Product Specification

March 1983

Copyright 1983 by Zilog, Inc. All rights reserved. No part of this publication may be reproduced without the written permission of Zilog, Inc. The information in this publication is subject to change

The information in this publication is subject to change without notice.

Z8[®] Z8681/82 ROMless Microcomputer

Zilog

Product Specification

		March 1983				
Features	 Complete microcomputer, 24 I/O lines, and up to 64K bytes of addressable external space each for program and data memory. 143-byte register file, including 124 general-purpose registers, three I/O port registers, and 16 status and control registers. Vectored, priority interrupts for I/O, counter/timers, and UART. On-chip oscillator that accepts crystal or external clock drive. 	 Full-duplex UART and two programmable 8-bit counter/timers, each with a 6-bit pro- grammable prescaler. Register Pointer so that short, fast instruc- tions can access any one of the nine working-register groups. Low-power standby option that retains contents of general-purpose registers. Single +5 V power supply—all I/O pins TTL compatible. Available in 8 and 12 MHz versions. 				
General Description	The Z8681and Z8682 are ROMless versions of the Z8 single-chip microcomputer. The Z8682 is usually more cost effective. These products differ only slightly and can be used inter- changeably with proper system design to pro- vide maximum flexibility in meeting price and delivery needs. The Z8681/82 offers all the outstanding features of the Z8 family archi- tecture except an on-chip program ROM. Use of external memory rather than a prepro- grammed ROM enables this Z8 microcomputer	to be used in low volume applications or whe code flexibility is required. The Z8681/82 can provide up to 16 output address lines, thus permitting an address space of up to 64K bytes of data or program memory. Eight address outputs (AD_0 - AD_7) ar provided by a multiplexed, 8-bit, Address/Da bus. The remaining 8 bits can be provided by the software configuration of Port 0 to output address bits A_8 - A_{15} .				
	$\begin{array}{c} \textbf{H} \textbf{H} \textbf{H} \textbf{H} \textbf{H} \textbf{H} \textbf{H} H$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				

Figure 1. Pin Functions

1

Figure 2. Pin Assignments

General Description (Continued) Available address space can be doubled (up to 128K bytes for the Z8681 and 124K bytes for the Z8682) by programming bit 4 of Port 3 (P34) to act as a data memory select output (DM). The two states of DM together with the 16 address outputs can define separate data and memory address spaces of up to 64K/62Kbytes each.

There are 143 bytes of RAM located on-chip and organized as a register file of 124 generalpurpose registers, 16 control and status

Architecture

Z8681/82 architecture is characterized by a flexible I/O scheme, an efficient register and address space structure and a number of ancillary features that are helpful in many applications.

Microcomputer applications demand powerful I/O capabilities. The Z8681/82 fulfills this with 24 pins available for input and output. These lines are grouped into three ports of eight lines each and are configurable under software control to provide timing, status signals, serial or parallel I/O with or without handshake, and an Address bus for interfacing external memory.

Three basic address spaces are available:

registers, and three I/O port registers. This register file can be divided into nine groups of 16 working registers each. Configuring the register file in this manner allows the use of short format instructions; in addition, any of the individual registers may be accessed directly.

The pin functions and the pin assignments of the Z8681/82 40-pin package are illustrated in Figures 1 and 2, respectively.

program memory, data memory and the register file (internal). The 143-byte randomaccess register file is composed of 124 generalpurpose registers, three I/O port registers, and 16 control and status registers.

To unburden the program from coping with real-time problems such as serial data communication and counting/timing, an asynchronous receiver/transmitter (UART) and two counter/timers with a large number of userselectable modes are offered on-chip. Hardware support for the UART is minimized because one of the on-chip timers supplies the bit rate. Figure 3 shows the Z8681/82 block diagram.

Figure 3. Functional Block Diagram

Pin Description **AS.** Address Strobe (output, active Low). Address Strobe is pulsed once at the beginning of each machine cycle. Addresses output via Port 1 for all external program or data memory transfers are valid at the trailing edge of $\overline{\text{AS}}$.

DS. Data Strobe (output, active Low). Data Strobe is activated once for each external memory transfer.

P00-P07, P20-P27, P30-P37. *I/O Port Lines* (input/outputs, TTL-compatible). These 24 lines are divided into three 8-bit I/O ports that can be configured under program control for I/O or external memory interface (Figure 3).

Pl₀-Pl₇. Address/Data Port (bidirectional). Multiplexed address (A_0-A_7) and data (D_0-D_7) lines used to interface with program and data memory. Pin Description (Continued) **RESET.*** Reset (input, active Low). RESET initializes the Z8681/82. When RESET is deactivated, program execution begins from program location 000C_H for the Z8681 and 0812_H for the Z8682.

 $\mathbf{R}/\overline{\mathbf{W}}$. Read/Write (output). $\mathbf{R}/\overline{\mathbf{W}}$ is Low when

the Z8681/82 is writing to external program or data memory.

XTAL1, XTAL2. Crystal 1, Crystal 2 (time-base input and output). These pins connect a parallel-resonant crystal to the on-chip clock oscillator and buffer.

Summary of	Feature	Z8681	Z8682
Z8681 and Z8682 Differences	Address of first instruc- tion executed after Reset	12	2066
2	Addressable memory space	0-64K	2K-64K
	Address of interrupt vectors	0-11	2048-2065
	Reset input high voltage	TTL levels*	7.35-8.0 V
	Port 0 configuration after Reset	Input, float after reset. Can be programmed as Address bits.	Output, configured as Address bits A ₈ -A ₁₅ .
	External memory timing start-up configurations	Extended Timing	Normal Timing
	Interrupt vectors	2 byte vectors point directly to service routines.	2 byte vectors in internal ROM point to 3 byte Jump instructions, which point to service routines.
	Interrupt response time	26µsec	36µsec

Address Spaces **Program Memory.*** The Z8681/82 addresses 64K/62K bytes of external program memory space (Figure 4).

For the Z8681, the first 12 bytes of program memory are reserved for the interrupt vectors. These locations contain six 16-bit vectors that

Figure 4. Z8681/82 Program Memory Map

*This feature differs in the Z8681 and Z8682

Address Spaces (Continued) correspond to the six available interrupts. Program execution begins at location $000C_{\rm H}$ after a reset.

The Z8682 has six 24-bit interrupt vectors beginning at address $0800_{\rm H}$. The vectors consist of Jump Absolute instructions. After a reset, program execution begins at location $0812_{\rm H}$ for the Z8682.

Data Memory.* The Z8681/82 can address 64K/62K bytes of external data memory. External data memory may be included with or separated from the external program memory space. DM, an optional I/O function that can be programmed to appear on pin P3₄, is used to distinguish between data and program memory space.

Register File. The 143-byte register file includes three I/O port registers (R0, R2, R3), 124 general-purpose registers (R4-R127) and 16 control and status registers (R240-R255). These registers are assigned the address locations shown in Figure 5.

Z8681/82 instructions can access registers directly or indirectly with an 8-bit address field. This also allows short 4-bit register addressing using the Register Pointer (one of the control registers). In the 4-bit mode, the register file is divided into nine workingregister groups, each occupying 16 contiguous locations (Figure 5). The Register Pointer addresses the starting location of the active working-register group (Figure 6).

Stacks. Either the internal register file or the external data memory can be used for the stack. A 16-bit Stack Pointer (R254 and R255) is used for the external stack, which can reside anywhere in data memory. An 8-bit Stack Pointer (R255) is used for the internal stack that resides within the 124 general-purpose registers (R4-R127).

Figure 5. The Register File

4

Serial Input/ Output Port 3 lines P3₀ and P3₇ can be programmed as serial I/O lines for full-duplex serial asynchronous receiver/transmitter operation. The bit rate is controlled by Counter/Timer 0, with a maximum rate of 62.5K bits/second at 8 MHz and 93.75K bits/second at 12 MHz.

The Z8681/82 automatically adds a start bit and two stop bits to transmitted data (Figure 7). Odd parity is also available as an option. Eight data bits are always transmitted, regardless of parity selection. If parity is enabled, the eighth data bit is used as the odd parity bit. An interrupt request (IRQ_4) is generated on all transmitted characters.

Received data must have a start bit, eight data bits and at least one stop bit. If parity is on, bit 7 of the received data is replaced by a parity error flag. Received characters generate the IRQ₃ interrupt request.

Counter/ Timers	The Z8681/82 contains two 8-bit program- mable counter/timers (T_0 and T_1), each driven by its own 6-bit programmable prescaler. The T_1 prescaler can be driven by internal or ex- ternal clock sources; however, the T_0 prescaler is driven by the internal clock only. The 6-bit prescalers can divide the input fre- quency of the clock source by any number from 1 to 64. Each prescaler drives its counter, which decrements the value (1 to 256) that has been loaded into the counter. When the counter reaches the end of count, a timer interrupt request—IRQ ₄ (T_0) or IRQ ₅ (T_1)—is generated. The counters can be started, stopped, restarted to continue, or restarted from the initial value. The counters can also be pro- grammed to stop upon reaching zero (single-	pass mode) or to automatically reload the initial value and continue counting (modulo-n continuous mode). The counters, but not the prescalers, can be read any time without disturbing their value or count mode. The clock source for T_1 is user-definable; it can be either the internal microprocessor clock divided by four, or an external signal input via Port 3. The Timer Mode register configures the external timer input as an external clock, a trigger input that can be retriggerable or non-retriggerable, or as a gate input for the internal clock. The counter/timers can be programmably cascaded by connecting the T_0 output to the input of T_1 . Port 3 line P3 ₆ also serves as a timer output (T _{OUT}) through which T_0 , T_1 or the internal clock can be output.
I/O Ports	The Z8681/82 has 24 lines available for input and output. These lines are grouped into three ports of eight lines each and are configurable as input, output or address. Under software control, the ports can be programmed to pro-	vide address outputs, timing, status signals, serial I/O, and parallel I/O with or without handshake. All ports have active pull-ups and pull-downs compatible with TTL loads.
	Port 1 is a dedicated Z-BUS compatible memory interface. The operations of Port 1 are supported by the Address Strobe (\overline{AS}) and Data Strobe (\overline{DS}) lines, and by the Read/Write (R/\overline{W}) and Data Memory (\overline{DM}) control lines. The low-order program and data memory addresses (A_0 - A_7) are output through Port 1	(Figure 8) and are multiplexed with data in/out (D ₀ -D ₇). Instruction fetch and data memory read/write operations are done through this port. Port 1 cannot be used as a register nor can a handshake mode be used with this port.

I/O Ports (Continued) Both the Z8681 and Z8682 wake up with the 8 bits of Port 1 configured as address outputs for external memory. If more than eight address line are required with the Z8681, additional lines can be obtained by programming Port 0 bits as address bits. The least-significant four bits of Port 0 can be configured to supply address bits A_8 - A_{11} for 4K byte addressing or both nibbles of Port 0 can be configured to supply address bits A_8 - A_{15} for 64K byte addressing.

Port 0* can be programmed as a nibble I/O port, or as an address port for interfacing external memory (Figure 9). When used as an I/O port, Port 0 may be placed under handshake control. In this configuration, Port 3 lines P3₂ and P3₅ are used as the handshake controls DAV₀ and RDY₀. Handshake signal assignment is dictated by the I/O direction of the upper nibble P0₄-P0₇.

For external memory references, Port 0 can provide address bits A_8-A_{11} (lower nibble) or A_8-A_{15} (lower and upper nibbles) depending on the required address space. If the address range requires 12 bits or less, the upper nibble of Port 0 can be programmed independently as I/O while the lower nibble is used for addressing.

In the Z8681*, Port 0 lines float after reset; their logic state is unknown until the execution of an initialization routine that configures Port 0.

Such an initialization routine must reside within the first 256 bytes of executable code and must be physically mapped into memory by forcing the Port 0 address lines to a known state. See Figure 10. The proper Port initialization sequence is:

- 1. Write initial address (A₈-A₁₅) of initialization routine to Port 0 address lines.
- 2. Configure Port 0 Mode Register to output A_8-A_{15} (or A_8-A_{11}).

To permit the use of slow memory, an automatic wait mode of two oscillator clock cycles is configured for the bus timing of the Z8681 after each reset. The initialization routine could include reconfiguration to

eliminate this extended timing mode.

The following example illustrates the manner in which an initialization routine can be mapped in a Z8681 system with 4K of memory.

Example. In Figure 10, the initialization routine is mapped to the first 256 bytes of program memory. Pull-down resistors maintain the address lines at a logic 0 level when these lines are floating. The leakage current caused by fanout must be taken into consideration when selecting the value of the pulldown resistors. The resistor value must be large enough to allow the Port 0 output driver to pull the line to a logic one. Generally, pulldown resistors are incompatible with TTL loads. If Port 0 drives into TTL input loads (I_{LOW} = 1.6 ma) the external resistors should be tied to V_{CC} and the initialization routine put in address space FF00_H-FFFF_H.

In the Z8682^{*}, Port 0 lines are configured as address lines A_8 - A_{15} after a Reset. If one or both nibbles are needed for I/O operation, they must be configured by writing to the Port 0 Mode register. The Z8682 is in the fast memory timing mode after Reset, so the initialization routine must be in fast memory.

Figure 10. Port 0 Address Lines Tied to Logic 0

*This feature differs in the Z8681 and Z8682

Table 1. Z8682 Interrupt Processing

Address (Hex)	Contains Jump Instruction and Subroutine Address For
800-802	IRQ0
803-805	IRQ1
806-808	IRQ2
809-80B	IRQ3
80C-80E	IRQ4
80F-811	IRQ5

Polled interrupt systems are also supported. To accommodate a polled structure, any or all of the interrupt inputs can be masked and the Interrupt Request register polled to determine which of the interrupt requests needs service.

- AT cut, parallel-resonant
- Fundamental type
- Series resistance, $R_s \le 100\Omega$
- For Z8681/Z8682, 8 MHz maximum
- For Z8681/Z8682-12, 12 MHz maximum

*This feature differs in the Z8681 and Z8682

crystal are as follows:

resolved by a programmable priority encoder that is controlled by the Interrupt Priority

All Z8681 and Z8682 interrupts are vectored through locations in program memory. When an interrupt request is granted, an interrupt machine cycle is entered. This disables all subsequent interrupts, saves the Program Counter and status flags, and accesses the program memory vector location reserved for that interrupt. In the Z8681, this memory location and the next byte contain the 16-bit address of the interrupt service routine for that particular

interrupt request. The Z8681 takes 26 system

clock cycles to enter an interrupt subroutine.

The Z8682 has a small internal ROM that

The on-chip oscillator has a high-gain,

(XTAL1 = Input, XTAL2 = Output). The crystal source is connected across

parallel-resonant amplifier for connection to a

crystal or to any suitable external clock source

XTAL1 and XTAL2, using the recommended

capacitance (C_L = 15 pF maximum) from each pin to ground. The specifications for the

contains six 2-byte interrupt vectors pointing to

register.

7

Power Down Standby Option

The low-power standby mode allows power to be removed without losing the contents of the 124 general-purpose registers. This mode is available only to the user as a bonding option whereby pin 2 (normally XTAL2) is replaced by the V_{MM} (standby) power supply input. This necessitates the use of an external clock generator (input = XTAL1) rather than a crystal source.

The removal of power, whether intended or due to power failure, must be preceded by a software routine that stores the appropriate status into the register file. Figure 13 shows the recommended circuit for a battery back-up supply system.

78681/78682 Inter-

Although the Z8681 and Z8682 have minor differences, a system can be designed for comchangeability patibility with both ROMless versions. To achieve interchangeability, the design must take into account the special requirements of each device in the external interface, initialization, and memory mapping.

> External Interface. The Z8682 requires a 7.5 V positive logic level on the RESET pin for at least 6 clock periods immediately following reset, as shown in Figure 14. The Z8681 requires a 3.8 V or higher positive logic level, but is compatible with the Z8682 RESET waveform. Figure 15 shows a simple circuit for generating the 7.5 V level.

Figure 14. Z8682 RESET Pin Input Waveform

Figure 15. RESET Circuit

Figure 13, Recommended Driver Circuit for **Power-Down Operation**

Initialization. The Z8681 wakes up after reset with Port 0 configured as an input, which means Port 0 lines are floating in a highimpedance state. Because of this pullup or pulldown, resistors must be attached to Port 0 lines to force them to a valid logic level until Port 0 is configured as an address port.

Port 0 initialization is discussed in the section on ports. An example of an initialization routine for Z8681/Z8682 compatibility is shown in Table 2. Only the Z8681 need execute this program.

Table 2. Initialization Routine

Address	Opcodes	Instruction	Comments
000C	E6 00 00	LD PO #%00	Set A ₈ -A ₁₅ to 0.
000F	E6 F8 96	LD P01M #%96	Configure Port 0 as A_8-A_{15} . Eliminate extended memory timing.
0012	8D 08 12	JP START ADDRESS	Execute application program.

Figure 16. Z8681/82 Logical Program Memory Mapping

Z8681/Z8682 Inter-(Continued)

Memory Mapping. The Z8681 and Z8682 lower memory boundaries are located at 0 and changeability 2048, respectively. A single program ROM can be used with either product if the logical program memory map shown in Figure 16 is followed. The Z8681 vectors and initialization

routine must be starting at address 0 and the Z8682 3-byte vectors (jump instructions) must be at address 2048 and higher. Addresses in the range 21-2047 are not used. Figure 17 shows practical schemes for implementing this memory map using 4K and 2K ROMs.

Instruction		essing Modes. The following notation is used scribe the addressing modes and instruction	src	Source location or contents			
Set		ations as shown in the instruction summary.	cc	Condition code (see list)			
Notation	opera	ations as shown in the instruction summary.	@	Indirect address prefix			
	IRR	Indirect register pair or indirect working-register	SP	Stack pointer (control registers 254–255)			
		pair address	PC	Program counter			
	Irr	Indirect working-register pair only		Flag register (control register 252)			
	х	Indexed address	RP	Register pointer (control register 253)			
	DĀ	Direct address	IMR	Interrupt mask register (control register 251)			
	RA	Relative address	Assi	gnment of a value is indicated by the symbol			
	IM	Immediate		"←". For example,			
	R	Register or working-register address		dst ← dst + src			
	r	Working-register address only	indica	tes that the source data is added to the			
	IR	Indirect-register or indirect working-register address	destin	ation data and the result is stored in the ation location. The notation "addr(n)" is used			
	Ir Indirect working-register address only			er to bit "n" of a given location. For example,			
	RR	Register pair or working register pair address	dst (7)				
		bols. The following symbols are used in ribing the instruction set. Destination location or contents	refers	to bit 7 of the destination operand.			

Instruction Set Notation (Continued)	six flags: C C Z Z S S V C D D		2	the following Affe	Cleared to ze Set to one	e indicated by: ro d according to operation	
Condition		/alue	Mnemonic	Meaning		Flags Set	
Codes		1000		Always true			
		0111	C	Carry		C = 1	
		1111	NC	No carry		C = 0	
		0110	Z	Zero		Z = 1	
		1110	NZ	Not zero		Z = 0	
		1101	PL	Plus		S = 0	
		0101	MI	Minus		S = 1	
		0100	OV	Overflow		V = 1	
		1100	NOV	No overflow		V = 0	
		0110	EQ	Equal		Z = 1	
		1110	NE	Not equal		Z = 0	
		1001 0001	GE LT	Greater than or equal Less than		(S XOR V) = 0 (S XOR V) = 1	
		1010	GT	Greater than		[Z OR (S XOR V)] = 1 [Z OR (S XOR V)] = 0	
		010	LE	Less than or equal		[Z OR (S XOR V)] = 0 [Z OR (S XOR V)] = 1	
		1111	UGE	Unsigned greater than or equal	anal .	C = 0	
		0111	ULT	Unsigned less than	Juui	C = 0	
		1011	UGT	Unsigned greater than		(C = 0 AND Z = 0) = 1	
		0011	ULE	Unsigned less than or equal		(C = 0 RND 2 = 0) = 1 (C OR Z) = 1	
		0000	0LL	Never true		(0 01(2) = 1	

OPC

dst OPC

Instruction Formats

ormans

One-Byte Instruction

CCF, DI, EI, IRET, NOP, RCF, RET, SCF

INC r

Two-Byte Instruction

Three-Byte Instruction

Figure 18. Instruction Formats

Instruction Summary

Instruction and Operation	Addr dst	Mode src	Opcode Byte	Flags Affected						
ADC dst,src		te l)	(Hex)	*	*	*		0		
$\frac{dst - dst + src + C}{dst - dst + src + C}$										
ADD dst,src dst – dst + src	(No	te 1)	0□	*	*	*	*	0	*	
AND dst,src dst – dst AND src	(No	tel)	5□	-	*	*	0	-	_	
CALL dst SP - SP - 2 @SP - PC; PC - d	DA IRR st		D6 D4	-		-	-	-	_	
C - NOT C			EF	*	-	-	-	-	-	
CLR dst dst - 0	R IR		B0 B1	-	-	-	-	-	-	
COM dst dst – NOT dst	R IR		60 61	-	*	*	0	-		
CP dst,src dst - src	(No	te l)	A□	*	*	*	*		-	
DA dst dst ← DA dst	R IR		40 41	*	*	*	X	-	-	
DEC dst dst - dst - 1	R IR		00 01	-	*	*	*	-	-	
DECW dst dst - dst - 1	RR IR		80 81	-	*	*	*	-	-	
DI IMR (7) ← 0			8F	-	_	_	_	_	_	
DJNZ r,dst $r \leftarrow r - 1$ if $r \neq 0$ PC \leftarrow PC + dst Range: +127, -128	RA		rA r=0-F	-	-	-	-	-	_	
EI IMR (7) ← 1			9F	_	-	-	_	-		
INC dst dst – dst + 1	r		rE r = 0-F	-	*	*	*	-	-	
	R IR		20 21							
INCW dst dst – dst + 1	RR IR	aras - 1945 - 2 - 2 - 2 - 2 - 2	A0 A1	-	*	*	*	-	-	
IRET FLAGS - @SP; SP	SD.	+ 1	BF	*	*	*	*	*	*	
$PC \leftarrow @SP; SP \leftarrow SI$	P + 2;	IMR (7	7) ← 1							
JP cc,dst if cc is true	DA		cD c=0-F	-	-	-	-	-	-	
$\frac{PC \leftarrow dst}{JR \ cc, dst}$	IRR RA		30 cB	_	_			_		
if cc is true, PC – PC + dst Range: +127, -128			c = 0-F							
LD dst,src dst – src	r r	Im R	rC r8	-	-	-	-	-	-	
	Ř	r	r9 r=0-F							
	r X	X r	C7 D7							
	r Ir	Ir r	E3 F3							
	R R	R IR	E4 E5							
	R IR IR	IM IM R	E6 E7 F5							
LDC dst,src dst - src	r Irr	Irr r	C2 D2		-	_	_	_	-	
LDCI dst,src dst $-$ src r $-$ r + 1; rr $-$ rr +	Ir Irr	Irr Ir	C3 D3				-		-	

Instruction	Addr)	Mode	Opcode	Fle	ag	s A	ffe	ect	ed
and Operation	dst	src	Byte (Hex)	С	Z	S	V	D	н
LDE dst,src dst – src	r Irr	Irr r	82 92	-	-	-	-	-	-
LDEI dst, src dst \leftarrow src r \leftarrow r + 1; rr \leftarrow rr +	Ir Irr	Irr Ir	83 93	-		-	-	-	-
			FF			_	_		_
OR dst,src dst ← dst OR src	(Note	ə l)	4	-	*	*	0	-	-
POP dst dst $\leftarrow @ SP$ SP $\leftarrow SP + 1$	R IR		50 51	-	-	-	-		-
PUSH src SP - SP - 1; @ SP -	- src	R IR	70 71	-	-	-	-	-	-
RCF C - 0			CF	0	-	-	-	-	-
RET PC - @SP; SP - SI	P + 2		AF	-	-	-	-	-	-
RL dst] R IR		90 91	*	*	*	*	-	-
RLC dst] R IR		10 11	*	*	*	*	-	-
RR dst] R IR		E0 E1	*	*	*	*		-
RRC dst [] R IR		C0 C1	*	*	*	*		
SBC dst,src dst ← dst - src - C	(Note	1)	3□	*	*	*	*	1	*
SCF C + 1			DF	1	-	-	_	-	-
SRA dst] R IR		D0 D1	*	*	*	0	-	-
SRP src RP - src		Im	31	-	- 1		-	-	-
SUB dst,src dst ← dst - src	(Note	1)	2□	*	*	*	*	1	*
SWAP dst	R IR		FO Fl	Х	*	*	х	-	-
TCM dst,src (NOT dst) AND src	(Note	1)	6□	-	*	*	0		-
TM dst, src dst AND src	(Note	1)	7□	-	*	*	0	_	-
XOR dst,src dst – dst XOR src	(Note	1)	В□	-	*	*	0	-	

Note 1

These instructions have an identical set of addressing modes, which are encoded for brevity. The first opcode nibble is found in the instruction set table above. The second nibble is expressed symbolically by a \Box in this behavior. table, and its value is found in the following table to the left of the applicable addressing mode pair. For example, to determine the opcode of an ADC

instruction using the addressing modes r (destination) and Ir (source) is 13.

	Addr	Mode	Lower	
_	dst	SIC	Opcode Nibble	
	r	r	2	
	r	Ir	3	
	R	R	4	
	R	IR	5	
	R	IM	6	
	IR	IM	7	

----- SERIAL DATA (D₀ = LSB)

R244 TO Counter/Timer 0 Register (F4_H; Read/Write)

R242 T1 Counter Timer 1 Register (F2_H; Read/Write)

R246 P2M Port 2 Mode Register (F6_H; Write Only)

 $D_7 D_6 D_5 D_4 D_3 D_2 D_1 D_0$

P20-P27 I/O DEFINITION - 0 DEFINES BIT AS OUTPUT 1 DEFINES BIT AS INPUT

81/82 code	2						Low	er Nibble	e (Hex)							
rp	0	1	2	3	4	5	6	7	8	9	A	В	С	D	Е	F
					10.5	10.5	10.7	10.5	0.0	0.0		10/10 0		12/10,0		1
0	6,5 DEC R1	6,5 DEC IR1	6,5 ADD 11,12	6,5 ADD r1, Ir2	10, 5 ADD R ₂ , R ₁	10, 5 ADD IR ₂ , R ₁	10, 5 ĀDD R ₁ , IM	10, 5 ADD IR ₁ , IM	6,5 LD r1, R2	6,5 LD 12, R1	12/10,5 DJNZ r1, RA	12/10,0 JR cc, RA	6,5 LD r1, IM	JP cc, DA	6,5 INC 11	
1	6,5 RLC R1	6,5 RLC IR1	6,5 ADC 11,12	6,5 ADC r1, Ir2	10,5 ADC R ₂ , R ₁	10, 5 ADC IR ₂ , R ₁	10,5 ADC R ₁ , IM	10,5 ADC IR ₁ , IM								
2	6,5 INC R1	6,5 INC IR1	6,5 SUB 11,12	6,5 SUB ri,Ir2	10, 5 SUB R ₂ , R ₁	10, 5 SUB IR ₂ , R ₁	.10,5 SUB R1,IM	10, 5 SUB IR 1, IM		, 1						
3	8,0 JP IRR1	6, 1 SRP IM	6,5 SBC 11,12	6,5 SBC r1, Ir2	10,5 SBC R ₂ , R ₁	10,5 SBC IR ₂ , R ₁	10,5 SBC R ₁ ,IM	10, 5 SBC IR ₁ , IM						-		
4	8,5 DA R1	8,5 DA IR1	6,5 OR 11,12	6, 5 OR r1, Ir2	10, 5 OR R ₂ , R ₁	10, 5 OR IR ₂ , R ₁	10, 5 OR R1, IM	10, 5 OR IR 1, IM								
5	10, 5 POP R1	10,5 POP IR1	6,5 AND 11,12	6,5 AND r1, Ir2	10, 5 AND R ₂ , R ₁	10, 5 AND IR ₂ , R ₁	10,5 AND R ₁ , IM	10,5 AND IR1, IM								
6	6,5 COM R1	6,5 COM IR1	6,5 TCM 11,12	6,5 TCM r ₁ , Ir ₂	10,5 TCM R ₂ , R ₁	10, 5 TCM IR ₂ , R ₁	10,5 TCM R ₁ ,IM	10, 5 TCM IR 1, IM								
7	10/12,1 PUSH R2	12/14, 1 PUSH IR ₂	6,5 TM 11,12	6,5 TM r1, Ir2	10, 5 TM R ₂ , R ₁	10, 5 TM IR ₂ , R ₁	10, 5 TM R ₁ , IM	10, 5 TM IR 1, IM								
8	10, 5 DECW RR 1	10,5 DECW IR1	12, 0 LDE r ₁ , Irr ₂	18,0 LDEI Ir1, Irr2		an a										6, D
9	6,5 RL R1	6, 5 RL IR 1	12,0 LDE r ₂ ,Irr ₁	18,0 LDEI Ir2,Irr1												6, E
A	10, 5 INCW RR 1	10,5 INCW IR1	6,5 CP 1,12	6,5 CP r1, Ir2	10,5 CP R ₂ , R ₁	10, 5 CP IR ₂ , R ₁	10, 5 CP R ₁ , IM	10, 5 CP IR 1, IM								14, RE
В	6,5 CLR R1	6,5 CLR IR1	6,5 XOR 1,12	6,5 XOR r1, Ir2	10,5 XOR R ₂ , R ₁	10, 5 XOR IR ₂ , R ₁	10, 5 XOR R ₁ , IM	10, 5 XOR IR 1, IM								16. IRI
С	6, 5 RRC R1	6,5 RRC IR1	12,0 LDC r1, Irr2	18, 0 LDCI Ir1, Irr2				10,5 LD 11, x, R ₂								6, RC
D	6,5 SRA R1	6,5 SRA IR1	12,0 LDC 12,Irr1	18,0 LDCI Ir2, Irr1	20,0 CALL* IRR1		20,0 CALL DA	10, 5 LD 12, x, R ₁								6, SC
Е	6,5 RR R1	6,5 RR IR1		6,5 LD 11,IR2	10, 5 LD R ₂ , R ₁	10, 5 LD IR ₂ , R ₁	10, 5 LD R ₁ , IM	10, 5 LD IR ₁ , IM								6, CC
F	8,5 SWAP R1	8,5 SWAP IR1		6, 5 LD Ir1, r2		10, 5 LD R ₂ , IR ₁			•							6, NC
					1											

Legend:

R = 8-Bit Address r = 4-Bit Address $R_1 \text{ or } r_1 = Dst Address$ $R_2 \text{ or } r_2 = Src Address$

Sequence:

Opcode, First Operand, Second Operand

Note: The blank areas are not defined.

*2-byte instruction; fetch cycle appears as a 3-byte instruction

Absolute Maximum Ratings	Voltages on all pins* with respect to GND0.3 V to +7.0 V
nunngs	Operating Ambient Temperature See Ordering Information
	Storage Temperature65 °C to +150 °C

Stresses greater than those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only: operation of the device at any condition above those indicated in the operational sections of these specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Standard Test Conditions The characteristics below apply for the following standard test conditions, unless otherwise noted. All voltages are referenced to GND. Positive current flows into the reference pin. Standard conditions are as follows:

 $\blacksquare +4.75 \text{ V} \leq \text{V}_{\text{CC}} \leq +5.25 \text{ V}$

Figure 20. Test Load 1

 \blacksquare GND = 0 V

- 0°C ≤ T_Å ≤ +70°C for S (Standard temperature)
- $-40^{\circ}C \le T_A \le +85^{\circ}C$ for E (Extended temperature)

Figure 21. External Clock Interface Circuit

C	Symb	ool Parameter	Min	Max	Unit	Condition
haracter- tics	V _{CH}	Clock Input High Voltage	3.8	V _{CC}	V	Driven by External Clock Generator
	V _{CL}	Clock Input Low Voltage	-0.3	0.8	v	Driven by External Clock Generator
	V _{IH}	Input High Voltage	2.0	V _{CC}	v	
	V _{IL}	Input Low Voltage	-0.3	0.8	v	
	V _{RH}	Reset Input High Voltage	3.8	V _{CC}	ý	See Note
	V _{RL}	Reset Input Low Voltage	-0.3	0.8	v	
	V _{OH}	Output High Voltage	2.4		V	$I_{OH} = -250 \ \mu \text{A}$
	V _{OL}	Output Low Voltage		0.4	V	$I_{OL} = +2.0 \text{ mA}$
	I _{IL}	Input Leakage	-10	10	μA	$0 \text{ V} \leq \text{V}_{\text{IN}} \leq +5.25 \text{ V}$
	I _{OL}	Output Leakage	-10	10	μA	$0 \text{ V} \leq \text{V}_{\text{IN}} \leq +5.25 \text{ V}$
	I _{IR}	Reset Input Current		-50	μA	$V_{\rm CC}$ = +5.25 V, $V_{\rm RL}$ = 0 V
	I _{CC}	V _{CC} Supply Current		180	mA	
	I _{MM}	V _{MM} Supply Current		10	mÅ	Power Down Mode
	V _{MM}	Backup Supply Voltage	3	V _{CC}	V	Power Down
	NOTE					

NOTE:

The Reset line (pin 6) is used to place the Z8682 in external memory mode. This is accomplished as shown in Figure 14.

15

External I/O or Memory Read and Write Timing

Figure 22. External I/O or Memory Read/Write Timing

				Z8681/82 8 MHz		Z8681/82 12 MHz	
No.	Symbol	Parameter	Min	Μαχ	Min	Μαχ	Notes*†
1	TdA(AS)	Address Valid to $\overline{\mathrm{AS}}$ † Delay	50		35		1,2,3
2	TdAS(A)	AS 1 to Address Float Delay	70		45		1,2,3
3	TdAS(DR)	ĀS † to Read Data Required Valid		360		220	1,2,3,4
4	TwAS	AS Low Width	80		55		1,2,3
5	TdAz(DS)	Address Float to DS 4	0		0		1
6—	-TwDSR	— DS (Read) Low Width — — — — — — — — — — — — — — — — — — —	250				1,2,3,4
7	TwDSW	DS (Write) Low Width	160		110		1,2,3,4
8	TdDSR(DR)	DS ↓ to Read Data Required Valid		200		130	1,2,3,4
9	ThDR(DS)	Read Data to $\overline{\mathrm{DS}}$ † Hold Time	0		0		1
10	TdDS(A)	DS † to Address Active Delay	70		45		1,2,3
11	TdDS(AS)	DS ↑ to AS ↓ Delay	70		55		1,2,3
12—	-TdR/W(AS)	—R/W Valid to AS 1 Delay———	50				l,2,3
13	TdDS(R/W)	DS 1 to R/W Not Valid	60		35		1,2,3
14	TdDW(DSW)	Write Data Valid to DS (Write) ↓ Delay	50		35		1,2,3
15	TdDS(DW)	DS 1 to Write Data Not Valid Delay	70		45		1,2,3
16	TdA(DR)	Address Valid to Read Data Required Valid		410		255	1,2,3,4
17	TdAS(DS)	ĀS ↑ to DS ↓ Delay	80		55		1,2,3

NOTES:

Test Load 1
 Timing numbers given are for minimum TpC.
 Also see clock cycle time dependent characteristics table.
 When using extended memory timing add 2 TpC.

5. All timing references use 2.0 V for a logic "1" and 0.8 V for a logic "0".
* All units in nanoseconds (ns).
† Timings are preliminary and subject to change.

Additional Timing Table

Figure 23. Additional Timing

No.			Z868 8 M	Z8681/82 12 MHz			
	Symbol	Parameter	Min	Μαχ	Min	Max	Notes*‡
1	TpC	Input Clock Period	125	1000	83	1000	1
2	TrC,TfC	Clock Input Rise And Fall Times			15	1	
3	TwC	Input Clock Width	37	26		1	
4	TwTinL	Timer Input Low Width	100		70		2
5—	-TwTinH		3TpC		— ЗТрС-	an	2
6	TpTin	Timer Input Period	$\frac{\text{TpC}}{8}$		$\frac{TpC}{8}$		2
7	TrTin,TfTin	Timer Input Rise And Fall Times		100		100	2
8	TwIL	Interrupt Request Input Low Time	100		70		2,3
9	TwIH	Interrupt Request Input High Time	3TpC		3TpC		2,3

NOTES: 1. Clock timing references uses 3.8 V for a logic "1" and 0.8 V for a logic "0". 2. Timing reference uses 2.0 V for a logic "1" and 0.8 V for a logic "0".

3. Interrupt request via Port 3.
* Units in nanoseconds (ns).
† Timings are preliminary and subject to change.

Handshake Timing

Figure	24h	Output	Handshake	Timing
riguie	44 D.	Output	nunusnuke	rimmy

* Units in nanoseconds (ns). † Timings are preliminary and subject to change.

			Z868 8 N	Z8681/82 12 MHz			
No.	Symbol	Parameter	Min	Μαχ	Min	Μαχ	Notes*†
l TsDI(DAV)		Data In Setup Time	0		0		
2	ThDI(DAV)	Data In Hold Time	230		160		
3	TwDAV	Data Available Width	175		120		
4	TdDAVIf(RDY)	DAV ↓ Input to RDY ↓ Delay		175		120	1,2
5—	-TdDAVOf(RDY)		0				1,3
6	TdDAVIr(RDY)	DAV † Input to RDY † Delay		175		120	1,2
7	TdDAV0rRDY)	DAV 1 Output to RDY 1 Delay	0		0		1,3
8	TdDO(DAV)	Data Out to DAV ↓ Delay	50		30		1
9	TdRDY(DAV)	Rdy ↓ Input to DAV † Delay	0	200	0	140	1

NOTES: 1. Test load 1 2. Input handshake 3. Output handshake 4. All timing regerences use 2.0 V for a logic "1" and 0.8 V for a logic "0".

Clock- Cycle-Time- Dependent	Number	Symbol	Z8681/82 8 MHz Equation	Z868 1/82 12 MHz Equation
Characteristics	1	TdA(AS)	TpC-75	TpC-50
	2	TdAS(A)	TpC-55	TpC-40
	3	TdAS(DR)	4TpC-140*	4TpC-110*
	4	TwAS	TpC-45	TpC-30
	6	TwDSR		3TpC-65*
	7	TwDSW	2TpC-90*	2TpC-55*
	8	TdDSR(DR)	3TpC-175*	3TpC-120*
	10	Td(DS)A	TpC-55	TpC-40
	11	TdDS(AS)	TpC-55	TpC-30
	12	TdR/W(AS)	TpC-75	TpC-55
	13	TdDS(R/W)	TpC-65	TpC-50
	14	TdDW(DSW)	TpC-75	TpC-50
	15	TdDS(DW)	TpC-55	TpC-40
	16	TdA(DR)	5TpC-215*	5TpC-160*
	17	TdAS(DS)	TpC-45	TpC-30

* Add 2TpC when using extended memory timing

Ordering Information	Product Number	Package/ Temp	Speed	Description	Product Number	Package/ Temp	Speed	Description
	Z8681	CE	8.0 MHz	Z8 MCU (ROMless, 40-pin)	Z8681	CE	12.0 MHz	Z8 MCU (ROMless, 40-pin)
	Z8681	CS	8.0 MHz	Same as above	Z8681	CS	12.0 MHz	Same as above
	Z8681	DE	8.0 MHz	Same as above	Z8681	DE	12.0 MHz	Same as above
	Z8681	DS	8.0 MHz	Same as above	Z8681	DS	12.0 MHz	Same as above
	Z8681	PE	8.0 MHz	Same as above	Z8681	PE	12.0 MHz	Same as above
	Z8681	PS	8.0 MHz	Same as above	Z8681	PS	12.0 MHz	Same as above
	Z8682	PE	8.0 MHz	Same as above	Z8682	PE	12.0 MHz	Same as above
	Z8682	PS	8.0 MHz	Same as above	Z8682	PS	12.0 MHz	Same as above

NOTES: C = Ceramic, D = Cerdip, P = Plastic; $E = -40^{\circ}C$ to +85 °C, $S = 0^{\circ}C$ to +70 °C. NOTE: The 28681 is available in the low power standby option. If this option is desired, a 28685 part number should be specified. All other data remains the same for ordering purposes.

40-pin Cerdip Package

NOTE: Package dimensions are given in inches. To convert to millimeters, multiply by 25.4.

40-pin Plastic Package

NOTE: Package dimensions are given in inches. To convert to millimeters, multiply by 25.4.

Zilog Sales Offices

West

Sales & Technical Center Zilog, Incorporated 1315 Dell Avenue Campbell, CA 95008 Phone: (408) 370-8120 TWX: 910-338-7621

Sales & Technical Center Zilog, Incorporated 18023 Sky Park Circle Suite J Irvine, CA 92714 Phone: (714) 549-2891 TWX: 910-595-2803

Sales & Technical Center Ziloq, Incorporated 15643 Sherman Way Suite 430 Van Nuys, CA 91406 Phone: (213) 989-7485 TWX: 910-495-1765

Sales & Technical Center Zilog, Incorporated 1750 112th Ave. N.E. Suite D161 Bellevue, WA 98004 Phone: (206) 454-5597

Midwest

Sales & Technical Center Zilog, Incorporated 951 North Plum Grove Road Suite F Schaumburg, IL 60195 Phone: (312) 885-8080 TWX: 910-291-1064

Sales & Technical Center Zilog, Incorporated 28349 Chagrin Blvd. Suite 109 Woodmere, OH 44122 Phone: (216) 831-7040 FAX: 216-831-2957

South

Sales & Technical Center Zilog, Incorporated 4851 Keller Springs Road, Suite 211 Dailas, TX 75248 Phone: (214) 931-9090 TWX: 910-860-5850

Zilog, Incorporated 7113 Burnet Rd. Suite 207 Austin, TX 78757 Phone: (512) 453-3216

East

Sales & Technical Center Zilog, Incorporated Corporate Place 99 South Bedford St. Burlington, MA 01803 Phone: (617) 273-4222 TWX: 710-332-1726

Sales & Technical Center Zilog, Incorporated 240 Cedar Knolls Rd. Cedar Knolls, NJ 07927 Phone: (201) 540-1671

Technical Center Zilog, Incorporated 3300 Buckeye Rd. Suite 401 Atlanta, GA 30341 Phone: (404) 451-8425

Sales & Technical Center Zilog, Incorporated 1442 U.S. Hwy 19 South Suite 135 Clearwater, FL 33516 Phone: (813) 535-5571

Zilog, Incorporated 613-B Pitt St. Cornwall, Ontario Canada K6J 3R8 Phone: (613) 938-1121

United Kingdom

Zilog (U.K.) Limited Zilog House 43-53 Moorbridge Road Maidenhead Berkshire, SL6 8PL England Phone: 0628-39200 Telex: 848609

France

Zilog, Incorporated Cedex 31 92098 Paris La Defense France Phone: (1) 334-60-09 TWX: 611445F

West Germany

Zilog GmbH Eschenstrasse 8 D-8028 TAUFKIRCHEN Munich, West Germany Phone: 89-612-6046 Telex: 529110 Zilog d.

Japan

Zilog, Japan K.K. Konparu Bldg. SF 2-8 Akasaka 4-Chome Minato-Ku, Tokyo 107 Japan Phone: (81) (03) 587-0528 Telex: 2422024 A/B: Zilog J