
o

o

Mar 6, 1985 Apple Krackers Guide

Chapter 1.

Introduction to kraking.

Anyone interested in the Apple seems to be intrigued by the "art
of kraking", for a variety of reasons • Probably the foremost is
this opens the way for worry free and ample software, that anyone
can use and trade. Besides these immediate uses, kraking a
program seems to impress all but the author of the program.

I will be discussing the methods used in kraking protected Apple
programs. After reading (and understanding!) all the files on
this disk, you should be able to deprotect most any commercially
protected Apple program. Of course, these files will not make you
an instant expert on Apple copy protection, and there are many
things to learn that I can not cover. But this will be an
excellent starting point to qrow from. The key to your success
will be keeping an open mind, understanding all concepts
mentioned, ingenuity, and above all, practice.

Kraking protected programs requires several things that you
should try your best to possess. The first is a good basic
understanding of the Apple Computer and its architecture. Read
your DOS manual and the Apple II reference manual for informative
discussions of your computer. Even better, pick up a copy of Don
Worth's "Beneath Apple DOS" and study it carefully. After you
have done these basic things, you can probably impress everyone
but steve "The Woz", and turn the salesmen at Computer Land to
shame.

I can not stress the importance of reading these well written
manuals, and doing the best to understand their implications.
After you have achieved the knowledge granted by these books, you
are well beyond 99% of the Apple users that claim they know
anything about anything.

Of particular importance is the "Apple II Reference Manual". The
most important part of this manual is chapter 3, "The System
Monitor" (page 40). STUDY THIS CHAPrER CAREFULLY. This chapter
will describe many of the monitor commands you will need to krak
protected programs. These commands include examining and changing
memory locations, moving memory and comparing ranges of memory,
and executing code. Also discussed is the Mini-Assembler and how
to enter your own machine language programs.

For the ultimate understanding of the Apple, and to make your job
as a "krakist" easiest, the last step is to learn the forbidden
lanquage,6502 ASSEMBLY language. Although this is not necessary
for a great nmnber of kraking chores, any program that is the
least bit tricky will require you to understand ASSEMBLER. The
reason is simple: most everything sold today is written in
ASSEMBLER. Look at Softalk's top ten list and I bet you 95% of

0... the programs are written in ASSEMBLY language • The obvious reason
for this is because ASSEMBLER is fast, and this is VERY important

-1-

12:49 PM

o

(.. "' .. \\
;J

o

Mar 6, 1985 Apple Krackers Guide

for graphic games. Also, because protecting a disk on the Apple
is done at the Operating System level, the protection really has
to be written in ASSEMBLER.

For learning ASSEMBLER, I would suggest either Roger Wagner's
"Assembly Lines", or Randy Hyde's "Using 6502 ASSEMBLY Language".
Both of these books are excellent and are easy to understand for
the beginning programmer.

Beyond this, the next best thing to do is to use your new found
knowledge. write some ASSEMBLY language programs to get familiar
with the language. Instead of writing that "hello" program in
BASIC, do it in ASSEMBLER. Get use to it, and keep good notes of
what you learn!

Now your ready for the big time •••• kraking programs. I assume
you have a good understanding of the monitor commands (list,
move, verify, execute) from reading the Apple II reference
manual. Of most importance is the "L" command to disassmble and
list code presently in memory. Get use to looking at these
disassemblies since you will never have "source" code from
protected programs to examine. Therefore be fluent in Apple
disassembly. The best way to achieve this is practice, and
nothing else will substitute.

Also, be aware of the existing documentation on kraking. Now just
about anyone can read "cookbooks" on how to deprotect a
particular program that they down loaded from Pirate's Harbor. So
you want to take a step further. Don't discard or casually glance
through these "cookbooks", but go through them and understand the
protection and see how the author choose to krak the particular
program. This will prove invaluable by opening your mind to
previously used techniques that you can learn from. Try and
understand every step the experienced krakist took to deprotect
the program, and make careful notes (both mental and on paper) to
guide you in your own efforts.

After you have a good understanding of the basic techniques, the
next step is to make some small hardware modifications used in
kraking tricky programs. These will make your job infinitely
easier. So read on and be prepared to learn.

-2-

12:49 PM

o

o

Har 6, 1985 Apple Rrackers Guide

Chapter 2.

Whe~e to Begin. A discussion on the first steps to kraking
protected programs ..

Before we really start digging into discussions on copy
protection, I think we should first define a few things and state
the objective of this series.

The obj ect to this series is to make the average user more
informed about copy protection and how to defeat them. Copy
protection is what a publisher/author does to prevent you, the
user, from making "unauthorized copies".

The problem with copy protection is obvious: what do you do if:

1) Your original disk fails?

2) You need to modify the protected program for your particular
application?

Copy protection makes copies with "FID" or "COPYA" impossible. So
many users save turned to programs such as "locksmith" to make
back-ups. This is not defeating the copy protection, but merely
makes a clone of,the entire disk and its protection. The disk is
still un-modifiable, and consistent copies are a problem and time
consuming. I consider this unacceptable.

I will pe discussing "krakin«i:" methods, as opposed to copying
methods using locksmith or Nibbles Away. Kraking is defined as
the techniques used to capture a protected program onto a normal
DOS 3.3 disk that can be copied in a convenient manner, such as
with COPYA.

The primary obj ecti ve of this series is to provide you with the
knowledge to krak programs for your own use. Of course, using
this information for illegal and otherwise perverted uses is
frowned upon by myself and this series is written only for your
amusement and education (com'on, this is serious, don't
laugh •••) ~ Now that the objectives are clear, lets begin •••

The subject of deprotecting programs is truly a humongous one.
There are probably thousands of ways to make a disk "uncopyable".
This provides us with a mental puzzle that can (and probably
will) consume much of your time and effort •. But of course, the
rewards are worth it not only in the obvious returns, but also in
the gain in knowledge of programming and your Apple in general.
If you enjoy puzzles and treasure hunts, you will enjoy kraking
programs.

Part of any puzzle is to find the first piece or starting point.
This is no exception in the puzzle of protection either, and is

O probably the hardest step for the novice krakist. There is no
.... , substitute for experience, but there are some general guidelines

-3-

12:49 PM

Mar 6, 1985 Apple Krackers Guide

4C:) to follow and some real dead giveaway clues to look for.

In addition to finding the starting point, you will have to have
some basic tools to krak most programs. Please refer to the
chapter entitled "Basic Kraking Tools" for a complete description
of what is absolutely minimal in attempting to krak protected
programs.

Protection generally falls into one of three categories. The
first is protecting a single program in memory and/or on disk
(called the "single load" protection). The second is protecting a
set of programs by using a modified DOS (called the "modified
DOS" protection). The third is using a loader or a modified RWTS
(read-write-track-sector) for protection (called "Modified RWTS
protection"). Since there are so many ways to protect programs in
the above three manners, I will be mentioning general techniques
that you may apply to just about any protected program.

Now that we have categorized copy protection into three main
categories, you must be able to recognize which category a
particular program fits into. The remainder of this chapter will
discuss this. After determining the type of protection used, you
may refer to the particular chapters on kraking that protection
type.

THE SINGLE lOAD PROTECTION.

C •• ' ',J~ This type of program is probably the easiest type of protection
, to deal with, but unfortunately is being seen less and less

everyday. Single load programs are loaded in from disk only once,

o

and then run from memory with no or very little disk access.
Several years ago just about all games on the Apple fell into
this category, and kraking these programs was not that difficult.

The identification of these programs is simple: When the program
boots and loads into memory and starts running, there is no
additional disk access. (Disk access is when a program turns the
disk drive on and read some data from disk. Usually this is for
loading additional game levels, etc.).

Programs that first load a title page, turn off the drive, and
then wait for you to press a key and load the program are also
single load if no other disk access is encountered. An example of
this is Penguin Software's arcade games. Even though the drive
turns off and then on after showing a title page, this is a
single load program (title pages just don't count!).

In addition, programs that save high scores to disk or do only
some other minimal disk access are also single load. Many times
they are not actually loading any data but are checking to see if
the original disk in still in the drive. An example of this is
most Penguin arcade games and many of the Electronic Arts games
(One on One, Axis Assassin, etc.). This small disk accesses can
almost always be defeated in some manner.

-4-

12:49 PM

o

o

0·.·:
..

Mar 6, 1985 Apple Rrackers Guide

Usually, the lcraking of single load programs is finalized into a
single (or small nUlDber of) files. Then from normal DOS this file
can be BRUN. I am sure most of you have seen this type of
·program.

MODIFIED Dos PROTECTION.

ProbablI the most popular protection scheme is the Modified DOS
Protect on. These programs load much like a disk that you create
(with the command INIT HELLO) do. The difference is that the
publisher/author have modified DOS slightly to read and write to
their copy protected disk.

Publishers like to use this protection scheme because it is easy
to incorporate, easy (and cheap) to make multiple copies for
retail sales, and does a good job at discouraging the nibble
copier owners.

Fortunately, kraking modified DOS disks is generally more
systematic and sure-fire than the other types of protection.
Also, there are many programs already developed to aide you in
kraking modified DOS programs.

There are some real dead giveaways to identifying whether a
protected program is using a modified DOS. The foremost is the
appearance of a BASIC prompt on the screen during the boot
(either the "]" or "<,, prompts). Some protectors have started to
bypass the routine that prints the prompt, but you can still
guess there is a modified DOS present from the sound of the boot.

The sound of the boot is very important. Initialize a normal DOS
3.3 disk and boot it a couple of times. Listen to your disk drive
as the disk boots. You will first here the drive chatter (this is
making sure that the drive is ready to read track zero of the
booted disk). Right after the chatter, the disk drive head will
swing out to track two and read to track one (most drives click
each time the head swings to another track. Listen for the
click.). This is the process of loading DOS into memory. This
process takes about 3 seconds at the most. Next you will here the
drive head swing out to the catalog track to locate the "hello"
program and load and run it.

Now upon booting a protected disk you here the above sounds,
there is a 99 percent change the program uses a modified DOS. If
a BASIC prompt appears, it is a 100 percent chance a modified DOS
is present. I have devoted a chapter and some examples to this
type of protection.

MODIFIED RWTS PROTECTION.

The use of a modified RWTS is really just an off-shoot of the
Modified DOS protection scheme. RWTS is a portion of DOS that
does the actual reading and writing of particular sectors of a

-5-

12:49 PM

o

0··.· .. ··, . .

Mar 6, 1985 Apple Krackers Guide

disk. Modified RWTS (or "loaders" if they only read and do not
write to disk) are popular for multilevel games that must read
from disk. Since RWTS only occupies a portion of OOS, the actual
program that is being protected can be larger that if an entire
OOS is being used.

(NOTE: many single load programs use a modified RWTS to do the
initial loading of the program. But if there is no more disk
access after the initial load, the program falls into the "Single
Load Protection" category, not "Modified RWTS Protection.).

The method to deprotecting these disk is quite similar to
deprotecting modified ooS disks. This is because RWTS is merely a
portion of OOS.

To identify a disk as using a modified RWTS is fairly simple. If
the boot does not sound like a modified DOS boot (as described in
the Modified ooS protection above) and a BASIC prompt does not
appear, and there is additional disk access during the program,
the protection is using a modified RWTS. Basically, if the
program does not fit into the other two categories, it is
probably a modified RWTS protection. (The only other real
alternative is that the disk uses a modified PASCAL operating
system, like the PFS and Wizardry series do).

Examples of programs using this kind of protection are games like
Zaxxon, Miner 2049'er, Donkey Kong and Jungle Hunt. I have
devoted a chapter to this type of protection along with some
practical examples.

Now that you can identified what type of protection is being
used, refer to the chapter that discusses it. This will outline
the methods used to krak that particular type of program.

-6-

12:49 PM

o
Mar 6, 1985 Apple Krackers Guide

Chapter 3.

Minimal Hardware Necessary for Kraking Protected Programs. Disk
Jockey.

IMPORTANT NOTE:

The first thing I should mention is that for doing any serious
kraking you will need an Apple II or 11+. Apple'lle's are fine
computers, but for the hardcore krakist, they will simply not do.
The reason being is that the I Ie, Apple uses many "proprietary"
chips that are not easily available, thus making any hardware
modifications difficult. I'm not saying it can not be done, just
its more difficult. For example, changing the Apple's monitor ROM
is a considerably most difficult job on the lie than on the 11+.
Also, since slot zero is unusable by anything other than the
built-in RAM card, we can not put a ROM card in its place. The
11+ is just easier to modify on the hardware level, so I will be
expecting you to have one.

In order to krak most protected program you will have to have
some way to break out of the program. The standard way of doing
this has been to hit the reset key. But depending on the program
on hand, this may not enable you to break out of the program
without disturbing a minimal amount of memory.

I am sure you have noticed that after hitting reset (assuming a
normal Apple 11+) that many things can happen. Usually, the
program clears memory and reboots. This is evident by the screen
filling up with same single character (the most popular is the
inverse tt@" character, representing a hex $00) and the disk drive
starts up just like you hit "PR#6".

This is rather inconvenient since our objective in kraking is to
break out of a program, save memory to a normal DOS disk, and
then reload and restart the program. This is very difficult if
the program clears memory in the process of· breaking out of it.
This is where we need some help from the god of hardware.

What we need is the infamous "old style F8 monitior ROM". This F8
,monitor ROM is one of those big fat chips that lives inside your
Apple, just in front and to the left of the peripheral slots. It
should be labeled "ROM-F8". The old style F8 monitor was the
monitor ROM that came with the Apple II. It enables you to enter
the monitor whenever reset is pushed. (NOTE: If you have a RAM
card in slot zero, a program can fool the Apple into looking at
the memory in it instead of the F8 monitor ROM, and do funny
things accordingly when reset is pushed. For a full discussion of
this protection technique, read the chapter on "Kraking
Flip-out".)

Now days, the Apple 11+ (and lie) have the new style F8 monitor
ROM, called the "Autostart" monitor ROM. This ROM allows the
reset key to be programable, or do what ever you want when reset

-7-

12:49 PM

o

o

o

Mar 6,· 19S5 Apple Krackers Guide

is pushed. For example, with the autostart ROM you can program it
to jump to a routine that clears memory and reboots when the
reset key is pushed. All that is involved is to change three
locations in memory to point to your reset routine, and there is
no way for you to stop it from executing when the reset key is
pushed, unless you have an old style monitor ROM (or you do some
tricks with your RAM card. See the chapter entitled "Kraking with
a RAM card") •

So to conclude this chapter, I am saying you will need, at
minimmn:

1) An Apple II or 11+.

2) An old style FS monitor ROM (available at most good Apple
repair stores).

But before you run out with your wallet in hand, I suggest you
finish reading all chapters in this series for alternative and
cheaper ideas. But I am for warning you that you will need this
hardware, at the minimum.

-S-

12:49 PM

o
Mar 6, 1985 Apple Krackers Guide

Chapter 4.

Deprotecting Single Load programs.

At this point I must assume that you have read the introductory
chapters and that you have obtained the minimal hardware
necessary for kraking, as described in chapter three (since the
hardware reset is an absolute necessity to begin kraking). Now
the path divides and I will have to assume that you have
determined that the program at hand fits into the "single load
protection" category, as described in chapter two. But for
review, remember that single load protection encompasses those
programs that are loaded in only once, and then run strictly from
memory with no disk access. Same minimal disk access is allowed,
for example, to save high scores or to check for the original
disk, but ultimately, these will be defeated or altered to allow
us to save our program into a normal DOS binary file.

Unfortunately (or fortunately,depending how you look at it) you
will have to have some knowledge of ASSEMBLY language and same
good working knowledge of the Apple's monitor commands. In
addition, the ability to decipher the monitor's "disassembly"
will prove invaluable. These tools will help a great deal since
by the nature of the crimes we are committing, the rules are
written in deceiving and unconunented 6502 machine language. There
is no substitute for experience, but the only way to gain
experience is to practice, so let's begin.

4C:) First let's outline the steps we want to follow in deprotecting a
single load program:

o

1) Find the starting address. This is the address that will
always restart the program.

2) Figure out what parts of memory should be saved (we can not
save »all« of memory, so we must figure out what is really
needed and what is not).

3) Save the program as a normal DOS binary file that includes all
of the needed memory.

STEP 1: FINDING THE STARTING ADDRESS

To further explain what a starting address is, remember when you
are using "FlO" from your DOS 3.3 System Master and you
mistakenly reset from the program? Well many people get their
system master disk back out and BRUN FlO again to run the
program. This is really unnecessary since all one must do is to
enter the monitor and type the starting address with a "G" at the
end (the "G" is the monitor's go or execute command) :

]CALL -151
*803G

-9-

12:49 PM

o

o

Mar 6, 1985 Apple Krackers Guide

The starting address of *803 will always restart FlO, and this is
wha.t we want to find in our protected program.

(NOW some of you may be asking how I knew *803 was FlO's starting
address. A normal OOS file's starting address is kept at *AA72
and *AA73, in backassward order of course. After BRUNing or
BU>ADing FlO, type:

*AA60.AA73

The first two bytes listed are the lenqth of the file, and the
last two bytes are the starting address. Remember they are listed
backwards, so *0803 will be listed as 03 08.)

In the old days starting address were even numbers like $800,
$900, or $6000. It is definitely still worth checking these
address as many people find it more convenient to program with
these starting addresses.

So usually the first key you will want to press after the proqram
is loaded is the reset key to reset into the monitor (giving us
the "*" prompt). Now we can test our starting address by typing
the address we think it is followed by a "G" to start execution
at that address. Usually, you will be disappointed by your first
attempts at guessing the starting address. Therefore, we need a
more structured method for finding the programs's starting
address.

Since many programs first display a hi-res title page before
starting the program, a good place to start looking is the series
of instructions that turn on the graphic pages. The graphic pages
are turned on and off by a series of "soft switches" in the $COSO
range. It doesn't matter what you do to these locations as long
as you access them in some way:

coso: DISPLAY GRAPHIC MODE
COS1: DISPLAY TEXT MODE
COS2: DISPLAY ALL TEXT OR GRAPHICS
COS3: MIX TEXT WITH GRAPHICS
COS4: DISPLAY PRIMARY PAGE (PAGE 1)
COSS: DISPLAY SECONDARY PAGE (PAGE 2)
COS6: DISPLAY U>-RES GRAPHICS MODE
COS7: DISPLAY HI-RES GRAPHICS MODE

This means that the following commands will have the same effect
of turning on the graphics mode:

LOA $COSO STA $COSO EOR $COSO
BIT $COSO CMP $COSO ROL $COSO

and if you understand the indexing from ASSEMBLY language: o LOY #$71

-10-

12:49 PM

o

o

Mar 6, 1985 Apple Rrackers Guide

AND $BFAF,Y

However, most reasonable people have established the chore by
writinq:

LOA $C050
LOA $C057
LOA $C054
LOA $C052

to turn on the graphics page.

Now to find these instruction you can page through memory with
the monitor's "L" conunand or you can use the Inspector's Find
command and search for "50 CO" (refer to the appendix concerning
the ROM card for a further explanation of the Inspector).

After you find the code, trace backwards looking at the code just
before it. Try and find an absolute end for the previous code
before such as an RTS or a JMP. Your starting address should be
immediately after the absolute end of the previous code.

In addition, the code that turns on the hi-res page may just be a
small subroutine, so you may have to search for a JSR to that
location and trace backwards to find the starting location.

When you think you have found the starting address, test it with
the "G" command (i.e. *9000G).

If you fail, reload the program and reset and start over. It is a
good idea to always reload the program since the code you
executed might have disturbed some other memory locations. It is
always best to start fresh.

Also keep in mind that that the hi-res routine may have been
accessed by a "branch" instruction. These are conditional jumps
that can reach $7F locations away in either direction. So search
about 60 instruction before and after your the possible start. If
you fine a BEQ or a SHE to your starting address, trace that
routine back to its beginning and try it.

In addition, try looking for a JMP to your starting location with
the Inspector. This may produce another routine to trace back and
find the starting address.

Keep in mind if you have to trace back more than two steps, you
are probably in the wrong area of memory and on the wrong trail.

In addition, many programs wait for a key press before starting
the program. You may also search for the code that accesses the
keyboard. Usually the code looks like this:

LOA $C010 o LOA $COOO
THIS CLEARS THE KEYBOARD
THIS GETS A KEYSTROKE

-11-

12:49 PM

o
Mar 6, 1985

BPL $XXXX
JMP $START

Apple Krackers Guide

IF NO KEY, GOTO $XXXX
KEYSTROKE FOUND JMP START

This is very common code and often produces a starting address.
Another very good way of finding a starting address is to find
the key that re-starts the program. Many times games use CTRL R
to end the current game and to start a new one. This almost
always produces a good starting address. Usually the code looks
like this:

LDA $COOO
BPL $XXXX
CMP #$93
BNE NEXTl
JMP SOUND
CMP #$92
BNE NEXT2
JMP START
CMP #$9B
BNE NEXT3
JMP HALT
CMP •••••

CHECK FOR KEYSTROKE
NO KEY, JMP TO NEXT STAGE
COMPARE TO CTRL S (SOUND)
NOT EQUAL, TRY ANOTHER
IF EQUAL, GOTO SOUND
COMPARE TO RE-START
COMPARE TO CTRL R
IF EQUAL, GOTO START
COMPARE TO ESCAPE
NOT EQUAL, TRY ANOTHER
IF EQUAL, HALT PROGRAM

Notice after the CMP #$92 (compare to CTRL R) the jump to a
location. This is most likely your starting address. This address
could have also be jumped to by means of a BEQ too, so keep that
in mind.

So to test your new found starting address, turn on the hi-res
page manually (the game might not do it for you), and type the
starting address followed by a "G":

*C050 (you will be blind, so type
carefully)

*C057 (turn on hi-res graphics)
*C055 (if using page 2 graphics)
*START ADDRESS G

If these two described processes do not provide you with a
starting address, there are a couple of other things to look for.
The first is a "jump table", which more experienced programmer
generally use. This looks like this:

JMP $4050
JMP $4000
JMP $900
JMP $93lA

•

Try any of these as starting locations, but you are kinda poking
in the dark with this one. In addition, the above JMP's could o also be JSR's too. Just try executing the beginning of the jump

-12-

12:49 PM

Mar 6,1985 Apple Krackers Guide

o table in that case.

Lastly, a lot of programs start by setting up a bunch of zero
page locations with parameters and so forth. This generally looks
like this:

LDA #$00
STA $03
STA $05
STA $07
LDA #$01
STA $7F
LDA #$80
STA $FE
STA $FF

Try starting the program with a starting address as the beginning
of the zero page set-up routine.

As you can see, finding the starting address can be a time
consuming endeavor, and may not even produce any results. But do
not be discouraged, and practice will make it easier. If you can
not find the starting address, it may be because the program uses
some "volatile" memory location that get distroyed when you hit
reset. When you try and re-start the program, it sees these
location do not contain what they should, and refuses to run.
These locations include the text page ($400 to $7FF) and pages
$01 and $02, and some zero page locations. This requires a
different approach and will also call for some additional
hardware. Refer to the chapter on NMI's when you have tried
everything and can still not find the starting location.

STEP 2: WHAT PORTION OF MEMORY TO SAVE

Now that you have found the starting address of the protected
program, we must determine what portions of memory we should save
in our final product. We cannot save all of the 48K memory since
we must use ooS to load the program back in. Basically, we have
$8E pages of memory to play with and save as a maximum, out of
tlle available $eO pages that exist. NOTE: There are ways of
saving more that $8E pages of memory in a standard bfile, and I
address these methods in the chapters entitled "Using Second
Stage ooS" and "Memory Packing".

With our memory limitations in mind and the starting address at
hand, we can find what portions of memory we need to run our
program. The best way to start out is to turn your Apple on, and
get into the monitor and clear memory to zeros. This way, after O the program is loaded, we can examine memory and see what is

; loaded in by the program. The best way to do this is to type:

-13-

12:49 PM

o

o

Mar 6, 1985

]CALL -151
*800:0
*801<800.BFFFM

Apple Krackers Guide

This takes whatever we put in location $800 and copies it to $801
to $BFFF. NOTE: if after doing this your Apple hangs, just hit
reset to recover.

Now boot your protected program by typing:

*C600G
or

*6<CTRL P>

(assumes disk controller card in slot 6).

After the program is loaded, reset into the monitor and get the
inspector up and search through memory for blank pages. Write
down on paper any blank memory areas you find (don't try and
remember them, just write them down).

Alternatively, you can flip through memory using the monitor "L"
connnand, but this will take an incredible amount of time.

Also be aware of "garbage memory" and shape tables". Garbage
memory is unused junk that does not disassemble. Shape tables
look like garbage memory but actually contain graphic shapes and
the such. write down these suspect garbage memory areas on paper.

Also check how the program starts • Does is turn on the hi-res
page and use what is already there, or does it re-drawn the
hi-res page. If it re-draws, you do not have to save that hi-res
page (either $2000-3FFF or $4000-5FFF). write that down too.

The best way to check to see if a memory area is used is to load
the program and reset, zero the suspect memory area, and restart
the program. Run the program for a while and if it works OK, then
that memory area is not needed. IMPORTANT: BE SURE TO CHECK ALL
FACETS AND LEVELS BEFORE DISCARDING A MEMORY RANGE.

The best way to zero a memory portion is to use the monitor's
move connnand. For example, say you want to test to see if hi-res
page 1 is re-drawn ($2000-3FFF). Type:

*2000:0
*2001<2000.3FFDM

This will zero out $2000 to $3FFF. Now restart the program and
check it out.

Make sure you keep careful notes of what is needed and what is

0... not. WRITE DOWN EVERYTHING ON PAPER. AFTER YOU HAVE FOUND ALL
., \ NEEDED MEMORY AREAS, ZERO ALL UN-NEEDED AREAS AND RUN THE PROGRAM

-14-

12:49 PM

o

o

Mar 6, 1985 Apple Krackers Guide

FOR A WHILE TO VERIFY.

STEP 3: SAVING THE PROGRAM AS A BFILE

Now that you have found the starting address and what portions of
memory the protected program encompass, you have to get the
memory portions to a standard OOS 3.3 disk. The best way to do
this is to use a 48K slave disk (I will ignore anything you say
about a tape recorder!).

A 48K slave disk does not disturb memory from $900 to $95FF when
it is booted. The best way to make a 48K slave disk is to boot
any normal OOS 3.3 disk (fast OOS preferred), and type:

]FP
] INIT HELID

The disk created will be a 48K slave disk.

A slave disk will give us a total of $8D pages of memory
undisturbed when booted (a page of memory is $100 hex locations
or 256 decmal locations). If a program is bigger than $8D pages
of memory, you will have to save the memory portions in steps, or
use same additional hardware as described in the chapter about
NMI's.

The best way to explain this is to use an example. Say you have
found the starting address of a program and have found it lives
from $800 to $2000 and $6000 to $BFFF. This means that you must
relocate $800 to $8FF and $9600 to $BFFF, to clear the way for a
slave disk boot. Since $2000 to $5FFF is unused, we can use that
memory portion to temporarily store $800-8FF and $9600-BFFF.

We can let the Apple do some of the work to determine if we have
enough room. type:

*CO-96

and the Apple will return a $2A. Now subtract $60-20 by typing:

*60-20

and $40 will be returned. We obviously have enough room since we
only need $2B pages ($2A+01). Now use the monitor move commands
to move memory around:

*2000<9600.BFFFM
*4AOO<800.8FFM

Now boot your 48K slave disk and save the memory portions to
disk:

]BSAVE A09-20,A$900,L$1700

-15-

12:49 PM

o

o

o

Mar 6, 19S5 Apple Rrackers Guide

]BSAVE A96-CO,A$2000,L$2AOO
]BSAVE AOS,A$4AOO,L$100
]BSAVE A60-96,A$6000,L$3600

once again, use the monitor's addition and subtraction
capabilities to figure out the lengths of the files if you are
not good at hex math.

Congratulations, you now have all of your protected program saved
on a normal DOS 3.3 disk. But you are not finished, since you can
not simply run any of these files. Now you must put them all into
one file and move the pieces of memory back to where they belong.

You can not simply re-load all the parts of memory since some
will overwrite DOS, so we must load the memory portions in
between $SOO and $95FF and move the $9600 to $BFFF region back up
to where is belongs, then jump to the beginning of the program.

This is accomplished through the use of memory moves. A short
program will move portions of memory from one part of memory to
another. We can use the program MEMORY MOVE WRITER to do this
work for us (there is additional doc on this program in one of
the appendices).

Remember that the unused portion of memory from $2000 to $5FFF is
partially taken up from $2000 to $4AOO (we can move $4AOO-$4AFF
back to $SOO-SFF). So we can put our memory move program at
$4AOO.

To do this, BRUN the file called MEMORY MOVE WRITER and choose a
running location of $4AOO. We want 1 move which will move $2000
to $4AOO to $9600. Now we select the viewing pages we want
(hi-res, or text) and then enter the starting location of the
program. A file will be saved to disk containing our memory move
program.

Now to put it all together. Bload the files into the appropriate
place by typing:

]BIDAD AOS,A$SOO .
]BIDAD A09-20,A$900
]BIDAD A96-CO,A$2000
]BIDAD MEMORY MOVE$4AOO,A$4AOO
]BIDAD A60-96,A$6000

Now enter the monitor and make a couple changes so the file will
run when BRUN:

]CALL -151
*7FD:4C 00 4A

*A964:FF

(this jmnps to $4AOO
when the file is BRUN)

(enables us to save
big files)

-16-

12:49 PM

o

o

o

Ha.r 6, 1985 Apple Rrackers Guide

Note that we enter a JMP to the memory move .routine at $4AOO
three bytes before $800. This is because the jump instruction
takes three bytes (4C 00 4A).

Now you can save the file to your disk by typing:

*BSAVE FlLE,A$7FD,L$8E03

You can determine the length parameter
by typing:

*96-08

and $8E will be returned. Since we want those three extra bytes
for the initial jump to the memory move routine, we need to add
three to that. Hence we arrive at a length of $8E03.

Brunning this file should restart the program and all should be
fine. Note that we have saved some unnecessary memory in the
file, memory from $4BOO to $5FFF. We could pack the file move and
use more memory moves to make the file smaller, but I will leave
that to you.

FINAL NOTES:

If your program has some additional minimal disk access for
saving high score and the such, refer to the appendix entitled
"Removing Disk Access" for help with that.

Also, if your program requires saving "volatile" memory locations
(text page, etc.), refer to the chapter entitled NMI's for help
with that subj ect.

-17-

12:49 PM

o

o

Mar 6, 1985 Apple Krackers Guide

Chapter 5.

Modified DOS Protection.

By far the most popular protection scheme ever used is the
modified DOS protection. This scheme bases its protection upon
normal DOS 3.3, but makes some vital changes to the DOS to read a
perverted disk structure. Before being able to krak disks using
this protection, it is best to understand a normal DOS disks'
structure. Then we can evaluate how the normal structure is
modified.

Each normal DOS disk has 35 tracks (labeled 0 thru 34) and 16
sectors (labeled 0 thru 15), where each sector represents one
page (256 bytes) of data. Each sector consists of two separate
parts: an address field and a data field. First let's discuss the
address field.

If you read a disk with a "nibble read" routine (found in The
Inspector, Nibbles Away and IDcksmi th), you will see a disk's
data in the raw form. Scanning through the data you should see
something like this:

•••• FF FF FF FF 05 AA 96 FF FE AA AA
1 (1) 1 (2) 1 (3) 1 (4) 1

AA AA FF FE OE AA EB FF FF FF FF •••
1 (5) 1 (6) 1 (7) 1 (8)

05 AA AD -342 bytes- XX OE AA EB
! (9) 1 (10) 1 (11) 1 (12)

The first few FF's (1) are known as syncbytes, and are used as
separators, or borders. The next three bytes (2) are called the
prologue address bytes, and are very important. This sequence of
three bytes will not be found anywhere else on a disk except the
address field. These bytes serve as unique identifiers to DOS so
it can find what track and sector it is reading (hence "soft
sectoring"). The data following the address markers are
therefore, address identifiers. This includes the disk's volume
number (3), track number (4), sector number (5), and checksum
(6). The format is a little strange, and is called 4+4
nibblizing. This format stores data in which the even bits of a
byte are stored in one 8-bit sequence and the odd bits are stored
in a second 8-bit sequence. In other words, it takes two bytes to
store one byte. This was done because of limitations imposed by
disk drive hardware. .

The address identifiers are all pretty obvious, except for the
checksum. The checksum tells DOS that everything checks out OK
when reading the disk.

0 ... · .. The next set of bytes are the address field epilogue bytes (7) •
. These are used to mark the end of the address field. A total of

-18-

12:49 PM

o

o

Har 6, 1985 Apple KrackersGuide

three bytes are used (DE AA EB), but only the first two are
checked when the field is read. The epilogue bytes are really not
needed, but provide added assurance that the drive is still in
sync with the bytes on the disk.

The next set of bytes (8) are more syncbytes which separate the
address field from the data field.

The second part of a sector is the data field. The first three
bytes are the data prologue bytes (9) and they tell DOS that the
data follows. In raw form, 256 bytes of memory data is
represented in 342 bytes of disk data (10). Each disk byte
represents 6 bits of a memory byte (remember there are 8 bits to
a byte). Therefore it takes 342 disk bytes to represent 256
memory bytes. Once again, this is used because of disk drive
hardware limitations.

At the end of the data is a single checksum byte (11). The
checksum is a number which when exclusive ORed with the rest of
the data in a sector equals zero. If this number does not equal
zero, DOS thinks thinks something is wrong and gives you an "I/O
ERROR".

Also, there are data field epilogue bytes (12) which also make
sure the drive is in sync with with the disk.

Now this brings us to our first and most popular protection
trick. This involves changing the epilogue bytes of either the
data and/or address fields from the standard. This is really not
a very good protection scheme. If the prologue bytes are not
changed, normal DOS can still find the address and data fields
(and knows how long each should be), and can still read the data.
An I/O ERROR will occur though because the epilogue bytes can not
be found to correctly mark tile end of the data.

To read a disk in which the epilogue bytes have been played with
is very easy. Just enter the monitor and change byte $B942 from
$38 to $18. What this does is to "clear the carry" instead of
"setting the carry" when a disk error is encountered (DOS used
the carry bit as a flag for errors). Just type:

]CALL-151
*B942:l8
*9DBFG

THIS IS PROBABLY THE MOST IMPORTANT MODIFICATION YOU CAN LEARN TO
MAKE WHEN TRYING TO DEPROTECT A MODIFIED DOS PROGRAM!

A program that uses this protection exclusively is "Money Street"
from Bullseye Software. But more traditionally, this mild
protection is combined with other modifications.

0.. Also very common is to change the address or data field prologue
. bytes. This will immediately choke up any normal DOS copy program

-19-

12:49 PM

o

o

Mar 6, 1985 Apple Rrackers Guide

and even confuses Nibbles Away and IDcksmith on occasion. This is
because normal DOS can not find where the address identifiers
are, so it can not figure out what sector it is reading. Also, if
the data field prologue bytes are changed, it can not find where
the data starts.

The way to find out if these bytes have been changed is to do a
nibble read (using the Inspector, Nibbles Away or Locksmith) of
the protected disk and to examine the data. Look for the
landmarks as described above. It is usually best to read a series
of non-DOS tracks like track 3, 17 and 20 when doing a nibble
read of a disk to make sure you get the same results (but of
course, some protectors have even used different address and data
markers for each track!).

Alternatively, you can load the program, reset into the monitor
and examine the DOS locations that hold the address and data
field bytes. Compare them to what they should be and note any
differences.

once you have determined what address or data field bytes have
been changed, it is a breeze to copy the disk with COPYA. All you
have to do is to add three lines to COPYA. First here is a table
of locations that are to be changed and their original values in
regards to the address and data field bytes:

ADDRESS PROIDGUE BYTES:

47445 ($B9SS):213 ($DS)
47455 ($B9SF):170 ($AA)
47466 ($B96A):lS0 ($EB

ADDRESS EPIIDGUE BYTES:

47505 ($B991):222 ($DE)
47515 ($B99B):170 ($AA)

DATA PROI.DGUE BYTES:

47335 ($B8E7):213 ($DS)
47345 ($B8F1):170 ($AA)
47356 ($B8FC):173 ($AD)

DATA EPII.DGUE BYTES:

47413 ($B93S):222 ($DE)
47423 ($B93F):170 ($AA)

The change we want to make to COPYA is to swap the address or
data field bytes that are different on the read and the writes.
So we just poke the modified bytes before the read, and poke the
normal bytes before the write. This is best illustrated with an 0... example. Suppose a disk has modified address e~ilogue bytes of DS
AA AD (instead of the normal DS AA 96) and modl.fied data prologue

-20-

12:49 PM

o

o

o

Mar 6, 1985 Apple Rrackers Guide

bytes of D5 AA DA (instead of the normal D5 AA AD). So we would
need to add these three lines to COPYA by typing:

]RUN COPYA
(after program is loaded and waiting
for you to select drives and slots):
CTRL C
]198 POKE 47446,173: POKE 47356,218
]248 POKE 47466,150: POKE 47356,173
]258 POKE 47466,150: POKE 47356,173
]70
] RUN

The first added line changes the address and data prologue bytes
to the modified format just before reading the original disk. The
last two lines added change them back to normal OOS 3.3 just
before initializing and writing to the destination disk
(respectively). Of course I converted the hex values of the bytes
to decimal and only poked the different ones.

Instead of doing the poking by hand, I have written a program
called "ADVANCED COPYA" that allows you to input any changes to
the address or data markers (in hex or decimal), along with other
parameters you may find handy.

Now that you have converted a disk to a normal OOS 3.3 format,
that does not guarantee that it will work! You may have to find
other routines that expect certain address and data markers to be
different than normal and modify or defeat them. If it is a BASIC
program, look for peeks and poke above 47000 and track them down.

Probably the most common "fix" is to change track 0, sector 3,
byte $42 from $38 to $18. This is actually changing location
$B942 in the OOS tracks, and is doing so right to the disk so it
is permanent.

It should be noted that some programs change the address and/or
data marker bytes as the program runs. Examples of this is
adventure games and business programs that run from a protected
disk but save the game or other data to a normal OOS 3.3 disk. In
this case you must find these "byte swap" routines and defeat
them.

An easier and more general method of converting protected OOS
disks to a normal format is COPYB. COPYB simply uses the RWTS
(read - write - track - sector) portion of the protected OOS to
read the original disk, and uses normal OOS RWTS to write to a
normal OOS disk. This is a much easier and more general method of
deprotection than using "ADVANCED COPYA", but is also not as
flexible. It is best to become familiar with both programs and
how to use them.

I have devoted a appendix and several examples to the subject of
using COPYB in deprotecting programs. Please refer to those for

-21-

12:49 PM

o

o

o

Mar 6, 1985 Apple RrackersGuide

more information on OOPYB.

To summarize this chapter, we had discussed the most popular
methods of protecting a disk using a modified DOS. This usually
means modification of the address and/or data field epilogue
and/or prologue bytes. At this point, I would suggest going
through the example kraks of programs. They will provide some
real-life situations that are very typical.

-22-

12:49 PM

o

o

o

Mar 6,1985 Apple Rrackers Guide

Chapter 6.

MOdified RWTS Protection.

The modified RWTS protection is an offshoot of the modified DOS
protection, but instead of using an entire DOS, just the RWTS
portion of DOS is used.

RWTS is roughly the upper third of DOS $B700-BFFF) and does the
actual loading and writing of separate sectors.. Many programs use
only RWTS, or a portion of RWTS because of memory limitation,
better protection, or pure finesse. It is also very easy to
control disk drive access from ASSEMBLER, so it is a natural to
use RWTS calls from ASSEMBLY language programs and to ignore the
rest of DOS altogether.

Sometimes mere portions of RWTS are used in the form of a loader.
A short program" (around $300 bytes) can be written to just read
from a disk, thus saving memory and also making the disk access
harder to find. This is typical is many of the older Sirius
games, along with some others.

Because a loader or RWTS tends to be a short program, much of the
normal DOS error checking is defeated and forms of protection are
included. For example, perhaJ?s a nibble count is added to the
loader to check if the disk l.S an original. Also very common is
the address and/or data prologue or epilogue bytes are changed
from the norm.

To deprotect a program which is using a loader or RWTS can be
difficult or very easy, much like any of the other kinds of
protection. Generally, you have to do three things: By-pass the
nibble count or checksum routine, modify the loader to read
normal DOS address/data headers, and copy the modified disk to a
normal DOS format and make the changes to that disk.

So the first thing you will have to do is to get the data from
the protected disk to a normal DOS 3.3 format. The first thing I
ALWAYS try is to defeat the DOS error checking routine at $B942
and try and copy the disk with COPYA. This routine sets the carry
flag when ever DOS thinks it can not read a sector. DOS monitors
the carry bit, and if set , bomb out with some dumb error message.
Usually an error can be prevented if modified epilogue bytes are
used. To defeat the DOS error checking, type:

]CALL-151
*B942:18
*RUN COPYA

Many times you will only have to read a portion of the protected
disk, because it does not use all tracks. Use ADVANCED COPYA or
COPYB to transfer the data to a normal DOS disk in this case, or
where the above mod to DOS did not allow you to copy the disk
(ADVANCED COPYA and COPYB are discussed in the previous chapter,

-23-

12:49 PM

Ha,r 6, 1985 Apple Krackers Guide

o. and in appendix A). Also, it would help if you)mew what the
address/data markers are, if different than normal DOS.

0

Beyond this, the protection is more involved and you will have to
dig for the answer ••••

After making a normal DOS copy of the protected proqram, it
probably won't run, so you will have to change the modified RWTS
so it can read a normal DOS format. To do this, reset from the
protected proqram and check these locations for anything funny
(remember that RWTS normally lives from $B700 to $BFFF):

NORMAL
ADDRESS VALUE USE
------- ---- -------------------------
$B853 D5 DATA PROIOOUE BYTE1-WRITE
$B858 AA DATA PROIOOUE BYTE2-WRITE
$B85D AD DATA PROIOOUE BYTE3-WRITE

$B89E DE DATA EPlIOOUE BYTE 1-READ
$B8A3 AA DATA EPlIOOUE BYTE 2-READ
$B8A8 EB DATA EPIIDGYE BYTE 1-WRITE
$B8AC FF DATA EPlIOOUE BYTE 2-WRITE

$B8E7 D5 DATA PROIOOUE BYTE l-READ
$B8F1 AA DATA PROIOOUE BYTE 2-READ
$B8FC AD DATA PROIOOUE BYTE 3-READ

$B92A D9 00 lOCATION CHECKSUM COMPARE

$B935 DE DATA EPlIOOUE BYTE 1-READ
$B93F AA DATA EPlIOOUE BYTE 2-READ

$B942 38 SET CARRY FOR I/O ERROR

$B955 D5 ADDR PROIOOUE BYTE l-READ
$B95F AA ADDR PROLOGUE BYTE 2-READ
$B96A 96 ADDR PROLOGUE BYTE 3-READ

$B991 DE ADDR EPILOGUE BYTE 1
$B99B AA ADDR EPIIDGYE BYTE 2

$BC7A D5 ADDR PROIOOUE BYTE1-WRITE
$BC7F AA ADDR PROLOGUE BYTE2-WRITE
$BC84 96 ADDR PROIOOUE BYTE3-WRITE

$BCAE DE ADDR EPILOGUE BYTE1-WRITE
$BCB3 AA ADDR EPlIOOUE BYTE2-WRlTE
$BCB8 EB ADDR EPILOGUE BYTE3-WRITE

If any are different, locate the different byte sequence on the
COPYA version of the disk using a good disk scanning proqram (the

0.... Inspector, CIA, etc.) and change the locations back to normal
with a sector editor.

-24-

12:49 PM

o

0

o

Mar 6, 1985 Apple Rrackers Guide

Many times, this is all that is necessary, but not always. Maybe
there was a nibble count that will prevent the COPYA copy from
runninq. Finding this could be the trickiest part. Search through
the program looking for any JMP' s or JRS' s to the DOS area.
Beyond this I can not give much help. But after you find it,
locate the routine on the disk and defeat it. You can do this by
putting a $60 at the beginning of the nibble count subroutine
(Return from subroutine), or by "noping" the call (no operation)
to the subroutine with three "$EA"S.

For some real life examples, refer to the files "Zaxxon" and
"oil's Well". These give good examples of modified address/data
markers and defeating nibble counts in modified RWTS protection.

In addition, the program may be usinq a loader that doesn't live
in the $B700 to $BFFF range. These can be tricky to find, and
even tricker to make work in a modified DOS environment.

I would first do a nibble read of the disk and find out what the
address and data prologue and epilogue bytes are. Then look for
code like this:

0350- B9 9E CO LDA $C09E,Y
0353- C9 D5 CMP #$D5
0355- DO Fa BNE $0350
0357- B9 9E CO LDA $C09E,Y
035A- C9 AA CMP #$AD
035C- DO Fa BNE $0357

This type of code accesses the drive and compare some data header
to make sure it is the protected format. All you need to do is to
find this routine on the disk, and change the headers to normal
DOS. Easy, huh?

Also be familiar with direct calls to RWTS. If you can recognize
these you can usually find from where the data is being loaded
from. Here the parameter list for using DOS from ASSEMBLY
language:

$B7EA: DRIVE NUMBER TO USE
$B7EB: VOLUME NUMBER ($OO=ANYTHING)
$B7EC: TRACK NUMBER TO READ
$B7ED: SECTOR NUMBER TO READ
$B7FO: ID-BYTE OF BUFFER TO READ/WRITE
$B7Fl: HI-BYTE OF BUFFER TO READ/WRITE
$B7F3: PARTIAL SECI'OR READ(O=WHOLE SCT)
$B7F4: COMMAND CODE (O=SEEK, l=RD, 2=WRr)
$B7F5: ERROR CODE (VALID IF CARRY SET)
$B7B5: SUBROUTINE FOR ACl'UAL READ/WRr.
$BDOO: ALSO SUBROUTINE FOR REAO/WRITE

-25-

12:49 PM

o

o

o

Mar 6, 1985 Apple Rrackers Guide

Here is a sample program that uses these parameters:

9000-
9002-
9005-
9007-
900A-
900C-
900F-
9012-
9014-
9017-
9019-
901C-
901E-
9020-
9023-
9026-
9029-
902C-
902E-
9030-
9032-
9035-
9038-
903B-
9030-
903F-

A9 04
8D EC B7
A9 OF
8D ED B7
A9 00
8D EB B7
8D FO B7
A9 4F
8D F1 B7
A9 01
8D F4 B7
AO E8
A9 B7
20 B5 B7
CE ED B7
CE F1 B7
AD ED B7
C9 FF
DO EC
A9 OF
8D ED B7
CE EC B7
AD EC B7
C9 01
DO DD
60

LOA
STA
LOA
STA
LOA
STA
STA
LOA
STA
LOA
STA
LOY
LOA
JSR
DEC
DEC
LOA
CMP
BNE
LOA
STA
DEC
LOA
CMP
BNE
RTS

#$04 ;track 4
$B7EC;
#$OF ;set F
$B7ED;
#$00 ;
$B7EB;vol #
$B7FO;page
#$4F ;hi-page
$B7F1;
#$01 ;read
$B7F4;
#$E8 ;ready
#$B7 Ito rei
$B7B5;read
$B7ED;dec sct
$B7Fl;dec pq.
$B7ED;compare
#$FF ;sct.
$901C;go back
#$OF ;else
$B7ED;sct $OF
$B7EC;dec trk
$B7EC;compare
#$01 ;track
$901C;go back

; return

Try and figure out what this does ••• This reads track 4, sector F
dawn to track 2, sector 0 into $4FOO to $2000. This would be a
perfect example for reading a hi-res picture in using RWTS. Be
able to recognize these routines. The dead giveaway is the JSR
$B7B5. All the parameters could have been loaded through other
location, such as zero page location, then re-loaded into RWTS.
But the JSR $B7B5 gives it all away.

Also notice how the routine read "backwards", or down. This is
done for speed reasons, and none other. If we incremented the
sectors instead of decrementing them, this routine would take 4
times longer to load. It does not matter if we increment the
tracks or memory pages though ••• just the sectors (this has to do
with "sector skewing").

I hope this has provided some useful information in deprotecting
modified RWTS programs. For further information on RWTS, refer to
the chapter on using second stage DOS (RWTS). This provides
information on how to use RWTS from your own programs.

-26-

12:49 PM

o

o

Mar.6,1985 Apple Krackers Guide

Chapter 7.

usinq Second staqe OOS for your own proqrams.

Sometimes you will find your self with a sinqle load proqram that
is too biq for a file under normal DOS. This usually means the
proqram uses more that $8E ~aqes of memory. In cases like these,
you can often load in the f~le usinq second staqe DOS, or
otherwise know as RWTS.

Another application for usinq second staqe DOS is when you have a
multi-disk access proqram that uses a fairly standard disk
structure. lets say you know the proqram loads in, and then runs
for a while. Then a new level is loaded in from track $01. You
could krak the proqram into a file, transfer track $01 to a
normal format disk, and put the file on some other tracks than
track $01. But DOS uses tracks $0 to $02, so how do you load the
file?. You can use second staqe DOS (that lives on track $0,
sectors 0 to $09 only) to load the file from track 2 and up, and
this could read the levels from trackl.

Beinq able to use second staqe DOS is certainly handy, and if you
write your own proqrams, a qreat way to make them load
"professionally", without the dumb BASIC prompt appearinq durinq
the boot. First let's see why it's called "second staqe DOS".

DOS loads in from a disk in three parts, labeled staqe (or boot)
o throuqh 2. The first staqe of DOS boot (staqe 0) is loaded from
track 0, sector 0, by the code in your disk controller card. This
one paqe of memory qets loaded into $800-$8FF.

The second staqe of the DOS boot (staqe 1) is loaded in from
track 0, sector 0 to sector 9 into $B600-$BFFF. This is loaded by
the code at $800-$8FF. The code loaded into$B600 and up is RWTS.

The third staqe of the DOS boot (staqe 2) is loaded from track 0,
sector C to track 2, sector 4, and is the rest of DOS ($9DOO to
$B5FF). This is loaded by the code at $B600-$BFFF. But we can
fool DOS into loadinq our proqram instead of loadinq in the rest
of DOS!

To summarize, here are the steps:

boot 0: loads trk 0, sct 0 into $800
boot 1: loads trk 0, sct 0-9 into $B600
Boot 2: loads our proqram into ???

Here is how we do it:

1) Boot your DOS 3.3 System Master (you CAN NOT use a fast DOS
disk here, but that won't matter cuz it will load real fast
anyway) • o 2) Initialize a blank disk by typinq:

-27-

12:49 PM

o

o

Mar 6, 1985 Apple Rrackers Guide

]INIT HELW

3) Run a sector editor on this initialized disk and change track
0, sector 0, byte $4A to $4C 80 08. Don't forget to write the
sector back out.

4) Read track 0, sector 0 into $800 and write this program at
$880:

0880- A9 XX
0882- 8D EO B7
0885- A9 XX
0887- 8D 15 B7
088A- A9 XX
088C- 8D lA B7
088F- A9 XX
0891- 8D E7 B7
0894- 4C 00 B7

NOTES:

LOA #$XX :# of scts
STA $B7EO:
LOA #$XX : starting trk
STA $B715
LDA #$XX :starting sct
STA $B7lA
LDA #$XX : start pg+ 1
STA $B7E7
JMP $B700

$881: enter the number of pages (or sectors, they're the same,
remember?) you want to read in.

$886: enter the starting track to read from. This will read in
descending order, so enter the HI-TRACK.

$88B: enter the starting sector to read from. This will read in
descending order, so enter the HI-SECTOR.

$890: enter the HI-PAGE PLUS 1 you want to load into. This will
be the first page read into, and it will descend from there. I.E.
If you want to start loading at $AFFF, the start page is $BO.

5) Write the sector back out.

6) Read in track 0, sector 1 and change byte $47 to $4C XX yy
where XX YY is the address you want to jump to after the program
is loaded, in lo-hi order (just like normal). Don't forget to
write the sector back out.

Now you're all done! You can use track 0, sector A through track
22, sector F for any data. Transfer your program or other data
using the Inspector or some other means onto the tracks and
sectors you specified above.

REMEMBER, SECOND STAGE OOS WILL READ YOU PROGRAM FROM THE HIGH
TRACK AND SECTOR ooWN, AND FROM THE HIGH PAGE DOWN (I.E. TRACK 9,
SECTOR F INTO $8FOO-$8FFF, TRACK 9, SECTOR E INTO $8EOO-$8EFF,
ETC.).

0.. ... It should be noted that many protection sChemes use this exact
format to load in their programs. They just modify RWTS for their

-28'"

12:49 PM

o

o

o

MJlr 6, 1985 Apple Rrackers Guide

protection, as described in chapter six, modified RWl'S
protection. An example of this is many of Datamost' s programs,
including "Roundabout".

-29-

12:49 PM

Mar 6, 1985 Apple Krackers Guide

o The Art of Memory Packinq.

Chapter 8.

o

o

Many times when kraking a single load protection scheme and
findinq the starting address and what memory the program
occupies, the program is just too big to fit into a normal DOS
file. After examining memory, you find a large section of memory
that all the bytes are the same, but is necessary for the program
to run. You could use second stage DOS to read the file in, but
it just seems to be a waste to have all that repetitive data on a
disk.

Or maybe you have just kraked a great new game, and you have just
put the finishing touches on the file, complete with a hi-res
banner displaying your name and the program's name (don't break
your arm patting yourself on the back). Just for reassurance, you
want to make that hi-res picture so some idiot can't erase or
change it (at least not easily).

Both of these cases warrant using a memory packer. Memory packing
is taking some repetitive bytes and storing them into some
smaller format in a file. Then, when the program is reloaded,
expanding them back out to their normal size and positions.
Hi-res pages and shape tables tend to have a great deal of
repetitive bytes, and can sometimes be reduced to a quarter of
their original size using a memory packer.

The way memory packing works is simple., Typically, a memory
packer finds a byte that repeats 4 or more times (3 times is the
break-even point) and stores the repetition as 3 bytes: the first
byte is a "flag" byte, signifying the next 2 bytes are a packed
sequence. The second byte is the nwnber of times the byte repeats
itself, and the third byte is the actual byte that is repeated.

Of course, doing this by hand would be stupid at best, so we can
write a program that searches a specified range of memory for
repeating bytes, and packs the range (many "picture packers" do
this, but only for one of the two hi-res pages). It would be
optimal to pack over the original memory, as a convenience to us
(the. programmer) to avoid moving surrounding memory around too
much.

But before we can pack any memory, we must have a flag byte. A
flag byte is a byte that signifies the next 2 bytes are a packed
sequence. OF COURSE, THIS FLAG BYTE CAN NO!' OCCUR ANY WHERE ELSE
IN THE MEMORY RANGE YOU ARE PACKING.

So to pack a range of memory, we need to be able to do 3 things:

1) Find a Flag byte.

2) Pack the memory using a Flag byte.

-30-

12:49 PM

o

o

o

Mar 6, 1985 Apple Rrackers Guide

3) Unpack the memory.

Of course, I have provided you with some short routines to do
these three things. (NOTE: all these routines are written by
"KRAKOWICZ", and are public domain). The first program is called
"SHOWBIN", and finds our flag byte.

To use SHOWBIN:

1) load the memory range you want to pack (any range from $800 to
$95FF).

2) Put the low page in location $00, the high page in $01.

3) BRUN SHOWBIN.

The first display will be the bytes that are never used in that
memory range. Now hit RETURN, and the bytes used once are
displayed. Hit RETURN again, and the bytes used twice are
displayed, and so on. To exit , hit ESCAPE.

Make a note of one of the bytes that are never used in that
memory range (if there is NO bytes that are never used, you will
have to make the memory range you are packing smaller, sorry).
Now its time to run PACKER.

To PACK the memory range, do the following:

1) Load location $05 with the flag byte, location $06 with the
low page, and $07 with the hi page.

2) BRUN PACKER

After a second, you will get your prompt back. So now type:

*00.01

The returned two bytes are the address that the packed data
starts at (in backassward order, of course). It ends at the last
location of the hi-page specified.

An example is needed to clarify: Suppose you want to pack memory
from $4000 to $95FF. To do this, here are the steps:

1) BWAD the memory you want packed
($4000 to $95FF).

2) type:

]CALL-151
*00:40 95

(remember, $40 is the 10 page, $95 is the hi-page).

-31-

12:49 PM

Mar 6, 1985 Apple Rrackers Guide

3) type: o *BRUN SHOWBIN

o

o

4) write down one of the unused. bytes and hit ESCAPE to exit
(let's say $91 is the unused byte that will be our flag byte).

5) type:

*05:91 40 95
*BRUN PACKER
*00.01

6) write down the two bytes returned from locations $00 and $01
(Let's say they are $B3 and $71, respectively. This means we have
packed $4000-$95FF into $71B3 to $95FF).

Now to reconstruct $4000-$95FF from $71B3-$95FF, we need to load
locations $00 and $01 with $B3 and $71 (just like PACKER gave
them to us), and call the UNPACKER routine.

UNPACKER is less than $50 bytes long and is relocatable (can run
in any memory range). UNPACKER will unpack memory over itself,
saving us a lot of work and programming. So to unpack the $71B3
to $95FF:

1) type:

*00:B3 71
*BRUN UNPACKER

That's it! Under program control, it would look like this:

LOA #$B3
STA $00
LOA #$71
STA $01
JSR UNPACKER

For more explanations on memory packing, refer to the file
"SINGLE FILE ROUNDABOUT", where I show how I krak and pack a
single load protection game from Datamost called "Roundabout".

-32-

12:49 PM

Mar 6, 1985 Apple Kraekers Guide

Chapter 9. o Introduction to the non-maskable interrupt (NMI). JOCl(EY.

o

o

INTROWC'l'ION:

Assuming that you have read the first several chapters of this
series, you now should possess some basic information regarding
the architecture of the Apple computer. Using this basic
information you will go quite far down "memory lane" in your
kraking efforts, but it doesn't stop there. Now we need to talk
about some basic hardware you will need to make your job easier.
What we will be discussing is the use of resets and "NMIs" in the
art of kraking.

INTROWCING THE NMI:

NMI is an acronym for NON MASI<ABLE INTERRUPr, and as the name
implies, it can not be prevented (or masked) on the Apple. The
NMI is the basis behind most of the "copy cards" on the market,
such as the Wildcard or Replay cards. The NMI allows us to
interrupt a program, and to restart it with minimal effort.
Obviously this is of extreme importance to the krakist, who wants
to interrupt a programs, save memory to a normal OOS disk, and
restart the program upon BRUNing the file.

To use an NMI you can simpl¥ crossed pin 26 (ground) and pin 29
(NMI) of anyone of the per1pheral slots. You can do this with a
100 ohm resistor. This will execute an NMI.

Unfortunately, this is less than ideal since when you try to do
this, you will probably execute 20 or so NMI's. This is because
it happens so fast, that an NMI will interrupt an NMI, and so on
for many, many times. This will put much garbage onto the stack
(page one). Using a switch for this chore doesn't help since the
switch actually slams (or bounces) against itself many times
causing the same problem. To solve this we need to make a
"de-bounced" NMI switch. This will constitute about $8 to $20 of
capital resources (depending on your parts supplier), and a
soldering iron. This is considerably less expensive than a store
bought NMI board,· but will laek some of the features the
commercial ones have. A full discussion of how to make an NMI
board is in the appendix "Making a NMI Board".

Assuming you have made your NMI card, I will now tell you more
about how it works and its uses. If you don't fully understand
the workings of the NMI, don't worry about it. Just try and
follow along.

When you push the NMI switch, the 6502 processor will push the
present value of the program counter on the stack along with the
processor status word. Then it will jump to what ever locations
are pointed to by $FFFA and $FFFB. So to restart an interrupted
program, we only need to restore the registers (x, y, accum), the

-33-

12:49 PM

o

o

o

Mar 6, 1985 Apple Krackers Guide

lower pages of memory, and the stack pointer, and do a "RTI"
(return for interrupt) instruction. I have written a small
program which does this all for you and works in conjunction with
the NMI board and a modified F8 ROM, which I am about to
describe.

Now remember our old F8 monitor ROM? Well these two locations
live in the monitor ROM. It would be nice if we could change
these location and after an NMI is executed, run a small program
to that will save the registers, the stack pointer, and the lower
pages of memory. Now this leads us back to our old friend, the F8
monitor ROM.

This is indeed what we need to do. The best thinq would be to
execute an NMI, and then jump to a routine that moves the 10lrler
16K of memory into a RAM card. Then we could boot a 16K slave
disk (which would only disturb the lower 16K of memory), and save
all of memory to a disk. After we have saved all of memory, we
could reconstruct our program and re-start, or do a "return from
interrupt" •

Of course to do this we need to change some of the code in the F8
monitor ROM. We can not do this directly to the F8 chip that
comes with your Apple since it is Read Only Memory. But we can
move the code in the ROM down to RAM, put our routines in, and
burn a new "2716 EPROM". The 2716 EPROM will replace the ROM, and
will have our new kraking routines in it.

Now you ask, "how do I burn a 2716 EPROM?". Well, if you don't
have access to an EPROM programmer, you can take your modified F8
code (saved to a disk) to a local computer store and they should
be able to burn you one for- a nominal fee.

Refer to the appendix entitled "Making a F8 Krak ROM" for an
explanation of how to create the code for the new EPROM and how
to plug it in after it is burnt.

lastly, we need to make a 16K slave disk and to use the program
to save all of memory to a disk. To get the program type it in or
download it from someone. To create a 16K slave disk, do the
following: (NOTE:-_ this only applies to the Apple II or 11+)

1) Turn off your computer.

2) Open the lid, and look for the 3 rows of chips that have a
white line boarder around them. These are the 48K of RAM in your
Apple 11+.

3) Remove anyone chip from each of the two rows of RAM furthest
away from the keyboard.

4) Turn the computer on and boot your DOS 3.3 System Master.

5) Put a blank disk in the drive and

-34-

12:49 PM

liar 6, 1985 Apple Krackers Guide 12:49 PM

type: o]INIT RAM 48K SAVER

o

o

6) When this is complete, -turn the computer off and replace the
two chips.

7) Run a sector editor and change the following sectors of the
16K slave disk:

TRK SECTOR BYTE FROM TO

$00
$00

$01
$OD

$48
$42

$03 $00
$06 $34

8) write the sector back out to your 16K slave disk.

9) Delete the Hello program on the disk by typing:

] DELETE RAM 48K SAVER

Now download the "RAM 48K SAVER" file and save it to your 16K
slave disk. Also down load the file "MEMORY MOVE WRITER". Save
these to your 16K slave disk also, and then write protect it.

The program "RAM 48K SAVER" will save all 48k of memory to a disk
and also create a restart program that will do the "return from
interrupt". The "MEMORY MOVE WRITER" program will enable you to
reconstruct memory back to where it belongs after you load it
from your normal DOS 3. 3 disk.

In the appendix "Using your NMI board", I will discuss how to use
this hardware and software in a real-life application.

-35-

______________ ~~ _____ ________1

o

o

o

,Mar 6, 1985 Apple Krackers Guide

Chapter10.

Protected Applesoft Basic programs.

Many protected programs are written in APPLESOFT. Of course, most
publishers are sly enough to protect aqainst breakinq out of
their program with CTRL C or reset. Also, most protect aqainst
re-enterinq BASIC from the monitor by chanqinq the typical BASIC
re-entry point (at $300) so that it points to disaster. And
lastly, many change the RUN flaq vector at $06 so if you manaqe
to get out of their program and into BASIC, anything you type
will RUN their BASIC program. I will describe how to beat all
these protection schemes, assuminq you have an old style F8
monitor ROM.

First, we must determine if the protected program is written in
APPLESOFT. If after you boot the program a BASIC prompt appears,
this is a good indicator that at least some of the program is
written in BASIC. Further more, if the program prints a lot of
text on the screen, or requires a qood deal of user inputs, it is
a good quess that the program is written in BASIC. The reason for
this is that printinq text on the screen and inputinq data from
the keyboard is easily accomplished from BASIC usinq PRINT and
INPUT statements. To do this from ASSEMBLY lanquaqe requires a
great deal more work. Also, we should realize why a programmer
uses ASSEMBLY lanquaqe. The only real advantaqe to ASSEMBLER is
s~ed. If speed is not critical, most (non-sadist) programmers
w1ll use BASIC.

With this in mind, look at how the program runs and prints on the
screen. If it runs at about the same speed as the BASIC programs
you have written run, it is a good quess that it is in BASIC.
Remember, ASSEMBLY lanquaqe is considerably faster than BASIC in
every respect.

Finally, read the package the program came in. It usually says
what it was written it. If it doesn't, a dead give away is in the
hardware requirements. If the program requires APPLESOFT in ROM,
then at least part of the program is probably written in
APPLESOFT.

Now that you have' figured out your protected program is written
in BASIC, it is time to LIST their code. The first step is to
reset into the monitor when the program is running.

Now you can try to enter the immediate BASIC mode by typinq:

*300G

This is the normal BASIC re-entry point. But if the protection is
worth anything, this will not work.

Assuminq that didn't work, reload the program and reset into the
monitor again. The next thing is to try typing 9084G or 90BFG.

-36-

12:49 PM

o

o

o

Bar 6, 1985 Apple Rrackers Guide

These are the DOS cold and warm start routines, respectively. If
you are lucky enouqh to qet a BASIC prompt, you have done well.
Most of the time, you won't. .

If in either case you succeed in qettinq a BASIC prompt, try
LISTinq the proqram or CATAIDGinq the disk. If anythinq you type
starts the proqram runninq aqain, the protection has chanqed the
RUN flag at $06. So reset into the monitor aqain.

The RUN flaq is a zero paqe location (at $06) which will run the
BASIC proqram in memory if $06 contains $80 or qreater (128 or
qreater in decimal). This is easy to defeat after you have reset
into the monitor by typinq:

*06:00

This resets the RUN flaq to normal. Now if 300G, 9084G or 90BFG
previously rewarded you with a BASIC prompt, this will solve the
problem of the proqram re-runninq when you type a connnand.

For debugqinq efforts, the RUN flaq can qet changed from within a
BASIC proqram by issuinq the code:

10 P01(E 214,255

or by pokinq location 214 with anythinq qreater than 127. From
ASSEMBLY lanquaqe, the code would most likely look like this:

800- A9 FF
802- 85 06

LOA #$FF
STA $06

or by loadinq a reqister with $80 or qreaterand storinq it at
$06.

Now if 300G, 9084G or 90BFG did not produce a BASIC prompt, then
the DOS beinq used is more elaborate. So re-load the proqram and
reset into the monitor after it is runninq.

Now comes the final steps in tryinq to examine a BASIC proqram.
If you are usinq a ROM card in slot zero with an old style F8
monitor ROM to reset into the mon! tor, turn on the mother board
ROMs and turn off the ROM card INTEGER ROMs by typinq:

*C081

Now reset the RUN flag to normal, just to be sure. Type:

*06:00

Finally, enter APPLESOFT the sure fire way by typing:

*<CTRL C>

You should see an APPLESOFT prompt. Now type:

-37-

12:49 PM

0···•·· ..

o

o

Mar 6, 1985 Apple Krackers Guide

lLIST

and your APPLiES OFT program should now appear •

Applying this to a real world example, try this method with one
of strateqic Simulations releases (SSI). SSI uses a highly
modified ooS called RDOS for their protection. SSI uses all the
tricks mentioned to prevent you from LISTin<1 their programs. But
using the above procedure, you can LIST thel.r BASIC proqrams.

In addition, the OOS used by SSI (ROOS) uses the ampersand in all
of its OOS commands.. So if you see any ampersands from wi thin
their BASIC program, you know it is a OOS command. For example,
to cataloq a SSI disk, after you follow the above procedure and
you are in BASIC, type:

l&CAT

This will display SSI's catalog. Very different, eh.!

Well, back at the ranch, if you want to save your APPIESOFT
program to a normal OOS disk, do these steps:

1) Reset into the monitor after the program is running.

2) If you are using a ROM card in slot zero, Type:

*C08l

3) Now type:

*06:00
*9500<800.8FFM

3) Check where the APPIESOFT proqram ends by typing:

*AF.BO

4) write down the two bytes listed somewhere.

5) Boot a 48K normal OOS 3.3 slave disk with no HELID program.

6) Enter the monitor by typing:

lCALL-15l

7) Restore the APPLESOFT program by typing:

*800<9500.95FFM *AF: enter the two bytes you wrote down here,
separated by spaces.

8) Enter BASIC and save the program by typing:

-38-

12:49 PM

o

o

o

Mar 6, 1985 'Apple Krackers Guide

*3DOG
] SAVE PROGNAME

What you have done is to move $800 to $8FF out of the way so you
can boot a slave disk. After normal DOS is up, you restore $800
to $8FF from $9500 to $95FF, and then restore the end of
APPLESOFT program pointers so DOS knows how big your BASIC
program is. Next you just save it to your disk! Of course there
are other more automated ways of getting programs to a normal DOS
3.3 disk (such as Demuffin Plus or CopyB) , but this is a quick
and dirty method that will always work. Keep in mind that the
program may not run from normal DOS because of more secondary
protection from within the BASIC program itself. Any curious
CALLs, POKEs or PEEKs to memory above 40192 (this is memory where
DOS resides) or below 256 (zero page memory) should be examined
closely. '

I hope this will help you learn more about the protected programs
you own that are written in APPLESOFl'.

-39-

12:49 PM

Mar 6, 1985 Apple Irackers Guide

Appendix A. o Kraking modified ros' s with COPYB

:INTROWCTION:

o

o

There are probably hundreds of ways to protect a program from
being copied. But generally speaking, protection falls under two
categories: protect the actual program (by various means), or
protect a disk full of programs with some sort of ros
modification. ros modifications are the most common since they
are the easiest to deal with (from the publisher's point of
view). ros modifications are also the least successful of
protection, since someone always seems to find a way to copy all
the files onto a normal ros disk, eluding all the protection. The
classic program for dealing with modified roses is DEMUFFIN PLUS.
It works much the same way as Apple's MUFFIN program works.
MUFFIN was written to read files from a OOS 3.2 disk and then
write them to a DOS 3.3 disk. DEMUFFIN was a variation of MUFFIN,
allowing the hardcore 3.2 user to copy files from DOS 3.3 to DOS
3.2. DEMUFFIN PLUS operates on the same principle, but uses
whatever DOS is in memory to read the disk, and then writes out
to an initialized DOS 3.3 disk. While this is a powerful utility,
it only works with programs that are based on OOS file structures
and that have a catalog track.

INTROWCING COPYB:

COPYB (oriqinally written by lIJ(rakowicz ll) is a hiqhly modified
version of COPYA which converts a protected disk that uses a
modified DOS and/or RWI'S to normal ros 3.3 format. The protected
disk may have a normal ros °file structure, or it may not. Since
COPYB copies on a track by track basis, this does not matter.
This makes COPYB a far more flexible tool than DEMUFFIN PLUS.

COPYB uses the protected disk's RWTS to read in the tracks and
then uses normal ros 3.3 to write them back out to an initialized
disk. unless otherwise instructed, COPYB copies track $03 to
track $22, sector $OF to sector $00 of each track. Here are the
parameters for COPYB:

NORMALLY LOCATION
HEX DEC DESCRIPTION HEX DEC NT

~---~----------------------------------22E 558 FIRST TRACK TO READ 03 03 (1)
236 556 FIRST SECTOR TO READ OF 15 (2)
365 869 RESET SECTOR NUMBER OF 15 (2)
3A1 929 STOP ON ERROR($18=NO) 38 56 (3)
302 770 TRK TO STOP READING+1 23 35 (4)
35F 863 TRK TO STOP READING+1 23 35 (4)

NOTES (denoted above as "NT"):

1) This is the first track that COPYB starts readinq at. This is

-40-

12:49 PM

o

o

o

Mar 6, 1985 Apple Krackers Guide

normally set at track 3, so not to copy the protected DOS which
normally resides on track 0 throuqh track 2.

2) These two parameters are normally set to $OF for 16 sector
disks. Chanqe these two parameters to $OC for 13 sector disks.
Most of today's protection schemes are based on 16 sectors. Yet
there are still a few usinq 13 sectors (such as Muse).
Interestinqly enouqh, there is a handful of authors that also us
sectorinq other than 13 or 16 sectors per track. An example of
this is "Thief" from Datamost. This proqram uses 11 sectors per
track. COPYB can also accommodate these proqrams.

3) This parameter is normally set so that upon readinq a 'bad
sector' COPYB will stop and display an error. To let COPYB keep
qoinq after a read error, chanqe this byte to $18 (24 in
decimal). The equivalent sector on the copied disk will be
written blank.

4) These two parameter determine where COPYB will stop readin9
the protected disk. Normally, this is set to the last track, $22
(34 in decimal) , plus one. To chanqe this, add one to the last
track you want to copy and chanqe these two parameters.

USING COPYB:

To use COPYB, you must capture the foreiqn RWTS and put it at
locations $8000 throuqh $88FF. You can do this one of two ways:

1) Boot the protected disk and after the foreiqn DOS is loaded,
reset into the monitor. The foreiqn DOS will usually be loaded a
few seconds after the boot starts. You can tell this because many
times a BASIC prompt will appear at the bottom of the text
screen. Use the monitor move command to move RwrS down to $8000
as so:

*8000<B700.BFFFM

Now boot a 48k slave disk (this will not destroy memory from $900
to $95FF) and run COPYB.

2) Read in track.O, sector 1 throuqh track 0 sector 9 of the
protected disk into memory $8000 to $88FF with a sector editor
such as 'THE INSPECTOR'. Then run COPYB.

ENTERING THE PARAMETERS AND RUNNING COPYB:

Run ·COPYB by typing:

]RUN COPYB

The proqram will come up and ask what paramete~s to use, all
described above. COPYB will poke -in the values you have entered,
for you. Enter all values in DECIMAL.

-41-

12:49 PM

o

o

o

Mar 6, 1985 Apple Krackers Guide

After entering the parameters, you will be asked if your
selections are correct. If you answer YES, the next set of
prompts will appear, which should look familiar. Enter the
original and destination drive and slot numbers, just like in
COPYA. Lastly, you will be asked if you want the destination disk
to be initialized, respond yes or no. Now press the RETURN key to
start the copy.

When the copy is completed, assuming all went correctly, you will
have a normal DOS 3.3 version of your protected disk which may
run or be examined and changed more easily then the original
disk.

This method of deprotection is more dependable that using
DEMUFFIN PLUS and covers more types of programs. I am sure you
will find COPYB an excellent utility to have.

-42-

12:49 PM

Mar 6, 1985 Apple lCrackers Guide

Appendix B. o Making a F8 lCrak ROM.

0

0

In this section I will describe how to make the code for the
modified F8 monitor ROM that you will find extremely useful in
kraldnq.

The EPROM will act like a old style F8 monitor ROM with regards
to resets. What I mean is that hitting reset will cause you to
jump into the monitor.

The EPROM will also have a special function when an NMI is
encountered. Upon NMI, this ROM will push the accumulator, the
x-register,the y-register and location $00 onto the stack. The
stack pointer will then be saved at location $00.

Next, the EPROM will move $00 to $4000 into a RAM card in slot
zero. This clears the way for a 16K slave disk boot. Here is the
code and an explanation of how it works (in 80 column format):

FCC9- 48 PHA PUSH ACCUM ONTO THE STACK.
FCCA- 8A TXA TRANSFER X-REG TO ACCUM.
FCCB- 48 PHA POSH (X) ACCUM ONTO THE STACK.
FCCC- 98 TYA TRANSFER Y-REG TO ACCUM.
FCCD- 48 PHA POSH (Y) ACCUM ONTO THE STACK.
FCCE- AS 00 LOA $00 U>AD ACCUM WITH $00.
FCDO- 48 PHA POSH ($00) ACCUM ONTO THE STACK.
FCD1- BA TSX TRANSFER STACK POINTER TO X-REG.
FCD2- 86 00 STX $00 STORE STACK POINTER AT $00.
FCD4- AD 81 CO LOA $C081 ENABLE WRITE TO RAM BANK 1.
FCD7- AD 81 CO LOA $C081 (MUST ACCESS TWICE) •
FCDA- AO 00 LOY #$00 -----------------------------------
FCDC- B9 00 00 LOA $OOOO,Y MOVE $00 TO$FF INTO RAM CARD SO WE
FCDF- 99 00 DO STA $DOOO, Y CAN USE ZERO PAGE FORREST OF MOVE.
FCE2- C8 !NY
FCE3- DO F7 BNE $FCDC -----------------------------------
FCE5- 84 00 STY $00 MOVE $100-$2FFF INTO BANK 1
FCE7- 84 02 STY $02 OF THE RAM CARD.
FCE9- A9 01 LOA #$01
FCEB- 85 01 STA $01
FCED- A9 D1 LOA #$D1
FCEF- 85 03 STA $03
FCF1- B1 00 LOA ($00) ,Y
FCF3- 91 02 STA ($02) ,Y
FCF5- C8 INY
FCF6- DO F9 BNE $FCFl
FCF8- E6 03 INC $03
FCFA- E6 01 INC $01
FCFC- AS 01 LOA $01
FCFE- C9 30 CMP #$30
FDOO- DO EF BNE $FCF1 -----------------------------------
FD02- 4C CD FE JMP $FECD RAN OUT OF ROOM HERE, JMP TO $FECD •
•

-43-

12:49 PM

0

o

o

Mar 6, 1985

•
FEeD- A9 DO
FECF- 85 03
FE01- AD 89 CO
FED4- AD 89 CO
FE07- B1 00
FED9- 91 02
FEOB- C8
FEDC- DO F9
FEOE- E6 03
FEE 0- E6 01
FEE2- AS 01
FEE4- C9 40
FEE6- DO EF
FEE8- AD 82 CO
FEEB- AD 8A CO
FEEE- 4C FD FE
•

· FEFD- A2 1C
FEFF- BD OB FF
FF02- 9D D6 07
FF05- CA
FF06- 10 F7
FF08- 4C 59 FF

Apple Krackers Guide

LOA '$DO RESET MOVE ROUTINE POINTERS.
STA $03
LOA $C089 ENABLE BANK 2 OF RAM CARD.
LOA $C089 (MUST ACCESS TWICE).
LOA ($OO),Y -----------------------------------
STA ($02),Y MOVE $3000-$3FFF INTO BANK 2
!NY OF THE RAM CARD.
BNE $FE07
INC $03
INC $01
LOA $01
CMP '$40
BNE $FED7 -----------------------------------
LOA $C082 TURN ON MOTHERBOARD RAM AND WRITE
LOA $C08A PROTECT BANKS 1&2 OF RAM CARD.
JMP $FEFD RAN OUT OF ROOM, JUMP TO $FEFD.

LOX '$lC THIS SUBROUTINE OUPUTS THE
LOA $FFOB, X MESSAGE "RAM CARD WADED WITH
STA $07D6,X $00-3FFF" AT THE BOTl'OM OF
DEX THE TEXT SCREEN.
BPL $FEFF ----------------------------------
JMP $FF59 ALL DONE, EXIT THRU NORMAL RESET.

To create this EPROM file, here are the steps:

1) Boot a normal DOS disk and enter the monitor by typing:

]CALL -151

2) Move your autostart F8 monitor ROM code down into RAM by
typing:

*4800<F800.FFFFM

3) Now change the code as follows:

*4OC9:48 8A 48 98 48 AS 00
*4CDO:48 SA 86 00 AD 81 CO AD
*4CD8:81 CO AO 00 B9 00 00 99
*4CEO:00 DO C8 DO F7 84 00 84
*4CE8:02 A9 01 85 01 A9 D1 85
*4CFO:03 B1 00 91 02 C8 DO F9
*4CF8:E6 03 E6 01 AS 01 C9 30
*4DOO:DO EF 4C CD FE
*4ECD:A9 DO 85 03 AD 89 CO AD 89 CO B1
*4ED8:00 91 02 C8 DO F9 E6 03
*4EEO:E6 01 AS 01 C9 40 DO EF
*4EE8:AD 82 CO AD SA CO 4C FD FE
*4EFO:A2 1C BD OB FF 9D D6 07 CA 10 F7

-44-

12:49 PM

o

o

Mar 6, 1985 Apple Krackers Guide

*4F08:4C 59 FF
*4FOB:52 41 40 60 43
*4F10:41 52 44 60 4C 4F 41 44
*4F18:45 44 60 57 49 54 48 60
*4F20:64 70 70 60 73 46 46 46
*4FFA:C9 FC 59 FF

4) Now save the file to a disk by typing:

*BSAVE F8 SAVE RAM EPROM,A$4800,L$800

5) Finally, burn the 2716 EPROM with this code or have someone do
it for you.

Now to use your new 2716 EPROM, you must make these changes
directly to the chip itself (not advisable), or to a jumper
socket which your new chip will plug into, and then which will be
plugged into your motherboard.

You need a 24 pin low-profile socket (not wire-wrap!, they will
destroy your motherboard sockets!). These are available from
radio shack (part number 276-1989) or the such. Now with the
socket up-aide-down and the pins looking you in the face, it
should look like this:

1
1
1
1
1
1
1
1

13 14 15 16 17 18 19 20 21 22 23 241
.1 .1 .1 ·1 .1 .1 .1 .1 .1 .1 .1 .1 1

1
1

(notch)->!
-1

1. • • • • • • • • • •
1
1
1
1

II I I I I I I I I I I I
112 11 10 9 8 7 6 5 4 3 2 1

Now your soldering skills come in handyl Using some short,
hi-gauge wire (wire-wrap is preferable, but anything in the 26-30
gauge will work), solder a piece between pins 21 and 24, and
solder a piece between pins 12 and 18. Be extremely careful not
to short out the wire or to cross solder any pins 1 Also, try and
solder as close to the base of the socket as possible, since you
have to cut off pins 18 and 21 after you have finished soldering
them. Now cut of pins 1$ and 21 as close to the base of the
socket without cutting the freshly soldered wiresl Remember, pins
18 and 21 should be short enough so that they will not touch the
socket you will be plugging this one into. The socket should now
look like this:

---------------------------------------o I 13 14 15 16 17 18 19 20 21 22 23 241

-45-

12:49 PM

o

o

o

Mar 6, 1985 Apple Krackers Guide

1 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1 1
1 x x I 1
1 I I I 1
1 I 1--------1
1 1--------1 1
1 I -1
1 I 1
I / • • • • • • • • • • • 1
II I· I I I I I I I I I I 1
112 11 10 9 8 7 6 5 4 3 2 1 1

Double check your solderinq and the connections (and notice that
pin 18 and 21 are cut offl). Now carefully remove the ROM
labelled F8 (it is the socket farthest on the left that has 24
pins as you face the keyboard) and pluq this jumper socket into
the motherboard. Now pluq your modified 2716 EPROM into this
jumper socket and your all done! Make sure you have the notch
pointinq in the same direction as the other ROMs (towards the
keyboard) •

When you turn on the Apple you should see a screen full of
qarbaqe with the monitor prompt at the bottom of the screen. To
boot your Apple, just type "6 ctrlP", and your computer will act
just as usual.

-46-

12:49 PM

Mar 6, 1985 Apple Rrackers Guide

Appendix C. o Hakinq your own NMI board.

o

0

In this article I will describe how to make ~our own NMI board
that will work in conjunction with the modif1ed F8 monitor EPROM
you have (or will) create. Here is the parts lists for the NMI
board:

(1) 7400 or 74LSOO chip. Radio Shack part '276-1801. $0.59

(1) SPm' momentary push switch. Radio Shack part ,275-1549. $2.19

(1) 14 pin low profile or wire wrap socket. Radio Shack part
'276-1999 or '276-1993. $0.89

(2) 3.3k ohm resisters, 1/4 watt. Radio Shack part ,271-1328.
$0.39

(1) Dual pluq-in interface board. Radio Shack part '276-164.
$4.95 NOTE: This part has been discontinued by Radio Shack, but
you can sometimes still find them in the junk bin. cut the board
so it will fit inside your Apple.

ALTERNATIVELY: (1) Apple bare board number PAPGBP5001. $13.95
from Priority Electronics, 9161 Deerinq Ave., Chatsworth, CA
91311.

After you have obtained all the parts above, you should solder
the 14 pin socket and the two resistors somewhere convenient on
the bare board. Next qet some hi-qauqe wire and make the
followinq connections:

1) Connect pin 25 of the bare board to one leq of each of the two
resistors.

2) Connect each of the other leqs of the resistors to the two
outside contacts of the switch. (one resistor qoes to one
contact, the other resistor qoes to the other contact). Use some
qood.wire.

3) Connect pin 25 of the bare board to pin 14 of the 14 pin
socket!"

4) Connect the middle contact of the switch to pin 7 of the 14
pin socket.

5) Connect pin 26 of the bare board to pin 7 of the 14 pin
socket.

6) Connect pin 2 of the 14 pin socket to pin 6 of the 14 pin
socket.

7) Connect pin 3 of the 14 pin socket to pin 4 of the 14 pin

-47-

12:49 PM

o

o

o

Mar 6, 1985 Apple I(rackers Guide

socket.

8) Connect pin 4 of the 14 pin socket to pin 29 of the bare
board.

9) connect the leg of one of the resistors that is connected to
the switch to pin 5 of the 14 pin socket.

10) COnnect the other leg of the resistor that is connected to
the switch to pin 1 of the 14 pin socket.

11) Check all connections twice, and don't get confused on what
pin is what on the bare board and the 14 pin socket.

You have now completed building your own NMI board. This board
may be plugged into anyone of the peripheral slots.

-48-

12:49 PM

o

o

o

Mar 6, 1985 Apple Krackers Guide

Appendix D.

Practical uses for the NMI/modified ROM hardware.

Now that you have burned your own F8 monitor ROM, constructed
your own NMI board and created a 16K slave disk with the
previously mentioned files, its time to put it all together and
use it (also make sure you have a RAM card in slot 0). The
primary use for these hardware devices is for the single load
program. As a practical example, we will be putting the IDcksmith
5.0 fastcopy program into a file. This program is a really fast
normal DOS copy program that is worth having in a file.

First turn off your computer and install your new F8 monitor
EPROM into the motherboard, and. put ¥our NMI board in any slot.
Now boot your IDcksmi th 5.0 (an origl.nal or a copy will do) and
select the "16 sctr utilities" option. Next select the "16 sector
fast disk backup". Now just after the drive stops spinning, and
before you see the prompt "drive- original: 1", hit the NMI switch
on your NMI card. You should then be in the monitor.

Now boot your 16K slave disk. The "RAM 48K SAVER" program will
run and will initialize a disk and save all 48K of memory to your
disk.

Finally, run the ''MEMORY MOVE WRITER" program and select the
number of moves as one. Next select the running address as $8000.
Use a forward memory move, and enter the start page as $40, and
the hi page as $80. Next select the starting page to move to as
$00. Finally, select the text page, page one, and full text. Now
enter $8024 as the address to jump to and save the memory move
program to disk.

Now its time to put all these files together as the final
product. Boot a normal 48K disk and B10ad the following files by
typing:

]BU>AD AOO-3FFF,A$4000
]BU>AD MEMORY MOVE $8000,A$8000
]BU>AD RERUN,A$8024

Now make the file run when you brun it by typing:

]CALL -151
*3FFD:4C 00 80

Now we can save the final product by typing:

*BSAVE LS 5.0 FASTCOPY,A$3FFD,L$4040

congratulations! You now have deprotected the Locksmith fast copy
program into a file that you may brun anytime 1

This technique will work well for deprotection other single load

-49-

12:49 PM

o

o

o

Mar 6, 1985 Apple Krackers Guide

programs too! The main advantage to this technique is that you
don't have to find the startinq address of the program to restart
it. The program will just start up from the point where you
interrupted it. .

The only other thing you really must do is determine what parts
of memory you must save so the program will run. REMEMBER, YOU
MUST AUfAYS SAVE MEMORY FROM $00 TO $2FF FOR THIS PROCESS TO WORK
CORRECTLY! Use the Memory Move Writer to rearrange memory so you
can save it in a normal OOS binary file.

If you want further practice in usinq your NMI/F8 EPROM hardware,
write a program in APPLESOFT that some some screen displaying and
interrupt the program. Then try and reconstruct it using the same
technique as described above and restart the program.

You can save the BASIC program in a Bfile by saving $00 to $7FF
and from $800 to the end of the program, where ever that might be
(zero page locations $AF and $BO will give you the ending
location of a APPLES OFT program, in backassward order). You might
also have to save some of the variable storage for your BASIC
program, which lives from $95FF down (depending on size). The
best thing to do is to experiment, and practice makes perfect.

-50-

12:49 PM

o

o

o

Mar 6, 1985 Apple ICrackers Guide

Appendix E.

RAM card kraking.

In order to krak most protected programs you will have to have
some ·method of breaking out of the program and into the monitor.
In order to do this you will need a old style F8 monitor F8 ROM.
Of course, this means you must buy an old F8 ROM and install it.
If you have a lIe, this is impossible, and if you leave the old
F8 in your 11+, it turns out to be pretty inconvenient to reset
into the monitor all the time. You could be ripping your Apple
apart when you need the old style reset and switch the ROMs, but
that is rather inconvenient too.

Of course, we must rectify this situation for those without the
means for extra hardware (ROMs, etc.) and those with lIe's who
can't buy an old F8 ROM. To do this, we can use the extra 16K of
memory that most every one has. In the case of the 11+, this is
the RAM card. In the case of the I Ie, this is top 16K of the 64K
of on-board memory.

What we will actually be doing is using the .RAM card to simulate
an old style F8 monitor ROM. We can do this since the memory that
the RAM card occupies is the same memory area as the BASIC and
monitor ROMs occupy on the motherboard. This memory region is
from $0000 to $FFFF, in which the F8 monitor ROM lives from $F800
to $FFFF.

The RAM card can be accessed via some "soft switches", much as
'the hi-res page is turned on. Using these soft switches we can
turn off the motherboard ROMs and turn on the RAM card. Before we
can do this, we must copy the image of the BASIC and F8 monitor
ROMs into the RAM card, so that we can switch off the motherboard
ROMS. This way your Apple will still be able to control itself
via the BASIC and the monitor ROMs copied into the RAM card.

After we copy the BASIC and F8 monitor ROM images from the
motherboard F8 ROM into the RAM card, we can change the F8 code
so that we are dumped into the monitor upon reset. This is easy
to do by changing the reset pointer at $FA62 to jump to $FF59 ,
the old style moriitor reset point.

After we change the RAM card version of the F8 monitor ROM, we
must finally change the RAM card soft switches so that the
motherboard RAM is active and the RAM card memory from $0000 to
$FFFF is active.

After we have done all this, we can boot our protected disk and
reset into the monitor.

Of course, this method has some limitations. The first is that
this is limited to programs that use the lower 48K of memory. If
the program uses the upper 16K of memory (RAM card) it will
overwrite our work.

-51-

12:49 PM

o

o

o

Mar 6, 1985 Apple Krackers Guide

The second limitation is that many software publishers are wise
to this trick and their programs initialize the RAM card and wipe
out anything that might be hiding there. The publisher that is
most famous for this is Sirius Software.

A simple solution to this problem is to move your RAM card to
another slot other than zero. Almost all programs will not expect
a RAM card in any other slot than zero, so our modified code
remains intact. This works very well but unfortunately, is
impossible for Apple lie owners. For 11+ owners, this is some
what inconvenient since you have to play musically slots with
your RAM card because no commercial programs will recognize your
RAM card in any other slot than zero. But this is the price you
have to pay for owning a lie or not owning a ROM card or old
style F8 monitor ROM.

With this in mind, the best thing to do is to leave your RAM card
in slot zero, copy and modify the ROM code, and try and break out
of the protected program. If the protected program is familiar to
this trick, then move your RAM card to slot one or two. This will
make your RAM card "invisible" and we can load it with our
modified code, without fear of it getting overwritten. So first
try your RAM card in slot zero and type in:

]CALL-151
*C08l
*DOOO<DOOO.FFFFM
~C089
*DOOO<DOOO.FFFFM
*C083 N C083
*FA62:4C 59 FF
*C080

Now boot your protected program and at the desired point, hit
reset. If you reset into the monitor, you are successful. If the
program does its normal tricks upon reset, then you will have to
move your RAM card to another slot and try again.

Assuming you put your RAM card in slot two, type:

]CALL -151
*COAl
*DOOO<DOOO.FFFFM
*C0A9
*DOOO<DOOO.FFFFM
*COAJ N COA3
*FA62:4C 59 FF
*COAO

Notice the only different between the two sets of code is the
$COOO addresses. This is because these refer to what slot your
RAM card is in. Fpr example, here is a chart of the slots and
their $COOO addresses:

-52-

12:49 PM

0

o

o

Mar 6, 1985 . Apple Krackers Guide

slot address slot address
-----------~-------------------------0 $C080 1 4 $COCO
1 $C090 1 5 $CODO
2 $COAO 1 6 $COEO
3 $COBO 1 7 $COFO

with this chart you can· put your RAM card in any slot and change
the above code accordingly. Remember to offset the new addresses
by $01, $03, or $09 as done in the examples.

Now your Apple will act as though there is an old style F8
monitor ROM installed. So every time you hit reset, you should
see the "*" prompt. Your Apple will continue to act like this
until you powerdown, or till something overwrites the code in the
upper 16K of memory.

(Remember to move your RAM card back to slot zero when you no
longer need the old style reset so your other programs can find
your RAM card).

Alternatively, I have written a program which will load your RAM
card for you. It will ask you what slot your RAM card is in, and
make the necessary chan<1es. After the RAM card is loaded with the
new code, the program w1ll wait for you to touch a key and then
clear the lower 48K of memory and reboot. This makes using your
RAM card a real treat in trying to krak protected programs.

-53-

12:49 PM

o

o

o

Mar 6, 1985 Apple Krackers Guide

Appendix F.

The ReI(card.

INTROIXJCING THE ReI(CARD:

The foremost of important tools for easily snooping through
-.emory is the ROM card.· The ROM card was originally developed for
those with programs written in both INTEGER and APPLESOFT BASIC.
Remember that your motherboard (the big green printed circuit
board inside your computer case) can house only one of the BASIC
languages, either INTEGER or APPLES OFT • When the Apple was
originally released, it was only available with INTEGER BASIC. So
many programs were written in INTEGER, and would not run on the
Apple II+ (with APPLESOFT on board) when it was introduced.

Before RAM memory was very cheap, many people bought ROM cards
for their Apple II+ that could be put in slot zero (as you would
a RAM card), to enable them to run programs that were written in
either BASIC language. It was just as though you had loaded
INTEGER BASIC into you RAM card, like the DOS 3.3 System Master's
HELID program does. When RAM cards became available at a
reasonable cost, everyone started buying them because they are so
much more versatile for the average folk. That is why you don't
see ROM cards for sale too much any more. But for deprotecting
Apple programs, the ROM card is indespensible.

Also, for the Apple II owner who wanted to run the newer
APPLESOFT programs, the ROM card was available with APPLESOFT
ROMs. The INTEGER and the APPLESOFT versions of the ROM card are
identical, except for the actual ROMS on the card. In other
words, one had INTEGER ROMs and the other had APPLES OFT ROMs, and
there is no other differences.

THE REASONS WHY:

Their are several reasons the ROM card is so important. The least
of the reasons is the need for INTEGER BASIC or the Programmer's
Aid chip. If you can get a ROM card cheaply without INTEGER or
the Programmer's Aid ROMs, do so. From a cost outlook, it is to
your advantage. Besides, INTEGER is a dead dinosaur, and who
really cares if it's faster than APPLESOFT?

The reason we want a ROM card is so we can put an old style F8
monitor ROM and THE INSPECTOR ROM (from omega Microware) on it.
These two ROM chips are really essential for learning more about
protected programs. Ultimately, we would like WATSON in
conjunction with THE INSPECTOR, but to do so you will also need
INTEGER BASIC ROMs, since WATSON uses some routines from the
INTEGER BASIC ROMs. Watson enhances the Inspector by adding even
more commands and flexibility. The combination of Watson and the
Inspector provides you with great power for not only snooping,
but also for general purpose utility chores.

-54-

12:49 PM

o

o

o

Mar 6, 1985 Apple Krackers Guide

The reason we want the old style F8 ROM should be obvious by now.
After readil'l9 several Jcraking articles and from your own
experiences, you have noticed that it is impossible to break out
of many proqrams with just an autostart F8 JDOnitor ROM. The
reason we should have the old style F8 ROM on the ROM card and
not on the mother board is for convenience. The ROM card has a
awitch which determines which F8 JDOnitor ROM is active when you
hit reset. So you can have the convenience of the Autostart F8
monitor ROM, and when you need it, hit the switch and be able to
break out of any program you want with the old style F8 monitor
ROM.

OBTAINING YOUR OWN ROM CARD:

ROM cards are available used at very cheap prices. Check your
local Apple users' qroup. Alternatively, you can get blank cards
and stuff it yourself. I would suggest stuff your own since the
parts are easy to get, and it is usually the least expensive
route! I have also seen Japanese clone cards for sale at a very
reasonable price. The best place to check for these is in The
Computer Shopper, a bi-monthly newspaper of Apple and other
computer barqains.

OBTAINING YOUR OWN ROMs:

You can either buy an old style F8 monitor ROM, or you can make
one by changing your autostart F8 code slightly. After making the
change, you can save the file to disk and have a friend or your
local computer store burn the image into a 2716 EPROM. Here is
the instructions for creating your own:

1) Boot a normal DOS 3. 3 disk.

2) Enter the monitor by typing:

]CALL-151

3) Move the autostart F8 ROM image into RAM by typing:

*4800<F800. FFFFM .

4) To enter the monitor when reset is pressed, type these
changes:

*4FFC:59 FF

5) Bsave the file to a blank disk by typing:

*BSAVE OLD $F8,A$4800,L$800

6) Burn this image into a 2716 EPROM.

This new F8 EPROM will be just like the autostart version F8 ROM
except when you hit reset, you will be in the monitor and not in

-55-

12:49 PM

o

o

o

Mar 6, 1985 Apple Krackers Guide

BASIC. Now you can reset out of any proqram.

Alternatively, you can use a lIlOdified F8 EPROM too, as described
in other kraking articles. This will give you the advantage of
being able to save memory from $00 to $8FF when you hit reset.
This would certainly be helpful at times.

If you want INTEGER BASIC on your ROM board, you can either buy
the RCIfs from your local Apple dealer, or you can make them. When
you bought your Apple disk drive and controller you also bought
DOS 3.3, the DOS 3.3 System Master, and all the proqrams on the
System Master, including INTEGER BASIC. So you can also burn
INTEGER into 2716 EPROMs just like you burned YOlU' new F8 EPROM,
and put them on your ROM card. Here are the steps to do this:

1) Boot your DOS 3.3 System Master.

2) ~load the file INTBASIC by typing:

.]BLOAD tNTBASIC,A$2000

3) Bsave the INTEGER files to a blank disk by typing:

]BSAVE tNT EO,A3000,L$800
]BSAVE INT $E8,A$3800,L$800
]BSAVE INT FO,A4000,L$800

4) Burn three 2716 EPROMs from each of these files.

IMPORTANT: In order to use 2716 EPROMs on your ROM card instead
of the Apple-made 9316 ROMs, you must solder two "jumpers".
Notice to the right of the F8 ROM socket on the ROM board white
circle with the word "2716" next to it. Inside the circle will be
four solder pads, grouped into two pairs. Notice each pair has
two pads real close together, but not touching. Take a soldering
iron and cross each pad in each pair together with some solder.
So now the circle will have two solder pads, instead of four. DO
NOT CROSS ALL FOUR PADS TOGETHER! Your ROM board will now except
ONLY 2716 EPROMs, so when you do this you have to use all 2716
EPROMs, and no 9316 ROMs.

While on the subject of jumpers, there is another jumper on yow:"
ROM card just below the E8 ROM. This jumper, when crossed, will
ignore the position of the ROM card switch. Reset will always
ignore the F8 monitor ROM on the ROM board, and just use the
motherboard F8 monitor ROM. Obviously, we do not want to cross
this jumper.

If you can't tell if you should cross the 2716 jumper because you
don't know if you have 2716's or 9316 1s, it is easy to tell the
difference. 2716's have a small quartz window on their face,
usually beneath some label. The window is used to erase the EPROM
(hence the name Erasable, Programab1e, Read Only Memory). They
should also say "2716" somewhere on them too.

-56-

12:49 PM

o

o

o

Mar 6, 1985 Apple Krackers Guide

If you must mix 9316' s and 2716' s on the same ROM card, do not
cross any of the two pairs of jumpers. Instead, refer to APPENDIX
B on how to make 2716 scrambler sockets for using 2716's in 9316
applications.

9316's are the all black 24 pin ROM chips that come with your
Apple, and are not erasable. They will not have a quartz window.

Now plug in your F8 monitor EPROM or ROM in the socket labeled
F8, and. do the same with the other EO, E8 and FO INTEGER EPROMs
or ROMs. We are ready for the next step.

THE INSPECTOR:

The next thing the ROM board enables us to do is to use THE
INSPECTOR from Omega Microware. The Inspector is basically a
sector editor program with same really nice features which come
in handy when deprotecting programs. To use The Inspector, we
just reset out of a program and into the monitor, and type C080 N
DSOOG. Now The Inspector is running without disturbing anything
in memory outside of what normally gets disturbed upon hitting
reset.

Besides being a sector editor, The Inspector has a very useful
FIND conunand which enables us to find any string of bytes in
memory or to locate them on a disk. This can help us find where a
particular routine is being called from, or to help find the
starting address of a program, etc. Also, The Inspector has a
free sector map, removes DOS from a disk, does nibble reads of
protected disks, displays b~es in HEX or ASCII, reads half
tracks, and compares or ver1fies disks. It also lias unlimited
uses in snooping and changing memory and disks.

The Inspector is VERY useful, especially in conjunction with its
partner, WATSON (also from Omega Microware). It is the most
powerful and well used utility I have. And since it is on my ROM
card, it is always available without disturbing mother board
memory. This is why it is so useful. If we had to load it in from
disk like any other program, it would be just like any other
sector editor to a large extent.

Ask around and try and find someone with the Inspector and Watson
code saved in a Bfile so you can burn your own Inspector EPROM
and plug it into your ROM card. If you buy the Inspector, BE SURE
you tell Omega when buying The Inspector that you want it in 2716
EPROM form if you are planning on using only 2716 EPROMs on your
ROM card, instead of 9316's.

WHERE Do I PUT IT?:

Now that you have a ROM board, what slot should you put it in?
Generally, the conventional slot is slot zero. But, I am sure
many of you have RAM cards in slot zero. It is probably best 99

-57-

12:49 PM

o

o

o

Mar 6, 1985 Apple Rrackers Guide

percent of the time to have your RAM card in slot zero, since
most programs which use RAM cards expect it in only slot zero
(although it has some uses in other slots). So that leaves you
with two choices, put your ROM card in another slot, or play
musical slots when you need the ROM card.

I prefer to put my ROM card in slot two since the card (and The
Inspector) is still always available, but that presents some
problems. The main problem is that after flippi~ the ROM board
switch up to use the old F8 monitor ROM and hi ttl.ng reset, your
computer cannot find APPLES OFT when you boot a disk, it can only
find INTEGER BASIC (assuming you have it on the ROM card). one
way out is to flip the switch back down and hit reset again
before booting a disk. I do not recommend this when deprotecting
a program since now your computer will jump to the reset routine
that was there when you originally hit reset. Of course, there is
a better way.

After reseting into the monitor and just before you boot a disk
you must turn off your ROM card ROMs and turn on the motherboard
ROMs. This is accomplished with a softswitch, much like turning
on the hi-res page. Remember how we activated the Inspector with
C080 N D800G? Well, the C080 turns on the ROM card, so those ROMs
are active, much like typing INT from BASIC. If you type C081
from the monitor, this turns the ROM card ROMs off, and the
motherboard ROMs on. If your ROM card is in another slot, you
need to type the slot number times ten, and add it to C08l. Then
you can boot a disk, and APPLES OFT will be found. Here is a chart
of what you would type from the monitor just prior to booting a
disk (you do not have to do this if your ROM card is in slot
zero):

SIDT

o
1
2
3
4
5
6
7

TURN ON
ROM CARD

C080
C090
COAO
COBO
COCO
CODO·
COEO
COFO

TURN ON
MOTHERBOARD

C08l
C09l
COAl
COBl
COCl
COOl
COEl
COFl

For example, if your ROM card was'in slot two, and you have
reseted into the monitor, type:

*COAl

before you boot a disk to turn on your motherboard ROMs so
APPLESOFT can be found.

Likewise, if you have reset into the monitor and you want to use
the Inspector, type (assuming slot two):

-58-

12:49 PM

o

o

~o~·;
. .

Mar 6, 19S5 Apple Krackers Guide

*COAO N DSOOG

Notice we multiply the slot number by twenty and add it to $COSO
or $COSL

Another alternative is to use DAVID DOS from David Data when you
boot normal DOS 3.3. This DOS is incredible in just speed savings
of loading programs. It will also recognize your ROM card in any
slot (and hence solves our problem), has a relocatable DOS
function to put DOS in your RAM card, has a find command, and has
a disassemble command. If that is not enough, it has a TLOAD and
~ST command which loads and lists text files like BASIC or
binary files1 This alone make DAVID DOS worth the price. The only
disadvantage to David DOS is it does not have an INIT disk
command. To put David DOS on another disk requires using a
program that comes with it.

Of course, if you are booting a disk which does not run under
normal DOS, you can not use David DOS and you must use the first
alternative.

CONCWSION:

This completes our discussion of ROM cards and what configuration
is most desirable. In smmnary, we would like a ROM card with an
old style FS monitor ROM, The Inspector, and ultimately, INTEGER
BASIC and WATSON. Next we will discuss some general methods of
deprotecting single load programs. Next we will discuss some
general methods of deprotecting single load programs.

-59-

12:49 PM

o

o

o

Mar 6, 1985 Apple Krackers Guide

Appendix G.

Memory Move writer documentation.

In hopes of making your job easier in the area of memory moves, I
have written a program that will write the memory moves for you.

After BRUNing the program, you will be asked how many memory
moves you wish to have. Enter the mnnber of moves between one and
eight.

The next prompt will ask at what address the memory move will be
running at. Respond to the address in hex, of course.

You will be asked to confirm your above choices before moving to
the next set of prompts in the program. Type "Y" to proceed, "N"
to re-enter any of the above data.

Next, the program will ask if the move is a "forward" or ,
"backward" move. Respond accordingly. A forward memory move will
take memory from a originate address and move it to a destination
address by taking the lowest address and moving it to the lowest
destination address.

A backwards memory move takes memory from the originate address
plus the length of the move and moves it to the destination page
plus the length of the move. This moves memory in a backwards
fashion.

NOW, you will be asked what is the beginning page number to start
moving memory from. Enter whole pages only and in hex. If you
enter "08", then the memory move will start moving from location
$0800.

The top page to move from will be prompted for next. Enter in
whole page only, and in hex. This page is eXClusive, so if you
enter "20", memory will be moved from $0800 to $1FFF (up to page
$20).

Now you will be prompted for the destination page to move the
memory to. Enter a whole page only and in hex. This will be the
starting page that $0800 to $lFFF is moved to. So if you enter
"60", memory from $0800 to $1FFF will be moved to $6000 to $7FFF.

These prompts will be repeated for the number of memory moves
that you specified.

Lastly, you will be ask what screen pages you want turned on
after the memory moves are done. Your choices are text, lo-res
and hi-res pages one or two, and in full or mixed graphic/text.
Also asked in the address you want to jUl'llp to after the moves and
the screen is set. Enter the starting location of your program,
or the address of the next section of code you want executed.

-60-

12:49 PM

o

o

0·· .. ·
..

Mar 6, 1985 Apple Rrackers Guide

You will now be asked to put a disk in the desired drive and to
enter "1" or "2" for the drive you want the memory move program
saved to. After you enter the prompt, the program will
automatically save the memory move program to that drive.

Remember, the memory move program will only run at the address
specified in the initial ~rampt. If you need a memory move to run
somewhere other than init1ally specified, restart the memory move
writer program. Note that the catalog name of the memory move
written to disk contains the running address of the memory move
program.

-61-

12:49 PM

o

o

o

Mar 6, 1985 Apple Rrackers Guide

Appendix H.

Disabling Minor Disk Access from Single Load Programs.

Many single load programs have a small amount of disk access that
you will have to defeat in order to krak the program into a
single file. I will give you a couple triCks that should help in
your efforts.

Many programs use some minor disk access to write high scores to
the original disk, or to check if the original disk is still in
the drive at some predetermined point. Of course if we want to
krak the program into a in single file, we must defeat this.
Generally, authors use RWTS directly to do any disk access, thus
using RWl'S.

A example is just about all of Penguin's $19.95 arcade games such
as spy's Demise, Crime Wave, The Spy strikes Back, Bouncing
!amungas and others. If fOU carefully examine these programs
(they can all be kraked 1nto a single file with no trouble) you
will find a JMP $BOOO somewhere in the code. This call to RWTS
does the disk access for their games. You can easily defeat the
disk access by replacing the "4C 00 BO" with "EA EA EA".

But if you aren't so fortunate as to find (or know about) this
RWl'S call, there is another way to defeat their disk access. That
is to replace all of RWTS with the byte sequence "18 60". This
represent a "clear the carry" and a "return from subroutine".
This can easily be done with a small routine that you can put in
a single file krak.

Usually, I call this routine before I do any memory moves and
after all disk access. The routine looks like this:

6000-
6002-
6004-
6006-
6008-
600A-
600C-
600E-
600F-
6010-
6012-
6013-
6015-
6017-
6019-
601B-
6010-

AO B7
84 01
AO 00
84 00
A2 60
A9 18
91 00
8A
C8
91 00
C8
DO F5
E6 01
AS 01
C9 CO
DO EO
60

LOY
STY
LOY
STY
LOX
LOA
STA
TXA
.INY
STA
INY
BNE
INC
LOA
CMP
BNE
RTS

#$B7
$01
#$00
$00
#$60
#$18
($00) ,Y

($00), Y

$600A
$01
$01
#$CO
$600A

This routine is relocatab1e (will run at any address) and will
wipe out RWTS ($B700 to $BFFF) with the byte sequence "18 60".

-62-

12:49 PM

o

o

o

Mar 6, 1985 Apple Krackers Guide

The reason we use "18 60" is simple: "18" represents a "clear the
carry", and DOS monitors the carry bit, and if set, it knows
there was a I/O error (obviously we don't want the program to
think there was an I/O error). The "60" returns us to the calling
routine.

This has the effect of letting the program think it did the disk
access, without really doing it. Therefore, the program goes
happily on its way.

The reason we wipe out all of RWTS with this routine is because
we don't know where the calling routine is jumping to in RWTS,
just that it is in the RNTS region of DOS somewhere.

THIS IS A NEAT WAY OF DEFEATING THE DISK ACCESS IN A PROGRAM EVEN
IF YOU DON'T KNOW WHERE THE DISK ACCESS IS ACTUALLY CALLING TO OR
FROM!

Of course, the above routine assumes that RNTS is in its normal
place of $B700 to $BFFF. If it is not, we can change the second
byte of the routine to the starting page of RNTS, and the forth
from last byte to the ending page of RWTS.

For an example, I use a similar routine to defeat the disk access
in "Mating Zone" from Datamost (see the file "MATING ZONE" under
single load protection). In this case, the loader (RWTS) lives
from $400 to $7FF, and I move a sequence of 60's across this
memory range. Then when the program jumps to the loader in the
$400-$7FF range, it encounters a "60" (return from subroutine)
and it immediately returns thinking it did the disk access!

Hope this helps all you novices defeat the disk access in those
single load programs.

-63-

12:49 PM

0········ .. ·•· ..

o

o

Mar 6, 1985 Apple Rrackers Guide

Appendix I.

Using COPYB to krak Thief •

Thief is an interesting game much like the arcade game "Beserk".
Your job is to destroy robots before they destroy you. Although
the qraphics are very good, and the game plays well, the boot is
very long and with much drive head access.

Thief is one of the more difficult applications of COPYB I have
seen. For this reason I am outlining how to krak it with COPYB.

The protection used in Thief is interesting. When you boot Thief,
it seems to have a fairly standard boot, and a BASIC prompt
appears. This tells us that Datamost is using a modified DOS,
most likely with some sort of file structure. The interesting
thing about the boot is after we hear the standard DOS boot
sounds (loading tracks 0 through 2 into $9000 to $BFFF), the disk
reads tracks 4 and 5 very quickly, and then shows us a BASIC
prompt. .

After the game is loaded, I snooped through RWTS to see if
anything looked suspicious. RWTS starts at $B700, so this is the
best place to start. At $B738, there is some interesting code. We
see this code:

B738- A9 OE
B73A- 85 48
B73C- A9 AE
B73E- 85 31

LOA I$OE
STA $48
LOA #$AE
STA $31

The reason this looks suspicious is that locations $31 and $48
get destroyed when you hit reset. This means Datamost is probably
trying to hide something there.

Indeed they are! The two bytes $OE and $AE are the epilogue bytes
used on the Thief disk. What Datamost is doing is hiding them in
volatile locations $48 and $31. The idea is that they store the
epilogue bytes in these two volatile memory location, and when
needed, load from these locations. Now if the inspiring krakist
was to hit reset and try to use COPYB to copy the disk onto a
normal DOS disk, they could not read the disk. This is because
the locations that hold the epilogue bytes ($48 and $31) were
changed when you hit reset. This is the secondary protection used
on Thief to keep the krakist from deprotecting Thief easily.

The primary protection used is a nibble count on tracks 4 and 5.
If you examine the code at $9084, which is the start of the DOS
warmstart routine, you will see a jmnp to $AE8E. In normal DOS
(and Thief's DOS) the routine at $9084 is the routine that gets
jumped to after DOS has been loaded. Normally this runs the hello
program on a disk. Instead, the code at $AE8E loads in track 3
sector $9 and sector $A into $8000 to $81FF. It then jumps to
this code at $8000. The code at 8000 does an indirect jump to

-64-

12:49 PM

0

0

o

Mar 6, 1985 Apple Krackers Guide

$8104, which is where the nibble count actually starts.

This nibble count checks track 4 and 5 for the byte sequence $OB
$AD on the disk. It starts countinq the nibbles on the disk and
.tores them at locations $81BA and $81BB. The code looks like
this (formatted in 80 columns):

810C- A9 04 LOA '$04 : load accum with track ,
810E- 20 55 81 JSR $8155 :jump to nibble count
8111- A9 05 LOA '$05 : load accum with track ,
810E- 20 55 81 JSR $8155 :jump to nibble count
•
•
•
8155- A2 60 LOX '$60
8157- OA ASL Seek the drive head.
8158- 20 08 BA JSR $BA08 -----------------------------------
815B- A9 00 LOA '$00
8150- 80 BA 81 STA $81BA Clear the nibble count bytes.
8160- 80 BB 81 STA $81BB
8163- BO 8E CO LOA $C08E,X.------------~----------------------
8166- BO 8C CO LOA $C08C,X:Turn the drive on
8169- 10 FB BPL $8166 : and check if the disk is present.
816B- C9 FF CMP '$FF • · 8160- DO F7 BNE $8166 • •
816F- EA NOP • •
8170- BO 8C CO LOA $C08C,X:
8173- 10 FB BPL $8170 • · 8175- C9 FF CMP '$FF • · 8177- DO ED BNE $8166 • •
8179- . EA NOP :-----------------------------------
817A- BD 8C CO LOA $C08C,X:Read the disk
8170- 10 FB BPL $817A :and check
817F~ C9 DB CMP '$OB : for the byte $OB.
8181- FO OB BEQ $818E :If found, branch to $818E.
8183- EE BA 81 INC $81BA :Else increm. 1st nibble count byte
8186- DO F2 BNE $817A :If 1st nibble byte not 0 qoto 817A
8188- EE BB 81 INC $81BB : Increment 2nd nibble count byte.
818B- 4C 7A 81 JMP $817A :Jump to $817A
818E- EA NOP :-----------------------------------
818F- BD 8C CO· LOA $C08C,X:Read the disk
8192- 10 FB BPL $818F :and check
8194- C9 AD CMP '$AD :for the byte $AD.
8196- FO 03 BEQ $819B :If found, branch to $819B.
8198- 4C 00 C6 JMP $C600 :Else reboot and start over.
819B- 60 RTS :-----------------------------------
.rm72

If the byte sequence $OB $AE is not found, the disk will reboot
and try allover aqain •. This protection is probably sufficient to
make nibble copies of Thief difficult.

Now that we have determined the primary and secondary protection,
how do we defeat it?

-65-

12:49 PM

o
liar 6, 1985 Apple Krackers Guide

The easiest way to deprotect Thief would be to use CopyB. The
problem, as I mentioned before, is that Thief's RWTS tries to
load the epilogue bytes fram volatile memory locations. But we
can defeat this by putting the actual epilogue ~es into the
RWTS instead of having it load them fram other locations. To do
this, after the Thief DOS is loaded. type:

*B902:C9 DE
*B90C:C9 AE
*B947:C9 AE
*B967:C9 AE
*B971:C9 DE
*B99B:C9 DE

Now we may use COPYB to deprotect Thief. You will notice, when
done, that the startup program is named HELID, and running this
program will load and run Thief.

It is important to note that we do not have to concern ourselves
with the nibble count on tracks 4 and 5 since it is called from
Thief's DOS, and not the actual program. Since we will be using
normal DOS 3.3, the nibble count is no longer a problem.

To use COPYB to deprotect Thief, do the following:

1) Boot Thief and reset into the monitor after the BASIC prompt
appears. o 2) Make these changes to Rwrs by typing:

*B902:C9 DE

o

*B99C:C9 AE
*B947:C9 AE
*B967:C9 AE
*B97l:C9 DE
*B99B:C9DE

3) Move Rwrs down to $8000 by typing:

*8000<B700.BFFFM .

4) Boot a 48K DOS 3.3 slave disk and type:

]RUN COPYB

5) Respond to the parameter questions as follows:

sectors on disk: 11
starting track to read from: 6
Ending track to read to: 34
continue reading on error: YES

6) Copy the Thief disk to a blank disk.

-66-

12:49 PM

Mar 6, 1985 Apple Krackers Guide 12:49 PM

O Thief is now deprotected and may be RUN, copied to any other DOS
. .. 3.3 disk, or further examined.

o

o
-67-

o

o

o

Mar 6, 1985 Apple Krackers Guide

Appendix J.

Deprotecting Robotron from Atarisoft.

Atari is certainly a name that everyone is familiar with when it
comes to video games. Atari has successfully marketed other
company's games (after buying the rights, of course) for many
home and personal computers. And finally they have started
marketing games for the Apple.

This is good for us, the Apple user, since now we can enjoy many
of the favorite arcade games on our Apple. Atari has also blessed
us with weak copy protection, making most of the new Atari
releases easily to krak.

A case in point is Robotron. Robotron 2084 is the best
implementation of the William's arcade game I have seen for the
Apple. My hat is off to the author of the Apple version, who ever
it is (for some reason Atari leaves the author's name out of the
game!?). But even though the game is well done, not much time was
put into protecting it from prying eyes, especially since copy
protection has evolved so far on the Apple ••••

Atari uses a slightly modified DOS. This is evident from the
conventional boot sounds and the appearance of an APPLESOFT
cUrsor at the bottom left of the screen when booting the disk.

Just for fun, after booting the disk, type CTRL C. This will
prevent the basic HELU> program from running after DOS is loaded
on an conventional DOS 3.3 disk. If you try this on Robotron, you
will find the same thing ••• the computer beeps, the drive stops
spinning and you are placed in APPLESOFT. You may now list the
BASIC program with the command LIST. This reveals a one line
program that reads:

10 HOME: CLEAR: PRINT CHR$ (4) :
"BNROBOTRON"

From this program we now know there must be a catalog track since
we can see that some DOS command is used (called BN) to run the
file ROBO'l'RON. We· know that BN is some kind of DOS conunand since
preceding it is a CHR$(4) which tell APPLES OFT that the next
command is a DOS command.

So naturall¥, the next thing to do is to type "CATAIOO". Well, we
get disappoJ.nted with a SYNTAX ERROR. The conclusion we can draw
from this. is that someone at Atari was thinking enough to change
the DOS commands from the normal ones (they probably used DOS
BOSS from Beagle Brothers, no doubt).

So the next thing to do is to boot a normal DOS 3.3 disk and then
put the Robotron disk in a drive and now try typing "CATAIOO".
This exercise provides us with the rewarding message "I/O ERROR",
but this is to be expected. Atari has made. the disk uncopyable by

-68-

12:49 PM

o

o

o

Mar 6, 1985 Apple Rrackers Guide

changing the epilogue bytes on the disk from OE AA EB to a
perverted OE AS FE. This can be seen by using the nibble read
commands from either THE INSPECTOR from omega Software or NIBBLES
AWAY II (if you don't have either of these fine utilities, don't
worry about it though).

For those of you who don't know what "epilogue bytes" are, I will
discuss it here for you ••••

First we must discuss the formatting of a. DOS 3.3 disk. Every
normal DOS 3.3 disk has 35 tracks (0 through 34) and 16 sectors
(0 through 15). How the tracks are located on the disk is
hardware dependent, but how the sectors are located is software
dependent, hence the name "soft sectored". Since software
determines the sectoring, it was easy for Apple to change from 13
sector format to 16 sector format back in 1981. This convenience
is also why it is so easy to protect the Apple disk format. For
DOS to find the sector it is looking for, It must rely on some
road markers. Every sector has what is called an "Address field".
The address field is a unique set of bytes on every sector that
lets DOS know the current disk volume, track, and. sector number.
It also has a checksum byte to determine if some damage has
occurred to the sector making it unreadable. The unique set of
bytes that represent the address field are formatted as such:

prologue vol trk sctr chksm epil.

05 AA 96! XXYY ! XXYY 1 XXYY 1 XXYY 1 DE AA EB

When ever DOS sees the unique set of bytes D5 AA 96, it knows the
above information follows. Similarly, there is a "Data field". It
has its own set of unique bytes to alert OOS to its where abouts:

prologue chksm epil.
-------------------~-.-----------------
05 AA AD 1 PROGRAM, DATA, ETC. 1 XX 1 DE AA EB

------------~-------------------------

When ever DOS sees the unique set of bytes 05 AA AD it knows that
a program or some kind of data follows. This information is on
every sector of a normal DOS 3.3 disk.

If anyone of the prologue bytes are change, normal DOS would not
be able to locate the Address or Data fields and an I/O error
would result.

If the epilogue bytes are not what they should be, an I/O error
will result. This is not due to their uniqueness, since DOS will
read whatever two bytes follow the information fields and use
them for verification.

Therefore, two easy things to do in protection is to alter the
Address field and/or the Data field prologue bytes, and alter the

-69-

12:49 PM

o

o

Kar 6, 1985 Apple Krackers Guide

protected OOS accordingly to locate these unique bytes. Now
normal DOS can not find the Address field, so it does not know
what sector it is trying to read, or it cannot read the data
field because it cannot find the unique set of bytes that
designates the data. So COPYA will not copy the protected disk.

What Atari has done is changed the epilogue bytes. This is really
a minor chanqe since normal OOS can still find the address field
(so it knows what sector it is looking at) and the data field (so
it knows where the data is), but ~ou still get an I/O error since
the computation of the checksum w1ll not be zero.

Well, for us to read the disk from normal DOS, all we must do it
to defeat the routine that detects a checksum error. If we do
this, we will not get an I/O error and we will be able to read
the disk from normal DOS 3.3. The routine that does this lives at
$B942. If an error exists, the carry byte is set and DOS say "bad
boy" and scolds you with an I/O error. So changing location $B942
from $38 to $18 to cure this problem!

Now we may catalog the Robotron diS'k. Upon doing this we find two
file, RUNNER and ROBOTRON. RUNNER is the hello program and is
unneeded (and also unusable without modification since Atari has
change the DOS commands as follows: CATAIOO has been removed.
BWAD is BO. BRUN is BN.). So get out FlO from your OOS 3. 3
System Master and BRUN FIO. Now transfer the file ROBOTRON to a
normal DOS 3.3 disk and you're all done!

To re-cap the instructions used to deprotect Robotron:

1) Boot normal DOS 3.3

2) Initialize a disk with normal DOS 3.3 by typing:

]FP
]INIT HELID

3) To enter the monitor, type:

]CALL-15l

4) Ch~ge the error detection routine by typing:

*B942:18

5) Insert your 008 3.3 System Master into a drive and type:

*BRUN FlO

6) Use FlO to transfer the file ROBOTRON from the original
Robotron disk to your freshly initialized OOS 3.3 disk.

7) BRUN the file ROBOTRON on your o normal DOS 3.3 disk to play Robotron.

-70-

12:49 PM

o

o

Mar 6, 1985 Apple Jrackers Guide

NOTE: This technique also works for some other Atari releases
like PAC-MAN, CENTIPEDE and some others.

-71-

12:49 PM

o

o

Mar 6, 1985 Apple Krackers Guide

Whenever a modified DOS is used, the first thing you should do is
to boot a normal DOS disk and defeat the DOS error checking. ooS
checks the carry bit to determine if any errors have occurred in
a disk access. If the carry bit is clear, ooS assumes that
everything is ok and just keeps on going. The routine that gets
jumped to if an error is suspected is at $B942. This simply sets
the carry bit and returns to the calling routine. To defeat the
error checking, we only have to change $B942 to $18, instead of
$38. This simple mod will allow us to copy previously uncopyable
disks with COPYA.

All that is left to do is to change their OOS just slightly to
live in a normal OOS 3.3 environment. At track 0, sector 3,
change byte $91 from $DF to $DE. What Datamost has done to make
their disk "uncopyable" is to change the epilogue byte from the
normal $DE to $DF. This will sufficiently confuse copy program,
preventing easy copies. (If you do not know what is meant by an
"epilogue" byte, please refer to BENEATH APPLE OOS by Don Worth
and Pieter Iechner. This manual is indispensable for further
understanding of ooS.) Also, byte $42 must be changed from $38 to

-72-

12:49 PM

o

o

o

Mar 6, 1985 Apple Rrackers . Guide

$18 on the same track and sector. This is an insurance policy,
more or less, that everythinq will work correctly in the normal
DOS 3.3 environment. What you are actually doinq is chanqinq byte
$B942 in DOS like we did before to make the COPYA copy, but you
are doinq it directly to the disk for permanence. These two mods
are all we need to do to make Pandora's Box a straiqht COPYA
disk.

In cookbook fashion, here are the steps:

1) Boot normal DOS 3. 3

2) Type:

JCALL -151

3) Chanqe byte $B942 from $38 to $18 by typinq:

*B942:18

4) Type:

JRUN COPYA

5) Copy Pandora's Box to a blank disk.

6) Re-boot normal DOS 3.3 and run your sector editor and ch.anqe
the followinq bytes:

TRACK

00
00

SECTOR

03
03

BYTE

42
91

CHANGE
FROM TO

38
OF

18
DE

7) write the sector back out to your copya disk version of
Pandora's Box.

-73-

12:49 PM

o

o

o

Mar 6, 1985 Apple Krackers Guide

Appendix L.

Kraking Jungle Hunt from Atarisoft.

Jungle Hunt is a classic example of protection using modified
address and data epilogue bytes. Of course, we know that it is
easy to copy a disk with modified epilogue bytes by defeating the
DOS error checking routine in normal DOS (at $B942) and. copying
the disk with COPYA.

Now you may ask how I figure this out (actually, a very good and
common question for novice krakers). Notice how Jungle Hunt
boots, you hear the normal DOS boot sounds and a BASIC prompt
appears on the screen. This is a dead giveaway that a modified
ooS is used. So the next step I always try is the easiest: defeat
the DOS error checking routine at $B942 and try copying the disk
with COPYA. •

with Jungle Hunt, it worked, as you will find it works with many
protected programs that use a modified DOS. To do this, type:

]CALL-151
*B942:18
*RUN COPYA

The whole Jungle Hunt disk copies with no problems. So now, after
the copy is complete, CATALOG the disk and see if it uses a
normal DOS file structure. You will find it does toa certain
extent, and you will see a text file and a binary file. The text
file is the "Hello" program, which EXECs the binary file named
flA". (This is easy to see if you load track 1, sector 9 with a
sector editor and examine bytes $75 to $92. These bytes hold the
"hello" program's name.) This binary file "A" uses second stage
ooS to read in the game (bload the file and try and figure it
out).

Now all we must do is to normalize the present DOS on the disk to
work in our normal DOS environment (our copy now has standard
epilogue bytes). Not being much. of a glutton for punishment,
instead of fooling with their DOS, I choose to try and use normal
OOS 3.3, with some small modifications.

So whip out the DOS 3.3 System Master and BRUN MASTER CREATE. Now
put DOS on the copy of Jungle Hunt, and use "A" as the hello
program name. Now all we must do is to change the new DOS so it
can have a binary program fora "Hello" program.

So now get your sector editor running and change track 0, sector
D, byte $42 from $06 to $32 and your all done!

In sUll1Jlla~, what we have done is to make a COPYA copy of the disk
by defeatl.ng the normal OOS error checking, put normal DOS on the
disk and lIlade "A" the hello program.

-74-

12:49 PM

o

o

o

Mar 6, 1985 'Apple Krackers Guide

In cookbook fashion, here are the
steps:

1) Boot your DOS 3.3 System Master.

2) Enter the monitor by typing:

]CALL-151

3) Disable the DOS error checking routine at $B942 by typing:

*B942:18

4) Run COPYA and copy the original Jungle Hunt disk by typing:

*RUN COPYA

5) After' the copy is complete, put normal DOS on the copy of
Jungle Hunt. To do this, boot the DOS 3.3 System Master and type:

] BRUN MASTER CREATE

6) Use "A" as the Hello program name and copy DOS to the Jungle
Hunt disk.

7) Run your sector editor and change track 0, sector D, byte $42
from $06 to $32 of the Jungle Hunt copy.

8) Write the sector back out to the copy of Jungle Hunt.

And your all donel

-75-

12:49 PM

o

o

o

Mar 6, 1985 Apple Krackers Guide

Appendix M.

Krald.ng Zaxxon from Datasoft.

(Please note: There has been a new release of Zaxxon from
Datasoft, and this is the one I will be primarily discussing,
although the same protection was used on both versions. You can
tell if you have the new version because it has an option to use
the Mockingboard with it. If your Zaxxon boots and asks
'MOCKINGBOARD IN SIDl' 4 YIN?', you have the new version. In .
addition, I have seen two different protections used on the newer
versions of Zaxxon. I will give details on the deprotections of
all versions, including the older version of Zaxxon.)

The first thing to notice is the boot of Zaxxon. Listen to your
disk drive as the game boots and you can hear the drive arm swing
out to an outside track and then swing back in and read in the
game. This is what is loosely know as a 'nibble count' or
'checksum' routine. If when the outside track is read, a byte
doesn't match a benchmark it should, the game will clear memory
and reboot. Usually, the only thing involved in deprotecting a
program that isn't a single load and that has a 'nibble count',
is to find the routine that does the check and jump around
it ••• usually about the only way to find this routine is to
(yech 1) trace the boot.

Boot code tracing is a method of tracing how a program gets from
your disk, to memory. It does not magically happen all at once,
but in stages, which we can trace and examine, and hopefully
understand (hence the name 'boot code tracing'). The theory of
boot-code tracing is to follow the boot process one step at a
time to see where is takes you by altering the code to prevent it
from running away from you. Yes, it is advisable that you
understand assembly language, since the code that boots the disk
is in many cases, intentionally misleading.

This process is based upon the law that track zero, sector zero
must always be read by the disk controller card into page 8
($800-8ff) of memorr. after this, depending on the complexity of
the protection, it 1S sometimes difficult to understand what goes
on in the rest of the load.

In a normal slave disk boot, there are three stages of a boot
starting with the code at $C600-C6FF in the disk controller card.
This codes loads in track $0, sector $0 into $800-$8FF, which in
turns loads in track $0 sector $0 through sector $9 into
$B600-BFFF. This code loads in track $0, sector $c through track
$2 sector $4 into $9DOO-$B5FF and finally your hello program is
run. In summary:

STAGE CODE DESTINATION JUMPS
NUMBER IDCATION IDCATION TO
---------------------------------------o $C600-C6FF $0800-08FF $0801

-76-

12:49 PM

-------------------------------------~-.. ---.. -

o

o

o

Kar 6, 1985 Apple Krackers Guide

1
2

$0801-08FF $B600-BFFF $B700
$B600-BFFF $9DOO-B5FF RUN

PROGRAM

Now, in order to chanqe the code in the boot so it doesn't run
away from us, we can either alter memory or alter (a copy of) the
disk. If we defeat the dos error checkinq routines, we can copy
the Zaxxon disk with COP¥A. Of course it wont' run, because of
the 'check' routine and some other incompatibilities with normal
DOS 3.3, but we can read and write to the copy easily. To defeat
.the error checkinq, enter the monitor with CALL-15l and. enter:

*B942:l8

Whenever DOS encounters an error it jumps to a routine at $B942
that sets the carry bit and returns. The carry bit is a flaq to
DOS that there was an error, to stop whatever it was doinq, and
print a worthless messaqe out to the user. If we defeat this
routine, we can fool DOS and read the entire Zaxxon disk. We can
now copy the Zaxxon disk and examine the data on it. So put your
DOS 3.3 System Master in the drive and run COP¥A. When the prompt
for source drive is asked, hit ctrl C. This will break you into
BASIC. Now type the followinq:

CALL-151

*3A1:18
*302:17
*35F:17
*3DOG

70
RUN

This will make a chanqe to COP¥A.OBJO and delete line 70 of the
Applesoft part of COPYA (to prevent loadinq in COPYA.OBJO and
writtinq over the chanqe just made). Now select desired drives
and copy Zaxxon. Note: Zaxxon only lives from track $0 to track
$16. When track $17 is encountered, so we can chanqe COP¥A so it
only reads up to -track $17. After the copy is made, make another
copy of the duplicate of Zaxxon just made. Label this one 'WORK
ZAX I and the other copy 'COPYA ZAX I •

Now put these two copies aside for a moment. The next step is to
trace the boot. First enter the monitor with CALL-151 and clear
out memory with this command:

*800:0 N 801<800.95FFM

Now, to start the boot we need to run the code in our disk
controller card, but stop it before it runs away. We can not
chanqe the code in ROM (Read only Memory), but we can copy it
down to RAM (Random Access Memory) and chanqe it. Use this
command from monitor to do this:

-77-

12:49 PM

o

o

o

Mar 6, 1985 Apple Krackers Guide

*9600<C600.C6FF.M

Now we can change the boot code so that is loads in track $0,
sector $0 but does not execute it. At location $96F8 you will see
a JMP $801. This starts the next boot process (refer to table) •
Now we can change this to jmp $FF59, which will jump to the
monitor. So, from monitor type:

*96F8:4C 59 FF

Now execute the code with:

*9600G

And the drive will spin then the apple will beep and you will see
the '*' cursor. From our table we know this code loaded into
$801. (To stop the drive from spinning, enter *COE8 from the
monitor. Also, to turn off the high res pa~e enter *C054 and
*C051.). So now examine the code at $801 w~th the command:

*801L

Upon examining the code, we find it is fairly normal with some
exceptions:

0801-
0803-
0805-
0807-
0809-
080A-
080B-
080C-
0800-
080F-
0811-
0813-
0815-
0816-
0819-
081C-
081F-
0822-
0824-
0827-
0829-
082C-
082F-
0831-
0834-
0836-
0839-
083C-

A5 27
C9 09
DO 18
A5 2B
4A
4A
4A
4A
09 CO
85 3F
A9 5C
85 3E
18
AD FE 08
60 FF 08
80 FE 08
AE FF 08
30 15
BO 40 08
85 3D
CE FF 08
AD FE 08
85 27
CE FE 08
A6 2B
6C 3E 00
EE FE 08
AD 55 CO

LOA
CMP
BNE
LOA
ISR
ISR
ISR
ISR
ORA
STA
LOA
STA
CLC

. LOA
ADC
STA
LOX
BMI
LOA
STA
DEC
LOA
STA
DEC
LOX
JMP
INC
LOA

$27
#$09
$081F
$2B

#$CO
$3F
#$5C
$3E

$08FE
$08FF
$08FE
$08FF
$0839
$0840,X
$30
$08FF
$08FE
$27
$08FE
$2B
($003E)
$08FE
$C055

1-------

1 N
1
1 0

R

! M
1
1 A
1
1 L

1 0

1
1

o

S

1-------
lTURN ON

-78-

12:49 PM

0

Mar 6, 1985

083F- AD 50 CO
0842- AD 57 CO
0845- A2 70
0847- 9A
0848- 4C 84 08

• • • • • •
• • • • • •
• • • • • •

0884- M 20
08B6- 85 1B
08B8- AD 52 CO
08BB- M 60
08Bo- 80 06 07
08CO- 6C F8 08

Apple Kraekers Guide

LOA $C050 lHI-RES2
LOA $C057 1------
LOX '$70 I???????
TIS I???????
J.MP $0884 1-------

LOA '$20 1
STA $lB 1
LOA $C052 1
LOA '$60 1
STA $706 1-------
J.MP ($08FD) lJUMP TO

1$8000
1-------

The first part of the code from $801 to $83B is lifted verbatim
from a DOS 3.3 slave disk. This code loads in track $0 sector $0
through track $0 sector $09 into $7FOO-$88FF. (This is revealed
from location $8FE, which is one higher than the first page
loaded into. The byte at $8FF is one less than the number of
sectors to be loaded). The next piece of code turns on the hi-res
screen. The last part of code, before the jump to $8B4, looks
innocent, but really isn't. They load the X-register with $70 and
transfer it to the stack pointer. To understand the complications
of this, you must understand how the computer keeps track of
where to return to after a RTS (Return From Sub-routine). When O the 6502 encounters a JSR (Jump Sub-Routine), it store the

" present address on the stack so it knows where to return to when
a RTS is encountered. This 'can be used to obscure code from
unwanted eyes. For example, say we want to go to $9600. We can
load the stack with $95 and then $FF by using the PHA op-code
(Push Accumulator on Stack). When a RTS is encountered, the two
last bytes are pulled from the stack, incremented by one (to
$9600), and jumped to. Alternatively, we can change where the
pointer on the stack is pointing to and make it point to where we
want to go. Keep this in mind when you find aRTS.

At $884 a few zero page locations are loaded, and then there is
an indirect jump to $8000 (through $8FD). To see the code at
$8000, we need to load the next stage of the boot, but stop it
before it can execute. to do this, run your sector editor and
change track $0,' sector $0, byte $CO to 4C 59 FF on the disk
labeled 'WORK.ZAX'. This will jump us to the monitor before it
can execute the code at $8000. Now write the sector back out to
the disk and boot the disk. After a moment, we will beep into the
monitor and we can examine the code at $8000. Do this with the
command:

*8000L

and the code will look like this:

o
-79-

12:49 PM

0

o

Mar 6, 1985 Apple Krackers Guide

8000- AO 09 LOY #$09 1-------
8002- A2 00 LOX #$00
8004- 8A TXA M
8005- EE 00 80 INC $8000 E M
8008- EE 10 80 INC $8010 M 0
800B- BO 18 7F LOA $7F18,X 1 0 V
800E- 90 7E 00 STA $007E,X 1 R E
8011- CA OEX 1 Y
8012- 00 F9 BNE $800B
8014- 88 OEY
8015- DO EE BNE $8005 1-------
8017- 60 RTS 1 JUMP

!THRU
!STACK
1-------

Notice the RTS at $8017. Remember, we jumped, not jumped
sub-routine, to everywhere we got to, so there is nothing on the
stack to return to! Well, yes there is! The memory move moves
memory from $7F19 to $8718 down to $7F to $087E. This moves
memory across page $1, which is the stack! Remember, the stack
pointer is set to $70 in the BOOT1. So after the memory move we
do a RTS. Well the stack is pointing at $170 which is now $07 and
$65 after the memory move. That is our next jump (plus one) for
the finally stage of the boot!

Oatasoft has added a finally bit of protection in that the next
jump is across the text page, which of course changes when we
exit the program in any manner. But we can merely move memory to,
say $107E, and examine it to see what the next load does. To do
this change $8010 to 10 and execute the memory move. Do this as
follows:

*8010:10 N 8000G

NOW $1766 IS EQUIVALENT TO $766. SO
TYPE:

*1766L

And examine the code. It should look as follows:

LOA $2B
STA $020E
LOA #$20
NOP
LOX $2B
JSR $021F
LOY #$20

G C
o 0

! 0 0
o E

1-------
!
!NIBBLE
!COUNT/
1 CHECK
1-------

LOA #$16 G C

-80-

12:49 PM

o

o

.Kar 6, 1985 Apple Krackers Guide

1706- 80 11 02
1709- A9 00
170B- 80 16 02
170E- 4C 9A 01

STA $0211
LOA #$00
STA ·$0216
JMP $019A

1
1
!
1

0 0
0 0
0 E

1-------

If you sit and look at this code you will find the offending
• nibble count' or • checksum • starts at $1773 and goes to $17031
This is what we need to know to defeat it. All we need to do is
to jump around this. We can do this by:

*l773:4C D4 07

The other loads and stores of the accumulator are parameters for
their loader. For further understanding, here are the parameters:

$211 = High track number to start loading from.

$212 = High sector number to start loading from.

$21E = Number of pages (sectors) to load.

$21B = starting page to load at.

JSR $lE9 = start the load.

The last thing to do is to find where on the disk this code is
and change it •. Most good sector editors (like 'THE INSPECTOR')
have locate routines so you can find a pattern of bytes on a
disk.

One final note: Now that we know where the check routine lives we
can defeat it. But we also must change the epilogue bytes to
normal DOS 3.3. Datasoft uses $CC for their epilogue bytes where
normal DOS uses $OE. If you are familar with loaders and RWTS you
can find it in their loader. The table is in page $4 (in page $14
for us).

With this information in hand, here is a step-by-step procedure
for deprotection Zaxxon (Mockingboard version only) :

1) Run COPYA from your DOS 3.3 System Master. After it is loaded
and asking what drives you want to use, press ctrl c to exit to
BASIC.

2) ~151 to enter the monitor.

3) *B942:18
*3Al:18
*302:17
*35F:17
*300G

70 <return> To delete line 70 of COPYA.

-81-

12:49 PM

Mar 6, 1985 Apple Rrackers Guide

4::) 5) Type run to run OOPYA. Choose appropriate drives and slots.

6) Run your sector editor and make the following changes: (note,
you may have to try all of the following changes depending on
when your Zaxxon was released. one of them will work.)

o

o

CHANGE CHANGE
TRACK SECTOR BYTE FROM TO

$00 $04 $4F $CC $OE
$00 $04 $50 $00 $EA
$00 $04 $51 $AE $EA

$00 $07 $00 $AO $4C
$00 $07 $OE $20 $D4
$00 $07 $OF $84 $07

7) write the sector back out to disk.

A final note: the Zaxxon in the arcades has five planes and our
Zaxxon only gave us threel If you want more planes, change byte
$17 on track $09, sector $08 with your sector editor to the
number of planes you want (between $00 and $FF). I choose to
change this byte to $03. This gives you four planes which is a
nice compromise between the five you get in the arcades and the
three that Datasoft gave us. This modification applies to all
versions of Zaxxon.

For older versions of Zaxxon without the Mockingboard:

1) Follow the same instructions as above but instead change these
bytes with your sector editor:

CHANGE CHANGE
TRACK SECTOR BYTE FROM TO

$00 $07 $00 $A9 $4C
$00 $07 $01 $01 $CO
$00 $07 $02 $48 $08

$00 $04 $4F $CC $OE

2) write the sector back out to disk.

For mockingboard versions of Zaxxon in which the previous method
did not work:

1) Follow the same instructions as above but instead change these
bytes with your sector editor:

CHANGE CHANGE
TRACK SECTOR BYTE FROM TO

-82-

12:49 PM

o

o

Mar 6, 1985 Apple Krackers Guide

$00
$00
$00

$00

$07
$07
$07

$04

$1F
$20
$21

$4F

$20
$3E
$02

$CC

2) write the sector back out.

Appendix N.

$4C
$CO
$08

$DE

Kraking Electronic Arts' cut and Paste, One on one, and the Last
Gladiator.

Electronic Arts' recent releases have all used about the same
protection. The protection has been to change the data field
prologue bytes from a normal "05 AA AD" to a modified "05 BB CF"
on tracks $03 to $20. Tracks $00 to $02 contain the modified RWTS
to read the new data field bytes, and hi-res title page. These
three tracks are unprotected normal DOS 3.3.

In addition, Electronic Arts uses a nibble count on track $22,
and track $21 is unused.

Remember that the prologue data field bytes tell DOS where the
data starts on a sector. This is usually identified by the unique
sequence of bytes "05 AA AD". Electronic Arts has modified these
to "05 BB CF" so normal DOS can not tell where the data starts,
and hence an I/O error occurs when copying with COPYA (or many
bit copiers for that matter).

So to deprotect the new Electronic Arts releases, we must:

1) Read the original disk with a data field prologue bytes of "05
BB CF".

2) write to a normal DOS 3.3 disk with a data field prologue
bytes of "05 AA AD".

3) Change the modified Electronic Arts' RWTS to read a normal "05
AA AD" data field prologue bytes.

4) Disable the nibble count.

Easy enough, right? So we can use ADVANCED COPYA to read and
write the modified data field bytes, and then use a sector editor
to disable the nibble count and change their RWTS. Here is the
procedure:

1) Boot normal DOS 3.3 and run ADVANCED COPYA by typing:

]RUN ADVANCED COPYA

2) Use the default parameters to copy tracks 0 to 2 to a blank c::> disk (just press RETURN for all the prompts except ending track;

-83-

12:49 PM

o

0

0

Mar 6, 1985 Apple Rrackers Guide

enter "2").

5) This will copy track 0 to 2 of the original Electronic Arts'
disk to your blank disk. When done, hit "S" to start over and
change these parameter:

Use Foreign RWTS: N
starting track: 3
Ending track: 32
Read Half Tracks: N
continue Reading on Errors: Y
Disable DOS error checking: Y
Change address/data headers: Y
Data Prologue Bytes: $D5 $BB $CF

(Don't forget to enter a "$" before any HEX inputs).

6) Copy the orginal disk (don't format the destination disk or
you'll destroy tracks 0-2).

7) After the copy is done, reboot DOS 3.3 and run your sector
editor. Make these changes to your COPYA copy:

cut and Paste
trk sct byte from to

2 3 $47 $BB $AA
2 3 $51 $CF $AD
1 C $05 $AO $18
1 C $06 $20 $60
1 C $68 $20 $18
1 C $69 $A2 $60
1 F $68 $20 $18
1 F $69 $A2 $60
1 F $6A $A1 $EB

The Last Gladiator
trk sct byte from to
------------------~---------1 F $68 $20 $18

1 F $69 $A2 $60
1 F $6A $A1 $EB
1 C $05 $AO $18
1 C $06 $20 $60
1 C $68 $20 $18
1 C $69 $A2 $60
2 3 $47 $BB $AA
2 3 $51 $CF $AD
1F E $05 $AO $18
1F E $0.6 $20 $60
1F E $68 $20 $18
1F E $69 $A2 $60
1F F $05 $AO $18
1F F $06 $20 $60

-84-

12:49 PM

Mar 6, 1985 Apple Krackers Guide 12:49 PM

0
IF F $68 $20 $18
IF F $69 $A2 $60

one on one
trk sct byte from to

1 F $68 $20 $18
1 F $69 $A2 $60
1 F $6A $A1 $EB
1 C $05 $AO $18
1 C $06 $20 $60
1 C $68 $20 $18
1 C $69 $A2 $60
2 3 $47 $BB $AA
2 3 $51 $CF $AD
9 2 $lF $01 $FD
C 4 $05 $AO $18
C 4 $06 $18 $60
C 4 $07 $88 $C8
C 4 $DC $AO $18
C 4 $DD $FF $60

Now your all donel Don't forget to write the sectors back out to
your copya copy as you change them.

o

o
-85-

o

o

Mar 6, 1985 Apple Rrackers Guide

Appendix o.
I<raking Roundabout from Datamost in a full disk format.

Roundabout is one of those games that uses a modified DOS for
protection, but borderlines on being a single load protection
program. This is because after the game is loaded, there is only
some minimal disk access that can be defeated, allowing use to
krak Roundabout into a single file.

But to have all levels of the game, the program must be in a
whole disk format. Also, the protection is interesting and well
worth discussion for educational purposes.

Roundabout uses second stage DOS to
load in the game almost exactly as
described in chapter 7. Datamost has
copied track 0, sectors 0 to 9 from a
48K DOS 3.3 slave disk and has slightly
modified this RWTS to add some copy
protection.

The bulk of the protection is to use
modified data and address epilogue
bytes. But to be really tricky, they
use different epilogue bytes for
different tracks!

If you compare track 0, sectors 0 to 9
of Roundabout and a normal DOS 3.3
slave disk, you can find this routine
that determines which epilogue bytes to
~se for which track:

BEAF- 85 2A STA $2A
BEB1- 86 2B STX $2B
BEB3- A9 DE LOA #$OE (1)
BEB5- 80 9E B8 STA $B89E
BEB8- 80 AE BC STA $BCAE
BEBB- 80 35 B9 STA $B935
BEBE- 80 91 B9 . STA $B991
BEC1- AS 2A LOA $2A
BEC3- C9 22 CMP #$22
BEC5- BO 15 BCS $BEDC
BEC7- A9 OF LOA #$OF (2)
BEC9- 80 9E B8 STA $B89E
BECC- 80 AE BC STA $BCAE
BECF- 80 35 B9 STA $B935
BE02- 80 91 B9 STA $B991
BE05- A6 2B LOX $2B
BE07- As2A LOA $2A
BED9- 4C A4 B9 JMP $B9A4
BEDC- 18 CLC o BEOD-

69 01 ADC #$01

-86-

12:49 PM

o

o

Mar 6, 1985

BEDF
BEE 1-

85 2A
4C A4 B9

STA
JMP

Apple Krackers Guide

$2A
$B9A4

Notice at (1) the first byte in the epilogue bytes is $DE and is
stored in RWTS so it can read sectors with epilogue bytes of DE
AA. Then at (2) the first Qyte in the epilogue bytes is $DF so it
can read sectors with epilogue bytes of OF AA.

Datamost has taken a very standard protection of modifying the
epilogue bytes a step further. But unfortunately for them, not
far enough. If they had used this protection for either the data
or address PROLOGUE bytes, their protection would have been much
harder to krak.

The reason for this is since the prologue bytes are still normal,
normal DOS can find where the address and data information
starts, but we ~et an I/O error since the ending epilogue bytes
don't match. Th1S is very easy to go around by defeating the
normal DOS error checking routine at $B942 and copying the disk
with COPYA. (NOTE: we only need to copy from tracks $00 to $1E of
the original disk. The rest of the disk is not even formatted.)

Then all that is left to do is to defeat the above routine and
we're all done. We can search the disk with The Inspector for the
byte sequence of "20 AF BE" or "4C AF BE". This sequence or "4C
AF BE" is found at track 0, sector 3, and if you look at the
code, we have to actually defeat 4 bytes of "4C AF BE 2A" by
NOPing them to "EA EA EA EA".

So in cookbook form, here are the steps:

1) Boot your DOS 3. 3 System Master and type:

]RUN COPYA

2) After the program is running and the drive stops, type:

CTRL C

3) You should now be in BASIC. Now enter the monitor and make
these changes to 'COPYA so it only copies tracks 0 to $1E by
typing:

]CALL-151
*302:1E
*35F:1E
*3A1:18
*B942:18
*3DOG

4) Now delete line 70 of COPYA so not to reload COPY.OBJO and
restart COPYA by typing:

0]70
-87-

12:49 PM

o

o

o

Mar 6, 1985 Apple Rrackers Guide

] RUN

5) Copy Roundabout to a blank disk.

6) After the copy is done, run your sector editor and make these
changes to your copy of Roundabout:

Track 0, sector 3, byte $AO
from $4C AF BE 2A

TO $EA EA EA EA

7) write the sector back out.

and you're all done I Roundabout is now krak into a full disk
format.

•

-88-

12:49 PM

o

o

o

Mar 6, 1985 Apple Krackers Guide

Appendix P.

Krakinq Mouskattack from On-Line Systems.

Although Mouskattack is a rather old and not so thrilling maze
game, it warrants discussion on de-protection methods and the
usage of DOS from protected programs.

Upon booting the Mouskattack disk, the cursor appears in the
lower left of the screen, indicating a somewhat normal DOS is
used by the program. In fact, if you boot a normal DOS 3.3 disk
and put your Mouskattack disk in the drive and type 'catalog', a
director does appear. You will not see any files but just
copyright notices and authors involved. But in fact these are
files in the directory.

The disk seems almost unprotected, and to confirm this, I made a
copy with COPYA from the DOS 3.3 System Master. It reads the
non-DOS tracks slowly, but this is due to the sector skewing used
by on-Line in hopes of a faster loading game (they were not too
successful, and we will see why in a moment), and not due to the
protection. The first three tracks (the DOS tracks) read at the
normal speed because they are normal DOS just like from you DOS
3.3 System Master.

After making my 'COPYA' copy, I used a disk editor to read in
track 11, sector F of the disk. This is the first sector of the
catalog track. The way that on- Line got the directory to appear
without file types and sector lengths was simple; the first seven
(or six) characters in the directory name are back spaces. So if
we change, starting with byte $OE, the first seven character to
anything but control character, numbers or spaces, we can load
and examine the files like any other DOS 3. 3 file. Don't bother
with the other file names, they are all blank files. The only one
we are interested in is the first directory entry, 'MOUSKATTCK'.

Now get back into BASIC and catalog the copy of Mouskattack. Your
catalog should have as a first entry, a binary file four sectors
in lenqth called 'XXXXXXXMOUSKATrACK'. We can now BIDAD this file
and snoop through it. (At this point you might ask how I knew to
do this. Well,since Mouskattack has a normal DOS on it, by
loadinq in track one, sector 9 with a sector editor we can see
what file is the boot file or 'HELU>' program. Sure enough, we
see Mouskattack preceded by seven control H' s (backspaces).
Therefore we know that Mouskattack is the first file we should
snoop through.)

So BLOAD the file XXXXXXXMOUSKATrACK, enter the monitor and
examine locations AA72 .AA73. This will tell us the loading
location of the last BIDADED file. It will appear 'backasswards'
with the low byte first and the high byte second. Le. ,00 08 is
equivalent to $0800. So do a 800L to list the first screen full
of the program.

-89-

12:49 PM

o

0

o

Mar 6, 1985 Apple Krackers Guide

Upon examining, we see the accumulator gets loaded and then saved
to a location in ooS. Finally, after this happens a few times,
you will see a Jump To SUbroutine (JSR) at $B7B5. Now you ask,
'What is all this stuff?' What On-Line is doing is using the
second stage of DOS to load in the game Mouskattack. You are
looking at the first stage (of three stages) of the load. (We are
actually tracing the boot, as describe in earlier issues of
Hardcore, but using normal ooS.) The listing will appear as this:

800:LDA #$00
STA $B7EB; VOWME NUMBER, 0 MATCHES

ANYTHING.
LDA #$01
STA $B7F4; COMMAND CODE, l=READ
LDA #$18
STA $B7EC; TRACK NUMBER TO START

WADING FROM.
LDA #$03
STA $B7ED; SECTOR NUMBER TO START

WADING FROM.
LDA #$95
STA $B7F1; HIGH BYTE OF PAGE TO

START WADING TO.
LDA #$00
STA $B7FO; WW BYTE OF PAGE TO

START WADING TO.
LDA #$03 ; SECTOR NUMBER TO WAD

822:STA $14 ; SECTOR COUNTER IN OPAGE
LDA #$B7
JSR $B7B5; SUBROUTINE IN RWTS TO

READ A SECTOR.
BCS $0822; IF ERROR, GOTO $822
INC $B7F1; INCREMENT PAGE TO WAD
INC $B7ED; INCREMENT SECTOR TO WAD
DEC $14 ; DECREMENT SECTOR COUNTER
BNE $0822; IF SECTOR COUNTER <> 0

THEN GOTO WCATION $822
835:JMP $9500; JUMP TO WCATION $9500

NOW, what is happening is that starting with track 18, sector 3,
is getting loaded into location $9500. The sector number and page
to load gets incremented, and the process continues till sector F
of track 18 is reached. Then we jump to location $9500 to start
the next stage of the load. If we jump to the monitor at location
$835 instead of $9500, we can examine the next stage of the load
(Do this by doing 835:4C 59 FF N 800G).

At $9500 the same thing happens again but in a larger propective.
The codes gets more obscure and difficult to follow, so i won't
list it here.

Now you ask, what was the purpose of this exercise? By examining
the code at $9500, We can find the starting page Mouskattack
loads at, and even the starting location! (Can you see where?)

-90-

12:49 PM

o

o

Mar 6, 1985 Apple Krackers Guide

The starting ·location of the load is at $AOO and the starting
location is at $5300. This is the reward for all this work. WE
know that since the load code lives at $9500 and DOS occupies
$9000 and up, that Mouskattack must live from $AOO to $94FF with
a starting location at $5300. (not mentioned is the third load
that overwrites the demo code. This load is the only part of the
disk that is really protected. our OOPYA copy will work up till
this load, but not past it for the game.)

Now, remember that code from $900 to $95FF does not get destroyed
by a slave boot? Well, since Mouskattack lives within this area,
it becomes an easy crack. Here is the procedure:

1) Boot your original copy of Mouskattack.

2) After the demo and when the text appears 'HOW MANY PLAYERS?' ,
insert a blank initialize slave disk.

3) Hit reset. It does not matter if you have an old style monitor
or not. With an AUTOSTART monitor you slave disk will boot.

4) Enter the monitor by typing:

]CALL -151

5) Change DOS to allow you to save larger binary files to disk by
typing:

*A964:FF

6) Make the file run when BRUN by typing:

*9FO:4C 00 53

7) Save the file to disk by typing:

]BSAVE MOUSKATTACK,A$9FO,L$8B03

A finally note: ~emember how I mention that the load of
Mouskattack was rather slow? This is due to the way the sectors
are read in from the disk. Recall that the sector number gets
incremented along with the page number loaded to. If on-Line had
started with the high page number, instead of the low page number
and read the sectors in decrementing order instead of

, incrementing order, the load would have taken a forth of the
time. (Providing they use normal DOS 3.3 skewing). This is the
logic that the fast loading dos's have taken to increase loading
and saving time.

o
-91-

12:49 PM

--.

o

o

0

Mar 6, 1985 Apple Rrackers Guide

Appendix Q.

Deprotecting Photar from Softape.

Photar first seemed unprotected and on normal DOS 3.3. After
running COPYA on the disk, I got an I/O error on track 4.

Using "The Inspector" from Omega, I nibble read track 4 and
discovered that the address field epilogue bytes had been
modified on the original disk from the normal $DE AA EB to $DE AA
E8. This is why COPYA died on track 4. Track 4 seemed to be the
only track with this modification.

To understand what Softape is doing you must know the structure
of a DOS 3.3 disk. Each sector of a DOS disk has an address field
which tells DOS what volume, track, sector and checksum it is
reading. The address field starts with the unique bytes $D5 AA 96
(called the prologue bytes). Next comes the volume number, track,
sector and checksum. Finally, there is a set of three unique byte
(called the epilogue bytes) that end the address field. These are
normally $DE AA EB. If these are changed, normal DOS will not be
able to verify the address field and hence you get a I/O error.

Another interesting thing about Photar is that it is a 16K slave
disk! What this means is that DOS is loaded at $1600 to $4000
instead of $9600 to $BFFF as a 48K slave disk. It then relocates
itself to the normal $9600-$BFFF area. (Regardless of what your
DOS manual says, a slave disk will self-relocate its DOS to the
highest available memory, just like a Master disk does. So there
is never any need to use a Master disk.)

After the DOS relocation, there is a JMP to $lAOO. The code
looks like this (formatted in 80 columns):

lAO 0- AO 01 LOY #$01 :change epilogue bytes to
lA02- 20 93 lA JSR $lA93 :$DE AA E8 to read trk 4.
lA05- A2 10 LOX #$10 :number of sectors to load.
lA07- AO 08 LOY #$08 :page to start loading to.
lA09- A9 04 LOA #$04 :track to start reading at.
lAOB- 20 4A lA JSR $lA4A :do the read.
lAOE- BO F5 BCS $ lAOS :branch back if error occurred.
lA10- AO 00 LOY #$00 :change epilogue bytes back
lA12- 20 93 lA JSR $lA93 :to normal$DE AA EB.
lA15- A2 70 LOX #$70 :number of sectors to load.
lA17- AO 20 LOY #$20 :page to start loading to.
lA19- A9 05 LOA #$05 :track to start reading at.
lA1B- 20 4A lA JSR $lA4A :do the read.
lA1E- BO F5 BCS $lA15 :branch back if error occurred.
lA20- AD 50 CO LOA $C050 :turn on hi-res page 1
lA23- AD 52 CO LOA $C052 : and start game.
lA26- AD 57 CO LOA $C057
lA29- AD 54 CO LOA $C054

.

-92-

12:49 PM

Mar 6, 1985 Apple Krackers Guide

o This code at $1A00 was where OOS was originally loaded, and if
you read track $00, sector $OA with a sector editor, you will
find this code. The code reads track 4 into $800 to $18FF and
then reads track 5 and up into $2000 to $8FFF.

I

What we need to do it to let Photar read in the game for us, and
stop it before it runs away from us and starts the game. This way
we will have all of Photar in memory and we can save it to a
normal OOS 3.3 disk. (We cannot just let the game start and use
$1A20 as a starting address since Photar spreads memory out and
uses the text page for valid routines).

So all we need to do is boot Photar, and after we see the BASIC
prompt, hit reset. Now just enter the monitor with CALL -151 and
change $1A20 to jump to monitor and break. Now we just execute
the code at $1A00 and let photar load in the game for us. After
the load is done and before the game starts, we will be in the
monitor. Now just boot a 16K slave disk and Bsave Photar!

In cook book fashion, here are the steps:

1) Boot Photar.

2) After the BASIC prompt appears and before the game starts, hit
reset. o 3) Enter the monitor by typing:

]CALL -151

4) Set the break point so the game loads but does not start.
Type:

*1A20:4C 59 FF N lAOOG

5) Reset the changed bytes to what they were. type:

*lA20:AD 50 CO

6) Move $800 out of the way for a 48K slave disk boot. Type:

*9000<800.AOOM

7) Boot a 48k slave disk.

8) Enter the monitor by typing:

]CALL -151

9) Move $800 back down to its proper place. Type:

c::> *800<9000.91FFM

-93-

12:49 PM

. . l(ar6, 1985 Apple Krackers Guide

o

o

o

10) So the qame runs when BWADed type:

*7FD:4C 20 lA

11) BSAVE the qame by typinq:

*A964:FF
*BSAVE PHOTAR,A$7FD,L$7F1F

-94-

12:49 PM

o

o

o

Mar 6, 1985 Apple Krackers Guide

Appendix R.

Deprotecting Bug Attack from cavalier Computer.

The protection used in Bug Attack is well done and challenging to
remove. Boot code tracing the disk will give you a headache real
fast because of extensive use of page $02 (the keyboard buffer).
Also, upon resetinq from the game, screen memory gets destroyed,
which is necessary memory for the game to run correctly. (The
text page code at $400 to $7FF is shape tables for all the
characters and explosions in Bug Attack.)

What we need is some way to reset out of the game and to move
memory from $200 to $7FF up to $2000 to $25FF, or somewhere else
safe. This can be done if you have some sort of a modified F8
monitor ROM, but not everyone has this tool.

Also, after we have solved this first problem of savinq $200 to
$7FF, we must be able to move it back to its original location
when we re-run the game. We really have no easy way of re-loading
$200 to $7FF with the original memory after saving it to a normal
DOS disk as a binary file. This is because $200 to $2FF is the
keyboard buffer, and anything that is typed, or DOS command
executed from BASIC, will destroy some of $200 to $2FF. ,

This makes Bug Attack a little more challenging than many kraks.
And to get around these problems, some ASSEMBLY lanquage
programming will have to be used. But even if you don't know
ASSEMBLY lanquage, don't be scared off. I will hold your hand
through this one.

Since boot code tracing seems to be a futile effort (or more
timely than I am willing to deal with), I decided to look at the
loader after the game is loaded. Cavalier uses a fairly short
loader to bring their game to life, and it lives at $A200. It was
not hard to find it usinq the Inspector's Find command to look
for the string "AD 50 CO", which turns on the hi-res page
(remember, the hi-res page gets turned on immediately upon
bootin~ the disk). Also, if you search for the string "2C 50 AD",
which 1S another way to turn on the hi -res page, the startinq
address of Bug Attack is given away at $4D36.

Now that we have found the loader, we want to modify it to read
in Bug Attack at $900, instead of $200. This way memory from $200
to $7FF is loaded in a safe region allowing us to save it to a
normal DOS disk.,

The byte to change in the loader is at $A255, which normally
contains a $02, to start loading at $200. We want to change this
byte to $09, to start loading at $900. The conunand $A200G will
start the drive up and will load Bug Attack in starting at $900.
Obviously, the game will not run, so after the drive stops, hit
reset. .

-95-

12:49 PM

o

o

o

Mar 6, 1985 Apple Rrackers Guide

NOTE: To get the loader set up with the right parameters and to
start loadinq from the correct track (track $03), you have to be
careful when you press reset. First, boot the game and after it
is loaded and running, press reset. If you have an old style F8
monitor, type 6 CTRL P to start the drive again. Now, after the
drive recalibrates, it will wait a second and then turn on the
hi-res page and the drive head will seek to track $03 and start
reading in the game. EJust before the hi-res page turns on and
the head seeks to track $03, press reset (twice if you have a new
style F8 monitor)F. Now you have captured the loader with the
correct parameters at $A200. This will take a little practice,
but just keep hitting reset until you feel you have caught the
loader at the right time.

Now that we have $200 to $7FF captured at $900 to $EFF, boot a
48K DOS slave disk and save $200 to $8FF to disk. Type:

]BSAVE A02-08,A$900,L$600
]BSAVE A08-09,AFOO,L100

Now we can re-boot Bug Attack and after the drive stops, put your
48k slave disk in the drive. After the initial explosion is done,
press reset and boot your slave disk. Now type:

]BLOAD A08-09,A$800
]BLOAD A02-08,A$8000.

You now have all of Bug Attack in memory. The problem is how do
we get $8000 to $85FF back to $200 to $7FF? Also, we need an
image of the hi-res title picture at $8000 to $9FFF. This is
because the picture gets re-drawn after each game, and is stored
at $8000 to $9FFF. This is getting complicated, isn't it?

We don't want a duplicate of the memory at $8000 to $9FFF saved
to disk when we already have it at $2000 to $3FFF, and we need
memory at $8000 to $85FF moved to $200 to $7FF. This is where the
ASSEMBLY language comes in. We can write a small routine to first
move $8000 to $85FF down to $200 to $7FF, and then move $2000 to
$3FFF up to $8000 to $9FFF. Finally, we can jump to the staring
address of Bug Attack at $4D36. A good place to put this routine
is at $lAOO, since there is an empty hole in the Bug Attack code.
Here is the code we need (formatted in 80 columns):

lAO 0-
lA02-
lA05-
lA08-
lA09-
lAOB
lAOE
lAll
lA14-
lA16-
lA18-

A2 00
BD 00 80
9D 00 02
E8
DO F7
EE 04 lA
EE 07 lA
AD 07 lA
C9 08
DO E8
A2 00

LDX
LDA
STA
INX
BNE
INC
INC
LDA
CMP
BNE
LDX

#$00 :load X with $00.
$8000,X:load accum with $8000 indexed by X.
$0200,X:store accum at $200 indexed by X.

$lA02
$lA04
$lA07
$lA07
#$08
$lAOO
#$00

:increment X.
:if X not $FF, go back to $lA02.
:else increment page to load at.
:increment page to store at.
:load accum with page to store at.
:compare accum to $08.
:if less than $08, goto $lAOO.
:-----------------------------------

-96-

12:49 PM

0

o

o

Mar 6, 1985 Apple Krackers Guide

lAlA- BO 00 20 LDA $2000,X: do the same thing as above
lA10- 90 00 80 STA $8000,X: but move memory from $2000
lA20- E8 INX to $3FFF up to $8000 to
lA2l- 00 F7 BNE $lAlA · $9FFF. · lA23- EE lC lA INC $lA1C · •
lA26- EE IF lA INC $lA1F
lA29- AD IF lA LDA $lA1F
lA2C- C9 AO CMP #$AO
lA2E- 00 E7 BNE $lA17 :----------------------------------
1A30- 4C 36 40 JMP $4036 :jump to the beginning of the game.

The code here is what you call "self modifying" code because its
modifies itself as it runs by changing the pages to load and to
save at. It is generally not good practice to write self
modifying code, but in this case , it is the shortest way to write
these memory moves. Besides, only real men write self-modifying
code.

Before we save the game to our disk, we must remove the disk
access during the game. This disk access code checks for your
original disk by reading the present disk in drive one and
checking the address field epilogue bytes to make sure they are
the (modified) ones on the original Bug Attack disk. This "nibble
count" routine lives at $4A33. The logical way to defeat this
would be to skip across the routine, or to put a RTS (return to
subroutine) at the beginning of it. The problem with this is that
the program later check to see if the nibble count code has been
altered. If it has, the program dies. To solve this, we can void
any calls to the nibble count routine, thus not changing any of
the actual code in the routine.

So to defeat the nibble count routine, type:

*4E05:4C A4 49

Also, to make the game run when it is BRUN, type:

*7FD: 4C 00 lA.

last, type:

*A964:FF

so you can save more than 120 sectors in one file. Now you may
save the game to your DOS disk by typing:

*BSAVE BUG ATTACK,A$7FO,L$7E03.

In cookbook form, here are the steps to deprotecting Bug Attack:

1) Boot Bug Attack and after it is loaded, hit reset. (If you
have a old style F8 monitor, type 6 CTRL P after reset).

2) Just after the drive head recalibrates and before the hi-res

-97-

12:49 PM

o

o

o

Mar 6, 1985 Apple ~ackers Guide

page is turned on, press reset again (twice if you have a new
style F8 monitor).

3) Enter the monitor (if you are not already in it) by typing:

]CALL -151

4) Type:

*A255:09 N A200G

5) After the drive stops, press reset.

6) Boot a 48K normal ooS 3. 3 slave
disk.

7) Type:

]BSAVE ~02-08,A$900,L$600
]BSAVE ~08-09,AFOO,L100

8) Boot Bug Attack and press reset after the initial explosion is
done.

9) Boot your 48K normal ooS slave disk.

10) Type:

]BLOAD ~08-09,A$800
]BLOAD ~02-08,A$8000

11) Enter the monitor by typing:

]CALL -151

12) Enter these bytes from the monitor by typing:

*A964:FF
*7FD:4C 00 lA
*4E05: 4C A4 49

13) Enter the memory moves at $lAOO by typing:

*lAOO:A2 00 BO 00 80 90 00 02
*lA08:E8 00 F7 EE 04 lA EE 07
*lA10:lA AD 07 lA C9 08 00 E8
*lA18:A2 00 BO 00 20 90 00 80
*lA20:E8 00 F7 EE 1C lA EE 1F
*lA28: lA AD 1F lA C9 AO 00 E8 4C 36 40

14) Carefully check that you have entered the code correctly by
typing:

*lAOOL

-98-

12:49 PM

Mar 6, 1985 Apple Krackers Guide

o 15) BSAVE the game by typing:

]BSAVE BUG ATTACK,A$7FD,L$7E03

o

o

To recap, we have solved two problems that have not really been
address before: HO\f do we save "volatile" memory areas (such as
the keyboard buffer and the text page), and, how do we move these
sections of code back to where they belong. I hope I have given
you some idea how these two things can be done.

-99-

12:49 PM

o

o

o

Mar 6, 1985 Apple Krackers Guide

Appendix s.

Deprotecting Flip out.

After booting Flip-out, the first key to press is reset. But
something unusually happened: I did not see the usually monitor
prompt (I have an old style F8 monitor ROM on the motherboard).
MY computer rebooted as if I had a new style F8 monitor ROM! This
intrigued me into investigating this strange phenomenon.

What I discovered was that in the main program (not the boot
code) Sirius had turned on my 16K RAM card and copied an image of
the new style F8 monitor ROM into my RAM card. Of course, they
left the RAM card turned on instead of the motherboard ROMs. It
is easy to understand what they are doing if you just remember
what memory the RAM card occupies.

The RAM card encompasses memory from $0000 to $FFFF. This may
seem strange since motherboard ROM (APPLESOFT and the monitor)
also ranges from $0000 to $FFFF. But there is a set of soft
switches that will turn on motherboard ROM, or turn on the RAM
card. A demonstration of this is when you boot your 48k OOS 3.3
system master and it loads INTEGER basic into the RAM card. Now
you have two languages available that occupy the same logical
memory space, $0000 to $FFFF. You can switch between the two with
INT and FP. What these commands are doing is switching between
the motherboard ROMs and the RAM card's memory.

Well, if you read your RAM card manual you can see that the
softswith $C080 (assuming your RAM card is in slot zero) will
allow you to look at your RAM card's memory. But have you ever
tried typing $C080 from monitor? It will lock your Apple up so
only powering off and on will recover!

The reason is that you switch to the RAM card's memory
$DOOO-$FFFF and turn off the motherboard's ROMs. When you do
this, the computer loses control since there is no longer a
monitor ROM available from $F800-$FFFF to overlook your Apple's
operations!

The solution is to type C08l C081 N F800<F800.FFFFM from monitor.
This reads the motherboard's ROM but allows you to write to bank
2 of the RAM card. The memory move F800<F800.FFFFM moves the F8
motherboard ROM into memory $F800-FFFF in bank 2 of the RAM card!
Now you may type C080 to turn on the RAM card and look at its
memory, since a copy of the $F8 monitor ROM is in the RAM card
from $F800 to $FFFF.

Sirius has done exactly this so that no matter what $F8 ROM you
have in the motherboard, your Apple will only look at the new
style $F8 ROM image in your RAM card. Thus the Apple clears

. memory and reboots when reset is pushed! This is an easy. problem
to fix, now that we have identified it. Just take your RAM card
out of your computer and you may reset into the monitor as usual.

-100-

12:49 PM

o

o

o

Mar 6, 1985 Apple Rrackers Guide

Well anyway, we may now move onward in the quest for deprotection
of Flip out.

Flip out is a single load program. To deprotect single load
programs, you must be able to determine three basic things:

1) What memory is used by the program.

2) The starting address of the program.

3) How to get the memory saved to a normal DOS 3.3 disk and
reloaded back into memory in the proper place (s) •

Keep these in mind as we trace through Flip· out (or any other
single load game) •

Sirius has changed their protection schemes a lot in the last few
years. The height of their hard-core protection was demonstrated
in games like "Bandits" and "Fly-wars". The problem with hi-teCh
protection is that it might not boot on a Rana drive, or on a / /e
or someother flavor of Apple. Also, protection costs money, and
the less of it you use, the less money it costs to publish a
game. It seems that Sirius has gotten smart and figured out that
they really weren't losing as much money as they thought to
"pirates", at least not as much as a sophisticated protection
schemes costs!

In light of this, Sirius has chosen a much simpler, but still
effective, copy protection scheme for Flip out. Just try and copy
it with Nibbles away and you'll see just how effective it is!

Keeping in mind the three things we must figure out to deprotect
a single load game, the first thing I generally do is to find
what memory is required to run the program. To do this we can
flip through memory (keep in mind that shape tables, etc. don't
disassemble into meaniful code), or we can trace the boot and see
where the program gets loaded to: I prefer to trace the boot when
the boot is fairly simple, which Flip out is.

So boot up normal DOS 3.3 (so we can save piece of code for later
examination, if you wish) and enter the monitor with CALL-151.
Now we must copy the code in the disk controller ROM down to RAM
so we can modify it to our liking (remember you can't change code
in ROM, that's why they call it Read only Memory). Do this with
8600<C600.C6FFM from the monitor. Now we have the disk controller
ROM code where we can modify it, and start to trace the boot.

What the disk controller ROM does it to read track zero, sector
zero into $800 to $8FF of memory. Then it J,Mps to $801 and
executes the code as $801 (which continues b:y loading in a little
more code, which then loads in more code, wh1ch then ••••• well,
you get the idea).

-101-

12:49 PM

Bar 6, 1985 Apple Krackers Guide 12:49 PM

0 So at the end of the code at $8600 we see a JMP $0801. We must
change this to JMP $FF59 , which we III exit us in the monitor
after it is done loading track zero, sector zero into $800 to
$8FF. So put in Flip out in drive one and type 86F9:59 FF N 8600G
to execute the code. The drive will recalibrate and a second
later beep into the monitor, just like we told it. To turn off
the drive motor, type COE8 from the monitor prompt. Now, if you
want you can save this hunk of code to your normal DOS 3.3 disk
with BSAVE BOOTO,A$800,L$100 (since this process did not disturb
DOS which lives from $9600 to $BFFF).

Now type 801L to flip through the code just loaded in and we will
find this:

801- AS 2B LOA $2B
803- AA TAX
804- 85 FB STA $FB
806- 4A LSR
807- 4A LSR
808- 4A LSR
809- 4A LSR
80A- 09 CO ORA #$CO
80C- 80 00 30 STA $3000 ----------
80F- AO 00 LOY #$00 · •
811- 84 00 STY $00 · · 813- A9 DO LOA #$00 · · 815- 85 01 STA $01 : Destroy

0 817- A2 30 LOX #$30 :anythinq
819- AD 81 CO LOA $C081 :in the
81C- AD 81 CO LOA $C081 :RAM card.
81F- Bl 00 LOA ($OO),Y:
821- 91 00 STA ($OO),Y:
823- C8 INY • •
824- DO F9 BNE $081F • •
826- E6 01 INC $01 · •
828- CA DEX • •
829- DO F4 BNE $081F · · 82B- A6 FB LOX $FB :---------
820- 84 F7 STY $F7 · •
82F- A9 04 LOA #$04 :Paqe to
831- 85 F8 STA $F8 :load at
833- 85 FA STA $FA · · 835- BD 8C 8C LOA $C08C,X:read disk
838- 10 FB BPL $0835 • •
83A- C9 AD CMP #$AD • •
83C- DO F7 BNE $0835 • •
83E- BD 8C CO LOA $C08C,X:Make sure
841- 10 FB BPL $083E :datafield
843- C9 DA CMP #$DA : epilogue
845- DO F3 BNE $083A :bytes are
847- BD8C CO LOA $C08C,X:$AD DA DO
84A- 10 FB BPL $0847 • •
84C- C9 DO CMP #$00 · 0 · 84E- DO EA BNE $083A ----------

-102-

o
Mar 6, 1985 Apple Krackers Guide

88A- 4C 29 04 JMP $0429 :JMP boot2

This code loads in the final loader (boot2) over the text screen
memory ($400 to $7FF) and JMPs to $429 to load in the actually
game. Now we need to see boot2 (the game loader) to see where it
is actually loading in the game.

Well, as you can see this is slightly difficult since boot2 gets
loaded over the text page, and when we hit reset, this memory
pretty much hits the bit-bucket. But boot1 (the code that loads
in boot2 which we are now looking at in $801-$88C) can be changed
to load boot2 somewhere else and gracefully reset into monitor.
To do this, change the load byte fram page $04 to page $14, and
change the JMP $429 to jump into the monitor. Then we can examine
the boot2 loader. To do this enter 830:14 N 88B:59 FF from the
monitor.

The next thing we must change is the disk controller ROM code at
$8600. We need it to execute but not write over the modified code
at $801. To do this we can tell it to load track zero sector zero
at $6000 (instead of $800) and jump to our modified code at $801.
Of course our code will load in boot2 into $1400 so we can look
at it. Are you confused yet? Go back if you are and don't came
back till you understand what is going on. o OK, put Flip out in drive one and type

8659:60 N 86F9:01 08 N 8600G.

o

The drive will reca1ibrate and and boot zero will read track zero
sector zero into $6000 (thus not overwriting our code at $801).
It will then jump to $801 (boot1) and load boot2 into $1400 to
$17FF. Unfortunately, it will keep reading boot2 into $1400 to
$17FF because we haven't change enough code, so after a few
seconds, hit reset.

Now if you want you can put your normal DOS 3.3 disk in a drive
and save boot2 with BSAVE BOOT2,A$1400,L$400.

Next type 1429L and examine boot2. You will notice that memory
from $800 to $BFF gets wiped clean and that a reset error routine
gets moved to $8FOO-$8F80. This is a good indication that
Flip-out lives from $COO to $8F80! I'll let you sort through the
boot2 code to find out for sure, or you can take my word for it.

The last tidbit of information that the boot2 loader reveals is
the starting location of Flip out. Look at the code at $17CC to
$17E4 and you'll see how $800 to $BFF gets wiped and then JMPs to
$7800 to start the game.

Now we have filled requirements one and two. All that is left is

-103-

12:49 PM

o

o

o

!far 6, 1985 Apple Krackers Guide

to save the memory from $COO to $8F80 on a normal DOS 3.3 disk.
This is easy since a 48K slave disk does not destroy memory from
$900 to $96FF. So just boot Flip out, and when the drive stops,
reset into the monitor. Now boot your 48k slave disk and save
Flip out to disk!

In cook-book fashion:

0) TURN YOUR APPLE OFF and remove your RAM card.

1) Boot Flip out.

2) After the drive stops and Flip out is loaded into memory,
reset into the monitor.

3) Boot a 48k slave disk.

4) Enter the monitor by typing:

]CALL-151

5) So the program executes when brun, type:

*BFD:4C 00 78

6) Bsave flip out by typing:

*A964:FF
*BSAVE FLIP-oUT,ABFD,L8383

If you want the title page also, do the above and:

1) Reboot the flip-out disk and reset into the monitor when you
see the title page.

2) Boot your 48k slave disk and save the picture by typing:

]BSAVE PIC,A$2000,L$lFFB.

3) Bload the Flip out file by typing:

] BWAD FLIP-oUT

4) Bload the picture file by typing:

]BWAD PIC,A$2000

5) Enter the monitor by typing:

]CALL-151

6) Change these bytes by typing:

*BEO:AD 10 CO AD 50 CO AD 54

-104-

12:49 PM

o

o

o

.Mar 6, 1985

*BE8 : CO AD 57 CO AD 52 CO AD
*BFO:OO CO 10 FB 4C 00 78

7) Bsave the file by typing:

*A964:FF
*BSAVE FLIP-oUT,ABEO,L83AO

-THE DISK JOCKEY-

7) Bsave the file by typing:

*A964:FF
*BSAVE FLIP-oUT,ABEO,L83AO

Apple RrackersGuide 12:49 PM

-105-

o

o

o

Mar 6, 1985 Apple Krackers Guide

Appendix T.

Deprotecting Guardian from continental Software.

continental Software uses a fast loader that lives over hi-res
page one (memory from $2000-$4000) to load Guardian. Because of
this, we do not have to save memory across hi-res page one, but
we have to catch the game just before it starts to draw the
hi-res title page.

Because of this, it is important to hit reset at the correct
time. (It is comforting to know that we do not need an old style
monitor in deprotecting Guardian, since they do not use a clear
memory reset routine. This is convenient for those with lie IS.) •
The technique to use is to boot the game and allow it to load and
run. Next hit reset and allow it to re-load. Now we must hit
reset at the correct time. Listen to the game load a few times
and time it so you can hit reset just before the hi-res message
starts drawing on the screen. If you have a Apple I Ie or 11+ with
the auto start F8 monitor, hit reset twice to break out of
Guardian.

After you have mastered this, we just boot a 48K slave disk and
save memory from $4000 to $8EOO to disk. To start the game, we
just do a JSR $7C19 (to erase hi-res page one), turn hi-res page
one on, and do a JMP $592E to start the game. With this is mind,
here are the steps to deprotecting Guardian:

1) Boot Guardian and let the game load and run. Hit reset and
boot the game again. Just):)efore the hi-res page starts drawing,
hit reset again to break out of the proqram (if you have an
autostart F8 monitor, hit reset twice).

2) Boot a 48K slave disk.

3) Enter the monitor by typing:

]CALL -151

4) Enter these bytes to start the game when BRUN by typing:

*3FFD:4C 00 8E
*8EOO:20 19 7C AD 10 CO AD 50
*8E08:CO AD 54 CO AD 57 CO AD
*8E10:52 CO 4C 2E 59

5) Save the game to disk by typing:

*BSAVE GUARDIAN,A$3FFD,L$4E19

-106-

12:49 PM

o

o

o

Mar 6, 1985 Apple Krackers Guide

Appendix U.

Kraking Mating Zone from Datamost: an example of defeating minor
disk access ,from a single load program.

Kraking Mating Zone into a file is a challenging job. The reason
is that Mating Zone uses some disk access that reads in some
shapes for display between levels. The hard part about defeating
this disk access is that we must have everything just right for
it to work, which means we have to do some ASSEMBLY language
programming to make it work.

Mating Zone's primary protection is using modified address and
data prologue bytes. In addition, Mating Zone uses half tracks on
tracks $10.5 - $13.5. But we really don't care too much about
that since we are kraking it into a single file.

The starting address was not too hard to find at $C71. After
reseting into the monitor I just searched for the bytes "AD 50
CO" with the Inspector. This revealed three possible locations.
The one at $C71 was a dead giveaway though because it referenced
all the hi-res commands (turn on graphics, turn on hi-res
graphics, use page 1, use full screen graphics). Plus, it was
right before a huge "jump table", which really gave it away. And
for the final test, the game works fine if you type "C71G" to
restart it.

The memory needed in kraking Mating Zone is from $800-$lFFF and
from $6000-$AFFF. We do not need the two hi-res pages
($2000-$5FFF) since the game uses them to draw on and for a shape
buffer. I figured this out by wiping out portions of memory and
then re-starting the game. If the game did not work, I knew I
needed the memory range I wiped out (use the monitor's move
command to wipe out a memory range. I.E. to wipe out $BOOO-BFFF
you would type: *BOOO:O N B001<BOOO.BFFFM).

The problem with Mating Zone is the disk access used for the
shapes between levels. If you look carefully, you can find the
loader lives at $400-$7FF. A very inconvenient place for the
krakist, since it gets wiped out when we hit reset (notice all
the screen "garbage" when you hit reset).

Upon further examination and experimentation I found we could
move a series of 60's across $400-$7FF ($60 represents a return
from subroutine) and this would disable the disk access between
levels. This was considerably easier than trying to find all the
locations in main memory that called the loader (you probably
won't be successful anyways).

In addition if hi-res page 1 and 2 are not clear at the start of
the game, much hi-res crap is encountered when the disk access
should occur. So for an added chore, we must clear $2000-$5FFF
before starting the game for our disabled disk access to work
properly.

-107-

12:49 PM

o

o

o

Mar 6, 1985 Apple Krackers Guide

So with this in mind, it is best we get started saving all the
bits of memory needed to a 48k slave disk. So first, let's get
the hi-res picture that is first displayed when the game is
booted. We can display this before starting the game for added
appeal (yes, we must take pride in our work) •

To do this, boot Mating Zone and reset into the monitor when the
initial hi-res pages are flashing, Now boot your 48K slave disk
and save the pic by typing:

]BSAVE PIC,A$4000,L$2000

Now reboot Mating Zone and reset into the monitor after the disk
stops and the game is running.

Next we have to move memory around so we can boot a slave disk
and save it. Remember we need $800-$lFFF and $6000-$AFFF, and
$9600-$AFFF and $800-$8FF will get destroyed by a slave disk
boot. Type:

*4000<9600.AFFFM
$5AOO<800.900M

Now we can boot a 48K slave disk and re-arrange memory and save
it to disk. Do this after booting the slave disk by typing:

]BLOAD PIC,A$2000
]CALL-15l
*800<5AOO.5AFFM

Finally, we have to write a memory move at $5AOO that will:

1) Move $4000-$5AFF to $9600-$BOFF (notice we move the memory
move itself too! This is because we have to wipe out $2000-$5FFF
eventually, which is where the memory move initially lives).

2) JMP to $B01Band continue.

3) Turn on hi-res page 1 (to display our hi-res title page).

4) Clear the text screen with $60's (to disable the disk access).

5) wait for a keypress to start the
game.

6) Clear hi-res pages 1 and 2.

7) Clear the keyboard buffer.

8) JMP to the start address at $C7l to start the game.

The routine should look like this:

-108-

12:49 PM

Mar 6, 1985 Apple Krackers Guide 12:49 PM

0 5AOO- A2 00 LOX #$00 :-----
5A02- BO 00 40 LOA $4000,X:move
5A05- 90 00 96 STA $9600,X:$4000
5A08- E8 INX :-SAFF
5A09- 00 F7 BNE $5A02 :to
5AOB- EE 04 5A INC $5A04 ,:$9600
5AOE- EE 07 5A INC $5A07 • •
5A11- AD 04 5A LOA $5A04 • · 5A14- C9 5B CMP #$5B • •
5A16- 00 E8 BNE $5AOO :-----
5A18- 4C 1B BO JMP $B01B :JMP
5AlB- AD 57 CO LOA $C057 :-----
5AlE- AD 54 CO LOA $C054 : turn
5A21- AD 52 CO LOA $C052 :on
5A24- AD 50 CO LOA $C050 : hires
5A27- A2 00 LOX #$00 :-----
5A29- A9 60 LOA #$60 : move
5A2B- 90 00 04 STA $0400,X:$60'S
5A2E- E8 INX : over
5A2F- 00 F8 BNE $5A29 : text
5A31- EE 20 BO INC $B020 :page.
5A34- AD 20 BO LOA $B020 • · 5A37- C9 08 CMP #$08 • · 5A39- 00 EC BNE $5A27 :-----
5A3B- AD 10 CO LOA $C010 : wait
5A3E- AD 00 CO LOA $COOO : for
5A41- 10 FB BPL $5A3E : key

0
5A43- A2 00 LOX #$00 :-----
5A45- A9 00 LOA #$00 : clear
5A47- 90 00 20 STA $2000,X:$2000
5A4A- E8 INX -5FFF
5A4B- 00 F8 BNE $5A45
5A4D- EE 49 BO INC $B049
5A50- AD 49 BO LOA $B049
5A53- C9 60 CMP #$60
5A55- 00 EC BNE $5A43 -----
5A57- AD 10 CO LOA $C010 .JMP
5A5A- 4C 71 OC JMP $OC71 : start

After entering this routine at $5AOO, we can save the entire file
to disk by typing:

*7FO:4C 00 5A
*A964:FF
*BSAVE MATING ZONE,A$7FD,L$8E04

In cookbook form, here are the steps:

1) Boot Mating Zone and reset into the monitor When the hi-res
pages are flashing.

2) Boot a 48K slave disk and save the hi-res picture by typing:

0]BSAVE PIC,A$4000,L$2000

-109-

o

o

o

Mar. 6, 1985 Apple Krackers Guide

3) Reboot Mating Zone and after the game is loaded and running,
reset into the monitor.

4) Move memory for a slave disk boot by typing:

*4000<9600.AFFFM
*5AOO<800.900M

5) Boot a 48K slave disk and rearrange memory by typing:

]CALL-15l
*800<5AOO.5AFFM

6) Enter the above memory move at $5AOO.

7) Make the file execute when brun and let DOS save larqe files
by typing:

*7FD:4C 00 SA
*A964:FF

8) Save the file to your disk by typing:

*BSAVE MATING ZONE,A$7FD,L$8E03

And your all done! Mating Zone is now kraked into a file with all
levels.

Appendix v.
Kraking Crime Wave from Penquin Software.

Crime Wave is a typical single load protection game that is a bit
difficult to krak without additional hardware. The reason for
this is because Penquin uses an old trick of using the text page
(memory from $400 to $7FF) for memory storage. This means when we
hit reset, the whole text page memory is destroyed and shifted,
making it impossible to save and reload the text page memory area
to restart the game.

For a demonstration of this, boot the game and after it is
loaded, reset into the monitor and type 803G to restart the game.
Notice how the hi-res shapes and text are destroyed. Therefore we
must find a way to save memory from $400 to $7FF in order to krak
the game.

Usually, this means using additional hardware like a "krak ROM"
or some other similar devise to save the text page. But in Crime
Wave's case, there is another way!

If you page through memory you will find Crime Wave uses both of
the hi-res pages (turn on the 2 pages and you can see the hi-res
drawings). Now watch the game play, and you can see that the

-110-

12:49 PM

o

o

o

Kar6,~985 Apple Rrackers Guide

hi-res scenes are drawn. This is hint that we don't need to save
$2000-$5FFF in our kraked version, so don't even bother looking
at this memory range.

But At $A8A5, you will find this routine:

A8A5- A9 20 LOA #$20
ASA7- 85 7D STA $7D
A8A9- A9 05 LOA #$05
A8AB- 85 7F STA $7F
A8AD- AO 00 LOY #$00
A8AF- 84 7C STY $7C
A8B1- 84 7E STY $7E
A8B3- A2 03 LOX #$03
A8B5- B1 7C LOA ($7C) , Y
A8B7- 91 7E STA ($7E) , Y
A8B9- C8 INY
A8BA- DO F9 BNE $A8B5
ASBC- E6 7D INC $7D
A8BE- E6 7F INC $7F
A8CO- CA DEX
A8C1- DO F2 BNE $A8B5
A8C3- 60 RTS

This routine moves memory from $2000-$22FF to $500-$7FF.
must mean that before the hi-res pictures are drawn at

This

$2000-$5FFF and the game is started that $2000-$22FF is moved
across the text page.

So we need to stop the program after is has loaded the text page
data into $2000-$2FFF and save this memory portion, before the
game starts. To do this just boot the game and listen to the disk
drive read the tracks. After you hear the third "click" or track,
hit reset. Now boot a normal DOS slave disk and save $2000-$22FF.

To qet the rest of the program, reboot Crime Wave and after the
program is done loading and is running, reset into the monitor.
Now move memory for a slave disk boot and save $800-$1FFF and
$6000-BFFF.

Since Penguin uses the memory above $9600, we need to use a
memory move routine to put this memory back after we load our
normal DOS bfile. We can arrange memory so we have $500-$7FF at
$200.0-$22FF, and have $8400-$BFFF at $2300-$5EFF. Then we can
have our memory move routine run at $5FOO. This will· make the
bfile as small as possible.

So after you have saved $500-$7FF (at $2000-$22FF), reboot Crime
Wave and reset into the monitor. Now we must move memory for a
slave disk boot (that will not disturb $900-$95FF, remember?).
So, move $8400-$BFFF down to $2300 and move $800-$8FF to $8400 by
typing:

*EB5:60

-111-

12:49 PM

o

o

Mar 6, 19S5

*9BAB:EA EA EA
*2300<S400.BFFFM
*S400<SOO.900M

Apple Krackers Guide

(NOTE: the changes at $EB5 and $9BAB disable Penguin's minor disk
access).

Now boot your 4SK slave disk and re-arrange memory and save it to
disk:

]CALL-151
*SOO<S400.S4FFM
*BLOAD A$2000-22FF,A$2000
*BSAVE ASOO-S400,ASOO,L7COO

Now run the memory writer program and create a memory move that
will run at $5FOO and will move $2300-$6000 to $S400. set the
display pages for hi-res page one and jump to $OS03. Now to
complete our krak, do the following:

]BLOAD ASOO-S400
]BLOAD MEMORY MOVE$5FOO,A$5FOO
]CALL-151
*7FD:4C 00 5F
*5F1S:20 A5 AS 4C 03 OS
*BSAVE CRIME WAVE,A$7FD,L$7C03

Notice we add 3 bytes at $7FD so the file jumps to our memory
move routine at $5FOO when BRUN. Also notice at the end of the
memory move we add a call to the routine that moves $2000-$2300
to $500-$7FF and then we jump to the beginning of the game at
$S03.

So to summarize, here are the steps:

1) Boot Crime Wave and after 3 "click" of the disk drive, reset
into the monitor.

2) Boot a 4SK slaye disk and save $2000-$22FF by typing:

]BSAVE A$2000-$22FF,A$2000,L$300

3) Now reboot Crime Wave and reset into the monitor after the
game is done loading. Now type:

*EB5:60
*9BAB:EA EA EA
*2300<S400.BFFFM
*S400<SOO.900m

4) Boot your 4SK slave disk and rearrange memory and save it to
disk. Type: o]CALL-151

-112-

12:49 PM

o

o

o

Mar 6, 19S5 Apple Krackers Guide

*SOO<S400.S4FFM
*BLOAD A$2000-$22FF
*BSAVE A$SOO-$S400,ASOO,L7COO

5) Now brun the memory move writer program and enter the
following:

NUMBER OF MEMORY MOVES: 1
RUNNING ADDRESS: $5FOO
START PAGE: $23
END PAGE: $5F
DESTINATION PAGE: $S4
HI-RES PAGE 1, FULL MODE
JUMP AFTER MOVE TO: $OS03

6) Now reload the main memory and the memory move and save the
file by typing:

]BLOAD A$SOO-$S400
]BLOAD MEMORY MOVE$5FOO,A$5FOO
]CALL-151
*7FD:4C 00 5F
*5F1S:20 A5 AS 4C 03 OS
*BSAVE CRIME WAVE,A$7FD,L$7C03

And your all done!

-113-

12:49 PM

o

o

o

Mar 6, 1985 Apple Krackers Guide

Appendix W.

Krakinq Roundabout into a single file: Using a memory packer.

Assuming that ¥ou have read the file on kraking Roundabout into a
full disk verS10n, here is a method you could use to krak it into
a file using a memory packer. Without using a memory packer,
there is too much memory for us to save it into a single file.
With a memory packer, Roundabout can be put into a single 125
sector file.

But keep in mind that Roundabout can be kraked into a single file
only if we give up all the different shapes used in the game for
each level. If we put it into a single file, the game will now
have 6 different shapes used for each one of the levels. But the
real reason I am kraking it into a single file is to show how a
memory packer could be used in a single file krak.

Roundabout uses memory from $800 to $B2FF, for a total of $AB
pages, which is greater than $8E pages that we can save a file
under normal DOS with (at least without using some sort of second
stage DOS loader). Therefore we must find some way to make the
memory we are saving to disk smaller. We can do this by using a
memory packer, as described in chapter 8.

First we need to find a starting address for Roundabout. This is
not too difficult. I started checking the even address pages,
such as $800, 900, etc. and found the starting address at $7000
(of course don't look for a starting address in the hi-res memory
area if the program uses one or both of the hi -res pages).

After doing this, I found that Roundabout needed memory from $800
to $B2FF to run. To find this out I erased a memory area and
tried running the game to see if it worked (if you were smart you
would just look at the loader and see what it loaded in, but I
didn't). I also found we needed to save hi-res page 2 since that
was loaded in from disk and not drawn from within the game.

In addition, I had to remove the disk access that loads in the
new shapes for each level. The routine that does this uses second
stage DOS to load the shapes, so we only need to disable RWTS
($B700-$BFFF). We could fill this memory area with the string "18
60", as described in the chapter on disabling disk access, but I
managed to find the calling routine and found it calls RWTS at
$BDOO. So all we need to do is to put a "60" at location $BDOO,
and the program will return to the calling routine without doing
any disk access.

Now we have to save $800-$B2FF to a slave disk in parts. The best
way to do this is to save the hi-res picture in one pass, and try
and save the rest of memory in another pass. The reason is
simple: saving the actual routines in one pass is a good idea
since you don't want to save two pieces that were not running
together at one time. The hi-res page doesn't have any routines

-114-

12:49 PM

o
Mar 6, 1985 Apple Krackers Guide

on it ever, so we can save it separate of the running routines.

So with this in mind, boot Roundabout and when the disk drive has
stopped and the game is running, reset into the monitor. Now move
memory around for a slave disk boot by typing:

*4000<9600.B300M
*5DOO<800.900M

Now we can boot a slave disk, move $800-$8FF back and save these
memory portions by typing:

]CALL-151
*800<5DOO.5DFFM
*BSAVE A96-B3,A$4000,L$lDOO
*BSAVE A08-40,A$800,L$3800
*BSAVE A60-96,A$6000,L$3600

The only memory portion left is hi-res page two ($4000-$5FFF).
This is easy to get. Just boot the Roundabout disk, and watch as
the game loads. You will see the hi-res page get loaded in. So
hit reset just after the hi-res page is loaded and before the
drive stops and the game starts. This way you catch the hi-res
page before the game starts and any shapes are drawn on it.

After you hit reset with the hi-res page in memory, boot your 48k
slave disk and type:

4l:)]BSAVE A40-60,A$4000,L$2000

o

Now we must put some of the memory pieces together so we can get
ready to pack them. To do this type:

]BIDAD A08-40
]BIDAD A40-60
] BIDAD A60-96
] BIDAD SHOWBIN

Using SHOWBIN, we can find the unused flag byte for the memory
range we are going to pack (refer to chapter 8 for a description
of the packing routines and how they work). But first we must
figure out what memory range we want to pack.

I decided memory from $800 to $8FFF would be good to pack, since
the memory above that was not repetitive, and therefore would not
benefit from packing anyways. So now we must enter the parameters
for SHOWBIN:

]CALL-151
*00:08 8F
*300G

NOTE that I entered a "08" and a "8F" so SHOWBIN would look at
memory from $800 to $8FFF. The "300G" starts the SHOWBIN .program.

-115-

12:49 PM

o

o

o

Mar 6, 1985 Apple Krackers Guide

The first set of bytes are the bytes that are never used in that
memory range. So pick one of them for your flag byte and write it
down. I choose $6A. Hit ESCAPE to exit SHOWBIN

Now bload PACKER so we can pack our memory range. Do this by
typing:

*BWAD PACKER
*05:6A 08 8F
*300G

Note that we enter the flag byte at $05, the low page at $06 and
the hi page at $07. The "300G" executes PACKER and packs our
memory range. Now lets see how small we packed it. Type:

*00.01

And the computer responds with:

0000 - E8 39

This means that $800 to $8FFF packed down to $39E8 to $8FFF. So
we should save the packed memory to disk by typing:

*BSAVE A08-8F.PAC,A$39E8,L$5C19

This means we now have room to put $9600 to $AFFF at $lCOO,
beneath the packed memory, and save Roundabout to disk in a 125
sector file. Then to reconstruct Roundabout, we need to write a
memory move routine that will run at $3900 (just below the packed
memory to conserve the most memory, of course) to do the
following:

1) Move $lCOO-$39FF up to $9600-$B3FF (NOTE that we use the
memory move routine to move itself too out of the way so it
doesn't get overwritten).

2) Jump to $B31B to continue.

3) Store a $60 at $BDOO (this will disable the disk access within
the game).

4) Unpack $800-$8FFF from $39E8-$8FFF.

5) Jump to $7000 to start the game.

To do the above, we can use the memory move writer to write the
memory move to run at $3900 and to move $lCOO-$39FF to $9600,
add some bytes to disable DOS and to set up for UNPACKER at
$3918, and then bload UNPACKER at $3928 to unpack our packed
memory. Here is the routines including the memory move:

3900- A2 00 LOX #$00

-116-

12:49 PM

0

o

o

Mar 6, 1985 Apple Krackers Guide

3902- BO 00 1C LOA $lCOO,X
3905- 90 00 96 STA $9600,X
3908- E8 INX
3909- DO F7 BNE $3902
390B- EE 04 39 INC $3904
390E- EE 07 39 INC $3907
3911- AD 04 39 LOA $3904
3914- C9 3A CMP #$3A
3916- DO E8 BNE $3900
3918- 4C 1B B3 JMP $B31B
391B- A9 60 LOA #$60
3910- 80 00 BO STA $BOOO
3920- A9 E8 LOA #$E8
3922- 85 00 STA $00
3924- A9 39 LOA #$39
3926- 85 01 STA $01
3928- UNPACKER

3983- 4C 00 70 JMP $7000

Notice right before unpacker we set the parameters for it by
putting the low packed byte of the packing address at $00, and
the hi byte at $01-

Now that we have all of the Roundabout memory in memory and ready
to save to disk. type:

*lBFO:4C 00 39
*BSAVE ROUNDABOUT,A$lBFO,L$7A04

And your all done!

NOTE: If the hi-res page is changed at all from the original in
the game, the amount of memory used after packing will be
different.

-117-

12:49 PM

o

o

o

Mar 6, 1985 Apple Rrackers Guide 12:49 PM

The Annotated Mr. Xerox

In JJJ.Y previous note I distinguised between syntactic and semantic
attacks on protected Apple disks. Syntactic attacks, epitomized by
the "nibble copiers" such. as IDcksmith, attempt to duplicate the
format of information on the disk without reqard to its meaning.
semantic attacks, epitomized by the "boot trace" method, attack the
code itself. The design of the Apple is such that boot trace attacks
can be made tedious but not impossible.

Syntactic attacks proceed in the following fashion: most nibble
copiers are highly paramaterized. An attacker examines the format of
the target disk (using the "nibble editor" feature of the program)
and then devises a set of parameters which permits the copier to
duplicate that format. Most of the parameterization deals with the
various techniques used to detect gaps and track starts in the
completely "soft" Apple disk format. once an attacker finds a set of
parameters that works, they are quickly published (in some cases, by
the marketer of IDcksmith, who as a consequence attends few software
vendor's conferences) and pirated copies of the given disk rapidly
becomes available in the halls of Junior High Schools all across the
country.

A new technique used to defeat syntactic attacks takes into account
the entire piracy process. In particular, it recognizes the fact that
only a miniscule minority of people who own (usually pirated) copies
of locksmith can actually devise a set of parameters; instead they
rely on the published ones. What the software vendors are doing now
is releasing the same program in a multiplicity of different formats.
Discovering a set of parameters for one instance of the program does
not help you copy another instance. Copies of copies still propagate,
but the process is much. slower.

The process of semantic attack was outlined in JJJ.Y previous note. I
have been fortunate in being able to obtain the seminal essays in the
field, written by the pseudonymous "Mr. Xerox." These essays were
stolen (what else?) from a ripoff of a for-profit pirate bulletin
board in the Boston area. I have converted them to 80-column
upper/lower case (the original shouts a lot), deleted some expletives,
and worked over the language a little bit. I have also interspersed
notes in brackets to clarify certain points and make the discussion a
little more intelligible to persons other than Apple hackers. I went
to the trouble because this stuff is too good to be lost to posterity.
Enjoy.

[start of first article.]

Note: I chose Apple Ga1axian here because it is a widely distributed
program, and it encompasses the basic ideas in "boot trace" cracking.
For all those interested pirates out there, yes, there is another way
to crack programs. You don't need any ram-cards, prom burners, or

-11&-

o

o

o

Mar 6, 1985 Apple Krackers Guide

foreign to regular DOS pr~ams. Anybody who is not a clown, with some
machine language progranuung ability can trace a boot. This method
of cracking, tracing the boot, is, in a true sense, cracking the code.
You see, for all disks, they must first boot up to start running.
After the first stage boot (at location $C600), they jump to the
second stage boot program (at $800), and then to a third, and some
even a fourth, but there comes a point where the loading of the
program from disk stops, and the running of the program begins. If
you can trace this, and stop it after it has finished loading, and
save all the memory locations that contain the program onto a normal
3.3 disk, you have cracked the program. This method is most useful
for cracking the "single-shot" booting programs such as Apple Panic,
Raster Blaster, and Gorgon. These disks don't contain any standard
DOS, but rather their own.

12:49 PM

This DOS has just one purpose, and that is to load the program into
the computer, from the disk, and start its execution. NOW, this is not
as simple as it sounds, as the software protectors are not dumb, they
try to make it tough for you to trace. However, it is not impossible,
since the disk must boot up, and since it must have some booting
process, that process is traceable.

[Because of the ease of boot tracing, and the use of the "Snapshot"
type boards that dump memory to disk, all new arcade games make disk
accesses in the midst of play. These accesses are made even though
the entire game possibly fits into memory. The purpose of the
accesses is to raise the work factor in cracking the disk.]

Let me try and show you an example of how to trace a boot of a
program. Let me show you how to trace Apple Galaxian. The first stage
boot starts at $C600. If you turn your Apple on, and type "CALL-151
(RETURN)" AND "C600G (RETURN)", the disk will proceed to start and
boot the disk in the drive. This is because $C600 containing the
program for the disk to boot first.

[That is to say, $C600-$C6FA contains a ROM program which is invoked
on power up or a PR 6. It is the fact that this ROM program is
executed by the main 6502 processor, and not the controller chip, that
makes boot tracing possible. If the controller chip executed it with
hard-wired addresses then it would not be possible to redirect the JMP
$801 and start the boot tracing process.

For non-Apple types, CALL -151 is the entry into the "system monitor,"
a set of ROM utility routines. The ones referenced in these articles
are invoked by console commands <addr>: <byte string>, which alters
memory, <destination addr> < <start addr><end addr>M, which relocates,
<addr>L, which disassembles a screen worth, and <addr>G which executes
an uncondtional branch to <addr>.]

If you examine this program by typing "CALL-151 (RETURN)", and
"C600I.I.T.T.T.T.T. (RETURN)", you will soon come across a JMP $801, Near the
end, specifically, at $C6F8. This is the link to the next stage of the
boot. What we must do is allow the first stage to load in at $800, but
instead of letting it run (continue to boot, and go to $800), we stop

-119-

0·····
'.

o

o

Har 6, 1985 Apple Krackers Guide

the computer, and examine what is at $800.

To do this let's move $C600 down to $ 9600. Type "CALL-15l (RETURN)"
AND "9600<C600. C700M (RETURN)." This moves C600 down for you. Then
type "96F8: 4C 59 FF (RETCRN)." Instead of having the boot go to $800,
this will make it jump to $FF59 (the reset location). Then type
"9600G".

[The effect of these steps is to move the ROM boot program down into
RAM, and modify it so that the JMP to the next stage boot is replaced
with an entry into the system monitor.]

12:49 PM

Your disk should boot up for a second or so, and then you should hear
a bell, and the monitor cursor will appear at the bottom of the
screen. The next step is to examine the cod which starts at location
$800. If you look at this by typing "800L (RETURN)" You will see the
second stage boot of Apple Galaxian.

[Or, of course, whatever it is you are tracing, since the JMP $801 is
normally in ROM and must be encountered by any bootable disk.]
By typing "800T.T.T.T.T.T.]'. (RETURN)", you can see what goes on next in the
boot step. What happens next is that it takes the memory that is
stored at $800, and moves it down to $200, and some other stuff, like
loading the next stage of the boot. Then, if you look at location
$841, you will see a JMP to $301. This is the next stage in the boot.
So, we must move what is in memory up out of $800, because the next
time we read something from the disk the locations at $800 will be
changed. So type "9800<800.900M (RETURN)", and that will do the move.
The next thing is to change what is at $9800, the stuff we just moved
up, so that it will run at $9800, instead of its normal location of
$800. To do this, type" 9803:BD 0 98 (RETURN)" and "9841: 4C 01 93
(RETURN) " •

[$9841 contains the relocated jump out. This is changed to a JMP to
$9301, which is loaded with a monitor entry in the next step.]
Then type "930l:4C 59 FF", because we changed it to run at $9800, and
also changed it to stop after running instead of jumping to the next
boot stage, at $300. We told it to jump to $9300, and at $9300, we put
a JMP $FF59 (jump to RESET). And finally, change the JMP at $96F8 from
$FF59 to $9801 by typing "96F8:4C 01 98".

[This last change relinks the relocated ROM boot routine to the
relocated next stage boot routine.]

Now again type $9600G. This time, we are one stage farther. If you now
move the stuff at $300 up to $9300, and change it to work at $9300 by
typing "9300<300. 400M (RETURN)" and "93l3:AD CC 93 (RETURN), and
"933C:AD CC 93 (RETURN)", this will be completed.

[Note what has happened here: the relocated "shadow" boot sequence in
high memory has been linked together and run to load low memory but
not execute it. The last two changes are Apple Galaxian-specific.]
But now, there is a problem. The jump out is at $9343, and it jumps
not to the next stage immediately, but to a certain number of

-120-

o

o

o

Mar 6, 1985 Apple Krackers Guide 12:49 PM

subroutines. Then, through the same jump, it jumps to the next stage.
How do we get around that, you ask?

The answer is to write a program that checks to see where it it
jumping to, and if it is not jumping to where it normally jumps to,
then stop, because we know that the next jump is not to a subroutine,
but to the next stage of the boot. This may sound complicated, but
just type this routine in at $9400: "9400:A5 3E C9 5D DO 03 6C 3E 00
4C 59 FF", AND "9343: 4C 00 94 (RETURN)". That will take care of this
stage.

[What is being described in the above paragraph is a test for a
specific page zero pointer value. Protected disks now attempt to
defeat boot tracing my establishing a variety of subtle dependencies
between boot stages, including self-modifying code and the use of
stack residues. The 6502 is such a simpleminded processor that these
tricks raise the work factor by very little, if any.]

Now check to see that you have typed in everything correctly, and
then type "9600G" to restart the boot. Now the disk spins for a little
while longer, and when it stops we will have come to the last step of
this boot process. This step loads the main program in from disk, and
then jumps to the beginning of it.

By typing "93CC (RETURN)", the computer will display the page-1 of the
next stage boot.

[This again is Apple Galaxian-dependent. This step examines the
high-order byte (as we, not the 6502, read addresses) of a base
address. The base address is evidently that used by a relocation
routine.]

It will display "B6", and you add one to it, and get $B7, so type
"B700L", and presto, we have the next stage of this boot. This stage
does the program loading, along with turning on the graphics, and
jumps to the beginning of the program. If you can see it, the
beginning of the program is at $600, and there is a JMP to $600 at
location $B759.

So, all we have to do is to have it do all the loading, and instead of
having it jump to $600, stop it there.

[This again is a description of having the "shadow" loader load the
code and then stop.]

But there is a problem connected with this (aren't there always!). The
problem is that if we stop it here, location $600 is in text video
memory, so we must not have it jump to $FF59 (STOP), but jump to a
routine that relocates everything from $0000-$0800, and then stop.
[This is a description of a standard situation in the Apple. Low
memory is used for the stack, bit-mapped text displays, and console
input. Many of these locations change when RESET or other console
keys are hit. Such changeable memory is of course prime real estate
for anybody trying to make code hard to analyze.]

-121-

o

0." ,

o

Mar 6, 1985 Apple Xrackers Guide 12:49 PM

I will provide you with this. Just type "B500:A2 00 B5 00 90 00 20 BO
00 01 90 00 21 BO 00 02 90 00 22 BO 00 03 90 00 23 BO 00 04 90 00 24
BO 00 05 90 00 25 BO 00 06 90 00 26 BO 00 07 90 0 0 27 E8 00 CE 4C 59
FF (RETURN)."

[The above is just a bunch of LDA/STA loops.]

This will take care of moving everything from $0-$800 to $2000-$2800.
But now change $B759 to jump to this small program by typing "B759: 4C
00 B5." We also have to change some other locations. Location $93CC
must be changed to $06, so type "93CC:06 (RETURN), and instead of
jumping to $FF59 at $8409, and stopping at that stage of the boot, JMP
to the beginning of this boot at $B700, by typing "9409:4C 00 B7
(RETURN) " •

[This is a similar set of steps to those done before, relinking the
"shadow" boot sequence back together.]

That takes care of most all preparations for the final crack. Now
check to see that you have typed in everything correctly, and if you
are ready, type "9600G".

[Thus entering the duplicated ROM code (often called "boot zero" and
duplicating the steps that occur on a power on or PR 6.]

If everything worked correctly, it should boot up for about 10
seconds, and you should see the Hi-res picture loading in, and then
your speaker should beep, and you should see on the screen a bunch
of letters. If this didn't happen, check all the above steps, and repeat
the process. If it has, then you are just about finished. If you want
to check to see if it has worked, assemble this program, and type it
in at $B560. If not, go on to the next step.

oro $B560
BEGIN LOX $0
AGAIN LOA $2000,X

STA $OO,X
LOA $2100,X
STA $100,X
LOA $2200,X
STA $200,X
LDA $2300,X
STA $300,X
LOA $2400,X
STA $400,X
LOA $2500,X
STA $500,X
LOA $2600,X
STA $600,X
LOA $2700,X
STA $700,X
INX
BNE AGAIN ;IOOP

-122-

o

o

o

Mar 6, 1985 Apple Krackers Guide 12:49 PM

JMP $0600 ;BEGINNING OF PGM NOW

[The above program restores low memory to enable testing of the loaded
game.]

Boot up a normal OOS disk, and save everything from $2000-$2800, which
represent locations $0-$8 moved up by $2000. You should then repeat
the whole boot trace, and proceed to the next step.
[In other words, save low memory, then reload the rest of memory using
the "shadow" boot sequence.]

Examine the memory of your Apple. You should save all the information
from $800-$AOOO on a normal DOS disk, then link the files that you
have saved on the dos disk together, and make the file a BRUNable file
that loads everything in, and moves the $00-$800 image back down in
memory, and then jumps to location $600, the beginning of the program.
[Note how easily the loading of critical information in low memory,
considered a sophisticated technique by unsophisticated programmers,
is defeated.]

If any of you are unfamiliar with how to save everything, and need
some help, here is how to do it: Follow the directions for traceing
the boot, and type "2800<9600.AOOOM (RETURN)" and "3200<800. 900M
(RETURN)." Also, we need a program to move everything that we just
relocated back into their original locations.

This time, I will assemble it for you. All you have to do is type
"3400:A2 0 BD 00 20 95 00 BO 00 21 90 00 01 BO 00 22 90 00 02 BO 00 23
90 0 03 BO 00 24 90- 0 4 BO 0 25 90 0 5 BO 0 26 90 0 6 BO 0 27 90 0 7
EA (RETURN)" and
"3432:BO 0 32 90 0 8 BO 0 33 90 0 9 EA (RETURN)" and
"343F:BO 0 28 90 0 96 BO 0 29 90 0 97 BO 0 2 A 90 0 98 BO 0 2B 90 0 99
BD 00 2C 90 0 9A BO 0 20 90 0 9B BO 0 2E 90 0 9C BO 0 2F 90 0 90 BO 0
30 90 0 9E BO 0 31 90 0 9F (RETURN)" and
"347B:E8 00 84 EA AD 57 CO AD 54 CO AD 52 CO AD 50 CO EA 4C 00 06
(:RETURN) " •

[If you don't like hand-entering long hex programs you should stay out
of the cracking game. certain prehistoric types who entered 7090
patches through console binary switc:hes are right at home.]

This will take care of the small program that we need to move
everthing back. But we also need to put a JMP $3400 in the beginning,
because when it BRUNs, it must jump to this small program first. Now
you can boot up your -3.3 disk and type "CALL-151 (RETURN)", "9FO: 4C
00 34 (RETURN)", "A964: FF (RETURN)", AND "BSAVE GALAXIAN ,A$9FD, L$8C03
(RETURN) ." And now you are finished.

[End of first article.]

Space Raiders, by Paul I.11tus of USA, is a pretty crununy game in my
opinion, but it is very easy to crack. Its boot contains only one
stage, and the protection against cracking it is minimal. It should

-123-

o

o

o

Mar 6, 1985 Apple Krackers Guide 12:49 PM

give you another basic example of how to "boot trace" crack programs.
If you remember from the last cracking tips article, the first stage
boot is at $C600. At $C6F8, the boot JMPs to $801, the next stage of
the boot. So, what we must do is have it load the second stage boot
in, stop, and then examine the code for the jump to the next stage, or
the start of the program.

let's start by moving the boot from $C600 down in memory to $9600. To
do this type "9600<C 600. C700M (RETURN)", This will do the move. Now
we must have it stop there instead of going onto $801, so type
"96F8:4C 59 FF (RETURN)". Now we are ready to to initiate the first
stage of the boot, and we do so by typing "9600G (RETURN)". The drive
will go for a split second, and then the monitor cursor should appear
in the lower left corner of the screen. If this has not happened,
repeat these steps. Now we can examine the next stage of the boot.
Type "801LLL" to see the next stage of the boot. If you examine it,
and trace it in your brain (remember you have one, not like some
Bozos), soon you will see a JMP $4000, and that is the the end of this
boot.

After it loads everything in, it then jumps to the stuff it has just
loaded in, which is at $4000. $4000 just happens to be the beginning
of the program. So now that we have this stage in, we must move it up
in memory, and change its JMP from $4000 to $FF59, to stop it there
and allow us to save everything onto a normal 3.3 disk. You can do
that by typing "9800<800.900M (RETURN)", and "9885:4C 59 FF (RETURN) II

and "96F8: 4C 01 98 (RETURN)." Then reboot the disk by typing "9600G. II
NOW, when the monitor cursor appears at the bottom of the screen
again, we know that the boot is finished. You can check to see if the
program runs by now typing "4000G". But wait, what happened?

• The's. This is their
protection from letting you stop the program and then typing $4000G.
You see, at location $9885 where we had the jump to $FF59 (the RESET
location, the boot proceeded to jump to that location in ROM. But at
that program in ROM [Le., at the Apple Monitor entry point] the value
of certain zero page locations were changed. One of the locations that
changes was location $21. If you look at the second stage boot again,
and look at the two commands just before the jump to $FF59 , you will
see something like: LDA $26 STA $21 JMP $FF59. Can you see that if
you repeat the whole boot that I just explained, and instead of
testing it immediately by typing "4000G (RETURN)", type "21:26
(RETURN) ", and then "4000G", it will run?

If you have not tested it, then you have my guarantee that it will do
what I describe. You see, somewhere in the program that starts at
$4000, it checks to see if there is a $26 in location $21 If there is
not, then it will crap out, if there is then it will run.

[The above instance is a not atypical example of what simpleminded
techniques are used in attempts to complicate use of the boot trace
method. Once the code is made visible, then all these little games
become pathetically transparent. There seems to be a parallel here
with people who develop crypto1ogic systems in the absence of any

-124-

0·······:
..

o

o

Mar 6, 1985 Apple Krackers Guide

strong cryptanalytic ability, and as a consequence make fatal
assumptions about the attack method.]

12:49 PM

Now we are just about finished. We just need a small program that will
go before the program at $4000 and put a $26 into location
$21. So type " 3FFO :A9 26 85 21 4C 00 40 (RETURN)". This small program
looks like:

IDA $26
STA $21
JMP $4000

Then boot up a normal disk, and do a BSAVE like this - "BSAVE SPACE
RAIDERS,A$3FFO,L$4100", and you will be finished.

[End of second article. Few games are protected in such a
simpleminded fashion anymore.]

If you have read my last two articles, you should be familiar with how
to "boot-trace" crack programs. If you have not read either then you
will be completely lost in this one, so get a hold of one of them, and
study them before proceeding with this one. Apple Ga1axian and Space
Raiders were fairly easy to crack, but now come the tougher ones.
[This paragraph was left in to make the reader familiar with Mr.
Xerox's locution, which is strangely reminiscent of that of a Zen
master. You should meditate on this.]

The protectors can make things complicated by adding nibble counts to
the software. If any of you are not familiar with what a nibble count
is, it is a certain track that contains a specific amount of a certain
byte. The program that is protected on the disk, sometime during its
run, goes back to disk to reads all of these nibbles back. If the
program doesn't find these bytes, or the right number of them, it will
crap out.

[Another reason for otherwise unneeded disk accesses in the middle of
arcade games. The idea here is that all Apple disk drives run at a
slightly different speed. If you copy the track using a nibble
copier, the speed variation will cause the copy to have a different
number of the bytes being counted. The code can thereby detect it is
dealing with a copy and not an orgina1. If you have access to the
Locksmith technical notes, you can observe what a tedious business it
is to defeat nibble counts using that program. Then note how easy it
is using a semantic attack described below.

Some protectors get it only half right, and the program craps out in a
manner that permits entry into the Apple monitor. That is, the
program defeats nibble copiers like Locksmith but opens itself up to
semantic attacks. Such occurences are the occasion for great
merriment in the cracking community.]

Bug Attack is one of these programs. After the title page comes on,
and there is the explosion of dots, it waits for you to press a key,

-125-

o

o

o

Mar 6, 1985 Apple Krackers Guide 12:49 PM

or push. a bu1:ton. after you press a key, it goes back to disk, and
does a nibble count. If it can read all these nibbles, and everything
checks out, it will continue with the game. But if it doesn't, well,
you're in trouble. So, if this is to be cracked, and put onto a normal
3.3 disk that contains no track dedicated to containing those bytes
that Should be read, we will need to defeat the nibble count. Let's
first crack the program. Then I will show you how to defeat this
specific count.

To crack this, first turn your apple on, and press "RESET" to stop the
drive from booting the disk. Get into the monitor by typing "CALL-151
(RETURN)" if you have an Apple] [+. If you have an older Apple] [,
then by pressing reset you will automatically be placed into the
machine language monitor.

[The Apple] [+ ROM is called the "Autostart ROM" because it goes to
the disk boot routine on power up. As mentioned above, it also takes
different action from the original Apple ROM when RESET is pressed.]
Then type "8600 <C600. C700M (RETURN)", to move the phase zero boot
from ROM into RAM, and "86F8:4C 01 88 (RE'I'URN)", to make the boot
continue at location $8801 instead of $801, and "8801:4C 59 FF

(RETURN) ", to force the boot to stop instead of continuing to the next
phase. Then start it up by typing "8600G (RETURN)".

Now move the second stage that is at $800 up to $8800 by typing
"8800<800.900M (RETURN)", and modify it so it will run at $8800 by

. typing "8803:BO 00 88 (RETURN) and "8841:4C 01 83 (RETURN)." Then type
: "8301:4C 59 FF", and finally reboot by typing "8600G (RETURN)" again.

Now we are at the third stage that is at $300, so move that stuff up
to $8300 by typing "8300<300.400M (RETURN)" and modify this stuff to
run at $8300 by typing "8313:AD CC 83 (RETURN)" and "833C:AD CC 83
(RETURN) and "8343:4C 0 84 (RETURN)."

Now we will run int() the same trouble that we had in Galaxian in that
the jump out of this stage is not immediate, but only after many jumps
to a certain subroutine. So we need that program at $8400 again that
checks to see if it is going to the subroutine, or to the beginning of
the program. If it is going to the subroutine, then let it continue,
if not then stop. So type "8400:A5 3E C9 05 DO 03 6C 3E 00 4C 59 FF
(RETURN) ", and reboot again by typing "8600G (RETURN)."

[Interestingly enough, the same pointer values are being checked here
as in the Galaxian case. These two games may be from the same outfit.
Accomplished crackers learn the idiosyncracies of the various
companies. Sirius Software, whose president uses every possible forum
to denounce pirates, uses some the most baroque techniques imaginable.
As with cryptography, however, mere complexity does not give
strength.]

Now to find out where the next stage loaded in, type "83CC (RETURN)."
You will see an $A1, so add one to that, and you get $A2, so type
"A200L (RETURN)". We are now at the final stage of the boot.

-126-

o

o

o

Mar 6, .1985 Apple Krackers Guide 12:49 PM

In this stage, the boot turns on the graphics, loads the program, and
jumps to the beginning of it. If you type "L" a few times you will
come across a point where this stage ends, and the jump to the
beginning of the program is located. The jump is at location $A2F8,
and it is an indirect one to $lFF. If you don't know, an indirect jump
to $lFF doesn't jump to the locations that $lFF and $200 point to, but
to the locations that $lFF and $100 point to.

[The protector here is attempting to confuse novice crackers by
exploiting an anomaly of 6502 addressing: pointers do not cross page
boundaries but instead wrap around to the start of the page.]

So, to find out where this jump goes to, type "A2F8:4C 59 FF (RETURN)"
and "8409: 4C 00 A2 (RETURN)" and "83CC: D2 (RETURN)", and finally reboot
by typing "8600G (RETURN)".

[This should be old hat by now.]

Now we can examine location $100 by typing "100 (RETURN)" and location
$lFF by typing "lFF (RETURN)". From this information you now know that
the jump is to location $4D 36.

You have now cracked the program, but one more major obstacle remains
in our way. The program contains a nibble count. If you boot the
original, and press button (0), You will see that it goes back to disk
for a second and does the count. So the way to get rid of the nibble
count is to find where it is in memory, and just avoid it when the
program is run.

I have examined the program and found that after the t.itle pa<1e is
displayed, and the dot graphics explosion takes place, there 1.S a jump
at $4E24 that goes to the nibble count routine at $4A33. After the
nibble count is done, there is a jump out of it at $4A88. This jump is
to the begining of the game, location $494A. Now, we can modify the
whole nibble routine at $4A33 just to skip turning on the drive, and
jump directly to the beginning of the program. But like always, they
(the protectors) have stealthily hid a routine in the middle of the
<1ame that checks to see if the nibble count routine has been changed
1.n any way. If it has than the program will crapl out, if not then it
will continue with the game. Pretty sneaky of the protectors, huh?

[It is difficult to see what the protectors had in mind when they came
up with this baroque touch. If they are going to the trouble of
checking the integrity of the code, then they must be assuming that
someone is mounting a semantic attack. If so, the checking routine is
just as visible as the routine being checked.

Incidentally, the easiest way to locate nibble count routines is to
search for references to locations $C080-$C08F, X-modified (the usual
format) or $COEO-COEF (absolute references to slot 6). These
locations hold the "soft switches" which must be referenced to perform
physical disk operations.]

-127-

o

0.···'·· .)

o

Mar 6, 1985 Apple Krackers Guide

So to get around this problem, we must simply take the JMP at $4E24
goes to the nibble count part at $4A33, and change it to jump to the
beginning of the proqram at $49A4. So make the change by typing
"4E24:4C 49 A4 (RETURN)".

[Note how trivially the "check the checking routine" strateqy is
defeated. Some poor souls go so far as to checksum memory. The
attack for that is left as an exercise for the reader.]

After this change has been made, the proqram is in a form which can be
saved to a normal 3.3 disk. Don't forqet to save pages $0-$8 with the
rest of the file , and load them back into memory when you BWAD the
file back in normal 3.3 DOS. If you have just read all this, and you
don't believe that it will all work, try this, here is a proqram that
will do the nibble count changes and will show you that the nibble
count was really defeated.

ORG $A800
START STA $AFOO

LDA $4C
STA $4E24
LDA $A4
STA $4E25
LOA $49
STA $4E26
LOA $AFOO
JMP $4036

;STA TEMP
;JMP BYTE
;JMP IDeATION
;WW BYTE
;JMP IDeATION+1
;HIGH BYTE
;JMP IDeATION+2
;GET OID A VAL BACK
;BEGINNING OF THE PROG
;THIS WILL DO THE JMP
;TO PROVE THE DEFEAT
;OF THE NIBBLE COUNT.

The assembled version is "A800:80 00 AF A9 4C 80 24 4E A9 A4 80 25 4E
A9 49 80 2 6 4E AD 00 AF 4C 36 40 (RETURN)", and we need to jump to
this location instead of ($lFF), so type "A2F8: 4C 00 AS (RETURN)".
This must be done in the boot trace instead of entering "A2F8:4C 59
FF" • When you run the boot, the game will proceed normally, but the
disk will never be accessed, and thus we have defeated the nibble
count!

[End of third and last article.]

-128-

12:49 PM

.---- ------------------------..1

o

o

o

Mar 6, 1985 Apple Krackers Guide 12:49 PM

Reqardinq Tiqer Teams
Off the record comment on Apple piracy:

1. General

It is not theoretically possible to protect a runnable Apple disk from a
determined attack; the only thinq a defender can do is raise the work
factor. This circumstance arises from the nature of the Apple hardware.
The autostart facility requires that the first bootstrap alqorithm be in
the disk controller ROM and is therefore unmodifiable by would-be
protectors. As a consequence track 0, sector 0 of an Apple disk
must be in a known format.

As a consequence, there is a standard piratinq methodoloqy which is to
simply trace the bootstrap sequence by hand, notinq and dismantlinq the
funny stuff as you qo. This always works; it just may take more or less
time. The process is simplified by the extreme simplicity of the 6502
architecture and the correspondinq limit on low-level trickery. A
knowledqe of the basic Apple OOS hardware and software, and 6502 machine
lanquaqe is all that is required. The OOS knowledqe can come from a
variety of sources; the most efficient is the book "Beneath Apple DOS,"
supplemented by the disassembled OOS listinqs available from the same
people.

2. Obj ecti ves

There are basically two possible objectives for an attack on an Apple
disk. One is to make it "nibble-copyable" by somethinq like locksmith.
The other, and more elaborate, is to put it into standard DOS format so
that COpy A works. .

3. Protection Technoloqy

Protection method rely on two basic factors: the extreme "softness" of
the Apple disk technoloqy and the riqid expactations of OOS with reqard
to format. First qeneration protection methods aimed at protectinq the
software from DOS technoloqy; second qeneration aims at protectinq it
aqainst the nibble copiers.

Basically, the Apple hardware provides only two thinqs: the ability to
recoqnize the start of a byte on disk and the ability to find track 0,
sector o. The first makes a wide variety of protection schemes possible
and the second makes a perfect one impossible.

'Protectinq aqainst DOS utilities involves writinq information out in
nonstandard format and usinq a non-OOS to read it. Almost everybody
(Infocom is the only example to the contrary) constructs a non-DOS by
patchinq DOS. This makes the chanqes trivially easy to find and rip
out.

Protection aqainst nibble copiers involves playinq qames with the
alqorithm that the hardware uses to recoqnize the start of a byte and

-129-

o

o

o

Mar 6, 1985 Apple Krackers Guide 12:49 PM

the distinguished bytes which indicate the start of a track. Schemes
also use what is called "nibble counting," which exploits the speed
variability of the drives, "synchronization," which is the alignment of
track starts in a time-dependent fashion, and "quarter tracks" or "half
tracks" which exploit the fact that the head is positioned by software
and not hardware (that's right, in software you have to turn the stepper
motors on and off in the proper sequence. Ever wonder how Wozniak got
the controller board cost down?).

4. Attack Technology

The general detailed algorithm for pirating an Apple disk is:

4.1 Trace the bootstrap sequence and see what they are doing.

4.2 Find out what funny stuff you need to bypass. Usually the really
exotic techniques are applied to just one or two tracks in the bootstrap
sequence because they impact performance so much.

4.3 Kludge together a utility which uses their code to read a track and
a copy of standard DOS to write it out. Unpatch their code so that they
look for standard DOS as well.

4.4 Treat yourself to a beer, you sly devil.

stupid pirates fool around with just the data formats on the disk.
Smart pirates go after the code. This is the same basic methodology as
used on mainframes: don't attack the data, attack the operating system.h

5. Tools

You need a nible editor (a pirated copy of Locksmith works fine), a
good set of disk utilities (a pirated copy of Bag of Tricks is good
here), and a good disassembler (there is a decent one available from
Call-APPLE). In addition, you will probable write a "DOS-ifier" which
converts the class of funny formats obtainable by doing easy patches to
DOS back to standard. And the usual program development tools.

6. Work Factor

Most senior pirates are semiretired and just crack things far enough to
see and sneer at the scheme being used. This takes at most a week of
evenings. Another week of evenings and you can have the thing in COPYA
format, unless the source format is so wildly nonstandard that it isn't
worth the trouble and you just take it to the point where a nibble
copier can handle it.

-130-

Har6, 1985 Apple Krackers Guide 12:49 PM

o

o

o
-131-

•

o

o

o

Mar .6, 1.985 Apple Krackers Guide 12:49 PM

with regard to BB's, call 933-1771 to qet a list of Twin cities boards.
Most pirates communicate via Pirate's Cove: (516) 698-4008. Be patient;
it is heavily overloaded.

-132-

Mar 6,),985 Apple Krackers Guide 12:49 PM

o Earl

o

o
-133-

Mar 6, 1985 Apple Rrackers Guide 12:49 PM

o

o
-134-

	Apple_Krackers_Guide-1985_030001_a
	Apple_Krackers_Guide-1985_030002_a
	Apple_Krackers_Guide-1985_030003_a
	Apple_Krackers_Guide-1985_030004_a
	Apple_Krackers_Guide-1985_030005_a
	Apple_Krackers_Guide-1985_030006_a
	Apple_Krackers_Guide-1985_030007_a
	Apple_Krackers_Guide-1985_030008_a
	Apple_Krackers_Guide-1985_030009_a
	Apple_Krackers_Guide-1985_030010_a
	Apple_Krackers_Guide-1985_030011_a
	Apple_Krackers_Guide-1985_030012_a
	Apple_Krackers_Guide-1985_030013_a
	Apple_Krackers_Guide-1985_030014_a
	Apple_Krackers_Guide-1985_030015_a
	Apple_Krackers_Guide-1985_030016_a
	Apple_Krackers_Guide-1985_030017_a
	Apple_Krackers_Guide-1985_030018_a
	Apple_Krackers_Guide-1985_030019_a
	Apple_Krackers_Guide-1985_030020_a
	Apple_Krackers_Guide-1985_030021_a
	Apple_Krackers_Guide-1985_030022_a
	Apple_Krackers_Guide-1985_030023_a
	Apple_Krackers_Guide-1985_030024_a
	Apple_Krackers_Guide-1985_030025_a
	Apple_Krackers_Guide-1985_030026_a
	Apple_Krackers_Guide-1985_030027_a
	Apple_Krackers_Guide-1985_030028_a
	Apple_Krackers_Guide-1985_030029_a
	Apple_Krackers_Guide-1985_030030_a
	Apple_Krackers_Guide-1985_030031_a
	Apple_Krackers_Guide-1985_030032_a
	Apple_Krackers_Guide-1985_030033_a
	Apple_Krackers_Guide-1985_030034_a
	Apple_Krackers_Guide-1985_030035_a
	Apple_Krackers_Guide-1985_030036_a
	Apple_Krackers_Guide-1985_030037_a
	Apple_Krackers_Guide-1985_030038_a
	Apple_Krackers_Guide-1985_030039_a
	Apple_Krackers_Guide-1985_030040_a
	Apple_Krackers_Guide-1985_030041_a
	Apple_Krackers_Guide-1985_030042_a
	Apple_Krackers_Guide-1985_030043_a
	Apple_Krackers_Guide-1985_030044_a
	Apple_Krackers_Guide-1985_030045_a
	Apple_Krackers_Guide-1985_030046_a
	Apple_Krackers_Guide-1985_030047_a
	Apple_Krackers_Guide-1985_030048_a
	Apple_Krackers_Guide-1985_030049_a
	Apple_Krackers_Guide-1985_030050_a
	Apple_Krackers_Guide-1985_030051_a
	Apple_Krackers_Guide-1985_030052_a
	Apple_Krackers_Guide-1985_030053_a
	Apple_Krackers_Guide-1985_030054_a
	Apple_Krackers_Guide-1985_030055_a
	Apple_Krackers_Guide-1985_030056_a
	Apple_Krackers_Guide-1985_030057_a
	Apple_Krackers_Guide-1985_030058_a
	Apple_Krackers_Guide-1985_030059_a
	Apple_Krackers_Guide-1985_030060_a
	Apple_Krackers_Guide-1985_030061_a
	Apple_Krackers_Guide-1985_030062_a
	Apple_Krackers_Guide-1985_030063_a
	Apple_Krackers_Guide-1985_030064_a
	Apple_Krackers_Guide-1985_030065_a
	Apple_Krackers_Guide-1985_030066_a
	Apple_Krackers_Guide-1985_030067_a
	Apple_Krackers_Guide-1985_030068_a
	Apple_Krackers_Guide-1985_030069_a
	Apple_Krackers_Guide-1985_030070_a
	Apple_Krackers_Guide-1985_030071_a
	Apple_Krackers_Guide-1985_030072_a
	Apple_Krackers_Guide-1985_030073_a
	Apple_Krackers_Guide-1985_030074_a
	Apple_Krackers_Guide-1985_030075_a
	Apple_Krackers_Guide-1985_030076_a
	Apple_Krackers_Guide-1985_030077_a
	Apple_Krackers_Guide-1985_030078_a
	Apple_Krackers_Guide-1985_030079_a
	Apple_Krackers_Guide-1985_030080_a
	Apple_Krackers_Guide-1985_030081_a
	Apple_Krackers_Guide-1985_030082_a
	Apple_Krackers_Guide-1985_030083_a
	Apple_Krackers_Guide-1985_030084_a
	Apple_Krackers_Guide-1985_030085_a
	Apple_Krackers_Guide-1985_030086_a
	Apple_Krackers_Guide-1985_030087_a
	Apple_Krackers_Guide-1985_030088_a
	Apple_Krackers_Guide-1985_030089_a
	Apple_Krackers_Guide-1985_030090_a
	Apple_Krackers_Guide-1985_030091_a
	Apple_Krackers_Guide-1985_030092_a
	Apple_Krackers_Guide-1985_030093_a
	Apple_Krackers_Guide-1985_030094_a
	Apple_Krackers_Guide-1985_030095_a
	Apple_Krackers_Guide-1985_030096_a
	Apple_Krackers_Guide-1985_030097_a
	Apple_Krackers_Guide-1985_030098_a
	Apple_Krackers_Guide-1985_030099_a
	Apple_Krackers_Guide-1985_030100_a
	Apple_Krackers_Guide-1985_030101_a
	Apple_Krackers_Guide-1985_030102_a
	Apple_Krackers_Guide-1985_030103_a
	Apple_Krackers_Guide-1985_030104_a
	Apple_Krackers_Guide-1985_030105_a
	Apple_Krackers_Guide-1985_030106_a
	Apple_Krackers_Guide-1985_030107_a
	Apple_Krackers_Guide-1985_030108_a
	Apple_Krackers_Guide-1985_030109_a
	Apple_Krackers_Guide-1985_030110_a
	Apple_Krackers_Guide-1985_030111_a
	Apple_Krackers_Guide-1985_030112_a
	Apple_Krackers_Guide-1985_030113_a
	Apple_Krackers_Guide-1985_030114_a
	Apple_Krackers_Guide-1985_030115_a
	Apple_Krackers_Guide-1985_030116_a
	Apple_Krackers_Guide-1985_030117_a
	Apple_Krackers_Guide-1985_030118_a
	Apple_Krackers_Guide-1985_030119_a
	Apple_Krackers_Guide-1985_030120_a
	Apple_Krackers_Guide-1985_030121_a
	Apple_Krackers_Guide-1985_030122_a
	Apple_Krackers_Guide-1985_030123_a
	Apple_Krackers_Guide-1985_030124_a
	Apple_Krackers_Guide-1985_030125_a
	Apple_Krackers_Guide-1985_030126_a
	Apple_Krackers_Guide-1985_030127_a
	Apple_Krackers_Guide-1985_030128_a
	Apple_Krackers_Guide-1985_030129_a
	Apple_Krackers_Guide-1985_030130_a
	Apple_Krackers_Guide-1985_030131_a
	Apple_Krackers_Guide-1985_030132_a
	Apple_Krackers_Guide-1985_030133_a
	Apple_Krackers_Guide-1985_030134_a
	Apple_Krackers_Guide-1985_030135_a

