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1.  OVERVIEW 

This Quarterly Technical Report, Number 8, describes aspects 

of our work on the AKPA Computer Network under Contract Mo. FO86O6- 

73-C-0027 during the fourth quarter of 197^.  (Work performed from 

1969 through 1972 under Contract No. DAHC-69-C-0179 has been re- 

ported in an earlier series of Quarterly Technical Reports, num- 

bered 1-16 . ) 

During this quarter three new network nodes were installed. 

Interestingly, all three nodes were installed at sites which al- 

ready possessed network nodes; the motivation for the new node 

equipment was the desire to attach more Host computers than can 

be supported by a single node.  It is therefore noteworthy that 

the new Pluribus IMP, which is essentially ready for field instal- 

lation, has the physical ability to handle many more Host connec- 

tions than the current line of Honeywell-based IMPs.  The new 

nodes this quarter include IMPs at the Seismic Data Analysis 

Center and Stanford Research Institute, and a TIP at the USC 

Information Sciences Institute.  At the end of the quarter the IMP 

located at Case Western Reserve University was removed from the 

network. 

Most of the implementation of Host access controls and algo- 

rithms for equal distribution of IMP resources among Hosts was 

completed during the fourth quarter.  Due to difficult problems 

in the final target system, however, the complete implementation 

of these mechanisms was postponed until the first quarter of 1975. 

In addition, the IMP software was modified to permit, under con- 

trolled experimental conditions. Host use of packets for which 

message processing is not performed. 

I 

n  WfTtfi» -ihiirn   ■fpirt» 



Report No. 2988 Bolt Eeranek and Newman Inc. 

Early in the fourth quarter we began field testing of the 

TIP software which Implemented the access control ^.nd user account- 

ing mechanisms described in our Quarterly Technical Report No. 6. 

This testing revealed several unanticipated difficulties, and thus 

installation of this software did not begin until early December, 

about a month later than anticipated.  By the end of the quarter 

the TIP software was installed in many operational TIPs, but some 

installations will be made in early 1975.  The RSEXEC programs 

for maintaining the various access control and accounting data 

bases were operational by the end of the quarter. 

As noted in our Quarterly Technical Report No. 7, by the end 

of the third quarter the two production copies of the l^-processor 

Pluribus IMP hardware (currently 13 processors plus a paper tape 

reader to simplify testing) were essentially ready for delivery, 

and the software nearly so.  During the fourth quarter software 

debugging and tuning continued, and toward the end of the quarter 

we felc the system was ready for a field trial.  Accordingly, one 

of the two production machines was "shipped" from our development 

area to the BBÜ Research Computer Center.  This will provide an 

environment similar to field installation for testing during 

early 1975.  Section 2 of this report describes in detail our 

approach to system reliabiJity issues in the Pluribus IMP. 

During the fourth quarter we published and distributed re- 

visions to three operational documents, BB.*« Report .'ic. 182. , 

Specifications for   the   InterQonnP.ction   of a  Host   and an   //fr, BBii 

Rf^ort 'Jo. 2183, TIP  User's   Guide,   and BHJ Report Mo. 218^4, TIP 

Hardware  Manual,      In addition, ;'o ir professional papers were pre- 

pared and submitted as follows:  "The Evolution of Message Process- 

ing Techniques in the ARPA Network/' by J. M. McQuillan, to appear 
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in International Computer State of the Art Report No. 2^4:  Network 

Systems and Software, Infotech, Maidenhead, England; "Pluribus — 

A Reliable Multiprocessor," oy S. M. Ornstein, W. R. Crowther, 

M. F. Kraley, R. D. Bressler, A. Michel, and F. E. Heart, sub- 

mitted to the AFIPS 1975 National Computer Conference; "Issues in 

Packet-Switching Network Design," by W. R. Crowther, F. E. Heart, 

A. A. McKenzie, J. M. McQuillan, and D. C. Waiden, submitted to 

the AFIPS 1975 National Computer Conference; and "Some Considera- 

tions for a High Performance Message-Based Interprocess Communica- 

tion System," by J. M. McQuillan and D. C. Waiden, to be presented 

at the ACM SIGCOMM-SIGOPS Interface Workshop on Interprocess Com- 

munications, March 2^-25, 1975. 
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2.  RELIABILITY ISSUES IN THE DESIGN OF THE PLURIBUS IMP 

As computer technology has evolved, syctem architects have 

continually sought new ways to exploit the decreasing costs of 

system components.  One approach has been to pull together col- 

lections of units into multiprocessor systems.  Usually the objec- 

tives have been to gain increased operating power through paral- 

lelism and/or to gain increased system reliability through redun- 

dancy. 

In this section, we describe our approach to the objective 

of high system reliability in the multiprocessor IMF system which 

has seen under development since 1972.  Aspects of this new IMP 

have been described in several of our previous Quarterly Technical 

Reports (in particular, llo.   k).     To review, the design objectives 

for the machine are restated here. 

The machine was to be capable of high bandwidth, in order to 

handle the 1.5-megabaud data circuits which were then planned for 

the network.  It was to have a high fanout to Host computers con- 

nected at a nod'.  It was to come in all sizes (of processing 

power, memory, x/0) so that one could configure an individual IMP 

to meet the requirements of its particular location in the network, 

and change that configuration easily should the requirements change. 

Most of all, it was to be reliable. 

The family of machines we have developed to meet these goals 

has been named the Pluribus line.  The machines are highly modular 

at several levels and have a minicomputer/multiprocessor architec- 

ture as described in the past.  We believe that reliability will 

become an increasingly common concern as multiprocessors become 

more commonplace, and we believe that we have gained some inter- 

esting insights into the solution of this problem which we describe 

here. 

-i T^— ■ wmm&im 
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We will begin with a brief review of the structure of our 

systerii.  We then discuss our reliability goals and introduce 

three broad strategies used to achieve these goals.  Next the sys- 

tem reliabfllty structure is described, and finally we present a 

number of examples which illustrate how the system works. 

2.1 The Multiprocessor Architecture 

A novel feature of our design is the consistent treatment of 

all processors as equax units, both in the hardwire and in the 

software.  There xs no specialization of processors for particular 

system functions, ar.d no assignment of priority among the proces- 

sors, such as designating one as master.  We chose to distribute 

among the processors not only the application job (the IMP job) 

but also the multi-processor control and reliability jobs, treat- 

ing all jobs uniformly.  We view the processors as a resource used 

to advance the algorithm; the identity of the processor performing 

a particular task is of no importance.  Programs are written as 

for a single processor except th ,t the algorithm includes inter- 

locks necessary to insure multiprocessor sequentiality when re- 

quired.  The software of our machine consists of a single conven- 

tional program run by all processors.  Each processor has its own 

local copy of about one quarter of this program and the remaining 

three quarters is in commonly accessible memory. 

2.1.1 Hardware Structure 

Reliability was a main concern in planning the hardware ar- 

chitecture.  Although we tried to bul?d the individual pieces 

solidly, our main goal was to provide hardware which could be ex- 

ploited by the program to survive the failure of any individual 

component. 

r 
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The hardware consists of basses joined together hy special 

bus couplers (see Figure 1) which allow units on one bus to access 

those on smother.  Each bus, together with its own power supply 

and cooling, is mounted in its own modular unit, permitting flexi- 

ble variation in the size and structure of systems.  There are 

processor busses each of which contains two processors, each pro- 

cessor in turn with its own local ^K memory which stores frequently 

run and recovery-related code.  There are memory busses to house 

the segments of a large memory common to all the processors.  Fi- 

nally, there are 1/0 busses which house device controllers as well 

as certain central resources such as system clocks and special 

(priority-ordered) task disbursers which replace the traditional 

priority interrupt system.  In a large configuration, about half 

of the machine consists of standard parts from the Lockheed SUE 

line; the remainder is of special design. 

We were fortunate to have a very specific Job in mind as we 

designed the system.  This enabled us t  place specific bounds on 

the problems we sought to solve.  For example, the pressed ini- 

tial setting within a communications network means that outside 

entities (neighboring communications processor's. Hosts, users, 

etc.) may help to notice that things are going wrong.  It also 

means that recovery assistance is potentially available from the 

Network Control Center (MCC) through the network.  The system is 

designed generally to avoid reliance upon external help, but upon 

occasion such help is useful and therefore we have provided meth- 

ods for permitting the system to be forcibly reloaded and restart- 

ed via the network. 
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PROCESSOR 
BUSSES 

BUS 
COUPLERS 

COMMON 
MEMORY 
BUSSES 

I/O BUSSES 

Figure 1:  Pluribus IMP (14-processor system) 

Bus Interconnection 
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2.1.2 Software Strurture 

The problem of building a packet-Ewitching store-ana-forward 

communications processor lends itself especially well to parallel 

solu':loi. since packets of data can be treated independently of 

one another.  Other functions of the IMP program such as general 

housekeeping, routing computations, reliability tasks, etc., can 

also be easily performed in parallel.  Thus, we have been able to 

devote .ur attention to the problems of multiprocessor implementa- 

tion rather than struggling to force our algorithm into a parallel 

form. 

The structure that we have chosen works as follows:  First, 

the p ogram is divided into small pieces, called strips,   each of 

which handles a particular aspect u the job.  For example, one 

strip handles special routing messages from neighboring IMPs, 

another handles input from a loca? Host, and others handle further 

I/O and housekeeping functions.  When a particular task needs &o 

be performed, for instance upon receipt of a message over a com- 

munications circuit, the name (number) of the appropriate strip 

is put on a queue of tasks to be run.  Each processor, when it is 

not running a strip, repeatedly checks this queue.  When a strip 

number appears on the queue, the next available processor will 

take it off the queue and execute the corresponding strip.  We try 

to break the program into strips in such a way that a minimum of 

context saving is necessary. 

Strips have different levels of Importance.  Data coming in 

over a high-speed communication circuit has higher priority than 

data coming in over a Teletype-speed line.  The number assigned 

to each strip reflects the priority of the task it performs.  When 

a processor checks the task assignment queue, it takes the highest 

8 
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L.        priority job then available.  Gince all processors access this 

queue frequently, the contention for it is very high.  For effi- 

elen jy we therefore built a hardware device called the Pseudo 

Interrupt Device (PID) which serves as a task queue.  A single 

xnstructior allows the highest priority task to be fetched and 

removed from the queue.  Another instruction allows a new task to 

be put onto the queue.  All contention is arbitrated by standard 

bus logic hardware. 

The length of strips is governed by how long priority tasks 

can wait if all the processors are busy.  The worst case arises 

when all processors have just begun the longest strip.  In the 

IMP application, the most urgent tasks can afford to wait a maxi- 

mum of ^00 microseconds.  Therefore, strips must not be longer 

than that. 

An inherent part of multiprocessor operation is the locking 

of critical resources. This is the mechanism by which the algo- 

rithm enforces sequentiality when it is needed. Our system uses 

a load-and-clear operation as its primitive locking facility. 

ITo avoid deadlocks, we assign a priority ordering to oiivi resources 

and arrange that the software net lock one resource when it has 

r, already locked another of lower or equal priority. 

2.1.3 Status 

4fc Two production Pluribus IMPs have been constructed and are 

running.  Each contains 7 processor busses (generally, each holds 

2 orocessors), two memory busses, and two I/O busses.  These ma- 

chir.es have been connected intermittently into the ARPA Uetwork 

for testing purposes and one has now been "shipped" to the BBM 

Research Computer Center for testing under field conditions.  A 

ringle Pluribus IMP has been running on the network for an extended 

■Ti   - '-■  ■^~- ■^BW* 
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period in order to valiiate performance during routine operation. 

Three Satellite IMP configurations are presently under construc- 

tion. 

2.2 Reliability Goals 

Since the term "reliable system" can have many different 

meanings, it is important to establish clearly just what we are 

and what we are not trying to achieve.  We are not crying to build 

a non-failing device; instead, we are trying to build a system 

which will recuperate automatically within seconds, or at most 

minutes, following a failure.  Furthermore, we want the system to 

survive not only transient failures but also solid failures of 

anj   single component.  In many cases (such as the IMP job) it is 

not absolutely imperative to operate continuously and perfectly 

(as it may be in a space vehicle guidance computer); it suffices 

to operate correctly most of the t me so long as outages are in- 

frequent, kept brief, and fixed wit. out human intervention. 

How one copes with infrequent brief outages depends on what 

one is trying to do.  For tasks not tightly coupled to real-time 

requirements (e.g., for many large numerical computations), a 

simple device is to choose checkpoints at which to record the 

state of the system so that one can always recover by restarting 

from the checkpoint just preceding an outage.  The IMP system 

happens to be embedded in a larger system which is quite forgiving 

(not an uncommon situation).  Thus infrequent outages of a few 

seconds are toleratei easily, and outages of many seconds, while 

causing the particular nod?   to become temporarily unusable, will 

not in general jeopardize operation of the network as a whole. 

10 
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Occasionally, despite all efforts, the system will break so 

catastrophically that it will be unable lo recover.  Our goal is 

to reduce the probability of such total system failure to the 

probability of a multiple hardware failure.  We do not try to pro- 

tect against all possible errors; some of our procedures will fail 

to detect errors whose probability of occurrence is sufficiently 

low.  For example, all code is periodically checksummed using a 

16-bit checksum.  A failure that does not disturb the validity 

of the checksum may not be detected.  We do not mind if a failure 

renders large sections of the machine ur sable or inaccessible, 

providing enough remains to run the system.  The presence of run- 

nable hardware, however, is not sufficient to guarantee that opera- 

tion will be resumed; in addition, the software must be able to 

survive the transients accompanying the failure and adapt to the 

remaining hardware.  This may incjude combating and overcoming 

active failures (for example, when an element such as a processor 

goes berserk and repeatedly writes meanirgless data into memory). 

All code is presumed to be debugged — i.e., all frequently 

occurring problems will have been fixed before the code is put 

into the field.  On the other hand, we do assume that all manner 

of perverse and infrequent bugs will forever be latent within the 

code.  Thus, we must be able to survive even when all code, data 

structures, etc., have been randomly destroyed. 

In order to avoid complete system failure, a failed component 

must be repaired or replaced before its backup also breaks.  The 

system must therefore report all failures.  The actual repair and/ 

or replacement will of course be performed by humans, but this 

will generally take place long after the system has noted the 

failure and reconfigured itself to bypass the failed module.  The 

ratio of mean-time-to-repair to mean-time-between-failures will 

11 
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determine overall system reliability.  It must also be possible 

to remove and replace any component while the system continues 

to run.  Finally, the system should absorb repaired or newly 

introduced parts gracefully. 

2.3 Strategies 

In order to understana our system it is convenient to think 

of the strategies used to achieve our goals as divided into two 

parts; these more or less parallel the traditional division of 

computer system into hardware and software.  The first part 

provides hardware that will survive any single failure, even a 

solid one, in such a way as to leave a potentially runnable ma- 

caine intact ("potentially" implies that it may need resetting, 

reloading, etc.).  The second part provides all of the facilities 

necessary to survive any and all transients stemming from the 

failure, and to adapt to running in the new hardware configuration. 

2.3.1 Appropriate Hardware 

We have two basic strategies in providing the hardware.  The 

first is to include extra copies of every vital hardware resource. 

The second is to "provide sufficient isolation between the copies 

so that any single component failure will impair only one copy. 

To increase effective bandwidth in multiprocessors, multiple 

copies of heavily utilized resources are normally provided.  For 

reliability, however, all  resources critical to running the algo- 

rithm are duplicated.  V/here possible the system utilizes these 

extra resources to increase the bandwidth of the system. 

It is not sufficient merely to provide duplicate copies of a 

particular resource; we must also be sure that the copies are not 

dependent on any common resource.  Thus, for example, in addition 

12 
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co  providing multiple memories, we also include multiple busses 

on which the memories are distributed.  Furthermore, each bus is 

not only logically independent, but also physically modular.  The 

chassis, with its own power suppl;, and coaling, is built into an 

integral unit which may be powerea down, disconnected, and re- 

moved from the rack for servicing or replacement while the rest 

of the machine continues to run. 

' i 
i I 
I L 

I 

i 

All central system resources, such as the real time clock 

and the PID, are duplicated on at least two separata I/O busses. 

All connections between bus pairs are provided by separate bus 

couplers so that a coupler failure can disable at rrost the two 

busses It is connecting; all other interconnections between bussei 

are unaffected.  We have thus avoided the vulnerable centralized 

1 -- switcii generally found at the heart of a multiprocessor.  There 

. - are multiple racks, each *;ith its own power cord (to separate 

power sources if desired), and busses are assignee, to racks in 

such a way that the loss of even an entire rack does not remove 
r ; 

any unique central system resource. 

r - With respect to non-central resources, such as individual 

* 

r ' 

I/O interfaces, one has more freedom.  When a particular line is 

deemed critical, it is connected zo  two identical interface units 

(on separate I/O busses) either of which may be selected for use 

by the program.  When the extra reliability is not worth the 

extra cost, however, the line need be only singly connected. 

In order for the syste.n to adapt to different hardware con- 

figurations, the software must be able to determine, without 

human aid, what hardware resources are available to it.  We have 

made it convenient to search for and locate those resources which 

are present and to determine the type and parameters of those 

which are found. 

13 
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Since we must allow for active failures, there must be a 

mechanism which ailcfs the program to turn off or isolate a unit 

which is acting in a malevolent ma-iner.  To arrange for  this, all 

bus couplers have a program-controllable frwitch that ir.hibits 

transactions via that coupler.  Thus, a bus may be effectively 

"amputated" by turning off all couplers connected to that bus. 

These switches are protected from capricious use by requiring a 

password.  Naturally an amputated processor has no access to these 

switches. 

A final rule that we have followed in maintaining adequate 

isolation is to prohibit any common signal that would connect to 

all busses.  Normally a common reset line is considered essential 

in any hardv/are system; however, we have avoided a common reset 

line since a single failure on its driver could render the entire 

system inoperative.  In our system there is no central point (not 

even a single power switch) where one can gain control of the 

entire system at once.  Instead, we rely on rest'ting a section at 

a time using passwords. 

2.3.2 Software Survival 

With the above features, the 1luribus hardware can experience 

any single component failure and still present a runnable system. 

One must assume that as a consequence of a failure, the program 

may have been destroyed, the processors halted, and the hardware 

put in some hung state needing to be reset.  We now investigate 

the means used to restore the algorithm to operation after a 

failure.  The various techniques for doing this may be classified 

under three broad strategies:  keep it simple, worry about redun- 

dancy, and use watchdog timers throughout. 

14 
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2.3.2.1  Simplicity 

It Is always good to keep a system simple, for then one has 

a better chance of making it work.  We describe here three system 

constraints imposed in the name of simplicity. 

First, as mentioned above, we insist that all processors be 

identical and equal:  they are viewed only as resources used to 

advance the algorithm.  Each should be able to ao any system task; 

none should be singled out (except momentarily) for a particular 

function.  The important thing is the algorithm.  With this view 

it is clear that it is simplest if the algorithm is accessible to 

all processors of the system.  A consequence of this is that the 

full power of the machine can be brought to bear on the part of 

the algorithm which is busiest ac a given time. 

One might argue that for some systems it is in fact simpler 

(or more efficient) to specialize processors to specific tasks. 

One could, in such a case, then duplicate each diff^ront type for 

reliability.  With that approach, however, one must worry about 

the recovery of several different units, and all the possible 

interactions between them.  We consider the recovery problem for 

a group of identical machines formidable enough. 

One consequence of treating all processors equally is that a 

program can be debugged on a single machine up to the point where 

the multiple machine interaction matters.  Once this has been 

done, we have found that processor interaction does not present 

a severe additional debugging problem.  Or» the other hand, finding 

routine software bugs when a dozen machines are running is a dif- 

ficult problem. 
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A second characteristic of our system which arose from a 

iesire to keep things simple is passivity.  We use the terms ac- 

tive and passive to describe communication between subsystems in 

which the receiver is expectec to put aside what it is doing and 

respond.  The quicker the  required response, the more active the 

interaction.  In general, the more passive the communication, the 

simpler the receiver can be, becc.use it can wait until a conve- 

nient time to process the communication.  On the other hand the 

slower response may complicate things for the sender.  We believe 

that there is a net gain in using more passive systems.  An ex- 

ample of this Is our decision to make the task disbursing mecha- 

nism (the PID) a passive device.  Neither the hardware interfaces 

nor other processors tell a processor what to do; rather, pro- 

cessors ask the PID what should be done next.  There are some 

costs to such a passive system.  The resulting slower responsive- 

ness has necessitated additional buffering in some of our inter- 

faces.  In addition, the program must regularly break from tasks 

being executed to check the PID for more important tasks. 

The alternatives, however, are far worse.  In a more active 

multiprocessor system, for example one which uses classical pri- 

ority interrupts, it is difficult to decide which processor to 

switch to the new task.  Furthermore, it is almost impossible to 

preserve the context of a processor while making such a switch 

because of the interaction with the resource interlocking system. 

The possibilities for deadlocks are frightening, and the general 

mechanism to resolve them cumbersome.  With a passive system a 

processor finishes one task before requesting the next, thus 

guaranteeing that task switching occurs at a time when there is 

little context, e.g., no resources are locked. 

16 
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Passive systems are more reliable for another reason:  namely, 

the recovery mechanisms tend to be far simpler than those for ac- 

tive systems. 

As a third example of simplicity we introduce the notion of 

a reliability subsystem. A reliability subsystem is a part of the 

overall system which is verified as a unit. For example, there is 

a subsystem that, among other things, determines which common mem- 

ory pages are available for message buffers. The entire system is 

broken into these subsystems, which verify one another in an or- 

derly fashion. 

The subsystems are cleanly bounded with well-defined inter- 

faces.  They are self-contained in that each includes a self-test 

mechanism and reset capability.  They are isolated in that all 

communication between subsystems takes place passively via data 

structures.  Complete interlocking is provided at the boundary of 

every subsystem so that the subsystems can operate asynchronously 

with respect to one another. 

The monitoring of one subsystem by another is performed us- 

ing timer modules, as discussed below.  These timer modules guar- 

antee that the self-test mechanism of each subsystem operates, 

and this in turn guarantees that the entire subsystem is operating 

properly. 

2.3.2.2 Redundancy 

Redundancy is simultaneously a blessing and a curse.  It oc- 

curs in the hardware and the software, and in both control and 

data paths.  We deliberately introduce redundancy to provide re- 

liability and to promote, efficiency, and it frequently occurs be- 

cause it is a natural way to build things.  On the other hand. 
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the mere existence of redundancy implies a possible disagreement 

between the versions of the information.  Such inconsistencies 

usually lead to erroneous beha/ior, and often persist for long 

periods. 

It was not until we adopted a strategy of systematically 

searching out and identifying a]1 the redundancy in every sub- 

system that we succeeded in making the subsystems reliable.  This 

process therefore corstitutes one of our three basic strategies 

for constructing robust software. 

We use the term redundancy here in a somewhat subtle sense, 

not only for cases in which the same information Is stored in two 

places, but also when two stored pieces of information each imply 

a common fact although neither is necessarily sufficient to imply 

the cth3r. 

Let us consider a few examples of redundancy to make these 

ideas more concrete: 

• A buffer holding a message to be processed, and a pointer 

to the buffer on a "to be processed" queue.  (One can 

easily deduce from the state of our buffers what process- 

ing they need.) 

• A device on the bus requesting a bus cycle, and a flip- 

flop in the bus arbiter capturing the fact of the request. 

• One processor seeing a memory word at a particular system 

address and another seeing the same word at the same 

address. 

• The PID level which a particular device use^ to request 

service and the device which the software services in re- 

sponse to that level. 

18 
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There are several methods of dealing with redundancy.  The 

first and best is to eliminate it, and always refer to a single 

copy or the information.  When we choose not to eliminate it, we 

can check the redundancy and explicitly detect and correct any 

inconsistencies.  It does not really matter how this is done as 

the system is recovering from a failure anyway.  What is important 

is to resolve the inconsistency and keep the algorithm noving. 

Sometimes it is too difficult to test for inconsistency; then 

timers can be used as discussed in the next section. 

We can now see how these methods are applied to our four 

examples: 

• If the buffer and queue are inconsistent, the buffer will 

not be processed.  Each buffer has its own timer; if the 

buffer is not processed in a reasonable time, it will be 

replaced on the queue. 

• If the bus arbiter and devices disagree, the bus may hang. 

We have added a tAmer which times out bus transactions and 

does a bus reset after one second of complete inactivity. 

• The software verifies that all processors see the same 

memory at a given address and when they do not, decides 

whether to declare the memory or one of the processors 

unusable. 

• An inconsistency between ^he PID level that an interface 

is using and the software response to that level cannot 

persist because a process periodically forces the tables 

driving the response to agree with the hardware.  (The 

PID level(s) used by each device are program-readable.) 
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2.3.2.3 Timers 

We have adopted a uniform structure for implementing a moni- 

roring function between reliability subsystems based on watchdog 

timers.  Consider a subsystem which Is being monitored.  We design 

such a subsystem to cycle with a characteristic time constant and 

Insist that a complete self-consistency check be included within 

every cycle.  Regular passage through this cycle therefore is 

sufficient indication of correct operation of the subsystem.  If 

excessive time goes by without passage through the cycle, it im- 

plies that the subsystem has had a failure from which it has not 

been able to recover by Itself.  The mechanism for monitoring the 

cycle is a timer which is reset by every passage through the cycle. 

We have both hardware and software timers ranging from five micro- 

seconds to two minutes in duration.  Another subsystem can monitor 

this timer and take corrective action if it ever runs out.  To 

avoid the necessity for subsystems to be aware of one another1s 

internal structure, each subsystem includes a reset mechanism 

which may be externally activated.  Thus corrective action con- 

sists merely of invoking this reset.  The reset algorithm is as- 

sumed to work although a particular incarnation in code may fail 

because it gets damaged.  In such a case another subsystem (the 

code checksummer) will shortly repair the damage. 

Note that we have introduced an active element into our 

otherwise totally passive system.  These resets constitute the 

only active elements and furthermore are invoked only after a 

failure has occurred.  This approach seems to provide for the 

maximum isolation between subsystems. 
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2.4 System Reliability Structure 

In the previous section we described a mechanism whereby 

one subsystem can monitor another.  Our system consists of a chain 

of subsystems in which each subsystem monitors the next member of 

the chain.  Figure 2 and Table 1 show this structure in the system 

we have built for the IMP.  An efficient way to build such a chain 

is to have lower subsystems provide and guarantee some important 

environmental feature used by higher level systems.  For example, 

a low level in our chain guarantees the integrity of code for 

higher levels which thus assume the correctness of code.  Such a 

system is vulnerable only at its bottom.  (We are assuming here 

that we have runnable hardware although it may be in a bad state, 

requiring resetting.)  The code tester level (see Figure 2) 

serves three functions:  first, it checksums all low level code 

(including itself); second, it insures that control is operating 

properly, i.e., that all subsystems are receiving a share of the 

processors attention; third, it guarantees that locks do not 

hang up.  It thus guarantees the most basic features for all nigh- 

er levels.  These will, in turn, provide further environmental 

features, such as a list of working memory areas, I/O devices, 

etc., to still higher levels.  The method by which the code tester 

subsystem itself is monitored and reset will be discussed shortly. 

I , 

I . 

The mechanisms we have described ensure that the separate 

processor subsystems have a satisfactory local environment in 

which to work.  Before they can work together to run the IMP 

algorithm it is necessary that a common environment be Jtablished 

for all processors.  We call the process of reaching an agreement 

about this environment "forming a consensus", and we dub the group 

of agreeing processors the Consensus.  The work done by the Con- 

sensus is in fact performed by individual processors, but the 
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Figure  2:     Pluribus  Subsystem Monitoring  Structure 
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Table 1: Major Subsystems and Their Functions 

IMP SYSTEM:   Watches network behavior — will not cooperate 

with irresponsible  .twork behavior. 

IMP SYSTEM RELIABILITY:  Watches IMP SYSTEM (data structures mostly) 

CONSENSUS: 

INDIVIDUAL: 

CODE TESTER: 

Watches IMP SYSTEM RELIABILITY, verifies all Co.nmon 

Memory Code (via checksum), watches each processor, 

finds all usable hardware resources (interfaces, 

PIDs, memory, proc ?ssors, etc.), tests each and 

creates a table of good ones.  Makes spare copies 

of code. 

Watches CONSENSUS, finds all memory and processors 

it considers usable, determines where the Consensus 

is communicating and tries to join it. 

Watches INDIVIDUAL, verifies all Local Memory Code 

(via a checksum), guarantees control and lock 

lechanisms. 

BUS TIMER + 60Hz INTERRUPT:  Watches CODE TESTER, guarantees bus 

activity. 

n 
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coordination and discipline imposed on Consensus members make them 

behave like a single logical entity.  An example of a task re- 

quiring consensus is the identification of usable common memory 

and the assignment of functions (code, variables, buffers, etc.) 

to particular pages.  The members of the Consensus will not al- 

ways agree in their view of the environment, as for example wnen 

a broken bus coupler blinds one member to a segment of common 

memory.  In this case the Consensus, including the processor with 

the broken coupler, will agree to run the main system without 

that process^.-. 

The Consensus maintains a timer for every processor in the 

system, whether or not the processor is working.  The Consensus 

will count down these timers in order to eliminate uncooperative 

or dead processors.  In order to join the Consensus, a processor 

need merely register its desire to join by holding off its timer. 

Within the individual processors it is the code tester subsystem 

which holds off the timer. 

The Consensus, then, acting as a group, provides the monitor- 

ing mechanism for the individuals as shown by the feedback monitor- 

ing path in Figure 2.  This monitoring mechanism run by the Con- 

sensus includes the usual reset capability, which in this case 

means reloading the individuals local memory and restarting the 

processor.  Since all of the processors have identical memories, 

reloading is not difficult.  We provide (password protected) 

paths whereby any processor can reset, reload, and restart any 

other processor.  This reliance on the Consensus is indeed vul- 

nerable to a simultaneous transient failure of all processors. 

However, the Network Control Center has access to these same re- 

set and reload facilities and these enable it to perform the 

reload function remotely (a path also shown in the figure). 
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Thus the Consensus and/or Network Control Center are the 

ultimate guarantors of the lowest level subsystem.  While this 

process is sufficient it is sometimes slow.  For many cases in 

which the Consensus is disabled (as for example when all of the 

processors halt), a simpler reset without reloading will suffice. 

For this reason we have provided a simpler and more immediate 

(if redundant) mechanism in each processor for resetting the con- 

trol and lock systems.  We implement this mechanism in software 

with the assistance of a 60Hz interrupt and a one-second timer 

on the bus.  Together these provide a somewhat vulnerable but 

much quicker alternative to the more ponderous UCC/Consensus 

resets. 

There is a problem about what area of common memory the pro- 

cessors should use in which to form the Consensus, sine? failures 

may make any predetermined system address inaccessible.  To allow 

for this, sufficient communication is maintained in all pages of 

common memory to reach agreement both as to which processors are 

in the Consensus and where further communication is to take place. 

To protect itself from broken processors, the Consensus ampu- 

le        tates all processors which do not succeed in Joining it.  There 

is a conflict between this need to protect itself and the need to 

admit new or healed processors into the Consensus.  The amputation 

barrier is therefore lowered for a urief period each time the Con- 

sensus tries to restart a processor.  This restart is in fact the 

reset based on the timer held off by the code tester subsystem, 

as discussed above.  In the case of certain active failures, 

even this brief relaxation may cause trouble.  In these cases the 

Consensus will decide to keep the barrier up continuously. 

25 
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Certain active failures may prevent the formation of a con- 

sensus.  In such a situation each processor will benave as if it 

were a Consensus (of one) and will try to amputate all other pro- 

cessors.  At the pcint when the actively failing component is 

amputated, the remaining processors will be able to form a con- 

sensus.  From this point the system behaves as described above. 

Further up in the figure there is another joining of in- 

dependent units, namely IMPs joining to form the network.  The 

analogy here is incomplete because the ARPA Network was not built 

with these concepts in mind.  There is collective behavior, for 

example routing, and individual behavior which accepts collective 

decisions only after they pass reasonability tests.  However, the 

reliability features of the network are concentrated in the Net- 

work Control Center, which depends on the continual presence of 

human operators and technical staff for successful operation. 

2.5 Some Examples of Failures 

In ord^r to explain in more practical terms some of the re- 

liability mechanisms, we now discuss a number of specific failures 

and describe the methods which detect and repair the resulting 

damage.  In each case, we focus on the component that failed and 

the particular mechanism that takes care of that failure.  Deriva- 

tive failures ma^ well take place, and other mechanisms will handle 

these, since all mechanisms operate ail the time.  The severity of 

the direct consequences of these examples is rated on the following 

scali), from least severe to most severe: 

1. Momentary slowdown - no data loss 

2. Loss of data (a network message) 

3. Temporary loss of some IMP function (a network link) 
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4. Momei tary total IMP outage with local self-recovery 

5. Outage requiring reloading via the network 

6. Failure requiring human insight for debugging. 

Example 1.  Suppose first that a bus coupler experiences a tran- 

sient failure on a singje reference to common memory, which leaves 

one word of common memory with the wrong contents but corj 3ct par- 

ity.  Suppose further that the failure is subtle, in the sense 

that there is no obvious ill effect on processor control, like 

halting or looping, which will be caught by lower level mechanisms. 

We will focus first on examples which cause minimal disruption and 

where detection and gentle recovery are the primary concerns.  We 

consider four examples of transient memory failures: 

Example l.a Suppose that a word of text in one of the messages 

we are delivering becomes smashed.  There is a checksum on all 

messages and the network will notice at one of its checkpoints 

that the message has gone bad.  The source will be prompted to 

send a new copy.  (Severity 2) 

Example l.b  Near the heart of our system is a queue of unused 

buffers called the free list.  Suppose the failure Is in the struc- 

ture of this queue.  The sy.aem explicitly tests for both a looped 

queue and wrong things on the queue.  A more subtle form of error 

occurs when some buffers which should be on the queue are missing 

from it.  Our system is designed so that a buffer should be re- 

moved from the free list for at most two minutes at a time.  A 

timer is maintained on each buffer, which is reset whenever the 

buffer returns to the free list.  Should any timer ever run out, 

its buffer is forced back onto the free list.  The result of this 

failure will be a degradation of system performance as it attempts 
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to run with fewer buffers fcr a short while, followed by complete 

recovery within two minutes.  The IMP will stay up and no messages 

will be lost.  (Severity 1) 

Example l.c Suppose that one of the locks on a resource is broken 

so that it wrongly locks the resource.  Any subsystem which tries 

to use the resource will put a processor into a tight loop waiting 

for the resource to become free.  In about 1/15 sec. this will 

cause the processor's timer, driven off its 60Hz clock interrupt, 

to run out.  Upon investigation, the program will notice that the 

subsystem is waiting for a locked resource, and arbitrarily un- 

lock it.  Aside from the 1/15 sec. pause, the system will be un- 

affected by the transient.  (Severity 1) 

Example l.d Suppose now that a failure strikes common memory 

ho'ding code, and that the trouble is subtle — either the code 

is not run often or the change has no immediate drastic effect. 

In a few seconds the processors will begin to notice that the 

checksum on that piece of code is bad and stop running it.  Shortly 

the whole Consensus will agree, and v/ill switch over to use the 

memory holding the spare copy of that code.  Unless the broken 

code has already caused some other trouble, the problem is thereby 

fixed, with only momentary slowdown.  (Severity 1) 

Example 2.  Suppose a processor fails by suddenly and permanently 

stopping.  The immediate effect will be that some task will be left 

half done, with a high probability that some resource is locked. 

This looks to the system like a data failure, as in examples l.a, 

l.b, and l.c abcv3.  The recovery will be identical.  In a few 

seconds the Consensus will notice that the processor has dropped 

out and processor recovery logic will be invoked.  Since the 

processor is solidly broken the recovery will be unsuccessful. 
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and the system will settle into a mode whtre every so often re- 

covery Is retried.  Eventually a repairman will fix the processor, 

at which time recovery will proceed and the processor will rejoin 

Consensus.  It is hard to predict whether the IMP system will 

momentarily go down because of the failure; experience indicates 

that it usually stays up, but our experience is limited to lightly 

loaded machines.  (Severity 2-^) 

Example 3«  Suppose a power supply for a processor bus breaks. 

This is similar to the failing processor described above except 

that both processors on the bus are affectid and the processors 

are given a hardware warning sufficiently far in advance that they 

can halt cleanly.  The system will surely stay up through this 

failure.  (Severity 1) 

Example 4.  How consider a case in which some page of common 

memory ceases to answer when referenced.  Each processor will get 

a hardware trap when it tries to use that memory, forcing it di- 

rectly to the code which routinely verifies the environment.  As 

a result, the failing memory will be deleted from the memory list 

by the Consensus and another module will be pressed into service 

to take its place. 

If the failed page contained code, a spare copy will normally 

be availabla and a new spare copy will be made if possible.  If 

it contained data, an unused page will be pressed into service. 

In either case, the system will be reinitialized, momentarily 

bringing the IMP system down.  If the failed page contained the 

Consensus communication area, a new Consensus must be formed and 

thus recovery will take a little longer.  (Severity 4) 
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Example 3»  Let us now consider a failure of the PID.  Suppose 

that the PID reports a task not previously set.  When invoked, 

each strip checks to make sure that it is reasonable for the strip 

to be run.  If not, another task is sought.  Suppose instead 

that the PID "drops" a task.  A special process periodically sets 

all PID flags independent of what needs to be done.  This causes 

no harm, because superfluous tasks will be ignored (as described 

above), and serves to pick up such dropped tasks.  Thus we have 

both a consistency check on redundant information and a timer 

built into our use of the PID.  If a PID fails solidly, another 

PID will be switched in to operate the system.  Transient failures 

cause slowdown; switchover may momenta.ly bring down the IMP 

system.  (Severity 1, 4) 

All of this leads to a slightly different image of the PID. 

Instead of being the central task disburser, with all processors 

relying on it to tell them what to do, the PID is a guide, sug- 

gesting to processors that if they look in a certain place, they 

will probably find some useful work to do.  The system would in 

fact run without a FID, albeit much more slowly and inefficiently. 

Example 6.  Suppose a halt instruction somehow gets planted in 

common memory and that all processors execute it and stop.  There 

is thus no Consensus left to come to the rescue.  Furthermore, 

60Hz interrupts are ineffective in a halted processor.  After one 

second of inactivity, the bus arbiter timer will reset the pro- 

cessors, making them once more eligible for 60Hz interrupts which 

will restart them.  Before the broken code is run, it will be 

checksummed, the discrepancy found, and a spare copy used. 

(Severity 2-^4) 

30 

-         f—  L — '■'- ^^:^-—^-   - --^T-T^T- 1 B^MJ 



Report No. 2C88 Bolt Beranek and Newman Inc. 

Example 7«  Let us consider now what happens when, in common mem- 

ory, an end test for a storing loop is destroyed, causing each 

processor to wipe out its 60Hz interrupt code in local memory. 

In this case not only are there no processors left to help, but 

the 60Hz interrupt will not help either, since the interrupt code 

itself is broken.  This is a case in which the machine is incapate 

of rescuing itself and will go off the network as a working node. 

When the Network Control Center notices that the IMP is no longer 

up, it will commence an external reload, restoring the IMP to op- 

eration.  (Severity 5) 

Example 8.  Consider the case of a processor whose hardware is 

solidly broken such that it repeatedly stores a zero into a loca- 

tion in common memory.  Mechanisms described above will repeatedly 

fix the changed location, but it is desirable to eliminate the 

continuing presence .f this disrupting influence.  The Consensus 

will notice that one of its number has dropped out and will en- 

deavor to help the errant processor.  After a few tries, a longer- 

timer will run out, and the Consensus will take z  more drastic 

action:  final amputation.  In this case there will be a rather 

lengthy IMP outage but the system will recover without external 

help.  (Severity k) 

Example 9»  One failure from which there is no recovery, either 

automatic or remote, is a program which impersonates normal be- 

havior but is still somehow incorrect.  That is, it holds off the 

right timers, has a valid checksum, and simulates enough normal 

behavior so that higher levels (e.g., the UCC)   are satisfied.  For 

example, if it were not for the fact that the NCC explicitly checks 

the version number of the program running in each IMP, a previous, 

compatible, but obsolete version of the program would exhibit 

this behavior.  (Severity 6) 
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Example 10.  Another class of failures which is hard to isolate 

and deal with is low-frequen',y intermittents.  Consider the case 

of a single processor which is broken such that its indexed shift 

instruction performs incorrectly.  Since this instruction only 

occurs in some infrequently executed procedures, the failure only 

manifests itself, on the average, once every period t.  If t is 

large, for instance one year, then we can safely disregard the 

error, since its frequency is in the range of other failures over 

which we have no control.  If t is small, say 100 milliseconds, 

then the Consensus will isolate the bad processor and excise it. 

At some intermediate frequency, however, the Consensus will fail 

to correlate successive failures and will instead treat each as 

a separate transient.  The system will repeatedly fail and re- 

cover until some human intervenes.  (Severity 6) 

2.6 Results and Conclusions 

Some strategies and techniques for building a reliable multi- 

processor have been described above.  We have, in fact, actually 

^uilc and programmed such a machine using these strategies.  We 

have found this machine straightforward to debug, both in hardware 

and software.  Furthermore, the system continues to operate when 

individual power supplies are turned off, when memory locations 

are altered, when cables and cards are torn out, and through a 

variety of other failures.  We have yet to establish field per- 

formance (which must be measured both in rate of recoverable in- 

cidents and in rate of unrecoverable failures), but we are now 

beginning to collect this information. 

While we have discussed principles of Pluribus reliability 

in terms of a specific application (the IMP), most of the concepts 
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are application Independent.  We have been able to separate the 

application code from the reliability subsystems and, in fact, we 

are using the reliability subsystems intact in another application 

of the Pluribus machine. 
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