
Report No. 2999 Bolt_~~r~nek,and Newman Inc. 

PLURIBUS DOCUMENT 1: OVERVIEW 

May 1975 

Sponsored by: 

Advanced Research Projects Agencj 
Contract No. F08606-75-C-0032 



Report No. 2999 Bolt Beranek and Newman Inc. 

OVERVIEW 

Update History: 

Originally written by Severo M. Ornstein, May 1975 

ii 



Report No. 2999 Bolt Beranek and Newman Inc. 

INTRODUCTION 

Pluribus is more than a machine; it is an architecture and a 

set of modules for putting together multiprocessor systems. It 

was originally developed to provide a reliable and modular high­

speed packet-switching node for the ARPA Network. The approach 

taken is quite general, however, and is suitable for many kinds 

of applications. Pluribus provides a cost-effective way to build 

computer systems in which reliability, speed, and modularity, or 

any combination of these, are of importance. 

GENERAL PROBLEMS 

Traditional computers consist of a central memory system, a 

processor to execute instructions, and some sort of I/O system. 

Numerous variations have been developed in attempts to increase 

speed and efficiency: cache memories, multi-ported memories, 

hierarchical memories with drums and disks, pipelined processors 

with look-ahead capability, processors with specialized instruc­

tions, and elaborate systems with peripheral processors for 

handling I/O. In all of these systems the main job is handled 

by a central processing unit (CPU) working in conjunction with 

main memory; most embellishments attempt to get more work through 

this pair of units. 

Some of the embellishments ~ for example, combining periph­

eral processors with multiported memories ~ attempt to get var­

ious parts of the problem (I/0 and the main program) flowing con­

currently. Such attempts to achieve parallelism, together with 

the downward trend of minicomputer prices, have led to" experiments 

in multi-computer systems. Most of these consist of loo~ely 



Report No. 2999 Bolt Beranek and Newman Inc. 

coupled machines where each performs a specific part of the over­

all job. This solution has weaknesses in areas of reliability 

and flexibility of load sharing. 

If one processor breaks, it typically takes down the entire 

system until it is repaired or replaced, thus reducing system re­

liability. Furthermore, in systems of this kind, each Input/ 

Output device is generally associated with a particular function 

and is accordingly attached to and serviced by a particular pro­

cessor. When that processor goes down, all access to the device 

is lost. Manual switchover capabilities can be provided, but 

usually require several minutes and can involve program reload­

ing. Such interruptions are unacceptable for many real-time con­

trol environments. 

Limited flexibility of load sharing is also a characteristic 

of dedicated multiprocessor systems. Try as one will to segment 

a problem sensibly, certain parts of the system form bottlenecks 

while others loaf along lightly loaded. Worse still, as loads 

vary in real time, the bottlenecks will shift from one part to 

another. Because of the sp~cialization of the processors, 

lightly loaded ones cannot conveniently help heavily loaded ones 

(e.g., in servicing I/0 devices) with the result that dynamic 

load sharing is difficult or impossible. 

A third general problem area in system architectures is 

growth. In large machines, expansion rack space, power, address 

space, etc., are often provided. The cost represents a small frac­

tion of overall system cost. In smaller computers with no mas­

sive cost to overshadow such options, all too often one finds one­

self suddenly up against hard boundaries ~ no more I/0 channels, 

2 



Report No. 2999 Bolt Beranek and Newman Inc. 

no more memory address space, no more power, etc. Furthermore, 

processing bandwidth (long felt to be the central costly resource) 

is usually matched carefully to the problem: a system which has 

a factor of two excess bandwidth to allow for tomorrow's increased 

demands is simply too expensive a choice for today's problem. 

THE PLURIBUS SOLUTION 

The Pluribus architecture has been designed to address all 

of these problems. Before describing how it does this, we will 

give a brief description of the system and its mode of operation. 

The system consists of processor units, memory units and I/O 

units. Each unit is in fact itself a communication bus providing 

physical housing, power and cooling, and a primitive communica­

tions discipline provided by a "bus arbiter" card for devices on 

that bus. The number of busses of each type and their exact con­

tents will vary depending upon the application's requirements 

for bandwidth, reliability, and fan-in/fan-out (I/O). These bus 

units are coupled together to allow devices on one bus to access 

devices on another. All processor busses are coupled to all 

memory busses and all I/O busses; all memory busses are coupled 

to all I/0 busses ~ as, for example, in the following figure: 

3 



Report No. 2999 

PROCESSOR 
SUSSES 

Bolt Beranek and Newman Inc. 

I/O SUSSES 

MEMORY 
SUSSES 

Figure 1 Communication Paths in 
a Typical Pluribus Configuration 

4 



Report No. 2999 Bolt Beranek and Newman Inc. 

It is characteristic of many programs that relatively small 

portions form time-critical parts. This is where the program 

spends most of its time - in so-called "inner loops". In recog­

nition of this situation, a small amount of memory (up to BK 16-

bit words) is provided with each processor on its own bus. Ac­

cesses to this "local memory" do not suffer the switching or con­

tention delays that occur in accessing the "common memories". A 

separate copy of the inner-loop code is typically stored in each 

processor's local memory. 

The tasks to be performed by the processors are generated 

either by I/O devices calling for attention (completion of block 

transfers, timeout of a clock, etc.) or by processors spawning 

further tasks from those already being serviced. In a uniprocessor 

these are generally announced directly to the processor via a 

priority interrupt system. In a multiprocessor, however, it is 

difficult or impossible to select the most suitable processor to 

interrupt. Furthermore, interrupts, interacting with the resource 

interlocking mechanism (required in multiprocessors to avoid 

interference), can produce deadlocks. The Pluribus therefore 

handles task disbursing differently. Each task is assigned a 

priority and is associated with a particular flag in a (hardware) 

priority ordered task disburser known as a PID. When a task is 

to be performed, its flag is set by whatever unit generates the 

task. All code is broken carefully into pieces known as strips 

and each time a processor completes execution of a strip, it re­

turns to query the PID for the most important task to perform 

next. A single instruction obtains the number of the highest 

priority waiting task and also erases that task from the PID. 

I/O devices are assigned specific flags in the PID and set these 

directly (instead of causing an interrupt). Processors also set 

5 



Report No. 2999 Bolt Beranek and Newman Inc. 

PID flags as the servicing of one task spawns others. PIDs are 

provided on every I/O bus. 

Let us now see how this structure and method of operation 

relate to the issues of flexibility, speed and reliability. 

With regard to flexibility and expandability, it is evident 

that the general structure is extremely modular. First of all, 

the busses themselves are modular in that a variable number of 

units can be plugged into each bus. Bus extender units permit 

busses to be lengthened to house more units. Furthermore, with 

a modular bus interconnection scheme, realized via separate bus 

couplers as opposed to a centralized "cross bar" switch, the num­

ber of busses in a system can expand or contract to suit needs. 

Although large numbers are not often necessary, one theoretically 

could incorporate dozens of processor busses and memory busses 

and up to four I/O busses into a system. 

In configuring a Pluribus system of this sort, one must study 

the bandwidth requirements at critical places in the system. How 

much total I/O bandwidth (to and from common memory) will be re­

quired helps to establish how many I/O busses there should be. 

How much processing bandwidth is needed helps to determine the 

number of processor busses. The ratio of references to common 

memory vs. references to private memory establishes hdw many 

memory busse~ are required to support the selected number of 

processor busses. Thus, one can configure a Pluribus system so 

that the processors, memory units and I/0 units are all inter­

nally matched for the application. Other considerations, such as 

reliability (discussed below), also affect configuration deci­

sions. The point is that the system, consisting as it does of 

modular busses connected together by a modular switching scheme, 

6 



Report No. 2999 Bolt Beranek and Newman Inc. 

forms a very flexible structure. The processors' address space 

is expanded (by mapping in the couplers) to half a million 16-bit 

words. Up to 1000 I/O devices are directly addressable by the 

processors. These limits (of address space) were deliberately 

set above any visible near-term requirements. 

Unique flexibility of hardware utilization is added by the 

software. We have made it convenient for the program to search 

for and locate those hardware resources (memory, I/0 devices, 

other processors, etc.), which are present in a system and to 

determine the type and parameters of those which are found. This 

makes it possible to construct programs which adapt to running 

in any of a variety of configurations. For instance, the program 

can include an algorithm for memory utilization. If enough mem­

ory is plugged into a system it will be possible to have ample 

buffer space, backup copies of all programs, certain helpful but 

not absolutely necessary programs, etc. Should some memory break, 

the program can adapt by shifting the utilization of the remain­

ing memory in such a way as to sacrifice the least important func­

tions. Alternately, as memory is added into a system, the program 

can be made to note the change, test the new resource, and absorb 

it into the system, utilizing it for the most important function 

then required. This sort of adaptive operation also relates to 

the issue of reliability discussed below. 

Pluribus system design recognizes that specialization is 

anathema to reliability and that single copies of key resources 

are vulnerable points in any system. As opposed to specialization, 

the Pluribus architecture emphasizes equality. All processors 

can perform any system function; none is singled out (except momen­

tarily) for a particular function. All processors have equal ac­

cess to all programs, all I/0 units, etc., so that the full power 

7 



Report No. 2999 Bolt Beranek and Newman Inc. 

of the machine can be brought to bear on the part of the algorithm 

which is busiest at a given time. The program can be written to 

adapt to running with whatever processors are available so that 

capacity can be increased simply by adding processors and so that 

loss of a processor incurs loss of capacity but no loss of capa­

bility. 

With all processors able to perform any system task and a 

centralized highly efficient mechanism for meting out tasks to 

processors in priority order, it is clear that service can re­

spond quickly to shifts in demand. Just how quickly this response 

must be made will depend on the nature of the problem. A communi­

cations processor, servicing many high speed lines, requires un­

usually fast responsiveness. To achieve this, the length of code 

strips (i.e., the length of time a processor spends between tests 

for higher priority work) is kept to a few hundred microseconds. 

In many other systems this time can be relaxed to milliseconds or 

more without loss of performance. 

Since the Pluribus approach to reliability is somewhat un­

usual, it is important to clarify what sort of reliability is 

meant. Pluribus systems are reliable in that, although they may 

suffer momentary outages, they will quickly recover without 

manual intervention and resume operation ~ at worst at reduced 

capacity but with no loss of function. The goal is to eliminate 

most outages and reduce even the bad ones to a matter of seconds. 

In Pluribus systems, the strategy used to achieve reliability 

comes in two parts which parallel the traditional division into 

hardware and software. The first part provides hardware that 

will survive any single failure, even a solid one, in such a way 

as to leave a potentially runnable machine intact (potentially in 

that it may need resetting, reloading, etc.). The second part 

8 



Report No. 2999 Bolt Beranek and Newman Inc. 

provides all of the software facilities necessary to survive any 

and all transients stemming from the failure and to adapt to 

running in the new hardware configuration. 

There are two basic strategies in providing the hardware. 

The first is to include extra copies of every vital hardware re­

source. The second is to provide sufficient isolation between 

the copies so that any single component failure will impair only 

one copy. 

To restore the algorithm to operation after a failure, a 

hierarchical system of software and hardware timers is coupled 

with a processor consensus system. In addition, a number of 

disciplines are carefully adhered to in programming which help 

to reduce vulnerability and limit the insidious effects of errors. 

It is instructive to consider what happens when a PID fails. 

In order to avoid having the system collapse, each I/0 bus is 

given a separate PID (or PIDs). The I/O devices on each I/0 bus 

request service through their local PID and if the PID fails, 

those devices will be incapacitated just as they would if the 

power supply (for example) for that bus failed. The processors 

have equal access to the PIDs on all I/O busses. They typically 

use only part of one PID for software generated task disbursing 

and will switch to an alternate PID if the one they are using 

fails. 

From the above, it is clear that loss of a resource central 

to an I/0 bus, such as the PID or the power supply, results in 

loss of all I/O units depending on that bus. For certain sorts 

of devices, such degradation is not unreasonable ~ a section of 

the machine will be rendered unusable and certain lines or de­

vices will cease to function but the rest of the machine will 

9 



Report No. 2999 Bolt Beranek and Newman Inc. 

continue to operate normally. Since some devices are critical, 

however, and must not ever be lost, controllers and line inter­

face units are designed so that devices can be double connected 

~i.e., to two controllers on separate I/0 busses. In such a 

case the software will use only one and will switch to the alter­

nate immediately in the event of trouble. 

The above discussions highlight an important characteristic 

of Pluribus systems. Admitting the difficulty and enormous ex­

pense of building inherently reliable hardware, we have chosen a 

most cost-effective means of achieving system reliability ~ by 

shifting a major share of the burden of responsibility for both 

software and hardware reliability onto the software. Sections of 

the software are specifically devoted to coping with failures. 

Such "reliability software" concerns itself with failures stemming 

both from hardware and from software. In coping with hardware 

troubles (and in performing automatic trouble shooting to locate 

a problem) it utilizes the redundant hardware resources provided. 

To cope with active failures, as for example when some processor 

repeatedly overwrites memory, password-protected, program­

controlled amputation switches are provided whereby an actively 

failing unit can be decoupled from the system. 

APPLICATIONS 

The Pluribus architecture directly addresses a number of 

system design requirements involving combinations of greater 

speed, greater flexibility (expandability) and greater reliability. 

The Pluribus makes possible systems in which one can more nearly 

keep up with these requirements without complete replacement or 

reprogramming by simply adding more parts into the system. 

10 



Report No. 2999 Bolt Beranek and Newman Inc. 

Gain in speed is dependent upon an ability to segment jobs 

into concurrently executable tasks. Presently this segmentation 

is part of the job of programming. Whether or not this process 

of segmentation can eventually be separated and performed auto­

matically is a moot question. The answer will determine the ease 

with which general, multi-user systems with time sharing, operat­

ing systems, etc., can utilize this architecture. It may well be 

that, eventually, languages will come to include features which 

provide users with an easy means of describing parallelism in 

their programs. 

In the meantime, the Pluribus architecture seems likely to 

be used primarily by those whose requirements for speed, expand­

ability, and reliability override the need for general time 

sharing, higher level languages, etc. Such uses tend to appear 

in non user-programmed environments with "real time" requirements 

for speed and survivability. Communications processing, process 

control, and command and control systems are such environments. 

11 


