 words 

OVT i 

OVTl 
CPT 

Address CTXO 

Address CTXi 

32 words 

Address CTXi 

Address CTX31 

Where i > i 

This table may be located anywhere in the memory, the CPT address being in a word whose absolute 
address is 10 (decimal). 

Current program level 

The current program level is indicated by R8-register which contains the double of this level number. 

Modified elements: 

- Registers: A, E, X, P, L, G, R8 
- Memory locations: The eight words of the de-activated interrupt context 
- Indicators: All 

Trap conditions: standard and mode violation 

Miscellaneous: Since Oil performs a context swapping, no protection or masking is required. 
A II interrupt subroutine must conclude with a OfT. 
A OIT is meaningless at level zero (whi ch cannot be de-activated). 
Examples: OIT 

VII-99 



4057 U 

NAME De-activate high-speed InTerrupt DITR 

Class : Privi ledged Optiona I 

Instruction format: 

Address 

o 0 

o 2 3 4 5 6 7 9 10 11 12 13 14 15 

Addressing mode Hexadecima I code Execution time ()Js) 

PX EC 20 6, 1 

P FC 20 6, 1 

Function: 

Comparative analysis of normal and high-speed interrupt 

• Acceptance of a norma I interrupt includes the following operati ons : 

- Context of currently executed level (specified by R8) is saved in core memory. 

- Calling level (Na) is accepted and R8 is updated. 

- Context elements corresponding to Na are loaded in the registers. 

• Acknowledgment of a normal interrupt is performed by the final DIT instruction of the interrupt subroutine 
and includes the following operations: 

- Context of currently processed interrupt is saved in core memory. 

- Corresponding level is de-activated. 

- Waiting level is accepted and R8 is updated. 

- Context elements corresponding to the new level are loaded in the registers. 

• Acceptance of the high-speed interrupt includes the following operations: 

- Normal interrupts are placed in waiting status until acknowledgment of the high-speed interrupt. 

- Current indicators are saved in register 6 of block O. 

- R12 is loaded with the number of the block which is reserved for high-speed interrupt processing. 

- Indicators are loaded with the contents of register 6 in the reserved block. 

• Acknowledgment of the high-speed interrupt is performed by the final DITR instruction of the interrupt 
subroutine and includes the following operations: 

- Indicators are saved in register 6 of the reserved block. 

- R12 is cleared (return to block 0). 

- High-speed level is de-activated (normal interrupts are enabled). 

- Previ ous i ndi cators saved in regi ster 6 of block 0 a re restored. 

V 11-100 



4057 U 

Modified elements : 

- Registers: return to block 0 

- Indicators: restored 

Trap conditions: standard and mode violation 

Examples: DITR 

VII-l3. CONTROL INSTRUCTIONS 

TES TEst and Set 

STM SeT interrupt Mask 

ClM C lear interrupt Mask 

RD Read Direct 

WD Write Direct 

lDP loa D memory Protection 

Vil-10l 



4057 U 

NAME : TEst and Set 

Class : 

Instruction format: 

Address 

o 2 

Function: 

3 

P 

PX ~ 

DL ~ 

o 
4 5 6 7 

A ddressi ng mode 

DL 

PX 

P 

(Deh --- A 
o -- (De)2 

(De + (X))2 -- A 
o -- (De + (X))2 

((De + (L))~ -- A 
o -- ((De + (L)))2 

TES 
Privi I edged Optional 

Displacement 

8 9 10 11 12 13 14 15 

Hexadecima I code Executi on time (lJs) 

3D 3,6 

ED 3,4 

FD 3,4 

This instruction tests and clears a memory location without being interrupted. Initial value loaded in A. 
Test result loaded in the indicators. This instruction is used when several processors work in a common 
memory area, for example to enable a processor to perform an "occupation test" on a table. 

The protection bit is also reset. 

Modified elements: 

- Registers: A 
- Memory locations: Y2 
- Indicators: C-O 

Indicators: 

irap conditions: Mode violation 

Examples: 

TES 
TES 
TES 

VII-l02 

EPDL28 
=&3E,x 
=9 

C 

0 

0 

1 

0 Upon execution 

0 Y2 < 0 

1 Y2 > 0 

0 Y2 = 0 



4057 U 

NAME SeT interrupt Mask 

Class : Priviledged 

I nstructi on forma t : 

Address 

o o o 
o 2 3 4 5 6 7 8 9 10 

Addressing mode Hexadecimal 

P F4 

Functions: (N 12 ) --- Interrupt mask (MA) 

MA-indicator is set. 

As a consequence all interrupt levels are masked. 

Modified elements: 

-Indicators: MA 

Trap conditions: standard and mode violation 

Examples: STM 

NAME : Clear interrupt Mask 

11 

code 

Class : Privi I edged 

Instruction format: 

Address 

o o o 
o 2 3 4 5 6 7 

Addressing mode Hexadecima I code 

P F4 

Function: (N 12 ) -- Interrupt mask (MA) 

12 13 

Execution time (us) 

3,4 

Execution time (~s) 

3,4 

MA-indi cator is reset. As a consequence, a II interrupt levels are masked. 

Modified elements: 

- Indi cators: MA 

~ Trap conditions: standard and mode violation 

Examples: ClM 

STM 
Sta nda rd 

eLM 
Sta nda rd 

YII-l03 



4057 U 

NAME : Read Direct 

Class : Priviledged 

Instruction format: 

Address 

o o o 
o 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

A ddressi ng mode Hexadecima I code Execution time (",s) 

P F4 3,5 

Function The read mode is determined by the contents of E-register 

Address Displacement 

(E) 

o 2 3 4 5 6 7 10 11 12 13 14 15 

~ 

Additional address Read 
mode 

~ 

Controller 
address 

RD is the input instruction and its meaning depends on the addressed controller. 

NAME : Write Direct 

Class : Priviledged 

Instruction format: 

Address 

o o o 
o 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

Addressing mode Hexadecima I code Execution time (",s) 

P F4 3,5 

Function The wri te mode is determ i ned by the contents of E -regi ster. 

Address 

(E) 

o 2 3 4 V' 5 6 

Additional address 

Displacement 

10 11 12 ----Write 
mode 

13 14 

Additional 
address 

W D is the output instruction and its meaning depends on the addressed controller. 

V II -104 

15 

RD 
Sta ndard 

WD 
Standard 



4057 U 

NAME : Loa D memory Protecti on LOP 
Class : Priviledged Optiona I 

Instruction format: 

Address Displacement 

o 
o 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

A ddressing mode Hexadecima I code Exe cuti on ti m e (/-Is) 

DL 3B 3,1 + 1,8 n 

PX EB 3,1 + 1,4 n 

P FB 3, 1 + 1,4 n 

n = number of words in the string. 

Function: For X varying 0 and (E)-l 
N15 _ bp((A) + 2X) 

Upon executi on E = -1 
A = Address of the first non-processed word 

LDP loads the protection bit in a word string. 

The starting address is in A and the string length is specified in E. 

Each protection bit is loaded with the value of bit 15 in the calculated operand (contents of calculated 
address). The string is protected when this bit is set (1), otherwise, there is no protection. 

Modified elements: 

- Registers: E-A 
- Memory locations: (Y2) to (Y2 + (E) - 1) 

Trap conditions: standard and mode violation 

Miscellaneous: This instruction is interruptible between two words 

Examples: 

LDP 
LDP 
LDP 
LDP 

=1 
=0 
=O/x 
E PDL21 

VII-105 



mitra 15 

8. Input/Output control system 

V 111-1 . IN PUT/O UTPUT SYSTEM ORGAN IZA liON 

The following sections only describe Input/Output operations under Monitor control. 

Though the procedure has a standard aspect and is mainly "riented towards standard peripheral transfers, it 
will be seen later that it also provides for processing non-standard peripheral transfers and offers the conve
nient feature of a direct user check on the validity of such transfers. 

An Input/Output operation may be divided into five steps: 

a) Reserva ti on of a buffer, if req u ired. 

b) Tra nsfer req uest (resi dent system ca II) • 

c) Transfer initialization. 

d) Transfer completati on. 

e) Transfer end and va lidity check. 

Step a) is and independent supervisor call: reservation of a dynamic data block. 

Steps a) and b) are performed by the requesting task (CSV M:IO or M:ZIO). 

Step c) is performed by the Monitor in response to the M:IO call. Control is returned to the calling program 
upon transfer initialization. 

Steps d) and e) are controlled by the system in full independence from the calling task, and in apparent 
simultaneity with the currently executed tasks; the calling program may follow the transfer progr.ess, if 
required (CSV M:WA IT or M:ZWA T). 

Remark: 

If the device is busy at transfer request time, two different processes may be initiated (according to the 
Monitor) . 

1) The request is queued and control is returned to the calling task. 

From the user's viewpoint, everything goes on as if transfer initialization step c) were actually completed, 
i.e. he may consider that step d) has begun and may wait for transfer end, if required. 

In such a case, step d) combines the delay for waiting for the logical release of the device and the duration 
of the actual transfer initialization and performance. 

Queuing is always possible at or above MTR-Ievel. 

2) No queuing of the request; control is returned to the ca IIing task only when the transfer has beep 
actually initialized. 

VIII-2. INPUT/OUTPUT INTERFACE 

VIII-2.1. Definition 

Most of supervisor processing is common to all types of transfer during steps b), c) and e) described above 

1) Transfer request is analyzed for a possible preliminary processing, 



4057 U 

2) Logical occupation of the handler is tested, 

3) If required, the transfer request is queued and the Supervisor manages the queue, 

4) All parameters required for physical initialization and transfer control are set up, 

5) If possible, the device initial status is partially or completely read and analyzed if the whole procedure 
or part of it is common to all devices, 

6) A branch is made to the specific control module of the device (handler), 

7) A number of error conditions are acknowledged and processed when the transfer is over (sole processing 
specific to step e)). 

The Input/Output interface of the Operating System includes the whole of these processings common to all 
transfers which are performed between the time the user issues a request and the time a handler takes over, 
and between the transfer end and the release of its results to the user . 

• Input/Output processing levels 

Three level classes may be consi dered 

a) Physical level (level 0) at which the handler performs operations which are specific to a given type of 
devi ce. 

b) Logical level (level 1) which includes steps 2 through 7 above. This level is that of the resident core 
of the basic monitor. It is usually called "I/O supervisor" (or more restrictively, "I/O interface"). 

c) Upper levels (2 and above) which perform step 1 of the above processing according to a hierarchy which 
defines the degree of sophistication of the operating system: 

- records blocking/unblocking, 

- file management system, 

- I/O macros of sophisticated languages (FORTRAN, ..• ), 

- specialized packages. 

Levell controls all actual user transfers and constitutes a resident program module independent from user 
programs, with a number of specialized tools or "handlers" corresponding to the various device types. 

In contrast, levels 2 and above are usually subroutine librairies supplied with the system for static or 
dynamic integration to a task, according to their origin: 

- either resident as common subroutines, 

- or selected in a system library and generated with a program by the linkage editor. 

These subroutines are mutually related according to the general hierarchy which has been defined elsewhere 
for ~ubroutines in general. 

The block diagram page VIII-3 illustrates the general I/O organization. 

VIII-2.2. Input/Output control module or "handler" 

Hereafter, a device controller should be regarded as including both the physical controller unit and the 
coupling micro-program. 

The actual initialization of the transfer to or from the device, the initialization control, the possible 
transfer attendance and the end of transfer acknowledgment depend on the type of devi ce, i.e. of the 
controller. These operations must be performed by a module which is specific of the controller. 

This specialized control module is called a "handler". 

V!II-2 



4057 U 

USER LEVEL 

User programs 

LEVEL> 2 

Packages 
Sophisticated languages 

SGT 

LEVEL 1 

I/O supervisor 

I 
I/O INTERFACE 

I- I 
Transfer request 

ICSV) I 

! -reserve buffer 
I - lock/unlock 
I _ 

: (upper level! j' Preliminary treatment 

"'" t~'~:'~~1:~~-~-~-~-~-:-=~~:::::::::~+=====-=-C~ 

o I 

I ·r~oo:j====~:=~1 
o 
o 

o 

I 
I 
I 
I 
I 
I 
I 
I 
I 

I 
I 
I 
I 
I 
I 
I 

_....J 

RSV 

LEVEL 0 

Handler 

--'-'-'-1 
General Input/output organization 

i! 

DEVICE 

l 
I 

I 
I 
I 
1 

r 
I 
I 
I 
I 

Interrupts 

I 
I 
i 
I 
I 

_.J 

YIII-3 



4057 U 

It includes two sections: 

- Handler 1 or "initialization handler", 

- Handler 2 or. "transfer control handler". 

Depending on the type of device, the associated controller will operate in one of the following two modes: 

- blocked data transfers, 

- individual data item transfers. 

If a transfer requested at level applies to blocked data, the handler operating mode will be one of the 
following: 

- The handler controls the transfer of one data block in one single operating cycle; 

- The handler controls the elementary data item transfers to or from the data block. This transfer is either 
fully controlled by handler 2, or every elementary data transfer is controlled by handler 1 'cyclically 
re-activated by handler 2 (for exemple to avoid rewriting in handler 2 all initialization and checking 
functions of handler 1) • 

• Handler 1 : initialization of a transfer 

Handler 1 has the following functions: 

a) If required, it analyses the initial status of the controller and/or device, before initiating the transfer. 
In case of abnormal conditions, the transfer is aborted and the error conditions are signalled to the I/O 
supervisor. 

b) It issues a block transfer or read/write command, according to the operating modes of the controller 
and handler 2. 

c) It checks that the controller actually takes over the initialization for abnormal conditions which do not 
require an interrupt. If an abnormal condition is detected, the procedure is as defined in a) above. 

d) It returns the control to the calling program. 

Handler 1 always operates at the priority level of the calling program. 

The calling program is usually the I/O supervisor (level 1), but it may also be handler 2 when the data 
transfers are automati ca Ily re-activated • 

• Handler 2 : transfer control 

Handler 2 is a Moster mode immediate program which is triggered by the controller interrupts to perform 
the following functions: 

it takes over the transfer steps upon interrupt, in turn with the micro-program; 

- if required, it re-activates handler 1; 

- it controls the end of transfer operations. 

During each step, handler 2 may detect abnormal conditions which may required the transfer to be interrup
ted or resumed. In the latter case, the transfer is resumed by a return to handler 1 • 

Handler 2 a Iways operates at the priority level of the controller interrupt. 

At the end of the transfer (normal or abnormal), handler 2 performs a call to the I/O supervisor to signal 
the end and the validity of the transfer, before de-activating the associated interrupt level. 

Remark: 

Several controllers of the same type may be serviced in apparent simulaneity by handler 2. In effect, the 
corresponding interrupts are then grouped at the same level before reaching the processing unit, so that 
when handler 2 is occupied by a given interrupt, the other interrupts are waiting. 

V 111-4 



4057 U 

In Context 1 
Controller 1 

~ / Context 2 1T2 
Handler 2 C ontroll er 2 --- ~ 

--- -- ----
ITn / -----Context n 

Controller n 

When queue management is available, each device controller has its own queue. Each queue contains 
chained elements and is managed through a pair of pointers. The queue elements are taken among free 
elements which are also chaine and managed through a pair of "hole pointers". 

A "busy indicator" Ci is associated with every serviced controller i. 

USER 

CALL 
Supervisor 

I/O INTERFACE 

• De-activate event 
· Table management 
• Initialization 
• Mask interrupts 

• Insert in queue i • Ci = 1 
• Unmask interrupt • Unmask interrupt 

• Set I/O parameters 

RSV 

HANDLER 1 

Initialize and set 
parameters for Hand lers 

Return to calling p::.r.::og~r.:.am~ ______ ~ _____________ ....,..~~' 

• Activate event 
• Ci = 0 

HANDLER 2 

no 

ITi 

• Mask interrupts Continue transfer 

Delete element 
in queue i 

Unmask interrupts 

Input/Output requests management 

RSV 

DIT DIT 

VIII-5 



4057 U 

VIII-3. TRANSFERS 

VIII-3.1. Transfer requests 

• I/O calls: CSV M:IO or CSV M:ZIO 

A transfer control block CB is associated with the CALL SUPERVISOR of the transfer request. This block 
contains user-defined parameters. At the end of the transfer, it also contains status information supplied 
by the system. 

When the CALL is executed, A-register should contain the CB address relative to G-base. When this 
address is defined during execution, one may conveniently use a LEA instruction which provides resolution 
relative to G whatever the mode, master or slave. 

The calling sequence is then: LEA CB 
CSV M:IO 

For CSV M:ZIO (available at and above MTR-Ievel), which provides for common area I/O's, the address 
contained in A must be relative to the common area address (avai lable in location 6 of the program). 

The resident associates to the transfer request a dynamic event defined by the CB address and returns the 
control to the calling program once the transfer is initialized or queued. 

The user may then perform a call to the M:WAIT module (wait event) for an event which is the beginning 
or the end of the transfer • 

• Description of the control block parameters 

Optional 

Optiona I 

Optional 

Optiona I 

o 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

Event byte 

Indicators 

Command (function) 

Operational label 

l Buffer address relative to G or ZC according 

t-------------j, to M:IO or M:ZIO 

~-I\ 
N um ber of bytes to be tra nsferred 

\8,anch add"" on wo' 0' abno,mai 

l Additiona I information 

~ (sector address on disk storage) 

\ nme-out 

Interrupt level no 

Reserved byte 

For M:IO call, the I/O buffer address and the error branch address must always be relative to G. 

In Slave mode this is always the case. 

In Master mode, where references are normally translated into absolute addresses at loading time, these 
references must be preceded by a "#" character at assembly time {or a " " character in case of a LP 
compi lation}, to preserve relocatabi I ity. 

VIII-6 



4057 U 

For M:ZIO these addresses will be relative to ZC. 

• ~o: event byte 

When the transfer is over, the resident sets the bits of the "event byte" according to the following code 
(bit 0 is set when the resident takes over and reset at the end of the transfer). 

- Bit 0 

- Bit 1 

- Bit 2 

- Bit 3 

~ = 0 
~ = 1 

= 1 

~ = 0 
~ = 1 

1/ 0 opera ti on over 
I/O operation in progress 

error or abnorma I end 

logical error (e.g. incorrect call format) 
physical error (e.g. signalled by the controller) 

u=o 
u = 1 

error detected after transfer end 
status information supplied when the transfer is over 

error during transfer initialization \ : ~ \ U = 0 
U = 1 status information supplied when the transfer is initialized 

- Bits 4, 5, 6 and 7 : error or abnormal end code. 

Bits 2 through 7 are significant only if bit 1 is set (=1). 

Bits 4, 5, 6, 7 provide 16 different codes for every combinaison of bits 2 and 3 • 

• ~1 : 

U = 1 

E = 1 

S = 1 

T = 1 

I = 1 

the user checks the transfer on resultant status information. 

branch address in case of error or abnormal end (standard error processing). 

additional information present (e.g. sector address on disk storage) 

time out requested 

activate interrupt after transfer 

U = 1 and E = 1 conditions are mutually exclusive • 

• Byte 2 : specifies the requested I/O function according to the following coding table: 

0 1 2 3 4 

Read, forward 0 0 0 0 -
Read, backward 0 0 1 0 -
Write 1 0 0 0 -
Write EOD/Tape mark 1 0 1 0 -
Format/rewi nd 1 0 - 1 -
Skip block, forward - 1 0 0 -
Skip file, forward - 1 0 1 -
Skip block, backward - 1 1 0 -
Skip file, backward - 1 1 1 -

5 

-
-
-
-
-
-
-
-
-

6 7 

- -
- -
- -
- -
- -
- -
- -
- -
- -

VIII-7 



4057 U 

• Byte 3 : contains the numerical value of the operational label specified at assembly time (index in I/O 
tables). (See section VIII-4. hereafter). 

• Bytes 4 and 5 : contain the address of the first byte to be transferred to/from the core memory. 

• Bytes 6 and 7 : contain the number of bytes to be transferred. 

• Bytes 8 and 9 : (opti ona I) 

If U = 0 and E = 1, they contain a user-defined branch address used in case of error or abnormal end. 

If U = 1 and E = 0, they contain the transfer status bits supplied by the controller and set by the resident. 

• Bytes 10 and 11 : (optional) 

They contain additional information whose basic function is to indicate a sector address on disk storage. 
For other devices, they may contain an other parameter or even the address of an additional parameter 
table. 

• Bytes 12 and 13 : (optional) 

They contain the requested time-out va lue. 

• Bytes 14 and 15: (optional) 

They contain the interrupt level number which must be triggered by the resident when the transfer is over. 

Remark: 

Optional bytes are evaluated in the order of appearance of U, E, S, T, and I indicators. 

When a given option is specified, the bytes corresponding to the preceding options must be reserved. 

VIII-3.2. Transfer validity checking (CSV M:WAIT or CSV M:ZWAT) 

The transfer validity may be ascertained either in standard mode, or in user mode: 

• Standard mode (U = 0) 

All controller status bits are sensed by the resident (interface and handler which returns an easily interpre
table abnormal condition code to the user. If requested in the initial CB (E = 1), the resident may return 
the control to a user specified address in case of abnormal condition. 

If the error is impossible to correct, the control is not returned to the user, but to the typewriter after 
printing the corresponding program identifier and error message. 

• User mode (U = 1, E = 0) 

The resident loads the status bits in bytes 8 and 9 without performing any sensing; the control is always 
returned to the user program. 

In both cases, the transfer is considered to be over, even if a blocking condition occurs during initializa
tion. 

• CSV M:WAIT (corresponding to CSV M:IO) 

• Calling sequence: 

LEA 
CSV 

CB 
M:WAIT 

At the time the CSV is met, the address relative to G of the I/O transfer control block must be stored in 
A-register. 

V" 1-8 



4057 U 

• Function: 

Wait for completion of an I/O transfer. 

If the transfer is already over when the M:WAIT call is received, control is returned to the user (possibly 
at a restart address for abnormal conditions, if requested in byte 1 of the CB). 

If the transfer is still in progress when the M:WAIT call is received, the latter: 

- stores the ca Iling task level in the I/O CB; 

- de-activates this level if not zero, or waits for the completion of the transfer if the level is zero. 

M:WA IT ca II temporari Iy de-activates the level of the program whi ch is waiting for an I/O transfer end, 
in order that lower priority programs be undertaken without being blocked. The pending program is restarted 
as soon as the transfer is over, its level being re-activated by the handler of the controller involved in 
the transfer. 

• Outputted elements: 

A < 0 in case of I/O error. 

In this case, the user should examine CB byte 0 for ascertaining the cause of the error. 

A ~ 0 no error 

• CSV M:ZWAT 

Its function is the same as that of M:WAIT but relates to a M:Z 10 call. The transmitted CB address must 
be relative to ZC. 

VIII-3.3. Communication between I/O interface and handler 

The I/O interface (level 1) is basically made up of two modules: 

M:IO 
and M:l02 

• Initializer M:lO 

- De-activation of the event whi ch is associated with the C B by resetting bit 0 of C B byte O. 

- Bits t through 7 reset in CB byte O. 

- Controller occupation tested and a waiting loop established, if required 

- Initialization of logical parameters required for transfer control. 

- Branch to the transfer control module (H1) of the device. 

M:IO supplies the following parameter.s to HI 

(A) = user buffer a bsol ute address 

(E) element of OlTB table associated with the transfer operational label (see table description) 

(X) = user CB absolute address 

(T3)TWB = byte count for transfer 

- Upon return from Ht, M:IO examines A-register contents. 

A = 0 

A ~ 0 

return to calling program 

A9- 15 loaded in CB (0)1-7 ; associated event activated: CB(O)o = 0; 

VIII-9 



4057 U 

and: 

If U-indicator [CB(I)o] = 1 or 

If U = ° and A > 0, control is returned to the user 

If U = ° and A < 0, M:IO edits an error message and the user task is aborted. 

Under MOB Basic Monitor, only one user I/O request is allowed at a time for a given device: no queue 
is provided. 

Every I/O request of the user program will be associated with an event and the user may request by program 
to wait unti I it is activated. 

Any other I/O request for the same controller (e.g. on console interrupt) occuring before the event is 
activated will cause a waiting loop at calling program level, until the first transfer is over. 

Interrupts should be masked during the test, since the higher priority console interrupt may request an I/O 
transfer and change the logi ca I status of the devi ces. 

Under other Monitors, the user may issue several I/O requests for tne same device; they will be queued 
and satisfied in turn as soon as the device becomes available. 

• Handler 1 : HI 

- Senses the controller and/or device initial status as regards specific conditions of this device type, if 
required; 

- Sends the transfer request according to the controller and handler 2 operation mode; 

- Checks the proper acceptance of this initialization by the controller for abnormal conditions which do 
not cause an interrupt; 

- Returns the control to the ca II i ng program. 

Note: 

Handler 1 always operates at the calling program level, i.e. at the physical interrupt level to which it is 
connected. 

Upon occurence of abnormal conditions, the transfer is considered over and the error conditions are sent to' 
interface 1 through A-register. 

• Transfer end 

When the transfer initialized by handler 1 is over, the interrupt associated with the controller activates 
handler 2. 

We saw before that a block transfer may be carried out in two different ways: 

(I) Transfer of the whole block in one time. 

(2) Transfer of the block per data items. 

• First case: block fully transferred 

Handler 2 : 

- Reads device status 

- Checks proper device operation during the transfer 

- Calls M:102 

H2 suppl ies M: 102 with 

(Tl) Element of OLTB table 
(TO) User CB absolute address 
(A) = Report on the operation which has just been terminated. 

VIII-10 



4057 U 

Module 102 : 

- Processes transfer errors, if any. 

- Re-initializes the logical parameters which were used during the transfer. 

- Activates the associated event (CB). 

- Returns the control to the calling program • 

• Second case: transfer interrupted 

Handler 2 : 

- Reads the device status, 

- Checks for proper transfer: on error, module M:102 is called, 

- Tests if all data have been transferred: if transfer is over, see first case above, 

- Restarts the next data transfer by a branch to handler 1, 

- De-activates the interrupt level. 

VIII-4. OPERATIONAL LABELS 

VIII-4.1. General 

The operational labels system has been introduced to enable the programs to process a logical environment. 

An I/O transfer may be requested through an operational label which represents the actual I/O function. 
The correspondance between operational labels and physical devices is handled by the Monitor through 
assignment statements. 

With such a system, the I/O programming is practically independent from the physical devices which are 
actually used and this ensures a total compatibility of the program with any configuration. 

VIII-4.2. Definition 

An operational label is a number which is generally a 4-character mnemonic code. 

Operational labels are distributed into two classes: standard operational labels written M:XX with a prede
termined function and user operational labels written U:FX whose functions are user-specified. 

Decima I number Mnemonic Function Mode 

1 M:BI Binary Input Binary 

2 M:BO Binary Output Binary 

3 M:CI Command Input Alphanumeric 

4 M:OC Operator Console Alphanumeric 

5 M:EI Element Input Binary or 
Alphanumeric 

6 M:EO Element Output Binary or 
Alphanumeric 

7 M:LO Listing Output Alphanumeric 

8 M:LL Listing Log Alphanumeric 

VIlI-ll 



4057 U 

Decima I number Mnemoni c Function Mode 

9 M:DO Diagnostic Output Alphanumeric 

10 M:SI Source Input Alphanumeric 

1 1 M:SL System's Li bra ry Binary 

12 M:UL User's Library Binary 

13 M:SY SYstem Binary 

14 M:EP Executable Programs Bi na ry 

15 M:GI Go Input Bi na ry 

16 M:GO Go Output Binary 

17 U:Fl 

18 U:F2 

19 U:F3 

20 U:F4 

21 U:F5 

22 U:F6 

23 U:F7 

24 U:F8 

25 U:F9 

26 U:FA 

27 U:FB 

28 U:FC 

29 U:FD 

30 U:FE 

31 U:FF 

VIII-4.3. Operational labels assignment 

Every Monitor has for standard operational labels standard assignments defined at generation time. These 
assignments may be modified by monitor commands, except the following: 

M:OC 

M:SY 
M:EP 
M:UL 
M:SL 
M:GI 
M:GO 

Typewriter 

System disk unit 

User operational labels have no standard assignments and it is the user's responsibility to specify its own 
assignments. 

VII/-12 



4057 U 

• ASSIGN 

This command is available under MOB-E, MTR, MTRD. 

%A S [ S I G N ] / [F], ~ ~ ~ : 0 1 O 2, T: tIt 2' [C : [&] c 1 c 2] ,[D : [&] d ] , [ ~ ! ~ n 
F 

M:0102 

U:0102 

T: t] t 2 

C:c1 c2 

D:d 

BN 

AN 

Denotes an operational label reserved for Foreground use (MTR or MTRD) 

Specifies the assigned standard operationa I label 

Specifies the assigned user operational label (MTR or MTRD) 

Specifies the type of device to which the operational label is assigned 

Specifies the controller number within the specified type 

Specifies the devi ce number on the controller 

The corresponding file is binary 

The corresponding file is alphanumeric 

Possible values for device type are: 

T:NO 

T:TY 

T:PT 

T:PR 

T:PP 

T:MC 

T:LP 

T:CR 

T:CP 

T:DC 

T:9T 

T:DM 

. T:VU 

T:PL 

• STOL 

Cancel label. An input or output request with such a label is not performed •. 

Typewriter (key-in and type-out) 

Console paper tape reader/punch 

High-speed paper tape reader 

High-speed paper tape punch 

Minicassette 

Line printer 

Card reader 

Card punch 

DIAD disk unit 

9-track magnetic tape unit 

DIAM disk-pack unit 

CRT display console 

Plotter 

This command is available under MTRD. 

This command provides for changing operational labels standard assignments. 

Options have the same meaning as for %ASSIGN. 

A %STOL command without any option restores the normal assignment of standard operational labels. 

VII i-l:-· 



4057 U 

VIII-5. HANDLER UTILIZATION 

VIII-5.1. Typewriter handler (# 15 001) 

• General 

- The typewriter handler controls type-ins and print-outs (T:TY) as well as paper tape read and punch (T:PT). 

The various functions are determined by the selected operational label, by its assignment (typewriter or 
paper tape, input or output, binary or alphanumeric) and by the function byte (two elements of the I/O CB). 

- A typewriter is 72 characters long. 

- For alphanumeric input or output, the ISO 7-bit code is used (ASCII). ASCII- EBCDIC code conver-
sions are performed by the handler, since the internal code is always EBCDIC. 

- The paper tape punch drive motor in energized when the "tape on" character is detected (&12 code in 
ASCII). This code is not punched unless the punch is already energized at that time. The motor is shut 
down after punching the "tape off" character (&14 code in ASCII). 

- The typewriter controller is busy either in typewriter mode or in paper tape mode, and for each of these 
modes, in input or output mode. The typewriter functions connot be performed simultaneously. 

• Functions 

• Avai lable commands 

Hexadecima I code Functions 

00 Read 

80 Write with format 

90 Write without format 

• Alphanumeric input: typewriter or paper tape code: &00 

- The input is made one character at a time and each character is converted in EBCDIC before being 
transferred into user's buffer. The transfer is terminated when the specified number of characters has been 
reached. 

However, the "carriage return" character (&OD code in EBCDIC or ASCII) always terminates the transfer 
after being actually transmitted to user. 

- The "Paper feed" characters (&OA code in EBCDIC and &15 code in ASCII) are neither transmitted to 
the user nor counted in the tota I number of characters of the transfer • 

.. ~ The "TAPE OFF" or "N ULL" characters included in a record heading are not transmitted to the user·and 
are not counted in the total number of characters of the transfer. 

- When the %EOD group is detected in a record heading, the C B event byte (byte 0) is forced to 41 hexa
decimal and represents an "end-of-file" mark. 

• Alphanumeric output: typewriter or paper tape. Codes 80 and 90. 

- The output is made one character at a time, each character being converted in ASCII at transfer time 
wi thout a ny a I tera ti on of the user's buffer. 

The transfer is terminated when the specified number of characters has been reached. No filtering is made. 

- When the %EOD group is written in a record heading, the CB event byte (byte 0) is fort'~d te) 41 l;.-~.::;ds
cimal and represents an "end-of-file" mark. 

- No character fi Itering is made. 

- In paper tape mode, the transferred data are preceded by a "TAPE ON" character (not punched) and 
followed by a "TAPE OFF" character (punched). 

VIII-14 



40S7 U 

If the user's buffer contains a "TAPE OFF", the handler restarts the punch (sends a "TAPE ON" which is not 

punched) • 

- Write with format. Code 80. 

The user's buffer data transfer is preceded by two "paper feed" and "carriage return" characters for starting 
the line at the left margin. 

- Write without format. Code 90. 

No line adjustement character is provided. The format is entirely the user's responsibility. 

• Binary input from paper tape. Code 00. 

- The data are read one character at a time. The transfer is terminated when the specified number of 
characters has been reached. 

- The "TAPE OFF" or "N ULL" characters included in a record heading are not transmitted to the user and 
are not counted in the tota I number of characters specified for the transfer. 

- When the %EOD group is detected in a record heading, the CB event byte (byte 0) is forced to 41 
hexadecima I and represents an "end-of-fi Ie" mark. 

• Binary output on paper tape. Code 80 

- The data are punched one character at a time. The transfer is terminated when the specified number of 
characters has been reached. 

- The user's buffer data transfer is preceded by a "TAPE ON" (not punched) and followed by a "TAPE OFF" 
(punched) • 

All bytes having a va lue of 14 or 94 hexadecimal (corresponding to a "TAPE OFF") are followed by a 
"TAPE ON" (not punched) for restarting the punch motor. 

- When the %EOD group is detected in a record heading, the CB event byte (byte 0) in forced to 41 
hexadecima I. 

• Examele : 

ES CDS 
RES 

BBINS DATA 
DATA 
DATA 

8ALPS TEXT 
BND 

BBINE RES 
BALPE RES 

FIN 

L1 LDS 
RES 

CBl DATA 
DATA,1 
DA TA, 1 
DATA 
DATA 

CB2 DATA 
DATA,1 
DATA, 1 
DATA 
DATA 

16 
&0001 
&0002 
&0003 
"MESSAGE" 

8 
7 

2 
o 
o 

TWB 

BINARY 0 UTPUT BUFFER 

Alphanumeric output buffer 

Bi na ry input buffer 
Alphanumeric input buffer 

Read command 
1 or DATA,1 M:BI Binary input 
# BBINE 
16 
o 
o Read command 
4 or DATA,1 M:OC Alphanumeric input 
# BALPE 
14 

VIII-IS 



4057 U 

C B3 

CB4 

Pl 
DEB 

DATA 
DATA,l 
DATA,l 
DATA 
DATA 
DATA 
DATA,l 
DATA,l 
DATA 
DATA 
FIN 

LPS 
LEA 
CSV 
CSV 
LEA 
CSV 
CSV 
LEA' 
CSV 
CSV 
LEA 
CSV 
CSV 
FIN 

END 

0 
80 
2 or DATA,l 
# BBINS 
6 
0 
80 
7 or DATA,l 
# BALPS 
7 

Ll 
CBl 
M:IO 
M:WAIT 
CB2 
M:IO 
M:WAIT 
CB3 
M:IO 
M:WAIT 
CB4 
M:IO 
M:WAIT 
DEB 

P1 

Write command 
M:BO Binary output 

Write command 
M:LO Alphanumeric output 

l Input of a 16-byte binary record from M:BI 

I Input of an alphanumeric record 14-characters max. from 
typewriter (M:OC) 

\ 
Output of a binary record 0001, 0002, 0003 on M:BO 

l Output of "MESSAGE" text on M:LO 

VIII-5.2; 300 char./sec. paper tape reader handler (# 15062/60) 

• General 

- This handler controls the binary or alphanumeric input from the paper tape (T:PR), each of these two 
functions being determined by the selected operational label, by its assignment and by the function byte 
(two elements of the I/O CB). 

- For alphanumeric input, the ISO 7-bit code is used (ASCII). The ASCII -EBCDIC code conversion is 
performed by the handler, since the internal code is always EBCDIC. 

• Functions 

The avai lable command byte is &00 (read). 

• Alphanumeric input. Code &00 

- The input is made one character at a time and each character is converted in EBCDIC before being trans
ferred into user's buffer. The transfer is terminated when the specified number of characters has been 
reached. 

However, the "carriage return" character (&OD code in EBCDIC or ASCII) always terminates the transfer 
after being actyally transmitted to the user. 

- The "paper feed" characters (&OA code in EBCDIC and &15 code in ASCII) are neither transmitted to the 
user nor counted in the total number of characters of the transfer. 

The "TAPE OFF" or "FULL" characters included in a record heading are neither transmitted to the user nor 
coun ted in the tota I num ber of c hara cters of the tra nsfer • 

Vlli-i6 



4057 U 

- When the %EOD group is detected in a record heading, the C B event byte (byte 0) is forced to 41 
hexadecima I a nd represents a n II end-of-fi Ie" mark. 

• Binary input. Code &00 

- The data are read one character at a time. The transfer is terminated when the specified number of 
characters has been reached. 

- The "TAPE OFF" or "NULL" characters included in a record heading are neither transmitted to the user 
nor counted in the total number of characters specified for the transfer. 

- When the %EOD group is detected in a record heading, the event byte (CB byte 0) is forced to 41 
hexadecima I representing an "end-of-fi Ie" mark. 

VIII-5.3. 60 char./sec. paper tape punch handler (# 15 060) 

• General 

- This handler controls the binary or alphanumeric output on paper tape (T:PP), each of these functions 
being determined by the selected operational label, by its assignment and by the function byte (two 
elements of the I/O CB). 

- For alphanumeric output, the ISO 7-bit code is used (ASCII). The ASCII-EBCDIC code conversion is 
performed by the handler, since the internal code is always EBCDIC. 

• Functions 

The avai lable command byte is &80 (write) 

• Alphanumeri c output. Code &80. 

- The output is made one character at a time, each character bieng converted in ASCII at transfer time 
without any modification of the user's buffer. The transfer is terminated when the specified number of 
characters has been reached. No filtering is made. 

- When the %EOD group is written in a record heading, the CB event byte (byte 0) is forced to 41 
hexadecimal representing an "end-of-file" mark. 

• Binary output. Command &80. 

- The output is made one character at a time and the transfer is terminated when the specified number of 
characters has been reached. 

VIII-5.4. 300 char./sec. card reader handler (# 15120) 

• General 

- This handler controls the binary or alphanumeric input from the cards (T:CR), each of these functions 
being determined by the selected operational label, by its assignment and by the functio~ byte' (two 
elements of the I/O CB). 

- For alphanumeric input, the EBCDIC card code is used on a one character per column basis (80 characters). 

- For binary input, each card contains up to 120 bytes. 

• Functions 

The available command byte is &00 (read). 

• Alphanumeric input. Code 00. 

- 80 characters are read. 

VIII-17 



4057 U 

- When the %EOD group is detected in a record heading, the CB event byte (byte 0) is forced to 41 
hexadecima I representing an "end-of-fi Ie" mark. 

• Binary input. Code 00. 

- 120 bytes are read. 

- When the %EOD group is detected in a record heading, the C B event byte (byte 0) is forced to 41 
hexadecimal representing an "end-of-file" mark. 

Note that, in this case, %EOD is a 4-character group, punched in the first four columns of the card 
(i • e. the fi rst six bytes in bi na ry rea di ng mode). 

Thus, the EOD mark is the same in binary and alphanumerical reading. 

VIII-S.S. 200 I.p.m. printer handler (# 15412) 

• General 

This handler controls the alphanumerical outputs on the line printer (T:LP). 

The print line is 132 characters long. 

The a Iphanumeric output code is the ISO 7-bit standard code (ASCII). The user's buffer may be coded in 
ASCII or EBCDIC. 

- EBCDIC-coded buffer. This is the most frequent case 

The user must use an alphanumeric operational label (M:LO, etc.). The EBCDIC -- ASCII conversion is 
performed by the handler in the buffer before the output transfer. The reciprocal ASCII -- EBCDIC 
conversion will be performed by the handler at the end of the transfer. This double conversion has no 
effect on the fi na I contents of the buffer. 

- ASCII-coded buffer 

The user must use a binary operational label (M:BI, etc.); no code conversion is performed. 

• Functions 

• Avai lable commands: 

Hexadecima I code Function 

80 Write without format 
90 Write with format 

o Write without format mode 

A peper feed is executed after the requested printing. 

• Write with format 

The first byte in the user's buffer will specify a paper positioning operation executed before the actual 
printing. 

This skip code is conted in the number of transferred bytes. 

The printing operation is normally followed by a paper feed, except when the format byte contains EO or 
60 (EBCDIC code). 

\'111-18 



4057 U 

Table of format byte coding (skip codes) 

Code 

-------------~~------------ASCII 

5C 

2D 

7B 

41 

42 

C3 

44 

C5 

C6 

47 

48 

C9 

60 

El 

E2 

63 

E4 

65 

30 

B1 

B2 

33 

EBCDIC 

EO 

60 

CO 

Cl 

C2 

C3 

C4 

C5 

C6 

C7 

C8 

C9 

CA 

CB 

CC 

CD 

CE 

CF 

FO 

Fl 

F2 

F3 

Function 

Omit paper feed after printing 

Skip 0 line 

Skip 1 line 

Skip 2 lines 

Skip 3 lines 

Skip 3 lines 

Skip 4 lines 

Skip 5 lines 

Skip 6 lines 

Skip 7 lines 

Skip 8 lines 

Skip 9 lines 

Skip 10 lines 

Skip 11 lines 

Skip 12 lines 

Skip 131ines 

Skip 14 lines 

Skip 15 lines 

Skip on channel 0 (botton of form) 

Skip on channell 

Skip on channel 2 

Skip on channel 3 (top of form) 

V 111-5.6. Fast-a ccess di sk ha ndl er (# 15 200/1/2/3/4) 

• General 

This handler controls the transfers between the core memory and the fast-access disk. 

The associated CB must include an additional information: the disk address. This address specifies a number 
of disk-sectors (the first sector being sector O). 

VIII-19 



4057 U 

0 Event byte 

Indi cators 

2 Command or function 

3 Operational label 

4 ! Buffer address 
5 

6 ! N umber of bytes to be transferred 
7 

8 ! Branch address on abnorma I end 
9 

10 ! Disk-address {sector number} 
11 

The transfer is always initiated at the beginning of a sector. If the requested byte number is not a multiple 
of 256, the last sector which is only partly occupied, is filled with zeroes. Thus, the modified memory 
area is always a multiple of 256. 

The transfer being executed one word at a time, the byte count in the C B must be even. 

This handler considers the disk as an ordinary device; the MTRD handler, which is more powerful, performs 
the disk area management tasks. 

• Functions 

• Avai lable commands: 

Hexadecimal code Function 

00 Read 
10 Read and update disk-address 
80 Write 
90 Write and update disk-address 

• Disk-address update: 

For 10 and 90 command codes, the disk-address of the CB is incremented by the number of transferred
sectors. This updating function may simplify the following transfers. 

VIII-20 



mitra 15 

Appendix A - List of pseudo-instructions 

The following representation conventions are used in the table below: 

- Pseudo Name of the pseudo-instruction 

- Format Operand format 

- Type Type of operand 

LE Label expression 
RE Reference expressi on 
V Value 
C Character string 
S Segment name 

- Function 

- DATA 

Definition of the pseudo-instruction function 

Authorized in a C OS or LOS 

- PROG Authorized in aLPS 

- LAB Assigns an address to a label 

PSEUDO FORMAT Type FUNCTION 

CDS [DUM] Definition of the common data 
secti on or CDS. 
No code generated if DUM is 
present. 

LOS [DUM] Definition of a local data segment 
or LOS. 
No code genera ted if 0 UM is 
present. 

IDS [DUM] Identification of an indirect ac'cess 
(MITRAS II only) data segment. Any label specified 

in this segment is defined with 
respect to its starting address. 
No code generated if DUM is 
present. 

LPS NAME S Definition of an executable loca I 
program segment LPS and thus of a 
program section. 
NAME is the name of the 
associated LOS 

END SECTION NAME S Indication of the assembly module 
end SECTION NAME is the name 
of the first section to be executed. 

DATA PROG LAB 

x 

x 

x 

x 

A-I 



4057 U 

PSEUDO FORMAT Type FUNCTION DATA PROG LAB 

FIN [LABEL] LE Indication of a segment end. x x x 
- LABEL may only be used in a LPS. 
In this case, it defines the starting 
address in the segment. 

RES,1 VALUE V Reservation of a memory area. x x x 
- ,I indicates, when specified, 
that the reservation unit is the byte, 
otherwise it is the word. 
- VALUE defines ghe length of the 
memory area. 

BND This pseudo-instructions advances x x 
the location counter to a word 
boundary. 

EQU ~;redefi n ed ex pressi on~ lE Definition of an equiva lence x x x 
between the symbol in label field 
and the quantity defined in operand 
field. 

GOTO,n Labl, Lab2, ••• , Labn lE Specification of a conditional x x 
(MITRAS II only) branch at assembly time. 

- ,n is a va lue pointing at a label 
in operand field at which the branch 
is made. 

DO ~ VALUE ~ Specification of an iterative x 
(MITRAS II only) % assembly of an instruction. 

- VALUE = number of iterations 
- % : at every iteration cycle, 
this character takes the value of 
the iteration counter. 

DATA,l [#] Expressi on 1 LE Data generation statement x 
[, [#] Expression 2] ••• V - ,1 if present in command field 

the locations are expressed in I 
bytes, otherwise in words. I 
- # This symbol denotes that the 

I 

! following expression must be left 

I relative to G upon loading in 
Master mode. I 

I GEN, Area list Expressi on list V Value generation statement. x x x 
(MITRAS II only) - Area list is a sequence of va lues I 

each defining the length of an area 
to be generated. 
- Expression list is a sequence of 
expressions defining the contents of 
the declared areas. 

j 

A-2 



4057 U 

PSEUDO FORMAT Type FUNCTION DATA PROG LAB 

TEXT "Character string" C Generation of a character string. x x 
- Character string is made up of 
a Iphanumeri c characters. 

DEF Label [, Label] LE Declaration of labels as external x x 
definitions. 

REF VI] Label lE Declaration of labels as externa I x x 
[, [II] Label] references. 

- # indicates that the label belongs 
to the CDS. 

BASE [Label] This statement requests that a II x 
address generated at assembly time 
be relative to an address specified 
in operand field. 

PAGE The assembly listing is printed on x 
(MITRAS " only) the next page if the output device 

is the pri nter. 

A-3 



mitra 15 

Appendix B - List of instructions 

Instructions are arranged in alphabetic order 

Code occording to addressing mode Code according to addressing mode 

Instr. Class P Ol Il IlX OG IGX RP RM Instr. Class P Ol Il IlX OG IGX RP RM 

ADD 0 25 05 65 A5 45 85 - - lBl 0 20 I 00 60 AD 40 80 - -
ADM 0' - 17 77 B7 57 97 - - lBR 0 2E OE 6E AE 4E 8E - -
AND 0 29 09 69 A9 49 89 - - lBX 0 2F OF 6F AF 4F 8F - -
BAN 2 - - 04 - - DC C4 CC lOA 0 20 00 60 AO 40 80 - -
BAZ 2 - - 05 - - DO C5 CD lOE 0 21 01 61 Al 41 81 - -
BCF 2 - - 03 - - DB C3 CB .·lOP 1 FB 3B - - - - - -
BCT 2 - - DO - - 08 CO C8 • lOR 1 F9 39 - - - - - -
BOF 2 - - 06 - - DE C6 CE lOX 0 22 02 62 A2 42 82 - -. 
BOT 2 - - 02 - - OA C2 CA lEA 0 - 04 64 A4 44 84 ,. -
BRU 2 - - 07 - - OF C7 CF MUl 0 2C OC 6C AC 4C 8C - -
BRX 2 - - 01 - - 09 Cl C9 • MVS 0' - 1 F 7F BF 5F 9F - -

• ClM 1 F400 - - - - - - - • RO 1 F402 - - - - - --
ClS 1 F8 38 - - - - E80 - RSV 1 Fl - - - - - - -
CMP 0 2B OB 6B AB 4B 8B - - RTS 1 Fl00 - - - - - - -

·CPS 0 2A OA 6A AA 4A 8A - - SBl 0' - 14 74 B4 54 94 - -
CSV 1 F7 37 - - - - E70 - SBR 0' - 15 75 B5 55 95 - -
OCl 1 F6 36 - - - - E60 - * SHC 1 FC 3C - - - - oEC -
OCX 1 F3 33 - - - - E30 - SHR 1 FO 30 - - - - oEO -

·OIT 1 F401 - - - - - - - SPA 0' - 18 78 B8 58 98 - -

·OIV 0 28 08 68 A8 48 88 - - SRG 1 Fl 31 - - - - o E 1 -
OLD 0' - 10 70 BO 50 90 - - STA 0' - 11 71 Bl 51 91 - -
OST 0' - 16 76 B6 56 96 - - STE 0' - 12 72 B2 52 92 - -
EOR 0 23 03 63 A3 43 83 - - • STM 1 F408 - - - - - - -

.FAO 0' - lA 7A BA 5A 9A - - • STR 1 FA 3A - - - - oEA -
*FOV 0' - 10 70 BO 50 90 - - STS 0' - 19 79 B9 59 99 - -
*FMU 0' - lC 7C BC 5C 9C - - STX 0' - 13 73 B3 53 93 - -
• FSU 0' - 1 B 7B BB 5B 9B - - SUB 0 26 06 66 A6 46 86 - -

ICL 1 F5 35 - - - - E50 - • TES 1 FO 3D - - - - oED -
ICX 1 F2 32 - - - - E20 - .TRS 0' - 1 E 7E BE 5E 9E - -
lOR 0 27 07 67 A7 47 87 - - .WO 1 F403 - - - - - - -

Note: 

Priviledged instruction 

* 0 pti ona I i nstructi on 

o PX addressing mode 8-1 



4057 U 

Instructions are arranged in ascending- hexadecima I order 

8-2 

Code Instruc. Class Adr. 

00 lDA 0 Dl 

01 lDE 0 -
02 lDX 0 -
03 EOR 0 -
04 lEA 0 -
05 ADD 0 -
06 SUB 0 -
07 lOR 0 -
08 * DIV 0 -
09 AND 0 -
OA * CPS 0 -
OB CMP 0 -
OC MUl 0 -
OD lBl 0 -
OE lBR 0 -
OF lBX 0 -
10 DlD 0' -
11 STA 0' -
12 STE 0' -
13 STX 0' -
14 SBl 0' -
15 SBR 0' -
16 DST 0' -
17 ADM 0' -
18 SPA 0' -
19 STS 0' -
1A if FA D 0' -
1 B if FSU 0' -
1C if FM U 0' -
1 D * FDV 0' -
1 E if TRS 0' -
1 F .. MVS 0' -

Note: 

* 0 pti ona I i nstructi on 

Privi ledged i nstructi on 

Code Instruc. 

20 lDA 

21 lDE 

22 lDX 

23 EOR 

24 lEA 

25 ADD 

26 SUB 

27 lOR 

28 .... DIV 

29 AND 

2A * CPS 

2B CMP 

2C MUl 

2D lBl 

2E lBR 

2F lBX 

30 SHR 

31 SRG 

32 ICX 

33 DCX 

34 

35 ICl 

36 DCl 

37 CSV 

38 ClS 

39 • l DR 

3A • STR 

3B *·lDP 

3C * SHC 

3D * TES 

3E 

3F 

Closs Adr. Code I nstruc. Class Adr. Code 

0 P 40 lDA 0 DG 60 

0 - 41 lDE 0 - 61 

0 - 42 lDX 0 - 62 

0 - 43 EOR 0 - 63 

0 - 44 lEA 0 - 64 

0 - 45 ADD 0 - 65 

0 - 46 SUB 0 - 66 

0 - 47 lOR 0 - 67 

0 - 48 .... DIV 0 - 68 

0 - 49 AND 0 - 69 

0 - 4A if CPS 0 - 6A 

0 - 4B CMP 0 - 6B 

0 - 4C MUl 0 - 6C 

0 - 4D lBl 0 - 6D 

0 - 4E lBR 0 - 6E 

0 - 4F lBX 0 - 6F 

1 Dl 50 DlD 0' - 70 

1 - 51 STA 0' - 71 

1 - 52 STE 0' - 72 

1 - 53 STX 0' - 73 

54 SBl 0' - 74 

1 - 55 SBR 0' - 75 

1 - 56 DST 0' - 76 

1 - 57 ADM 0' - 77 

1 - 58 SPA 0' - 78 

1 - 59 STS 0' - 79 

1 - 5A • FAD 0' - 7A 

1 - 5B * FSU 0' - 7B 

1 - 5C * FMU 0' - 7C 

1 - 5D * FDV 0' - 7D 

5E * TRS 0' - 7E 

5F * MVS 0' - 7F 

Instruc. Class Adr. 

lDA 0 Il 

l DE 0 -
lDX 0 -
EOR 0 -

lEA 0 -

ADD 0 -
SUB 0 -
lOR 0 -

.. DIV 0 -
AND 0 -

* CPS 0 -
CMP 0 -
MUl 0 -
lBl 0 -
lBR 0 -
lBX 0 -
DlD 0' -
STA 0' -
STE 0' -
STX 0' -
SBl 0' -
SBR 0' -
DST 0' -
ADM O' -
SPA 0' -
STS 0' -

* FAD 0' -
* FSU 0' -
* FMU 0' -
* FDV 0' -
* TRS 0' -
* MVS O' -



4057 U 

Code I nstruc. Class Adr. 

80 LDA 0 IGX 

81 LDE 0 -
82 LDX 0 -
83 EOR 0 -
84 LEA 0 -
85 ADD 0 -
86 SUB 0 -
87 lOR 0 -
88 .DIV 0 -
89 AND 0 -
8A .. CPS 0 -
8B CMP 0 -
8C MUL 0 -
8D LBL 0 -
8E LBR 0 -
8F LBX 0 -
90 I DLD 0' -
91 STA 0' -
92 STE 0' -
93 STX 0' -
94 SBL 0' -
95 SBR 0' -
96 DST 0' -
97 ADM 0' -
98 SPA 0' -
99 STS 0' -
9A .FAD 0' -
9B ... FSU 0' -
9C '" FMU 0' -
9D *FDV 0' -
9E • TRS 0' -
9F "'MVS 0' -

Note: 

• Optional instruction 

Privi ledged i nstructi~n 

Code Instruc. Class Adr. 

AO LDA 0 ILX 

Al LDE 0 -
A2 LDX 0 -
A3 EOR 0 -
A4 LEA 0 -
A5 ADD 0 -
A6 SUB 0 -
A7 lOR 0 -
A8 '" DIV 0 -
A9 AND 0 -
AA ,.. CPS 0 -
AB CMP 0 -
AC MUL 0 -
AB LBL 0 -
AE LBR 0 -
AF LBX 0 -
BO DLD 0' -
Bl STA 0' -
B2 STE 0' -
B3 STX 0' -
B4 SBL 0' -
B5 SBR 0' -
B6 DST 0' -
B7 ADM 0' -
B8 SPA 0' -
B9 STS 0' -
BA '" FAD 0' -
BB ... FSU 0' -
BC • FMU 0' -
BD ... FDV 0' -
BE • TRS 0' -
BF '" MSV 0' -

(1) SYS: this mnemonic is not recognized by the Assembler 

Code I nstruc . Class Adr. Code I nstruc • Class Adr. 

CO BCT 2 I RP EO SHR 1 PX 

Cl BRX 2 I - El SRG 1 -
C2 BOT 2 I - E2 ICX 1 -, 
C3 BCF 2 - E3 DCX 1 -
C4 BAN 2 - E4 

C5 BAZ 2 - E5 ICL 1 -
C6 BOF 2 - E6 DCL 1 -
C7 BRU 2 - E7 CSV 1 -
C8 BCT 2 RM E8 CLS 1 -
C9 BRX 2 - E9 - LDR 1 -
CA BOT 2 - EA - STR 1 -
CB BCF 2 - EB .-LDP 1 -
CC BAN 2 - EC '" SHC 1 -
CD BAZ 2 - ED * TES 1 -
CE BOF 2 - EE 

CF BRU 2 - EF 

DO BCT 2 IL FO SHR 1 P 

Dl BRX 2 - Fl SRG 1 -
D2 BOT 2 - F2 ICX 1 -
D3 BCF 2 - F3 DCX 1 -
D4 BAN 2 - F4 _ SYS(l) 1 -
D5 BAZ 2 - F5 ICL 1 -
D6 BOF 2 - F6 DCL 1 -
D7 BRU 2 - F7 CSV 1 -
D8 BCT 2 IG F8 CLS 1 -
D9 BRX 2 - F9 - LDR 1 -
DA BOT 2 - FA - STR 1 -
DB BCF 2 - FB *-LDP 1 -
DC BAN 2 - FC * SHC 1 -
DD BAZ 2 - FD * TES 1 -
DE BOF 2 - FE 

DF BRU 2 - FF 

B-3 



4057 U 

SRG instruction SHR instruction 

o S 10 15 

Instruction Function Code 

AAE (A) n (E) • (A) F1l8 
Function .pc Code 

ACE (E) + C . (E) FlOE 

AEE (A) ED (E)- (A) Fl12 
Shift Logical Left Single 0 SLLS 

AlE (A) u (E) • (A) Fl16 
Shift Circular Right Single 1 SRCS 

CCA (A) . (A) Fll 0 Shift Arithmeti c Right Double 2 SAD 

CCE ('E) • (E) Fl0A 
Shift Circular Left Double 3 SLCD 

CHX Arithmetic shift 1 step left Fll E 
Shift Circular Left Single 4 SLCS 

CNA -A • (A) Fll C 
Shift Arithmetic Right Single 5 SAS 

CNX -X - (X) F114 
Shift Logical Right Single 6 SRLS 

LNE -1 • (E) Fll A 
Shift Circular Right Double 7 SRCD 

RTS Return section FI00 

RSV Return supervisor FlOC 

XAA AO-7 • • AS- 15 FI08 
SHC instruction 

o S 10 15 
XAE (A) • • (E) Fl02 

XAX (A) • • (X) FI04 

XEX (E) • . (X) FI06 Function .pc Code 

SYS ' . (1) Instruction Shift Logical Left Double 0 SLLD 

Compute parity 2 PTY 
Function Class I nstructi on Code 

Shift Logical Right Double 4 SRLD 

Clear IT mask 1 CLM F400 Norma lize E,A 6 NLZ 

De-activate IT 1 DIT F401 
1 

De-activate fast IT 3 
DITR 

5 
7 

Rea d di rect 1 RD F402 

Write direct 1 WD F403 , 
1 STM F408 l Set IT mask 

11 \ 
. ) SYS : this mnemonic is not recognized by the Assembler 

,t" t:ldressi ng : 

Class 0 ClassO' Class 1 Class 2 

P Y=D DL Y=D+{L) P N=D RP Y={P) +2 D 

DL Y=D+{L) IL Y={D+{L))+G' PX N=D+{X) RM Y={P)-2 D 

IL Y={D+{LL)+G' ILX Y={D+{L))+G '+(X) DL N =(D+{L)) DL Y={D+(L))+G' 

ILX Y=(D+{L))+G '+(X) DG Y=D+{G) DG Y={D+{G))+G' 

DG Y=D+(G) IGX Y=(D+{ G)) +( G)+{X) 

IGX Y=(D+{ G)) +( G) +(X) 

8-4 



mitra 15 

Appendix D - Assembler operation 

1- ASSEMBLY LISTING 

1-1. FORMAT OF AN ASSEMBLY LISTING LINE 

The general line format of an assembly listing is illustrated below. 

A line contains the following informations: 

- Up to two error flags. 

- A decimal line number. 

- The current hexadecimal contents of the location counter. 

- The object code (hexadecimal) generated by the Assembler. 

- A indication of a forward reference if the,argument address is anticipated. 

- The source line image. 

The lines which are skipped under control of a GOTO are not annotated except when they contain an 
invalid operation code. 

4 

I 

9 

L 

14 

I 

20 72 

EEDDDD* LLLL*XXXXA**SSS •••••••••• SSS 

* 
EE 

DODD 

LLLL 

A 

55 .• 55 

Space 

Error flags 

Decimal number of source line 

Hexadecimal value of location counter 

Hexadecimal value of a word or byte generated at LLLL location 

W hen present, the reference is forward 

Source text line 

Format of an assembly listing line 

1-2. OBJECT L1STlN G 

In addition to the hexadecima I representation of the object code and the edition of the corresponding 
source text, the Assembler provides: 

- A list of defined and/or referenced segments names, except under MITRAS I. 

- A table of satisfied or unsatisfied labels per section (optiona I). 

0-1 



4057 U 

1-2. OBJECT LISTING 

In addition to the hexadecimal representation of the object code and the edition of the corresponding 
source text, the Assembler provides: 

- A list of defined and/or referenced segments names, except under MITRAS I. 

- A table of satisfied or unsatisfied labels per section (optional). 

II - 0 P E RA TI N GOP T ION S 

11-1 • MITRA S I 

• Command format 

O/OASS l/options indicated on console switches (M:OC) . 

• Options 

Assembly listing 

- req uested 
- omitted 

console switch 15 reset 
console switch 15 set 

Relocatable binary: 

- requested 
- omitted 

console switch 14 reset 
: console switch 14 set 

Output of an additional O/OEOD after the RB module: 

- requested console switch 13 reset 
- omitted : console switch 13 set 

11-2. MITRAS II 

• Command format 

~ O/OASS2 t /[SI] [,BO] [,LO] [,LL] 
~ %CALL/ASS2 ~ 

::O/oASS2/ Output on M:OC by the processor when loaded and started by %LOAD and O/ORUN. 

%CALL/ASS2/ Output on M:OC by the processor when started without console interrupt. In this case, 
options are given on M:OC. 

• Options 

- SI 

- BO 

- LO 

- LL 

D-2 

Under control of the linking module, the command and its options are entered via M:CI . 

Source file read on M:SI. When this option is omitted, no other option should be present, and 
all options are implicit. 

Rei oca ta ble bi nary output req uested. 

Assembly listing output requested. 

Label table printing requested, together with severity level and number of incorrect lines. 



4057 U 

• Option for assembly end 

When MITRAS II is loaded and started through a %LOAD and a %RUN, before returning to the beginning 
when the assembly is over, the following message is printed on M:OC : 

%%EOD? 

Meaning that the optional output of an additional "end-of-file" mark after the RB has been allocated. 

The operator's answer on M:OC may be : 

- OUI if the additional "end-of-file" mark is requested. 

- NON if the additional "end-of-file" mark is not requested • 

• Additiona I "end-of-fi Ie" 

When a program module has been assembled, the relocatable binary output may have one of the following 
format: 

E E 
Heading File 0 or Heading File 0 

F F 

- where E.O.F. stands for "end-of-file". 

This is necessary for establishing the RB input fi Ie of the Linkage Editor. This fi Ie is organized as follows: 

E E 
Heading 1 File 1 0 Heading 2 Fi Ie 2 0 

F F 

E E 
Heading n File n 0 0 

F F 

The Linkage Editor may then output a RMI file with the following format: 

E E 
Headi ng File 0 0 

F F 

111-2. TABLE FORMAT 

I I 1-2.1 . Loca I label table 

A table containing the loca I labels is printed after every LPS, before FIN pseudo-instruction. It has the 

following format: 

LABE LLLL Z 

- LABE 

- LLLL 

- Z 

Label name. 

Corresponding value of location counter or label reference number if it has not yet defined. 

D LDS label 
P = LPS label 
A 
X 

Label value is absolute 
Label not yet defined 

R = Label declared in a REF pseudo-instruction 

D-3 



4057 U 

111-2.2. Common label table 

When the module assembly is completed, after EN D pseudo-instruction, a table of common labels is printed. 

It has the following format: 

LA BE LLLL Z 

- LABE Label name 

- LLLL Corresponding value of location counter or label reference number if it has not yet been defined. 

Z C = CDS label 
D = LDS label (declared in a DEF of the CDS and defined in a LDS). 
P LPS label (declared in a DEF of the CDS and defined in aLPS). 
A = Label value is absolute 
X La be I not yet defi ned 
R Label declared in a REF 

111-2.3. Severity level 

After the common label table, MITRAS I outputs the following message 

NSV 

o 

2 
3 

NB ERR XXX 

Indicating the highest error level encountered during assembly and the number of incorrect lines. 

111-3. ERROR PROCESSIN G 

111-3.1. Definition of assy error level 

Four error levels will be considered: 

- LEVEL 0 

- LEVEL 1 

- LEVEL 2 

- LEVEL 3 

No error or presumed error during assembly. 

At least one presumed error. Linkage edition and program execution are possible. 

Confirmed error for which the assembler has selected an option. Link edition is possible, 
but the edited program cannot be correctly executed in most cases without %MODIFY 
cards. 

Major error. The assembly continues but linkage edition will be impossible. The so~rce 
program must be corrected and re-assembled. 

As a genera I rule, any level-3 error impedes link edition. 

111-3.2. List of errors detected during assembly 

The incorrect source line is printed with 1 or 2 leading characters which identify the type of error. 

Two error flags are set, at most. 

D Double definition of a label. The first definition is assumed right. 

E Syntacti c or semantic error in operand field of an instruction or pseudo-instruction. 

- For an instruction, the operand is ignored, the corresponding zone being cleared. 

- For a segmentation pseudo, the operand field of the source card is ignored. 

D-4 



4057 U 

- For an EQU, the label becomes equivalent to an absolute zero value. 

- For GOTO and DO pseudos, the operand field is ignored. 

- For a TEXT pseudo, the operand field is ignored after the error (downstream). 

- For a DATA pseudo, if the error affects the definition of the selected resolution, a DATA 0 will be 
generated by the Assembler. 

If the error affects the operand field, the latter is ignored after the error (downstream). 

- For a GEN pseudo, an error in the partitioning of the selected areas will cause a zero-word to be 
generated. 

An error in the operand field stops the scanning of the card. However, everything upstream the error is 
normally taken into consideration. 

F Incorrect expression in operand part of RES pseudo: a zero-word is generated. 

G - Negative variable address. 
- Address > 255 
- Calculated displacement exceeding the available number of bits. 
In all cases, incorrect value replaced by zero. 

- Command unknown to the Assembler: replaced by RES 1. 
- Instruction or pseudo forbidden in this segment: the command is ignored. 
- No asterisk between operand and comment field. 

J - Forbidden character in this label: label ignored. 
- Mandatory label absent for a segmentation pseudo in the RB : label replaced by zero. 
- Label forbidden in this pseudo (BASE, BND, FIN, ••. ) : label ignored. 
- No label for an EQU : card ignored. 

N - Label table overflow. 

o - For a DATA, the result of an expression overflows the assigned partitions: result truncated. 
- Discrepancy between the number of expressions and the number of partitions in a GEN. 

P - Location counter overflow ( >65 535). 

R - A %EOD group met before the END card. 

T - Multiple definition of a segment. 

X - At the time a word is generated, the location counter va lue is odd. A zero-byte is first generated 
to increment the counter to a word boundary. If the source line includes a label, the corresponding 
value taken is the initial value of the location counter and not the corrected value. 

V The currently assembled source line contains a forward branch whose reach cannot be checked 
because the forward branch control table is full. 

W The currently assembled source line has a label to whi ch one or severa I forward branches have been 
made. 
Among these branches, at least one has a reach exceeding 255. 

111-3.3. Distribution of error types on the levels 

- Level 0 
- Levell 
- Level 2 
- Level 3 

V-C 
D-E-F-G-I-J-O-T -W-X 
I-N-P-R 

D-5 



mitra 15 

Appendix C - Addressing modes 

1) Class 0 addressing 

Instructions of this type may only address any data in the local or common segments. Class 0' Prohibits 
parameter or immediate addressing. 

This class includes: 

- Load and store instructions 

- Arithmetic instructions (fixed- or floating-point) 

- Logica I operations 

- Byte string instructions 

- Comparison instructions 

Six addressing modes are allowed: 

Mode 
Assembly 

Addressed da ta A ddressi ng functi on 
language 

Direct, Loca I IDENT Byte, word or double-word Y=(L)+D 

DL located in the first 256 bytes of 
the local segment. 

Indirect, Local @IDENT Byte, word or double-word Y=G '+((L)+D) 
IL located anywhere and pointed 

at through the loca I segment. 

Indirect, Loca I, Indexed @IDENT,X Element of a byte, word or Y=G '+((L)+D)+(X) 

ILX double-word array located 
anywhere and pointed at through 
the local segment. 

Direct, Genera I # IDENT Byte, word or double-word Y=(G)+D 

DG located in the first 256 bytes of 
the common segment. 

Indirect, General, Indexed @# IDENT,X Element of an array pointed at Y=( G) +(( G)+D) +(X) 

IGX through the common segment. 

Parameter or immediate =OPERAN D A I-byte operand is specified (Y) = D 
in the instruction. This byte may Y = (P) 
be extended on the left by 8 
leading zeroes, if required. 

C-1 



4057 U 

2} Class 1 addressing 

These instructions are 

- Either without operand: register swapping, end of section, etc., 

- Or instructions whose operand is generally known (possibly through an unknown modifier) at program 
writing time: shift, index, increment, etc. 

This class includes: 

- Shift instructions 

- Base instructions 

- Section or supervisor calls 

- I/O instructions 

- Inter-register operations 

- Interrupt-initiated and interrupt mask instructions. 

Three addressing modes are allowed: 

Mode 
Assembly 

Operand Addressing function language 

Parameter or immediate =PARAM Operand defined by displacement (Y) = D 
P value. Y = (P) 

Parameter, Indexed =PARAM, X Operand defined by va lue plus (Y}=D+(X) 
PX X-register contents. Y = (P) 

Direct, Local IDENT Operand located in the first Y=(L} +D 
DL 256 bytes of the local segment. 

3) Class 2 addressing 

This class includes conditional and unconditional branch instructions. 

Normally the instructions which are pointed at by a branch instruction belong to the same section. 

Four addressing modes are allowed: 

Mode 
Assembly 

Branch instruction A ddressi ng fun cti on language 

Relative downstream LABEL Any instruction within Y=(P}+2D 
(plus) RP 512 bytes downstream 

Relative upstream LABEL Any instruction within Y=(P}-2D 
(minus) RM 512 bytes upstream 

Indirect, Local @ LABE L Any instruction pointed at Y=G '+((L}+D) 
It through the loca I segment. 

Indirect, Genera I @ #LABEL Any instruction pointed at Y=G'+((G}+D} 
iG through the common segment. 

C-2 



•• ell COMPAGNIE INTERNATIONALE POUR L'INFORMATIQUE 

RC : 669805764 B 
R.C. Versailles - SIRENE : 669805764 

Siege Social 
Direction Commerciale 
Division des Petits Ordinateurs 
et des Applications Specialisees 
Direction Apres- Vente 
68, Route de Versailles 
78430 Louveciennes 
Tel. 954 9080 

DELEGATIONS REGIONALES 

RHONE-ALPES 
177, rue Garibaldi Immeuble M + M 
69003 Lyon 
Tel. (78) 62 9065 

Tour Mont Blanc 
15, bd. du Marechal Leclerc 
38000 Grenoble 
TeL (76) 44 9922 

18-20 avo du Marechal Foch 
21000 Dijon 
TH (80) 32 2047 

Direction Generale 
Institut de Formation 
Pare de Rocquencourt 
78150 Le Chesnay 
Tel. 954 4400 

Centre de Velizy 
Division Militaire Spatiale 
et Aeronautique 
Direction Apres· Vente 
10- 12 avenue de l'Europe 
78140 Velizy , 
TeL 946 9670 . 

OUEST 
3 Place du Co;ombier 
35000 Rennes 
TeL (99) 30 8454 

CENTRE-OUEST 
9. place Rouget de Lisle 
37000 Tours 
Tel (47) 20 2209 

MIDI-PYRENEES 
Av. duGeneral Eisenhower 
31023 Toulouse 
Tel. (61) 40 3563 

Centre des Clayes-sous-bois 
Avenue Jean Jaures 
78340 Les Clayes-sous-bois 
Tel. 055 8000 

Centre de Toulouse 
Avenue du General Eisenhower 
31023 Toulouse 
Tel. (61) 401140. 

SUD-EST 
433. rue Paradis 
13008 Marseille 
Tel. (91) 77 0994 

AQUITAINE 
353. bd du President Wilson 
33200 Bordeaux 
Tel. (56) 08 6363 

• 

--r
J 

EST 
25, avenue Robert Schuman 
57000 Metz 
TH (87) 68 4921 

15. rue des Francs Bourgeois 
67000 Strasbourg 
Tel (88) 32 1103 

NORD 
13. boulevard de la Liberte 
59000 Lille 
TeL (20) 57 7353 • 


