
Borland$
Turbo Assembler:

Turbo Assembler®
Version 4.0

Quick Reference Guide

COPYRIGHT © 1988, 1994 by Borland International. All rights
reserved. All Borland product names are trademarks or registered
trademarks of Borland International, Inc. Other brand and product
names are trademarks or registered trademarks of their respective
holders.

The material in Part 3 and Part 4 is reprinted with permission of
Intel Corporation, Copyright/Intel Corporation 1987, 1993.

Borland International, Inc.
100 Borland Way, Scotts Valley, CA 95066-3249

PRINTED IN THE UNITED STATES OF AMERICA

2EOR0394
9495969798-9 8 7 6 5 4 3
H1

TAB L E o F

PART 1
Predefined symbols 1

$ 2
@32Bit 2
@code 2
@CodeSize 2
@CPU 2
@curseg 2
@data 2
@DataSize. 2
??date 2
@fardata 2
@fardata? 2
@FileName 2
??filename . " " 3
@Interface. 3
@Model 3
@Object 3
@Stack 3
@Startup 3
@Table_<objectname> 3
@TableAddr_<objectname> 3
??time 3
??version 3
@WordSize. 3

PART 2
Operators

Ideal mode operator

5

precedence. 6
MASM mode operator
precedence. 6
Operators 7

() 7
* 7
+ (binary) 7
+ (unary) 7
- (1;>inary) ~ 7
- (unary) 7
•............................ 7
/ ' .. 7
: 8
? 8
[] 8
AND 8
BYTE : 8
BYTEPTR · 8

CONTENTS

CODEPTR 8
DATAPTR 8
DUP 8
DWORD 9
DWORDPTR 9
EQ 9
FAR 9
FARPTR 9
FWORD 9
FWORDPTR 9
GE 9
GT 9
HIGH 9
HIGH 10
LARGE 10
LE 10
LENGTH 10
LOW 10
LOW ... ' 10
LT '10
MASK 10
MOD 10
NE 11
NEAR 11
NEARPTR 11
NOT 11
OFFSET 11
OR 11
PROC 11
PROCPTR 11
PTR 11
PWORD 12
PWORD PTR.. 12
QWORD 12
QWORD PTR 12
SEG 12
SHL ' 12
SHORT 12
SHR ; 12
SIZE 12
SMALL 13
SYMTYPE 13
TBYTE 13
TBYTE PTR 13
THIS 13
.TYPE 13
TYPE 13
TYPE 13
UNKNOWN 13

WIDTH 14
WORD 14
WORDPTR 14
XOR 14

The special macro operators .. 14
& 14
<> 14
! , 14
0/0 14
;; ' 14

PART 3
Directives 15

.186 , 16

.286 16

.286C .. , , 16

.286P 16

.287 , 16

.386 , , 16

.386C .. , , 16

.386P 16

.387 16

.486 16

.486C 16

.486P 16

.487 17

.586 , 17

.586C .. , , 17

.586P 17

.587 : 17

.8086 ... , , 17

.8087 ... , , 17
: 17
= 17
ALIGN 17
.ALPHA 17
ALIAS 18
ARC ,18
ASSUME 18
0/oBIN 18
CALL 18 '
CATSTR. 18
.CODE ' 19
CODESEG 19
COMM 19
COMMENT 19
%COND 19
.CONST 19
CONST 19
.CREF 20

%CREF 20
%CREFALL ... ; 20
%CREFREF 20
%CREFUREF 20
%CTLS 20
.DATA 20
DATASEG 20
.DATA? 20
DB 21
DD 21
%DEPTH 21

. DF 21
DISPLAY. 21
DOSSEG 21
DP 22
DQ 22
DT 22
DW 22
ELSE 22
ELSEIF 23
EMUL 23
END 23
ENDIF 23
ENDM 23
ENDP 23
ENDS · 24
ENUM 24
EQU 24
.ERR 24
ERR 24
.ERRl 24
.ERR2 24
.ERRB 24
.ERRDEF 25
.ERRDIF 25
.ERRDIFI. 25
.ERRE 25
.ERRIDN 25
.ERRIDNI 25'
ERRIF 25
ERRIFl 26
ERRIF2 26
ERRIFB 26
ERRIFDEF 26
ERRIFDIF 26
ERRIFDIFI 26
ERRIFE 26
ERRIFIDN 27
ERRIFIDNI 27
ERRIFNB 27
ERRIFNDEF 27

ii

.ERRNB 27 MASM 36

.ERRNDEF 27 MASM51 36

.ERRNZ 27 MODEL 36
EVEN 27 .MODEL. 37
EVENDATA 28 MULTERRS , 37
.EXIT 28 NAME 37
EXITCODE 28 %NEWPAGE 37
EXITM 28 %NOCONDS. 37
EXTRN 28 %NOCREF 37
.F ARDATA 28 %NOCTLS 37
FARDATA 28 NOEMUL 37
.F ARDATA? 29 %NOINCL 38
FASTIMUL. 29 NOJUMPS 38
FLIPFLAG 29 %NOLIST 38
GETFIELD 29 NOLOCALS 38
GLOBAL. 29 %NOMACS 38
GOTO 29 NOMASM51 38
GROUP 30 NOMUL TERRS 38
IDEAL 30 NOSMART 38
IF 30 %NOSYMS 38
IF1 ,30 %NOTRUNC , .. 38
IF2 '30 NOWARN 38
IFB " 31 ORG 39
IFDEF 31 %OUT 39
IFDIF 31 P186 39
IFDIFI 31 P286 39
IFE 32 P286N 39
IFIDN 32 P286P : ... 39
IFIDNI. 32 P287 39
IFNB 32 P386 39
IFNDEF 33 P386N 39
%INCL 33 P386P 39
INCLUDE 33 P387 39
INCLUDELIB 33 P486 40
INSTR 33 P486N 40
IRP ' 33 P487 40
IRPC 34 P586 40
JMP 34 P586N 40
JUMPS : 34 P587 '" 40
LABEL 34 P8086 '" 40
.LALL 34 P8087 40
LARGE STACK 34 %P AGESIZE 40
.LFCOND 34 %PCNT 41
%LINUM 35 PN087 41
%LIST 35 %POPLCTL 41
.LIST 35 POPSTATE 41
LOCAL 35 PROC 41
LOCALS 36 PROCDESC 42
MACRO 36 PROCTYPE 42
%MACS : ..•............ 36 PUBLIC 42
MASKFLAG 36 PUBLICDLL 42

iii

PURGE 43
%PUSHLCTL ., 43
PUSHSTATE 43
QUIRKS 43
.RADIX 43
RADIX 43
RECORD 43
REPT 43
RETCODE 44
RETF 44
RETN 44
.SALL 44
SEG~ENT 44
.SEQ 45
SETFIELD 45
SETFLAG 45
.sFCOND 45
SIZESTR 45
S~ALLSTACK 45
S~ART 45
.sTACK 45
STACK 45
.STARTUP 45
STARTUPCODE 46
STRUC , 46
SUBSTR 46
SUBTTL 46
%SUBTTL 46
%SY~ 46
TABLE 46
% TABSIZE 46
TBLINIT 46
TBLINST 47
TBLPTR 47
TESTFLAG 47
%TEXT 47
.TFCOND 47
TITLE 47
%TITLE 47
%TRUNC 47
TYPEDEF 47
UDATASEG 48
UPARDATA 48
UNION ' ; .. 48
USES '48
VERSION : 48
WARN 48
WHILE ; 49
.XALL 49
.XCREF 49
.XLIST 49

iv

PART 4
Processor instructions 51

Operand-size and
address-size attributes 52
Default segment attribute 52
Operand-size and
address-size instruction
prefixes '. 52
Address-size attribute for
stack 53
Instruction format 53
~odR/~ and SIB bytes 55
How to read the instruction
set pages 59

Instruction
name 59

Flags ',' 59
Opcode 60
Instruction 60
Clocks 63

AAA 64
AAD 64
~ 64
AAS 65
ADC 65
ADD , '66
AND 66
ARPL 67
BOUND 67'
BSF ,68
BSR 68
BSWAP 69
BT 69
BTC 69
BTR 70
BTS 70
CALL 70
CBW ' 72
CDQ 73
CLC 73
CLD 73
CLI 73
CLTS 74
C~C 74
C~P 75
C~PS
C~PSB
C~PSW
C~PSD 75
C~PXCHG 76

CWD 79
CWDE 80
DAA 80
DAS 80
DEC 81
DN 81
ENTER 81
HLT 82
IDN 83
IMUL 83
IN" ... " '" " 84
IN"C . " 85
IN"S
IN"SB
IN"SW
IN"SD 85
IN"T
IN"TO 86
IN"VD 87
INVLPG 87
IRET
IREID
IRETW 88
Jcc ... " , 89
JMP 91
LAHF 93
LAR 93
LEA 93
LEAVE 94
LGDT /LIDT 95
LGS
LSS
LFS
LDS
LES 95
LLDT 96
LMSW 97
LOCK ·.97
LODS
LODSB
LODSW
LODSD 98
LOOP
LOOPcond 99
LSL 99
LTR 100
MOV 100
MOV 101
MOVS
MOVSB

v

MOVSW
MOVSD 102
MOVSX 102
MOVZX 103
MUL 103
NEG 104
NOP 104
NOT 104
OR 105
OUT 105
OUTS
OUTSB
OUTSW
OUTSD 106
POP 107
POPA
POPAD
POPAW 108
POPF
POPFD
POPFW 108
PUSH 109
PUSHA
PUSHAD
PUSHAW 110
PUSHF
PUSHFD
PUSHFW 110
RCL
RCR
ROL
ROR 111
REP
REPE
REPZ
REPNE
REPNZ 114
RET 116
SAHF" 118
SAL
SAR
SHL
SHR 118
SBB 119
SCAS \
SCASB
SCASW
SCASD 120
SETcc 121
SGDT
SIDT· 122

SHLD 122
SHRD 123
SLDT 123
SMSW 124
STC 124
STD ' .. ' , 124
STI , 125
STOS
STOSB
STOSW
STOSD 125
STR 126
SUB 126
TEST 127
VERR
VERW 127
WAIT 128
WBI~ 128
XADD , 130
XCHG ., ~ 130
XLAT
XLATB :131
XOR 131

PART 5
Coprocessor instructions 133

F2XM1 i35
FABS :' 135
FADD 135
FADDP 135
FBLD ' ... 136
FBSTP , 136
FCHS 136
FCLEX
FNCLEX 136
FCOM 137
FCOMP 137
FCOMPP 137
FCOS 137
FDECSTP 138
FDISI
FNDISI. 138
FDN 138
FDNP 138
FDNR 139
FDNRP 139
FENI
FNENI 139
FFREE 139
FIADD 140

FICOM ... ~ 140
FICOMP 140
FIDN 140
FIDNR 141
FILD ' 141
FIMUL 141
FINCSTP 141
FINIT
FNINIT 142
FIST ' ,.142
FISTP 142
FISUB 142
FISUBR 143
FLD 143
FLDCW 143
FLDENV 143
FLDLG2 144
FLDLN2 144
FLDL2E ~ 144
FLDL2T 144
FLDPI 145
FLDZ 145
FLD1 145
FMUL 145
FMULP 146
FNOP 146
FPATAN 146
FPREM 146
FPREM1 147
FPTAN 147
FRNDINT 147
FRSTOR 147
FSAVE
FNSAVE :.148
FSCALE 148
FSETPM 148
FSIN 148
FSINCOS 149
FSQRT 149
FST 149
FSTCW
FNSTCW 149
FSTENV
FNSTENV 150
FSTP 150
FSTSW
FNSTSW 150
FSTSW AX
FNSTSW AX 150
FSUB 151
FSUBP 151

vi

FSUBR ; 151
FSUBRP 151
FrST 152
FUCOM 152
FUCOMP 152
FUCOMPP 152
FWAIT 152
FXAM 153
FXCH 153
FXTRACT. 153
FYL2X 153
FYL2XPl. 154
F2XM1 ' 154

vii

viii

p A R T

Predefined symbols

PART 7, Predefined symbols

$

All the predefined symbols can be used in both MASM and Ideal mode.

$
Represents the current location counter within the current segment.

@32Bit
Numeric equate indicating whether segments in the current model are de
clared as 16 bit or 32 bit.

@code
Alias equate for .CODE segment name.

@CodeSize
Numeric equate that indicates code memory model (O=near, l=far).

@CPU

Numeric equate that returns information about current processor direc
tive.

@curseg
Alias equate for current segment.

@data

Alias equate for near data group name.

@DataSize
Numeric equate that indicates the data memory model (O=near, l=far,
2=huge).

??date
String equate for today's date.

@fardata

Alias equate for initialized far data segment name.

@fardata?
Alias equate for uninitialized far data segment name.

@FileName
Alias equate for current assembly file name.

2 Turbo Assembler Quick Reference Guide

??filename

??filename
String equate for current assembly file name.

@Interface
Numeric equate indicating the language and operating system selected
by MODEL.

@Model

Numeric equate representing the model currently in effect.

@Object
Text macro containing the name of the current object.
= Alias equate for stack segment.

@Stack
Alias equate for stack segment.

@Startup

Label that marks the beginning of startup code.

@Table_<objectname>
Data type containing the object's method table.

@TableAddc<objectname>
Label describing the address of the instance of the object's virtual method
table.

??time
String equate for the current time.

??version
Numeric equate for current Turbo Assembler version number.

@WordSize
Numeric equate that indicates 16- or 32-bit segments (2=16-bit, 4=32-bit).

PART 7, Predefined symbols 3

4 Turbo Assembler Quick Reference Guide

p A R T 2

Operators

PART 2, Operators 5

This part covers the operators Turbo Assembler provides and their
precedence. The two tables that follow detail operator precedence for
Ideal and MASM modes.

Ideal mode operator precedence

The following table lists the operators in order of priority (highest is first,
lowest is last):

• 0, [], LENGTH, MASK, OFFSET, SEG, SIZE, WIDTH

• HIGH, LOW

• +, - (unary)
• *, I, MOD, SHL, SHR

• +, - (binary)
• EQ, GE, GT, LE, LT, NE

• NOT

• AND

.OR,XOR

• : (segment override)

• . (structure member selector)

• HIGH (before pointer), LARGE, LOW (before pointer), PTR, SHORT,
SMALL, SYMTYPE

MASM mode operator precedence

• <, 0, [], LENGTH, MASK, SIZE, WIDTH

• . (structure member selector)

• HIGH, LOW

• +, - (unary)

• : (segment override)

• OFFSET, PTR, SEG, THIS, TYPE

• *, I, MOD, SHL, SHR

• +, - (binary)
• EQ, GE, GT, LE, LT, NE

• NOT

• AND

.OR,XOR

.• LARGE, SHORT, SMALL, .TYPE

6 Turbo Assembler Quick Reference Guide

()

Operators

() Ideal, MASM

(expression)

Marks expression for priority evaluation.

* Ideal, MASM

expressionl * expression2

Multiplies two integer expressions. Also used with 80386 addressing
modes where one expression is a register.

+ (binary)

expressionl + expression2

Adds two expressions.

+ (unary)

+ expression

Indicates that expression is positive.

- (binary)

expressionl - expression2

Subtracts two expressions.

- (unary)

- expression

Changes the sign of expression.

memptr .fieldnaine

Selects a structure member.

/
expressionl / expression2

Divides 'two integer expressions.

PART 2, Operators

Ideal, MASM

Ideal, MASM

Ideal, MASM

Ideal, MASM

Ideal, MASM

Ideal, MASM

7

Ideal, MASM

segorgroup : expression

Generates segment or group override.

? Ideal, MASM

Dx?

Initializes with indeterminate data (where Dx is DB, DD, DF, DP, DQ,
DT, or DW).

()

expressionl [expression2]

[expression1] [expression2]

Ideal, MASM

MASM mode: The [] operator can be used to specify addition or register
indirect memory operands.

Ideal mode: The [] operator specifies a memory reference.

AND Ideal, MASM

expressionl AND expression2

Performs a bit-by-bit logical AND of two expressions.

BYTE Ideal

BYTE expression

Forces address expression to be byte size.

BYTE PTR Ideal, MASM

BYTE PTR expression

Forces address expression to be byte size.

CODEPTR Ideal, MASM

CODEPTR expression

Returns the default procedure address size.

DATAPTR Ideal

DATAPTR expression

Forces address expression to model-dependent size.

Ideal, MASM

count DUP (expression [,expression] ...)

Repeats a data allocation operation count times.

8 Turbo Assembler Quick Reference Guide

DWORD

DWORD Ideal

DWORD expression

Forces address expression to be doubleword size.

DWORD PTR Ideal, MASM

DWORD PTR expression

Forces address expression to be doubleword size.

EQ Ideal, MASM

expressionl EQ expression2

Returns true if expressions are equal.

FAR Ideal

FAR expression

Forces an address expression to be a far code pointer.

FAR PTR Ideal, MASM

FAR PTR expression

Forces an address expression to be a far code pointer.

FWORD Ideal

FWORD expression

Forces address expression to be 32-bit far pointer size.

FWORD PTR Ideal, MASM

FWORD PTR expression

Forces address expression to be 32-bit far pointer size.

GE Ideal, MASM

expressionl GE expression2

Returns true if one expression is greater than or equal to the other.

GT Ideal, MASM

expressionl GT expression2

Returns true if one expression is greater than the other.

HIGH Ideal, MASM

HIGH expression

Returns the high part (8 bits or type size) of expression.

PART 2, Operators 9

HIGH

HIGH Ideal

type HIGH expression

Returns the high part (8 bits or type size) of expression.

LARGE Ideal, MASM

LARGE expression

Sets expression's offset size to 32 bits. In Ideal mode, this operation is legal
only if 386 code generation is enabled.

LE
expressionl LE expression2

Returns true if one expression is less than or equal to the other.

LENGTH
LENGTH name

Returns number of data elements allocated as part of name.

LOW
LOW expression

Returns the low part (8 bits or type size) of expression.

LOW
type LOW expression

Returns the low part (8 bits or type size) of expression.

LT
expressionl LT expression2

J

Returns true if one expression is less than the other.

MASK
MASK recordfieldname
MASK record

Returns a bit mask for a record field or an entire record.

MOD

expressionl MOD expression2

Returns remainder (modulus) from dividing two expressions.

Ideal, MASM

Ideal, MASM

Ideal, MASM

Ideal

Ideal, MASM

Ideal, MASM

Ideal, MASM

10 Turbo Assembler Quick Reference Guide

NE

NE Ideal, MASM

expressionl NE expression2

Returns true if expressions are not equal.

NEAR Ideal

NEAR expression

Forces an address expression to be a near code pointer.

NEAR PTR Ideal, MASM

NEAR PTR expression

Forces an address expression to be a near code pointer.

NOT Ideal, MASM

NOT expression

Performs a bit-by-bit complement (invert) of expression.

OFFSET Ideal, MASM

OFFSET expression

Returns the offset of expression within the current segment (or the group
that the segment belongs to, if using simpllfied segmentation directives
or Ideal mode).

OR Ideal, MASM

expressionl OR expression2

Performs a bit-by-bit logical OR of two expressions.

PROC Ideal

PROC expression

Forces an address expression to be a near or far code pointer.

PROC PTR Ideal, MASM

PROC PTR expression

Forces an address expression to be a near or far code pointer.

PTR Ideal, MASM

type PTR expression

Forces address expression to have type size.

PART 2, Operators 11

PWORD

PWORD Ideal

PWORD expression

Forces address expression to be 32-bit far pointer size.

PWORD PTR Ideal, MASM

PWORD PTR expression

Forces address expression to be 32-bit far pointer size.

QWORD Ideal

QWORD expression

Forces address expression to be quadword size.

QWORD PTR Ideal, MASM

QWORD PTR expression

Forces address expression to be quadword size.

SEG Ideal, MASM

SEG expression

Returns the segment address of an expression that references memory.

SHL Ideal, MASM

expression SHL count

Shifts the value of expression to the left count bits. A negative count causes
the data to be shifted the opposite way.

SHORT Ideal, MASM

SHORT expression

Forces expression to be a short code pointer (within -128 to +127 bytes of
the current code location).

SHR Ideal, MASM

expression SHR count

Shifts the value of expression to the right count bits. A negative count
causes the data to be shifted the opposite way.

SIZE Ideal, MASM

SIZE name

Returns size of data item allocated with name. In MASM mode, SIZE re
turns the value of LENGTH name multiplied by TYPE name. In Ideal
mode, SIZE returns the byte count within name's DUP.

12 Turbo Assembler Quick Reference Guide

SMALL

SMALL Ideal, MASM

SMALL expression

Sets expression's offset size to 16 bits. In Ideal mode, this operation is legal
only if 386 code generation is enabled.

SYMTYPE
SYMTYPE

Returns a byte describing expression.

TBYTE
TBYTE expression

Forces address expression to be IO-byte size.

TBYTE PTR
TBYTE PTR.expression

Forces address expression to be IO-byte size.

THIS
THIS type

Ideal

Ideal

Ideal, MASM

Ideal, MASM

Creates an operand whose address is the current segment and location
counter. type describes the size of the operand and whether it refers to
code or data .

. TYPE MASM

.TYPE expression

Returns a byte describing the mode and scope of expression.

TYPE IDEAL

TYPE name1 name2

Applies the type of an existing variable or structure member to another
variable or structure member.

TYPE MASM

TYPE expression

Returns a number indicating the size or type of expression.

UNKNOWN Ideal

UNKNOWN expression

Removes type information from address expression.

PART 2, Operators . 13

WIDTH

WIDTH Ideal, MASM

WIDTH recordfieldname
WIDTH record

Returns the width in bits of a field in a record,or of an entire record.

WORD
WORD expression

Forces address expression to be word size.

WORD PTR
WORD PTR expression

Forces address expression to be word size.

XOR
expressionl XOR expression2

Performs bit-by-bit logical exclusive OR of two expressions.
Unconditional page break inserted for print formatting

The special macro operators

Be
&name

Substitutes actual value of macro parameter name.

Ideal

Ideal, MASM

Ideal, MASM

Ideal, MASM

< > Ideal, MASM

Treats text literally, regardless of any special characters it might contain.

Ideal, MASM

!character

Treats character literally, regardless of any special meaning it might other
wise have.

Ideal, MASM

%text

Treats text as an expression, computes its value and replaces text with the
result. text may be either a numeric expression or a text equate.

" Ideal, MASM

;;comment

Suppresses storage of a comment in a macro definition.

14 Turbo Assembler Quick Reference Guide

p A R T 3

Directives

PART 3, Directives 15

.186

.186 MASM

Enables assembly of 80186 processor instructions .

. 286 MASM

Enables assembly of non-privileged (real mode) 80286 processor instruc
tions and 80287 numeric coprocessor instructions .

. 286C MASM

Enables assembly of non-privileged (real mode) 80286 processor instruc- .
tions and 80287 numeric coprocessor· instructions .

. 286P MASM

Enables assembly of all 80286 (including protected mode) processor in
structions and 80287 numeric coprocessor instructions .

. 287 MASM

Enables assembly of 80287 numeric coprocessor instructions .

. 386 MASM

Enables assembly of non-privileged (real mode) 386 processor instruc
tions and 387 numeric coprocessor instructions .

. 386C MASM

Enables assembly of non-privileged (real mode) 386 processor instruc
tions and 387 numeric coprocessor instructions .

. 386P MASM

Enables assembly of all 386 (including protected mode) processor instruc
tions and 387 numeric coprocessor instructions .

. 387 MASM

Enables assembly of 387 numeric coprocessor instructions .

. 486 MASM

Enables assembly of non-privileged (real mode) instructions for the i486
processor .

. 486C· MASM

Enables assembly of non-privileged (real mode) instructions for the i486
processor .

. 486P MASM

Enables assembly of protected mode instructions for the 80486 processor.

16 Turbo Assembler Quick Reference Guide

.487

Enables assembly of 487 numeric processor instructions .

. 586

Enables assembly of non-privileged (real mode) instructions for the
Pentium processor .

. 586C

Enables assembly of non-privileged (real mode) instructions for the
Pentium processor .

. 586P

.487

MASM

MASM

MASM

MASM

Enables assembly of protected mode instructions for the Pentium proces
sor.

.587 MASM

Enables assembly of Pentium numeric processor instructions .

. 8086 MASM

Enables assembly of 8086 processor instructions only. This is the default
processor instruction mode used by Turbo Assembler .

. 8087 MASM

Enables assembly of 8087 numeric coprocessor instructions only. This is
the default coprocessor instruction mode used by Turbo Assembler.

Ideal, MASM

name:

Defines a near code label called name.

= Ideal, MASM

name = expression

Defines or redefines a numeric equate.

ALIGN Ideal, MASM

ALIGN boundary

Rounds up the location counter to a power-of-two address boundary (2,
4,8, ...) .

. ALPHA MASM

Sets alphanumeric segment-ordering. The fa command-line option per
forms the same function.

PART 3, Directives 17

ALIAS

ALIAS Ideal, MASM

ALIAS <alias_name>=<targeCname>

Allows the association of an alias name with a particular target name.
When the linker encounters an alias name, it resolves the alias by refer
ring to the target name.

NOTE: The syntax for ALIAS is identical in both Ideal and MASM modes.

ARG Ideal, MASM

ARC argument [,argument] ... [=symbol]
[RETURNS argument [,argument]]

Sets up arguments on the stack for procedures. Each argument is as
signed a positive offset from the BP register, presuming that both the re
turn address of the procedure call and the caller's BPhave been pushed
onto the stack already. Each argument has the following syntax (boldface
items are literal):

argname [[countll1 [:[debug_size] [type] [:count211

The optional debug_size has this syntax:

[type] PTR

ASSUME
ASSUME segmentreg:name [,segmentreg:name] ...
ASSUME segmentreg:NOTlllNG
ASSUME NOTIDNC

Ideal, MASM

Specifies the segment register (segmentreg) that will be used to calculate
the effective addresses for all labels and variables defined under a given
segment or group name (name). The NOTHING keyword cancels the as~
sociation between the designated segment register and segment or group
name. The ASSUME NOTHING statement removes all associations be
tween segment registers and segment or group names.

°loBIN Ideal, MASM

%BIN size

Sets the width of the object code field in the listing file to size columns.

CALL Ideal, MASM

CALL<instance -ptr> METHOD { object_name>:}
<method_name> {USES {segreg: }offsreg} {<extended _call-parameters>}

Calls a method procedure.

CATSTR Ideal, MASM51

name CATSTR string [,string] ...

Concatenates several strings to form a single string name.

18 Turbo Assembler Quick Reference Guide

.CODE

.CODE MASM

Same as CODESEG. MASM mode only.

CODESEG Ideal, MASM

CODESEG [name]

Defines the start of a code segment when used with the .MODEL direc
tive. If you have specified the medium or large memory model, you can
follow the .CODE (or CODESEG) directive with an optional name that
indicates the name of the segment.

COMM Ideal, MASM

COMM definition [,definition] ...

Defines a communal variable. Each definition describes a symbol and has
the following format (boldface items are literal):

[distance] [language] symbolname[[countl 1,]:type [:count2]

distance can be either NEAR or FAR and defaults to the size of the de
fault data memory model if not specified. language is either C, PASCAL,
BASIC, FORTRAN, PROLOG, or NOLANGUAGE and defines any lan
guage-specific conventions to be applied to symbolname. symbolname is the
communal symbol (or symbolsi separated by commas). If distance is
NEAR, the linker uses countl to calculate the total size of the array. If dis
tance is FAR, the linker uses count2 to indicate how many elements there
are of size countl times the basic element size (determined by type). type
can be one of the following: BYTE, WORD, DATAPTR, CODEPTR,
DWORD, FWORD, PWORD, QWORD, TBYTE, or a structure name.
count2 specifies how many items this communal symbol defines. Both
countl and count2 default to 1. .

COMMENT MASM

COMMENT delimiter [text]
[text]
delimiter [text]

Starts a multiline comment. delimiter is the first non-blank character fol
lowing COMMENT.

%COND Ideal, MASM

Shows all statements in conditional blocks in the listing. This is the de
fault mode for Turbo Assembler .

. CONST MASM

Same as CONST. MASM mode only.

CONST Ideal, MASM

Defines the start of the constant data segment.

PART 3, Directives 19

.CREF

.CREF MASM

Same as %CREF. MASM mode only.

%CREF Ideal, MASM

Allows cross-reference information to be accumulated for all symbols en
countered from this point forward in the source file .. CREF reverses the
effect of any %XCREF or .XCREF directives that inhibited the informa
tion collection.

%CREFALL Ideal, MASM

Causes all subsequent symbols in the source file to appear in the
cross-reference listing. This is the default mode for Turbo Assembler.
%CREF ALL reverses the effect of any previous %CREFREF or
%CREFUREF directives that disabled the listing of unreferenced
or referenced symbols.

%CREFREF Ideal, MASM

Disables listing of unreferenced symbols in cross-reference.

%CREFUREF Ideal, MASM

Lists only the unreferenced symbols in cross-reference.

%CTLS Ideal, MASM

Causes listing control directives (such as %LIST, %INCL, and so on) to
be placed in the listing file .

. DATA MASM

Same as DATASE6. MASM mode only.

DATASEG Ideal

Defines the start of the initialized data !segment in your module. You
must first have used the .MODEL directive to specify a memory model.
The data segment is put in a group called DGROUP, which also contains
the segments defined with the .ST ACK, .CONST, and .DAT A? directives .

. DATA? MASM

Defines the start of the uninitialized data segment in your module. You
must first have used the .MODEL directive to specify a memory model.
The data segment is put in a group called DGROUP, which also contains
the segments defined with the 'sTACK, .CONST, and .DATA directives.

20 Turbo Assembler Quick Reference Guide

DB

DB Ideal, MASM

[name] DB expression [,expression]. ..

Allocates and initializes a byte of storage. name is the symbol you'll subse
. quently use to refer to the data. expression can be a constant expression, a

question mark, a character string, or a DUPlicated expression.

DD Ideal, MASM

[name] DD [typePTR] expression [,expression] ...

Allocates and initializes 4 bytes (a doubleword) of storage. name is the
symbol you'll subsequently use to refer to the data. type followed by
PTR adds debug information to the symbol being defined, so that Turbo
Debugger can display its contents properly. type is one of the following:
BYTE, WORD, DATAPTR, CODEPTR, DWORD, FWORD, PWORD,
QWORD, TBYTE, SHORT, NEAR, FAR or a structure name. expression
can be a constant expression, a 32-bit floating-point number, a question
mark, an address expression, or a DUPlicated expression.

°/oDEPTH
%DEPTH width

Ideal, MASM

Sets size of depth field in listing file to width columns. The default is 1 col-
umn.

DF Ideal, MASM

[name] DF [type PTR] expression Lexpression] ...

Allocates and initializes 6 bytes (a far 48-bitpointer) of storage. name is
the symbol you'll subsequently use to refer to the data. type followed by
PTR adds debug information to the symbol being defined, so that Turbo
Debugger can display its contents properly. type is one of the following:
BYTE, WORD, DATAPTR, CODEPTR, DWORD, FWORD, PWORD,
QWORD, TBYTE, SHORT, NEAR, FAR or a structure name. expression
can be a constant expression, a question mark, an address expression, or
a DUPlicated expression.

DISPLAY
DISPLAY "text"

Ideal, MASM

Outputs a quoted string (text) to the screen.

DOSSEG
Enables OOS segment-ordering at link time. DOSSEG is included for
backward compatibility only.

PART 3, Directives 21

DP

OP Ideal, MASM

[name]DP [type PTR] expression [,expression] ...

Allocates and initializes 6 bytes (a far 48-bit pointer) of storage. name is
the symbol you'll subsequently use to refer to the data. type followed by
PTR adds debug information to the symb91 being defined, so that Turbo
Debugger can display its contents properly. type is one of the following:
BYTE, WORD, DATAPTR, CODEPTR, DWORD, FWORD, PWORD,
QWORD, TBYTE, SHORT, NEAR, FAR or a structure name. expression
can be a constant expression, a question mark, an address expression, or
a DUPlicated expression.

OQ Ideal, MASM

[name] DQ expression Lexpression] ...

Allocates and initializes 8 bytes (a quadword) of storage. name is the sym
bol you'll subsequently use to refer to the data. expression can be a con
stant expression, a 64-bit floating-point number, a question mark, or a
DUPlicated expression.

OT Ideal, MASM

[name] DT expression [,expression] ...

Allocates and initializes 10 bytes of storage. name is the symbol you'll
subsequently use to refer to the data. expression can be a constant expres
sion, a packed decimal conStant expression, a question mark, an 80-bit
floating-point number, or a DUPlicated expression.

OW Ideal, MASM

[name] DW [type PTR] expression [,expression] ...

Allocates and initializes 2 bytes (a word) of storage. name is the symbol
you'll subsequently use to refer to the data. type followed by PTR adds
debug information to the symbol being defined, so that Turbo Debugger
can display its contents properly. type is one of the following: BYTE,
WORD, DATAPTR, CODEPTR, DWORD, FWORD, PWORD,
QWORD, TBYTE, SHORT, NEAR, FAR or a structure name. expression
can be a constant expression, a question mark, an address expression, or
a DUPlicated expression.

ELSE
ELSE

IF condition
statementsl

[ELSE
statements2]

ENDIF

Ideal, MASM

Starts alternative conditional assembly block. The statements introduced
by ELSE (statements2) are assembled if condition evaluates to false.

22 Turbo Assembler Quick Reference Guide

ELSEIF

ELSEIF
ELSEIF

Ideal, MASM

IF conditionl
statementsl

[ELSE IF condition2
statements2]

'ENDIF

Starts nested conditional assembly block if condition2 is true. Several
other forms of ELSEIF are supported: ELSEIFl, ELSEIF2, ELSEIFB,
ELSEIFDEF, ELSEIFDIF, ELSEIFDIFI, ELSEIFE, ELSEIFIDN,
ELSEIFIDNI, ELSEIFNB, and ELSEIFNDEF.

EMUL Ideal, MASM

Causes all subsequent numeric coprocessor instructions to be generated
as emulated instructions, instead of real instructions. When your pro
gram is executed, you must have a software floating-point emulation
package installed or these instructions will not work properly.

END Ideal, MASM

END [startaddress]

Marks the end of a source file. startaddress is a symbol or expression that
specifies the address in your program where you want execution to be
gin. Turbo Assembler ignores any text that appears after the END direc
tive.

ENDIF
ENDIF

IF condition
statements

ENDIF

Ideal, MASM

Marks the end of a conditional assembly block started with one if the
IFxxxx directives.

ENDM Ideal, MASM

Marks the end of a repeat block or a macro definition.

ENDP Ideal, MASM

ENDP [procname]
[procname] ENDP

Marks the end of a procedure. If procname is supplied, it must match the
procedure name specified with the PROC directive that started the proce
dure definition.

PART 3, Directives 23

ENDS

ENDS
ENDS [segmentname I strucname]
[segmentname I strucname]ENDS

Ideal, MASM

Marks/end of current segment, structure or union. If you supply the op
tional name, it must match the name specified with the corresponding
SEGMENT, STRUC, or UNION directive.

ENUM Ideal, MASM

, ENUM name[enum_var[,enum_var ...]]
name ENUM [enum_varLenum_var ...]]

Declares an enumberated data type.

EQU Ideal, MASM

name EQU expression

Defines name to bea string, alias, or numeric equate containing the result
of evaluating expression .

. ERR MASM

.ERR <string>

ERR Ideal, MASM

ERR <string>

Forces an error to occur at the line that this directive is encountered on in
the source file. The optional string will display as part of the etror mes
sage .

. ERRl MASM

.ERRl <string>

Forces an error to occur on pass 1 of assembly. The optional string will
display as part of the error message .

. ERR2 MASM

.ERR2 <string>

Forces an error to occur on pass 2 of assembly if multiple-pass mode (con.:.
trolled by 1m command-line option) is enabled. The optional string will
display as part of the error message .

. ERRB MASM

.ERRB argument <string>

Forces an error to occur if argument is blank (empty). The optional string
will appear as part of the error message.

24 Turbo Assembler Quick Reference Guide

.ERRDEF

.ERRDEF MASM

.ERRDEF symbol <string>

Forces an error to occur if symbol is defined. The optional string will ap
pear as part of the error message .

. ERRDIF MASM

.ERRDIF argumentl,argument2 <string>

Forces an error to occur if arguments are different. The comparison is
case sensitive. The optional string will appear as part of the error mes
sage .

. ERRDIFI MASM

.ERRDIFI argumentl,argument2 <string>

Forces an error to occur if arguments are different. The comparison is not
case sensitive. The optional string will appear as part of the error mes
sage .

. ERRE MASM

.ERRE expression <string>

Forces an error to occur if expression is false (0). The optional string will
appear as part of the error message .

. ERRIDN MASM

.ERRIDN argumentl,argument2 <string>

Forces an error to occur if arguments are identical. The comparison is
case sensitive. The optional string will appear as part of the error mes
sage .

. ERRIDNI MASM

.ERRIDNI argumentl,argument2 <string>

Forces an error to occur if arguments are identical. The comparison is not
case sensitive. The opt\onal string will appear as part of the error mes
sage.

ERRIF Ideal, MASM

ERRIF expression <string>

Forces an error to occur if expression is true (nonzero). The optional string
will appear as part of the error message.

PART 3, Directives 25

ERRIFl

ERRIFl Ideal, MASM

ERRIFl <string>

Forces an error to occur on pass 1 of assembly. The optional string will
appear as part of the error message.

ERRIF2 Ideal, MASM

ERRIF2 <string>

Forces an error to occur on pass 2 of assembly if multiple-pass mode (con
trolled by 1m command-line option) is enabled. The optional string will
appear as part of the error message.

ERRIFB Ideal, MASM

ERRIFB argument <string>

Forces an error to occur if argument is blank (empty). The optional string
will appear as part of the error message.

ERRIFDEF Ideal, MASM

ERRIFDEF symbol <string>

Forces an error if symbol is defined. The optional string will appear as
part of the error message.

ERRIFDIF Ideal, MASM

ERRIFDIF argumentl,argument2 <string>

Forces an error to occur if arguments are different. The comparison is
case sensitive. The optional string will appear as part of the error mes
sage.

ERRIFDIFI Ideal; MASM

ERRIFDIFI argumentl,argument2 <string>

Forces an error to occur if arguments are different. The comparison is not
case sensitive. The optional string will appear as part of the error mes
sage.

ERRIFE Ideal, MASM

ERRIFE expression <string>

Forces an error if expression is false (0). The optional string will appear as
part of the error message.

26 Turbo Assembler Quick Reference Guide

ERRIFIDN

ERRIFIDN Ideal, MASM

ERRIFIDN argumentl,argument2 <string>

Forces an error to occur if arguments are identical. The comparison is
case sensitive. The optional string will appear as part of the error mes
sage.

ERRIFIDNI Ideal, MASM

ERRIFIDNI argumentl,argument2 <string>

Forces an error to occur if arguments are identical. The comparison is not
case sensitive. The optional string will appear as part of the error mes
sage.

ERRIFNB Ideal, MASM

ERRIFNB argument <string>

Forces an error to occur if argument is not blank. The optional string will
appear as part of the error message.

ERRIFNDEF Ideal, MASM

ERRIFNDEF symbol <string>

Forces an error to occur if symbol is not defined. The optional string will
appear as part of the error message .

. ERRNB MASM

.ERRNB argument <string>

Forces an error to occur if argument is not blank. The optional string will
appear as part of the error message .

. ERRNDEF MASM

.ERRNDEF symbol <string>

Forces an error to occur if symbol is not defined. The optional string will
appear as part of the error message .

. ERRNZ MASM

.ERRNZ expression <string>

Forces an error to occur if expression is true (nonzero). The optional string
will appear as part of the error message.

EVEN Ideal, MASM

Rounds up the location counter to the next even address.

PART 3, Directives 27

EVEN DATA

EVENDATA Ideal, MASM

Rounds ;UP the location counter to the next even address in a data seg
ment.

.EXIT MASM

.EXIT [return_value_expr]

Produces termination code. MASM mode only. Equivalent to EXITCODE.

EXITCODE Ideal, MASM

EXITCODE [return_value_expr]

Produces termination code. You can use it for each desired exit point. re
turn_value_expr is a number to be returned to the operating system. If you
don't specify return_value_expr, the value in AX is returned.

EXITM Ideal, MASM

Terminates macro- or block-repeat expansion and returns control to the
next statement following the macro or repeat-block call.

EXTRN Ideal, MASM

EXTRN definition [,definition] ...

Indicates that a symbol is defined in another module. definition describes
a symbol and has the following format:

[language] name[countl]:type [:count2]

language specifies that the naming conventions of C, PASCAL, BASIC,
FORTRAN, ASSEMBLER, or PROLOG are to be applied to symbol
name. name is the symbol that is defined in another module and can op
tionally be followed by countl, an array element multiplier that defaults
to 1. type must match the type of the symbol where it's defined and must
be one of the following: NEAR, FAR, PROC, BYTE, WORD, DWORD,
DATAPTR, CODEPTR, FWORD, PWORD, QWORD, TBYTE, ABS, or .
a structure name. count2 specifies how many items this external symbol
defines and defaults to 1 if not specified .

. FARDATA MASM

Same as FARDATA. MASM mode only.

FARDATA Ideal

FARDATA [segmentname]

Defines the start of a far initialized data segment. segmentname, if present,
overrides the default segment name.

28 Turbo Assembler Quick Reference Guide

.FARDATA?

.FARDATA? MASM

.FARDATA? [segmentname]

Defines the start of a far uninitialized data segment. segmentname, if pre
sent, overrides the default segment name.

FASTIMUL Ideal, MASM

FASTlMUL<desCreg>, <sourceJlm>, <value>

Generates code that multiplies source register or memory address by
value, and puts it into destination register.

FLiPFLAG Ideal, MASM

See syntax for the XOR processor instruction

Optimized form of XOR that complements bits with shortest possible in
struction. Use only if the resulting contents of the flags registers are unim
portant.

GETFIELD Ideal, MASM

GETFIELD<field_name><destination Jeg> ,<source_rim>

Generates code that retrieves the value of a field found in the same
source register or memory address, and sets the destination to that value.

GLOBAL Ideal, MASM

GLOBAL definition [,definition] ...

Acts ,as a combination of the EXTRN and PUBLIC directives to define a
global symbol. definition describes the symbol and has the following for
mat (boldface items are literal):

[language] name [[countl]] :type [:count2]

language specifies that the naming conventions of C, PASCAL, BASIC,
FORTRAN, NOLANGUAGE, or PROLOG are to be applied to symbol
name. If name is defined in the current source file, it is made public ex
actly as if used in a PUBLIC directive. If not, it is declared as an external
symbol of type type, as if the EXTRN directive had been used. name can
be followed by an optional array count multiplier, countl, which defaults
to 1. type must match the type of the symbol in the module where it is de
fined and must be one of the following: NEAR, FAR, PROC, BYTE,
WORD, DATAPTR, CODEPTR, DWORD, FWORD, PWORD,
QWORD, TBYTE, ABS, or a structure name. count2 specifies how many
items this symbol defines (1 is the default).

GOTO Ideal, MASM

GOTO tag_symbol

Tells Turbo Assembler to resume executIon at the specified macro tag
(tag_symbol). GOTO terminates any conditional block that it is found in.

PART 3, Directives 29

GROUP

GROUP Ideal, MASM

GROUP groupname segmentname [,segmentname] .. .
groupname GROUP segmentname [,segmentname] .. .

Associates groupname with one or more segments, so that all labels and
variables defined in those segments have their offsets computed relative
to the beginning of group groupname. segmentname can be either a seg
ment name defined previously with SEGMENT or an expression starting
with SEG. In MASM mode, you must use a group override whenever
you access a symbol in a segment that is part, of a group. InIdeal mode,
Turbo Assembler automatically generates group overrides for such sym
bols.

IDEAL Ideal, MASM

Enters Ideal assembly mode. Ideal mode will stay in effect until it is over
ridden by a MASM or QUIRKS directive.

IF
IF expression

truestatements
[ELSE
falsestatements]

ENDIF

Ideal, MASM

Initiates a conditional block, causing the assembly of truestatements up to
the optional ELSE directive, provided that expression is true (nonzero).

IFl
IFI

truestatements
[ELSE
falsestatements]

ENDIF

Ideal, MASM

Initiates a conditional block, causing the assembly of truestatements up to
the optional ELSE directive, provided that the current assembly pass is
pass one.

IF2
IF2

truestatements
[ELSE
falsestatements]

ENDIF

Ideal, MASM

Initiates a conditional block, causing the assembly of truestatements up to
the optional ELSE directive, provided that multiple-pass mode (control
led by the 1m command-line option) is enabled and the current assembly
pass is pass two.

30 Turbo Assembler Quick Reference Guide

IFB
IFB argument

truestatements
[ELSE
falsestatements]

ENDIF

IFB

Ideal, MASM

Initiates a conditional block, causing the assembly of truestatements up to
the optional ELSE directive, provided that argument is blank (empty).

IFDEF Ideal, MASM

IFDEF symbol
truestatements

[ELSE
falsestatements]

ENDIF

Initiates a conditional block, causing the assembly of truestatements up to
the optional ELSE directive, provided that symbol is defined.

IFDIF
IFDIF argumentl,argument2

truestatements
[ELSE
falsestatements]

ENDIF

Ideal, MASM

Initiates a conditional block, causing the assembly of truestatements up to
the optional ELSE directive, provided that the arguments are different.
The comparison is case sensitive.

IFDIFI
IFDIFI argumentl,argument2

truestatements
[ELSE
falsestatements]

ENDIF

Ideal, MASM

Initiates a conditional block, causing the assembly of truestatements up to
the optional ELSE directive, provided that the arguments are different.
The comparison is not case sensitive.

PART 3, Directives 31

IFE

IFE
IFE expression

truestatements
[ELSE
falsestatements]

ENDIF

Ideal, MASM

Irlitiates a conditional block, causmg the assembly of truestatements up to
the optional ELSE directive, provided that expression is false.

IFIDN
IFIDN argumentl,argument2

truestatements
[ELSE
falsestatements]

ENDIF

Ideal, MASM

Initiates a conditional block, causing the assembly of truestatements up to
the optional ELSE directive, provided that the arguments are identical.
The comparison is case sensitive.

IFIDNI
IFIDNI argumentl,argument2

truestatements
[ELSE
falsestatements]

ENDIF

Ideal, MASM

Initiates a conditional block, causing the assembly of truestatements up to
the optional ELSE directive, provided that the arguments are identical.
The comparison is not case sensitive.

IFNB
IFNB argument

truestatements
ELSE
falsestatements]

ENDIF

Ideal, MASM

Initiates a conditional block, causing the assembly of truestatements up to
the optional ELSE directive, provided that argument is nonblank.

32 Turbo Assembler Quick Reference Guide

IFNDEF
IFNDEF symbol

truestatements
[ELSE
falsestatements]

ENDIF

IFNDEF

Ideal, MASM

Initiates a conditional block, causing the assembly of truestatements up to
the optional ELSE directive, provided that symbol is not defined.

%INCL Ideal, MASM

Enables listing of include files. This is the default INCLUDE file listing
mode.

INCLUDE MASM, Ideal

INCLUDE filename or INCLUDE ''filename''
Includes source code from file filename at the current position in the mod
ule being assembled. If no extension is specified, .ASM is assumed.

INCLUDELIB MASM, Ideal

INCLUDELIB filename or INCLUDELIB ''filename''
Causes the linker to include library filename at link time. If no extension is
specified, .LIB is assumed.

INSTR Ideal, MASM51

name INSTR [start,]stringl,string2

name is assigned the position of the first instance of string2 in stringl.
Searching begins at position start (position one if start not specified). If
string2 does not appear anywhere within stringl, name is set to zero.

IRP Ideal, MASM

IRP parameter ,argl [,arg2] ...
statements

ENDM

Repeats a block of statements with string substitution. statements are as
sembled once for each argument present. The arguments may be any
text, such as symbols, strings, numbers, and so on. Each time the block is
assembled, the next argument in the list is substituted for any instance of
parameter in the statements.

PART 3, Directives 33

IRPC

IRPC

IRPC parameter,string
statements

ENDM

Ideal, MASM

Repeats a block of statements with character substitution. statements are
assembled once for each character in string. Each time the block is assem
bled, the next character in the string is substituted for any instances of pa
rameter in statements.

JMP Ideal, MASM

JMP<instance-ptr>METHOD{ <objecCname>:}
<method_name> {USES{segreg: }offsreg}

Functions exactly like CALL .. METHOD except that it generates a JMP in
stead of a CALL and it cleans up the stack if there are LOCAL or USES
variables on the stack. Use primarily for tail recursion.

JUMPS Ideal, MASM

Causes Turbo Assembler to look at the destination address of a condi
tional jump instruction, and if it is too far away to reach with the short
displacement that these instructions use, it generates a conditional jump
of the opposite sense around an ordinary jump instruction to the desired
target address. This directive has the same effect as using the IHUMPS .
command-line option.

LABEL MASM, Ideal

name LABEL type
LABEL name type

Defines a symbol name to be of type type. name must not have been de
fined previously in the source file. type must be one of the following:
NEAR, FAR, PROC, BYTE, WORD, DATAPTR, CODEPTR, DWORD,
FWORD, PWORD, QWORD, TBYTE, or a structure name .

. LALL MASM

Enables listing of macro expansions.

LARGESTACK Ideal, MASM

Indicates that the stack is 32 bit.

.LFCOND MASM

Shows all statements in conditional blocks in the listing.

34 Turbo Assembler Quick Reference Guide

OfoLiNUM

%LiNUM Ideal, MASM

%LlNUM size

Sets the width of the line-number field in listing file to size columns. The
default is four columns.

0/0 LIST Ideal, MASM

Shows source lines in the listing. This is the default listing mode .

• LIST MASM

Same as %LIST. MASM mode only.

LOCAL Ideal, MASM

In macros:
LOCAL symbol [,symbol] ...

In procedures:
LOCAL element [,element] ... [=symbol]

Defines local variables for macros and procedures. Within a macro defini
tion, LOCAL defines temporary symbol names that are replaced by new
unique symbol names each time the macro is expanded. LOCAL must ap
pear before any other statements in the macro definition.

Within a procedure, LOCAL defines names that access stack locations as
negative offsets relative to the BP register. If you end the argument list
with an equal sign (=) and a symbol, that symbol will be equated to the
total size of the local symbol block in bytes. Each element has the follow
ing syntax (boldface brackets are literal):

symname [[countl]] [:[debug_size] [:type] [:count2]]

type is the data type of the argument. It can be one of the following:
BYTE, WORD, DATAPTR, CODEPTR, DWORD, FWORD, PWORD,
QWORD, TBYTE, NEAR, FAR, PROC, or a structure name. If you don't
specify a type, WORD size is assumed.

count2 specifies how many items of type the symbol defines. The default
for count2 is 1 if it is not specified.

countl is an array element size multiplier. The total space allocated for
the symbol is count2 times the length specified by the type field times
countl. The default for countl is 1 if it is not specified.

The optional debug_size has this syntax:

[type] PTR

PART 3, Directives 35

LOCALS

LOCALS Ideal, MASM

LOCALS [prefix]

Enables local symbols, whose names will begin with two at-signs (@@) or
the two-character prefix if it is specified. Local symbols are automatically
enabled in Ideal mode.

MACRO Ideal, MASM

MACRO name [parameter [,parameter] ...]
name MACRO [parameter [,parameter] ...]

Defines a macro to be expanded later when name is encountered. pararlJe
ter is a placeholder that you use in the the body of the macro definition
wherever you want to substitute one of the actual arguments the macro
is called with.

%MACS Ideal, MASM

Enables listing of macro expansions.

MASKFLAG Ideal, MASM

See the syntax for the AND processor instruction

Optimized form of AND that clears bits with the shortest possible instruc
tion. Use only if the resulting contents of the flags registers are unimpor
tant.

MASM Ideal, MASM

Enters MASM assembly mode. This is the default assembly mode for
Turbo Assembler.

MASM51 Ideal, MASM

Enables assembly of some MASM 5.1 enhancements.

MODEL Ideal, MASM

MODEL [model modifier] memorymodel [module name]
[,[language modifier] language] [,model modifier]

Sets the memory model for simplified segmentation directives. model modi
fier can come before memorymodel or at the end of the statement and musf
be either NEARST ACK or F ARSTACK if present. memorymodel is TINY,
SMALL, MEDIUM, COMPACT, LARGE, HUGE or TCHUGE. module
name is used in the large models to declare the name of the code seg
ment language modifier is WINDOWS, ODDNEAR, ODDFAR, or NOR
MAL and specifies generation of MSWindows procedure entry and exit
code. language specifies which language you will be calling from to access
the procedures in this module: C, PASCAL, BASIC, FORTRAN,

36 TurQo Assembler Quick Reference Guide

·MODEL

PROLOG, or NOLANGUAGE. Turbo Assembler automatically gener
ates the appropriate procedure entry and exit code when you use the
PROC and ENDP directives. language also tells Turbo Assembler which
naming conventions to use for public and external symbols, and in what
order procedure arguments were pushed onto the stack by the calling
module. Also, the appropriate form of the RET instruction is generated to
remove the arguments from the stack before returning if required .

. MODEL . MASM

Same as MODEL. MASM mode only.

MULTERRS Ideal, MASM

Allows multiple errors to be reported on a single source line.

NAME Ideal, MASM

NAME modulename

Sets the object file's module name. This directive has no effect in MASM
mode; it only works in Ideal mode.

%NEWPAGE Ideal, MASM

Starts a new page in the listing file.

%NOCONDS Ideal, MASM

Disables the placement of statements in conditional blocks in the listing
file.)

%NOCREF Ideal, MASM

%NOCREF [symbol, ...]

Disables cross-reference listing (CREF) information accumulation. If you
supply o~e or more symbol names, cross-referencing is disabled only for
those symbols.

%NOCTLS Ideal, MASM

Disables placement of listing-control directives in the listing file. This is
the default listing-control mode for Turbo Assembler.

NOEMUL Ideal, MASM

Causes all subsequent numeric coprocessor instructions to be generated
as real instructions, instead of emulated instructions. When your pro
gram is executed, you must have an 80x87 coprocessor installed or these
instructions will not work properly. This is the default floating-point as
sembly mode for Turbo Assembler.

PART 3, Directives 37

%NOINCL

%NOINCL Ideal, MASM

Disables listing of source lines from INCLUDE files.

NOJUMPS Ideal, MASM

Disables stretching of conditional jumps enabled with JUMPS. This is the
default mode for Turbo Assembler. '

%NOLIST Ideal, MASM

Disables output to the listing file.

NOLOCALS Ideal, MASM

Disables local symbols enabled with LOCALS. This is the default for
Turbo Assembler's MASM mode.

%NOMACS Ideal, MASM

Lists only macro expansions that generate code. This is the default macro
listing mode for Turbo Assembler.

NOMASM51 Ideal, MASM

Disables assembly of certain MASM 5.1 enhancements enabled with
I MASM51. This is the default mode for Turbo Assembler.

NOMULTERRS Ideal, MASM

Allows only a single error to be reported on a source line. This is the de
fault error-reporting mode for Turbo Assembler.

NOSMART Ideal, MASM

Disables code optimizations that generate different code than MASM.

%NOSYMS Ideal, MASM

Disables placement of the symbol table in the listing file.

%NOtRUNC Ideal, MASM

Prevents truncation of fields whose contents are longer than the corre
sponding field widths in the listing file.
60 points

NOWARN Ideal, MASM

NOW ARN [warnclass]

Disables warning messages with warning identifIer warnclass, or all warn
ing messages if warnclass is not specified.

38 Turbo Assembler Quick Reference Guide

ORG

ORG Ideal, MASM

ORG expression

Sets the location counter in the current segment to the address specified
by expression.

%OUT

%OUT text

Displays text on screen.

P186
Enables assembly of 80186 processor instructions.

P286

MASM

Ideal, MASM

Ideal, MASM

Enables assembly of a1180286 (including protected mode) processor in
structions and 80287 numeric coprocessor instructions.

P286N Ideal, MASM

Enables assembly of non-privileged (real mode) 80286 processor instruc
tions and 80287 numeric coprocessor instructions.

P286P Ideal, MASM

Enables assembly of a1180286 (including protected mode) processor in
structions and 80287 numeric coprocessor instructions.

P287 Ideal, MASM

Enables assembly of 80287 numeric coprocessor instructions.

P386 Ideal, MASM

Enables assembly of a11386 (including protected mode) processor instruc
tions and 387 numeric coprocessor instructions.

P386N Ideal, MASM

Enables assembly of non-privileged (real mode) 386 processor instruc
tions and 387 numeric coprocessor instructions.

P386P Ideal, MASM

Enables assembly of a11386 (including protected mode) processor instruc
tions and 387numenc coprocessor instructions.

P387 Ideal, MASM

Enables assembly of 387 numeric coprocessor instructions.

PART 3, Directives 39

P486

P486 Ideal, MASM

Enables assembly of all i486 (including protected mode) processor instruc-
tions. -

P486N Ideal, MASM

Enables assembly of non-privileged (real mode) i486 processor instruc
tions.

P487 Ideal, MASM

Enables assembly of 487 numeric processor instructions.

P586 Ideal, MASM

Enables assembly of all Pentium (including protected mode) processor in
structions.

P586N Ideal, MASM

Enables assembly of non-privileged (real mode) Pentium processor in
structions.

P587 Ideal, MASM

Enables assembly of Pentium numeric processor instructions.

P8086 Ideal, MASM

Enables assembly of 8086 processor instructions only. This is the default
processor instruction mode for Turbo Assembler.

P8087 Ideal, MASM

Enables assembly of 8087 numeric coprocessor instructions only. This is
the default coprocessor instruction mode for Turbo Assembler.
PAGE,MASM

%PAGESIZE Ideal, MASM

PAGE [rows] [,cols]
%P AGESIZE [rows] [,cols]

Sets the listing page height and width, starts new pages. rows specifies
the number of lines that will appear on each listing page (10 .. 255). cols
specifies the number of columns wide the page will be (59 .. 255). Omitting
rows or cols leaves the current setting unchanged. If you follow PAGE
/with a plus sign (+), a new page starts, the section number is incre-
mented, and the page number restarts at 1. PAGE with no arguments
forces the listing to resume on a new page, with no change in section
number.

40 Turbo Assembler Quick Reference Guide

%PCNT

%PCNT width

%PCNT

Ideal, MASM

Sets segment:offset field width in listing file to width columns. The de
fault is 4 for 16-bit segments and 8 for 32-bit segments.

PN087 Ideal, MASM

Prevents the assembling of numeric coprocessor instructions (real or emu
lated).

%POPLCTL

Resets the listing controls to the way they were when the last
%PUSHLCTL directive was issued.

Ideal, MASM

POPSTATE Ideal, MASM

Returns to last saved state from Turbo Assembler's internal state stack.

PROC
For VERSION T310 or earlier:
PROC [language modifier] [language] name [distance]

[USES items,] [argument [,argument] ...]
[RETURNS argument [,argument] ...]

For VERSION T320 or later:
PROC name [language modifier] [language] [distance]

[USES items,] [argument [,argument] ...]
[RETURNS argument [,argument] ...]

name PROC [language modifier] [language] [distance]
[USES items,] [argument [,argument] ...]
[RETURNS argument [,argument] ...]

Defines the start of procedure name. language modifier is either

Ideal, MASM

WINDOWS or NOWINDOWS, to specify generation of MSWindows en
try / exit code. language specifies which language you will be calling from
to access this procedure: C, PASCAL, BASIC, FORTRAN,
NOLANGUAGE, or PROLOG. This determines symbol naming conven
tions, the order of any arguments on the stack, and whether the argu
ments will be left on the stack when the procedure returns. distance is
NEAR or FAR and determines the type of RET instruction that will beas
sembled at the end of the procedure. items is a list of registers and/or sin
gle-token data items to be pushed on entry and popped on exit from the
procedure. argument describes an argument the procedure is called with.
Each argument has the following syntax:

argname[[countl]] [[:distance] [PTR] type] [:count2]

argname is the name you'll use to refer to this argument throughout the
procedure. distance is NEAR or FAR to indicate that the argument is a
pointer of the indicated size. type is the data type of the argument and
can be BYTE, WORD, DWORD, FWORD, PWORD, QWORD, TBYTE,

PART 3, Directives , 41

PROCDESC

or a structure name. WORD is assumed if none is specified. countl and
count2 are the number of elements of type. PTR tells Turbo Assembler to
emit debug information to let Turbo Debugger know that the argument is
a pointer to a data item. Using PTR without distance causes the pointer
size to be based on the current memory model and segment address size.
RETURNS introduces one or more arguments that won't be popped
from the stack when the procedure returns.

, PROCDESC Ideal, MASM

PROCDESC name [language] [language modifier] [distance]
[(lrguments]

name PRODESC [[language_modijier] language] [distance]
Jarguments]

Declares a procedure prototype, which lets Turbo Assembler check the
types and number of parameters to procedure calls and declarations, and
specifies language and distance. Also serves to P.UBLIC or EXTRN the
procedure name.

PROCTYPE
PROCTYPE name [procedure_description]
name PROCTYPE [procedure_description]

procedure_description has the following syntax:
[[language _modijier] language] [distance] [argumenClist]

argumenClist has the following syntax:
argument [,argument] ...

where each argument has the following syntax:

Ideal, MASM

[argname] [[countl_expressions]]:complex_type[:count2_expres sion]

Declares a procedure type. Describes a procedure but does not create a
prototype for it. Can be used in place of the language specifier in a call to
allow argument type checking during compilation.

PUBLIC Ideal, MASM

PUBLIC [language] symbol [,[language] symbol] ...

Declares symbol to be accessible from other modules. If language is speci
fied (C, PASCAL, BASIC; FORTRAN, ASSEMBLER, or PROLOG), sym
bol is made public after having the naming conventions of the specified
language applied to it.

PUBLlCDLL Ideal, MASM

PUBLICDLL [language] symbol [,[language] symbol] ...

Declares symbols to be accessible as dynamic link entry points from
other modules. symbol (a PROC or program label, data variable name, or
numeric constant defined with EQu) becomes accessible to other pro
grams under Windows. If language is specified (C, PASCAL, BASIC,
FORTRAN, PROLOG, or NOLANGUAGE), symbol is made public after
having the naming conventions of the specified language applied to it.

42 Turbo Assembler Quick Reference Guide

I

PURGE

PURGE Ideal, MASM

PURGE macroname [,macroname] ...

Removes macro definition macroname.

%PUSHLCTL Ideal, MASM .

Saves current listing controls on a 16-level stack.

PUSHSTATE Ideal, MASM

Saves current operating state on an internal stack that is 16 levels deep.

QUIRKS Ideal, MASM

Allows you to assemble a source file that makes use of one of the true
MASMbugs .

. RADIX MASM

Same as RADIX. MASM mode only.·

RADIX Ideal, MASM

RADIX radix

Sets the default radix for integer constants in expressions to 2, 8, 10, or 16.

RECORD MASM, Ideal

name RECORD field [field] .. .
RECORD name field [field] .. .

Defines record name that contains bit fields. Each field describes a group
of bits in the record and has the following format (boldface items are lit
eral):

fieldnq.me:width[=expression]

fieldname is the name of a field in the record,~_ width (1 .. 16) specifies the
number of bits in the field. If the total number of bits in all fields is 8 or
less, the record will occupy 1 byte; 9 .. 16 bits will occupy 2 bytes; other
wise, it will occupy 4 bytes. expression provides a default value for the
field.

REPT Ideal, MASM

REPf expression
statements

ENDM

Repeats a block of statements expression times.

PART 3, Directives 43

RETCODE

RETCODE Ideal, MASM

Generates either a near return (2-byte displacement) or a far return (4-
byte displacement) depending on the size of the memory model declared
in the .MODULE directive. A tiny, small, or compact memory model re
sults in a near return, while a medium, large, or huge memory model re
sults in a far return. See the RET processor instruction in Part 4 for more
information.

~~ ~~MMM

Generates a far return (4-byte displacement) from a procedure. See the
RET processor instruction in Part 4 for more information.

RETN Ideal, MASM

Generates a near return (2-byte displacement) from a procedure. See the
RET processor instruction in Part 4- for more information .

. SALL MASM

Suppresses the listing of all statements in macro expansions.

SEGMENT MASM, Ideal

SEGMENT name [align] [combine] [use] ['class']
name SEGMENT [align]. [combine] [use] ['class']

Defines segment name with full attribute control. If you have already de
fined a segment with the same name, this segment is treated as a continu
ation of the previous one. align specifies the type of memory boundary
where the segment must start: BYTE, WORD, DWORD, PARA (default),
or PAGE. combine specifies how segments from different modules but
with the same name will be combined at link time: AT expression (locates
segment at absolute paragraph address expression), COMMON (locates
this segment and all other segments with the same name at the same ad
dress), MEMORY (concatenates all segments with the same name to
form a single contiguous segment), PRIVATE (does not combine this seg
ment with any other segments; this isthe default used if none specified),
PUBLIC (same as MEMORY above), STACK (concatenates all segments
with the same name to form a single contiguous segment, then initializes
SS to the beginning of the segment and SP to the length of the segment)
or VIRTUAL (defines a special kind of segment that will be treated as a
common area and attached to another segment at link time). use specifies
the default word size for the segment if 386 code generation is enabled,
and can be either USE16 or USE32. class controls the ordering of seg
ments at link time: segments with the same class name are loaded into
memory together, regardless of the order in which they appear in the
source file.

44 Turbo Assembler Quick Reference Guide

.SEQ

.SEQ MASM

Sets sequential segment-ordering. This is the default ordering mode for
Turbo Assembler .. SEQ has the same function as the Is command-line op
tion.

SETFIELD Ideal, MASM

SETFIELD<jield_name><destination _rim> ,<source_reg>

Generates code that sets a value in a record field. Sets the field in the des
tination register or memory address with the contents of a source register.

SETFLAG Ideal, MASM

see the syntax jor the OR processor instruction

Optimized form of OR that sets bits with shortest possible instruction.
Use only if the resulting contents of the flags register is unimportant.

.SFCOND MASM

Prevents statements in false conditional blocks from appearing in the list
ing file.

SIZESTR Ideal, MASM51

name SIZESTR string

Assigns the number of characters in string to name. A null string has a
length of zero.

SMALLSTACK Ideal, MASM

Indicates that the stack is 16 bit.

SMART Ideal, MASM

Enables all code optimizations .

. STACK MASM

Same as ST ACK~ MASM mode only.

STACK Ideal, MASM

STACK [size]

Defines the start of the stack segment, allocating size bytes. 1024 bytes are
allocated if size is not specified .

. STARTUP MASM

Provides initialization code. MASM mode only. Equivalent to ST ARTUP-
CODE. '

PART 3, Directives 45

STARTUPCODE

5TARTUPCODE Ideal, MASM

Provides initialization code and marks the beginning of the program.

5TRUC Ideal, MASM

[name] STRUC {<modifiers>}{ <parent_name> HMETHOD<method_list>}
<structure_data> .

ENDS [name]

STRUC [name]{<modijiers>}{<parenCname>HMETHOD<method_list>}
<structure_data>

ENDS [name]
I

parent_name is the name of the parent object's data structure. method_list is
like that of TABLE. structure_data is any (additional) data present in an in
stance of the object. modifiers can be GLOBAL, NEAR, or FAR.

5UB5TR Ideal, MASM51

name SUBSTR string,position[,size]

Defines a new string name consisting of characters from string starting at
position, with a length of size. All the remaining characters in string, start
ing from position, are assigned to name if size is not specified.

5UBTTL
Same as %SUBTTL. MASM mode only.

0/05 U BTTL
%SUBTTL "text"

Sets subtitle in listing file to text.

%5YM5

MASM

Ideal, MASM

Ideal, MASM

Enables symbol table placement in listing file. This is the default symbol.
listing mode for Turbo Assembler.

TABLE Ideal, MASM

TABLE name [table_member [,table_member ...]]

Constructs a table structure used to contain method pointers for objects.

%TAB5IZE

%TABSIZE width

Ideal, MASM

Sets the number of columns between tabs in the listing file to width. The
default is 8 columns. .

TBLINIT Ideal, MASM

Initializes pointer in an object to·the virtual method table.

46 Turbo Assembler Quick Reference Guide

TBUNST

TBLINST Ideal, MASM

TBLINST

Creates an instance of the virtual table for the current object and defines
@TableAddr_<object>. Must be used after every object definition that in
cludes virtual methods, so that the virtual table is allocated. You should
use this directive in only one module of your program.

TBLPTR Ideal, MASM

TBLPTR

Places a virtual table pointer within the object data. Defines a structure
member of the name @Mptr_<object>. This can only be used inside an ob
ject definition.

TESTFLAG Ideal, MASM

See the syntax for the TEST processor instruction

Optimized form of TEST that tests bits with the shortest possible instruc
tion.

O/oTEXT
%TEXTwidth

Sets width of source field in listing file to width columns .

. TFCOND
Toggles conditional block-listing mode.

TITLE
Same as % TITLE. MASM mode only.

%TITLE

% TITLE "text"

Sets title in listing file to text.

%TRUNC

Truncates listing fields that are too long.

TYPEDEF
TYPEDEF type_name complex_type
type_name TYPEDEF complex_type

Defines named types.

PART 3, Directives

Ideal, MASM

MASM

MASM

Ideal, MASM

Ideal, MASM

Ideal, MASM

47

UDATASEG

UDATASEG Ideal, MASM

Defines the start of an uninitialized data segment.

UFARDATA Ideal, MASM

Defines the start of an uninitialized far data segment.

UNION
UNION name
fields

ENDS [name]
name UNION
fields

[name] ENDS

Ideal, MASM (disabled by QUIRKS)

Defines a union called name. A union is just like a STRUC except that all
its members have an offset of zero from the start of the union. This re
sults in a set of fields that are overlayed, allowing you to refer to the
memory area defined by the union with different names and different
data sizes. The length of a union is the length of its largest member, not
the sum of the lengths of its members as in a STRUC. fields define the
fi~lds that comprise the union. Each field uses the normal data allocation
directives (DB, DW, and so on) to define its size.

USES Ideal, MASM

USES item [,item] ...

Indicates which registers or single-token data items you want to have
pushed at the beginning of the enclosing procedure and which ones you
want popped just before the procedure returns. You must use this direc
tive before the first instruction that actually generates code in your proce
dure.

VERSION MASM,Ideal

VERSION <versionjD>

Places Turbo Assembler in the equivalent operating mode for the speci
fied version.

WARN Ideal, MASM

WARN [warnclass]

Enables the type of warning message specified with warn class, or all warn
ings if warn class is not specified. warnclass may be one of: ALN, ASS,
BRK, ICG, LCO, OPI, OPP, OPS, OVF, PDC, PRO, PQK, RES, or TPI.

48 Turbo Assembler Quick Reference Guide

WHILE

WHILE Ideal, MASM

WHILE whilcexpression
macro body

ENDM

Repeats a macro body until while_expression evaluates to a (false) .

. XALL MASM

Causes only macro expansions that generate code or data to be listed .

. XCREF MASM

Disables cross-reference listing (CREF) information accumulation .

. XLlST MASM

Disables subsequent output to listing file.

PART 3, Directives 49

50, Turbo Assembler Quick Reference Guide

p A R T 4

Processor instructions

PART 4, Processor instructions 51

This part presents instruction$ for the x86 in alphabetical order. For each
instruction, the forms are given for each operand combination, including
object code produced, operands required, execution time, and a descrip
tion. For each instruction, there is an operational description and a sum:
mary of exceptions generated.

Operand-size and address-size attributes

When executing an instruction, the x86 can address memory using either
16- or 32-bit addresses. Consequently, each instruction that uses memory
addresses has associated with it an address-size attribute of either 16 or
32 bits. Sixteen-bit addresses imply both the use of a 16-bit displacement
in the instruction and the generation of a 16-bit address offset (segment
relative address) as the result of the effective address calculation. Thirty
two-bit addresses imply the use of a 32-bit displacement and the genera
tion of a 32-bit address offset. Similarly, an instruction that accesses
words (16 bits) or doublewords (32 bits) has an operand-size attribute of
either 16 or 32 bits.

The attributes are determined by a combination of defaults, instruction
prefixes, and (for programs executing in protected mode) size-specifica
tion bits in segment descriptors.

Default segment attribute

For programs executed in protected mode, the D-bit itt executable-seg
ment descriptors determines the default attribute for both address size
and operand size. These default attributes apply to the execution of all in
structions in the segment. A value of zero in the D-bit sets the default ad
dress size and operand size to 16 bits; a value oLone, to 32 bits.

Programs that execute in real mode or virtual-8086 mode have 16-bit ad
dresses and operands by default.

Operand-size and address-size instruction prefixes

The internal encoding of an instruction can include two byte-long pre
fixes: the address-size prefix, 67H, and the operand-size prefix, 66H. (A
later section, "Instruction format," shows the position of the prefixes in an
instruction's encoding.) These prefixes override the default segment attri
butes for the instruction that follows. Table 4.1 shows the effect of each
possible combination of defaults and overrides.

52 Turbo Assembler Quick Reference Guide

Table 4.1 Effective size attributes

Segment default D= ... 0 0 0 0 1 1 1 1
Operand-size prefix 66h N N Y Y N N Y Y
Address-size prefix 67h N y N Y N y N Y
Effective operand size 16 16 32 32 32 32 16 16
Effective address size 16 32 16 32 32 16 32 16

Y = Yes, this instruction prefix is present.
. N = No, this instruction prefix is not present.

Address-size attribute for stack

Instructions that use the stack implicitly (for example, POP EAX) also
have a stack address-size attribute of either 16 or 32 bits. Instructions
with a stack address-size attribute of 16 use the 16-bit SP stack pointer
register; instructions with a stack address-size attribute of 32 bits use the
32-bit ESP register to form the address of the top of the stack.

The stack address-size attribute is controlled by the B-bit of the data-seg
ment descriptor in the SS register. A value of zero in the B-bit selects a
stack address-size attribute of 16; a value of one selects a stack address
size attribute of 32.

Instruction format

All instruction encodings are subsets of the general instruction format
shown in Figure 4.1. Instructions consist of optional instruction prefixes,
one or two primary opcode bytes, possibly an address specifier consist
ing of the ModR/M byte and the SIB (scale index base) byte, a displace
ment, if required, and an immediate data field, if required.

Smaller encoding fields can be defined within the primary opcode or op
codes. These fields define the direction of the operation, the size of the
displacements, the register encoding, or sign extension; encoding fields
vary depending on the class of operation.

Most instructions that can refer to a operand in memory have an ad
dressing form byte following the primary opcode byte(s). This byte,
called the ModR/M byte, specifies the address form to be used. Certain
encodings of the ModR/M byte indicate a second addressing byte, the
SIB byte, which follows the ModR/M byte and is required to fully spec
ify the addressing form.

PART 4, Processor instructions 53

Figure 4.1
386 instruction format

Instruction I Address- I Operand- I Segment
prefix size prefix size prefix I override

o or 1 o or 1 o or 1 o or 1

Number of bytes

oPcodel MOdr/MI SIB I DiSPlacementllmmediate

1 or 2 0 or 1 0 or 1 0, 1, 2, or 4 0, 1, 2, or 4

Number of bytes

Addressing forms can include a displacement immediately following
either the ModR/M or SIB byte. If a displacement is present, it can be 8,
16, or 32 bits.

If the-instruction specifies an immediate operand, the immediate operand
always follows any displacement bytes. The immediate operand, if speci-
fied, is always the last field of the instruction. '

• The following are the allowable instruction prefix codes:

• F3h: REP prefix (used only with string instructions)

• F3h: REPE/REPZ prefix (used only with string instructions)

• F2h: REPNE/REPNZ prefix (used only with string instructions)

• FOh: LOCK prefix

The following are the segment override prefixes:

• 2Eh: CS segment override prefix

• 36h: SS segment override prefix

, • 3Eh: DS segment override prefix

• 26h: ES segment override prefix

• 64h: FS segment override prefix (386 processors and greater)

• 65h: GS segment override prefix (386 processors and greater)

• 66h: Operand-size override

• 67h: Address-size operand

54 Turbo Assembler Quick Reference Guide

ModR/M and SIB bytes

The ModR/M and SIB bytes follow the opcode byte(s) in many of the x86
instructions. They contain the following information: the indexing type or
register number to be used in the instruction; the register to be used, or
more information to select the instruction; and the base, index, and scale
information.

The ModR/M byte contains three fields of information:

• The mod field, which occupies the two most significant bits of the byte,
combines with the rim field to form 32 possible values: 8 registers and
24 indexing modes.

• The reg field, which occupies the next three bits following the mod
field, specifies either a register number or three more bits of ope ode in
formation. The meaning of the reg field is determined by the first (op
code) byte of the instruction.

• The rIm field, which occupies the three least-significant bits of the byte,
can specify a register as the location of an operand, or can form' part of
the addressing-mode encoding in combination with the mod field as
described earlier.

• The based indexed and scaled indexed forms of 32-bit addressing re
quire the SIB byte. The presence of the SIB byte is indicated by certain
encodings of the ModR/M byte. The SIB byte then includes the follow
ing fields:

• The ss field, which occupies the 2 most-significant bits of the byte,
specifies the scale factor.

• The index field, which occupies the next 3 bits following the ss field
specifies the register number of the index register.

• The base field, which occupies the 3 least-significant bits of the byte,
specifies the register number of the base register.

Figure 4.2 shows the format of the ModR/M and SIB bytes.

Figure 4.2
ModR/M and SIB byte formats

Modr/M Byte

7 6 5 4 3 2

Mod Reg/Opcode I RIM

SIB (Scale Index Base) Byte

7654321

I 88 I Index Base

The values and corresponding addressing forms of the ModR/M and SIB
bytes are shown in Tables 4.2, 4.3, and 4.4~

PART 4, Processor instructions 55

Table 4.2 16-bit addressing forms with ModR/M byte

r8(/r) AL CL OL BL AH CH OH BH
r16(/r) AX CX OX BX SP BP SI 01
r32(/r) EAX ECX EOX EBX ESP EBP ESI EOI
Idigit (opcode) 0 1 2 3 4 5 6 7
REG = 000 001 010 011 100 101 110 111

Effective address Mod RIM Mod RIM values in hexadecimal

[BX + SI] 000 00 08 10 18 20 28 30 38
[BX + 01] 001 01 09 11 19 21 29 31 39
[BP + SI] 010 02 OA 12 1A '22 2A 32 3A
[BP + 01] 00 011 03 OB 13 1B 23 2B 33 3B
[SI] 100 04 OC 14 1C 24 2C 34 3C
[01] 101 05 00 15 10 25 20 35 30
disp16 110 06 OE 16 1E 26 2E 36 3E
[BX] 111 07 OF 17 1F 27 2F 37 3F
[BX + SI] + disp8 000 40 48 50 58 60 68 70 78
[BX + 01] + disp8 001 41 49 51 59 61 69 71 79
[BP + SI] + disp8 010 42 4A 52 5A 62 6A 72 7A
[BP + 01] + disp8 01 011 43 4B 53 5B 63 6B 73 7B
[SI] + disp8 100 44 4C 54 5C 64 6C 74 7C
[01] + disp8 101 45 40 55 50 65 60 75 70
[BP] + disp8 I 110 46 4E 56 5E 66 6E 76 7E
[BX] + disp8 111 47 4F 57 5F 67 6F 77 7F
[BX + SI] + disp16 000 80 88 90 98 AO A8 ~O B8
[BX + 01] + disp16 001 81 89 91 99 A1 A9 B1 B9
[BP +'SI] + disp16 010 82 8A 92 9A A2 AA B2 BA
[BP + 01] + disp16 10 011 83 8B 93 9B A3 AB B3 BB
[SI] + disp16 100 84 8C 94 9C A4 AC B4 BC
[01] + disp16 101 85 / 80 95 90 A5 AO B5 BO
[BP] + disp16 110 86 8E 96 9E A6 AE B6 BE
[BX] + disp 16 111 87 8F 97 9F A7 AF B7 BF
EAXlAXIAL (386) 000 CO C8 00 D8 EO E8 FO F8
ECXlCXlCL (386) 001 C1 C9 01 D9 E1 E9 F1 F9
EOXlOXIOL (386) 010 C2 CA 02 OA E2 EA F2 FA
EBXlBXlBL (386) 11 011 C3 CB 03 OB E3 EB F3 FB
ESP/SP/AH (386) 100 C4 CC 04 OC E4 EC F4 FC
EBP/BP/CH (386) 101 C5 CO 05 00 E5 EO F5 FO
ESI/SI/OH (386) 110 C6 CE 06 OE E6 EE F6 FE
EOI/OI/BH (386) 111 C7 CF 07 OF E7 EF F7 FF

disp8 denotes an 8-bit displacement following the ModRIM byte, to be sign-extended and added to the index. disp16
denotes a 16-bit displacement following the Mod RIM byte, to be added to the index. Default segment register isSS
for the effective addresses containing a BP index, DS for other effective addresses.

56 Turbo Assembler ,Quick Reference Guide

Table 4.3 32-bit addressing forms with ModR/M byte (386 only)

r8(/r) AL CL DL BL AH CH DH BH
r16(/r) AX CX DX BX SP BP SI DI
r32(/r) EAX ECX EDX EBX ESP EBP ESI EDI
/digtt(opcode) 0 1 2 3 4 5 6 7
REG = 000 001 010 011 100 101 110 111

Effective address ModR/M Mod RIM values in hexadecimal

[EAX] 000 00 08 10 18 20 28 30 38
[ECX] 001 Ot 09 11 19 21 29 31 39
[EDX] 010 02 OA 12 1A 22 2A 32 3A
[EBX] 00 011 03 OB 13 1B 23 2B 33 3B
[--] [--] 100 04 OC 14 1C 24 2C 34 3C
disp32 101 05 OD 15 10 25 2D 35 3D
[ESI] 110 06 OE 16 1E 26 2E 36 3E
[EDI] 111 07 OF 17 1F 27 2F 37 3F
disp8[EAX] 000 40 48 50 58 60 68 70 78
disp8[ECX] 001 41 49 51 59 61 69 71 79
disp8[EDX] 010 42 4A 52 5A 62 6A 72 7A
disp8[EPX]; 01 011 43 4B 53 5B 63 6B 73 7B
disp8[- -] [--] 100 44 4C 54 5C 64 6C 74 7C
disp8[EBP] 101 45 4D 55 5D 65 6D 75 7D
disp8[ESI] 110 46 4E 56 5E 66 6E 76 7E
disp8[EDI] 111 47 4F 57 5F 67 6F 77 7F
disp32[EAX] 000 80 88 90 98 AO A8 BO B8
disp32[ECX] 001 81 89 91 99 A1 A9 B1 B9
disp32[EDX] 010 82 8A 92 9A A2 AA B2 BA
disp32[EBX] 10 011 83 8B 93 9B A3 AB B3 BB
disp32[- -] [- -] 100 84: 8C 94 9C A4 AC B4 BC
disp32[EBP] 101 85 8D 95 9D A5 AD B5 BD
disp32[ESI] 110 86 8E 96 9E A6 AE B6 BE
disp32[EDI] 111 87 8F 97 9F A7 AF B7 BF
EAXlAXlAL 000 CO C8 DO D8 EO E8 FO F8
ECXlCXlCL 001 C1 C9 D1 D9 E1 E9 F1 F9
EDXlDXlDL 010 C2 CA D2 DA E2 EA F2 FA
EBXlBXlBL 11 011 C3 CB D3 DB E3 EB F3 FB
ESP/SP/AH 100 C4 CC D4 DC E4 EC F4 FC
EBP/BP/CH 101 C5 CD D5 DD E5 ED F5 FD
ESI/SI/DH 110 C6 CE D6 DE E6 EE F6 FE
EDI/DI/BH 111 C7 CF D7 DF E7 EF F7 FF

[- -] [- -] means a SIB follows the ModRIM byte. disp8 denotes an a-bit displacement following the SIB byte, to be
sign-extended and added to the index. disp32 denotes a 32-bit displacement following the Mod RIM byte, to be
added to the index.

PART 4, Processor instructions 57

Table 4.4 32-bit addressing forms with SIB byte (386 only)

r32 EAX ECX EOX EBX ESP [*j ESI EOI
Base = 0 1 2 3 4 5 6 7
Base = 000 001 010 011 100 101 110 111

Scaled index SSindex Mod RIM values in hexadecimal

[EAXj 000 00 01 02 03 04 05 06 07
[ECXj 001 08 09 OA OB OC 00 OE OF
[EOXj 010 10 11 12 13 14 15 16 17
[EBXj 00 011 18 19 1A 1B 1C 10 1E 1F
none 100 20 21 22 23 24 25 26 27
[EBPj 101 28 29 2A 2B 2C 20 2E 2F
[ESlj 110 30 31 32 33 34 35 36 37
[EOlj 111 38 39 3A 3B 3C 30 3E 3F
[EAX*2j 000 40 41 42 44 44 45 46 47
[ECX*2j 001 48 49 4A 4B 4C 40 4E 4F
[EOX*2j 010 50 51 52 55 54 55 56 57
[EBX*2j 01 011 58 59 5A 5B 5C 50 5E 5F
none 100 60 \ 61 62 63 64 65 66 67
[EBP*2j 101 68 69 6A 6B 6C 60 6E 6F
[ESI*2j 110 70 71 72 73 74 75 76 77
[EOI*2j 111 78 79 7A 7B 7C 70 7E 7F
[EAX*4j 000 80 81 82 83 84 85 S6 87
[ECX*4j 001 S8 89 8A SB 8C 80 SE 8F
[EOX*4j 010 90 91 92 93 94 95 96 97
[EBX*4j 10 011 98 89 9A 9B 9C 90 9E 9F
none 100 AO A1 A2 A3 A4 A5 A6 A7
[EBP*4j 101 AS A9 M AB AC AO AE AF
[ESI*4j 110 BO B1 B2 B3 B4 B5 B6 B7
[EOl*4j 111 B8 B9 BA BB BC BO BE BF
[EAX*8j 000 CO C1 C2 C3 C4 C5 C6 C7
[ECX*Sj 001 C8 C9 CA CB CC CO CE CF
[EOX*Sj 010 00 01 02 03 04 05 06 07
[EBX*8j 11 011 08 09 OA OB OC 00 OE OF
none 100 EO E1 E2 E3 E4 E5 E6 E7
[EBP*Sj 101 E8 E9 EA EB EC EO EE EF
[ESI*8j 110 FO F1 F2 F3 F4 F5 F6 F7
[EOI*8j 111 F8 F9 FA FB FC FO FE FF

[*] means a disp32 with no base if MOD is 00; otherwise, [ESP].
This provides the following addressing modes:

disp32[index] (MOD=OO)
disp8[EBP)[index] (MOD=01)
disp32[EBP][index] (MOD=10)

58 Turbo Assembler Quick Reference Guide

How to read the instruction set pages

Here's a sample of the format of this chapter:

Instruction
name

Opcode Instruction

What the instruction name means
What processor the instruction works on

o D ITS ZAP C

Flag information goes here

Clocks

386 286* 86

This table contains clock information

*Because the 186 processor is effectively a 286 without protected mode instructions, the 186 timings are identical
to the timings listed for the 286.

Flags

Each entry in this section includes information on which flags in the x86's
flag register are changed and how. Each flag has a one-letter tag for its
name.

o = Overflow flag

D = Direction flag

I = Interrupt flag

T = Trap flag

S = Sign flag

Z = Zero flag

A = Auxiliary flag

P = Parity flag

C = Carry flag

The following symbols indicate how the flag register has changed:

? = Undefined after the operation

* = Changed to reflect the results of the instruction

o = Always cleared

1 = Always set

PART 4, Processor instructions 59

Opcode

The "Opcode" column gives the complete object code produced for each
form of the instruction. When possible, the codes are given as hexadeci
mal bytes, in the same order in which they appear in memory. Defini
tions of entries other than hexadecimal bytes are as follows:

Idigit
(digit is between 0 and 7.) Indicates that the ModR/M byte of the instruc
tion uses only the rim (register or memory) operand. The reg field con
tains the digit that provides an extension to the instruction's opcode.

Ir
Indicates that the ModR/M byte of the instruction contains both a regis
ter operand and an rim operand.

cb, cw, cd, cp
A I-byte (cb), 2-byte (cw), 4-byte (cd), or 6-byte (cp) value following the
opcode that is used to specify a code offset and possibly a new value for
the code segment register.

ib, iw, id
A I-byte (ib), 2-byte (iw), or 4-byte (id) immediate operand to the instruc
tion that follows the opcode, ModR/M bytes, or scale-indexing bytes. The
opcode determines if the operand is a signed value. All words .and dou
blewords are given with the low-order byte first.

+rb, +rw, +rd
A register code, from 0 through 7, added to the hexadecimal byte given
at the left of the plus sign to form a single ope ode byte. The codes are

rb rw rd (386)

AL=O AX=O EAX=O
CL = T ex= 1 ECX= 1
DL=2 DX=2 EDX=2
BL =3 BX=3 EBX=3
AH=4 SP=4 ESP=4
AH=4 SP=4 ESP=4
CH=5 BP=5 EBP=5
DH=6 SI = 6 ESI= 6
BH=7 DI= 7 EDI=7

Instruction

The "Instruction" column gives the syntax of the instruction statement as
it would appear in a T ASM 386 program. The following is a list of the
symbols used to represent operands in the instruction statements:

60 Turbo Assembler Quick Reference Guide

rel8
A relative address in the range from 128 bytes before the end of the in
struction to 127 bytes after the end of the instruction.

re116, rel32
A relative address within the same code segment as the instruction as
sembled. re116 applies to instructions with an operand-size attribute of 16
bits; rel32 applies to instructions with an operand-size attribute of 32 bits
(386 only).

ptr16:16, ptr16:32
A far pointer, typically in a code segment different from that of the in
struction. The notation 16:16 indicates that the value of the pointer has
two parts. The value to the right of the colon is a 16-bit selector or value
destined for the code segment register. The value to the left corresponds
to the offset within the destination segment. ptr16:16 is used when the in
struction's operand-size attribute is 16 bits; ptr16:32 is used with the 32-
bit attribute (386 only).

r8
One of the byte registers AL, eL, DL, BL, AH, CH, DH, or BH.

r16
One of the word registers AX, CX, DX, BX, SP, BP, SI, or D!.

r32 (386)
One of the doubleword registers EAX, ECX, EDX, EBX, ESP, EBP, ES1, or
ED!.

imm8
An immediate byte value. imm8 is a signed number between -128 and
+ 127 inclusive. For instructions in which imm8 is combined with a word
or doubleword operand, the immediate value is sign-extended to form a
word or doubleword. The upper byte of the word is filled with the top
most bit of the immediate value.

imm16
An immediate word value used for instructions whose operand-size at
tribute is 16 bits. This is a number between -32,768 and +32,767 inclusive.

imm32 (386)
An immediate doubleword value used for instructions whose operand
size attribute is 32 bits. It allows the use of a number between
+2,147,483,647 and -2,147,483,648.

rImS
A i-byte operand that is either the contents of a byte register (AL, BL,
CL, DL, AH, BH, CH, DH), or a byte from memory.

r/m16
A word register or memory operand used for instructions whose oper-

PART 4, Processor instructions 61

and-size attribute is 16 bits. The word registers are AX, BX, CX, DX, SP,
BP, S1, Dr.· The contents of memory are foUnd at the address provided by
the effective address computation.

r/m32
A doubleword register or memory operand used for instructions whose
operand-size attribute is 32 bits. The doubleword registers are EAX, EBX,
ECX, EDX, ESP, EBP, ES1, ED!. The contents of memory are found at the
address provided by the effective address computation.

m8
A memory byte addressed by DS:S1 or ES:D1 (used only by string instruc-
tions on the 386). .

m16
A memory word addressed by DS:S1 or ES:D1 (used only by string in
structions).

m32
A memory doubleword addressed by DS:S1 or ES:D1 (used only by string
instructions) .

m16:16, m16:32 (386)
A memory operand containing a far pointer composed of two numbers.
The number to the left of the colon corresponds to the pointer's segment
selector. The number to the right corresponds to its offset.

m16 & 32, m16 & 16 (186/286/386), m32 & 32 (386)
A memory operand consisting of data item pairs whose sizes are indi
cated on the left and the right side of the ampersand. All memory ad
dressing modes are allowed. m16 & 16 and m32 & 32 operands are used
by the BOUND instruction to provide an operand containing an upper
and lower bounds for array indices. m16 & 32 is used by LIDT and
LGDT to provide a word with which to load the limit field, and a double
word with which to load the base field of the corresponding Global and
Interrupt Descriptor Table Registers.

moffs8, moffs16, moffs32 (memory offset; 386 only)
A simple memory variable of type BYTE, WORD, or DWORD (386)
used by some variants of the MOV instruction. The actual address is
given by a simple offset relative to the segment base. No ModR/M byte
is used in the instruction. The number shown with moffs indicates its
size, which is determined by the address-size attribute of the instruction.

Sreg
A segment register. The segment register bit assignments are ES = 0,
CS = I, SS = 2, DS = 3, FS = 4 (386), and GS = 5 (386).

62 Turbo Assembler Quick Reference Guide

Clocks

The "Clocks" column gives the number of clock cycles the instruction
takes to execute. The clock count calculations make the following assump
tions:

• The instruction has been prefetched and decoded and is ready for exe
cution.

• Bus cycles do not require wait states.

• There are no local bus HOLD requests delaying processor access to the
bus.

• No exceptions are detected during instruction execution.

• Memory operands are aligned.

Clock counts for instructions that have an rim (register or memory) oper
and are separated by a slash. The count to the left is used for a register
operand; the count to the right is used for a memory operand.

The following symbols are used in the clock count specifications:

• n, which represents a number of repetitions.

• m, which represents the number of components in the next instruction
executed, where the entire displacement (if any) counts as one compo
nent, the entire immediate data (if any) counts as one component, and
every other byte of the instruction and prefix(es) each counts as one
component.

• pm=, a clock count that applies when the instruction executes in pro
tected mode. pm= is not given when the clock counts are the same for
protected and real address modes.

When an exception occurs during the execution of an instruction and the
exception handler is in another task, the instruction exception time is in
creased by the number of clocks to effect a task switch. This parameter
depends on several factors:

• The type of TSS used to represent the current task (386 TSS or 286 TSS).

• The type of TSS used to represent the new task.

• Whether the current task is in V86 mode.

• Whether the new task is in V86 mode.

Note: Users should read Intel's documentation for more information
about protected mode and task switching.

PART 4, Processor instructions 63

AAA ASCII adjust after addition

0 D I T S Z A P C

? ? ? * ? *

Opcode Instruction Clocks Description
486 386 286 ~

37 AAA 3 4 3 8 ASCII adjust after addition

Execute AAA only following an ADD instruction that leaves a byte result
in the AL register. The lower nibbles of the operands of the ADD instruc
tion should be in the range 0 through 9 (BCD digits). In this case, AAA
adjusts AL to contain the correct decimal digit result. If the addition pro
duced a decimal carry, the AH register is incremented, and the carry and
auxiliary carry flags are set to 1. If there was no decimal carry, the carry
and auxiliary flags are set to 0 and AH is unchanged. In either case, AL is
left with its top nibble set to O. To convert AL to an ASCII result, follow
the AAA instruction with OR AL, 30H.

AAD ASCII adjust before division

0 D I T S Z A P C

? * * ? * ?

Opcode Instruction Clocks Description

486 386 286 ~
D50A AAD 14 19 14 60 ASCII adjust before division

AAD is used to prepare two unpacked BCD digits (the least-significant
digit in AL, the most-significant digit in AH) for a division operation that
will yield an unpacked result. This is accomplished by setting AL to AL
+ (10 * AH), and then setting AH to O. AX is then equal to the binary
equivalent of the original unpacked two-digit number.

AAM ASCII adjust AX after multiply

0 D I T S Z A P. C

? * * ? * ?

Opcode Instruction Clocks Description
486 386 286 86

D40A AAM 15 17 16 83 ASCII adjust AX after multiply

Execute AAM only after executing a MUL instruction between two un
packed BCD digits that leaves the result in the AX register. Because the
result is less than 100, it is contained entirely in the AL register. AAM un
packs the AL result by dividing AL by 10,leaving the quotient (most
significant digit) in AH and the remainder (least-significant digit) in AL.

64 Turbo Assembler Quick Reference Guide

AAS ASCII adjust AL after subtraction

o D ITS ZAP C
?

Opcode Instruction

486
3F AAS 3

Clocks

386 286
4 3

~
8

? ? * ? *

Description

ASCII adjust AL after subtraction

Execute AAS only after 11 SUB instruction that leaves the byte result in
the AL register. The lower nibbles of the operands of the SUB instruction
must have been in the range 0 through 9 (BCD digits). In this case, AAS
adjusts AL so it contains the correct decimal digit result. If the subtrac
tion produced a decimal carry, the AH register is decremented, and the
carry and auxiliary carry flags are set to 1. If no decimal carry occurred,
the carry and auxiliary carry flags are set to 0, and AH is unchanged. In
either case, AL is left with its top nibble set to O. To convert AL to an AS
CII result, follow the AAS with OR AL, 30H.

ADC Add with carry

0 D I T S Z A P C

* * * * * *

Opcode Instruction Clocks Description

486 386 286 ~
10/r ADC r/m8,r8 1/3 217 2/7 3/16+EA Add with carry byte register to rim byte
11 Ir ADC r/m16,r16 1/3 217 217 3/16+EA Add with carry word register to rim word
11/r ADC r/m32,r32 1/3 217 Add with CF dword register to rim word
12/r ADC r8,r/m8 1/2 2/6 217 3/9+EA Add with carry rim byte to byte register
13/r ADC r16,r/m16 1/2 2/6 2/7 3/9+EA Add with carry rim word to word register
13/r ADC r32,r/m32 1/2 2/6 ' Add with CF rim dword to dword register
14 ib ADC AL,imm8 1 2 3 4 Add with carry immediate byte to AL
15 iw ADC AX,imm16 1 2 3 4 Add with carry immediate word to AX
15 id ADC EAX,imm32 1 2 Add with carry immediate dword to EAX
8012 ib ADC r/m8,imm8 1/3 217 3/7 4/17+EA Add with carry immediate byte to rim byte
8112 iw ADC r/m16,imm16 1/3 217 317 4/17+EA Add with carry immediate word to rim

word
8112 id ADC r/m32,imm32 1/3 217 Add with CF immediate dword to rim

dword
8312 ib ADC r/m16,imm8 1/3 217 317 4/17+EA Add with CF sign-extended immediate

byte to rim word
8312 ib ADC r/m32,imm8 1/3 217 Add with CF sign-extended immediate

byte into rim dword

'ADC performs an integer addition of the two operands DEST and SRC
and the carry flag, CF. The result of the addition is assigned to the first
operand (DEST), and the flags are set accordingly. ADC is usually exe
cuted as part of a multi-byte or multi-word addition operation. When an
immediate byte value is added to a word or doubleword operand, the im-

PART 4, Processor instructions 65

mediate value is first sign-extended to the size of the word or double
word operand.

ADD Add

0 D I T' S Z A P C

'* * * * * *

Opcode Instruction Clocks Description

486 386 286 ~
04 ib ADD AL,imm8 1 2 3 4 Add immediate byte to AL
05 iw ADD AX,imm16 1 2 3 4 Add immediate word to AX
05 id ADD EAX,imm32 1 2 Add immediate dword to EAX
8010 ib ADD r/m8,imm8 1/3 217 317 4/17+EA Add immediate byte to rim byte
8110 iw ADD r/m16,imm16 1/3 217 3/7 4/17+EA Add immediate word to rim word
8110 id ADD r/m32,imm32 1/3 217 Add immediate dword to rim dword
8310 ib ADD r/m16,imm8 1/3 2/7 3/7 4/17+EA Add sign-extended immediate byte

to rim word
8310 ib ADD r/m32,imm8 1/3 217 Add sign-extended immediate byte

to rim dword
OO/r ADD r/m8,r8 1/3 217 217 3/16+EA Add byte register to rim byte
01lr ADD r/m16,r16 1/3 2/7 217 3/16+EA Add word register to rim word
01 Ir ADD r/m32,r32 1/3 217 Add dword register to rim dword
02/r ADD r8,r/m8 1/2 2/6 2/7 3/9+EA Add rim byte to byte register
03/r ADD r16,r/m16 1/2 2/6 2/7 3/9+EA Add rim word to word register
03/r ADD r32,r/m32 1/2 2/6 Add rim dword to dword register

ADD performs an integer addition of the two operands (DEST and SRC).
The result of the addition is\ assigned to the first operand (DEST), and the
flags are set accordingly.

When an immediate byte is added to a word or doubleword operand, the
immediate value is sign-extended to the size of the word or doubleword
operand.

AND Logical AND

0 D I T S Z A P C

0 '* * ? * 0

Opcode Instruction Clocks Description
486 386 286 ~

20/r AND r/m8,r8 1/3 2/7 2/7 3/16+EA AND byte register into rim byte
21/r AND r/m16,r16 1/3 217 2/7 3/16+EA AND word register into rim word
21/r AND r/m32,r32 1/3 217 AND dword register to rim dword
22/r AND r8;r/m8 1/2 2/6 2/7 3/9+EA AND rim byte to byte register
23/r AND r16,r/m16 1/2 2/6 217 3/9+EA AND rim word to word register
23/r AND r32,r/m32 1/2 2/6 AND rim dword to dword register
24 ib AND AL,imm8 1 2 3 4 , AND immediate byte to AL
25 iw AND AX,imm16 1 2 3 4 AND immediate word to AX
25 id AND EAX,imm32 1 2 AND immediate dword to EAX

66 Turbo Assembler Quick Reference Guide

Opcode Instruction Clocks Description

486 386 286 86
8014 ib AND r/m8,imm8 1/3 217 317 4/17+EA AND immediate byte to rIm byte
8114 iw AND r/m16,imm16 1/3 2!7 317 4/17+EA AND immediate word to rIm word
8114 id AND r/m32,imm32 1/3 217 AND immediate dword to rIm word
8314 ib AND r/m16,imm8 1/3 2!7 317 4/17+EA AND sign-extended immediate byte

with rIm word
8314 ib AND r/m32,imm8 1/3 2!7 AND sign-extended immediate byte

with rIm dword

Each bit of the result of the AND instruction is a 1 if both corresponding
bits of the operands are 1; otherwise, it becomes a O.

The optimized form of AND is MASKFLAG (see Part 3).

ARPL Adjust RPL field of selector
80286 and greater protected mode only

o D ITS ZAP C

*

Opcode Instruction Clocks Description

486 386 286
63 If ARPL flm16,r16 9/9 pm=20/21 pm=10/11 Adjust RPL of flm16 to not less than RPL of r16

The ARPL instruction has two operands. The first operand is a 16-bit
memory variable or word register that contains the value of a selector.
The second operand is a word register. If the RPL field {"requested privi
lege level" --bottom two bits) of the first operand is less than the RPL
field of the second operand, the zero flag is set to 1 and the RPL field of
the first operand is increased to match the second operand. Otherwise,
the zero flag is set to 0 and no change is made to the first operand.

ARPL appears in operating system software, not in application programs.
It is used to guarantee that a selector parameter to a subroutine does not
request more privilege than the caller is allowed. The second operand of
ARPL is normally a register that contains the CS selector value of the
caller.

BOUND Check array index against bounds
80186 processors and greater

o D ITS ZAP C

Opcode Instruction Clocks
486 386 286

62/r BOUND r16, 7 7 10 13
62/r BOUND r32, 7 7 10

PART 4, Processor instructions

Description

Check if r16 is within m16& 16 bounds (passes test)
Check if r32 is within m32&32 bounds (passes test)

67

BOUND ensures that a signed array index is within the limits specified
by a block of memory consisting of an upper and a lower bound. Each
bound uses one word for. an operand-size attribute of 16 bits and a dou
bleword for an operand-size attribute of 32 bits. The first operand (a regis
ter) must be greater than or equal to the first bound in memory (lower
bound), and less.than or equal to the second bound in memory (upper
bound). If the register is not within bounds, an Interrupt 5 occurs; the re
turn EIP points to the BOUND instruction.

The bounds limit data structure is usually placed just before the array it
self, making the limits addressable via a constant offset from the begin
ning of the array.

BSF Bit scan forward
386 processors and greater

0 D I T S Z A P C

*

Opcode Instruction Clocks Description

486 386
OF BC BSF r16,r/m16 6-42/7-43 10+3n Bit scan forward on rim word
OF BC BSF r32,r/m32 10+3n Bit scan forward on rim dword

BSF scans the bits in the second word or doubleword operand starting
with bit O. The ZF flag is cleared if the bits are all 0; otherwise, the ZF
flag is set and the destination register is loaded with the bit index of the
first set bit.

BSR Bit scan reverse

386 processors and greater

o D ITS ZAP C

*

Opcode Instruction Clocks Description
486 386

OF BD BSR r16,r/m16 6-103/7-104 10+3n Bit scan reverse on rim word
OF BD BSR r32,r/m32 6-103/7 -104 10+3n Bit scan reverse on rim dword

BSR scans the bits in the second word or doubleword operand from the
most significant bit to the least significant bit. The ZF flag is cleared if the
bits are all 0; otherwise, ZF is set and the destination register is loaded
with the bit index of .the first set bit found when scanning in the reverse
direction.

68 Turbo Assembler Quick Reference Guide

BSWAP Byte Swap
i486 processors and greater

o D ITS ZAP C

Opcode Instruction Clock Description

OF C8/r BSWAP r32 Swap bytes to convert little/big endian data in a 32-bit register to big/little
end ian form.

BSW AP reverses the byte order of a 32-bit register, converting a value in
little/big endian form to big/little endian form. When BSWAP is used
with a 16-bit operand size, the result left in the destination register is un
defined.

BT Bit test
386 processors and greater

0 D I T S Z A P C

*

Opcode Instruction Clocks Description
486 386

OF A3 BT r/m16,r16 3/8 3/12 Save bit in carry flag
OF A3 BT r/m32,r32 3/8 3/12 Save bit in carry flag
OF BA /4 ib BT r/m 16,imm8 3/3 3/6 Save bIT in carry flag
OF BA /4 ib BT r/m32,imm8 3/3 3/6 Save bIT in carry flag

BT saves the value of the bit indicated by the base (first operand) and the
bit offset (second operand) into the carry flag.

BTC

Opcode

OF BB
OF BB
OF BA 17 ib
OF BA 17 ib

Bit test and complement

386 processors and greater

o D ITS ZAP C

*

Instruction Clocks Description
486 386

BTC r/m16,r16 6/13 6/13 Save bit in carry flag and complement
BTC r/m32,r32 6/13 6/13 Save bit in carry flag and complement
BTC r/m16,imm8 6/8 6/8 Save bit in carry flag and complement
BTC r/m32,imm8 6/8 6/8 Save bit in carry flag and complement

BTC saves the value of the bit indicated by the base (first operand) and
the bit offset (second operand) into the carry flag and then complements
the bit.

PART 4, Processor instructions 69

BTR Bit test and reset
386 processors and greater

o D ITS ZAP C

*

Opcode Instruction Clocks Description

486 386
OF B3 BTR r/m16,r16 6/13 6/13 Save bit in carry flag and reset
OF B3 BTR r/m32,r32 6/13 6/13 Save bit in carry flag and reset
OF BA /6 ib BTR r/m16,imm8 6/8 6/8 Save bit in carry flag and reset
OF BA /6 ib BTR r/m32,imm8 6/8 6/8 Save bit in carry flag and reset

BTR saves the value of the bit indicated by the base (first operand) and
the bit offset (second operand) into the carry flag and then stores a in the
bit.

BTS Bit test and set
386 processors and greater

o D ITS ZAP C

*

Opcode Instruction Clocks Description
486 386

OF AB BTS r/m16,r16 6/13 6/13 Save bit in carry flag and set
OF AB BTS r/m32,r32 6/13 6/13 Save bit in carry flag and set
OF BA /5 ib BTS r/m16,imm8 6/8 6/8 Save bit in carry flag and set
OF BA /5 ib BTS r/m32,imm8 6/8 6/8 Save bit in carry flag and set

BTS saves the value of the bit indicated by the base (first operand) and
the bit offset (second operand) into the carry flag and then stores 1 in the
bit.

CALL Call Procedure

o D ITS ZAP C

A~l flags are affected if a task switch occurs; no flags are affected if a task
switch does not occur. .

Opcode Instruction Clocks Description

486 386 286" 86
E8 cw CALL rel16 3 7+m 7 19 Call near, displacement

relative to next instruction
FF /2 CALL r/m16 5/5 7+m/10+m 711.1 16/21+EA Call near, register

indirect/memory indirect

70 Turbo Assembler Quick Reference Guide

Opcode Instruction Clocks Description

486 386 286' 86
9A cd CALL ptr16:16 18,pm=20 17 +m,pm=34=m 13,pm=26 28 Call intersegment, to full

pOinter given
9A cd CALL ptr16:16 pm=35 pm=52+m 41 Call gate, same privilege
9A cd CALL ptr16:16 pm=69 pm=86+m 82 Call gate, more privilege,

no parameters
9A cd CALL ptr16:16 pm=77+4x pm=94+4X+m 86+4x Call gate, more privilege,

x parameters
9A cd CALL ptr16:16 pm=37+ts ts 177/182 Call to task (via task

state segment/task gate
for 286

FF 13 CALL m16:16 17,pm=20 22+m,pm38+m 16/29 37+EA Call intersegment,
address at rim dword

FF 13 CALL m16:16 pm=35 pm=56+m 44 Call gate, same privilege
FF 13 CALL m16:16 pm=69 pm=90+m 83 Call gate, more privilege,

no parameters
FF 13 CALL m16:16 pm=77+4x pm=98+4X+m 90+4x+m Call gate, more privilege,

pm=37+ts
x parameters

FF 13 CALL m16:16 5 + ts 180/185 Call to task (via task
state segment/task gate
for 286)

E8 cd CALL rel32 3 7+m Call near, displacement
relative to next instruction

FF 12 CALL r/m32 5/5 7+m/10+m Call near, indirect
9Acp CALL ptr16:32 18,pm=20 17+m,pm=34+m Call intersegment, to full

pOinter given
9A cp CALL ptr16 :32 pm=35 pm=52+m Call gate, same privilege
9A cp CALL ptr16:32 pm=69 pm=86+m Call gate, more privilege,

no parameters
9Acp CALL ptr32:32 pm=77+4x pm=94+4X+m Call gate, more privilege,

x parameters
9A cp CALL ptr16:32 pm=37+ts ts Call to task
FF 13 CALL m16:32 17,pm=20 22+m,pm=38+m Call intersegment,

address at rim dword
FF 13 CALL m16:32 pm=35 pm=56+m Call gate, same privilege
FF 13 CALL m16:32 pm=69 pm=90+m Call gate, more privilege,

no parameters
FF 13 CALL m16:32 pm=77+4x pm=98+4x+m Call gate, more privilege,

x parameters
FF 13 CALL m16:32 pm=37+ts 5 + ts Call to task

'Add one clock for each byte in the next instruction executed (80286 only).

The CALL instruction causes the procedure named in the operand to be
executed. When the procedure is complete (a return instruction is exe-
cuted within the procedure), execution continues at the instruction that
follows the CALL instruction.

The action of the different forms of the instruction are described next.

Near calls are those with destinations of type r/m16, r/m32, re116, re132;
changing or saving the segment register value is not necessary. The
CALL re116 and CALL rel32 forms add a signed offset to the address of
the instruction following CALL to determine the destination. The re116
form is used when the instruction's operand-size attribute is 16 bits; rel32
is used when the operand-size attribute is 32 bits. The result is stored in

PART 4, Processor instructions 71

the 32-bit EIP register. With reI 16, the upper 16 bits of EIP are cleared, re
sulting in an offset whose value does not exceed 16 bits. CALL r/m16
and CALL r /m32 specify a register or memory location from which the
absolute segment offset is fetched. The offset fetched frolfl r / m is 32 bits
for an operand-size attribute of 32 (r/m32), or 16 bits for an operand;..size
of 16 (r/m16). The offset of the instruction following CALL is pushed
onto the stack. It will be popped by a near RET instruction within the pro-

. cedure. The CS register is not changed by this form of CALL.

The far calls, CALL ptr16:16 and CALL ptr16:32, use a 4-byte or 6-byte op
erand as a long pointer to the procedure called. The CALL m16:16 and
m16:32 forms fetch the long pointer fr:om the memory location specified
(irdirection). In real address mode or virtual 8086 mode, the long pointer
provides 16 bits for the CS register and 16 or 32 bits for the ElP register
(depending on the operand-size attribute). These forms of the instruction
push both CS and IP or ElP as a return address.

In protected mode, both long pointer forms cons,ult the AR byte in the de
scriptor indexed by the selector part of the long pointer. Depending on
the value of the AR byte, the call will perform one of the following types
of control transfers:

• a far call to the same protection level

• an inter-protection level far call

• a task switch

Note: Turbo Assembler extends the syntax of the CALL instruction to fa
cilitate parameter passing to high-level language routines. See Chapter 7
of the Turbo Assembler User's Guide for more details.

CBW Convert byte to word

0 D I T S (z A P c

Opcode Instruction Clocks Description
486 386 286 ~

98 CBW 3 3 2 2 AX sign-extend of AL

CBW converts the signed byte in AL to a signed word in AX by extend
ing the most significant bit of AL (the sign bit) into all of the bits of AB.

72 Turbo Assembler Quick Reference Guide

CDQ

Opcode Instruction

99 CDa

Convert doubleword to quadword
386 processors and greater

o D ITS ZAP C

Clocks Description

EDX:EAX [(sign-extend of EAX)

CDQ converts the signed doubleword in EAX to a signed 64-bit integer
in the register pair EDX:EAX by extending the most significant bit of
EAX (the sign bit) into all the bits of EDX.

CLC Clear carry flag

0 D I T S Z A P C

0

Opcode Instruction Clocks

486 386 286 ~
F8 CLC 2 2 2 2

CLC sets the carry'flag to zero. It does not affect other flags or registers.

CLD Oear direction flag

0 D I T S Z A P C

0

Opcode Instruction Clocks Description
486 386 286 ~

C CLD 2 2 2 2 Clear direction flag

CLD clears the direction flag. No other flags or registers are affected. Af-:
ter CLD is executed, string, operations will increment the index registers
(51 or DI) that they use.

CLI Clear interrupt flag

0 D I T S Z A P C

0

Opcode Instruction Clocks
486 386 286 ~

FA CLI 5 3 3 2

PART 4, Processor instructions 73

CLI clears the interrupt flag if the current privilege level is at least as
privileged as IOPL. No other flags are affected. External interrupts are
not recognized at the end of the CLI instruction or from that point on un
til the interrupt flag is set.

CllS Clear task switched flag
80286 and greater protected. mode only

0 D I T S Z A P C

TS = 0 (TS is in CRO, not the flag register)

Opcode Instruction Clocks
486 386 286

OF 06 CLTS 7 5 2

CLTS clears the task-switched (TS) flag in register CRO. This flag is set by
the 386 every time a task switch occurs. The TS flag is used to manage
processor extensions as follows:

• Every execution of an ESC instruction is trapped if the TS flag if set.

• Execution of aWAIT instruction is trapped if the MP flag and the TS
flag are both set.

Thus, if a task switch was made after an ESC instruction was begun, the
processor extension's context may need to be saved before a new ESC in
struction can be issued. The fault handler saves the context and resets the
TS flag.

CLTS appears in operating system software, not in application programs.
It is a privileged instruction that can only be executed at privilege level O.

CMC Complement carry flag

0 D I T S Z A P C

*

Opcode Instruction Clocks Description

486 386 286 ~
F5 CMC 2 2 2 2 Complement carry flag

CMC reverses the setting of the carry flag. No other flags are affected.

74 Turbo Assembler Quick Reference Guide

CMP Compare two oPE?rands

o D ITS ZAP C

*

Opcode Instruction

3C ib
3D iw
3D id
8017 ib
8117 iw
8117 id
8317 ib

CMPAL,imm8
CMP AX,imm16
CMP EAX,imm32

CMP r/m8,imm8 1/2
CMP r/m16,imm16 1/2
CMP r/m32,imm32 1/2
CMP r/m16,imm8 1/2

83 17 ib CMP r/m32,imm8 1/2

38/r CMP r/m8,r8 1/2
39/r CMP r/m16,r16 1/2
39/r CMP r/m32,r32 1/2
3A Ir CMP r8,r/m8 1/2
3B Ir CMP r16,r/m8 1/2
3B Ir CMP r32,r/m32 1/2

Clocks
386 286
2 3
2 3
2
2/5 3/6
2/5 3/6
2/5
2/5 3/6

2/5

2/5 217
2/5 2/7
2/5
2/6 2/6
2/6 2/6
2/6

* * * * *

Description

§£
4 Compare immediate byte to AL
4 Compare immediate word from AX

Compare immediate dword to EAX
4/10+EA Compare immediate byte to rIm byte
4/10+EA Compare immediate word to rIm word

Compare immediate dword to rIm dword
4/10+EA Compare sign extended immediate byte

to rIm word
Compare sign extended immediate bYte
to rIm dword

3/9+EA Compare byte register to rIm byte
3/9+EA Compare word register to rIm word

Compare dword register to rIm dword
3/9+EA Compare rIm byte to byte register
3/9+EA Compare rIm word to word register

Compare rIm dword to dword register

CMP subtracts the second operand from the first but, unlike the SUB in
struction, does not store the result; only the flags are changed. CMP is
typically used in conjunction with conditional jumps and the SETcc in
struction. If an operand greater than one byte is compared to an immedi
ate byte, the byte value is first sign-extended.

CMPS
CMPSB
CMPSW
CMPSD

Compare string operands

CMPSD 386 processors and greater

o D ITS ZAP C

*

Opcode Instruction

486
A6 CMPS m8,m8 8

A7 CMPS m16,m16 8

A7 CMPSm32,m32 8

A6
A7
A7

CMPSB
CMPSW
CMPSD

8
8
8

Clocks
386 286 - -
10 8

10 8

10

10 8
10 8
10

*

86
22

22

22
22

* * * *

Description

Compare bytes ES:[(E)DI] (second operand)
with [(E)SI} (first operand)
Compare words ES:[(E)DI] (second operand)
with [(E)SI] (first operand)
Compare dwords ES:[(E)DI] (second operand)
with [(E)SI] (first operand)
Compare bytes ES:[(E)DI] with DS:[SI]
Compare words ES:[(E)DI] with DS:[SI1
Compare dwords ES:[(E)DI] with DS:[SI1

CMPS compares the byte, word,or doubleword pointed to by the source
index register with the byte, word, or doubleword pointed to by the desti
nation-index register.

PART 4, Processor instructions 75

If the address-size attribute of this instruction is 16 bits, 51 and DI will be
w;ed for source- and destination-index registers; otherwise E5I and EDI
will be used. Load the correct index values into 51 and DI (or E5I and
EDI) before executing CMPS.

The comparison is done. by subtracting the operand indexed by the desti
nation-index register from the operand indexed by the source-index regis
ter.

Note that the direction of subtraction for CMP5 is [51] - [DI] or [E5I] -
[EDI]. The left operand (51 or E5I) is the source and the right·operand (DI
or EDI) is the destination. This is the reverse of the usual Intel convention

. in which the left operand is the destination and the right operand is the
source.

The result of the subtraction is not stored; only the flags reflect the
change. The types of t4e operands determine whether bytes, words, or
doublewords are compared. For .the first operand (51 or E5I), the D5 regis
ter is used, unless a segment override byte is pre$ent. The second oper
and (DI or EDI) must be addressable from the E5 register; no segment
override is possible. '

After the comparison is made, both the source-index register and destina
tion-index register are automatically advanced. If the direction flag is a
(CLD was executed), the registers increment; if the direction flag is 1
(5TD was executed), the registers decrement. The registers increment or
decrement by 1 if a byte is compared, by 2 if a word is compared, or by 4
if a doubleword is compared.

CMPSB, CMP5W and CMP5D are synonyms for the byte, word, and dou
bleword CMP5 instructions, respectively.

CMPS can be preceded by theREPE or REPNE prefix for block compari
son of CX or ECX bytes, words, or doublewords. Refer to the description
of the REP instruction for more information on this operation.

CMPXCHG Compare and Exchange

i486 processors and greater

o D . ITS ZAP C

*

Opcode Instruction

OF BO/r CMPXCHG r/m8,r8

OF B1/r CMPXCHG r/m16,r16

76

* * * * *

Clock
486
617 if comparison is
successful; 6/10 if
comparison fails
6/7 if comparison is
successful; 6/10 if
comparison fails

Description

Compare AL with rIm byte. If equal, set ZF and
load byte reg into rIm byte. Else, clear ZF and
load rIm byte into AL.
Compare AX with rIm word. If equal, set ZF
and load word reg into rIm word. Else, clear ZF
and load rIm word into AX.

Turbo Assembler Quick Reference Guide

Opcode Instruction Clock Description
486

OF B1/r CMPXCHG r/m32,r32 617 if comparison is Compare EAX with rim dword. If equal, set ZF
successful; 6/10 if and load dword reg into rim, dword. Else, clear
comparison fails ZF and load rim dword into EAX.

Note: The A-stepping of the i486 used the opcodes OF A6 and OF A7.

The CMPXCHG instruction compares the accumulator (AL, AX, or EAX
register) with DEST. If they are equal, SRC is loaded into DEST. Other
wise, DE5T is loaded into the accumulator.

DEST is the destination operand; SRC is the source operand.

Protected mode exceptions: #GP(O) if the result is in a nonwritable seg
ment; #GP(O) for an illegal memory operand effective address in the CS,
DS, ES, FS, or GS segments; #SS(O) for an illegal address in the 5S seg
ment; #PF (fault code) for a page fault; #AC for an unaligned memory ref
erence if the current privilege level is 3.

Real mode exception: interrupt 13 if any part of the operand would lie
outside the effective address space from a to OFFFFh.

Virtual 8086 mode exceptions: interrupt 13, as in real mode; #PF and
#AC, as in protected mode.

Note: This instruction can be used with a LOCK prefix. In order to sim
plify interface to the processor's bus, the destination operand receives a
write cycle without regard to the result of the comparison. DE5T is writ
ten back if the comparison fails, and SRC is written into the destination
otherwise. (The processor never produces a locked read without produc
ing a locked write.)

CHPXCHG8B Compare and Exchange 8 bytes

Pentium proces~ors and greater

o D ITS ZAP C

Opcode Instruction

OF C7 CMPXCHG64 r/m64

Clocks
Pentium
10

*

Description

compare EDX:EAX with rim qword. If equal,
set ZF and load ECX:EBX into rim qword.
Else, clear ZF and load rim into EDX:EAX.

The CMPXCHG8B instruction compares the 64-bit value in EDX:EAX
with DEST. EDX contains the high-order 32 bits and EAX contains the
low-order 32 bits of the 64-bit value. If they are equal, the 64-bit value in
ECX:EBX is stored into DE5T. ECX contains the high-order 32 bits and
EBX contains the low-order 32 bits. Otherwise, DEST is loaded into
EDX:EAX.

PART 4, Processor instructions 77

The ZF flag is set if the destination operand and EDX:EAX are equal; oth
erwise it is cleared .. The CF, PF, AF; SF, and OF flags are unaffected.

Protected mode excpetions: #GP(O) if the result is in a nonwritable seg
ment; #GP(O) for an illegal memory operand effective address in the CS,
DS, ES, FS, or GS segments; #SS(O) for an illegal address in the SS seg
ment; #PF(fault code) for a page fault; #AC for unaligned memory refer
ence if the current privlege level is 3.

The destination operand must be a memory operand, not a register. If
the CMPXCHG8B instruction is executed with a modr / m byte repre
senting a register as the destination operand, #UD occurs.

Real mode exception: interrupt 13 if any part of the operand would lie
outside the effective address space from 0 to OFFFFh.

Virtual 8086 mode exceptions: same exceptions as in real mode, plus
#PF(fault code) for·a page fault; #AC for unalligned memory reference if
the current privilage level is 3. #UD if the modr/m byte represents a reg
ister as the destination.

Notes: this instruction can be used with a LOCK prefix. In order to sim
plify interface to the processor's bus, the destination operand receives a
write cycle without regard to the result. of the comparison. DEST is writ
ten back if the comparison fails, and SRC is written into the destination
otherwise. (The processor never produces a locked read without also pro
ducing a locked write.)

The "r / m64" syntax had previously been used only in the context of float
ing point operations. It indicates a 64-bit value, in memory at an ad
dress determined by the modr / m byte.

CPUID

Opcode Instruction

OF A2 CPUID

CPU identification
Pentium processors and greater

o D ITS ZAP C

Clocks
Pentium
14

Description

EAX <- CPOU identification info.

The CPUID instruction provides information to ,software about the ven
dor, family, model, and stepping of microprocessor on which it is execut
ing. An input value loaded into the EAX register for this instruction indi
cates what information should be returned by the CPUID instruction.

Following execution of the CPUID instruction with a zero in EAX, the
EAX register contains the highest input value understood by the CPUID
instruction. For the Pentium processor, the value in EAX will be one.

78 Turbo Assembler Quick Reference Guide

Also returned is a vender identification string contained in the EBX, EDX,
and ECX registers. EBX contains the first four characters. For Intel proc
essors, the vender identification string is "GenuineIntel" as follors:

EBX -- 756e6547h (* "Genu", with 'G' in the low nibble of BL *)
EDX -- 49656e69h (* "inel", with 'i' in the low nibble of DL *)
ECX -- 6c65746eh (* "ntel", with 'n' in the low nibble of CL *)

Following execution of the CPUID instruction with an input value of one
loaded into the EAX register, bits 0-3 in EAX contain the stepping id of
the microprocessor, bits 4-7 of EAX contain the model (the first model
will be indicated by a 0001b in these bits) and bits 8-11 of EAX contain
the family (5 for the Pentium processor family). Bits 12-31 of EAX are re
served, as well as EBX, and ECX. The Pentium processor sets the feature
register, EDX, to lbfh, indicating which features the Pentium processor
supports. A feature flag set to one indicates that the corresponding fea
ture is supported. The feature set is defined as follows:

EDX (bit 0)
EDX (bits 1-6)

EDX (bit 7)
EDX (bit 8)
EDX (bits 9-31)

FPU on chip
Non-essential, proprietary information (contact Intel
for more information)
Machine Check Exception
CMPXCHG8B Instruction
Reserved

Software should determine the vender identification in order to properly
interpret the feature register flag bits.

This function does not affect the CPU flags.

CWO Convert word to doubleword

386 processors and greater

0 D I T S Z A P c

Opcode Instruction Clocks Description

486 386 286 86
99 CWO 3 2 2 5 DX:AX f- sign-extend of AX

CWD converts the signed word in AX to a signed doubleword in DX:AX
by extending the most significant bit of AX into all the bits of DX. Note
that CWD is different from CWDE. CWDE uses EAX as a destination, in
stead of DX:AX.

PART 4, Processor instructions 79

CWOE Convert word to doubleword
386 processors and greater

o D ITS ZAP C

Opcode Instruction Clocks Description

98 CWDE 3 • 3 EAX f- sign-extend of AX

CWDE converts the signed word in AX to a doubleword in EAX by ex
tend-ing the most significant bit of AX into the two most significant bytes
of EAX. Note that CWDE is different from CWD. CWD uses DX:AX
rather than EAX as a destination.

OAA Decimal· adjust AL after addition

0 D I T S Z A P C

? * * * * *

Opcode Instruction Clocks Description

486 386 286 ~
27 DAA 2 4 3 4 Decimal adjust AL after addition

Execute DAA only after executing an ADD instruction that leaves a two
BCD-digit byte result in the AL register. The ADD operands should con
sist of two packed BCD digits. The DAA instruction adjusts·AL to con
tain the correct two-digit packed decimal result.

OAS Decimal adjust AL after subtraction

0 D I T S Z A P C

? * * * * *

Opcode Instruction Clocks Description
486 386 286 86

2F DAS 2 4 3 4 Decimal adjust AL after subtraction

Execute DAS only after a subtraction instruction that leaves a two-BCD
digit byte result in the AL register. The operands should consist of two
packed BCD digits. DAS adjusts AL to contain the correct packed two
digit decimal result.

/

80 Turbo Assembler Quick Reference Guide

DEC Decrement by 1

0 D I T S Z A P C

* * * * *

Opcode Instruction Clocks Description

486 386 286 ~
FE 11 DEC r/m8 1/3 2/6 2/7 3/15+EA Decrement rim byte by 1
FF 11 DEC r/m16 1/3 2/6 217 3/15+EA Decrement rim word by 1

DEC r/m32 1/3 2/6 Decrement rim dword by 1
48+rw DEC r16 1 2 2 3 Decrement word register by 1
48+rw DEC r32 1 2 Decrement dword register by 1

DEC subtracts 1 from the operand. DEC does not change the carry flag.
To affect the carry flag, use the SUB instruction with an immediate oper
and of 1.

DIV Unsigned divide

0 D I T S Z A P C

? ? ? ? ? ?

Opcode Instruction Clocks Description

486 386 286 ~
F6/6 DIV r/m8 16/16 14/17 14/17 80/86+EA Unsigned divide AX by rim byte

(AL=QUO, AH=REM)
F7/6 DIV r/m16 24/24 22125 22/25 144/154+EA Unsigned divide DX:AX by rim word

(AX=QUO, DX=REM)
F7/6 DIV r/m32 40/40 38/41 Unsigned divide EDX:EAX by rim dword

(EAX=QUO, EDX=REM)

DIV performs an unsigned division. The dividend is implicit; only the di
visor is given as an operand. The remainder is always less than the divi
sor. The type of the divisor determines which registers to use as follows:

Size Dividend Divisor Quotient Remainder
byte AX rim 8 AL AH
word DX:AX , r/m16 AX DX
dword EDX:EAX rim 32 EAX EDX (386 only)

ENTER Make stack frame for procedure parameters

80186 processors and greater

0 D I T S Z A P C

Opcode Instruction Clocks Description

486 386 286
C8 iw 00 Enter imm16,0 14 10 11 Make procedure stack frame

PART 4, Processor instructions 81

Opcode Instruction Clocks Description

486 386 286
C8 iw 01 Enter imm16,1 17 12 15 Make stack frame for procedure parameters
C8 iw ib Enter imm16,imm8 17+3n 15+4(n-1) 12+4(n-1) Make stack frame for procedure parameters

ENTER creates the stack frame required by most block-structured high
level languages. The first operand specifies the number of bytes of dy
namic storage allocated on the stack for the routine being entered. The
second operand gives the lexical nesting level (0 to 31) of the routine
within the high-level language source code. It determines the number of
stack frame pointers copied into the new stack frame from the preceding
frame. BP (or EBP, if the operand-size attribute is 32 bits) is the current
stack frame pointer.

If the operand-size attribute is 16 bits, the processor uses BP as the frame
pointer and SP as the stack pointer. If the operand-size attribute is 32 bits,
the processor uses EBP for the frame pointer and ESP for the stack
pointer.

If the second operand is 0, ENTER pushes the frame pointer (BP or EBP)
onto the stack; ENTER then subtracts the first operand from the stack
pointer and sets the frame pointer to the current stack-pointer value.

For example, a procedure with 12 bytes of local variables would have an
ENTER 12,0 instruction at its entry point and a LEAVE instruction before
every RET. The 12 local bytes would be addressed as negative offsets
from the frame pointer.

HLT Halt

0 D I T S Z A P c

Opcode Instruction Clocks Description

486 386 286 86
F4 HLT 4 5 2 2 Halt

HL T stops instruction execution and pfaces the x86 in a HALT state. An
enabled interrupt, NMI, or a reset will resume execution. If an interrupt
(including NMI) is used to resume execution after HLT, the saved CS:IP
(or CS:EIP on an 386) value points to the instruction following HLT.

82 Turbo Assembler Quick Reference Guide

IDIV Signed divide

0 D I T S Z A P C

? ? ? ? ? ?

Opcode Instruction Clocks Description
486 386 286 §§.

F617 IDIV r/m8 19/20 19 17/20 101-112/107-118+EA Signed divide AX by rim byte
(AL=QUO, AH=REM)

F717 IDIV r/m16 27/28 27 25/28 165-184/171-190+EA Signed divide DX:AX by EA word
(AX=QUO, DX=REM)

F717 IDIV r/m32 43/44 43 Signed divide EDX:EAX by DWORD
byte(EAX=QUO,EDX=REM)

IDIV performs a signed division. The dividend, quotient, and remainder
are implicitly allocated to fixed registers. Only the divisor is given as an
explicit r / m operand. The type of the divisor determines which "registers
to use as follows:

Size
byte
word
dword

Divisor
rImS
r/m16
r/m32

Quotient
AL
AX
EAX

Remainder
AH
DX
EDX

Dividend
AX
DX:AX
EDX:EAX (386 only)

If the resulting quotient is too large to fit in the destination, or if the divi
sion is 0, an Interrupt 0 is generated. Nonintegral quotients are truncated
toward O. The remainder has the same sign as the dividend and the abso
lute value of the remainder is always less than the absolute value of the
divisor.

IMUL Signed multiply

0 D I T S Z A P C

* ? ? ? ? *

Opcode Instruction Clocks Description
486 386 286 §§.

F6/5 IMUL r/m8 13-18/13-18 9-14112-17 13/16 80-98/86-104 AX f-AL • rIm byte
+EA

F7/5 IMUL r/m16 .13-26/13-26 9-22/12-25 21/24 128-154/134- DX:AX f-AX • rIm word
160+EA

F7/5 IMUL r/m32 12-42/13-42 9-38/12-41 EDX:EAX f-EAX' rIm dword
OF AF Ir IMUL r16,r/m16 13-26/13-26 9-22112-25 word register f-word register •

rIm word
OF AF Ir IMUL r32,r/m32 13-42/13-42 9-38112 -41 dword register Hword register

• rIm dword
6B Ir ib IMUL r16,rl 13-26/13-26 9-14112-17 21/24 word register f-r/m16 •

m16,imm8 sign-extended immediate byte
6B Ir ib IMUL r32,rl 13-42 9-14112-17 dword register f-r/m32 •

m32,imm8 sign-extended immediate byte
6B Ir ib IMUL r16,imm8 13-26 9-14/12-17 21/24 word register f-word register •

sign-extended immediate byte

PART 4, Processor instructions 83

Opcode Instruction Clocks Description

486 386 286 86
68 /r ib IMUL r32,imm8 13-42 9-14/12-17 dword register H:fword register

* sign-extended immediate byte
69 /r iw IMUL r16,r/ 13-26/13-26 9-22/12-25 21/24 word register ~r/m16

m16,imm16 immediate word
69 /r id IMUL r32,r/ 13-42113-42 9-38/12 -41 dword register r/m32 *

m32,imm32 immediate dword
69/r iw IMUL r16,imm16 13-26/13-26 9-22112-25 word register ~r/m16 *

immediate word
69/r id IMUL r32,imm32 13-42113-42 9-38/12-41 dword register ~r/m32 *

immediate dword

IMUL performs signed multiplication. Some forms of the instruction use
implicit register operands. The operand combinations for all forms of the
instruction are shown in the "Description" column above.

IMUL clears the overflow and carry flags under the following conditions:

Instruction fonn

r/mB
r/m16
r/m32
r16,r/m16
r32,rI m32
r16,r I m16,imm16
r32,r I m32,imm32

IN

Opcode Instruction

E4 ib IN AL,imm8

E5 ib IN AX,imm8

Condition for clearing CF and OF

At = sign-extend of AL to 16 bits
AX = sign-extend of AX to 32 bits
EDX:EAX = sign-extend of EAX to 32 bits
Result exactly fits within r16
Result exactly fits within r32
Result exactly fits within r16
Result exactly fits within r32

Input from port

0 D I T S Z

Clocks

486 386
14,pm=8* /28**, vm=27 12,pm=6*/26**

14,pm=8*/28**,vm=27 12,pm=6* /26**

A P

286
5

5

~
10

10

C

Input byte from
immediate port into AL
Input word from
immediate port into AX

E5 ib IN EAX,imm8 14,pm=8*/28**,vm=27 12,pm=6*/26** Input dword from
immediate port into EAX

EC IN AL,DX 14,pm=8*/28**,vm=27 13,pm=7*/27** 5

ED IN AX,DX 14,pm=8*/28**,vm=27 13,pm=7*/27** 5

ED IN EAX,DX 14,pm=8*/28**,vm=27 13,pm=7*/27**

*If CPL ::; IOPL
**If CPL > IOPL or if in virtual 8086 mode

8 Input byte from port DX
into AL

8 . Input word from port DX
into AX
Input dword from port
DX into EAX

IN transfers a data byte or data word from the port numbered by the sec
ond operand into the register (AL, AX, or EAX) specified by the first oper
and. Access any pod from 0 to 65535 by placing the port number in the

84 Turbo Assembler Quick Reference Guide

DX register and using an IN instruction with DX as the second param:...
eter. These 1/ 0 instructions can be shortened by using an 8-bit port 1/ 0
in the instruction. The upper eight bits of the port address will be 0 when
8-bit port I/O is used.

INC Increment by 1

0 D I T S Z A P C

* * * * *

Opcode Instruction Clocks Description

486 386 286 ~
FE 10 INC r/m8 1/3 2/6 217 3/15+EA Increment rIm byte by 1
FF 10 INC r/m16 1/3 2/6 217 3/15+EA Increment rIm word by 1
FF 16 INC r/m32 1/3 Increment rIm dword by 1
40+ rw INC r16 1 2 2 3 Increment word register by 1
40+ rd INC r32 1 Increment dword register by 1

INC adds 1 to the operand. It does not change the carry flag. To affect the
carry flag, use the ADD instruction with a second operand of 1.

INS Input from port to string
INSB 80186 processors and greater
INSW
INSD 0 D I T S Z A P c

Opcode Instruction Clocks Description

486 386 286
6C INS r/m8,DX 17,pm=10*/32**,vm=30 15,pm=9* 129** 5 Input byte from port

DX into ES:(E)DI
6D INS r/m16,DX 17,pm=10*/32**,vm=30 15,pm=9*/29** 5 Input word from port

DX into ES:(E)DI
6D INS r/m32,DX 17,pm=10*/32**,vm=30 15,pm=9*/29** Input dword from

port DX into ES:(E)DI
6C INSB 17,pm=10*/32**,vm=30 15,pm=9* 129** 5 Input byte from port

OX into ES:(E)DI
6D INSW 17 ,pm= 10*/32**, vm=30 15,pm=9*/29** 5 Input word from port

DX into ES:(E)DI
6D INSD 17,pm=10*/32**,vm=30 15,pm=9* 129** Input dword from

port DX into ES:(E)DI

*If CPL ::; IOPL
**If CPL > IOPL or if in virtual 8086 mode

INS transfers data from the input port numbered by the DX register to
the memory byte or word at ES:dest-index. The memory operand must
be addressable from ES; no segment override is possible. The destination
register is DI if the address-size attribute of the instruction is 16 bits, or
EDIif the address-size attribute is 32 bits.

PART 4, Processor instructions 85

INS does not allow the specification of the port number as an immediate
value. The port must be addressed through the DX register value. Load
the correct value into DX before executing the INS instruction.

The destination address is determined by the contents of the destination
index register. Load the correct index into the destination index register
before executing INS.

After the transfer is made, DI or EDI advances automatically. If the direc
tion flag is a (CLD was executed), DI or EDIincrements; if the direction
flag is 1 (STD was executed), DI or EDI decrements. DI increments or dec
rements by 1 if a byte is input, by 2 if a word is input, or by 4 if a double
word is input.

INSB, INSW and INSD are synonyms of the byte, word, and doubleword
INS instructions. INS can be preceded by the REP prefix for block input
of CX bytes or words. Refer to the REP instruction for details of this op
eration.

INT Call to interrupt procedure
INTO

0 D I T S Z A P C

0 0

Opcode Instruction Clocks Description
486 386 286 86

CC INT3 26 33 23 52 Interrupt 3--trap to debugger
CC INT3 44 pm=59 40 Interrupt 3--protected mode
CC INT3 71 pm=99 78 Interrupt 3--protected mode
CC INT3 82 pm=119 Interrupt 3--from V86 mode to

PLO
CC INT3 37+ts ts 167 Interrupt 3--protected mode
CD ib INTimm8 30 37 23 51 Interrupt numbered by

immediate byte
CD ib ' INTimm8 44 pm=59 40 Interrupt--protected mode
CD ib INTimm8 77 pm=99 78 Interrupt--protected mode
CD ib INTimm8 86 pm=119 Interrupt--from V86 mode to PLO
CD ib INTimm8 37+ts ts 167 Interrupt--protected mode'
CE INTO Pass:28, Fail:3, pm=3; Fail:3, Fail:4, Interrupt 4--if overflow flag is 1

Fail:3 Pass:35 Pass:24 Pass:53
CE INTO 46 pm=59 41 Interrupt 4--Protected mode
CE INTO 73 pm=99 79 Interrupt 4--Protected mode
CE INTO 84 pm=119 Interrupt 4--from V86 mode to

PLO
CE INTO 39+ts ts 168 Interrupt 4--Protected mode

* Add one clock for each byte of the next instruction executed (80286 only).

The INT n instruction generates via software a call to an interrupt han
dler. The immediate operand, from a to 255, gives the index number into
the interrupt descriptor table (lDT) of the interrupt routine to be called.
In protected mode, the IDT consists of an array of eight-byte descriptors;
the descriptor for the interrupt invoked must indicate an interrupt, trap,

86 Turbo Assembler Quick Reference Guide

or task gate. In real address mode, the IDT is an array of four byte-long
pointers. In protected and real address modes, the base linear address of
the IDT is defined by the contents of the IDTR.

The INTO conditional software instruction is identical to the !NT n inter
rupt instruction except that the interrupt number is implicitly 4, and the
interrupt is made if the 86, 286, or 386 overflow flag is set.

The first 32 interrupts are reserved by Intel for system use. Some of these
interrupts are use for internally generated exceptions.

!NT n generally behaves like a far call except that the flags register is
pushed onto the stack before the return address. Interrupt procedures re
turn via the IRET instruction, which pops the flags and return address
from the stack.

In real address mode, !NT n pushes the flags, CS and the return IF onto
the stack, in that order, then jumps to the long pointer indexed by the in
terrupt number.

INVD Invalidate cache

i486 processors and greater

0 D I T S Z A P c

Opcode Instruction Clock Description

486
OF 08 INVD 4 Invalidate entire cache

The mternal cache is flushed, and a special-function bus cycle is issued
which indicates that external caches should also be flushed. Data held in
write-back external caches is discarded.

Note: This instruction is implementation-dependent; its function might
be implemented differently on future Intel processors.

It is the responsibility of hardware to respond to the external cache flush
indication.

INVLPG Invalidate TLB entry

i486 processors and greater

o D ITS ZAP C

Opcode Instruction Clock Description
486

OF 0117 INVLPG m 12 for hit Invalidate TLB entry

PART 4, Processor instructions 87

The INVLPG instruction is used to invalidate a single entry in the TLB,
the cache used for table entries. If the TLB contains a valid entry that
maps the address of the memory operand, that TLB entry is marked inva
lid.

In both protected mode and virtual 8086 mode, an invalid opcode is·gen
era ted when used with a register operand.

Note: This instruction is implementation-dependent; its function might
be implemented differently on future Intel processors.

IRET
IRETD
IRETW

Opcode

CF
CF
CF
CF
CF
CF
CF
CF

Instruction

IRETW
IRETW
IRETW
IRETD
IRETD
IRETD
IRETD
IRET

Interrupt return

IRETD 386 processors and greater

o D ITS ZAP C
* * * * * * * 1**
The flags register is popped from stack.

486
15
36
ts+32
15
36
15
ts+32

Clocks
386
22,pm=38
pm=82
ts
22,pm=38
pm=82
pm=60
ts

286
17,pm=31
55
169

§§.
32

Description

Interrupt return (far return and pop flags)
Interrupt return
Interrupt return
Interrupt return (far return and pop flags)
Interrupt return to lesser privilege
Interrupt return to V86 mode
Interrupt return
Selects fRETW or IRETD depending on
segment size of 16 or 32 bits. Only
works for VERSION T320 or higher.

• Add one clock, for each byte in the next instruction executed (80286 only).

In real address mode, IRET pops the instruction pointer, C5, and the flags
register from the stack and resumes the interrupted routine.

In protected mode, the action of IRET depends on the setting of the
nested task flag (NT) bit in the flag register. When popping the new flag
image from the stack, the IOPL bits in the flag register are changed only
when CPL equals o.

If NT equals 0, IRET returns from an interrupt procedure without a task
switch. The code returned to must be equally or less privileged than the
interrupt routine (as indicated by the RPL bits of the CS selector popped
from the stack). If the destination code is less privileged, IRET also pops
the stack pointer and 55 from the stack.

If NT equals 1, IRET reverses the operation of a CALL or INT that caUsed
a task switch. The updated state of the task executing IRET is saved in its
task state segment. If the task is re-entered later, the code that follows
IRET is executed.

88 Turbo Assembler Quick Reference Guide

IRETW pops WORD-style (if you use VERSION T320 or higher). If you're
using VERSION T310 or less, use IRET; IRETW replaces old functionality
of !RET.

Jcc Jump if condition is met

0 D I T S Z A P c

Opcode Instruction Clocks Description

4S6 3S6 2S6 ~
77 cb JA relS 3/1 7tm,3 7,3 16,4 Jump short if above (CF=O and ZF=O)
73 cb JAE relS 3/1 7tmt,3 7,3 16,4 Jump short if above or equal (CF=O)
72 cb JB rel8 3/1 7tm,3 7,3 16,4 Jump short if below (CF=1)
76 cb JBE relS 3/1 7tm,3 7,3 16,4 Jump short if below or equal (CF=1 or

ZF=1)
72 cb JC relS 3/1 7tm,3 7,3 16,4 Jump short if carry (CF=1)
E3 cb JCXZ relS 3/1 9tm,5 8,4 1S,6 Jump short if CX register is 0
E3 cb JECXZ relS 3/1 9tm,5 Jump short if ECX register is 0
74 cb JE rel8 3/1 7tm,3 7,3 16,4 Jump short if equal (ZF=1)
74 cb JZ relS 3/1 7tm,3 7,3 16,4 Jump short if 0 (ZF=1)
7F cb JG relS 3/1 7+1n,3 7,3 16,4 Jump short if greater (ZF=O and SF=OF)
7D cb JGE rel8 3/1 7tm,3 7,3 16,4 Jump short if greater or equal (SF=OF)
7C cb JL rel8 3/1 7tm,3 7,3 16,4 Jump short if less (SF<>OF)
7E cb JLE relS 3/1 7tm,3 7,3 16,4 Jump short if less or equal (ZF=1 and

SF<>OF)
76 cb JNA relS 3/1 7tm,3 7,3 16,4 Jump short if not above (CF=1 or ZF=1)
72 cb JNAE rel8 3/1 7tm,3 7,3 16,4 Jump short if not above or equal (CF=1)
73 cb JNB relS 3/1 7tm,3 7,3 16,4 Jump short if not below (CF=O)
77 cb JNBE relS 3/1 7tm,3 7,3 16,4 Jump short if not below or equal (CF=O

and ZF=O)
73 cb JNC relS 3/1 7tm,3 7,3 16,4 Jump short if not carry (CF=O)
75 cb JNE relS 3/1 7tm,3 7,3 16,4 Jump short if not equal (ZF=O)
7E cb JNG relS 3/1 7tm,3 7,3 16,4 Jump short if not greater (ZF=1 or

7~m,3
SF<>OF)

7C cb JNGE relS 3/1 7,3 16,4 Jump short if not greater or equal
(SF<>OF)

7D cb JNL relS 3/1 7tm,3 7,3 16,4 Jump short if not less (SF=OF)
7F cb JNLE relS 3/1 7+m,3 7,3 16,4 Jump short if not less or equal (ZF=O and

SF=OF)
71 cb JNO relS 3/1 7tm,3 7,3 16,4 Jump short if not overflow (OF=O)
7B cb JNP relS 3/1 7tm,3 7,3 16,4 Jump short if not parity (PF=O)
79 cb JNS relS 3/1 7tm,3 7,3 16,4 Jump short if not sign (SF=O)
75 cb JNZ relS 3/1 7tm,3 7,3 16,4 Jump short if not zero (ZF=O)
70 cb JO relS 3/1 7tm,3 7,3 16,4 Jump short if overflow (OF=1)
7A cb JP relS 3/1 7+m,3 7,3 16,4 Jump short if parity (PF=1)
7Acb JPE relS 3/1 7tm,3 7,3 16,4 Jump short if parity even (PF=1)
7B cb JPO relS 3/1 7tm,3 7,3 16,4 Jump short if parity odd (PF=O)
78 cb JS relS 3/1 7+m,3 7,3 16,4 Jump short if sign (SF=1)
74 cb JZ rel8 3/1 7tm,3 7,3 16,4 Jump short of zero (ZF=1)
OF 87 cw/cd JA re116/32 3/1 7tm,3 Jump near if above (CF=O and ZF=O)
OF 83 cw/cd JAE re116/32 3/1 7tm,3 Jump near if above or equal (CF=O)
OF S2 cw/cd JB re116/32 3/1 7tm,3 Jump near if below (CF=1)
OF S6 cw/cd JBE re116/32 3/1 7tm,3 Jump near if below or equal (CF=1or ZF=1)
OF 82 cw/cd JC re116/32 3/1 7tm,3 Jump near if carry (CF=1)
OF 84 cw/cd JE re116/32 3/1 7+m,3 Jump near if equal (ZF=1)

PART 4, Processor instructions 89

Opcode Instruction Clocks Description

486 386 286 86
OF 84 cw/cd JZ re116/32 3/1 7+m,3 Jump near if 0 (ZF=1)
OF 8F cw/cd JG re116/32 3/1 7+m,3 Jump near if greater (ZF=O and SF=OF)
OF 80 cw/cd JGE re116/32 3/1 7+m,3 Jump near if greater or equal (SF=OF)
OF 8C cw/cd JL re116/32 3/1 7+m,3 Jump near if less (SF<>OF)
OF 8E cw/cd JLE re116/32 3/1 7+m,3 Jump near if less or equal(ZF=1 and

SF<>OF)
OF 86cw/cd JNA re116/32 3/1 7+m,3 Jump near if not above (CF=1 or ZF=1)
OF 82 cw/cd JNAE re116/32 3/1 7+m,3 Jump near if not above or equal (CF=1)
OF 83 cw/cd JN8 re116/32 3/1 7+m,3 Jump near if not below (CF=O)
OF 87 cw/cd JN8E re116/32 3/1 7+m,3 Jump near if not below or equal (CF=O

and ZF=O
OF 83 cw/cd JNC re116/32 3/1 7+m,3 Jump near if not carry and ZF=O)
OF 85 cw/cd JNE re116/32 3/1 7+m,3 Jump near if not equal (ZF=O)
OF 8E cw/cd JNG re116/32 3/1 7+m,3 Jump near if not greater (ZF=1 or SF<>OF)
OF 8C cw/cd JNGE re116/32 3/1 7+m,3 Jump near if not greater or equal (SF<>OF)
OF 80 cw/cd JNL re116/32 3/1 7+m,3 Jump near if not less (SF=OF)
OF 8F cw/cd JNLE re116/32 3/1 7+m,3 Jump near if not less or equal (ZF=Oand

SF=OF)
OF 81 cw/cd JNO re116/32 3/1 7+m,3 Jump near if not overflow (OF=O)
OF 88 cw/cd JNP re116/32 3/1 7+m,3 Jump near if not parity (PF=O)
OF 89 cw/cd JNS re116/32 3/1 7+m,3 Jump near if not sign (SF=O)
OF 85 cw/cd JNZ re116/32 3/1 7+m,3 Jump near if not zero (ZF=O)
OF 80 cw/cd JO re116/32 3/1 7+m,3 Jump near if overflow (OF=1)
OF 8A cw/cd JP re116/32 3/1 7+m,3 Jump near if parity (PF=1)
OF 8A cw/cd JPE re116/32 3/1 7+m,3 Jump near if parity even (PF=1)
OF 88 cw/cd JPO re116/32 3/1 7+m,3 Jump near if parity odd (PF=O)
OF 88 cw/cd JS re116/32 3/1 ·7+m,3 Jump near if sign (SF= 1)
OF 84' cw/cd JZ re116/32 3/1 7+m,3 Jump near if zero (ZF= 1)

* When a jump is taken, add one clock for every byte of the next instruction executed (80286 only).

Note: The first clock count is for the true condition (branch taken); the
second clock count is for the false condition (branch not taken). re116/32
indicates that these instructions map to two; one with a 16-bit relative dis
placement, the other with a 32-bit relative displacement, depending on
the operand-size attribute of the instruction.

Conditional jumps (except JCXZ/JECXZ) test the flags which have been
set by a previous instruction. The conditions for each mnemonic are
given in parentheses after each description above. The terms "less" and
"greater" are used for comparisons of signed integers; "above" and "be
low" are used for unsigned integers.

If the given condition is true, a jump is made to the location provided as
the operand. Instruction coding is most efficient when the target for the
conditional jump is in the current code segment and within -128 to + 127
bytes of the next instruction's first byte. The jump can also target -32768
,through +32767 (segment size attribute 16) or -2 to the 31st power +2 to
the 31st power -1 (segment size attribute 32) relative to the next instruc
tion's first byte. When the target for the conditional jump is in a different
segment, use the opposite case of the jump instruction (that is, JE and
JNE), and then access the target with an unconditional far jump to the
other segment. For example, you cannot code

90 Turbo Assembler Quick Reference Guide

JZ FARLABEL;

You must instead code

JNZ BEYOND;
JMP FARLABEL;

BEYOND:

Because there can be several ways to interpret a particular state of the
flags, TASM provides more than one mnemonic for most of the condi
tional jump opcodes. For example, if you compared two characters in AX
and want to jump if they are equal, use JE; or, if you ANDed AX with a
bit field mask and only want to jump if the result is 0, use JZ, a synonym
for JE.

JCXZ/JECXZ differs from other conditional jumps because it tests the
contents of the CX or ECX register for 0, not the flags. JCXZ/JECXZ is
useful at the beginning of a conditional loop that terminates with a condi
tionalloop instruction (such as LOOPNE TARGET LABEL). The
JCXZ/JECXZ prevents entering the loop with CX or ECX equal to zero,
which would cause the loop to execute 64K or 32G times instead of zero
times.

JMP Jump

0 D I T S Z A P c

All if a task switch takes place; none if no task switch occurs

Opcode Instruction Clocks Description
486 386 286 86

EBcb JMP rel8 3 7+m 7 15 Jump short
E9 cw JMP rel16 3 7+m 7 15 Jump near
FF 14 JMP r/m16 SIS 7+m/10+m 7/11 11/18+EA Jump near indirect
EAcd JMP ptr16:16 17pm=19 12+m, pm=27+m 11,pm=23 15 Jump intersegment, 4-byte

immediate address
EAcd JMP ptr16:16 32 pm=45+m 38 Jump to call gate, same

privilege
EAcd JMP ptr16:16 42+ts ts 175 Jump via task state

~egment

EAcd JMP ptr16:16 43+ts ts 180 24+EA Jump via task gate
FF IS JMP m16:16 13,pm=18 43+m,pm=31 +m 15,pm=26 Jump r/m16:16 indirect

and intersegment
FF IS JMP m16:16 31 pm=49+m 41 Jump to call gate, same

privilege
FF IS JMP m16:16 41+ts 5+ts 178 Jump via task state

segment
FF IS JMP m16:16 42+ts 5+ts 183 Jump via task gate
E9 cd JMP rel32 3 7+m Jump near
FF 14 JMP r/m32 SIS 7+m,10+m Jump near
EAcp JMP ptr16:32 13,pm=18 12+m, pm=27+m Jump intersegment, 6-byte

immediate address

PART 4, Processor instructions 91

Opcodelnstruction Clocks, Description
486 386 286 86

EAcp JMP ptr16:32 31 pm=45+m Jump to call gate, same
privilege

EAcp JMP ptr16:32 42+ts ts Jump via task state
segment

EAcp JMP ptr16:32 43+ts ts Jump via task gate
FF 15 JMP m16:32 13,pm=18 43+m, pm=31+m Jump intersegment

address at rim dword
FF 15 JMP m16:32 31 pm=49+m Jump to call gate, same

privilege
FF 15 JMP m16:32 41+ts 5 + ts Jump via task state

segment
FF 15 JMP m16:32 42+ts 5 + ts Jump via task gate

• Add one clock for every byte of the next instruction executed (80286 only).

The JMP instruction transfers control to a different point in the instruc
tion stream without recording return information.

The action of the various forms of the instruction are shown below.

Jumps with destinations of type r/m16, r/m32, re116, and rel32 are near
jumps and do not involve changing the segment register value.

The JMP re116 and JMP rel32 forms of the instruction add an offset to the
address of the instruction following the JMP to determine the destination.
The re116 form is used when the instruction's operand-size attribute is 16
bits (segment size attribute 16 only); re132 is used when the operand-size
attribute is 32 bits (segment size attribute 32 only). The result is stored in
the 32-bit EIP register. With re116, the upper 16 bits of EIP are cleared,
which results in an offset whose value does not exceed 16 bits.

JMP r/m16 and JMP r/m32 specifies a register or memory location from
which the absolute offset from the procedure is fetched. The offset
fetched from rim is 32 bits for an operand-size attribute of 32 bits
(r/m32), or 16 bits for an operand-size attribute of 16 bits (r/m16).

The JMP ptr16:16 and ptr16:32 forms of the instruction use a four-byte or
six-byte operand as a long pointer to the destination. The JMP m16:16
and m16:32 forms fetch the long pointer from the memory location speci
fied (indirection). In real address mode or virtual 8086 mode, the long
pointer provides 16 bits for the CS register and 16 or 32 bits for the EIP
register (depending on the operand-size attribute). In protected mode,
both long pointer forms consult the access rights (AR) byte in the descrip
tor indexed by the selector part of the long pointer. Depending on the
value of the AR byte, the jump will perform one of the following types of
control transfers:

• a jump to a code segment at the same privilege level

• a task switch

92 Turbo Assembler Quick Reference Guide

LAHF

Opcode Instruction

9F LAHF

Loads flags into AH register

o D ITS ZAP C

486
3

Clocks

386 286 86 - -
2 2 4

Description

Load: AH = flags SF ZF xx AF xx PF xx CF

LAHF transfers the low byte of the flags word to AH. The bits, from MSB
to LSB, are sign, zero, indeterminate, auxiliary carry, indeterminate, par
ity, indeterminate, and carry.

LAR Load access rights byte
80286 and greater protected mode only

0 D I T S Z A P C

*

Opcode Instruction Clocks Description

486 386 286
OF 02/r LAR r16,r/m16 11/11 pm=15/16 14/16 r16f-r/m16 masked by FFOO
OF 02 Ir LAR r32,r/m32 11/11 pm=15/16 r32f-r/m32 masked by OOFxFFOO

The LAR instruction stores a marked form of the second doubleword of
the descriptor for the source selector if the selector is visible at the CPL
(modified by the selector's RPL) and is a valid descriptor type. The desti
nation register is loaded with the high-order doubleword of the descrip
tor masked by OOFxFFOO, and ZF is set to 1. The x indicates that the four
bits corresponding to the upper four bits of the limit are undefined in the
value loaded by LAR. If the selector is invisible or of the wrong type, ZF
is cleared.

If the 32-bit operand size is specified, the entire 32-bit value is loaded
into the 32-bit destination register. If the 16-bit operand size is specified,
the lower 16-bits of this value are stored in the 16-bit destination register.

All code and data segment descriptors are valid for LAR. (See your Intel
manual for valid segment and gate descriptor types for LAR.)

LEA Load effective address offset

0 D I T S Z A P C

Opcode Instruction Clocks Description
486 386 286 86

8D/r LEA r16,m 1 2 3 2+EA Store effective address for m in register r16
8D/r LEA r32,m 1 2 Store effective address for m in register r32

PART 4, Processor instructions 93

Opcode Instruction

8D/r
8D/r

LEA r16,m
LEA r32,m

486

Clocks

386 286 - -
2
2

86

Description

Store effective address for m in register r16
Store effective address for m in register r32

LEA calculates the effective address (offset part) and stores it in the speci
fied register. The operand-size attribute of the instruction is determined
by the chosen register. The address-size attribute is determined by the
USE attribute of the segment containing the second operand. The address
size and operand-size attributes affect the action performed by LEA, as
follows:

Operand Address Action
performed size size

16 16

16 32

32 16

32 32

LEAVE

Opcode Instruction

C9 LEAVE
C9 LEAVE

16-bit effective address is calculated and stored
in requested 16-bit register destination.

32-bit effective address is calculated. The lower
16 bits of the address are stored in the requested
16-bit register destination.

16-bit effective address is calculated. The 16-:bit
address is zero-extended and stored in the re
quested 32-bit register destination.

32-bit effective address is calculated and stored in
the requested 32-bit register destination.

High-level procedure exit

80186 processors and greater

0 D I T S Z A P c

Clocks Description
486 386 286
5 4 5 Set SPto BP
5 4 Set ESP to ESP

LEAVE reverses the actions of the ENTER instruction. By copying the
frame pointer to the stack pointer, LEAVE releases the stack space used
by a procedure for its local variables. The old frame pointer is popped
into BP or EBP, restoring the caller's frame. A subsequent RET nn instruc
tion removes any arguments pushed onto the stack of the exiting proce
dure.

94 Turbo Assembler Quick Reference Guide

LGOT/L10T Load global/interrupt descriptor table register
80286 and greater protected mode only

o D ITS ZAP C

Opcode Instruction Clocks Description

OF 01 /2 LGDT m16&32 11
OF 01 /3 L1DT m16&32 11

11
11

11
12

Load m into global descriptor table register
Load m into interrupt descriptor table register

The LGDT and LIDT instructions load a linear base address and limit
value from a six-byte data operand in memory into the GDTR or IDTR,
respectively. If a 16-bit operand is used with LGDT or LIDT, the register
is loaded with a 16-bit limit and a 24-bit base, and the high-order 8 bits of
the 6-byte data operand are not used. If a 32-bit operand is used, a 16-bit
limit and a 32-bit base is loaded; the high-order 8 bits of the 6-byte oper
and are used as high-order base address bits.

The SGDT and SIDT instructions always store into all 48 bits of the 6-
byte data operand. With the 80286, the upper 8 bits are undefined after
SGDT or SIDT is executed. With the 386, the upper 8 bits are written with
the high-order 8 address bits, for both a 16-bit operand and a 32-bit oper
and. If LGDT or LIDT is used with a 16-bit operand to load the register
stored by SGDT or SIDT, the upper 8 bits are stored as zeros.

LGDT and LIDT appear in operating system software; they are not used
in application programs. They are the only instructions that directly load
a linear address (Le., not a segment relative address) in 386 protected
mode.

LGS Load full pointer
LSS LGS/LSS/LFS 386 processors and greater
LFS
LOS 0 D I T S Z A P C

LES
Opcode Instruction Clocks Description

486 386 286 86
C5/r LDS r16,m16:16 6/12 7,pm=22 7,pm=21 16+EA Load DS:r16 with pOinter from memory
C5/r LOS r32,m16:32 6/12 7,pm=22 Load DS:r32 with pointer from memory
OF 82 /r LSS r16,m16:16 6/12 7,pm=22 Load SS:r16 with pOinter from memory
OF 82 /r LSS r32,m16:32 6/12 7,pm=22 Load SS:r32 with pOinter from memory
C4/r LES r16,m16:16 6/12 7,pm=22 7,pm=21 16+EA Load ES:r16 with pointer from memory
C4/r LES r32,m16:32 6/12 7,pm=22 Load ES:r32 with pOinter from memory
OF 84 Ir LFS r16,m16:16 6/12 7,pm=25 Load FS:r16 with pOinter from memory
OF 84 Ir LFS r32,m16:32 6/12 7,pm=25 Load FS:r32 with pointer from memory
OF 85 Ir LGS r16,m16:16 6/12 7,pm=25 Load GS:r16 with painter from memory
OF 85 Ir LGS r32,m16:32 6/12 7,pm=25 Load GS:r32 with painter from memory

PART 4, Processor instructions 95

These instructions read a full pointer from memory and store it in the se
lected segment register: register pair. The full pointer·loads 16 bits into
the segment register SS, DS, ES, PS, or GS. The other register loads 32 bits
if the operand-size attribute is 32 bits, or loads 16 bits if the operand-size
attribute is 16 bits. The other 16- or 32-bit register to be loaded is deter
mined by the r16 or r32 re~ster operand specified.

When an assignment is made to one of the segment registers, the de-scrip
tor is also loaded into the segment register. The data for the register is ob
tained from the descriptor table entry for the selector given.

A null selector (values 0000-0003) can be loaded into DS, ES, PS, or GS
registers without causing a protection exception. (Any subsequent refer
ence to a segment whose corresponding segment register is loaded with a
null selector to address memory causes a #GP(O) exception. No memory
reference to the segment occurs.)

LLDT Load local descriptor table register
80286 and greater protected mode only

0 D I T S Z A P c

Opcode Instruction Clocks Description

486 386 286
OF 00 12 LLDT rim 16 11/11 20 17/19 Load selector r/m16 into LDTR

LLDT loads the local descriptor table register (LDTR). The word operand
(memory or register) to LLDT should contain a selector to the global de
scriptor table (GDT). The GDT entry should be a local descriptor table. If
so, then the LDTR is loaded from the entry. The descriptor registers DS,
ES, SS, PS, GS, and CS are not affected. The LDT field in the task state
segment does not change.

The selector operand can be 0; if so, the LDTR is marked invalid. All de
scriptor references (except by the LAR, VERR, VERW or LSL instructions)
cause a #GP fault.

LLDT is used in operating system software; it is not used in application
programs.

96 Turbo Assembler Quick Reference Guide

LMSW Load machine status word
80286 and greater protected mode only

o D ITS ZAP C

Opcode Instruction Clocks Description

486 386 286
OF 01 16 LMSW rim 16 13/13 10/13 3/6 Load rim 16 into machine status word

LMSW loads the machine status word (part of CRO) from the source oper
and. This instruction can be used to switch to protected mode; if so, it
must be followed by an intrasegment jump to flush the instruction
queue. LMSW will not switch back to real address mode.

LMSW is used only in operating system software. It is not used in appli
cation programs.

LOCK Assert LOCK# signal prefix

o D ITS ZAP C

Opcode Instruction Clocks Description

486 386 286 ~

FO LOCK 0 0 2 Assert LOCK# signal for the next instruction

The LOCK prefix causes the LOCK# signal of the CPU to be asserted dur
ing execution of the instruction that follows it. In a multiprocessor envi
ronment, this signal can be used to ensure that the CPU has exclusive use
of any shared memory while LOCK# is asserted. The read-modify-write
sequence typically used to implement test-and-set on the 386 is the BTS
instruction.

On the 386 and i486, the LOCK prefix functions only with the following
instructions:

BT, BTS, BTR, BTC
XCHG
XCHG
ADD, OR, ADC, SBB,
AND, SUB, XOR
NOT,NEG,INC, DEC

mem, reg/imm
reg, mem
mem, reg
mem, reg/imm

mem

An undefined opcode trap will be generated if a LOCK prefix is used
with any instruction not listed above.

XCHG always asserts LOCK # regardless of the presence or absence of
the LOCK prefix.

PART 4, Processor instructions 97

The integrity of the LOCK is not affected by the alignment of the mem
ory field. Memory locking is observed for arbitrarily misaligned fields.

Locked access is not assured if another CPU processor is executing an in
struction concurrently that has one of the following characteristics:

• Is not preceded by a LOCK prefix.

• Is not o~e of the instructions in the preceding list.

• Specifies a memory operand that does not exactly overlap the destina
tion operand. Locking is not guaranteed for partial overlap, even if one
memory operand is wholly contained within another.

LODS Load string operand
LODSB LODSD 386 processors and greater
LODSW
LODSD 0 'D I T S Z A P c

Opcode ' Instruction Clocks Description
486 386 286 §§.

AC LODS m18 5 5 5 12 Load byte [(E)SI] into AL
AD LODS m16 5 5 5 12 Load word [(E)SI] into AX
AD LODS m32 5 5 Load dword [(E)SI] into EAX
AC LODSB 5 5 5 12 Load byte DS:[(E)SI] into AL
AD LODSW 5 5 5 12 Load word'DS:[(E)SI] into AX
AD LODSD5 5 Load dword DS:[(E)SI] into EAX

LODS loads the AL, AX, or EAX register with the memory byte, word, or
doubleword at the location pointed to by the source-index register. After
the transfer is made, the source-index register is automatically advanced.
If the direction flag is 0 (CLD was executed), the source index increments;
if the direction flag is 1 (STD was executed), it decrements. The increment
or decrement is 1 if a byte is loaded, 2 if a word is loaded, or 4 if a dou
bleword is loaded.

If the address-size attribute for this instruction is 16 bits, SI is used for
the source-index register; otherwise the address-size attribute is 32 bits,
and the ESI register is used. The address of the source data is determined
solely by the contents of ESI/SI. Load the correct index value into SI be
fore executing the LaDS instruction. LODSB, LODSW, LODSD are syno
nyms for the byte, word, and doubleword LODS instructions.

LODS can be preceded by the REP prefix; however, LODS is used more
typically within a LOOP construct, because further processing of the data
moved into EAX, AX, or AL is usually necessary.

98 Turbo Assembler Quick Reference Guide

LOOP Loop control with CX counter
LOOPcond Loop control with CX/ECX counter

386 processors and greater

0 D I T S Z A P C

Opcode Instruction Clocks Description
486 386 286 86

E2 cb LOOP rel8 2,6 11+m 8,noj=4 17,noj=5 DEC Count; jump short if Count 0
E1 cb LOOPE rel8 9,6 11+m 8,noj=4 18,noj=6 DEC Count; jump short if Count 0 and ZF=1
E1 cb LOOPZ rel8 9,6 11+m 8,noj=4 18,noj=6 DEC Count; jump short if Count 0 and ZF=1
EO cb LOOPNE rel8 9,6 11+m 8,noj=4 19,noj=5 DEC Count; jump short if Count 0 and ZF=O
EO cb LOOPNZ rel8 9,6 11+m 8,noj=4 19,noj=5 DEC Count; jump short if Count 0 and ZF=O

LOOP decrements the count register without changing any of the flags.
Conditions are then checked for the form of LOOP being used. If the con
ditions are met, a short jump is made to the label given by the operand to
LOOP. If the address-size attribute is 16 bits, the CX register is used as
the count register; otherwise the ECX register is used (386 only). The oper
and of LOOP must be in the range from 128 (decimal) bytes before the in
struction to 127 bytes ahead of the instruction ..

The LOOP instructions provide iteration control and combine loop index
management with conditional branching. Use the LOOP instruction by
loading an unsigned iteration count into the count register, then code the
LOOP at the end of a series of instructions to be iterated. The destination
of LOOP is a label that points to the beginning of the iteration.

LSL Load segment ·limit
80286 and greater protected mode only

0 D I T S Z A ,p C

*

Opcode Instruction Clocks Description

486 386 286
OF 03/r LSL r16,r/m 16 10/10 pm=20/21 14/16 Load: r16f-segment limit, selector rim 16

(byte granular)
OF 03/r LSL r32,r/rn32 10/10 pm=20/21 Load: r32f-segment limit, segment limit,

selector r/m32 (byte granular)
OF 03/r LSL r16,r/m16 10/10 pm=25/26 14/16 Load: r16f-segment limit, segment limit,

selector r/m16 (page granular)
OF 03/r LSL r32,r/m32 10/10 pm=26/26 Load: r32f-segment limit selector r/m32

(page granular)

The LSL instruction loads a register with an unscrambled segment limit,
and sets ZF to 1, provided that the source selector is visible at the CPL
weakened by RPL, and that the descriptor is a type accepted by LSL. Oth
erwise, ZF is cleared to 0, and the destination register is unchanged. The

PART 4, Processor instructions 99

segment limit is loaded as a byte granular value. If the descriptor has a
page granular segment limit, LSL will translate it to a byte limit before
loading it in the destination register (shift left 12 the 20-bit "raw'~ limit
from descriptor, then OR with OOOOOFFFH).

The 32-bit forms of this instruction store the 32-bit byte granular limit in
the 16-bit destination register.

Code and data segment descriptors are valid for LSL.

LTR Load task register
80286 and greater protected mode only

0 D I T S Z A P c

Opcode Instruction Clocks Description

486 386 286
OF 00 13 LTR r/m16 20/20 pm=23/27 17/19 Load EA word into task register

LTR loads the task register from the source register or memory location
specified by the operand. The loaded task state segment is marked busy.
A task switch does not occur.

LTR is used only in operating system software; it is not used in applica
tion programs.

MOV Move data

0 D I T S Z A P c

Opcode Instruction Clocks Description
486 386 286 86

88/r MOV r/m8,r8 1 2/2 2/3 2/9+EA Move byte register into rim byte
89/r MOV r/m16,r16 1 2/2 2/3 2/9+EA Move word register into rim word
89/r MOV r/m32,r32 1 2/2 Move dword register to rim dword
8A/r MOV r8,r/m8 1 2/4 2/5 2/8+EA Move rim byte into byte register
88/r MOV r16,r/m16 1 2/4 2/5 2/8+EA Move rim word into word register
88/r MOV r32,r/m32 1 2/4 Move rim dword into dword register
8C/r MOV r/m16,Sreg 3/3 2/2 2/3 2/9+EA Move segment register to rim register
8D/r MOV Sreg,r/m16 3/9 2/5,pm= 2/5,pm= 2/8+EA Move rim word to segment register

1/198 17/19
AO MOV AL,moffs8 4 5 10 Move byte at (seg:offset) to AX
A1 MOV AX,moffs16 4 5 10 Move word at (seg:offset) to AX
A1 MOV EAX,moffs32 4 Move dword at (seg:offset) to EAX
A2 MOV moffs8,AL 4 3 10 Move AL to (seg:offset)
A3 MOV moffs16,AX 2 3 10 Move AX to (seg:offset)
A3 MOV moffs32,EAX 2 Move EAX to (seg:offset)
80+ rb MOV reg8,imm8 2 2 4 Move immediate byte to register
88+ rw MOV reg16,imm16 2 2 4 Move immediate word to register
88+rd MOV reg32,imm32 2 Move immediate dword to register

100 Turbo Assembler Quick Reference Guide

Opcode Instruction Clocks Description

486 386 286 86
C6 MOV r/m8,imm8 2/2 2/3 4/10+EA Move immediate byte to rim byte
C7 MOV r/m16,imm16 212 213 4/10+EA Move immediate word to rim word
C7 MOV r/m32,imm32 2/2 Move immediate dword to rim dword

MOV copies the second operand to the first operand.

If the destination operand is a segment register (DS, ES, SS, etc.), then
data from a descriptor is also loaded into the register. The data for the
register is obtained from the descriptor table entry for the selector given.
A null selector (values 0000-0003) can be loaded into DS and ES registers
without causing an exception; however, use of DS or ES causes a #GP(O),
and ~o memory reference occurs.

A MOV into SS inhibits all interrupts until after the execution of the next
instruction (which is presumably a MOV into eSP).

MOV

Opcode

OF 22 Ir
OF 20 Ir
OF 22 Ir
OF 21 Ir
OF 21 Ir
OF 23 Ir
OF 23 Ir
OF 24 Ir
OF 26 Ir
OF 24 Ir

Move to/from special registers

386 processors and greater

o D ITS ZAP C

Instruction Clocks

486 386 - -
MOV,CRO,r32 16
MOV r32,CRO/CR2ICR3/CR4 4
MOV CRO/CR2/CR3/CR4,r32 4
MOV r32,DRO - 3 10
MOV r32,DR6/DR7 10
MOV DRO -3,r32 11
MOV DR6/DR7,r32 11
MOV r32,TR6/TR7 4
MOV TR6/TR7,r32 4
MOV r32,TR3

6
10/4/5
22
14
22
16
12
12
3

Description

Move (register) to (control register)
Move (control register) to (register)

Move (debug register) to (register)
Move (debug register) to (register)
Move (register) to (debug register)
Move (register) to (debug register)
Move (test register) to (register)
Move (register) to (test register)
Move (registers) to (test register3)

These forms of MOV store or load the following special registers in or
from a general-purpose register:

• Control Registers CRO, CR2,CR3, and CR4 (CR4 only on Pentium)

• Debug Registers DRO, DRl, DR2, DR3, DR6, and DR7

• Test Registers TR3, TR4, TR5, TR6, and TR7 (not valid on Pentium)

32-bit operands are always used with these instructions, regardless of the
operand -size attribute.

PART 4, Processor instructions 101

MOVS Move data from string to string
MOVSB MOVSD 386 processors and greater
MOVSW
MOVSD 0 D I T S Z A P C

Opcode Instruction Clocks Description
486 386 286 ~

A4 MOVS m8,m8 7 7 S 18 Move byte [(E)SI] to ES:[(E)DI]
AS MOVS m16,m16 7 7 S 18 Move word [(E)SI] to ES:[(E)DI]
AS MOVm32,m32 7 7 Move dword [(E)SI] to ES:[(E)DI]
A4 MOVSB 7 7 S 18 Move byte DS:[(E)SI] toES:[(E)DI]
AS MOVSW 7 7 S 18 Move word DS:[(E)Sllto ES:[(E)DI]
AS MOVSD 7 7 Move dword DS:[(E)SI] to ES:[(E)DI]

MOVS copies the byte or word at [(E)SI] to the byte or word at ES:
[(E)D1]. The destination operand must be addressable from the ES regis
ter; no segment override is possible for the destination. A segment over
ride can be used for the source operand; the default is DS.

The addresses of the source and destination are determined solely by the
contents of (E)S1 and (E)DI. Load the correct index values into (£)S1 and
(E)D1 before executing the MOVS instruction. MOVSB, MOVSW, and
MOVSD are synonyms for the byte, word, and doubleword MOVS
instructions.

After the data is moved, both (E)S1 and (E)D1 are advanced automat
ically. If the direction flag is 0 (CLD was executed), the registers are incre
mented; if the direction flag is 1 (STD was executed), the registers are de
cremented. The registers are incremented or decremented by 1 if a byte
was moved, 2 if a word was moved, or 4 if a doubleword was moved.

MOVS can be preceded by the REP prefix for block movement of CX
bytes or words. Refer to the REP instruction for details of this operation.

MOVSX

Opcode

OFBE Ir
OF BE Ir
OF BE Ir

Move with sign-extend
386 processors and greater

o D ITS ZAP C

Instruction

MOVSX r16,r/m8
MOVSX r32,r/m8
MOVSX r32,r/m16

Clocks
486 386
3/3 3/6
3/3 3/6
3/3 3/6

Description

Move byte to word with sign extend
Move byte to dword '
Move word to dword

MOVSX reads the contents of the effective address or register as a byte or
a word, sign-extends the value to the operand-size attribute of the instruc
tion (16 or 32 bits), and stores the result in the destination register.

102 Turbo Assembler Quick Reference Guide

MOVZX Move with zero-extend
386 processors and greater

o D ITS ZAP C

Opcode Instruction Clocks Description

486 386
OF 86 Ir MOVZX r16,r/m8 3/3 3/6 Move byte to word with zero extend
OF 86/r MOVZX r32,r/m8 3/3 3/6 Move byte to dword
OF 87 Ir MOVZX r32,r/m16 3/3 3/6 Move word to dword

MOVZX reads the contents of the effective address or register as a byte
or a word, zero extends the value to the operand-size attribute of the in
struction (16 or 32 bits), and stores the result in the destination register.

MUL Unsigned multiplication of AL or AX

0 D I T S Z A P C

* ? ? ? ? *

Opcode Instruction Clocks Description

486 386 286 ~
F6/4 MUL r/m8 13/18,13/18 9-14/12-17 13/16 70-77176-83+EA Unsigned muttiply (AX

[(AL 8 rIm byte)
F7/4 MUL r/m16 13/26,13/26 9-22112-25 21/24 118-113/124-139+EA (DX:AX[AX • rim word)
F7 14 MUL r/m32 13/42, 13/42 9-38/12-41 Unsigned multiply

(EDX: EAX[EAX • rim
dword)

MUL performs unsigned multiplication. Its actions depend on the size of
its operand, as follows:

• A byte operand is multiplied by AL; the result is left in AX. The carry
and overflow flags are set to 0 if AH is 0; otherwise, they are set to 1.

• A word operand is multiplied by AX; the result is left in DX: AX. DX
contains the high-order 16 bits of the product. The carry and overflow
flags are set to 0 if DX is 0; otherwise, they are set to 1.

• A doubleword operand is multiplied by EAX and the result is left in
EDX:EAX. EDX contains the high-order 32 bits of the product. The
carry and overflow flags are set to 0 if EDX is 0; otherwise, they are set
to 1 (386 only).

PART 4, Processor instructions 103

NEG Two's complement negation

0 D I T S Z· A P C

* * * * * *

Opcode Instruction Clocks Description
486 386 286 ~

F6/3 NEG rim 8 , 1/3 2/6 217 3/16+EA Two's complement negate rim byte
F7/3 NEG r/m16 1/3 2/6 2/7 3/16+EA Two's complement negate rim word
F7/3 NEG r/m32 1/3 2/6 Two's complement negate rim dword

NEG replaces the value of a register or memory operand with its two's
complement. The operand is subtracted from zero, and the result is
placed in the operand.

The carry flag is set to I, unless the operand is zero, in which case the
carry flag is cleared to O.

NOP No operation

0 D I T S Z A P C

Opcode Instruction Clocks Description
486 386 286 86

90 Nap 3 3 3 No operation

NOP performs no operation. NOP is a one-byte instruction that takes up
space but affects none of the machine context except (E)IP.

NOP is an alias mnemonic for the XCHG (E)AX, (E)AX instruction.

NOT One's complement negation

0 D I T S Z A P C

Opcode Instruction Clocks Description
486 386 286 86

F6/2 NOT r/m8 1/3 2/6 217 3/16+EA Reverse each bit of rim byte
F7/2 NOT r/m16 1/3 2/6 217 3/16+EA Reverse each bit of rim word
F7/2 NOT r/m32 1/3 2/6 217 Reverse each bIT of rim dword

NOT inverts the operand; every 1 becomes a 0, and vice versa.

104 Turbo Assembler Quick Reference Guide

OR Logical inclusive OR

0 D I T S Z A P C

0 * * ? * 0

Opcode Instruction Clocks Description

486 386 286 ~
OCib OR AL,imm8 1 2 3 4 OR immediate byte to AL
ODiw OR AX,imm16 1 2 3 4 OR immediate word to AX
OD id OR EAX,imm32 1 2 OR immediate dword to EAX
80/1ib OR r/m8,imm8 1/3 2!7 317 4/17+EA OR immediate byte to rIm byte
8111 iw OR r/m16,imm16 1/3 217 317 4/17+EA OR immediate word to rIm word
8111 id OR r/m32,imm32 1/3 2!7 OR immediate dword to rIm dword
8311 ib OR rIm 16,imm8 1/3 2!7 OR sign-extended immediate byte

with rIm word
8311 ib OR r/m32,imm8 1/3 2/7 OR sign-extended immediate byte

with rIm dword
08/r OR r/m8,r8 1/3 2/6 2!7 3/16+EA OR byte register to rIm byte
09/r OR rIm 16,r16 1/3 216 217 3/16+EA OR word register to rIm word
09/r OR r/m32,r32 1/3 2/6 OR dword register to rIm dword
OA Ir OR r8,r/m8 1/2 2!7 217 3/9+EA OR byte register to rIm byte
OB Ir OR r16,r/m16 1/2 2!7 2!7 3/9+EA OR word register to rIm word
OB Ir OR r32,r/m32 1/2 2!7 OR dword register to rIm word

OR computes the inclusive OR of its two operands and places the result
in the first operand. Each bit of the result is 0 if both corresponding bits
of the operands are 0; otherwise, each bit is 1.

The optimized form of OR is SETFLAG (see Part 3).

OUT Output to port

o D ITS ZAP C

Opcode Instruction Clocks Description

486 386 286 ~
E6 ib OUTimm8,AL 16,pm=11*/31**,vm=29 10,pm=4*/24** 3 10 Output byte AL to

immediate port number
E7 ib OUT imm8,AX 16,pm=11*/31**,vm=29 10,pm=4*/24** 3 10 Output word AX to

immediate port number
E7 ib OUT 16,pm=11*/31**,vm=29 10,pm=4*/2S** Output dword EAX to

imm8,EAX immediate port number
EE OUT DX,AL 16,pm=11*/31**,vm=29 11,pm=S*/2S** 3 8 Output byte AL to port

number in DX
EF OUT DX,AX 16,pm=11*/31**,vm=29 11,pm=S*/2S** 3 8 Output word AX to

port number in DX
EF OUT DX,EAX 16,pm=11*/31 **,vm=29 11,pm=S*/2S** Output dword EAX to

port number in DX

* If CPL ::; IOPL
** If CPL > IOPL or if in virtual 8086 mode

PART 4, Processor instructions 105

OUT transfers a data byte or data word from the register (AL, AX, or
EAX) given as the second operand to the output port numbered by the
first operand. Output to any port from 0 to 65535 is performed by placing
the port number in the DX register and then using an OUT instruction
with DX as the first operand. If the instruction contains an eight-bit port
ID, that value is zero-extended to 16 bits.

OUTS Output string to port
OUTSB OUTS/OUTSB/OUTSW 80186 and greater
OUTSW OUTSD 386 processors and greater
OUTSO

0 D I T S Z A P c

Opcode Instruction Clocks Description
486 386 286

6E OUTS DX,r/m8 17,pm=10*/32**,vm=30 14,pm=8* /28** 5 Output byte [(E)SI] to port
in DX

6F OUTS DX,r/m16 17,pm=10*/32**,vm=30 14,pm=8*/28** 5 Output word [(E)SI] to port
in DX

6F OUTS DX,r/m32 17,pm=10*/32**,vm=30 14,pm=8*/28** Output dw{)rd [(E)SI] to
port in DX

6E OUTSB 17,pm= 10*/32** ,vm=30 14,pm=8*/28** 5 Output byte DS:[(E)SI] to
port in DX

6F OUTSW 17,pm=10*/32**,vm=30 14,pm=8* /28** 5 Output word DS:[(E)SI] to
port number in DX

6F OUTSD 17,pm= 10*/32** ,vm=30 14,pm=8* /28** Output dword DS:[(E)SI] to
port in DX

OUTS transfers data from the memory byte, word, or doubleword at the
source-index register to the output port addressed by the DX register. If
the address-size attribute for this instruction is 16 bits, SI is used for the
source-index register; otherwise, the address-size attribute is 32 bits, and
ES1 is used for the source-index register.

OUTS does not allow specification of the port number as an immediate
value. The port must be addressed through the DX register value. Load
the correct value into DX before executing the OUTS instruction.

The address of the source data is determined by the contents of source-in
dex register. Load the correct index value into SI or ES1 before executing
the OUTS instruction. ,

After the transfer, source-index register is advanced automatically. If the
direction flag is 0 (CLD was executed), the source-index register is incre
mented; if the direction flag is 1 (STD was executed),it is decremented.
The amount of the increment or decrement is 1 if a byte is output, 2 if a
word is output, or 4 if a doubleword is output.'

OUTSB, OUTSW, and OUTSD are synonyms for the byte, word, and dou
bleword OUTS instructions. OUTS can be preceded by the REP prefix for

106 Turbo Assembler Quick Reference Guide

block output of ex bytes or words. Refer to the REP instruction for de
tails on this operation.

POP POp a word from the stack

0 D I T S Z A P C

Opcode Instruction Clocks Description

486 386 286 ~
8F /0 POP m16 6 5 5 17+EA Pop top of stack into memory word
8F /0 POP m32 6 5 Pop top of stack into memory dword
58+rw POP r16 4. 4 5 8 Pop top of stack into word register
58+rd POP r32 4 4 Pop top of stack into dword register
1F POP DS '3 7,pm=21 5,pm=20 8 Pop top of stack into DS
07 POP ES 3 7,pm=21 5,pm=20 8 Pop top of stack into ES
17 POPSS 3 7,pm=21 5,pm=20 8 Pop top of stack into SS
OF A1 POP FS 3 7,pm=21 Pop top of stack into FS
OF A9 POPGS q 7,pm=21 Pop top of stack into GS

POP replaces the previous contents of the memory, the register, or the
segment register operand with the word on the top of the stack, ad
dressed by SS:SP (address-size attribute of 16 bits) or SS:ESP (address
size attribute of 32 bits). The stack pointer SP is incremented by 2 for an
operand-size of 16 bits or by 4 for an operand-size of 32 bits. It then
points to the new top of stack. .

POP CS is not an instruction. Popping from the stack into the es register
is accomplished with a RET instruction.

If the destination operand is a segment register (DS, ES, FS, GS, or SS),
the value popped must be a selector. In protected mode, loading the selec
tor initiates automatic loading of the descriptor information associated
with that selector into the hidden part of the segment register; loading
also initiates validation of both the selector and the descriptor iIT'orma
tion.

A null value (0000-0003) may be popped into the DS, ES, FS, or GS regis
ter without causing a protection exception. An attempt to reference a seg
ment whose corresponding segment register is loaded with a null value
causes a general protection fault. No memory reference occurs. The saved
value of the segment register is null.

A POP SS instruction inhibits all interrupts, including NMI, until after
execution of the next instruction. This allows sequential execution of POP
SS and POP ESP instructions without danger of having an invalid stack
during an interrupt. However, use of the LSS instruction is the preferred
method of loading the SS and ESP registers.

Note: Turbo Assembler extends the syntax of the POP instruction to facili
tate popping multiple items in sequence. The items popped can include

PART 4, Processor instructions 107

,any legal POP value, including registers, immediate values, and memory
locations. This·feature does not actually affect the code generated.

POPA
POPAD.
PO PAW

Opcode Instruction

61 POPA
61 POPAD
61 POPAW

Pop all general registers

POPA 80186 processors and greater

POPAD 386 processors and greater

o D ITS ZAP C

Clocks Description
486 386 286
9 24 19 Pop DI, SI, BP, BX, DX,CX, AX
9 24 Pop EDI, ESI, EBP, EBX, EDX, ECX, EAX
9 24 19 Pop DI, SI, BP, BX, DX, CX, AX

POP A pops the eight 16- or 32-bit general registers depending on the seg
ment size. However, the SP value is discarded instead 'bf loaded into.SP.
POP A reverses a previous PUSHA, restoring the general registers to their
values before PUSHA was executed. The first register popped is DI.

POP AD pops the eight 32-bitgeneral registers. The ESP value is dis
carded instead of loaded into ESP. POP AD reverses the previous
PUSHAD, restoring the generairegisters to their values before PUSHAD
was executed. The first register popped is EDI.

paPAW pops WORD-sized registers. (Can only be used for VERSION
T320 or higher.)

POPF
POPFD
POPFW

Opcode Instruction

9D POPF
9D POPFD
9D POPFW

Pop from stack into FLAGS or EFLAGS register

POPFD 386 processors and greater

o D ITS ZAP C
* * * * * * * * *

Clocks Description
486 386 286 86
9,pm=6 5 5 8 Pop top of stack into FLAGS
9,pm=6 5 Pop top of stack into EFLAGS
9,pm=6 5 5 8 Pop top of stack into FLAGS.

POPF /POPFD pops the word or doubleword on the top of the stack and
stores the value in the flags register. If the operand-size attribute of the in
struction is 16 bits, then a word is popped and the value is stored in
FLAGS. If the operand-size attribute is 32 bits, then a doubleword is
popped and the valueis stored in EFLAGS.

Note that bits 16 and 17 of EFLAGS, called VM and RF, respectively, are
not affected by POPF or POPFD.

108 Turbo Assembler Quick Reference Guide

The I/O privilege level is altered only when executing at privilege level
o. The interrupt flag is altered only when executing at a level at least as
privileged as the I/O privilege level. (Real-address mode is equivalent to
privilege leveIO.) If a POPF instruction is executed with insufficient
privilege, an exception does not occur, but the privileged bits do not
change.

POPFW always pops into FLAGS WORD-style. (Can only be used for
VERSION T320 or higher.)

PUSH Push operand onto the stack

0 D I T S Z A P C

Opcode Instruction Clocks Description
486 386 286 86

FF /6 PUSH m16 4 5 5 16+EA Push memory word
FF /6 PUSH m32 4 5 Push memory dword
50+ Ir PUSH r16 1 2 3 11 Push register word
50+ Ir PUS.H r32 1 2 Push reg ister dword
6A PUSH imm8 1 2 3 Push immediate byte
68 PUSH imm16 1 2 3 Push immediate word
68 PUSH imm32 1 2 Push immediate dword
OE PUSH CS 3 2 3 10 Push CS
16 PUSH SS 3 2 3 10 Push SS
1E PUSH DS 3 2 3 10 Push DS
06 PUSH ES 3 2 10 Push ES
OF AO PUSH FS 3 2 Push FS
OF A8 PUSH GS 3 2 Push GS

PUSH decrements the stack pointer by 2 if the operand-size attribute of
the instruction is 16 bits; otherwise, it decrements the stack pointer by 4.
PUSH then places the operand on the new top of stack, which is pointed
to by the stack pointer.

The 386 PUSH ESP instruction pushes the value of the ESP as it existed
before the instruction. The 80286 PUSH SP instruction also pushes the
value of SP as it existed before the instruction. This differs from the 8086,
where PUSH SPpushes the new value (decremented by 2).

Note: Turbo Assembler extends the syntax of the PUSH instruction to fa
cilitate pushing multiple items in sequence. The items pushed can in
clude any legal PUSH value, including registers, immediate values, and
memory locations. This feature does not actually affect the code gener
ated. In addition, the PUSH instruction allows constant arguments even
when generating code for the 8086 processor. Such instructions are re
placed in the object code by a 10-byte sequence that simulates the
80186/286/386 PUSH immediate value instruction.

PART 4, Processor instructions 109

PUSHA
PUSHAD
PUSHAW

Opcode Instruction

60 PUSH A
60 PUSH AD
60 PUSHAW

Push all general registers

PUSHA 80186 processors and greater

PUSHAD 386 processors and greater

o D ITS ZAP C

Clocks Description
486 386 286
11 18 17 Push AX,CX,DX,BX,original SP,BP,SI
11 18 Push EAX,ECX,EDX,EBX
11 18 17 Push AX,CX,DX,BX,original SP,BP,SI

PUSHA and PUSHAD save the 16-bit or 32-bit general registers, respec
tively, on the stack depending on the segment size. PUSHA decrements
the stack pointer (SP) by 16 to hold the eight word values. PUSHAD dec
rements the stack pointer (ESP) by 32 to hold the eight doubleword val
ues. Because the registers are pushed onto the stack in the order in which
they were given, they appear in the 16 or 32 new stack bytes in reverse or
der. The last,register pushed is DI or ED!.

PUSHAW always pushes WORD':'style. (Can only be used for VERSION
T320 or higher.) .

PUSHF Push flags register onto the stack
PUSHFD PUSHFD 386 processors and greater
PUSHFW

0 D I T S Z A P C

Opcode Instruction Clocks Description

486 386 286 ~
9C PUSHF 4,pm=3 4 3 10 Push FLAGS
9C PUSHFD 4,pm=3 4 Push EFLAGS
9C PUSHFW 4,pm=3 4 3 10 Push FLAGS

PUSHF decrements the stack pointer by 2 and copies the FLAGS register
to the new top of stack; PUSHFD decrements the stack pointer by 4, and
the 386 EFLAGS register is copied to the new top of stack which is
pointed to by SS:ESP.

PUSHFW always pops WORD-sized registers. (Can only be used for
VERSION T320 or higher.)

110 Turbo Assembler Quick Reference Guide

RCL Rotate
RCR
ROL 0 D I T S Z A P C

* * ROR

Opcode Instruction Clocks Description
486 386 286 86

DO 12 RCL r/m8,1 3/4 9/10 2!7 2I15+EA Rotate 9 bits (CF,r/m byte)
left once

D2/2 RCL r/m8,CL 8-30/9-31 9/10 5/8 8+4 per biV(20+4 Rotate 9 bits (CF,r/m byte)
per bit)+EA left CL times

CO 12 ib RCL r/m8,imm8 8-30/9-31 9/10 5/8 Rotate 9 bits (CF,r/m byte)
left imm8 times

D1/2 RCL r/m16,1 3/4 9/10 217 2I15+EA Rotate 17 btts (CF,r/m
word) left once

D3/2 RCL r/m16,CL 8-30/9-31 9/10 5/8 8+4 per biV(20+4 Rotate 17 btts (CF, rim
per bit)+EA word) left CL times

C1 12 ib RCL r/m16, 8-30/9-31 9/10 5/8 Rotate 17 btts (CF,r/m
imm8 word)) left imm8 times

D1I2 RCL r/m32,1 3/4 9/10 Rotate 33 btts (CF,r/m
dword) left once

D3/2 RCL r/m32,CL 8-30/9-31 9/10 Rotate 33 btts (CF,r/m
dword) left CL times

C1 12 ib RCL r/m32, 8-30/9-31 9/10 Rotate 33 bits (CF,r/m
imm8 dword) left, imm8 times

DO 13 RCR r/m8,1 3/4 9/10 2!7 2I15+EA Rotate 9 bits (CF,r/m byte)
right once

D2/3 RCR r/m8,CL 8-30/9-31 9/10 5/8 8+4 per biV(20+4 Rotate 9 bits (CF,r/m byte)
per bit)+EA right CL times

CO 13 ib RCR r/m8,imm8 8-30/9-31 9/10 5/8 Rotate 9 bits (CF,r/m byte)
right imm8 times

D1/3 RCR r/m16,1 3/4 9/10 2!7 2I15+EA Rotate 17 bits (CF,r/m
word) right once

D3/3 RCR r/m16,CL 8-30/9-31 9/10 5/8 8+4 per biV(20+4 Rotate 17 bits (CF,r/m
per bit)+EA word) right CL times

C1 13 ib RCR r/m16, 8-30/9-31 9/10 5/8 Rotate 17 bits (CF,r/m
imm8 word) right imm8 times

D1/3 RCR r/m32,1 3/4 9/10 Rotate 33 btts (CF,r/m
dword) right once

D3/3 RCR r/m32,CL 8-30/9-31 9/10 Rotate 33 bits (CF,r/m
dword) right CL times

C1 13 ib RCR r/m32, 8-30/9-31 9/10 Rotate 33 bits (CF,r/m
imm8 dword) right imm8 times

DO 10 ROL r/m8,1 3/4 317 2!7 2I15+EA Rotate 8 bits rim byte left
once

D2/0 ROL r/m8,CL 3/4 317 5/8 8+4 per biV(20+4 Rotate 8 bits rim byte left
per bit)+EA CL times

CO 10 ib ROL r/m8, imm8 214 317 5/8 Rotate 8 bits rim byte left
imm8 times

D1/0 ROL r/m16,1 3/4 317 217 2/15+EA Rotate 16 bits rim word left
once

D3/0 ROL r/m16,CL 3/4 317 5/8 8+4 per biV(20+4 Rotate 16 bits rim word left
per bit)+EA CL times

C1 10 ib ROL r/m16, 214 317 5/8 Rotate 16 bit rim word left
imm8 imm8 times

D1/0 ROLr/m32,1 3/4 317 Rotate 32 bits rim dword left
once

PART 4, Processor instructions 111

Opcode Instruction Clocks Description
486 386 286 86

03/0 ROL r/m32,CL 3/4 3/7 Rotate 32 btts rim dword left
CL times

C1 10 ib ROL r/m32, 2/4 3/7 Rotate 32 bits rim dword left
immB imm8 times

DO 11 ROR r/m8,1 3/4 3/7 2/7 2/15+EA Rotate 8 bits rim byte right
once.

02/1 ROR r/m8,CL 3/4 3/7 5/8 8+4 per bit/(20+4 Rotate 8 bits rim byte right
per bit)+EA CL times

CO 11 ib ROR r/m8, 2/4 3/7 5/8 Rotate 8 bits rim word right
immB imm8 times

01/1 ROR r/m16,1 3/4 3/7 217 2/15+EA Rotate 16 bits rim word
right once

03/1 ROR r/m16,CL 3/4 3/7 5/8 8+4 per bit/(20+4 Rotate 16 bits rim word
per bit)+EA right CL times

C1 11 ib ROR r/m16, 2/4 3/7 5/8 Rotate 16 bit rim word right
immB imm8 times

01/1 ROR r/m32,1 3/4 3/7 Rotate 32 bits rim dword
right once

03/1 ROR r/m32,CL 3/4 3/7 Rotate 32 bits rim dword
right CL times

C1 11 ib ROR r/m32, 2/4 3/7 Rotate 32 bits rim dword
immB right imm8 times

Add 1 clock to the times shown for each rotate made (80286 only).

Each rotate instruction shifts the bits of the register or memory operand
given. The left rotate instructions shift all the bits upward, except for the
top bit, which is returned to the bottom. The right rotate instructions do
the reverse: The bits shift downward until the bottom bit arrives at the
top.

For the RCL and RCR instructions, the carry flag is part of the rotated
quantity. RCL shifts the carry flag into the bottom bit and shifts the top
bit into the carry flag; RCR shifts the carry flag into the top bit and shifts
the bottom bit into the carry flag. For the ROL and ROR instructions, the
original value of the carry flag is not a part of the result, but the carry
flag receives a copy of the bit that was shifted from one end to the other.

The rotate is repeated the number of times indicated by the second oper
and, which is either an immediate number or the contents of the CL regis
ter. To reduce the maximum instruction execution time, the 80286/386
does not allow rotation counts greater than 31. If a rotation count greater
than 31 is attempted, only the bottom five'bits of the rotation are used.
The 8086 does not mask rotation counts. The 386 in virtual 8086 mode
does mask rotation counts.

The overflow flag is defined only for the single-rotate forms of the in
structions (second operand = 1). It is undefined in all other cases. For left
shifts/rotates, the CF bit after the shift is XORed with the high order re
sult bit. For right shifts/rotates, the high-order two bits of the result are
XORed to get OF.

112 Turbo Assembler Quick Reference Guide

RDMSR

Opcode Instruction

OF 32 RDMSR

Read from Model Specific Register

Penti um processors and greater

o D ITS ZAP C

Clocks

Pentium
20-24

Description

Read Model Specific Register indicated by
ECX into EDX:EAX

The value in ECX specifies one of the 64-bit Model Specific Registers of
the Pentium processor. The content of that Model Specific Register is cop
ied into EDX:EAX. EDX is loaded with the high-order 32 bits, and EAX
is loaded with the low-order 32 bits.

The following values are used to select model specific registers on the
Pentium processor:

Value (in Hex) Register Name Description

OOh Machine Check Address Stores address of cycle causing
the exception.

01h Machine Check Type Stores cycle type of cycle causing
the exception.

Other values used to preform cache, TLB and BTB testing and perform
ance monitoring, are availible under a non-disclosure agreement from In
tel.

Protected mode exceptions: #GP(O) if either the current privilege level is
not 0 or the value in ECX does not specify a Model-Specific Register that
is implemented in the Pentium processor.

Real mode exceptions: #GP if the value in ECX does not specify a Model
Specific Register that is implemented in the Pentium processor.

Virtual 8086 mode exceptions: #GP(O) if instruction execution is at
tempted.

Notes: This instruction must be executed at privilege level 0 or in real-ad
dress mode; otherwise a protection exception will be generated.

If less than 64 bits are implemented in a model specific register, the value
returned to EDX:EAX, in the locations corrisponding to the unimple
mented bits, is unpredictable.

RDMSR is used to read the content of Model-Specific Registers that con
trol functions for testability, execution tracing, performance monitoring
and machine check errors. Refer to the Pentium Processor Data Book for
more information or contact Intel.

PART 4, Processor instructions 113

The values 3h, OFh, and values above 13h are reserved. Do not execute
RDMSR with reserved values in ECX.

ROTse (Propriatary instruction. Contact Intel for more
information.)
Pentium processors and greater

REP Repeat following string operation
, REPE

REPZ
REPNE
REPNZ

o D ITS ZAP C

Opcode Instruction

F36C

F36D

F36D

F3 A4

F3 A5

F3 A5

F36E

REP INS
r/mS,DX

REP INS
r/m16,DX

REP INS
r/m32,DX

REP MOVS
mS,mS
REP MOVS
m16,m16
REP MOVS
m32,m32
REP OUTS
DX,r/mS

4S6
16+S(E)CX,
pm=10+S(E)CX*1/
30+S(E)CX*2,VM=
29+S(E)CX
16+S(E)CX,
pm=10+S(E)CX*1/
30+S(E)CX*2,VM=
29+S(E)CX
16+S(E)CX,
pm=10+S(E)CX*1/
30+S(E)CX*2,VM=
29+S(E)CX
5*3,13*4,12+3(E)
CX*5
5*3,13*4,12+3(E)
CX*5
5*3,13*4,12+3(E)
CX*5
17 +5(E)CX, ,
pm=11+5(E)CX*1/
31 +5(E)CX*2

F36F REP OUTS 17+5(E)CX,
DX,r/m16 pm=11+5(E)CX*1f

31 +5 (E) CX*2

F36F REP OUTS 17+5(E)CX,
DX,r/m32 pm=11+5(E)CX*1/

31 +5 (E) CX*2

F2 AC REP LODS 5*3,7+4(E)CX*6
mS

F2 AD REP LODS 5*3,7+4(E)CX*6
m16

F2 AD REP LODS 5*3,7+4(E)CX*6
m32

*

Clocks Description

3S6 2S6 §§.
13+6*(E)CX, 5+4*CX Input (E)CX bytes from

port DX into ES:[(E)DI) pm=7 +6*(E)CX!
27 +6*1*(E)CX*2

13+6*(E)CX, 5+4*CX Input (E)CX words from
port DX into ES:[(E)DI) pm=7+6*(E)CX!

27 +6*1*(E)CX*2

13+6*(E)CX,
pm=7 +6*(E)CX!
27 +6*1*(E)CX*2

5+4*(E)CX

5+4~(E)CX

5+4*(E)CX

5+ 12*(E)CX,
pm=6+5*(E)
CX!26+5*1*(E)
CX*2
5+ 12*(E)CX,
pm=6+5*(E)
CX!26+5*1*(E)
CX*2
5+ 12*(E)CX,
pm=6+5*(E)
CX!26+5*1*(E)
CX*2

Input (E)CX dwords
from port DX into
ES:[(E)DI)

5-t4*CX 9+17*CX Move (E)CX bytes from
[(E)SI) to ES:[(E)DI)

5+4*CX 9+ 17*CX Move (E)CX words from
[(E)SI) to ES:[(E)DI)
Move (E)CX dwords
from [(E)SI) to ES:[(E)DI)

5+4*CX Output (E)CX bytes
from [(E)SI) to port DX

5+4*CX Output (E)CX words
from [(E)SI) to port DX

Output(E)CX dwords
from [(E)SI) to port DX

Load (E)CX bytes from
[(E)SI) to AL
Load (E)CX words from
[(E)SI) to AX
Load (E)CX dwords
from [(E)SI) to EAX

F3 AA REP STOS 5*3,7+4(E)CX*6 5+5*(E)CX
mS

4+3*CX 9+1 O*CX Fill (E)CX bytes at
ES:[(E)DI) with AL

114 Turbo Assembler Quick Reference Guide

Opcode Instruction Clocks Description
4S6 3S6 2S6 S6

F3 AB REP STOS S*3,7+4(E)CX*6 S+S*(E)CX 4+3*CX 9+1 O*CX Fill (E)CX words at
m16 ES:[(E)DI] with AX

F3 AB REP STOS S*3,7+4(E)CX*6 S+S*(E)CX Fill (E)CX dwords at
m32 ES:[(E)DI] with EAX

F3 AS REPE S*3,7+7(E)CX*6 S+9*N S+9*N 9+22*N Find nonmatching bytes
CMPS in ES:[(E)DI] and [(E)SI]
mS,mS

F3 A7 REPE S*3,7+7(E)CX*6 S+9*N S+9*N 9+22*N Find nonmatching
CMPS words in ES:[(E)DI] and
m16,m16 [(E)SI]

F3 A7 REPE S*3,7+7(E)CX*6 S+9*N Find non matching
CMPS dwords in ES:[(E)DI]
m32,m32 and [(E)SI]

F3 AE REPE S*3, 7 +S(E)C X*6 S+S*N S+S*N 9+1S*N Find non-AL byte
SCAS mS starting at ES:[(E)DI]

F3 AF EPE SCAS S*3,7+S(E)CX*6 S+S*N S+S*N 9+1S*N Find non-AX word
m16 starting at ES:[(E)DI]

F3 AF REPE S*3,7+S(E)CX*6 S+S*N Find non-EAX dword
SCAS m32 starting at ES:[(E)DI]

F2 AS REPNE S*3,7+7(E)CX*6 S+9*N S+9*N 9+22*N Find matching bytes in
CMPS ES:[(E)DI] and [(E)SI]
mS,mS

F2 A7 REPNE S*3,7+7(E)CX*6 S+9*N S+9*N 9+22*N Find matching words in
CMPS ES:[(E)DI] and [(E)SI]
m16,m16

F2 A7 REPNE S*3,7+7(E)CX*6 S+9*N Find matching dwords
CMPS in ES:[(E)DI] and [(E)SI]
m32,m32

F2 AE REPNE S*3, 7 +S(E)C X*6 S+S*N S+S*N 9+1S*N Find AL
SCAS mS

F2 AF REPNE S*3, 7 +S(E)C X*6 S+S*N S+S*N 9+1S*N Find AX
SCAS m16

F2 AF REPNE S*3,7+S(E)CX*6 S+S*N Find EAX
SCAS m32

*1 If CPL :::; IOPL
*2 If CPL > IOPL
*3 If (E) ex = 0
*4 If (E) CX = 1
*5 If (E) CX 1
*Slf (E) CX 0

REP, REPE (repeat while equal), and REPNE (repeat while not equal) are
prefixes that are applied to string operations. Each prefix causes the
string instruction that follows to be repeated the number of times indi-
cated in the count register or (for REPE and REPNE) until the indicated
condition in the zero flag is no longer met.

Synonymous forms of REPE and REPNE are REPZ and REPNZ, respec-
tively.

The REP prefixes apply only toone string instruction at a time. To repeat
a block of instructions, use the LOOP instruction or another looping con-
struct.

The precise action for each iteration is as follows:

PART 4, Processor instructions 115

1. If the address-size attribute is 16 bits, use CX for the count register; if
the address-size attribute is 32 bits, use ECX for the count register.

2. Check CX. If it is zero, exit the iteration, and move to the next instruc
tion.

3. Acknowledge any pending interrupts.

4. Perform the string operation once.

5. Decrement CX or ECX by one; no flags are modified.

6. Check the zero flag if the string operation is SCAS or CMPS. If the re
peat .condition does not hold, exit the iteration and move to the next in
struction. Exit the iteration if the prefix is REPE and ZF is 0 (the last com
parison was not equal), or if the prefix is REPNE and ZF is one (the last
comparison was equal).

7. Return to step 1 for the next iteration.

Repeated CMPS and SCAS instructions can be exited if the count is ex
hausted or if the zero flag fails the repeat condition. These two cases can
be distinguished by using either the JCXZ instruction, or by using the
conditional jumps that test the zero flag aZ, JNZ, and JNE).

RET Return from procedure

0 D ,I T S Z A P c

Opcode Instruction Clocks Description
486 386 286 86

C3 RET 5 10+m 11 16 Return (near) to caller
CB RET 13,pm=18 18+m,pm= 15,pm=25 26 Return (far) to caller, same

32+m privilege
CB RET 13,pm=33 pm=68 55 Return (far)
C2 iw RETimm16 5 10+m 11 20 Return (near)
CAiw RET imm16 14,pm=17 18+m,pm= 15,pm=25 25 Return (far) pop imm 16 bytes

32+m
CAiw RETimm16 14,pm=33 pm=68 55 Return (far)

RET transfers control to a return address located on the stack. The ad
dress is usually placed on the stack by a CALL instruction, and the re
turn is made to the instruction that follows the CALL.

The optional numeric. parameter to RET gives the number of stack bytes
(OperandMode = 16) or words (OperandMode = 32) to be released after
the return address is popped. These items are typically used as input pa
rameters to the procedure called.

For the intrasegment (near) return, the address on the stack is a segment
offset, which is popped into the instruction pointer. The CS register is un-

116 Turbo Assembler Quick Reference Guide

changed. For the intersegment (far) return, the address on the stack is a
long pointer. The offset is popped first, followed by the selector.

In real mode, CS and IP are loaded directly. In protected mode, an inter
segment return causes the processor to check the descriptor addressed by
the return selector. The AR byte of the descriptor must indicate a code
segment of equal or lesser privilege (or greater or equal numeric value)
than the current privilege level. Returns to a lesser privilege level cause
the stack to be reloaded from the value saved beyond the parameter
block.

The DS, ES, FS, and GS segment registers can be set to 0 by the RET in
struction during an interlevel transfer. If these registers refer to segments
that cannot be used by the new privilege level, they are set to 0 to pre
vent unauthorized access from the new privilege level.

RSM

Opcode Instruction

OFAA RSM

Resume from System Management Mode
Pentium processors and greater

o D ITS ZAP C
* * * * * * * * *

Clocks

Pentium
83

Description

Resume operation of interrupted program.

Resume operation of a program by a System Management Mode (SMM)
interrupt. The processor state is restored from the dump created upon en
trance to SMM. Note, however, that the contents of the model-specific
registers are not affected. The processor leaves SMMand returns control
to the interrupted application or operating system. If the processor de
tects any invalid state information, it enters the shutdown state. This hap
pens in any of the following situations:

• The value stored in the State Dump Base field is not a 32 Kbyte aligned
address.

• Any reserved bit in CR4 is set to 1.

• Any combination of bits in CRO is illegal; namely, (PG=land PE=O) or
(NW=l and CD=O).

Protected mode, Real mode, and Virtual 8086 mode exception: #UD if an
attempt is made to execute this instruction when the processor is not in
SMM.

Notes: for more information about SMM and the behavior of the RSM in
struction, see the Pentium Processor User's Manual (availible from Intel)

PART 4, Processor instructions 117

SAHF Store AH into Flags

0 D I T S Z A P C

* * * * *

Opcode Instruction Clocks Description
486 386 286 ~

9E SAHF 2 3 2 4 Store AH flags SF ZF xx AF xx PF xx CF

SAHF loads the flags listed above with values from the AH register, from
bits 7, 6,4,2 and 0, respectively.

SAL Shift instructions
SAR
SHL 0 D I T S Z A P C

* * * ? * * SHR
Opcode Instruction Clocks Description

486 386 286 86
DO 14 SAL r/m8,1 3/4 317 217 2I15+EA Multiply rim byte by 2
D2/4 SAL r/m8,CL 3/4 317 5/8 8+4 per biV(20+4 Multiply rim byte by 2, CL times

per bit)+EA
CO 14 ib SAL r/m8,imm8 214 317 5/8 Multiply rim byte by 2
D1/4 SAL r/m16,1 3/4 3/7 217 2I15+EA Multiply rim word by 2
D3/4 SAL r/m16,CL 3/4 317 5/8 8+4 per bit (20+4 Multiply rim word by 2, CL times

per bit)+EA
C1 14 ib SAL r/m16,imm8 2/4 317 5/8 Multiply rim word by 2
D1/4 SAL r/m32,1 3/4 3/7 Multiply rim dword by 2
D3/4 SAL r/m32,CL 3/4 317 Multiply rim dword by 2
C1 14 ib SAL r/m32,imm8 2/4 3/7 Multiply rim dword by 2
DO 17 SAR r/m8,1 3/4 317 217 2I15+EA Signed divide" rim byte by 2
D217 SAR r/m8,CL 3/4 317 5/8 8+4 per bit (20+4 Signed divide" rim byte by 2

per bit)+EA
CO 17 ib SAR r/m8,imm8 214 3/7 5/8 Signed divide" rim byte by 2
D1/7 SAR r/m16,1 3/4 3/7 217 2I15+EA Signed divide" rim word by 2
D317 SAR r/m16,CL 3/4 3/7 5/8 8+4 per bit (20+4 Signed divide" rim word by 2

per bit)+EA
C117 ib SAR r/m16,imm8 2/4 3/7 5/8 Signed divide" rim word by 2
D117 SAR r/m32,1 3/4 317 Signed divide" rim dword by 2
D3/7 SAR r/m32,CL 3/4 317 Signed divide" rim dword by 2,

CL times
C117 SAR r/m32,imm8 214 3/7 Signed divide" rim dword by 2
DO 14 SHL r/m8,1 3/4 3/7 217 2/15+EA Multiply rim byte by 2
D2/4 SHL r/m8,CL 3/4 3/7 5/8 8+4 per bit (20+4 Multiply rim byte by 2, CL times

per bit)+EA
CO 14 ib SHL r/m8,imm8 2/4 3/7 5/8 Multiply rim byte by 2
D1/4 SHL r/m16,1 3/4 3/7 217 2/15+EA Multiply rim word by 2
D3/4 SHL r/m16,CL 3/4 317 5/8 8+4 per bit (20+4 Multiply rim word by 2, CL times

per bit)+EA
C1 14 ib SHL r/m16,imm8 2/4 317 5/8 Multiply rim word by 2
D1/4 SHL r/m32,1 3/4 317 Multiply rim dword by 2
D3/4 SHL r/m32,CL 3/4 3/7 Multiply rim dword by 2
C1 14 ib SHL r/m32,imm8 2/4 317 Multiply rim dword by 2

118 Turbo Assembler Quick Reference Guide

Opcode Instruction Clocks Description

486 386 286 86
DO IS SHR r/m8,1 3/4 3/7 217 2I15+EA Unsigned divide rim byte by 2
D2 IS SHR r/m8,CL 3/4 3/7 5/8 8+4 per bit (20+4 Unsigned divide rim byte by 2

per bit)+EA
CO IS ib SHR r/m8,imm8 2/4 317 5/8 Unsigned divide rim byte by 2
D1 IS SHR r/m16,1 3/4 317 217 2/15+EA Unsigned divide rim word by 2
D3 IS SHR r/m16,CL 3/4 317 5/8 8+4 per bit (20+4 Unsigned divide rim word by 2

per bit)+EA
C1 IS ib SHR r/m16,imm8 214 317 5/8 Unsigned divide rim word by 2
D1/5 SHR r/m32,1 3/4 317 Unsigned divide rim dword by 2
D3/5 SHR r/m32,CL 3/4 317 Unsigned divide rim dword by 2
C1 15 ib SHR r/m32,imm8 2/4 317 Unsigned divide rim dword by 2

"Not the same division as IDIV; rounding is toward negative infinity.

SAL (or its synonym, SHL) shifts the bits of the operand upward. The
high-order bit is shifted into the carry flag, and the low-order bit is set to
o.

SAR and SHR shift the bits of the operand downward. The low-order bit
is shifted into the carry flag. The effect is to divide the operand by 2. SAR
performs a signed divide with rounding toward negative infinity (not the
same as IDIV); the high-order bit remains the same. SHR performs an un
signed divide; the high-order bit is set to o.

The shift is repeated the number of times indicated by the second oper
and, which is either an immediate number or the contents of the CL regis
ter. To reduce the maximum execution time, the 80286/386 does not al
low shift counts greater than 31. If a shift count greater than 31 is
attempted, only the bottom five bits of the shift count are used. (The 8086
uses all eight bits of the shift count.)

The overflow flag is set only if the single-shift forms of the instructions
are used. For left shifts, OF is set to 0 if the high bit of the answer is the
same as the result of the carry flag (that is, the top two bits of the original
operand were the same); OF is set to 1 if they are different. For SAR, OF
is set to 0 for all single shifts. For SHR, OF is set to the high-order bit of
the original operand.

5BB Integer subtraction with borrow

o D ITS ZAP C

* * * * * *

Opcode Instruction Clocks Description

486 386 286 §§.
1C ib SBBAL,imm8 2 3 4 Subtract with borrow immediate byte

from AL
10 iw SBB AX,imm16 2 3 4 Subtract with borrow immediate word

from AX

PART 4, Processor instructions 119

Opcode Instruction Clocks Description

1 D id SBB EAX,imm32
486 386 286 86

2 Subtract with borrow immediate dword
from EAX

80 13 ib SBB r/m8,imm8 1/3

81 13 iw SBB r/m16,imm16 1/3

81 13 id SBB r/m32,imm32 1/3

8313 ib SBB r/m16,imm8 1/3

83 13 ib SBB r/m32,imm8 1/3

181r SBB r/m8,r8 1/3

19/r SBB r/m16,r16 1/3

19/r SBB r/m32,r32 1/3

1A Ir SBB r8,r/m8 1/2

1B Ir SBB r16,r/m16 1/2

1B IrSBB r32,r/m32 1/2

217

2/7

217

217

2/7

2/6

2/6

2/6

2/7

217

2/7

3/7

317

3/7

2/7

217

2/7

2/7

4/17+EA Subtract with borrow immediate byte
from rIm byte

4/17+EA Subtract with borrow immediate word
from rIm word
Subtract with borrow immediate dword
from rIm dword

4/17+EA Subtract with borrow sign-extended
immediate byte from rIm word
Subtract with borrow sign-extended
immediate byte from rIm dword

3/16+EA Subtract with borrow byte register from
rIm byte

3/16+EA Subtract with borrow word register
from rIm word
Subtract with borrow dword register
from rIm dword

3/9+EA Subtract with borrow byte register from
rIm byte

3/9+EA Subtract with borrow word register
from rIm word
Subtract with borrow dword register
from rIm dword

SBB adds the second operand (DEST) to the carry flag (CF) and subtracts
the result from the first operand' (SRC). The result of the subtraction is as
signed to the first operand (DEST), and the flags are set accordingly.

When an immediate byte value is subtracted from a word operand, the
immediate value is first sign-extended.

SCAS
SCASB
SCASW
SCASD

Compare string data
SCASD 386 processors and greater

o D ITS ZAP C

* * * * * *

Opcode Instruction Clocks Description

AE
AF
AF
AE
AF
AF

486 386 286 86
SCAS m8 6
SCAS m16 6
SCAS m32 6
SCASB 6
SCASW 6
SCASD 6

7
7
7
7
7
7

7
7

7
7

15
15

15
15

Compare bytes AL - ES:[DIJ
Compare words AX - ES: [DIJ
Compare dwords EAX - ES: [DIJ
Compare bytes AL - ES:[DIJ
Compare words AX - ES: [DIJ
Compare dwords EAX - ES: [DIJ

SCAS subtracts the memory byte or word at the destination register from
the AL, AX or EAX register. The result is discarded; only the flags are set.
The operand must be addressable from the ES segment; no segment over
ride is possible.

120 Turbo Assembler Quick Reference Guide

If the address-size attribute for this instruction is 16 bits, DI is used as the
destination register; otherwise, the address-size attribute is 32 bits and
EDI is used.

The address of the memory data being compared is determined solely by
the contents of the destination register, not by the operand to SCAS. The
operand validates ES segment addressability and determines the data
type. Load the correct index value into DI or EDI before executing SCAS.

After the comparison is madet the destination register is automatically up
dated. If the direction flag is 0 (CLD was executed), the destination regis
ter is incremented; if the direction flag is 1 (STD was executed), it is decre
mented. The increments or decrements are by 1 if bytes are compared, by
2 if words are compared, or by 4 if doublewords are compared.

SCASB, SCASW, and SCASD are synonyms for the byte, word and dou
bleword SCAS instructions that don't require operands. They are simpler
to code, but provide no type or segment checking.

SCAS can be preceded by the REPE or REPNE prefix for a block search of
CX or ECX bytes or words. Refer to the REP instruction for further details.

SETcc Byte set on condition
386 processors and greater

o D ITS ZAP C

Opcode Instruction Clocks Description

SETA rimS 4/3
SETAE rImS 4/3
SETB rimS 4/3
SETBE rimS 4/3
SETC rimS 4/3
SETE rimS 4/3
SETG rimS 4/3
SETGE rimS 4/3
SETL rimS 4/3
SETLE rimS 4/3
SETNA rimS 4/3
SETNAE rimS 4/3

Set byte if above (CF=O and ZF=O)
Set byte if ~bove or equal (CF=O)
Set byte if below (CF=1)
Set byte if below or equal (CF=1 or ZF=1)
Set if carry (CF=1)
Set byte if equal (ZF=1)
Set byte if greater (ZF=O or SF=OF)
Set byte if greater or equal (SF=OF)
Set byte if less (SF<>OF)
Set byte if less or equal (ZF=1 and SF<>OF)
Set byte if not above (CF=1)
Set byte if not above or equal (CF=1)

OF 97
OF 93
OF 92
OF 96
OF 92
OF 94
OF 9F
OF 9D
OF 9C
OF 9E
OF 96
OF 92
OF 93
OF 97
OF 93
OF 95
OF 9E
OF 9C
OF 9D
OF 9F
OF 91
OF 9B

SETNB rimS 4/3

4/5
4/5
4/5
4/5
4/5
4/5
4/5
4/5
4/5
4/5
4/5
4/5
4/5
4/5
4/5
4/5
4/5
4/5
4/5
4/5
4/5
4/5

. Set byte if not below (CF=O)
SETNBE rImS 4/3
SETNC rimS 4/3
SETNE rimS 4/3
SETNG rimS 4/3
SETNGE rimS 4/3
SETNL rimS 4/3
SETNLE rimS 4/3
SETNO rimS 4/3
SETNP rimS 4/3

PART 4, Processor instructions

Set byte if not below or equal (CF=O and ZF=O)
Set byte if not carry (CF=O)
Set byte if not equal (ZF=O)
Set byte if not greater (ZF=1 or SF<>OF)
Set byte if not greater or equal (SF<>OF)
Set byte if not less (SF=OF)
Set byte if not less or equal (ZF=1 and SF<>OF)
Set byte if not overflow (01==0)
Set byte if not parity (PF=O)

121

Opcode Instruction Clocks Description
4S6 3S6

OF 99 SETNS rimS 4/3 4/5 Set byte if not sign (SF=O)
OF 95 SETNZ rimS 4/3 4/5 Set byte if not zero (ZF=O)
OF 90 SETO rimS 4/3 4/5 Set byte if overflow (OF= 1)
OF9A SETP rimS 4/3 4/5 Set byte if parity (PF=1)
OF9A SETPE rimS 4/3 4/5 Set byte if parity even (PF=1)
OF 98 SETPO rimS 4/3 4/5 Set byte if parity odd (PF=O)
OF 9S SETS rimS 4/3 4/5 Set byte if sign (SF= 1)
OF 94 SETZ rimS 4/3 4/5 Set byte if zero (ZF=1)

SETcc stores a byte containing 1 at the destination specified by the effec
tive address or register if the condition is met, or a 0 byte if the condition
is not met.

SGOT
SlOT

Store global/interrupt descriptor table
80286 and greater protected mode only

o D ITS ZAP C

Opcode Instruction Clocks Description

4S6 3S6 2S6
OF 01 10 SGDT m 10 9 11 Store GDTR to m
OF 01 /1 SlOT m 10 9 12 Store IDTR to m

SGDT /SIDT copies the contents of the descriptor table register to the six
bytes of memory indicated by the operand. The LIMIT field of the regis
ter is assigned to the first word at the effective address. If the operand
size attribute is 16 bits, the next three bytes are assigned the BASE field
of the register, and the fourth byte is written with zero. The last byte is
undefined. Otherwise, if the operand-size attribute is 32 bits, the next
four bytes are assigned the 32-bit BASE field of the register.

SGDT and SrDT are used only in operating system software; they are not
used in application programs.

SHLO

Opcode

OF A4
OF A4
OF A5
OF A5

122

Double precision shift left

386 processors and greater

o D ITS ZAP C
? * * ? * *

Instruction Clocks Description
4S6 3S6

SHLD r/m16,r16,immS 2/3 317 r/m16 gets SHL of r/m16 concatenated with r16
SHLD r/m32,r32,immS 2/3 317 r/m32 gets SHL of r/m32 concatenated with r32
SHLD r/m16,r16,CL 2/3 317 r/m16 gets SHL of r/m16 concatenated with r16
SHLD r/m32,r32,CL 2/3 317 r/m32 gets SHL of r/m32 concatenated with r32

Turbo Assembler Quick Reference Guide

SHLD shifts the first operand provided by the r / m field to the left as
many bits as specified by the count operand. The second operand (r16 or
r32) provides the bits to shift in from the right (starting with bit 0). The re
sult is stored back into the r / m operand. The register remains unaltered.

The count operand is provided by either an immediate byte or the con
tents of the CL register. These operands are taken MODULO 32 to pro
vide a number between 0 and 31 by which to shift. Because the bits to
shift are provided by the specified registers, the operation is useful for
multiprecision shifts (64 bits or more). The SF, ZF and PF flags are set ac
cording to the value of the result. CF is set to the value of the last bit
shifted out. OF and AF are left undefined.

SHRO

Opcode

OFAC
OFAC
OFAD
OFAD

Double precision shift right
386 processors and greater

o D ITS ZAP C
? * * ? * *

Instruction Clocks Description
486 386

SHRD r/m16,r16,imm8 2/3 3/7 r/m16 gets SHR of r/m16 concatenated with r16
SHRD r/m32,r32,imm8 2/3 3/7 r/m32 gets SHR of r/m32 concatenated with r32
SHRD r/m16,r16,CL 3/4 3/7 r/m16 gets SHR of r/m16 concatenated with r16
SHRD r/m32,r32,CL 3/4 3/7 r/m32 gets SHR of r/m32 concatenated with r32

SHRD shifts the first operand provided by the r / m field to the right as
many bits as specified by the count operand. The second operand (r16 or
r32) provides the bits to shift in from the left (starting with bit 31). The re
sult is stored back into the r / m operand. The register remains unaltered.

The count operand is provided by either an immediate byte or the con
tents of the CL register. These operands are taken MODULO 32 to pro
vide a number between 0 and 31 by which to shift. Because the bits to
shift are provided by the specified register, the operation is useful for
multi-precision shifts (64 bits or more). The SF, ZF and PF flags are set ac
cording to the value of the result. CF is set to the value of the last bit
shifted out. OF and AF are left undefined.

SLOT Store local descriptor table register
80286 and greater protected mode only

o D ITS ZAP C

Opcode Instruction Clocks Description
486 386 286

OF 00 10 SLDT r/m16 2/3 pm=2/2 2/3 Store LDTR to EA word

PART 4, Processor instructions 123

SLDT stores the Local Descriptor Table Register (LDTR) in the two-byte
register or memory location indicated by the effective address operand.
This register is a selector that points into the global descriptor table.

SLDT is used only in operating system software. It is not used in applica-
tion programs. '

SMSW Store machine status word
80286 and greater protected mode only

o D ITS ZAP C

Opcode Instruction Clocks Description

OF 01 /4 SMSW r/m16 2/3 2/3,pm=2/2 2/3 Store machine status word to EA word

SMSW stores the machine status word (part of CRO) in the two-byte regis
ter or memory location indicated by the effective address operand.

STC Set carry flag

0 D I T S Z A P C

1

Opcode Instruction Clocks Description
486 386 286 86

F9 STC 2 2 2 2 Set carry flag

STC sets the carry flag to 1.

STD

Opcode Instruction

FD ,STD

Set direction flag

o D ITS ZAP C
1

486
2

Clocks

386 286 - -
2 2

86
2

Description

Set direction flag so (E)SI or (E)DI decrement

STD sets the direction flag to I, causirtg all subsequent string operations
to decrement the index registers, (E)SI and/ or (E)D1,on which they oper
ate.

124 Turbo Assembler Quick Reference Guide

511 Set interrupt enable flag

0 D I T S Z A P C

1

Opcode Instruction Clocks Description

486 386 286 ~
FS STI 5 3 2 2 Set interrupt flag

STI sets the interrupt flag to 1. The CPU then responds to external inter
rupts after executing the next instruction if the next instruction allows the
interrupt flag to remain enabled. If external interrupts are disabled and
you code STI, RET (such as at the end of a subroutine), the RET is al
lowed to execute before external interrupts are recognized. Also, if exter
nal interrupts are disabled and you code STI, CLI, then external inter
rupts are not recognized because the CLI instruction clears the interrupt
flag during its execution.

5105 Store string data
510SB STOSD 386 processors and greater
5105W
510SD 0 D I T S Z A P c

Opcode Instruction Clocks Description

486 386 286 ~
AA STOS m8 5 4 3 11 Store AL in byte ES:[(E)DI]
AS STOS m16 5 4 3 11 Store AX in word ES:[(E)DI]
AS STOS m32 5 4 Store EAX in dword ES:[(E)DI]
AA STOSS 5 4 3 11 Store AL in byte ES:[(E)DI]
AS STOSW 5 4 3 11 Store AX in word ES:[(E)DI]
AS STOSD 5 4 Store EAX in dword ES:[(E)DI]

STOS transfers the contents of the AL, AX, or EAX register to the mem
ory byte, word, or doubleword given by the destination register relative
to the ES segment. The destination register is DI for an address-size attrib
ute of 16 bits or EDI for an address-size attribute of 32 bits.

,
The destination operand must be addressable from the ES register. A seg
ment override is not possible.

The address of the destination is determined by the contents of the desti
nation register, not by the explicit operand of STOS. This operand is used
only to validate ES segmentaddressability and to determine the data
type. Load the correct index value into the destination register before exe
cuting STOS.

After the transfer is made, DI is automatically updated. If the direction
flag is a (CLD was executed), DI is incremented; if the direction flag is 1
(STD was executed), DI is decremented. DI is incremented or decre-

PART 4, Processor instructions 125

mented by 1 if a byte is stored, by 2 if a word is stored, or by 4 if a dou
bleword is stored.

STOSB, STOSW, and STOSD are synonyms for the byte, word, and dou
ble-word STOS instructions, that do not require an operand. They are sim
pler to use, but provide no type or segment checking.

STOS can be preceded by the REP prefix for a block fill of CX or ECX
bytes, words, or doublewords. Refer to the REP instruction for further de-
tails. '

STR Store task register
80286 and greater protected mode only

0 D I T S Z A P c

Opcode Instruction Clocks Description

486 386 286
OF 00 11 STR r/m16 2/3 pm=23/27 2/3 Load EA word into task register

The contents of the task register are copied to the two-byte register or
memory location indicated by the effective address operand.

STR is used only in operating system software. It is not used in applica
tion programs.

SUB Integer Subtraction

0 D I T S Z A P C

* * * * * *

Opcode Instruction Clocks Description
486 386 286 86

2Cib SUBAL,imm8 1 2 3 4 Subtract immediate byte from AL
2Diw SUB AX,imm16 1 2 3 4 Subtract immediate word from AX
20 id SUB EAX,imm32 1 2 Subtract immediate dword from EAX
8015 ib SUB r/m8,imm8 1/3 217 317 4/17+EA Subtract immediate byte from rim byte
8115 iw SUB r/m16,imm16 1/3 217 317 4/17+EA Subtract immediate word from rim word
8115 id SUB r/m32,imm32 1/3 217 Subtract immediate dword from rim dword
8315 ib SUB r/m16,imm8 1/3 217 317 4/17+EA Subtract Sign-extended immediate byte

from rim word
8315 ib SUB r/m32,imm8 1/3 217 Subtract Sign-extended immediate byte

from rim dword
28/r SUB r/m8,r8 1/3 2/6 217 3/16+EA Subtract byte register from rim byte
29/r SUB r/m16,r16 1/3 2/6 2/7 3/16+EA Subtract word register from rim word
29/r SUB r/m32,r32 1/3 2/6 Subtract dword register from rim dword
2A Ir SUB r8,r/m8 1/2 217 217 3/9+EA Subtract EA byte from byte register
2B Ir SUB r16,r/m32 1/2 217 217 3/9+EA Subtract EA word from word register
2B Ir SUB r32,r/m32 1/2 217 Subtract EA dword from dword register

126 Turbo Assembler Quick Reference Guide

SUB subtracts the second operand (SRC) from the first operand (DEST).
The first operand is assigned the result of the subtraction, and the flags
are set accordingly.

When an immediate byte value is subtracted from a word operand, the
immediate value is first sign-extended to the size of the destination oper
and.

TEST Logical compare

0 D I T S Z A P C

0 * * ? * 0

Opcode Instruction Clocks Description

486 386 286 ~
AS ib TEST AL,imm8 1 2 3 4 And immediate byte with AL
A9 iw TEST AX,imm16 1 2 3 4 And immediate word with AX
A9 id TEST EAX,imm32 1 2 And immediate dword with EAX
F6 10 ib TEST r/m8,imm8 1/2 2/5 3/6 5/11+EA And immediate byte with rim byte
F7/0 iw TEST r/m16,imm16 1/2 215 3/6 5/11+EA And immediate word with rim word
F7/0 id TEST r/m32,imm32 1/2 215 And immediate dword with rIm dword
84/r TEST r/m8,r8 1/2 2/5 216 3/9+EA And byte register with rIm byte
85/r TEST r/m16,r16 1/2 2/5 216 3/9+EA And word register with rim word
85/r TEST r/m32,r32 1/2 215 And dword register with rim dword

TEST computes the bit-wise logical AND of its two operands. Each bit of
the result is 1 if both of the corresponding bits of the operands are 1;
otherwise, each bit is O. The result of the operation is discarded and only
the flags are modified.

The optimized form of TEST is TESTFLAG (see Part 3).

VERR
VERW

Opcode Instruction

Verify a segment for reading or writing

80286 and greater protected mode only

o D ITS ZAP C

*

Clocks Description
486 386 286

OF 0014 VERR r/m16 11/11 pm=10/11 14/16 Set ZF=1 if segment can be read
OF 00 IS VERW r/m16 11/11 pm=15/16 14/16 Set ZF=1 if segment can be written

The two-byte register or memory operand of VERR and VERW contains
the value of a selector. VERR and VERW determine whether the segment
denoted by the selector is reachable from the current privilege level and
whether the segment is readable (VERR) or writable (VERW). If the seg
ment is accessible, the zero flag is set to 1; if the segment is not accessible,
the zero flag is set to O. To set ZF, the following conditions must be met:

PART 4, Processor instructions 127

• The selector must denote a descriptor within the bounds of the table
(GDT or LDT); the selector must be "defined."

• The selector must denote the descriptor of a code or data segment (not
that of a task state segment, LDT, or a gate).

• For VERR, the segment must be readable. For VERW, the segment
must be a writable data segment.

• If the code segment is readable and conforming, the descriptor privi
lege level (DPL) can be any value for VERR. Otherwise, the DPL must
be greater than or equal to (have less or the same privilege as) both the
current privilege level and the selector's RPL.

The validation performed is the same as if the segment were loaded into
DS, ES, FS, or GS, and the indicated access (read or write) were per
formed. The zero flag receives the result of the validation. The selector's
value cannot result in a protection exception, enabling the software to an
ticipate possible segment access problems.

WAIT Wait until BUSY# pin is inactive (HIGH)

0 D I T S Z A P c

Opcode Instruction Clocks Description
486 386 286 §£

9B WAIT 1-3 6 3 4+5n Wait until BUSY pin is inactive (HIGH)

WAIT suspends execution of CPU instructions until the BUSY# pin is in
active (high). The BUSY# pin is driven by the 80x87 numeric processor ex
tension.

WBINVD Write-back and Invalidate cache
i486 processors and greater

o D ITS ZAP C

Opcode Instruction Clock Description
486

OF 09 WBINVD 5 Write-back and invalidate entire cache

The internal cache is flushed, and a special-function bus cycle is issued
which indicates that the external cache should write-back its contents to
main memory. Another special-function bus cycle follows, directing the
external cache to flush itself.

Note: This instruction is implementation-dependent; its function might
be implemented differently on future Intel processors. It is the responsi-

128 Turbo Assembler Quick Reference Guide

bility of the hardware to respond to the external cache write-back and
flush indications.

WRMSR

Opcode Instruction

Write to Model Specific Register

Pentium processors and greater

o D ITS ZAP C

Clocks Description

OF 30 WRMSR
Pentium
30-45 Write the value in EDX:EAX to Model Specific

Register indicated by ECX.

The value in ECX specifies one of the 64-bit Model Specific Registers of
the Pentium processor. The contents of EDX:EAX is copied into that
Model Specific Register. The high-order 32 bits are copied from EDX and
the low-order 32 bits arecopied from EAX.

The following values are used to select model specific registers on the
Pentium processor:

Value (in Hex) Register Name Description

OOh Machine Check Address Stores address of cycle causing
the exception.

01h Machine Check Type Stores cycle type of cycle causing
the exception.

Other values used to preform cache, TLB and BTB testing and perform
ance monitoring, are availible under a non-disclosure agreement from In
tel.

Protected mode exceptions: #GP(O) if either the current privilege level is
riot 0 or the value in ECX does not specify a Model-Specific Register that
is implemented in the Pentium processor.

Real mode exceptions: #GP if the value in ECX does not specify a Model
Specific Register that is implemented in the Pentium processor.

, Virtual 8086 mode exceptions: #GP(O) if instruction execution is at
tempted.

Notes: This instruction must be executed at privilege level 0 or in real-ad
dress mode; otherwise a protection exception will be generated.

Always set undefined or reserved bits to the value previously read.

WRMSR is used to write the content of Model-Specific Registers that con
trol functions for testability, execution tracing, performance monitoring

PART 4, Processor instructions 129

and machine check errors. Refer to the Pentium Processor Data Book for
more information or contact Intel.

The values 3h, OFh, and values above 13h are reserved. Do not execute
WRM5R with reserved values in ECX.

XADD Exchange and add
i486 processors and greater

o D ITS ZAP C

* * * * * *

Opcode Instruction Clock Description
486

OF CO/r XADD r/m8,r8 3/4 Exchange byte register and rim bXte; load sum into rim byte.
OF G1/r XADD r/m16,r168 3/4 Exchange word register and rim word; load sum into rim word.
OF C1/r XADD r/m32,r32 3/4 Exchange dword register and rim dword; load sum into rim dword.

The XADD instruction loads DE5T into 5RC, and then loads the sum of
DE5T and the original value of 5RC into DE5T.

DE5T is the destination operand; 5RC is the source operand.

Protected mode exceptions: #GP(O) if the result is in a nonwritable seg
ment; #GP(O) for an illegal memory operand effective address in the C5,
D5, E5, F5, or G5 segments; #55(0) for an illegal address in the 55 seg
ment; #PF (fault code) for a page fault; #NM if either EM or T5 in CRO is
set; #AC for an unaligned memory reference if the current privilege level
is 3.

Real address mode exceptions: interrupt 13 if any part of the operand
would lie outside the effective address space from 0 to OFFFFh.

Virtual 8086 mode exceptions: same exception as in real-address mode;
same #PF and #AC exceptions as in protected mode.

XCHG Exchange memory/register with register

o D ITS ZAP C

Opcode Instruction Clocks Description
486 386 286 ~

86/r XCHG r/m8,r8 3/5 3/5 3/5 4/17+EA Exchange byte register with EA byte
86/r XCHG r8,r/m8 3/5 3/5 3/5 4/17+EA Exchange byte with EA byte register
87/r XCHG r/m16,r16 3/5 3/5 3/5 4/17+EA Exchange word register with EA word
87/r XCHG r16,r/m16 3/5 3/5 3/5 4/17+EA Exchange word register with EA word
87/r XCHG r/m32,r32 3/5 3/5 Exchange dword register with EA dword
87/r XCHG r32,r/m32 3/5 3/5 Exchange dword register with EA dword
90H XCHG AX,r16 3 3 3 3 Exchange word register with AX

130 Turbo Assembler Quick Reference Guide

Opcode Instruction Clocks Description
486 386 286 86

90H XCHG r16,AX 3 3 3 3 Exchange word register with AX
90H XCHG EAX,r32 3 3 Exchange dword register with EAX
90H XCHG r32,EAX 3 3 Exchange dword register with EAX

XCHG exchanges two operands. The operands can be in either order. If a
memory operand is involved, BUS LOCK is asserted for the duration of
the exchange, regardless of the presence or absence of the LOCK prefix or
of the value of the IOPL.

XLAT Table look-up translation
XLATB

0 D I T S Z A P C

Opcode Instruction Clocks Description
486 386 286 86

07 XLAT m8 4 5 5 11 Set AL to memory byte DS:[(E)BX + unsigned ALI
07 XLATB 4 5 5 11 Set AL to memory byte DS:[(E)BX + unsigned ALI

XLAT changes the AL register from the table index to the table entry. AL
should be the unsigned index into a table addressed by DS:BX (for an ad
dress-size attribute of 16 bits) or DS:EBX (for an address-size attribute of
32 bits).

The operand to XLAT allows for the possibility of a segment override.
XLAT uses the contents of BX even if they differ from the offset of the op
erand. The offset of the operand should have been moved into BX/EBX
with a previous instruction.

The no-operand form, XLATB, can be used if the BX/EBX table will al
ways reside in the DS segment.

XOR Logical exclusive OR

0 D I T S Z A P C

0 * * ? * 0

Opcode Instruction Clocks Description
486 386 286 §§.

34 ib XOR AL,imm8 1 2 3 4 Exclusive-OR immediate byte to AL
35 iw XOR AX,imm16 1 2 3 4 Exclusive-OR immediate word to AX
35 id XOR EAX,imm32 1 2 Exclusive-OR immediate dword to EAX
8016 ib XOR r/m8,imm8 1/3 217 317 4/17+EA Exclusive-OR immediate byte to rim byte
8116 iw XOR r/m16,imm16 1/3 2/7 317 4/17+EA Exclusive-OR immediate word to rim word
8116 id XOR r/m32,imm32 1/3 217 Exclusive-OR immediate dword to rim

dword
8316 ib XOR r/m16,imm8 1/3 2/7 XOR sign-extended immediate byte to

rim word

PART 4, Processor instructions 131

Opcode Instruction Clocks Description
486 386 286 86

8316 ib XOR r/m32,imm8 1/3 217 XOR sign-extended immediate byte to
rim dword

30/r XOR r/m,r8 1/3 2/6 217 3/16+EA Exclusive-OR byte register to rim byte
31/r XOR r/m16,r16 1/3 216 217 3/16+EA Exclusive-OR word register into rim word
31 Ir XOR r/m32,r32 1/3 2/6 Exclusive-OR dword register to rim dword
32/r XOR r8,r/m8 1/2 217 217 3/9+EA Exclusive-OR rim byte to byte register
33/r XOR r16,r/m16 1/2 217 217 3/9+EA Exclusive-OR rim word to word register
33/r XOR r32,r/m32 1/2 217 Exclusive-OR to rim dword to dword

register

XOR computes the exclusive OR of the two operands. Each bit of the re
sult is 1 if the corresponding bits of the operands are different; each bit is
a if the corresponding bits are the same. The answer replaces the first op
erand.

The optimized form of XOR is FLIPFLAG (see Part 3).

132 Turbo Assembler Quick Reference Guide

p A R T 5

Coprocessor instructions

PART 5, Coprocessor instructions 133

This part lists the 8Ox87 instructions in alphabetical order.

There is one entry for each combination of operand types that can be
coded with the mnemonic. The following table explains the operand iden
tifiers used in this section:

Identifier

ST

ST(l)

m32real

m64real

m80real

m80dec

m16int

m32int

m64int

mxxbyte

Explanation

Stack top; the register currently at the top of the stack.

A register in the stack i(O$i5:7) stack elements from the
top. ST(I) is the next-on-stack register, ST(2) is below
ST(I), etc.

A short real (32 bits) number in memory.

A long real (64 bits) number in memory.

A temporary real (80 bits) number in memory.

A packed decimal integer (18 digits, 10 bytes) in
memory.

A word binary integer (16 bits) in memory.

A short binary integer (32 bits) in memory.

A long binary integer (64 bits) in memory.

A memory area xx bytes long.

Here is a summary of the possible exceptions each instruction can cause:

• IS = invalid operand due to stack overflow/underflow

• I = invalid operand due to other cause

• D = denormal operand

• Z = zero-divide

• 0 = Overflow

• U = Underflow
• P = Inexact result (precision)

134 Turbo Assembler Quick Reference Guide

F2XMl Compute 2x-l

Exceptions: p, U, D, I, IS

F2XMl (no operands)

Operands Execution clocks

~ 287 387 486 586
D9 FO F2XM1 211-476 211-476 242(140-279) 13-57

FABS Absolute value

Exceptions: IS

F ABS (no operands)

Operands Execution clocks

~ 287 387 486
No operands 10-17 10-17 22 3 2 FABS

FADD Add real

Exceptions: I, D, 0, U, p, IS

FADD destination, source

Operands Execution clocks Code bytes Example

87 287 387 486
ST,ST(i) 70-100 70-100 23-34 10(8-20) 2 FADD ST,ST(4)
ST(i),ST FADD ST(2) , ST
short real 90-120+EA 90-120 24-32 10(8-20) 2-4 FADD AIR_ TEMP[SI]
long real 95-125+EA 95-125 29-37 10(8-20) 2-4 FADD [BX].MEAN

FADDP Add real and pop

Exceptions: I, D, 0, U, p, IS

F ADDP destination, source

Operands Execution clocks Code bytes Example

~ 287 387 486
ST(i),ST 75-105 75-105 23-34 10(8-20) 2 FADDP ST(2),ST

PART 5, Coprocessor instructions 135

FBLD Packed decimal (BCD) load

Exceptions: I

FBLD source

Operands Execution clocks Code bytes Example

~ 287 387 486
Packed decimal 290-310 290-310 5 75(70-103) 2-4 FBLD YTD_SALES

FBSTP Packed decimal (BCD) store and pop

Exceptions: I

FBSTP destination

Operands Execution clocks Code bytes Example

~ 287 387 486
Packed decimal 520-540+EA 520-540+EA 512-534 175(172-176) 2-4 FBSTP

[BXj.FORECAST

FCHS Change sign

Exceptions: I

FCBS (no operands)

Operands Execution clocks Code bytes Example
87 287 387 486

No operands 10=17 10-17 24-25 6 2 FCHS

FCLEX Clear exceptions
FNCLEX

Exceptions: None

FCLEX/FNCLEX (no operands)

Operands Execution clocks Code bytes Example

~ 287 387 486
No operands 2-8 2-8 11 7 FNCLEX

136 Turbo Assembler·Quick Reference Guide

FCOM Compare real

Exceptions: I, D

FCOM / / source

Operands Execution clocks Code bytes Example

~ 287 387 486
//ST(i) 40-50 40-50 24 4 FCOM ST(1)
short real 60-70+EA 60-70 26 4 2-4 FCOM [BP].UPPER_LlMIT
long real 65-75+EA 65-75 31 4 2-4 FCOM WAVELENGTH

FCOMP Compare real and pop

Exceptions: I, D

FCOMP / / source

Operands Execution clocks Code bytes Example

~ 287 387 486
//ST(i) 42-52 45-52 26 4 2 FCOMP ST(2)
short real 63-73+EA 63-73 26 4 2-4 FCOMP [BP+2].N_READINGS
long real 67-77+EA 67-77 31 4 2-4 FCOMP DENSITY

FCOMPP Compare real and pop twice

Exceptions: I, D

FCOMPP (no operands)

Operands Execution clocks Code bytes Example
87 287 387 486

No operands 45-55 45-55 26 5 2 FCOMPP

FCOS Cosine of SICD)
80387 and greater

Exceptions: IS, I, D, U, P

FCas

Operands Execution clocks Code bytes Example

~ 287 387 486
No operands 123-772" 241 (193-279) 2 FCOS

"These timings hold for operands in the range Ixl 14. For operands not in this range, up to 76 additional clocks may
be needed to reduce the operand.

PART 5, Coprocessor instructions 137

FDECSTP

Operands

No operands

FDISI
FNDISI

Decrement stack pointer

Exceptions: None

FDECSTP (no operands)

Execution clocks Code bytes Example

6-12 6-12 22 3

Disable interrupts
8087 only

Exceptions: None

FDISI (no operands)

2

Execution clocks: Operand word Code

FDECSTP

Operands Typical Range transfers bytes Example
No operands 5 2-8 o 2 FDISI

FDIV Divide real

Exceptions: L D, Z, 0, U, P

FDIV / / source/ destination, source

Operands Execution clocks Code bytes Example
87 287 387 486

//ST(i),ST 193-203 193-203 88-91 73 2 FDIV
short real 215-225 215-225 89 73 2-4 FDIV DISTANCE
long real 220-230 220-230 94 73 2-4 FDIV ARC[DI]
//ST,ST(i) 73

FDIVP Divide· real and pop

Exceptions: I, D, Z, 0, U, P

FDIVP destination, source

Operands Execution clocks Code bytes Example

87 287 387 486
//ST(i),ST 197-207 198-209 88-91 73 2 FDIVP ST(4),ST

138 Turbo Assembler Quick Reference Guide

FDIVR Divide real reversed

Exceptions: I, D, Z, 0, U, P

FDIVR / /source/destination, source

Operands Execution clocks Code bytes Example

~ 287 387 486
IIST,ST(i)! 194-204 198-208 88-91 73 2 FDIVR ST(2),ST
ST(i),ST 73
short real 216-226+EA 215-225 89 73 2-4 FDIVR [BX].PULSE_RATE
long real 221-231+EA 220-230 94 73 2-4 FDIVR RECORDER. FREQUENCY

FDIVRP

Operands

ST(i),ST

FENI
FNENI

Divide real reversed and pop

Exceptions: I, D, Z, 0, U, P

FDIVRP destination, source

Execution clocks Code bytes Example
87 287 387 486 - -
198-208 198-208 88-91 73 2 FDIVRP ST(1),ST

Enable interrupts
8087 only

Exceptions: None

FENI (no operands)

Operands Execution clock Code bytes Example
87

(no operands) 5(2-8) 2 FNENI

FFREE Free register

Exceptions: None

FFREE destination

Operands Execution clocks Code bytes Example

87 287 387 486
ST(i) 9-16 9-16 18 3 2 FFREE ST(1)

PART 5, Coprocessor instructions 139

FIADD

Operands

word integer
short integer

FICOM

Operands

word integer
short integer

FICOMP

Operands

word integer
short integer

FIDIV

Operands

word integer
short integer

140

~

Integer add

Exceptions: L D, 0, P

FIADD source

Execution clocks

287 387 486
102-137+EA 102-137 71-85 22.5(19-32)
108-143+EA 108-143 57-72 24(20-35)

Integer compare

Exceptions: L D

FICOM source

Code Example
b}1es

2-4 FIADD DISTANCE_TRAVELLED
2-4 FIADD PULSE_COUNT [SI]

Execution clocks Code bytes Example
87 287 387 486 - -
72-86+EA 72-86 71-75 18(16-20) 2-4
78-91 +EA 78-91 56-63 16.5(15-17.) 2-4

Integer compare and pop

Exceptions: L D

FICOMP source

FICOM TOOL.N_PASSES
FICOM [BP+4].PARM_COUNT

Execution clocks Code bytes Example
287 387 486 87

74-88+EA
80-93+EA

74-88 71-75
80-93 56-63

18(16-20) 2-4
16.5(15-17) 2-4

Integer divide

Exceptions: L D, Z, 0, U, P

FIDIV source

Execution clocks

~ 287 387 486
224-238+EA 224-238 136-140 73
230-243+EA 230-243 120-127 73

Code
b}1es

2-4
2-4

, FICOMP [BP].LlMIT [SI]
FICOMP N_SAMPLES

Example

FIDIV SURVEY.OBSERVATIONS
FIDIV RELATIVE_ANGLE [01]

Turbo Assembler Quick Reference Guide

FIDIVR

Operands

word integer
short integer

FILD

Operands

word integer
short integer
long integer

FIMUL

Operands

word integer
short integer

FINCSTP

Operands

No operands

Integer divide reversed

Exceptions: I, D, Z, 0, U, P

FIDIVR source

Execution clocks

§I 287 387 486
225-239+EA 224-238 135-141 73
231-245+EA 230-243 121-128 73

Integer load

Exceptions: I

FILDsource

Execution clocks
87 287 387 486
46-54+EA 46-54 61-65 11.5(9-12)
52-60+EA 52-60 45-52 14.5(13-16)
60-68+EA 60-68 56-67 16.8(10-18)

Integer multiply

Exceptions: I, D, 0, P

FIMUL source

Execution clocks

87 287
124-138+EA 124-138
130-144+EA 130-144

387 486
76-87 8
61-82 8

Increment stack pointer

Exceptions: None

FINCSTP (no operands)

Code bytes Example

2-4 FIDIVR [BP].X_COORD
2-4 FIDIVR FREQUENCY

Code bytes Example

2-4 FILD [BX].SEQUENCE
2-4 FILD STANDOFF [DI)
2-4 FILD RESPONSE.COUNT

Code bytes Example

2-4
2-4

FIMUL BEARING
FIMUL POSITION.Z AXIS

Execution clocks Code bytes Example

387 486
6-12 6-12 21 3 2 FINCSTP

PART 5, Coprocessor instructions 141

FINIT
FNINIT

Operands

~

Initialize processor

Exceptions: None

FINIT /FNINIT (no operands)

Execution clocks Code bytes Example

No operands 2-8 2-8 33 17 2 FINIT

FIST

Operands

word integer
short integer

FISTP

Operands

word integer

short integer
long integer

FISUB

Operands

word integer
short integer

142

Integer store

Exceptions: I, P

FIST destination

Execution clocks
87 287 387 486
80-90+EA 80-90 82-95 33.4(29-34)
82-92+EA 82-92 79-93 32.4(28-34)

Code
bytes

2-4
2-4

Integer store and pop

. Exceptions: I, P

FISTP destination

Example

FISTOBS.COUNT [SI]
FIST [BP;].FACTOREO_PULSES

Execution clocks Code bytes Example
87 287 387 486
82-92+EA 82-92 82-95 33.4(29-34)

84-94+EA 84-94 79-93 33.4(29-34)
94-105+EA 94-1.05 80-97 33.4(29-34)

~

Integer subtract

Exceptions: I, D, 0, P

FISUB source

Execution clocks

287 387 486

2-4

2-4
2-4

102-137+EA 102-137 71-83 22.5(19-32)
108-143+EA 108-143 57-82 24(20-35)

Code
bytes

2-4
2-4

FISTP [BX].
ALPHA_COUNT [SI]
FISTP CORRECTEO_ TIME
FISTP PANEL. N_REAOINGS

Example

FISUB BASEJREQUENCY
FISUB TRAIN_SIZE [01]

Turbo Assembler Quick Reference Guide

FISUBR

Operands

word integer
short integer

FLO

Operands

ST(i)
short real
long real
Temp real

FLOCW

Operands

2 bytes

FLOENV

Operands

14 bytes

Integer subtract reversed

, Exceptions: L D, 0, P

FISUBR source

Execution clocks Code bytes Example

~ 287 387
103-139+EA 102-137 72-84
109-144+EA 108-143 58-83

Load real

Exceptions: L D

FLD source

Execution clocks
87 287 387 486
17-22 17-22 14 4
38-56+EA 38-56 20 3
40-60+EA 40-60 25 3
53-65+EA 53-65 44 6

486
22.5(19-32) 2-4
24(20-35) 2-4

Code bytes

2
2-4
2-4
2-4

Load control word

Exceptions: None

FLDCW source

Example

FLD ST(O)

FISUBR FLOOR [BX][SIJ
FISUBR BALANCE

FLD READING [SI].PRESSURE
FLD [BPJ.TEMPERATURE
FLD SAVEREADING

Execution clocks Code bytes Example
87 287 387 486
7-14+EA 7-14 19 4

Load environment

Exceptions: None

FLDENV source

2-4 FLDCW CONTROL WORD

Execution clocks Code bytes Example
87 287 387 486
35-45+EA '35-45 71 44 real or virtual 2-4

34 protected
FLDENV [BP+6]

'\PART 5, Coprocessor instructions 143

FLDLG2 Load IOglO2

Exceptions: I

FLDLG2 (no operands)

Operands Execution clocks Code bytes Example

§Z 287 387 486
No operands 18-24 18-24 41 8 2 FLDLG2

FLDLN2 Load loge2

Exceptions: I

FLDLN2 (no operands)

Operands Execution clocks Code bytes Example

§Z 287 387 486
No operands 17-23 17-23 41 8 2 FLDLN2

FLDL2E Load log2e

Exceptions: I

FLDL2E (no operands)

Operands Execution clocks Code bytes Example
87 287 387 486

No operands 15-21 15-21 40 8 FLDL2E

FLDL2T Load log210

Exceptions: I

FLDL2T (no operands)

Operands Execution clocks Code bytes Example

87 287 387 486
No operands 16-22 16-22 40 8 FLDL2T

144 Turbo Assembler Quick Reference Guide

FLDPI Load P (pi)

Exceptions: I

FLDPI (no operands)

Operands Execution clocks Code bytes Example

~ 287 387 486
No operands 16-22 16-22 40 8 2 FLOPI

FLDZ Load +0.0

Exceptions: I

FLDZ (no operands)

Operands Execution clocks Code bytes Example

~ 287 387 486
No operands 11-17 11-17 20 4 2 FLOZ

FLDl Load +1.0

Exceptions: I

FLDl (no operands)

Operands Execution clocks Code bytes Example
87 287 387 486

No operands 15-21 15-21 24 4 2 FL01

FMUL Multiply real

Exceptions: I, D, 0, U, P

FMUL / / source/destination/source

Code
Operands Execution clocks bytes Example

~ 287 387 486
IIST(i),ST/ST, 90-105,ST(1)* 90-105 90-145 29-57 16 2 FMUL ST,ST(3)
IIST(i),ST/ST, ST,ST(1) 130-145 90-145 29-57 16 2 FMUL ST,ST(3)
short real 110-125+EA 110-125 27-35 11 2-4 FMUL SPEED_FACTOR
long real' 112-126+EA 112-168 32-57 2-4 FMUL [BPI.HEIGHT
long real 154-168+EA 112-168 32-57 14 2-4 FMUL [BPI.HEIGHT

'Occurs when one or both operands is "short"--it has 40 trailing zeros in its fraction (for example. it was loaded from
a short-real memory operand).

PART 5, Coprocessor instructions 145

FMULP

Operands

ST(i),Sr
ST(i),ST

Multiply real and pop

Exceptions: I, D, 0, U, P

FMULP destination/source

Execution clocks Code bytes Example

~ 287 387 486
94-108 198-208 29-57 2
134-148 198-208 29-57 16 2

FMULP ST(1),ST
FMULP ST(1),ST

'Occurs when one or both operands is "short"--it has 40 trailing zeros in its fraction (for example, it was loaded from
a short-real memory operand).

FNOP No operation

Exceptions:. None

FNOP (no operands)

Operands Execution clocks Code bytes Example

~ 287 387 486
No operands 10-16 10-16 12 3 2 FNOP

FPATAN Partial arctangent

Excep!ions: U, P (operands not checked)

FPATAN (no operands)

Operands Execution clocks Code bytes Example

~ 287 387 486
No operands 250-800 250-800 314-487 5(2-17) 2 FPATAN

FPREM Partial remainder

Exceptions: I, D, U

FPREM (no operands)

Operands Execution clocks Code bytes Example

~ 287 387 486
No operands 15-190 15-190 74-155 2(2-8) 2 FPREM

146 Turbo Assembler Quick Reference Guide

FPREMl

Operands

87
No operands

FPTAN

Operands
87

No operands 30-540

FRNDINT

Operands

§l
No operands 16-50

FRSTOR

Partial remainder
80387 and greater

Exceptions: I, D, U

FPREM (no operands)

Execution clocks Code bytes

287 387 486
95-185 94.5(72-167) 2

Partial tangent

Exceptions: I, P (operands not checked)

FPT AN (no operands)

Execution clocks
287 387 486
30-540 191-573 244(200-273)

Round to integer

Exceptions: I, P

FRNDINT (no operands)

Execution clocks

287 ,387 486
16-50 66-80 29.1(21-30)

Restore saved state

Exceptions: None

FRSTOR source

Code bytes

2

Code bytes

2

Example

FPREM1

Example

FPTAN

Example

FRNDINT

Operands Execution clocks Code bytes Example

§l 287
94 bytes 197-207+EA 205-215

387
308

486
131 real or virtual
120 protected

2-4 FRSTOR [BPI

Note: The 80287 execution clock count for this instruction is not meaningful in determining overall instruction execu
tion time. For typical frequency ratios of the 80286 and 80287 clocks, 80287 execution occurs in parallel with the op
erand transfers. The operand transfers determine the overall execution time of the instructions. For 80286:80287
clock frequency ratios of 4:8, 1:1, and 8:5, the overall execution clock count for this instruction is estimated at 490,
302, and 227 80287 clocks, respectively.

PART 5, Coprocessor instructions 147

FSAVE
FNSAVE

Operands

94 bytes

Save state

Exceptions: None

FSA VEjFNSA VE destination

Execution clocks Code bytes Example

197 -207 +EA 205-215 375-376 2-4 FSAVE [BP]

Note: The 80287 execution clock count for this instruction is not meaningful in determining overall instruction execu
tion time: For typical frequency ratios of the 80286 and 80287 clocks, 80287 execution occurs in parallel with the op
erand transfers. The operand transfers determine the overall execution time of the instruction. For 80286:80287
clock frequency ratios of 4:8, 1:1, and 8:5, the overall execution clock count for this instruction is estimated at 376,
233, and 17480287 clocks, respectively.

FSCALE Scale

Exceptions: I, 0, U

FSCALE (no operands)

Operands Execution clocks Code bytes

No operands

FSETPM

87
32-38

287 387 - -
32-38 67-86

486
31(30-32)

Set protected mode

Exceptions: None

FSETPM (no operands)

2

Operands Execution clock Code bytes Example

287
No operands 2-8 2 FSETPM

FSIN Sine of ST(O)

80387 and greater

Exceptions: IS, I, D, U, P

FSIN

Operands ExecLition clocks Code bytes

387 486
No operands 122-771' 241 (193-279) 2

Example

FSIN

Example

FSCALE

'These timings hold for operands in the range Ixl 14. 'For operands not in this range, up to 76 additional clocks may
be needed to reduce the operand.

148 Turbo Assembler Quick Reference Guide

FSINCOS Sine and cosine of ST(O)

80387 and greater

Exceptions: IS, I, D, U, P

FSINCOS

Operands Execution clocks Code bytes Example

387 486

No operands 194-809- 291 (243-329) 2 FSINCOS

*These timings hold for operands in the range Ixl 14. For operands not in this range, up to 76 additional clocks may
be needed to reduce the operand.

FSQRT

Operands

No operands

FST

Operands

ST(i)
short real
long real

FSTCW
FNSTCW

Operands

2 bytes

Square root

Exceptions: I, D, P

FSQRT (no operands)

Execution clocks

.[Z 287 387 486

Code bytes Example

180-186 180-186 122-129 85.5(83-87) 2 FSQRT

Store real

Exceptions: I, 0, U, P

FST destination

Execution clocks

.[Z 287
15-22 15-22
84-90+EA 84-90
96-1 04+EA96-1 04

387
11
44
45

486
3
7
8

Store control word

Exceptions: None

FSTCW destination

Code bytes Example

2
2-4
2-4

FST ST(3)
FST CORRELATION [01]
FST MEAN_READING

Execution clocks Code bytes Example

87 287 387 486 - -
12-18+EA 12-18 15 2-4 FSTCW SAVE_CONTROL

PART 5, Coprocessor instructions 149

FSTENV Store environment
FNSTENV

Exceptions: None

FSTENV destination

Operands Execution clocks Code bytes

~ 287 387 -486
14 bytes 40-50+EA 40-50 103-104 2-4

FSTP Store real and pop

Exceptions: I, 0, U; p

FSTP destination

Operands Execution clocks Code bytes

~ 287 387 486
ST(i) 17-24 17-24 12 3 2
short real 86-92+EA 86-92 44 7 2-4
long real 98-106+EA 98-106 45 8 2-4
Temp real 52-58+EA 52-58 53 6 2-4

FSTSW Store status word
FNSTSW

Exceptions: None

FSTSW /FNSTSW destination

Operands Execution clocks Code bytes

~ 287 387 486
2 bytes 12-18+EA 12-18 15 3 2-4

FSTSW AX. Store status word to AX
FNSTSW AX.

Operands

AX

Exceptions: None

FSTSW destination

Execution clocks

287 387
10-16 13

486
3

Code bytes

2

Example

FSTENV [BP]

Example

FSTP ST(2)
FSTP [8X]. ADJUSTED_RPM
FSTP TOTAL_DOSAGE
FSTP REG SAVE [SI]

Example

FSTSW SAVE_STATUS

Example

FSTSW AX

150 Turbo Assembler Quick Reference Guide

FSUB

Operands

//ST,ST/(i)/
ST(i),ST
short real
long real

FSUBP

Operands

ST(i),ST'

FSUBR

Operands

//ST,ST(i)I
ST(i),ST
short real
long real

FSUBRP

Operands

ST(i),ST

Subtract real

Exceptions: L D, 0, U, P

FSUB / / source / destination,source

Execution clocks Code bytes

~ 287 387 486
70-100 70-100 26-37 7(5-17) 2

90-120+EA 90-120 24-32 7(5-17) 2-4
95-125+EA 95-125 28-36 7(5-17) 2-4

Subtract real and pop

Exceptions: I, D, 0, U, P

FSUBP destination, source

Example

FSUB ST,ST(2)

FSUB BASE_VALUE
FSUB COORDINATE.X

Execution clocks Code bytes Example

~ 287 387 486
75-105 75-105 26-37 7(5-17) 2 FSUBP ST(2),ST

Subtract real reversed

Exceptions: L D, 0, U, P

FSUBR / / source / destination, source

Execution clocks

~ 287 387
70-100 70-100 26-37

90-120+EA 90-120 25-33
95-125+EA 95-125 29-37

Code bytes
486
7(5-17) 2

7(5-17) 2-4
7(5-17) 2-4

Example

FSUBR ST,ST(1)

FSUBR VECTOR [SI]
FSUBR [BX].INDEX

Subtract real reversed qnd pop

§l
75-105

Exceptions: L D, 0, U, P

FSUBRP destination, source

Execution clocks

287 387
75-105 26-37

Code bytes
486
7(5-17) 2

Example

FSUBRP ST(1),ST

PART 5, Coprocessor instructions 151

FTST

Operands

No operands

FUCOM

Operands

//ST(i)

FUCOMP

Operands

Test stack top against +0.0

Exceptions: I, D

FIST (no operands)

Execution clocks Code bytes

§?. 287 387 486
38-48 38-48 28 4 2

Unordered compare
80387 and greater

Exceptions: IS, I, D

Execution clocks Code bytes Example
387 486
24 4 2 FUCOM ST(1)

Unordered compare
80387 and greater

Exceptions: IS, I, D

Execution clocks Code bytes Example
387 486

Example

FTST

//ST(i) 26 4 2 FUCOMP ST(2)

FUCOMPP Unordered compare '
80387 and greater

Exceptions: IS, I, D

Operands Execution clocks Code bytes Example

No operands 26 5 2 FUCOMPP

FWAIT Wait

152

Exceptions: None (CPU instruction)

FW AIT (no operands)

Turbo Assembler Quick Reference Guide

Operands Execution clocks Code bytes Example
387 486 - -

No operands 3+5n* 1-3 FWAIT

*n = number of time CPU examines BUSY line before 80287 completes execution of previous instruction.

FXAM Examine stack top

Exceptions: None

FXAM (no operands)

Operands Execution clocks Code bytes Example
87 287 387 486

No operands 12-23 12-23 30-38 8 2 FXAM

FXCH Exchange registers

Exceptions: I

FXCH / / destination

Operands Execution clocks Code bytes Example

~ 287 387 . 486
//ST(i) 10-15 10-15 18 4 2 FXCH ST(2)

FXTRACT Extract exponent and significant

Exceptions: I

FXTRACT (no operands)

Operands Execution clocks Code bytes Example

~ 287 387 486
No operands 27-55 27-55 70-76 19(16-20) 2 FXTRACT

FYL2X Y * IOg2X

Exceptions: P (operands not checked)

FYL2X (no operands)

Operands Execution clocks Code bytes Example

~ 287 387 486
No operands 900-1100 900-1100 120-538 311 (196-329) 2 FYL2X

PART 5, Coprocessor instructions 153

FYL2XPl Y * log2(X+ 1)

Exceptions: P (operands not checked)

FYL2XPl (no operands)

Operands E_xecution clocks Code bytes Example

~ 287 387 486
No operands 700-1000 700-1000 257-547 313(171-326) 2 FYL2XP1

F2XMl 2x-1

Exceptions: U, P (operands not checked)

F2XMl (no operands)

Operands Execution clocks Code bytes Example

~ 287 387 486
No operands 310-630 310-630 211-476 242(140-279) 2 F2XM1

154 Turbo Assembler Quick Reference Guide

Borland
Corporate Headquarters: 100 Borland Way, Scotts Valley, CA 95066-3249, (408) 431-1000.
Offices in: Australia, Belgium, Canada, Denmark, France, Germany, Hong Kong, italy, Japan,
Korea, Latin America, Malaysia, Netherlands, New Zealand, Singapore, Spain, Sweden, Taiwan,
and United Kingdom ' Part # LSM1240WW2l771 • BOR 6285

