Product Specification

March 1983

Copyright 1983 by Zilog, Inc. All rights reserved. No part of this publication may be reproduced without the written permission of Zilog, Inc.
The information in this publication is subject to change without notice.

Product Specification

March 1983

Features

- Complete microcomputer, 24 I/O lines, and up to 64 K bytes of addressable external space each for program and data memory.
- 143-byte register file, including 124 general-purpose registers, three I/O port registers, and 16 status and control registers.
- Vectored, priority interrupts for I/O, counter/timers, and UART.
- On-chip oscillator that accepts crystal or external clock drive.
- Full-duplex UART and two programmable 8 -bit counter/timers, each with a 6 -bit programmable prescaler.
- Register Pointer so that short, fast instructions can access any one of the nine working-register groups.
- Low-power standby option that retains contents of general-purpose registers.
- Single +5 V power supply-all I/O pins TTL compatible.
- Available in 8 and 12 MHz versions.

General Description

The Z868land Z 8682 are ROMless versions of the Z 8 single-chip microcomputer. The Z 8682 is usually more cost effective. These products differ only slightly and can be used interchangeably with proper system design to provide maximum flexibility in meeting price and delivery needs. The Z8681/82 offers all the outstanding features of the Z8 family architecture except an on-chip program ROM. Use of external memory rather than a preprogrammed ROM enables this Z 8 microcomputer
to be used in low volume applications or where code flexibility is required.

The Z8681/82 can provide up to 16 output address lines, thus permitting an address space of up to 64 K bytes of data or program memory. Eight address outputs ($\mathrm{AD}_{0}-\mathrm{AD}_{7}$) are provided by a multiplexed, 8-bit, Address/Data bus. The remaining 8 bits can be provided by the software configuration of Port 0 to output address bits $\mathrm{A}_{8}-\mathrm{A}_{15}$.

Figure 1. Pin Functions

Figure 2. Pin Assignments

General Description

(Continued)

Available address space can be doubled (up to 128 K bytes for the Z 868 l and 124 K bytes for the Z8682) by programming bit 4 of Port 3
$\left(\mathrm{P}_{4}\right)$ to act as a data memory select output (DM). The two states of DM together with the 16 address outputs can define separate data and memory address spaces of up to $64 \mathrm{~K} / 62 \mathrm{Kbytes}$ each.
There are 143 bytes of RAM located on-chip and organized as a register file of 124 generalpurpose registers, 16 control and status
registers, and three I/O port registers. This register file can be divided into nine groups of 16 working registers each. Configuring the register file in this manner allows the use of short format instructions; in addition, any of the individual registers may be accessed directly.

The pin functions and the pin assignments of the Z8681/82 40-pin package are illustrated in Figures 1 and 2, respectively.

Architecture Z8681/82 architecture is characterized by a

 flexible I/O scheme, an efficient register and address space structure and a number of ancillary features that are helpful in many applications.Microcomputer applications demand powerful I/O capabilities. The Z8681/82 fulfills this with 24 pins available for input and output. These lines are grouped into three ports of eight lines each and are configurable under software control to provide timing, status signals, serial or parallel I/O with or without handshake, and an Address bus for interfacing external memory.
Three basic address spaces are available:
program memory, data memory and the register file (internal). The 143-byte randomaccess register file is composed of 124 generalpurpose registers, three I/O port registers, and 16 control and status registers.

To unburden the program from coping with real-time problems such as serial data communication and counting/timing, an asynchronous receiver/transmitter (UART) and two counter/timers with a large number of userselectable modes are offered on-chip. Hardware support for the UART is minimized because one of the on-chip timers supplies the bit rate. Figure 3 shows the Z8681/82 block diagram.

Figure 3. Functional Block Diagram

Pin Description

$\overline{\mathbf{A S}}$. Address Strobe (output, active Low). Address Strobe is pulsed once at the beginning of each machine cycle. Addresses output via Port 1 for all external program or data memory transfers are valid at the trailing edge of $\overline{\mathrm{AS}}$.
$\overline{\mathrm{DS}}$. Data Strobe (output, active Low). Data Strobe is activated once for each external memory transfer.
$\mathbf{P O}_{\mathbf{0}}-\mathrm{PO}_{7}, \mathrm{P}_{2}-\mathrm{P}_{7}, \mathrm{P3}_{\mathbf{0}}-\mathrm{P}_{7}$. I/O Port Lines (input/outputs, TTL-compatible). These 24 lines are divided into three 8 -bit I/O ports that can be configured under program control for I/O or external memory interface (Figure 3).
$\mathbf{P l}_{\mathbf{0}}-\mathbf{P l}_{7} . A d d r e s s / D a t a ~ P o r t($ bidirectional). Multiplexed address ($A_{0}-A_{7}$) and data ($D_{0}-D_{7}$) lines used to interface with program and data memory.

Description

(Continued)

RESET.* Reset (input, active Low). $\overline{\text { RESET }}$ initializes the Z8681/82. When RESET is deactivated, program execution begins from program location $000 \mathrm{C}_{\mathrm{H}}$ for the $\mathrm{Z8681}$ and 0812_{H} for the Z8682.
R/ $\overline{\mathbf{W}}$. Read/Write (output). $\mathrm{R} / \overline{\mathrm{W}}$ is Low when
the Z8681/82 is writing to external program or data memory.
XTAL1, XTAL2. Crystal 1, Crystal 2 (time-base input and output). These pins connect a parallel-resonant crystal to the on-chip clock oscillator and buffer.

Summary of	Feature	Z8681	Z8682
Z8682 Differences	Address of first instruction executed after Reset	12	2066
	Addressable memory space	0-64K	$2 \mathrm{~K}-64 \mathrm{~K}$
	Address of interrupt vectors	0-11	2048-2065
	Reset input high voltage	TTL levels*	$7.35-8.0 \mathrm{~V}$
	Port 0 configuration after Reset	Input, float after reset. Can be programmed as Address bits.	Output, configured as Address bits $A_{8}-A_{15}$.
	External memory timing start-up configurations	Extended Timing	Normal Timing
	Interrupt vectors	2 byte vectors point directly to service routines.	2 byte vectors in internal ROM point to 3 byte Jump instructions, which point to service routines.
	Interrupt response time	$26 \mu \mathrm{sec}$	$36 \mu \mathrm{sec}$

[^0]
Address Spaces

Program Memory.* The Z8681/82 addresses $64 \mathrm{~K} / 62 \mathrm{~K}$ bytes of external program memory space (Figure 4).

For the Z8681, the first 12 bytes of program memory are reserved for the interrupt vectors. These locations contain six 16 -bit vectors that

Figure 4. Z8681/82 Program Memory Map
*This feature differs in the Z8681 and Z8682

Address Spaces (Continued)
correspond to the six available interrupts. Program execution begins at location $000 \mathrm{C}_{\mathrm{H}}$ after a reset.

The $Z 8682$ has six 24 -bit interrupt vectors beginning at address 0800_{H}. The vectors consist of Jump Absolute instructions. After a reset, program execution begins at location 0812H for the Z8682.
Data Memory.* The Z8681/82 can address $64 \mathrm{~K} / 62 \mathrm{~K}$ bytes of external data memory. External data memory may be included with or separated from the external program memory space. $\overline{\mathrm{DM}}$, an optional I/O function that can be programmed to appear on pin P_{4}, is used to distinguish between data and program memory space.
Register File. The 143-byte register file includes three I/O port registers (R0, R2, R3), 124 general-purpose registers (R4-R127) and 16 control and status registers (R240-R255).

These registers are assigned the address locations shown in Figure 5.

Z8681/82 instructions can access registers directly or indirectly with an 8-bit address field. This also allows short 4-bit register addressing using the Register Pointer (one of the control registers). In the 4 -bit mode, the register file is divided into nine workingregister groups, each occupying 16 contiguous locations (Figure 5). The Register Pointer addresses the starting location of the active working-register group (Figure 6).

Stacks. Either the internal register file or the external data memory can be used for the stack. A 16-bit Stack Pointer (R254 and R255) is used for the external stack, which can reside anywhere in data memory. An 8-bit Stack Pointer (R255) is used for the internal stack that resides within the 124 general-purpose registers (R4-R127).

Figure 5. The Register File

Figure 6. The Register Pointer

Serial
 Input/ Output

Port 3 lines P_{0} and P_{7} can be programmed as serial I/O lines for full-duplex serial asynchronous receiver/transmitter operation. The bit rate is controlled by Counter/Timer 0, with a maximum rate of 62.5 K bits/second at 8 MHz and 93.75 K bits $/$ second at 12 MHz .

The Z8681/82 automatically adds a start bit and two stop bits to transmitted data (Figure 7). Odd parity is also available as an option. Eight data bits are always transmitted,

Transmitted Data
(No Parity)

Transmitted Data
(With Parity)
Transmitted Dat
(With Parity)

regardless of parity selection. If parity is enabled, the eighth data bit is used as the odd parity bit. An interrupt request $\left(I R Q_{4}\right)$ is generated on all transmitted characters.

Received data must have a start bit, eight data bits and at least one stop bit. If parity is on, bit 7 of the received data is replaced by a parity error flag. Received characters generate the IRQ_{3} interrupt request.

Received Data
(No Parity)

Received Data

(With Parity)

Figure 7. Serial Data Formats

Counter/ Timers

The Z8681/82 contains two 8-bit programmable counter/timers (T_{0} and T_{1}), each driven by its own 6 -bit programmable prescaler. The T_{1} prescaler can be driven by internal or external clock sources; however, the T_{0} prescaler is driven by the internal clock only.
The 6 -bit prescalers can divide the input frequency of the clock source by any number from 1 to 64. Each prescaler drives its counter, which decrements the value (1 to 256) that has been loaded into the counter. When the counter reaches the end of count, a timer interrupt request- $\mathrm{IRQ}_{4}\left(\mathrm{~T}_{0}\right)$ or $\mathrm{IRQ}_{5}\left(\mathrm{~T}_{1}\right)$-is generated.

The counters can be started, stopped, restarted to continue, or restarted from the initial value. The counters can also be programmed to stop upon reaching zero (single-
pass mode) or to automatically reload the initial value and continue counting (modulo-n continuous mode). The counters, but not the prescalers, can be read any time without disturbing their value or count mode.
The clock source for T_{1} is user-definable; it can be either the internal microprocessor clock divided by four, or an external signal input via Port 3. The Timer Mode register configures the external timer input as an external clock, a trigger input that can be retriggerable or nonretriggerable, or as a gate input for the internal clock. The counter/timers can be programmably cascaded by connecting the T_{0} output to the input of T_{1}. Port 3 line $P 3_{6}$ also serves as a timer output (TOUT) through which $\mathrm{T}_{0}, \mathrm{~T}_{1}$ or the internal clock can be output.

I/O Ports

The Z8681/82 has 24 lines available for input and output. These lines are grouped into three ports of eight lines each and are configurable as input, output or address. Under software control, the ports can be programmed to pro-
vide address outputs, timing, status signals, serial I/O, and parallel I/O with or without handshake. All ports have active pull-ups and pull-downs compatible with TTL loads.

Port \mathbf{l} is a dedicated Z-BUS compatible memory interface. The operations of Port 1 are supported by the Address Strobe ($\overline{\mathrm{AS}}$) and Data Strobe ($\overline{\mathrm{DS}}$) lines, and by the Read/Write ($/ / \overline{\mathrm{W}}$) and Data Memory ($\overline{\mathrm{DM}}$) control lines. The low-order program and data memory addresses ($A_{0}-A_{7}$) are output through Port 1
(Figure 8) and are multiplexed with data in/out ($\mathrm{D}_{0}-\mathrm{D}_{7}$). Instruction fetch and data memory read/write operations are done through this port.

Port l cannot be used as a register nor can a handshake mode be used with this port.

Both the Z8681 and Z8682 wake up with the 8 bits of Port 1 configured as address outputs for external memory. If more than eight address line are required with the Z8681, additional lines can be obtained by programming Port 0 bits as address bits. The least-significant four bits of Port 0 can be configured to supply address bits $A_{8}-\mathrm{A}_{11}$ for 4 K byte addressing or both nibbles of Port 0 can be configured to supply address bits $\mathrm{A}_{8}-\mathrm{A}_{15}$ for 64 K byte addressing.

Figure 8. Port 1

Port 0^{*} can be programmed as a nibble I/O port, or as an address port for interfacing external memory (Figure 9). When used as an I/O port, Port 0 may be placed under handshake control. In this configuration, Port 3 lines P_{2} and P_{5} are used as the handshake controls DAV_{0} and RDY 0 . Handshake signal assignment is dictated by the I/O direction of the upper nibble $\mathrm{PO}_{4}-\mathrm{PO}_{7}$.
For external memory references, Port 0 can provide address bits $A_{8}-A_{11}$ (lower nibble) or $A_{8}-A_{15}$ (lower and upper nibbles) depending on the required address space. If the address range requires 12 bits or less, the upper nibble of Port 0 can be programmed independently as I/O while the lower nibble is used for addressing.
In the $Z 8681^{*}$, Port 0 lines float after reset; their logic state is unknown until the execution of an initialization routine that configures Port 0 .
Such an initialization routine must reside within the first 256 bytes of executable code and must be physically mapped into memory by forcing the Port 0 address lines to a known state. See Figure 10. The proper Port initialization sequence is:

1. Write initial address ($\mathrm{A}_{8}-\mathrm{A}_{15}$) of initialization routine to Port 0 address lines.
2. Configure Port 0 Mode Register to output $A_{8}-A_{15}$ (or $A_{8}-A_{11}$).
To permit the use of slow memory, an automatic wait mode of two oscillator clock cycles is configured for the bus timing of the Z8681 after each reset. The initialization routine could include reconfiguration to
eliminate this extended timing mode.
The following example illustrates the manner in which an initialization routine can be mapped in a $Z 8681$ system with 4 K of memory.
Example. In Figure 10, the initialization routine is mapped to the first 256 bytes of program memory. Pull-down resistors maintain the address lines at a logic 0 level when these lines are floating. The leakage current caused by fanout must be taken into consideration when selecting the value of the pulldown resistors. The resistor value must be large enough to allow the Port 0 output driver to pull the line to a logic one. Generally, pulldown resistors are incompatible with TTL loads. If Port 0 drives into TTL input loads ($\mathrm{I}_{\text {LOW }}=1.6$ ma) the external resistors should be tied to V_{CC} and the initialization routine put in address space $\mathrm{FF} 00_{\mathrm{H}}-\mathrm{FFFF}_{\mathrm{H}}$.
In the 28682^{*}, Port 0 lines are configured as address lines $A_{8}-A_{15}$ after a Reset. If one or both nibbles are needed for I/O operation, they must be configured by writing to the Port 0 Mode register. The Z8682 is in the fast memory timing mode after Reset, so the initialization routine must be in fast memory.

Figure 9. Port 0

Figure 10. Port 0 Address Lines Tied to Logic 0

Port 2 bits can be programmed independently as input or output (Figure 11). This port is always available for I/O operations. In addition, Port 2 can be configured to provide open-drain outputs.

Like Port 0, Port 2 may also be placed under handshake control. In this configuration, Port 3 lines $P 3_{1}$ and $P 3_{6}$ are used as the handshake controls lines DAV_{2} and RDY_{2}. The handshake signal assignment for Port 3 lines P_{1} and $\mathrm{P} 3_{6}$ is dictated by the direction (input or output) assigned to bit 7 of Port 2.

Port 3 lines can be configured as I/O or control lines (Figure 12). In either case, the direction of the eight lines is fixed as four input ($\mathrm{P}_{0}-\mathrm{P3}_{3}$) and four output ($\mathrm{P3}_{4}-\mathrm{P3}_{7}$). For serial I / O, lines $\mathrm{P} 3_{0}$ and $\mathrm{P} 3_{7}$ are programmed as serial in and serial out, respectively.

Port 3 can also provide the following control functions: handshake for Ports 0 and 2 (DAV and RDY); four external interrupt request signals ($\mathrm{IRQ}_{0}-\mathrm{IRQ}_{3}$); timer input and output signals ($\mathrm{T}_{\text {IN }}$ and $\mathrm{T}_{\text {OUT }}$) and Data Memory Select (DM).

Figure 11. Port 2

The Z8681/82 allows six different interrupts from eight sources: the four Port 3 lines $\mathrm{P}_{0}-\mathrm{P} 3_{3}$, Serial In, Serial Out, and the two counter/timers. These interrupts are both maskable and prioritized. The Interrupt Mask register globally or individually enables or disables the six interrupt requests. When more than one interrupt is pending, priorities are resolved by a programmable priority encoder that is controlled by the Interrupt Priority register.
All Z8681 and Z8682 interrupts are vectored through locations in program memory. When an interrupt request is granted, an interrupt machine cycle is entered. This disables all subsequent interrupts, saves the Program Counter and status flags, and accesses the program memory vector location reserved for that interrupt. In the Z8681, this memory location and the next byte contain the 16 -bit address of the interrupt service routine for that particular interrupt request. The Z8681 takes 26 system clock cycles to enter an interrupt subroutine.
The Z 8682 has a small internal ROM that contains six 2 -byte interrupt vectors pointing to
addresses 2048-2065, where 3-byte jump absolute instructions are located (See Figure 4). These jump instructions each contain a l-byte opcode and a 2 -byte starting address for the interrupt service routine. The Z8682 takes 36 system clock cycles to enter an interrupt subroutine.

Table 1. Z8682 Interrupt Processing

Address (Hex)	Contains Jump Instruction and Subroutine Address For
$800-802$	IRQ0
$803-805$	IRQ1
$806-808$	IRQ2
$809-80 \mathrm{~B}$	IRQ3
$80 \mathrm{C}-80 \mathrm{E}$	IRQ4
$80 \mathrm{~F}-811$	IRQ5

Polled interrupt systems are also supported. To accommodate a polled structure, any or all of the interrupt inputs can be masked and the Interrupt Request register polled to determine which of the interrupt requests needs service.

Clock

The on-chip oscillator has a high-gain, parallel-resonant amplifier for connection to a crystal or to any suitable external clock source (XTAL1 $=$ Input, XTAL2 $=$ Output).

The crystal source is connected across XTAL1 and XTAL2, using the recommended capacitance ($\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$ maximum) from each pin to ground. The specifications for the crystal are as follows:

- AT cut, parallel-resonant
- Fundamental type
- Series resistance, $\mathrm{R}_{\mathrm{s}} \leq 100 \Omega$
- For $\mathrm{Z} 8681 / \mathrm{Z} 8682,8 \mathrm{MHz}$ maximum
- For $\mathrm{Z} 8681 / \mathrm{Z8682}-12,12 \mathrm{MHz}$ maximum

The low-power standby mode allows power to be removed without losing the contents of the 124 general-purpose registers. This mode is available only to the user as a bonding option whereby pin 2 (normally XTAL2) is replaced by the V_{MM} (standby) power supply input. This necessitates the use of an external clock generator (input $=$ XTALl) rather than a crystal source.

The removal of power, whether intended or due to power failure, must be preceded by a software routine that stores the appropriate status into the register file. Figure 13 shows the recommended circuit for a battery back-up supply system.

Figure 13. Recommended Driver Circuit for Power-Down Operation

Z8681/Z8682 Interchangeability

Although the Z8681 and Z8682 have minor differences, a system can be designed for compatibility with both ROMless versions. To achieve interchangeability, the design must take into account the special requirements of each device in the external interface, initialization, and memory mapping.
External Interface. The Z 8682 requires a 7.5 V positive logic level on the $\overline{\text { RESET }}$ pin for at least 6 clock periods immediately following reset, as shown in Figure 14. The Z8681 requires a 3.8 V or higher positive logic level, but is compatible with the Z8682 RESET waveform. Figure 15 shows a simple circuit for generating the 7.5 V level.

Figure 14. Z8682 RESET Pin Input Waveform

Figure 15. $\overline{\text { RESET Circuit }}$

Initialization. The Z8681 wakes up after reset with Port 0 configured as an input, which means Port 0 lines are floating in a highimpedance state. Because of this pullup or pulldown, resistors must be attached to Port 0 lines to force them to a valid logic level until Port 0 is configured as an address port.
Port 0 initialization is discussed in the section on ports. An example of an initialization routine for $\mathrm{Z} 8681 / \mathrm{Z8682}$ compatibility is shown in Table 2. Only the Z 8681 need execute this program.

Table 2. Initialization Routine

Figure 16. Z8681/82 Logical Program Memory Mapping

Z8681/Z8682
Interchangeability

Memory Mapping. The Z8681 and Z8682 lower memory boundaries are located at 0 and 2048, respectively. A single program ROM can be used with either product if the logical program memory map shown in Figure 16 is followed. The $Z 8681$ vectors and initialization
routine must be starting at address 0 and the Z8682 3-byte vectors (jump instructions) must be at address 2048 and higher. Addresses in the range 2l-2047 are not used. Figure 17 shows practical schemes for implementing this memory map using 4 K and 2 K ROMs.

a. Logical to Physical Memory Mapping for 4 K ROM

b. Logical to Physical Memory Mapping for 2K ROM

Figure 17. Practical Schemes for Implementing Z8681 and Z8682 Compatible Memory Map

Instruction
 Set Notation

Addressing Modes. The following notation is used to describe the addressing modes and instruction operations as shown in the instruction summary.

IRR Indirect register pair or indirect working-register pair address
Irr Indirect working-register pair only
\mathbf{X} Indexed address
DA Direct address
RA Relative address
IM Immediate
R Register or working-register address
r Working-register address only
IR Indirect-register or indirect working-register address
Ir Indirect working-register address only
RR Register pair or working register pair address
Symbols. The following symbols are used in describing the instruction set.
dst Destination location or contents

src	Source location or contents
cc	Condition code (see list)
@	Indirect address prefix
SP	Stack pointer (control registers 254-255)
PC	Program counter
FLAGS	Flag register (control register 252)
RP	Register pointer (control register 253)
IMR	Interrupt mask register (control register 251)

Assignment of a value is indicated by the symbol "-". For example,

$$
\mathrm{dst}-\mathrm{dst}+\mathrm{src}
$$

indicates that the source data is added to the destination data and the result is stored in the destination location. The notation " $a d d r(n)$ " is used to refer to bit " n " of a given location. For example, dst (7)
refers to bit 7 of the destination operand.

One-Byte Instruction

Figure 18. Instruction Formats

Instruction
Summary

Instruction and Operation	Opcode Byte (Hex)	Flags Affected C Z S V D H
$\begin{array}{lcc}\text { LDE dst, src } & \mathrm{r} & \text { Irr } \\ \text { dst }-\mathrm{src} & \text { Irr } & \mathrm{r}\end{array}$	$\begin{aligned} & 82 \\ & 92 \end{aligned}$	- - - - -
$\begin{array}{lcc} \hline \text { LDEI dst, src } & \text { Ir } & \text { Irr } \\ \mathrm{dst}-\mathrm{src} & \text { Irr } & \text { Ir } \\ \mathrm{r}-\mathrm{r}+\mathrm{l} ; \mathrm{rr}-\mathrm{rr}+\mathrm{l} & \\ \hline \end{array}$	$\begin{aligned} & 83 \\ & 93 \end{aligned}$	- - - - -
NOP	FF	------
OR dst,src (Note 1) dst - dst OR src	$4 \square$	- * * 0 - -
POP dst R dst $-@$ SP IR SP - SP +1	$\begin{aligned} & 50 \\ & 51 \end{aligned}$	- - - - -
$\begin{array}{lc} \text { PUSH src } & \text { R } \\ \text { SP }-\mathrm{SP}-1 \text {; } @ \text { SP }-\mathrm{src} & \mathrm{IR} \end{array}$	$\begin{aligned} & 70 \\ & 71 \end{aligned}$	- - - - -
$\begin{aligned} & \hline \mathbf{R C F} \\ & \mathrm{C}-0 \end{aligned}$	CF	$0-\ldots$
$\begin{aligned} & \text { RET } \\ & \mathrm{PC}-@ \mathrm{SP} ; \mathrm{SP}-\mathrm{SP}+2 \end{aligned}$	AF	- - - - -
RL dst	$\begin{aligned} & 90 \\ & 91 \end{aligned}$	* * * * - -
RLC dst	$\begin{aligned} & 10 \\ & 11 \end{aligned}$	* * * * - -
RR dst 0 ara	$\begin{aligned} & \text { EO } \\ & \text { El } \end{aligned}$	* * * * - -
RRC dst	$\begin{aligned} & \mathrm{CO} \\ & \mathrm{Cl} \end{aligned}$	* * * * - -
$\begin{array}{ll} \text { SBC dst,src } \\ \text { dst - dst - src - C } & \text { (Note 1) } \\ \hline \end{array}$	$3 \square$	* * * * 1 *
$\begin{aligned} & \mathbf{S C F} \\ & \mathbf{C} \leftarrow 1 \end{aligned}$	DF	1----
SRA dst \square \square $\stackrel{R}{\text { IR }}$	$\begin{aligned} & \text { D0 } \\ & \text { Dl } \end{aligned}$	* * * 0 - -
$\begin{array}{ll} \hline \text { SRP src } & \text { Im } \\ R P-\text { src } & \\ \hline \end{array}$	31	-----
$\begin{array}{ll} \begin{array}{l} \text { SUB dst, src } \\ \text { dst - dst - src } \end{array} & \text { (Note 1) } \\ \hline \end{array}$	$2 \square$	* * * * 1 *
	$\begin{aligned} & \mathrm{FO} \\ & \mathrm{Fl} \end{aligned}$	X * * X - -
TCM dst,src (Note 1) (NOT dst) AND src	$6 \square$	- * * 0 - -
TM dst, src (Note 1) dst AND src	$7 \square$	- * * $0-$
XOR dst, src dst - dst XOR src \quad (Note 1)	$\mathrm{B} \square$	- * * $0-$

Note 1

These instructions have an identical set of addressing modes, which are encoded for brevity. The first opcode nibble is found in the instruction set table above. The second nibble is expressed symbolically by a \square in this table, and its value is found in the following table to the left of the applicable addressing mode pair.

For example, to determine the opcode of an ADC instruction using the addressing modes r (destination) and Ir (source) is 13.

Addr Mode		Lower Opcode Nibble
dst	src	
r	r	2
r	Ir	3
R	R	4
R	IR	5
R	IM	$\boxed{3}$
IR	IM	7

R240 SIO

Serial I/O Register

(FO_{H}; Read/Write)
$\mathrm{D}_{7}\left[\mathrm{D}_{6}\left|\mathrm{D}_{5}\right| \mathrm{D}_{4}\left|\mathrm{D}_{3} / \mathrm{D}_{2} / \mathrm{D}_{1}\right| \mathrm{D}_{0}\right.$

SERIAL DATA ($\mathrm{D}_{0}=\mathrm{LSB}$)

R241 TMR
Time Mode Register
(Fl_{H}; Read/Write)

R242 T1
Counter Timer 1 Register
($\mathrm{F} 2_{\mathrm{H}}$; Read/Write)

 T_{1} CURRENT VALUE (WHEN READ)

R243 PRE1
Prescaler 1 Register
($\mathrm{F3}_{\mathrm{H}}$; Write Only)

R244 TO
Counter/Timer 0 Register
(F_{4}; Read/Write)

 T_{0} CURRENT VALUE (WHEN READ)

R245 PREO

Prescaler 0 Register
(F5 ${ }_{H}$; Write Only)

Count mode
$0=T_{0}$ SINGLE.PASS $1=\mathrm{T}_{0}$ MODULO.N

RESERVED (MUST BE 0)

PRESCALER MODULO 01-00 HEX)

Port 2 Mode Register
($\mathrm{F6}_{\mathrm{H}}$; Write Only)

$\mathrm{P}_{0}-\mathrm{P}_{2}$ IIO DEFINITION O DEFINES BIT AS OUTPUT 1 DEFINES BIT AS INPUT

R247 P3M
Port 3 Mode Register
($\mathrm{F7}_{\mathrm{H}}$; Write Only)

Figure 19. Control Registers

R249 IPR

Interrupt Priority Register
($\mathrm{F9}_{\mathrm{H}}$; Write Only)

R253 RP
Register Pointer
(FD_{H}; Read/Write)

R254 SPH

Stack Pointer

(FE_{H}; Read/Write)
$\mathrm{D}_{7}\left|\mathrm{D}_{6}\right| \mathrm{D}_{5}\left|\mathrm{D}_{4}\right| \mathrm{D}_{3}\left|\mathrm{D}_{2}\right| \mathrm{D}_{1} \mid \mathrm{D}_{0}$
STACK POINTER UPPER SYTE $\left(\mathrm{SP}_{\mathrm{g}}-\mathrm{SP}_{15}\right)$

R251 IMR
Interrupt Mask Register
(FB_{H}; Read/Write)

D_{7}	D_{6}	D_{5}	D_{4}	D_{3}	D_{2}	D_{1}	D_{0}		

R255 SPL
Stack Pointer
(FF_{H}; Read/Write)

Figure 19. Control Registers (Continued)

[^1]| Absolute Maximum | Voltages on all pins*
 with respect to GND 0.3 V to +7.0 V |
| :---: | :---: |
| Ratings | Operating Ambient |
| | Temperature See Ordering Information |
| | Storage Temperature $65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ |

> Stresses greater than those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; operation of the device at any condition above those indicated in the operational sections of these specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Standard
 Test
 Conditions

The characteristics below apply for the following standard test conditions, unless otherwise noted. All voltages are referenced to GND. Positive current flows into the reference pin. Standard conditions are as follows:
■ $+4.75 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq+5.25 \mathrm{~V}$

- GND $=0 \mathrm{~V}$
- $0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C}$ for S (Standard temperature)
- $-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C}$ for E (Extended temperature)

Figure 20. Test Load 1

Figure 21. External Clock Interface Circuit

DC Characteristics	Symb	1 Parameter	Min	Max	Unit	Condition
	V_{CH}	Clock Input High Voltage	3.8	V_{CC}	v	Driven by External Clock Generator
	$\mathrm{V}_{\text {CL }}$	Clock Input Low Voltage	-0.3	0.8	V	Driven by External Clock Generator
	$\mathrm{V}_{\text {IH }}$	Input High Voltage	2.0	V_{CC}	v	
	$\mathrm{V}_{\text {IL }}$	Input Low Voltage	-0.3	0.8	v	
	$\mathrm{V}_{\text {RH }}$	Reset Input High Voltage	3.8	V_{CC}	V	See Note
	V_{RL}	Reset Input Low Voltage	-0.3	0.8	V	
	V_{OH}	Output High Voltage	2.4		v	$\mathrm{I}_{\mathrm{OH}}=-250 \mu \mathrm{~A}$
	$\mathrm{V}_{\text {OL }}$	Output Low Voltage		0.4	v	$\mathrm{I}_{\mathrm{OL}}=+2.0 \mathrm{~mA}$
	IIL	Input Leakage	-10	10	${ }_{\mu \mathrm{A}}$	$0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{IN}} \leq+5.25 \mathrm{~V}$
	I_{LL}	Output Leakage	-10	10	$\mu \mathrm{A}$	$0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{IN}} \leq+5.25 \mathrm{~V}$
	$\mathrm{I}_{\text {IR }}$	Reset Input Current		-50	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{CC}}=+5.25 \mathrm{~V}, \mathrm{~V}_{\mathrm{RL}}=0 \mathrm{~V}$
	I_{CC}	$\mathrm{V}_{\text {CC }}$ Supply Current		180	mA	
	$\mathrm{I}_{\text {M }}$	$\mathrm{V}_{\text {MM }}$ Supply Current		10	mA	Power Down Mode
	V_{MM}	Backup Supply Voltage	3	v_{CC}	v	Power Down

NOTE:
The Reset line (pin 6) is used to place the Z 8682 in external memory mode. This is accomplished as shown in Figure 14.

Figure 22. External I/O or Memory Read/Write Timing

No.	Symbol	Parameter	$\begin{gathered} \text { Z8681/82 } \\ 8 \mathrm{MHz} \end{gathered}$		$\begin{gathered} \mathrm{Z} 8681 / 82 \\ 12 \mathrm{MHz} \end{gathered}$		Notes* \dagger
			Min	Max	Min	Max	
1	$\operatorname{Td} A(A, S)$	Address Valid to $\overline{\text { AS }} 1$ Delay	50		35		1,2,3
2	$\operatorname{TdAS}(\mathrm{A})$	$\overline{\mathrm{AS}} 1$ to Address Float Delay	70		45		1,2,3
3	$\operatorname{TdAS}(\mathrm{DR})$	$\overline{\text { AS }} \dagger$ to Read Data Required Valid		360		220	1,2,3,4
4	TwAS	$\overline{\text { AS }}$ Low Width	80		55		1,2,3
5	TdAz(DS)	Address Float to $\overline{\mathrm{DS}}$ ।	0		0		1
6 -TwDSR		- $\overline{\mathrm{DS}}$ (Read) Low Width	-250		-185		-1,2,3,4
7	TwDSW	$\overline{\mathrm{DS}}$ (Write) Low Width	160		110		1,2,3,4
8	$\operatorname{TdDSR}(\mathrm{DR})$	$\overline{\mathrm{DS}}$! to Read Data Required Valid		200		130	1,2,3,4
9	ThDR(DS)	Read Data to $\overline{\mathrm{DS}} 1$ Hold Time	0		0		1
10	$\operatorname{TdDS}(\mathrm{A})$	$\overline{\mathrm{DS}} \mathrm{t}$ to Address Active Delay	70		45		1,2,3
11	$\operatorname{TdDS}(\mathrm{AS})$	$\overline{\mathrm{DS}} \uparrow$ to $\overline{\mathrm{AS}} \downarrow$ Delay	70		55		1,2,3
TdR/W(AS) ——R/प्W Valid to $\overline{\text { AS }} 1$ Delay			50		-30		-1,2,3
13	TdDS(R/W)	$\overline{\mathrm{DS}} 1$ to R/ $\overline{\mathrm{W}}$ Not Valid	60		35		1,2,3
14	TdDW(DSW)	Write Data Valid to $\overline{\mathrm{DS}}$ (Write) ! Delay	50		35		1,2,3
15	TdDS(DW)	$\overline{\mathrm{DS}} 1$ to Write Data Not Valid Delay	70		45		1,2,3
16	TdA(DR)	Address Valid to Read Data Required Valid		410		255	1,2,3,4
17	TdAS(DS)	$\overline{\text { AS }} 1$ to $\overline{\mathrm{DS}} \mid$ Delay	80		55		1,2,3

NOTES:

1. Test Load 1
2. Timing numbers given are for minimum TpC .
3. Also see clock cycle time dependent characteristics table.
4. When using extended memory timing add 2 TpC .
5. All timing references use 2.0 V for a logic " 1 " and 0.8 V for a logic " 0 "

* All units in nanoseconds (ns).
\dagger Timings are preliminary and subject to change.

Additional
Timing
Table

Figure 23. Additional Timing

No.	Symbol	Parameter	$\begin{gathered} \text { Z8681/82 } \\ 8 \mathrm{MHz} \end{gathered}$		$\begin{aligned} & \mathrm{Z} 8681 / 82 \\ & 12 \mathrm{MHz} \end{aligned}$		Notes* \ddagger
			Min	$\mathbf{M a x}$	Min	$\mathbf{M a x}$	
1	TpC	Input Clock Period	125	1000	83	1000	1
2	TrC, TfC	Clock Input Rise And Fall Times		25		15	1
3	TwC	Input Clock Width	37		26		1
4	TwTinL	Timer Input Low Width	100		70		2
$5-$ TwTinH——erimer Input High Width——3							
6	TpTin	Timer Input Period	$\frac{\mathrm{TpC}}{8}$		$\frac{\mathrm{TpC}}{8}$		2
7	TrTin, TfTin	Timer Input Rise And Fall Times		100		100	2
8	TwIL	Interrupt Request Input Low Time	100		70		2,3
9	TwIH	Interrupt Request Input High Time	3 TpC		3 TpC		2,3

NOTES:

1. Clock timing references uses 3.8 V for a logic " 1 " and 0.8 V for a logic "0".
2. Timing reference uses 2.0 V for a logic " "1" and 0.8 V for a logic " 0 ".
3. Interrupt request via Port 3.

* Units in nanoseconds (ns).
\dagger Timings are preliminary and subject to change.

Handshake Timing

Figure 24a. Input Handshake Timing

Figure 24b. Output Handshake Timing

No.	Symbol	Parameter	$\begin{gathered} \text { Z8681/82 } \\ 8 \mathrm{MHz} \end{gathered}$		$\begin{gathered} \text { Z8681/82 } \\ 12 \mathrm{MHz} \end{gathered}$		Notes* \dagger	
			Min	Max	Min	Max		
1	TsDI(DAV)	Data In Setup Time	0		0			
2	ThDI(DAV)	Data In Hold Time	230		160			
3	TwDAV	Data Available Width	175		120			
4	TdDAVIf(RDY)	$\overline{\text { DAV }} \downarrow$ Input to RDY \downarrow Delay		175		120	1,2	
$5-\mathrm{TdDAVOf}(\mathrm{RDY})-\overline{\mathrm{DAV}} \mid$ Output to RDY \mid Delay $\longrightarrow 0-0-1,3$								
6	TdDAVIr(RDY)	$\overline{\text { DAV } 1 \text { Input to RDY } ~ \text { Delay }}$		175		120	1,2	
7	TdDAV0rRDY)	$\overline{\text { DAV }}$ ¢ Output to RDY 1 Delay	0		0		1,3	
8	TdDO(DAV)	Data Out to $\overline{\mathrm{DAV}} \downarrow$ Delay	50		30		1	
9	TdRDY(DAV)	Rdy \\| Input to $\overline{\mathrm{DAV}}$ \| Delay	0	200	0	140	1	

NOTES:

1. Test load 1

* Units in nanoseconds (ns).

2. Input handshake
\dagger Timings are preliminary and subject to change.
3. Output handshake
4. All timing regerences use 2.0 V for a logic " 1 " and 0.8 V for a logic " 0 ".

Clock-Cycle-TimeDependent	Number	Symbol	Z8681/82 8 MHz Equation	Z8681/82 12 MHz Equation
Characteristics	1	TdA(AS)	TpC-75	TpC-50
	2	TdAS(A)	TpC-55	TpC-40
	3	TdAS(DR)	4TpC-140*	4TpC-110*
	4	TwAS	TpC-45	TpC-30
	6	TwDSR	-3TpC-125*	$3 \mathrm{TpC}-65^{*}$
	7	TwDSW	2TpC-90*	2TpC-55*
	8	TdDSR(DR)	3TpC-175*	$3 \mathrm{TpC}-120^{*}$
	10	Td (DS)A	TpC-55	TpC-40
	11	TdDS(AS)	TpC-55	TpC-30
	12	TdR/W(AS)	TpC-75	-TpC-55
	13	TdDS(R/W)	TpC-65	TpC-50
	14	TdDW(DSW)	TpC-75	TpC-50
	15	TdDS(DW)	TpC-55	TpC-40
	16	$\mathrm{TdA}(\mathrm{DR})$	5TpC-215*	5TpC-160*
	17	TdAS(DS)	TpC-45	TpC-30

[^2]| Ordering
 Information | Product
 Number | Package/
 Temp | Speed | Description | Product
 Number | Package/
 Temp | Speed | Description |
| :--- | :---: | :---: | :---: | :--- | :---: | :---: | :---: | :---: |
| | Z8681 | CE | 8.0 MHz | Z8 MCU
 (ROMless, $40-\mathrm{pin})$ | Z8681 | CE | 12.0 MHz | Z8 MCU |
| | | | | | | | (ROMless, 40-pin) | |
| | Z8681 | CS | 8.0 MHz | Same as above | Z8681 | CS | 12.0 MHz | Same as above |
| | Z8681 | DE | 8.0 MHz | Same as above | Z8681 | DE | 12.0 MHz | Same as above |
| | Z8681 | DS | 8.0 MHz | Same as above | Z8681 | DS | 12.0 MHz | Same as above |
| | Z8681 | PE | 8.0 MHz | Same as above | Z8681 | PE | 12.0 MHz | Same as above |
| | Z8681 | PS | 8.0 MHz | Same as above | Z8681 | PS | 12.0 MHz | Same as above |
| | Z8682 | PE | 8.0 MHz | Same as above | Z8682 | PE | 12.0 MHz | Same as above |
| | Z8682 | PS | 8.0 MHz | Same as above | Z8682 | PS | 12.0 MHz | Same as above |

NOTES: $\mathrm{C}=$ Ceramic, $\mathrm{D}=$ Cerdip, $\mathrm{P}=$ Plastic; $\mathrm{E}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}, \mathrm{S}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$.
NOTE: The Z8681 is available in the low power standby option. If this option is desired, a $Z 8685$ part number should be specified. All other data remains the same for ordering purposes.

Package

 Dimensions

40-pin Ceramic Package

40-pin Cerdip Package
NOTE: Package dimensions are given in inches. To convert to millimeters, multiply by 25.4 .

Packages Dimensions (Continued)

40-pin Plastic Package

Zilog	West	Midwest	East	United Kingdom
Sales Offices	Sales \& Technical Center Zilog, Incorporated 1315 Dell Avenue Campbell, CA 95008 Phone: (408) 370-8120 TWX: 910-338-7621	Sales \& Technical Center Zilog, Incorporated 951 North Plum Grove Road Suite F Schaumburg, IL 60195 Phone: (312) 885-8080	Sales \& Technical Center Zilog, Incorporated Corporate Place 99 South Bedford St. Burlington, MA 01803 Phone: (617) 273-4222	Zilog (U.K.) Limited Zilog House 43-53 Moorbridge Road Maidenhead Berkshire, SL6 8PL England Phone: 0628-39200
	Sales \& Technical Center	TWX: 910-291-1064	TWX: 710-332-1726	Telex: 848609
	Zilog, Incorporated 18023 Sky Park Circle	Sales \& Technical Center Zilog, Incorporated	Sales \& Technical Center Zilog, Incorporated	France
	Suite J	28349 Chagrin Blvd.	240 Cedar Knolls Rd.	Zilog, Incorporated
	Irvine, CA 92714	Suite 109	Cedar Knolls, NJ 07927	Cedex 31
	Phone: (714) 549-2891	Woodmere, OH 44122	Phone: (201) 540-1671	92098 Paris La Defense
	TWX: 910-595-2803	Phone: (216) 831-7040		France
	Sales \& Technical Center Zilog, Incorporated 15643 Sherman Way	FAX: 216-831-2957 South	Zilog, Incorporated 3300 Buckeye Rd. Suite 401	Phone: (1) 334-60-09 TWX: 611445F
	Suite 430	Sales \& Technical Center	Atlanta, GA 30341	West Germany
	Van Nuys, CA 91406	Zilog, Incorporated	Phone: (404) 451-8425	Zilog GmbH
	Phone: (213) 989-7485 TWX. 910-495-1765	4851 Keller Springs Road,	Sales \& Technical Center	Eschenstrasse 8
		Dallas, TX 75248	Zilog, Incorporated	Munich, West German
	Sales \& Technical Center	Phone: (214) 931-9090	1442 U.S. Hwy 19 South	Phone: 89-612-6046
	Zilog, Incorporated 1750 112th Ave. N.E.	TWX: 910-860-5850	Suite 135 ${ }_{\text {Clearwater, FL }} 33516$	Telex: 529110 Zilog d.
	Suite D161	Zilog, Incorporated	Phone: (813) 535-5571	Japan
	Bellevue, WA 98004	7113 Burnet Rd.	Zilog, Incorporated	
	Phone: (206) 454-5597	Austin, TX 78757	613-B Pitt St.	Zilog, Japan K.K. Konparu Bldg. 5F
		Phone: (512) 453-3216	Cornwall, Ontario	2-8 Akasaka 4-Chome
			Canada K6J 3R8 Phone: (613) 938	Minato-Ku, Tokyo 107
				Japan
				Phone: (81) (03) 587-0528
				Telex: 2422024 A/B: Zilog J

[^0]: *8.0 V V IN max

[^1]: *2-byte instruction; fetch cycle appears as a 3-byte instruction

[^2]: * Add 2 TpC when using extended memory timing

