
-t
g TOSHIBA
:I: -m
:1:1

-I
r-
n en
• 0)

o
o
o
c
en
m
2J
en
I: • z
c • r-

1 6-81T MICROPROCESSOR

USERS MANUAL

AUGUST 1988

TOSH5BA CORPORATION

The information contained herein is presented only as a guide for the applications of our

products. No responsibility is assumed by TOSHIBA for any infringements of patents or
other rights of the third parties which may result from its use. No license is granted by

implication or otherwise under any patent or patent rights of TOSHIBA or others.

The products described in this document are strategic products subjeCt to COCOM

regulations. They should not be exported without authorization from the appropriate

governmental authorities.

The products described in this document contain components made in the United States
and subject to export control of the U.S. authorities. Diversion contrary to the U.S. law is

prohibited.

"M68000 16/32 BIT MICROPROCESSOR PROGRAMMER'S REFERENCE MANUAL"
is the original of this manual and is issued by Motorola Inc., through Prentice-Hall. The

publishing of this manual is permitted by Motorola Inc. No part of this manual may be

transferred or reproduced without prior permission of Toshiba Corporation.

Copyright 1988 by TOSHIBA CORI=>ORATION

June 1988

TOSHIBA USERS MANUAL

Preface

Thank you very much for making use of TOSHIBA microcomputer LSIs and
development systems.

The TLCS-68000 family, including the TMP68000, is the general-purpose 16/32-bit
microprocessor family which is developed by technical cooperation with Motorola Inc.,
and is compatible with the Motorola M68000 family. The TMP68000/l0/08 have various
features such as the general purpose 32-bit register set, the large linear address space,
the powerful instruction set, and flexible addressing modes. The common 32-bit internal
architecture is upward compatible with all the family MPUs. This manual describes
overview of the architecture and function of each instruction set, which are requires for
software development for each MPU (TMP68000/10/08) of TLCS-68000 family. Toshiba
provides various microcomputer LSls and its development system for wide range of
application.

No part of this manual may be transferred or reproduces without prior permission of
Toshiba corporation.

TOSHIBA

TLCS-68000

16-Bit Microprocessors

User's Manual

TOSHIBA CORPORATION

TOSHIBA

CONTENTS

1. ARCHITECTURAL DESCRIPTION
1.1 INTRODUCTION

1.2 PROGRAMMER'S MODEL

1.3 SOFTWARE DEVELOPMENT

1.3.1 Consistent Structure

1.3.2 Structured Modular Programming

1.3.3 Improved Software Testability

1.4 VIRTUAL MEMORYIMACHINE CONCEPTS

1.4.1 Virtual Memory

1.4.2 Virtual Machine

2. DATA ORGANIZATION AND ADDRESSING
CAPABILITIES

2.1 INTRODUCTION

2.2 OPERAND SIZE .. .

2.3 DATAORGANIZATIONINREGISTERS

2.3.1 Data Registers .. .

2.3.2 Address Registers

2.4 DATA ORGANIZATION IN MEMORY

2.5 ADDRESSING

2.6 INSTRUCTION FORMAT

2.7 PROGRAMIDATA REFERENCES

2.8 REGISTER NOTATION

2.9 ADDRESS REGISTER INDIRECT NOTATION

2.10 REGISTER SPECIFICATION

2.11 EFFECTIVE ADDRESS

2.11.1 Register Direct Modes

2.11.1.1 Data Register Direct

2.11.1.2 Address Register Direct

2.11.2 Memory Address Modes

2.11.2.1 Address Register Indirect

2.11.2.2

2.11.2.3

Address Register Indirect with Postincrement

Address Register Indirect with Predecrement

CONTENTS

VMPU -

VMPU -

VMPU -

VMPU - 5

VMPU - 5

VMPU - 9

VMPU - 9

VMPU - 10

VMPU - 11

VMPU - 12

VMPU - 13

VMPU - 13

VMPU - 13

VMPU - 13

VMPU - 13

VMPU - 13

VMPU - 14

VMPU - 17

VMPU - 17

VMPU - 17

VMPU - 18

VMPU - 18

VMPU - 18

VMPU - 18

VMPU - 19

VMPU - 19

VMPU - 19

VMPU - 19

VMPU - 20

VMPU - 20

VMPU - 20

TOSHIBA

2.11.2.4 Address Register Indirect with Displacement

2.11.2.5 Address Register Inderect with Index

2.11.3 Special Address Modes

2.11.3.1 Absolute Short Address

2.11.3.2 Absolute Long Address

2.11.3.3 Program Counter with Displacement

2.11.3.4 Program Counter with Index

2.11.3.5 Immediate Data

2.11.4 Effective Address Encoding Summary

2.12 IMPLICIT REFERENCE

2.13 STACK AND QUEUES

2.13.1 System Stack .. .

2.13.2 User Stacks

2.13.3 Queues

3. INSTRUCTION SET SUMMARY
3.1 INTRODUCTION ... ,

3.2 DATAMOVEMENTOPERATIONS

3.3 INTEGER ARITHMETIC OPERATIONS

3.4 LOGICAL OPERATIONS

3.5 SHIFT AND ROTATE OPERATIONS

3.6 BIT MANIPULATION OPERATIONS

3.7 BINARY CODED DECIMAL OPERATIONS

3.8 PROGRAM CONTROL OPERTIONS

3.9

3.10

SYSTEM CONTROL OPERATIONS

MULTIPROCESSOR OPERATIONS

4. EXCEPTION PROCESSING
4.1 INTRODUCTION

4.2 PRIVILEGE STATES

4.2.1 Supervisor State

4.2.2 User State .. .

4.2.3 Privilege State Changes

4.2.4 Reference Classification

4.3 EXCEPTION PROCESSING

4.3.1 Exception Vectors

ii

CONTENTS

VMPU - 21

VMPU - 21

VMPU - 22

VMPU - 22

VMPU - 23

VMPU - 23

VMPU - 24

VMPU - 24

VMPU - 25

VMPU - 26

VMPU - 27

VMPU - 27

VMPU - 27

VMPU - 29

VMPU - 31

VMPU - 31

VMPU - 32

VMPU - 33

VMPU - 35

VMPU - 35

VMPU - 36

VMPU - 37

VMPU - 37

VMPU - 38

VMPU - 40

VMPU - 41

VMPU - 41

VMPU - 41

VMPU - 42

VMPU - 42

VMPU - 43

VMPU - 43

VMPU - 44

VMPU - 44

TOSHIBA

4.3.2

4.3.3

4.3.4

Kinds of Exceptions

Multiple Exceptions

Exception Stack Frames

4.3.5 Exception Processing Sequence

4.4 EXCEPTION PROCESSING DETAILED DISCUSSION

4.4.1 Reset

4.4.2 Interrupts .. .

4.4.3 Uninitialized Interrupt

4.4.4 Spurious Interrupt

4.4.5 Instruction Traps .. .

4.4.6 Illegal and Unimplemented Instructions

4.4.7 Privilege Violations .. .

4.4.B Tracing

4.4.9 Bus Error

4.4.9.1 Bus Error (TMP6BOOOITMP6BOOB)

4.4.9.2 BUS ERROR (TMP6BOI0)

4.4.10 Address Error

4.5 RETURN FROM EXCEPTION (TMP6BOI0)

4.5.1 Determine The Stack Format

4.5.2 Determine Data Validity

4.5.3 Determine Data Accessibility

APPENDIX A
CONDITION CODES COMPUTATION
A.l INTRODUCTION

A.2 CONDITION CODE REGISTER

A.3 CONDITION CODE REGISTER NOTATION

A.4 CONDITION CODE COMPUTATION

A.5 CONDITION TESTS .. .

APPENDIX B INSTRUCTION SET DETAILS
B.l INTRODUCTION ; .. .

B.2 ADDRESSING CATEGORIES

B.3 INSTRUCTION DESCRIPTION

B.4 OPERATION DESCRIPTION DEFINITIONS

iii

CONTENTS

VMPU - 47

VMPU - 47

VMPU - 48

VMPU - 50

VMPU - 50

VMPU - 51

VMPU - 51

VMPU - 52

VMPU - 52

VMPU - 53

VMPU - 53

VMPU - 54

VMPU - 54

VMPU - 55

VMPU - 56

VMPU - 57

VMPU - 60

VMPU - 60

VMPU - 60

VMPU - 61

VMPU - 61

VMPU - 62

VMPU - 62

VMPU - 62

VMPU - 62

VMPU - 63

VMPU - 65

VMPU - 66

VMPU - 66

VMPU - 66

VMPU - 68

VMPU - 69

TOSHIBA

APPENDIX C
INSTRUCTION FORMAT SUMMARY
C.I INSTRODUCTION

APPENDIX D
TMP68000 INSTRUCTION EXECUTION TIMES
D.I

D.2

D.3

D.4

D.5

D.6

D.7

D.S

INTRODUCTION

OPERAND EFFECTIVE ADDRESS CALCULATION TIMES

MOVE INSTRUCTION EXECUTION TIMES

STANDARD INSTRUCTION EXECUTION TIMES

IMMEDIATE INSTRUCTION EXECUTION TIMES

SINGLE OPERAND INSTRUCTION EXECUTION TIMES

SHIFTIROTATE INSTRUCTION EXECUTION TIMES

BIT MANIPULATION INSTRUCTION EXECUTION TIMES

D.9 CONDITIONAL INSTRUCTION EXECUTION TIMES

D.IO JMP, JSR, LEA, PEA, AND

MOVEM INSTRUCTION EXECUTIONTIMES

D.ll MULTI-PRECISION INSTRUCTION EXECUTION TIMES

D.12 MISCELLANEOUS INSTRUCTION EXECUTION TIMES

D.13 EXCEPTION PROCESSING EXECUTION TIMES

APPENDIX E
TMP68008 INSTRUCTION EXECUTION TIMES
E.I

E.2

E.3

E.4

E.5

E.6

E.7

E.S

INTRODUCTION

OPERAND EFFECTIVE ADDRESS CALCULATION TIMES

MOVE INSTRUCTION EXECUTION TIMES

STANDARD INSTRUCTION EXECUTION TIMES

IMMEDIATE INSTRUCTION EXECUTION TIMES

SINGLE OPERAND INSTRUCTION EXECUTION TIMES

SHIFTIROTATE INSTRUCTION EXECUTION TIMES

BIT MANIPULATION INSTRUCTION EXECUTION TIMES

E.9 CONDITIONAL INSTRUCTION EXECUTION TIMES

E.IO JMP, JSR, LEA, PEA, AND MOVEM INSTRUCTION

CONTENTS

VMPU -206

VMPU -206

VMPU -227

VMPU -227

VMPU -227

VMPU -228

VMPU -230

VMPU -231

VMPU -231

VMPU -232

VMPU -233

VMPU -233

VMPU -234

VMPU -234

VMPU -235

VMPU -236

VMPU -237

VMPU -237

VMPU -238

VMPU -239

VMPU -240

VMPU -242

VMPU -243

VMPU -244

VMPU -244

VMPU -245

EXECUTION TIMES .. VMPU -246

Ell MULTI-PRECISION INSTRUCTION EXECUTION TIMES

E.12 MISCELLANEOUS INSTRUCTION EXECUTION TIMES

iv

VMPU -247

VMPU -248

TOSHIBA

E.13 EXCEPTION PROCESSING EXECUTION TIMES

APPENDIX F
TMP68010 INSTRUCTION EXECUTION TIMES
F.l

F.2

F.3

FA

F.5

F.6

F.7

F.8

F.9

INTRODUCTION

OPERAND EFFECTIVE ADDRESS CALCULATION TIMES

MOVE INSTRUCTION EXECUTION TIMES

STANDARD INSTRUCTION EXECUTION TIMES

IMMEDIATE INSTRUCTION EXECUTION TIMES

SINGLE OPERAND INSTRUCTION EXECUTION TIMES

SHIFTIROTATE INSTRUCTION EXECUTION TIMES

BIT MANIPULATION INSTRUCTION EXECUTION TIMES

CONDITIONAL INSTRUCTION EXECUTION TIMES

F.ID JMP, JSR, LEA, PEA, AND MOVEMINSTRUCTION

CONTENTS

VMPU -249

VMPU -250

VMPU -250

VMPU -250

VMPU -251

VMPU -253

VMPU -254

VMPU -255

VMPU -257

VMPU -257

VMPU -258

EXECUTION TIMES VMPU -259

F.ll MULTI-PRECISION INSTRUCTION EXECUTION TIMES VMPU -259

F.12 MISCELLANEOUS INSTRUCTION EXECUTION TIMES VMPU -260

F.13 EXCEPTION PROCESSING EXECUTION TIMES VMPU -262

APPENDIX G
TMP68010 LOOP MODE OPERATION VMPU -263

v

TOSHIBA TLCS-68000

1. ARCHITECTURAL DESCRIPTION

1.1 INTRODUCTION

The TMP68000, with a 16-bit data bus and 24-bit address bus, was only the first in a

family of processors which implement a comprehensive, extensible computer
architecture. It was soon followed by the TMP68008, with an 8-bit data bus and 20-bit
address bus, by the TMP68010, which introduced the virtual machine aspects of the
TLCS-68000 architecture.

This manual is intended to serve as a programmer's reference for both systems and
applications programmers for four of the current implementations of the TLCS-68000 -
the TMP68000, the TMP68008, the TMP68010. The hardware system design aspects of
these processors, such as bus structure and control, are presented in the respective
advance information data sheets for each device.

The TMP68000 and the TMP68008 are identical from the view of the programmer,
with the exception that the TMP68000 can directly access 16 megabytes (24 bits of
address) and the TMP68008 can directly access 1 megabyte (20 bits of address). The
TMP68010 have much in common with the first two devices but also possess some
additional instructions and registers as well as full virtual machine/memory capability.
Since the processors are so similar to the programmer, only the differences are
highlighted. When the TLCS-68000 is referenced, the feature described is common to
all. If a particular feature is applicable only to one processor, the TMP part number will
be referenced.

1.2 PROGRAMMER'S MODEL

The TLCS-68000 executes instructions in one of two modes - user mode or supervisor
mode. The user mode is intended to provide the execution environment for the majority
of application programs. The supervisor mode allows some additional instructions and
privileges and is intended for use by the operating system and other system software.
See "4. EXCEPTION PROCESING" for further details.

To provide for the upward compatibility of code written for a specific implementation
of the TLCS-68000, the user programmer's model is common to all implementations.
The user programmer's model is shown in Figure 1.1.

VMPU-1

TOSHIBA TLCS-68000

As shown in the user programmer's model, the TLCS-68000 offers 16 32-bit general
purpose registers (DO-D7, AO-A 7), a 32-bit program counter, and an 8-bit condition

code register. The first eight registers (DO-D7) are used as data registers for byte (8-
bit), word (16-bit), and long word (32-bit) operations. The second set of seven registers

(AO-A6) and the stack pointer (USP) may be used as software stack pointers and base
address registers. In addition, the address registers may be used for word and long word
operations. All of the 16 registers may be used as index registers.

31 0

DO
D1
D2
D3 DATA REGISTERS
D4
DS
D6
D7

31 16 1S 0

- AO
A1 -
A2 -
A3 - ADDRESS REGISTERS
A4

- AS
- A6

A7
(USP) USER STACK POINTER

31 0

I PC PROGRAM COUNTER

7 0

I CCR CONDiTION CODE REGISTER

Figure 1.1 User Programmer's Model (TMP68000/TMP68008/TMP68010)

The supervisor programmer's model includes some supplementary registers in
addition to the above mentioned registers. The TMP68000 and the TMP68008 contain
identical supervisor mode register resources. These are shown in Figure 1.2 and include
the status register (high order byte) and the supervisor stack pointer (A 7').

31 16 1S 0

I I AT
(SSP) SUPERVISOR STACK POINTER

1S 87 0

I i CCR I SR STATUS REGISTER

Figure 1.2 Supervisor Programmer's Model Supplement (TMP68000/TMP68008)

The supervisor programming model supplement of the TMP68010 is shown in Figure
1.3. In addition to the supervisor stack pointer and status register, it includes the vector

base register and the alternate function code registers.

VMPU-2

TOSHIBA TLCS-68000

The vector base register is used to determine the location of the exception vector table

in memory to support multiple vector tables. The alternate function code registers allow

the supervisor to access user data space or emulate CPU space cycles.

31 16 15 Q AT I I (SSP) SUPERVISOR STACK POINTER

15 87 Q
I CCR I SR STATUS REGISTER

~1 Q
I I VBR VECTOR BASE REGISTER

E3 SFC ALTERNATE FU NCTION
DFC CODE REGISTERS

Figure 1.3 Supervisor Programmer's Model Supplement (TMP68010)

The status register, shown in Figure 1.4, contains the interrupt mask (eight levels

available) as well as the condition codes: overflow (V) , zero (Z), negative (N), carry(C),

and extend (X). Additional status bits indicate that the processor is in a trace (T)

mode and/or in a supervisor (S) state.

Five basic data types are supported. These data types are:

• Bits

• BCD Digits (4 Bits)

• Bytes (8 Bits)

• Words (16 Bits)

• Long Words (32 Bits)

In addition, operations on other data types such as memory addresses, status word

data, etc. are provided for in the instruction set.

TRACE MODE

SUPERVISOR STATE

INTERRUPT MASK -

CONDITION
CODES

{

EXT END

ATIVE

0

NEG

ZER

OV

CA

ERFLOW

RRY

I T I

SYSTEM BYTE

13 10

I S I I I, I I I I

I
I

I

Figure 1.4 Status Register

VMPU-3

14 USERBYTE

I I X I N I Z I V I C I
I

TOSHIBA TLCS-68000

The 14 flexibe addressing modes, shown in Table 1.1, include six basic types:

• Register Direct
• Register Indirect

• Absolute
• Immediate
• Program Counter Relative

• Implied

Included in the register indirect addressing modes is the capability to do
postincrementing, pre decrementing, offsetting, and indexing. Program counter relative
mode can also be modified via indexing and offsetting.

Table 1.1 Data Addressing Modes

Mode Generation

Register Direct Addressing
Data Reg ister Di rect EA = Dn
Address Register Direct EA = An

Absolute data Addressing
Absolute Short EA = (Next Word)
Absolute Long EA = (Next Two Words)

· Program Counter Relative Addressing
Relative with Offset EA = (PC) + d16

. Relative with Index and Offset EA = (PC) + (Xn) + d8

Register Indirect Addresssing
Register Indirect E.A = (An)
Postincrement Register Indirect EA = (An), Anof-An + N
Predecrement Register Indirect Anof-An· N, EA = (An)
Register Indirect with Offset EA = (An) + d 16
Indexed Register Indirect with Offset EA = (An) + (Xn) + d8

Immediate Data Addressing
Immediate DATA = Next Word(s)
Quick Immediate Inherent Data

Implied Addressing
Implied Register EA = SR, U5P, SSP, PC,

VBR, 5FC, DFC

Notes: EA = Effective Address SR = Status Register dS = 8-bit Offset (Displacement)

An = Address Register PC '" Program Counter dI6 = 16-bit Offset (Displacement)

Dn = Data Register) = Contents of N = I for byte, 2 for word, and 4 for long word.

Xn = Address or Data Register If An is the stack pointer and the operand

used as Index Register size is byte, N = 2 to keep the stack pointer on a

word boundary.

=, Replaces

VMPU-4

TOSHIBA TLCS-68000

The TLCS-68000 instruction set is shown in Table 1.2. Some additional instructions

are variations or subsets of these and they appear in Table 1.3. Special emphasis has
been given to the instruction set's support of structured high-level languages to
facilitate ease of programming. Each instruction, with a few exceptions, operates on
bytes, words, and long words and most instructions can use any of the 14 addressing

modes. Combining instruction types, data types, and addressing modes, over 1000
useful instructions are provided. These instructions include signed and unsigned
multiply and divide, "quick" arithmetic operations, BCD arithmetic, and expanded

operations (through traps). Additionally, its high-symmetric, proprietary microcoded
structure provides a sound, flexible base for the future.

1.3 SOFTWARE DEVELOPMENT

Many innovative features have been incorporated to make programming easier,
faster, and more reliable.

1.3.1 Consistent Structure

The highly regular structure of the TLCS-68000 greatly simplifies the effort required
to write programs in assembly language as well as high-level languages. Operations on
integer data in registers and mp.mory are independent of the data. Separate special
instructions that operate on byte (8 bit), word (16 bit), and long word (32 bit) integers are
not necessary. The programmer need only remember one mnemonic for each type of
operation and then specify data size, source addressing mode, and destination
addressing mode. This has helped keep the total number of instructions small.

The dual operand nature of many of the instructions significantly increases the
flexibility and power of the TLCS-68000. Consistency is again maintained since all data
registers and memory locations may be either a source or destination for most operations
on integer data.

The addressing modes have been kept simple without sacrificing efficiency. All

fourteen addressing modes operate consistently and are independent of the instruction
operation itself. Additionally, all address registers may be used for the direct, register

indirect, and indexed addressing modes (immediate, program counter relative, and
absolute addressing by definition do not use address registers). For increased flexibility,
any address or data register may be used as an index register. Address register
consistency is maintained for stacking operations since any of the eight address
registers may be utilized as user program stack pointers with the register indirect
postincrement/predecrement addressing modes. Address register A 7, however, is a

special register that, in addition to is normal addressing capability, functions as the

system stack pointer for stacking the program counter for subroutine calls as well as
stacking the program counter and status register for traps and interrupts (while in the

supervisor state).

VMPU-S

TOSHIBA TLCS-68000

Table 1.2 Instruction Set Summary (1 /2)

Mnemonic Description

ABCD· Add Decimal with Extned
ADD· Add
AND" Logical AND
ASL* Arithmetic Shift Left
ASR* Arithmetic Shift Right

Bee Branch Conditionally
BCHG Bit Test and Change
BCLR Bit Test and Clear
BKPT Breakpoint
BRA Branch Always
BSET B it Test and Set
BSR Branch to Subroutine
BTST Bit Test

CHK Check Register Against Bounds
CLR* Clear Operand
CMP" Compare

DBee Decrement and Branch Conditionally
DIVS Signed Divide
DIVU Unsigend Divide

EOR" Exclusive OR
EXG Exchange Registers
EXT Sign Extend

JMP Jump
JSR Jump to Subroutine

LEA Load Effective Add ress
LINK Link Stack
LSL* Logical Shift Left
LSR" Logical Shift Right

.. ' These instructions available in loop mode on TMP68010,
See "APPENDIX G TMP68010 LOOP MODE OPERATIONS",

VMPU-6

TOSHIBA TLCS-68000

Table 1.2 Instruction Set Summary (2 /2)

Mnemonic Description

MOVE* Move Source to Destination
MULS Signed Multiply
MULU Unsigned Multiply

NBCD* Negate Decimal with Extend
NEG* Negate
NOP No Operation
NOT* One's Complement

OR* logical OR

PEA Push Effective Address

RESET Reset External Devices
ROL* Rotate Left without Extend
ROR* Rotate Right without Extend
ROXL* Rotate Left with Extend
ROXR* Rotate Right with Extend
RTD Return and Deallocate
RTE Return from Exception
RTR Return and Restore
RTS Return from Subroutine

SBCO* Subtract Decimal with Extend
See Set Conditional
STOP Stop
SUB* Subtract
SWAP Swap Data Register Halves

TAS Test and Set Operand
TRAP Trap
TRAPV Trap on Overflow
TST* Test

UNLK Unlink

VMPU-7

TOSHIBA TLCS-68000

Table 1.3 Variations ofInstruction Types
Instruction Variation Descri ption Type

ADD ADD* Add
ADDA* Add Address
ADDQ Add Quick
ADDI Add Immediate
ADDX* Add with extend

AND AND* Logical AND
ANDI AND Immediate

ANDI to CCR AND Immediate to Condition Codes
ANDI to SR AND Immediate to Status Regitster

CMP CMP* Compare
CMPA* Compare Address
CMPM* Compare Memory
CMPI Compare Immediate

EOR EOR* Excl usive OR
EORI Exclusive OR Immediate

EORI to CCR Exclusive OR Immediate to Condition Codes
EORI to SR Exclusive OR Immediate to Status Register

MOVE MOVE* Move Source to Destination
MOVEA* Move Address
MOVEC Move Control Register
MOVEM Move Multiple Registers
MOVEP Move Peripheral Data
MOVEQ Move Quick
MOVES Move Alternate Address Space

MOVE from SR Move from Status Register
MOVE to SR Move to Status Register
MOVE from CCR Move from Condition Codes
MOVE to CCR Move to Condition Codes

MOVE USP Move User Stack Pointer

NEG NEG* Negate
NEGX* Negate with Extend

OR OR* Logical OR
ORI OR Immediate

ORI to CCR OR Immediate to Condition Codes
ORI to SR OR Immediate to Status Register

SUB SUB* Subtract
SUBA* Subtract Addres
SUBI Subtract Immediate
SUBQ Subtract Quick
SUBX* Su btract with Extend

* These instructions available in loop mode on TMP68010.
See "APPENDIX G TMP68010 LOOP MODE OPERATIONS".

VMPU-8

TOSHIBA TLCS-68000

1.3.2 Structured Modular Programming

The art of programming microprocessors has evolved rapidly in the past few years.

Numerous advanced techniques have been developed to allow easier, more consistent

and reliable generation of software. In general, these techniques require that the

programmer be more disciplined in observing a defined programming structure such as

modular programming. Modular programming allows a required function or process to

be broken down in short modules or subroutines that are concisely defined and easily

programmed and tested. Such a technique is greatly simplified by the availability of

advanced structured assemblers and block structured high-level languages such as

Pascal. Such concepts are virtually useless, however, unless parameters are easily

transferred between and within software modules that operate on a reentrant and

recursive basis. (To be reentrant a routine must be usable by interrupt and non

interrupt driven programs without the loss of data. A recursive routine is one that may

call or use itself.)· The TLCS-68000 provides the necessary architectural features to

allow efficient reentrant modular programming. The LINK and UNLK instructions

reduce subroutine call overhead in two· complementary instructions by allowing the

manipulation of linked lists of data areas on the stack. The MOVEM (Move Multiple

Register) instruction also reduces subroutine call programming overhead. This allows

moving, via an effective address, multiple registers that are specified by the

programmer. Sixteen software trap vector are provided with the TRAP instruction and

are useful in operating system call routines or user generated macro routines. Other

instructions that support modern structured programming techniques are PEA (Push

Effective Address), LEA (Load Effective Address), RTR (Return and Restore), RTE

(Return from Exception) as well as JSR (Jump to Subroutine), BSR (Branch to

Subroutine), and RTS (Return from Subroutine).

The powerful vectored priority interrupt structure of the microprocessor allows

straight-foward generation of reentrant modular input/output routines. Seven

maskable levels of priority with 192 vector locations and seven autovector locations

provide maximum flexibility for 110 control (a total of 255 vector locations are available

for interrupts, hardware traps, and software traps).

1.3.3 Improved Software Testability

The TLCS-68000 incorporates several features that reduce the chance for errors.

Some of these features, such as consistent architecture and the ·structured modular

programming capability, have already been discussed.

Of major importance to the system programmer are features that have been

incorporated specifically to detect the occurrence of programming errors or bugs.

Several hardware traps, provided to indicate abnormal internal conditions, detect the

following error conditions:

VMPU-9

TOSHIBA TLCS-68000

• Word Access with an Odd Address

• Illegal Instructions

• Unimplemented Instructions

• Illegal Memory Access (Bus Error)

• Divide by Zero

• Overflow Condition Code (Separate Instruction TRAPV)

• Register Out of Bounds (CHK Instruction)

• Spurious Interrupt

Addi tionally, the sixteen software TRAP instructions may utilized by the

programmer to provide applications-oriented error detection or correction routines.

An additional error detection tool is the CHK (Check Register Against Bounds)

instruction used for array bound checking by verifying that a data register contains a

valid subscript. A trap occurs if the register contents are negative or greater than a

limit.

Finally, the TLCS-68000 includes a facility that allows instruction-by-instruction

tracing of a program being debugged. This trace mode results in a trap being made to a

tracing routine after each instruction executed. The trace mode is available to the
programmer when the microprocessor is in the supervisor state as well as the user state

but may only be entered while in the supervisor state. The supervisor/user states

provide an additional degree of error protection for the microprocessor by allowing

memory protection of selected areas of memory when an external memory management

device is used.

1.4 VIRTUAL MEMORY/MACHINE CONCEPTS

The TMP68010 introduced the virtual memory/machine concept of the TLCS-

68000 architecture.

In most systems using the TMP68010 as the central processor, only a franction of

the 16 megabyte address space will actually contain physical memory. However, by

using virtual memory techniques the system can be made to appear to the user to

have 16 megabytes of physical memory available. These techniqes have been used

for several years in large mainframe computers and more recently in minicomputers

and now, with the TMP68010, can be fully supported in microprocessor-based

systems.

VMPU-10

TOSHIBA TLCS-68000

In a virtual memory system, a user program can be written as though it has a

large amount of memory available to it when only a small amount of memory is
physically present in the system. In a similar fashion, a system can be designed in

such a manner as to allow user programs to access other types of devices that are not
physically present in the system such as type drives, disk drives, printers, or CRTs.
With proper software emulation, a physical system can be made to appear to a user

program as any other computer system and the program may be given full access to
all of the resources of that emulated system. Such an emulated system is called a
virtual machine.

1.4.1 Virtual Memory

The basic mechanism for supporting virtual memory in computers is to provide
only a limited amount of high-speed physical memory that can be accessed directly
by the processor while maintaining an image of a much larger "virtual" memory on
secondary storage devices such as large capacity disk drives. When the processor
attempts to access a location in the virtual memory map that is not currently
residing in physical memory (referred to as a page fault), the access to that location
is temporarily suspended while the necessary data is fetched from the secondary
storage and placed in physical memory; the suspended access is then completed. The
TMP68010 provides hardware support for virtual memory with the capability of
suspending an instruction's execution when a bus error is signaled and then
completing the instruction after the physical memory has been updated as
necessary.

The TMP68010 uses instruction continuation rather than instruction restart to
support virtual memory. With instruction restart, the processor must remember the
exact state of the system before each instruction is started in order to restore that
state if a page fault occurs during its execution. Then, after the page fault has been
repaired, the entire instruction that cauesd the fault is reexecuted. With instruction

continuation, when a page fault occurs the processor stores its internal state and
then after the page fault is repaired, restores that internal state and continues

execution of the instruction. In order for the TMP68010 to utilize instruction
continuation, it stores its internal state on the supervisor stack when a bus cycle is

terminated with a bus error signal. It then loads the program counter from vector
table entry number two (offset $008) and resumes program execution at that new
address. When the bus error exception handler routine has completed execution, an

RTE instruction is executed which reloads the TMP68010 with the internal state
stored on the stack, re-runs the faulted bus cycle, and continues the suspended
instruction. Instruction continuation has the additional advantage of allowing
hardware support for virtual I/O devices. Since virtual registers may be simulated

in the memory map, an access to such a register will cause a fault and the function of
the register can be emulated by software.

VMPU-11

TOSHIBA TLCS-68000

1.4.2 Virtual Machine

One typical use for a virtual machine system is in the development of software
such as an operating system for another machine with hardware also under

development and not available for programming use. In such a system, the

governing operating system emulates the hardware of the new system and allows

the operating system to be executed and debugged as though it were running on the

new hardw-are. Since the new operating system is controlled by the governing
operating system, the new one must execute at a lower privilege level than the

governing operating system, so that any attempts by the new operating system to

use virtual resources that are not physically present, and should be emulated, will

be trapped by the governing operating system and handled in software. In the
TMP68010, a virtual machine may be fully supported by running the new operating

system in the user mode and the governing operating system in the supervisor mode
so that any attempts to access supervisor resources or execute privileged

instructions by the new operating system will cause a trap to the governing
operating system.

In order to fully support a virtual machine, the TMP68010 must protect the

supervisor resources from access by user programs. The one supervisor resource

that is not fully protected in the TMP68000 is the system byte of the status register.

In the TMP68000 and TMP68008, the MOVE from SR instruction allows user
programs to test the S bit (in addition to the T bit and interrupt mask) and thus

determine that they are running in the user mode. For full virtual machine support,
a new operating system must not be aware of the fact that it is running in the user

mode and thus should not be allowed to access the S bit. For this reason, the MOVE

from SR instruction has been added to allow user program unhindered access to the
condition codes. By making the MOVE from SR instruction privileged, when the

new operating system attempts to access the S bit, a trap to the governing operating

system will occur, and the SR image passed to the new operating system by the
governing operating system will have the S bit set.

VMPU-12

TOSHIBA TLCS-68000

2. DATA ORGANIZATION AND ADDRESSING CAPABILITIES

2.1 INTRODUCTION

This section describes the data organization and addressing capabilities of the TLCS-

68000 architecture.

2.2 OPERAND SIZE

Operand sizes are defined as follows: a byte equals 8 bits, a word equals 16 bits, and a
long word equals 32 bits. The operand size for each instruction is either explicitly
encoded in the instruction or implicitly defined by the instruction operation. All explicit
instructions support byte, word, or long word operands. Implicit instructions support
some subset of all three sizes.

2.3 DATA ORGANIZATION IN REGISTERS

The eight data registers support data operands of 1, 8, 16, or 32 bits. The seven
address registers together with the active stack pointer support address operands of 32
bits.

2.3.1 Data Registers

Each data register is 32 bits wide. Byte operands occupy the low order 8 bits, word
operands the low order 16 bits, and long word operands the entire 32 bits. The least
significant bit is addressed as bit zero; the most significant bit is addressed as bit 31.

When a data register is used as either a source or destination operand, only the
appropriate low order portion is changed; the remaining high-order portion is neither
used nor changed.

2.3.2 Address Registers

Each address register and the stack pointer is 32-bits wide and holds a full 32 bit
address. Address registers do not support byte sized operands. Therefore, when an

address register is used as a source operand, either the low order word or the entire long
word operand is used depending upon the operation size. When an address register is
used as the destination operand, the entire register is affected regardless of the
operation size. If the operation size is word, any other operands are sign extended to 32
bits before the operation is performed.

VMPU·13

TOSHIBA TLCS-68000

2.4 DATA ORGANIZATION IN MEMORY

Bytes are individually addressable with the high order byte having an even address

the same as the word as shown in Figure 2.1. The low order byte has an odd address that
is one count higher than the word address. Instructions and multibyte data are accessed
only on word (even byte) boundaries. If a long word datum is located at address n(n
even), then the second word of that datum is located at address n + 2.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

BYTE ooOOOOWORD 100000 BYTE 000001

WORD 000002
BYTE 000002 I BYTE 000003

WORD FFFFFE
BYTE FFFFFE I BYTE FFFFFF

Figure 2.1 Word Organization in Memory

The data types supported by the TLCS-68000 are: bit data, integer data of 8, 16, and
32-bit addresses, and binary coded decimal data. Each of these data types is put in
memory as shown in Figure 2.2. The numbers indicate the order in which the data
would be accessed from the processor. For convenience, the organization of data in
memory for the TMP68008 is shown in Figure 2-3. The appearance to the programmer,
however, is identical to the TMP68000, and TMP68010.

VMPU·14

TOSHIBA TLCS-68000

BIT DATA
1 BYTE = 8 BITS

7 6 5 4 3 2 o

INTEGER DATA
1 BYTE = 8 BITS

15 14 13 12 11 10 9 8 7 6 543 2 o
\MSB

BYTE 0
LSB \

BYTE 2

BYTE 1

BYTE 3

1 WORD = 16 BITS
15 14 13 12 11 10 9 8 7 6 543 2 o

IMSB
WORDO

WORD1

WORD2

LSB I

EVEN BYTES ODD BYTES
7 6 5 4 3 2 1 0 I 7 6 5 4 3 2 0

1 LONG WORD = 32 BITS
15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

MSB HIGH ORDER
------- LONG WORD 0

LOWORDER

------- LONG WORD 1

------- LONG WORD 2

ADDRESSES
1 ADDRESS = 32 BITS

15 14 13 12 11 10 9 8 7 6 5

MSB HIGH ORDER
ADDRESS 0

ADDRESS 1

ADDRESS 2

MSB = MOST SIGNIFICANT BIT
LSB = LEAST SIGNIFICANT BIT

LOWORDER

DECIMAL DATA

4 3

2 BINARY CODED DECIMAL DIGITS = 1 BYTE
15 14 13 12 11

MSD BCDO

BCD4

MSD = MOST SIGNIFICANT DIGIT
LSD = LEAST SIGNIFICANT DIGIT

10 9 8 7 6 5 4 3

BCD1 LSD BCD2

BCD5 BCD6

Figure 2.2 Data Organization In Memory

VMPU-1S

LSB

2 o

LSB

2 o
BCD3

BCD7

TOSHIBA TLCS-68000

BIT DATA 1 BYTE = 8 BITS

7 6 5 432 o

INTEGER DATA 1 BYTE = 8 BITS

7 6 543 2 o
BYTE 0 LOWER ADDRESSES

BYTE 1

BYTE 2

BYTE 3 HIGHER ADDRESSES

1 WORD = 2 BYTES =16 BITS

BYTE 0 (MS BYTE) LOWER ADDRESSES

BYTE 1 (LS BYTE)
WORDO -

BYTE 2 (MS BYTE)

HIGHER ADDRESSES BYTE 3 (LS BYTE)
WORD 1 -

1 LONG WORD = 2 WORDS = 4 BYTES = 32 BITS

BYTE 0 HIGH ORDER LOWER ADDRESSES

BYTE 1 WORD

BYTE 2
LONG WORD 0

LOWORDER

BYTE 3 WORD

BYTE 0 HIGH ORDER

BYTE 1 WORD

BYTE 2
LONG WORD 1

LOW ORDER

BYTE 3 WORD HIGHER ADDRESSES

Figure 2.3 Memory Data Organization of the TMP68008

VMPU-16

TOSHIBA TLCS-68000

2.5 ADDRESSING

Instructions for the TLCS-68000 contain two kinds of information: the type of
function to be performed and the location of the operand(s) on which to perform that
function. The methods used to locate (address) the operand(s) are explained in the
following paragraphs.

•

•

Instructions specify an operand location in one of three ways:

Register Specification

Effecti ve Address

Implicit Reference

the number ofthe register is given in the register field
of the instruction.

use of the different effective address modes.

the definition of certain instructions implies the use of
specific registers.

2.6 INSTRUCTION FORMAT

Instruction are from one to five words in length as shown in Figure 2.4. The length of
the instruction and the operation to be performed is specified by the first word of the
instruction which is called the operation word. The remaining words further specify the
operands. These words are either immediate operands or extensions to the effective
addres mode specified in the operation word.

EVEN BYTES (AO = 0) ODD BYTES (AO = 1)

7 6 5 4 3 2 o 7 6 5 4 3 2 o

15 14 13 12 11 10 9 8 7 6 5 4 3 2 o
OPERATION WORD

(FIRST WORD SPECIFIES OPERATION AND MODES)

IMMEDIATE OPERAND (IF ANY, ONE OR TWO WORDS)

SOURCE EFFECTIVE ADDRESS EXTENSION (IF ANY, ONE OR TWO WORDS)

DESTINAATION EFFECTIVE ADDRESS EXTENSION

IF ANY, ONE OR TWO WORDS)

Figure 2.4 Instruction Format

2.7 PROGRAMIDATA REFERENCES

The TLCS-68000 separates memory references into two classes: program references
and data references. Program references, as the name implies, are references to that
section of memory that contains the program being executed. Data references refer to
that section of memory that contains data. Generally, operand reads are from the data
space. All operand writes are to the data space.

VMPU-17

TOSHIBA TlCS-68000

2.8 REGISTER NOTATION

Appendix B contains a description of each instruction operation and identifies the
registers using the following mnemonics:

An Address Register (n specifies the register number)
Dn Data Register (n specifies the register number)
Xn Any Register, Address or Data (n specifies the register number)
PC Program Counter
SR Status Register
CCR Condition Code Half of the Status Register
SP The Active Stack Pointer (either user or supervisor)
USP User Stack Pointer
SSP Supervisor Stack Pointer
d8 8-bit Displacement Value
d16 16-bit Displacement Value
disp Displacement Value (d8 or d16)
N Operand Size in Bytes (1, 2, 4)
SFC, DFC - SourcelDestination Function Code Register
VBR - Vector Base Register

2.9 ADDRESS REGISTER INDIRECT NOTATION

When an address register is used to point to a memory location, the addressing mode
is called address register indirect. The term indirect is used because the operation of the
instruction is not directed to the address itself, but to the memory location pointed to by
the address register. The descriptive symbol for the indirect mode is an address register
designation in parenthesis, i. e., (An).

2.10 REGISTER SPECIFICATION

The register field within an instruction specifies the register to be used. Other fields
within the instruction specify whether the register selected is an address or data register
and how the register is to be used.

2.11 EFFECTIVE ADDRESS

Most instructions specify the location of an operand by using the effective address
field in the operation word. For example, Figure 2.5 shows the general format of the
single effective address instruction operation word. The effective address is composed of

two 3-bit fields: the mode field and the register field. The value in the mode field selects
the different address modes. The register field contains the number of a register.

VMPU-18

TOSHIBA TLCS-68000

The effective address field may require additional information to fully specify the

operand. This additional information, called the effective address extension, is

contained in a following word or words and is considered part of the instruction as shown

in Figure 2.4. The effective address modes are grouped into three categories: register

direct, memory addressing, and special.

EVEN BYTE

7 6 5 4 3 2 7

ODD BYTE

654
6 .5 4

MODE

3
3

2 o

Figure 2.5 Single-Effective-Address-Instruction Operation - General Format

2.11.1 Register Direct Modes

These effective addressing modes specify that the operand is in one of the 16
multifunction registers.

2.11.1.1 Data Register Direct

The operand is in the data register specified by the effective address register field.

GENERATION:

ASSEMBLER SYNTAX:

MODE:

REGISTER:

2.11.1.2 Address Register Direct

EA=Dn

Dn

000

n
31 0

DATA REGISTER Dn I OPERAND I

The operand is in the address register specified by the effective address register field.

GENERATION:

ASSEMBLER SYNTAX:

MODE:

REGISTER:

2.11.2 Memory Address Modes

EA=An

An

001

n
31 0

ADDRESS REGISTER An I OPERAND I

These effective addressing modes specify that the operand is in memory and provide

the sepcific address of the operand.

VMPU-19

TOSHIBA TLCS-68000

2.11.2.1 Address Register Indirect

The address of the operand is in the address register specified by the register field.
The reference is classified as a data reference with the exception of the jump and jump to

subroutine instructions.

GENERATION:

ASSEMBLER SYNTAX:

MODE:

REGISTER:

EA = (An)

(An)

010

n
ADDRESS REGISTER An

MEMORY ADDRESS

2.11.2.2 Address Register Indirect with Postincrement

OPERAND

The address of the operand is in the address register specified by the register field.
After the operand address is used, it is incremented by one, two, or four depending upon
whether the size of the operand is byte, word, or long word. If the address register is the
stack pointer and the operand size is byte, the address is incremented by two rather than
one to keep the stack pointer on a word boundary. The reference is classified as a data
reference.

GENERATION:

ASSEMBLER SYNTAX:

MODE:

REGISTER:

EA = (An)

An =An +N

(An) +

011

n ADDRESS REGISTER An

OPERAND LENGTH
(1,2, or 4)

MEMORY ADDRESS

2.11.2.3 Address Register Indirect with Predecrement

31

The address of the operand is in the address register specified by the register field.
Before the operand address is used, it is decremented by one, two, or four depending
upon whether the operand size is byte, word, or long word. If the address register is the

stack pointer and the operand size is byte, the address is decremented by two rather than
one to keep the stack pointer on a word boundary. The reference is classified as a data
reference.

VMPU·20

TOSHIBA TLCS-68000

GENERATION:

ASSEMBLER SYNTAX:

MODE:

REGISTER:

AA=An -N

EA = (An)

-(An)

100

n

31 o
ADDRESS REGISTER An MEMORY ADDRESS

OPERAND LENGTH

(1,2, or 4)

MEMORY ADDRESS I 'lAN~ I

2.11.2.4 Address Register Indirect with Displacement

This address mode requires one word of extension. The address of the operand is the
sum of the address in the address register and the sign-extended 16-bit displacement
integer in the extension word. The reference is classified as a data reference with the
exception of the jump and jump to subroutine instructions.

GENERATION:

ASSEMBLER SYNTAX:

MODE:

REGISTER:

En=(An)+d16

d16 (An)

101

n

ADDRESS REGISER An

15

DISPLACEMENT

31 o

I SIGN EXTENDED INTEGER f--r
M EMORY ADDRESS r-I --O-'-P-ER-A-N-D---'

2.11.2.5 Address Register Inderect with Index

This address mode requires one word of extension formatted as shown below.

7
15

I D/A I

EVEN BYTE

6 5 4 3 2
14 13 12 11 10

1

9
o
8

7
7

ODD BYTE

6 5 4
6 5 4

3
3

2
2

REGISTER I W/L I 0 o o DISPLACEMENT INTEGER

Bit 15 -
o -
1 -

Bit 14-12
Bit 11

o -
1 -

Index register indicator
Data register
Address register
- Index register number
Index size
Sign-extended, low order integer in index register
Long value in index register

VMPU·21

o
o

TOSHIBA TLCS-68000

The address of the operand is the sum of the address in the address register, the sign

extended displacement integer in the low order eight bits of the extension word, and the

contents of the index register. The reference is classified as a data reference with the
exception of the jump and jump to subroutine instructions. The size of the index register

does not affect the execution time of the instructions.

GENERATION:

ASSEMBLER SYNTAX:

MODE:

REGISTER:

2.11.3 Special Address Modes

En = (An) + (Xn) + d8

d8 (An, Xn.w)

d8 (An, Xn.L)

110

n

ADDRESS REGISTER An

DISPLACEMENT

INDEX REGISTER

MEMORY ADDRESS

31
MEMORY ADDRESS

7 0
I SIGN EXTi:.NDED INTEGER I---:p- +
31/15

I SIGN EXTENDED INTEGER

31

I OPERAND

o

o

The special address modes use the effective address register field to specify the special
addressing mode instead of a register number.

2.11.3.1 Absolute Short Address

This address mode requIres one word of extension. The address of the operand is in
the extension word. The 16-bit address is sign extended before it is used. The reference
is classified as a reference with the exception of the jump and jump to subroutine
instructions.

GENERATION:

ASSEMBLER SYNTAX:

MODE:

REGISTER:

EA GIVEN

Abs.W

111

000

15 o
EXTENSION . SIGN-EXTENDED MEMORY ADDRESS
WORD

MEMORY ADDRESS OPERAND

VMPU-22

TOSHIBA TLCS-68000

2.11.3.2 Absolute Long Address

The address mode requires two words of extension. The address of the operand is

developed by the concatenation of the extension words. The high-order part of the

address is the first extension word; the low order part of the address is the second

extension word. The reference is classified as a data reference with the exception of the

jump and jump to subroutine instructions.

GENERATION:

ASSEMBLER SYNTAX:

MODE:

REGISTER:

EA GIVEN

Abs.L

111

001

15 a
FIRST EXTENSION WORD ADDRESS HIGH

SECOND EXTENSION
WORD

MEMORY ADDRESS

2.11.3.3 Program Counter with Displacement

31

CONCATENATION

r
OPERAND

a

This address mode requires one word of extension. The address of the operand is the

sum of the address in the program counter and the sign-extended 16-bit displacement
integer in the extension word. The value in the program counter is the address of the

extension word. The reference is classified as a program reference.

GENERATION:

ASSEMBLER SYNTAX:

EA = (PC) + d 16

d16 (PC)

MODE:

REGISTER:

111

010

PROGRAM COUNTER

EXTENSION
WORD

MEMORY ADDRESS

VMPU-23

31

15 a
I SIGN EXTENDED INTEGER I

OPERAND

TOSHIBA TLCS-68000

2.11.3.4 Program Counter with Index

This address mode requires one word of extension formatted as shown below.

7
15

1 DIA 1

EVEN BYTE

6 5 4 3 2
14 13 12 11 10

1

9
o
8

7
7

ODD BYTE

654

654
3
3

2
2

REGISTER o o DISPLACEMENT INTEGER

Bit 15 - Index register indicator
o - Data reg ister
1 - Add ress reg ister

Bit 14through 12 - Index register number
Bit 11 Index size

o - Sign-extended, low order integer in index register
1 - Long value in index register

o
o

The address is the sum of the address in the program counter, the sign-extended

displacement integer in the lower eight bits of the extension word, and the contents of
the index register. The value in the program counter is the address of the extension

word. This reference is classified as a program reference. The size of the index register

does not affect the execution time of the instruction.

GENERATION:

ASSEMBLER SYNTAX:

MODE:

REGISTER:

2.11.3.5 Immediate Data

En = (PC) + (Xn) + d8

dB (PC, Xn.w)

d8 (PC, Xn.L)

111

011

PROGRAM COUNTER

EXTENSION WORD

INDEX REGISTER

MEMORY ADDRESS

31 o
l MEMORY ADDRESS

,-7 ____ ---,0 ~
1 SIGN EXTENDED INTEGER 01--$
31/15 t
'I -SI-GN-E-X-TE-N-DE-D-IN-TE-G-ER--'I-- $
31 t o

OPERAND

This address mode requires either one or two words of extension depending on the size
of the operation.

Byte Operation - operand is low order byte of extension word

Word Operation - operand is extension word

Long Word Operation - operand is in the two extension words, high order 16-bits are

in the first extension word, low order 16 bits are in the

second extension word.

VMPU-24

TOSHIBA

GENERATION:

ASSEMBLER SYNTAX:

MODE:

REGISTER:

OPERAND GIVEN

#<data>

111

100

The extension word formats are shown below:

EVEN BYTE ODD BYTE

7 6 5 4 3 2 1 0 7 6 5
15 14 13 12 11 10 9 8 7 6 5

0 0 0 0 0 0 0 0

OR

WORD

OR

TLCS-68000

4 3 2 0
4 3 2 0

BYTE

LONG WORD ----------------------C6~-~;~~;----------------------- ----------]

2.11.4 Effective Address Encoding Summary

Table 2.1 is a summary of the effective addressing modes discussed in the previous

paragraphs.

Table 2.1 Effective Address Encoding Summary

Addressing Mode Mode Register

Data Regiser Direct 000 Register Number

Address Register Direct 001 Register Number

Address Register Indirect 010 Register Number

Address Register Indirect with Postincrement 011 Register Number

Address Register Indirect with Predecrement 100 Register Number

Address Register Indirect with Displacement 101 Register Number

Address Register Indirect with Index 110 Register Number

Absolute Short 111 000

Absolute Long 111 001

Program Counter with Displacement 111 010

Program Counter wiht Index 111 011

Immediate 111 100

VMPU-25

TOSHIBA TlCS-68000

2.12 IMPLICIT REFERENCE

Some instructions make implicit reference to the program counter (PC), the system
stack pointer (SP), the supervisor stack pointer (SSP), the user stack pointer (USP), or
the status register (SR). Table 2.2 provides a list of these instructions and the registers

implied.

Table 2.2 Implicit Instruction Reference Summary

Instruction Implied Register(s)

Branch Conditional (Bee), Branch Always (BRA) PC

Branch to Subroutine (BSR) PC, SP

Check Register Against Bounds (CHK) SSP, SR

Test Condition, Decrement and Branch (DBcc) PC

Signed Divide (DIVS) SSP, SR

Unsigned Divide (DIVU) SSP, SR

Jump (JMP) PC

Jump to Subroutine (JSR) PC, SP

Link and Allocate (LINK) PC, SP

Move Condition Codes (MOVE CCR) SR

Move Control Register (MOVEC) VBR, SFC, DFC

Move Alternate Address Space (MOVES) SFC, DFC

Move Status Register (MOVE SR) SR

Move User Stack Pointer (MOVE USP) USP

Push Effective Address (PEA) SP

Return and Deallocate (RTD) PC, SP

Return from Exception (RTE) PC, SP, SR

Return and Restore Condition Codes (RTR) PC, SP, SR

Return from Subroutine (RTS) PC, SP

Trap (TRAP) SSP, SR

Trap on Overflow (TRAPV) SSP, SR

Unlink (UNLK) SP

Logical Immediate to CCR SP

Logical Immediate to SR SP

VMPU-26

TOSHIBA TLCS-68000

2.13 STACK AND QUEUES

In addition to supporting the array data structure with the index addressing mode,

the TLCS-68000 also supports stack and queue data structures with the address register

indirect postincrement and pre decrement addressing modes. A stack is a last-in-first

out (LIFO) list, a queue is a first-in-first-out (FIFO) list. When data is added to a stack
or queue, it is "pushed" onto the structure; when it is removed, it is "pulled" from the

structure.

The system stack is used implicitly by many instructions; user stacks and queues may

be created and maintained through the addressing modes.

2.13.1 System Stack

Address register seven (A 7) is the system stack pointer (SP). The system stack

pointer is either the supervisor stack pointer (SSP) or the user stack pointer (USP),

depending on the state of the S bit in the status register. If the S bit indicates supervisor
state, the SSP is the active system stack pointer and the USP cannot be referenced as an
address register. If the S bit indicates user state, the USP is the active system stack

pointer and the SSP cannot be referenced. Each system stack fills from high memory to

low memory. The address mode -(SP) creates a new item on the active system stack

and the address mode (SP) + deletes an item from the active system stack.

The program counter is saved on the active system stack on subroutine calls and

restored from the active system stack on returns. On the other hand, both the program

counter and the status register are saved on the supervisor stack during the processing

of traps and interrupts. Thus, the correct execution of the supervisor state code is not
dependent on the behavior of user code and user programs may use the user stack

pointer arbitrarily.

In order to keep data on the system stack aligned properly, data entry on the stack is

restricted so that data is always put in the stack on a word boundary. Thus, byte data is
pushed on or pulled from the system stack in the high half of the word; the lower half is

unchanged.

2.13.2 User Stacks

User stacks can be implemented and manipulated by employing the address register

indirect with postincrement and predecrement addressing modes. Using an address
register (one ofAO-A6), the user may implement stacks which are filled either from

high memory to low memory, or vice versa. The important things to remember are:

VMPU-27

TOSHIBA TLCS-68000

• using pre decrement, the register is decremented before its contents are used as the
pointer into the stack;

• using postincrement, the register is incremented after its contents are used as the
pointer into the stack;

• byte data must be put on the stack in pairs when mixed with word or long data so that
the stack will not misaligned when the data is retrieved. Word and long accesses
must be on word boundary (even) addresses.

Stack growth from high to low memory is implemented with
-(An) to push data on the stack,

(An) + to pull data from the stack.

After either a push or a pull operation, register An points to the last (top) item on the
stack. This is illustrated as:

LOW MEMORY

(FREE)

An - TOP OF STACK

BODOM OF STACK

HIGH MEMORY

Stack growth from low to high memory is implemented with
(An) + to push data on the stack,
- (An) to pull data from the stack.

After either a push or a pull operation, register An points to the next available space
on the stack. This is illustrated as:

LOWMEMEORY

BODOM OF STACK

-l.--
-~ -r--

TOP OF STACK
An _ (FREE)

HIGH MEMORY

VMPU-28

TOSHIBA TLCS-68000

2.13.3 Queues

User queues can be implemented and mainpulated with the address register indirect
with postincrement or predecrement addressing modes. Using a pair of address
registers (two of AO-A6), the user may implement queues which are filled either from

high memory to low memory, or vice versa. Because queues are pushed from one end
and pulled from the other, two registers are used: the put and get pointers.

Queue growth from low to high memory is implemented with
(An) + to put data into the queue,
(Am) + to get data from the queue

After a put operation, the put address register points to the next available space in
the queue and the unchanged get address register points to the next item to remove from

the queue. After a get operation, the get address register points to the next item to
remove from the queue and the unchanged put address register points to the next
available space in the queue. This is illustrated as:

LOW MEMORY

LAST GET (FREE)

GET (Am) + -- NEXT GET

~L.- -L.-

-r- -r-

LAST PUT

PUT (An) + -- (FREE)

HIGH MEMORY

If the queue is to be implemented as a circular buffer, the address register should be
checked and, if necessary, adjusted before the put or get operation is performed. The
address register is adjusted by subtracting the buffer length (in bytes).

Queue growth from high to low memory is implemented with
- (An) : to put data into the queue,
- (Am) : to get data from the queue

After a put operation, the put address register points to the last item put in the queue

and the unchanged get address register points to the last item removed from the queue.
After a get operation, the get address register points to the last item removed from the
queue and the unchanged put address register points to the last item put in the queue.
This is illustrated as:

VMPU-29

TOSHIBA TLCS-68000

LOW MEMORY

(FREE)

PUT - (An) -- LAST PUT

-- -'--- -r--

NEXT GET

GET - (Am) LAST GET (FR E E)

HIGH MEMORY

If the queue is to be implemented as a circular buffer, the get or put operation should

be performed first, and then the address register should be checked and, if necessary,
adjusted. The address register is adjusted by adding the buffer length (in bytes).

VMPU-30

TOSHIBA TLCS-68000

3. INSTRUCTION SET SUMMARY

3.1 INTRODUCTION

This section contains an overview of the TLCS-68000 architecture instruction set.

The instructions from a set of tools to perform the following operations:

Data Movement
Integer Arithmetic
Logical
Shift and Rotate
Bit Manipulation

Bit Field Manipulation

Binary Coded Decimal Arithmetic
Program Control
System Control
Multiprocessor Communications

The complete range of instruction capabilities combined with the flexible addressing
modes described previously provide a very flexible base for program development.
Detailed information about each instruction is given in Appendix B.

Instructions available only on the TMP68010 or which behave differently on the
TMP68010 are highlighted.

The following notations will be used throughout this section.

An = any address register, AO-A 7
Dn = any data register, DO-D7
Xn = any address or data register

CCR = condition code register (lower byte of status register)
cc = condition codes from CCR

SP = active stack pointer

USP = user stack pointer
SSP = supervisor stack pointer

DFC = destination function code register
SFC = source function code register

Rc = control register (VBR, SFC, DFC)
d8 = 8-bit displacement

d16 = 16-bit displacement
disp = d8 or d16

< ea > = effective address
list = list of registers, e.g., DO-D3

<data> = immediate data; a literal integer
label = assemby program label

[7] = bit 7 of respective operand

[31:24] = bits 31- 24 of operand; i.e., high order byte of a register
X = extend (X) bit in CCR

N = negative (N) bit in CCR
Z' = zero (Z) bit in CCR

VMPU-31

TOSHIBA

= invert; operand is logically complemented

A = logical AND
V = logical OR
EB = logical exclusive OR

3.2 DATA MOVEMENT OPERATIONS

TLCS-68000

The basic means of address and data manipulation (transfer and storage) is
accomplished by the move (MOVE) instruction and its associated effective addressing
modes. Data movement instructions allow byte, word, and long word operands to be
transferred from memory to memory, memory to register, register to memory, and
register to register. Address movement instructions (MOVE or MOVEA) allow word

and long word operand transfers to ensure that only legal address manipulations are
executed. In addition to the general MOVE instruction there are several data
movement instructions: move multiple registers (MOVEM), move peripheral data
(MOVEP), move quick (MOVEQ), exchange registers (EXG), load effective address
(LEA), push effective address (PEA), link stack (LINK), unlink stack(UNLK). Table 3.1
is a summary of the data movement operations.

VMPU-32

TOSHIBA TLCS-68000

Table 3.1 Data Movement Operations

Instruction Operand Size Operation

EXG 32 Xn Xn

LEA 32 <ea>~An

An~ -(SP)

LINK - SP~An

SP +d16~SP

MOVE 8, 16, 32 «ea»~<ea>

MOVEA 16, 32 «ea»~An

MOVEC 32 Xn~Rc

Rc~Xn

MOVEM 16, 32 «ea»~An, Dn

An, Dn~<ea>

MOVES 8, 16, 32 «ea»~Xn

Xn~<ea>

MOVEP 16, 32 «ea»~Dn

Dn~<ea>

MOVEQ 8 #<data>~Dn

PEA 32 <ea>~ -(SP)

SWAP 32 Dn[31 :16j Dn[15:0j

UNLK - An~SP

(SP) +~An

3.3 INTEGER ARITHMETIC OPERATIONS

The arithmetic operations include the four basic operations of add (ADD), subtract
(SUB), multiply (MUL), and divide (DIV) as well as arithmetic compare (CMP, CMPM),

clear (CLR), and negate (NEG). The ADD, CMP, and SUB instructions are available for
both address and data operations, with data operations accepting all operand sizes.
Address operations are limited to legal address size operands (16 or 32 bits). The clear
and negate instructions may be used on all sizes of data operands.

The MUL and DIV operations are available for signed and unsigned operands using
word multiply to produce a long word product, and a long word dividend with word
divisor to produce a word quotient with a word remainder.

Multiprecision and mixed size arithmetic can be accomplished using a set of extended

instructions. These instructions are: add extended (ADDX), subtract extended (SUBX),
sign extend (EXT), and negate binary with extend (NEG X).

VMPU-33

TOSHIBA TLCS-68000

Refer to Table 3.2 for a summary of the integer arithmetic operations.

Table 3.2 Integer Arithmetic Operations

Instruction Operand Size Operation

ADD 8, 12, 32 Dn +«ea»~Dn

«ea» +Dn~<ea>

«ea» + #<data >~<ea>

ADDA 16, 32 An+«ea»~An

ADDX 8, 16, 32 Dx + Dy +X~Dx

16, 32 - (An) + - (An) + X~(An)

CLR 8, 16, 32 O~<ea>

CMP 8, 16, 32 Dn-«ea»

(EA)-#<data>

(Ax) + - (Ay) +

CMPA 16, 32 An - «ea»

DIVS 32.;. 16 Dn.;. «ea»~Dn

DIVU 32.;. 16 Dn.;. «ea»~Dn

EXT 8~16 (Dn)8~Dn16

16~32 (Dn)16~Dn32

MULS 16x 16~32 Dn x«ea »~Dn

MULU 16x 16~32 Dn x«ea»~Dn

NEG 8, 16, 32 0- «ea »~Dn

NEGX 8, 16, 32 O-«ea»-X~<ea>

SUB 8, 16, 32 Dn -«ea»~Dn

«ea»-Dn~<ea>

«ea » - #<data >~<ea >

SUBA 16, 32 An -«ea»~An

SUBX 8, 16, 32 Dx-Dy -X~Dx

- (Ax) - - (Ay) - X~(Ax)

TAS 8 «ea»-O, 1~EA[7J

TST 8, 16, 32 «ea »-0

VMPU-34

TOSHIBA TlCS-68000

3.4 LOGICAL OPERATIONS

Logical operation instructions AND, OR, EOR, and NOT are available for all sizes of
integer data operands. A similar set of immediate instructions (ANDI, ORI, EOR, and
EORI) provide these logical operations with all sizes of immediate data. TST is an

arithmetic comparison of the operand with zero which is then reflected in the condition
codes. Table 3.3 is a summary of the logical operations.

Table 3.3 Logical Operations

Instruction Operand Operation
Size

DnA «ea » ~ Dn
AND 8, 16, 32 «ea» ADn ~ <ea>

«ea» A#<data > ~ <ea>

Dnv«ea» ~ Dn
OR 8, 16, 32 «ea»vDn ~ <ea>

«ea» v#<data> ~ <ea>

EOR 8, 16, 32 «ea» EBDn ~ <ea>
«ea» EB#<data> ~ <ea>

NOT 8, 16, 32 - «ea» ~ <ea>

3.5 SHIFT AND ROTATE OPERATIONS

Shift operations in both directions are provided by the arithmetic shift instructions
ASR and ASL, and logical shift instruction LSR and LSL. The rotate instructions (with
and without extend) available are ROR, ROL, ROXR, and ROXL.

All shift and rotate operations can be performed on either registers or memory.
Register shifts and rotates support all operand sizes and allow a shift count (from one

to eight) to be specified in the instruction operation word or a shift count (modulo 64) to
be specified in a register.

Memory shifts and rotates are for word operands only and allow only single-bit shifts
or rotates. The SWAP instruction exchanges the 16-bi thaI ves of a register.
Performance of shift/rotate instructions is enhanced so that use of the ROR or ROL
instructions with a shift count of eight allows fast byte swapping.

VMPU-35

TOSHIBA TLCS-68000

Table 3.4 Shift and Rotate Operations

Instruction Operand Size Operation

ASL 8, 16, 32 ~~. 1--0

ASR 8, 16, 32 d • f--~

LSL 8, 16, 32 ~~ • 1--0

LSR 8, 16, 32 0 -I) HE£]

ROL 8, 16, 32 0.J1 ' P
ROR 8, 16, 32 CI '~0
ROXL 8, 16, 32 0.J1 , ~~

ROXR 8, 16, 32 C0-1 ' fL0
SWAP 32 Dn I MSr I L+ I

3.6 BIT MANIPULATION OPERATIONS

Bit manipulation operations are accomplished using the following instructions: bit
test (BTST), bit test and set (BSET), bit test and clear (BCLR), and bit test and change
(BCRG). All bit manipulation operations can be performed on either registers or
memory, with the bit number specified as immediate data or by the contents of a data
register. Register operands are always 32-bits, while memory operands are always 8
bits. Table 3.5 is a summary of the bit manipulation operations. (Z is bit 2, the "zero"
bit, ofthe status register.)

Table 3.5 Bit Manipulation Operations

Instruction Operand Syntax Operation

BTST 8, 32 - « Bit Number>of Destination)~Z

BSET 8, 32 - « Bit Number>of Destination)
~Z; 1 ~Bit of Destination

BCLR 8, 32 - « Bit Number >of Destination)
~Z;O~Bit of Destination

BCHG 8, 32 - « Bit Number >of Destination)
~Z~Bit of Destination

VMPU-36

TOSHIBA TLCS-68000

3.7 BINARY CODED DECIMAL OPERATIONS

Multiprecision arithmetic operations on binary coded decimal numbers are
accomplished using the following instructions: add decimal with extend (ABCD),
subtract decimal with extend (SBCD), and negate decimal with extend (NBCD). Table

3.6 is a summary of the binary coded decimal operations.

Table 3.6 Binary Coded Decimal Operations

Instruction Operand Size Operation

ABCD 8
DXlO+ DylO+ X~Dx
-(Ax)lO + -(Ay)lO + X~(Ax)

SBCD 8 DXlO - DylO - X~Dx
- (Ax)lO - - (Ay)lO - X ~ (Ax)

NBCD 8 0- «ea»l0 - X~ <ea>

3.8 PROGRAM CONTROL OPERTIONS

Program control operations are accomplished using a set of conditional and
unconditional branch instructions and return instructions. These instructions are
summarized in Table 3.7.

VMPU-37

TOSHIBA TLCS-68000

Table 3.7 Prpogram Control Operations

Instruction Operation

Conditional
Bee If Condition True, Then PC + disp--)PC

DBcc If Condition False, Then Dn -1--)Dn
If Dn * -1, Then PC + d 16--)PC

Sec If Condition True, Then 1's--)Destination;
Else Q's--)Destination

Unconditional
BRA PC + d i sp--)PC
BSR SP - 4--)SP; PC--)(SP); PC + disp--)PC
JMP Desti n ati on--)PC
JSR SP - 4--)SP; PC--)(SP); Destinaiton--)PC
NOP PC + 2--)PC

Returns
RTD (SP)--)PC; SP + 4 + d 16--)SP
RTR (SP)--)CCR; SP + 2--)SP; (SP)--)PC; SP + 4--)SP
RTS (SP)--)PC; PC + 4--)SP

The conditional instructions provide testing and branching for the following
conditions:

*

CC - carry clear
CS - carry set
EQ - equal
F - never true*
GE - greater or equal
GT - greater than
HI - high
LE - less or equal

LS - low or same
L T - less than
MI - minus

NE - not equal
PL - plus
T - always true*
VC - overflow clear
VS - overflow set

Not available for the Bcc instructions; use BRA for T and NOP for F.

3.9 SYSTEM CONTROL OPERATIONS

System control oprations are accomplished by using privileged instructions, trap
generating instructions, and instructions that use or modify the condition code register.

These instructions are summarized in Table 3.S. In the TMP6S010, the MOVE from SR
instruction has been made privileged and the MOVE from CCR has been added. For
more detail see "1.4 VIRTUAL MEMORYIMACHINE CONCEPTS".

VMPU·38

TOSHIBA TLCS-68000

Table 3.8 System Control Operations

Instruction Operation

Privilleged
ANDI to SR Immediate Data A SR ... SR
EORI to SR Immediate Data$ SR ... SR

ORI to SR Immediate Data V SR ... SR
MOVE EA to SR Source ... SR
MOVE SR to EA SR ... Destination
MOVE USP USp ... An

An ... USP
MOVEC Rc ... Xn
MOVES Xn ... Rc

Xn ... Destination Using DFC
Source Using SFC ... Xn

RESET Assert RESET line
RTE (SP) ... SR; SP+2 ... SP; (SP) ... PC; SP+4 ... SP;

Restore Stack According to Format
STOP Immediate Data ... SR; STOP

Trap Generating
TRAP SSP - 2 ... SSP; Format and Vector OFfset ... (SSP); ...

SSP - 4 ... SSP; PC ... (SSP);SSP - 2 ... SSP;
SR ... (SSP); Vector Address ... PC

TRAPV If V Then Take Overflow TRAP EXception
CHK If Dn <0 or Dn >(eal. Then CHK Exception
BKPT Execute Breakpoint Acknowiedge Bus Cycle; ...

Trap as illegallnstsruction
ILLEGAL SSP - 2 ... SSP; Vector Offset ... (SSP); ...

SSP - 4 ... SSP; PC ... (SSP);
SSP - 2 ... SSP; 5R ... (55P);
Illegal Instruction Vector Address ... PC

Condition Code
Register

ANDI to CCR Immediata Data A CCR ... CCR
EORI to CCR Immediate Data$ CCR ... CCR
ORI to CCR Immediate Data V SR ... SR
MOVE EA to CCR Source ... CCR
MOVE CCR to EA CCR ... Destination

VMPU·39

TOSHIBA TLCS-68000

3.10 MULTIPROCESSOR OPERATIONS

Communication between the TLCS-68000 Family of microprocessors is supported by
the TAS instruction which executes indivisible read-modify-write bus cycles. See Table
3.9.

Table 3.9 Multiprocessor Operations

Instruction
Operand

Operation
Size

TAS 8 Destination - 0; Set Condition Codes; 1 Destination (7)

VMPU-40

TOSHIBA TLCS-68000

4. EXCEPTION PROCESSING

4.1 INTRODUCTION

This section describes the actions of the TLCS-68000 which are outside the

normal processing associated with the execution of instructions. The functions of

the bits in the supervisor portion of the status register are covered: the

supervisor/user bit, the trace enable bit, and the processor priority mask. Finally,

the sequence of memory references and actions taken by the processor on exception

conditions is detailed.

The processor is always in one of three processing states: normal, exception, or

halted. The normal processing state is that associated with instruction execution;

the memory references are to fetch instructions and operands, and to store results. A

special case of the normal state is the stopped state which the processor enters when

a STOP instruction is executed. In this state, no further memory references are

made.

An additional special case of the normal state exists in the TMP68010, the loop

mode, which may be entered when a DBcc instruction is executed. In loop mode,

only operand fetches occur. See "APPENDIX G TMP68010 LOOP MODE

OPERATION".

The exception processing state is associated with interrupts, trap instructions,
tracing, and other exceptional conditions. The exception may be internally

generated by an instruction or by an unusual condition arising during the execution

of an instruction. Externally, exception processing can be forced by an interrupt, by

a bus error, or by a reset. Exception processing is designed to provide an efficient

context switch so that the processor may handle unusual conditions.

The halted processing state is an indication of catastrophic hardware failure. For

example, if during the exception processing of a bus error another bus error occurs,

the processor assumes that the system is unusable and halts. Only an external reset

can restart a halted processor. Note that a processor in the stopped state is not in the

halted state, nor vice versa.

4.2 PRIVILEGE STATES

The processor operates in one of two states of privilege: the user state or the

supervisor state. The privilege state determines which operations are legal, is used

by the external memory management device to control and translate accesses, and is

used to choose between the supervisor stack pointer and the user stack pointer in

instruction references.

The privilege state is a mechanism for providing security in a computer system.

Programs should access only their own code and data areas and ought to be

restricted from accessing information which they do not need and must not modify.

VMPU-41

TOSHIBA TLCS-68000

The privilege mechanism provides security by allowing most programs to execute

in user state. In this state, the accesses are controlled and the effects on other parts
of the system are limited. The operating system executes in the supervisor state, has
access to all resources, and performs the overhead tasks for the user state programs.

4.2.1 Supervisor State

The supervisor state is the higher state of privilege. For instruction execution,
the supervisor state is determined by the S bit of the status register; if the S bit is
asserted (high), the processor is in the supervisor state. All instructions can be
executed in the supervisor state. The bus cycles generated by instructions executed
in the supervisor state are classified as supervisor references. While the processor is
in the supervisor privilege state, those instructions which use either the system
stack pointer implicitly or address register seven explicitly access the supervisor

stack pointer.
All exception processing is done in the supervisor state, regardless of the state of

the S bit when the exception occurs. The bus cycles generated during exception
processing are classified as supervisor references. All stacking operations during
exception processing use the supervisor stack pointer.

4.2.2 User State

The user state is the lower state of privilege. For instruction execution, the user
state is determined by the S bit of the status register; if the S bit is negated (low), the

processor is executing instructions in the user state.
Most instructions execute identically in user state and in the supervisor state.

However, some instructions which have important system effects are mode
privilege. User programs are not permitted to execute the STOP instruction or the
RESET instruction. To ensure that a user program cannot enter the supervisor state

. except in a controlled manner, the instructions which modify the whole status
register are privileged. To aid in debugging programs which are to be used as
operating systems, the move to user stack pointer (MOVE to USP) and move from
user stack pointer (MOVE from USP) instructions are also privileged.

To implement virtual machine concepts in the TMP68010, the move from status
register (MOVE from SR), move to/from control register (MOVE C), and move

alternate address space (MOVES) instructions are also privileged.
The bus cycles generated by an instruction executed in user state are classified as

user state references. This allows an external memory management device to
translate the address and the control access to protected portions of the address
space. While the processor is in the user privilege state, those instructions which
use either the system stack pointer implicitly or address register seven explicitly
access the user stack pointer.

VMPU-42

TOSHIBA TLCS-68000

4.2.3 Privilege State Changes

Once the processor is in the user state and executing instructions, only exception
processing can change the privilege state. During exception processing, the current
state of the S bit of the status register is saved and the S bit is asserted, putting the
processor in the supervisor state. Therefore, when instruction execution resumes at the
address specified to process the exception, the processor is in the supervisor privilege
state.

The transition from supervisor to user state can be accomplished by any of four
instructions: return from exception (RTE), move to status register (MOVE word to SR),

AND immediate to status register (ANDI to SR), and exclusive OR immediate to status
register (EORI to SR). The RTE instruction fetches the new status register and program
counter from the supervisor stack, loads each into its respective register, and then
begins the instruction fetch at the new program counter address in the privilege state
determined by the S bit of the new contents of the status register. The MOVE, ANDI,
and EORI to status register instructions each fetch all operands in the supervisor state,
perform the appropriate update to the status register, and then fetch the next
instruction at the next sequential program counter address in the privilege state
determined by the new S bit.

4.2.4 Reference Classification

When the processor makes a reference, it classifies the kind of reference being made,
using the encoding of the three function code output lines. This allows external
translation of addresses, control of access, and differentiation of special processor states,
such as interrupt acknowledge. Table 4.1 lists the classification of references.

Table 4.1 Reference Classification

Function Code Output

FC2 FC1 FCD
Add ress Space

Low Low Low (Undefined, Reserved)
Low Low High User Data
Low High Low User Program
Low High High (Undefined, Reserved)
High Low Low (Undefined, Reserved)
High Low High Supervisor Data
High High Low Supervisor Program
High High High Interrupt Acknowledge

VMPU-43

TOSHIBA TLCS-68000

4.3 EXCEPTION PROCESSING

Before discussing the details of interrupts, traps, and tracing, a general
description of exception processing is in order. The processing of an exception occurs

in four steps, with variations for different exception causes. During the first step, a
temporary copy of the status register is made and the status register is set exception
processing. In'the second step the exception vector is determined and the third step
is the saving of the current processor context. In the fourth step a new context is
obtained and the processor switches to instruction processing.

4.3.1 Exception Vectors

Exception vectors are memory locations from which the processor fetches the
address of a routine which will handle that exception. All exception vectors are two
words in length (Figure 4.1) except for the reset vector, which is four words. All
exception vectors lie in the supervisor data space except for the reset vector which is
in the supervisor program space. A vector number is an 8-bit number which, when
multiplied by four, gives the offset of an exception vector. Vector numbers are
generated internally or externally, depending on the cause of the exception. In the
case of interrupts, during the interrupt acknowledge bus cycle, a peripheral provides
an 8-bit vector number (Figure 4.2) to the processor on data bus lines DO-D7.

The processor forms the vector offset by left-shifting the vector number two bit
positions and zero-filling the upper order bits to obtain a 32-bit long word vector
offset. In the case of the TMP68000 and TMP68008, this offset is used as the
absolute address to obtain the exception vector itself. This is shown in Figure 4.3.

In the case of the TMP68010/TMP68012, the vector offset is added to the 32-bit
vector base register (VBR) to obtain the 32-bit absolute address of the exception
vector. This is shown in Figure 4.4. Since the VBR is set to zero upon reset, the
TMP68010, will function identically to the TMP68000 and TMP68008 until the VBR
is changed via the MOVEC instruction.

WORD 0

WORD

EVEN BYTES (AO = 0) ODD BYTES (AO = 1)

NEW PROGRAM COUNTER (HIGH) A 1 = 0
r-----------------------~--~------~

NEW PROGRAM COUNTER (LOW) A 1 = 1 L-______________________ ~ __ ~ ______ ~

Figure 4,1 Exception Vector Format

VMPU-44

TOSHIBA

A31

D1S DB D7 DO

I IGNORED

where:
V7 is the MSB ofthe vector number
VO is the LSB ofthe vector number

Figure 4.2 Peripheral Vector Number Format

Al0 A9 AB A7 A6 AS A4 A3 A2 A1 DO

ALL ZEROES I V71 V61 Vsl V41 V31 V21 Vl I va I 0 I a I

TLCS-68000

Figure 4.3 Address Translated from 8-Bit Vector Number (TMP68000/TMP68008)

31

CONTENETS OF VECTOR BASE REGISTER

31

I ALL ZEROES

o

EXCEPTION VECTOR

ADDRESS

Figure 4.4 Exception Vector Address Calculation (TMP68010)

The actual address output on the address bus is truncated to the number of address
bits available on the bus of the particular implementation of the TLCS-68000
architecture. In the case of the TMP68000 and the TMP68010, this is 24 bits. In the
case of the TMP68008, the address is 20 bits in length.

The memory map for exception vectors is given in Table 4.2.

VMPU-4S

TOSHIBA TlCS-68000

Table 4.2 Exception Vector Assignment

Vector Address

Number(s) Oec Hex
Space6 Assignment

0 0 000 SP Reset: Initial SSP2

1 4 004 SP Reset: Initial PO

2 8 008 SO Bus Error

3 12 OOC SO Address Error

4 16 010 SO Illegal Instruction

5 20 014 SO Zero Oivide

6 24 018 SO CHK Instruciton

7 28 01C SO TRAPV Instruction

8 32 020 SO Privilege Violation

9 36 024 SO Trace

10 40 028 SO Line 1010 Emulator

11 44 02C SO Line 1111 Emulator

121 48 030 SO (Unassigned, Reserved)

13 1 52 034 SO (Unassigned, Reserved)

14 56 038 SO Foramt ErrorS

15 60 03C SO Uninitialized Interrupt Vector

64 040 SO (Unassigned, Reserved)
16-231

92 05C -

24 96 060 SO Spurious Interrupt3

25 100 064 SD Levell interrupt Autovector

26 104 068 SO Level 2 Interrupt Autovector

27 108 06C SO Level 3 Interrupt Autovector

28 112 070 SO Level 4 Interrupt Autovector

29 116 074 SO Level 5 Interrupt Autovector

30 120 078 SO Level 6 Interrupt Autovector

31 124 07C SO Level 7 Interrupt Autovector

128 080 SO TRAP Instruction Vectors4
32-47

188 OBC -

192 OCO SO (Unassigned, Reserved)
48-63 1

252 OFC -

256 100
64-255

SO User Interrupt Vectors

1020 3FC -

Notes:

1. Vector numbers 12, 13, 16-23, and 48-63 are reserved for future enhancements. No user
peri pheral devices should be assigned these numbers.

VMPU-46

TOSHIBA TLCS-68000

2. Reset vector (0) requires four words, unlike the other vectors which only require two words, and
is located in the supervisor program space.

3. The spurious interrupt vector is taken when there is a bus error indication during interrupt
processing. Refer to Paragraph "4.4.4 Spurious Interrupt".

4. TRAP #n uses vector number 32 + n.

5. TMP68010 only. See Return from Exception Section.
This vector is unassigned, reserved on the TMP68000 and TMP68008.

6. SP denotes supervisor program space, and SD denotes supervisor data space.

As shown in Table 4.2, the memory layout is 512 words long (1024 bytes). It starts at

address 0 (decimal) and proceeds through address 1023 (decimal). This provides 255

unique vectors; some of these are reserved for TRAPS and other system functions. Of

the 255, there are 192 reserved for user interrupt vectors. However, there is no

protection on the first 64 entries, so user interrupt vectors may overlap at the discretion

of the systems designer.

4.3.2 Kinds of Exceptions

Exceptions can be generated by either internal or external causes. The externally

generated exceptions are the interrupts, the bus error, and reset requests. The

interrupts are requests from peripheral devices for processor action while the bus error

and reset inputs are used for access control and processor restart. The internally

generated exceptions come from instructions, or from address errors, or tracing. The

trap (TRAP), trap on overflow (TRAPV), check register against bounds (CHK), and

divide (DIV) instructions all can generate exceptions as part of their instruction

execution. In addition, illegal instructions, word fetches from odd addresses, and

privilege violations cause exceptions. Tracing behaves like a very high priority,

internally generated interrupt after each instruction execution.

4.3.3 Multiple Exceptions

These paragraphs describe the processing which occurs when multiple exceptions
arise simultaneously. Exceptions can be grouped accrding to their occurrence and

priority. The group 0 exceptions are reset, bus error, and address error. These

exceptions cause the instruction currently being executed to be aborted and the

exception processing to commence within two clock cycles. The group 1 exceptions are

trace and interrupt, as well as the privilege violations and illegal instructions. These

exceptions allow the current instruction to execute to completion, but preempt the

execution of the next instruction by forcing exception processing to occur (privilege

violations and illegal instructions are detected when they are the next instruction to be

executed). The group 2 exceptions occur as part of the normal processing of instructions.

The TRAP, TRAPV, CHK, and zero divide exceptions are in this group. For these

exceptions, the normal execution of an instruction may lead to exception processing.

VMPU-47

TOSHIBA TLCS-68000

Group 0 exceptions have highest priority, while group 2 exceptions have lowest

priority. Within group 0, reset has highest priority, followed by address error and then
bus error. Within group 1, trace has priority over external interrupts, which in turn
takes priority over illegal instruction and privilege violation. Since only one instruction
can be executed at a time, there is no priority relation within group 2.

The priority relation between two exceptions determines which is taken, or taken
first, if the conditions for both arise simultaneously. Therefore, if a bus error occurs
during a TRAP instruction, the bus error takes precedence, and the TRAP instriuction
processing is aborted. In another example, if an interrupt request occurs during the
execution of an instruction while the T bit is asserted, the trace exception has priority,
and is processed first. Before instruction execution resumes, however, the interrupt
exception is also processed and instruction processing commences finally in the
interrupt handler routine. A summary of exception grouping and priority is given in

Table 4.3.

Table 4.3 Exception Grouping and Priority

Group Exception Processing

Reset Exception Processing
0 Address Error Begins Within Two

Bus Error Clock Cycles

Trace Exception Processing
Interrupt Begins Before The

1 Illegal Next Instruction
Privilege

TRAP, TRAPV, Exception Processing Is
2 CHK Started By Normal

Zero Divide Instruction Execution

4.3.4 Exception Stack Frames

Exception processing saves the most volatile portion of the current processor context
on the top of the supervisor stack. This context is organized in a format called the

exception stack frame. Although this information varies with the particular processor
and type of exception, it always includes the status register and program counter of the
processor when the exception occurred.

The amount and type of information saved on the stack is determined by the processor

type and type of execution. Exceptions are grouped by type according to priority of the
exception. The group 0 exceptions include address error, bus error, and reset. The group
1 and 2 exceptions include interrupts, traps, illegal instructions, and trace.

The TMP68000 and TMP68008 group 1 and 2 exception stack frame is shown in
Figure 4.5. Only the program counter and status register are saved. The program

counter points to the next instruction to be executed after exceptions processing.

VMPU-48

TOSHIBA TLCS-68000

The TMP68010 exception stack frame is shown in Figure 4.6. The number of

words actually stacked depends on the exception type. Group 0 exceptions (except
reset) stack 29 words and group 1 and 2 exceptions stack four words. In order to

support generic exception handlers, the processor also places the vector offset in the
exception stack frame. The format code field allows the RTE (return from exception)

instruction to identify what information is on the stack so that it may be properly
restored. Table 4.4 lists the TMP68010 stack format codes. Although some formats
are peculiar to a particular TLCS-68000 Family processor, the format 0000 is always
legal and indicates that just the first four words of the frame are present.

SSP -
EVEN BYTE

7
15

STATUS REGISTER

PROGRAM COUNTER HIGH

PROGRAM COUNTER LOW

ODD BYTE

a
a

HIGHER
ADDRESS

j
Figure 4.5 TMP68000/TMP68008 Group 1 and 2 Exception Stack Frame

15 a
SP --+ STATUS REGISTER

PROGRAM COUNTER HIGH

PROGRAM COUNTER LOW

FORMAT I VECTOR OFFSET

- -
OTHER INFORMATION

- DEPENDING ON EXCEPTION -

Figure 4.6 TMP68010 Stack Frame

Table 4.4 TMP68010 Format Codes

Format Code Stacked Insformation

0000 Short Format (4 Words)

1000 Long Format (29 Words)

All Others Unassigned, Reserved

VMPU-49

HIGHER

ADDRESS

TOSHIBA TLCS-68000

4.3.5 Exception Processing Sequence

Exception processing occurs in four identifiable steps. In the first step, an
internal copy is made of the status register. After the copy is made, the S bit is
asserted, putting the processor into the supervisor privilege state. Also, the T bit is
negated, which will allow the exception handler to execute unhindered by tracing.
For the reset and interrupt exceptions, the interrupt priority mask is also updated.

In the second step, the vector number of the exception is determined. For
interrupts, the vector number is obtained by a processor fetch and classified as an

interrupt acknowledge. For all other exceptions, internal logic provides the vector
number. This vector number is then used to generate the address of the exception
vector. Group 1 and 2 exceptions use a short format exception stack frame (format =
0000 on the TMP68010). Additional information defining the current context is
stacked for the bus error and address error exceptions.

The third step is to save the current processor status, except for the reset
exception. The current program counter value and the saved copy of the status
register are stacked using the supervisor stack pointer. The program counter value
stacked usually points to the next unexecuted instruction, however for bus error and
address error, the value stacked for the program counter is unpredictable and may
be incremented from the address of the instruction which caused the error.
Additional information defining the current context is stacked for the bus error and
address error exceptions.

The last step is the same for all exceptions. The new program counter value is
fetched from the exception vector. The processor then resumes instruction
execution. The instruction at the address given in the exception vector is fetched
and normal instruction decoding and execution is started.

4.4 EXCEPTION PROCESSING DETAILED DISCUSSION

Exceptions have a number of sources and each exception has processing which is
peculiar to it. The following paragraphs detail the source of exceptions, how each
arises, and how each is processed.

VMPU·50

TOSHIBA TLCS-68000

4.4.1 Reset

The reset input provides the highest exception level. The processing of the reset
signal is designed for system initiation and recovery from catastrophic failure. Any

processing in progress at the time of the reset is aborted and cannot be recovered.

The processor is forced into the supervisor state and the trace state is forced off. The

processor interrupt priority mask is set at level seven. In the TMP6801, the vector

base register (VBR) is forced to zero. The vector number is internally generated to
reference the reset exception vector at location 0 in the supervisor program space.

Because no assumptions can be made about the validity of register contents, in

particular the supervisor stack pointer, neither the program counter nor the status

register is saved. The address contained in the first two words of the reset exception
vector is fetched as the initial supervisor stack pointer and the address in the last

two words of the reset exception vector is fetched as the initial program counter.

Finally, instruction execution is started at the address in the program counter. The

power-up/restart code should be pointed to by the initial program counter.
The RESET instruction does not cause loading of the reset vector, but does assert

the reset line to rest external devices. This allows the software to reset the system to

a known state and then continue processing with the next instruction.

4.4.2 Interrupts

Seven levels of interrupt priorities are provided. In the TMP68000, and

TMP68010 all seven levels are available. The TMP68008 supports three interrupt

levels: two, five, and seven, level seven being the highest priority. Devices may be

chained externally within interrupt priority levels, allowing an unlimited number of
peripheral devices to interrupt the processor. Interrupt priority levels are numbered

from one to seven, level seven being the highest priority. The status register

contains a three-bit mask which indicates the current processor priority and

interrupts are inhibited for all priority levels less than or equal to the current

processor priority.
An interrupt request is made to the processor by encoding the interrupt request

level on the interrupt request lines; a zero indicates no interrupt request. Interrupt

requests arriving at the processor do not force immediate exception processing, but

are made pending. Pending interrupts are detected between instruction executions.
If the priority of the pending interrupt is lower than or equal to the current processor

priority, execution continues with the next instruction and the interrupt exception

processing is postponed.

VMPU·51

TOSHiBA TLCS-68000

If the priority of the pending interrupt is greater than the current processor

priority, the exception processing sequence is started. A copy of the status register is

saved, the privilege state is set to supervisor state, tracing is suppressed, and the

processor priority level is set to the level of the interrupt being acknowledged. The

processor fetches the vector number from the interrupting device, classifying the

reference as an interrupt acknowledge and displaying the level number of the

interrupt being acknowledged on the address bus. If external logic requests

automatic vectoring, the processor internally generates a vector number which is

determined by the interrupt level number. If external logic indicates a bus error, the

interrupt is taken to be spurious, and the generated vector number references the

spurious interrupt vector. The processor then proceeds with the usual exception

processing, saving the format/offset word (TMP68010 only), program counter, and

status register on the supervisor stack. The offset value in the format/offset word on

the TMP68010 is the externally supplied or internally generated vector number

multiplied by four. The format will be all zeroes. The saved value of the program

counter is the address of the instruction which would have been executed had the

interrupt not been present. The content of the interrupt vector whose vector number

was previously obtained is fetched and loaded into the program counter, and normal

instruction execution commences in the interrupt handling routine.

Priority level seven is a special case. Level seven interrupts cannot be inhibited
by the interrupt priority mask, thus providing a "non-maskable interrupt"

capability. An interrupt is generated each time the interrupt request level changes

from some lower level to level seven. Note that a level seven interrupt may still be

caused by the level comparison if the request level is a seven and the processor

priority is set to a lower level by an instruction.

4.4.3 Uninitialized Interrupt

An interrupting device asserts VPA, BERR, or provides

and TLCS-68000 interrupt vector number and asserts ""D'"T"AC-;C""K" during

an interrupt acknowledge cycle by the TLCS-68000. If the vector register has not

been initialized, the responding TLCS-68000 Family peripheral will provide vector

number 15, the uninitialized interrupt vector. This provides a uniform way to

recover from a programming error.

4.4.4 Spurious Interrupt

If during the interrupt acknowledge cycle no device responds by asserting

DTACK or VP A, BERR should be asserted to

terminate the vector acquisition. The processor separates the processing of this

error from bus error by forming a short format exception stack and fetching the

spurious interrupt vector instead of the bus error vector. The processor then

proceeds with the usual exception processing.

VMPU·52

TOSHIBA TLCS-68000

4.4.5 Instruction Traps

Traps are exceptions caused by instructions. They arise either from processor

recognition of abnormal conditions during instruction, execution, or from use of

instructions whose normal behavior is trapping.

Exception processing for traps is straightforword. The status register is copied,

the supervisor state is entered, and the trace state is turned off. The vector number

is internally generated; for the TRAP instruction, part of the vector number comes

from the instruction itself. The program counter and the copy of the status register

are saved on the supervisor stack. The saved value of the program counter is the

address of the instruction after the instruction which generated the trap. Finally,

instruction execution commences at the address contained in the exception vector.

Some instructions are used specifically to generate traps. The TRAP instruction

always forces an exception and is useful for implementing system calls for user

programs. The TRAPV and CHK instructions force an exception if the user program

detects a runtime error, which may be an arithmetic overflow or a subscript out of

bounds.
The signed divide (DIVS) and unsigned divide (DIVU) instructions will force an

exception if a division operation is attempted with a divisor of zero.

4.4.6 Illegal and Unimplemented Instructions

Illegal instruction is the term used to refer to any of the word bit patterns which

are not the bit patterns of the first word of a legal TLCS-68000 instruction. During

instruction execution, if such an instruction is fetched, an illegal instruction

exception occurs. Three bit patterns will always force an illegal instruction trap on

all TLCS-68000 Family compatible microprocessors. They are: $4AFA, $4AFB, and

$4AFC. Two of the patterns, $4AFA and $4AFB, are reserved for the system

products. The third pattern, $4AFC, is reserved for customer use.

In addition to the previously defined illegal instruction opcodes, the TMP68010

defines eight breakpoint illegal instructions with the bit patterns $4848-$484F.

These instructions cause the processor to enter illegal instruction exception

processing as usual, but a breakpoint bus cycle is executed before the stacking

operations are performed in which the function code lines (FCO-FC2)are high and

address lines are all low. The processor does not accept or send any data during this

cycle. Whether the breakpoint cycle is terminated with a DTACK,

BERR, or VPA signal, the processor will continue with the

illegal instruction processing. The purpose of this cycle is to provide a software

breakpoint that will signal external hardware when it is executed. See TMP68010

Advanced Information data sheet.

VMPU·53

TOSHIBA TLCS-68000

Word patterns with bits 15-12 equaling 1010 or 1111 are distinguished as

unimplemented instructions and separate exception vectors are given to these
patterns to permit efficient emulation. This facility allows the operating system to
detect program errors or to emulate unimplemented instructions in software.

Exception processing for illegal instructions is similar to that for traps. After the
instruction is fetched and decoding is attempted, the processor determines that
execution of an illegal instruction is being attempted and starts exception
processing. The exception stack frame for group 2 is then pushed on the supervisor
stack and the illegal instruction vector is fetched.

4.4.7 Privilege Violations

In order to provide system security, various instructions are privileged. An
attempt to execute one of the privileged instructions while in the user state will
cause an exception. The privileged instructions are:

AND Immediate to SR

EOR Immediate to SR
MOVE to SR
MOVE from SR*
MOVEC*
MOVES*

*: TMP68010

MOVEUSP
OR Immediate to SR
RESET
RTE
STOP

Exception processing for privilege violations is nearly identical to that for illegal
instructions. After the instruction is fetched and decoded, and the processor
determines that a privilege violation is being attempted, the processor starts
exception processing. The status register is copied, the supervisor state is entered,
and the trace state is turned off. The vector number is generated to reference the
privilege violation vector, and the current program counter and the copy of the
status register are saved on the supervisor stack and, if the processor is an
TMP68010, the format/offset word, is also saved. The saved value of the program
counter is the address of the first word of the instruction which caused the privilege
violation. Finally, instruction execution commences at the address contained in the
privilege violation exception vector.

4.4.8 Tracing

To aid in program development, the TLCS-68000 includes a facility to allow
instruction by instruction tracing. In the trace state, after each instruction is
executed, an exception is forced, allowing a debugging program to monitor the
execution of the program under test.

VMPU-S4

TOSHIBA TLCS-68000

The trace facility uses the T bit in the supervisor portion of the status register. If

the T bit is negated (off), tracing is disable and instruction execution proceeds from

instruction to instruction as normal. If the T bit is asserted (on) at the beginning of

the execution of an instruction, a trace exception will be generated after the

execution of that instruction is completed. If the instruction is not executed, either

because an interrupt is taken or the instruction is illegal or privileged, the trace

exception does not occur. The trace exception also does not occur if the instruction is

aborted by a reset, bus error, or address error exception. If the instruction is indeed

executed and an interrupt is pending on completion, the trace exception is processed

before the interrupt exception, if, during the execution of the instruction, an

exception is forced by that instruction, the forced exception is processed before the

trace exception. As an extreme illustration of the above rules, consider the arrival of

an interrupt during the exception of a TRAP instruction while tracing is enabled.

First the 'trap exception is processed, then the trace exception, and finally the

interrupt exception. Instruction execution resumes in the interrupt handler routine.

The exception processing for trace is quite simple. After the execution of the

instruction is completed and before the start of the next instruction, exception

processing begins. A copy is made of the status register. The transition to

supervisor privilege state is made and, as usual, the T bit of the status register is

turned off, disabling further tracing. The vector number is generated to reference

the trace exception vector, and the current program counter, the copy of the status

register and, on the TMP68010, the format/offset word are saved on the supervisor

stack. The saved value of the program counter is the address of the next instruction.

Instruction execution commences at the address contained in the trace exception

vector.

4.4.9 Bus Error

Bus error exceptions occur when the external logic requests that a bus error be

processed by an exception. The current bus cycle which the processor is making is
then aborted. Whether the processor was doing instruction or exception processing,

that processing is terminated and the processor immediately begins exception

processing.

The bus error facility is identical on the TMP68000 and TMP68008; however, the

stack frame produced on the TMP68010 contains more information. This is to allow

the instruction continuation facility which can be used to implement virtual

memory on the TMP68010 processor. Bus error for the TMP68000/TMP68008 and

for the TMP68010 are described separately below.

VMPU·55

TOSHIBA TLCS-68000

4.4.9.1 Bus Error (TMP68000/TMP68008)

Exception processing for bus error follows the usual sequence of steps. The status

register is copied, the supervisor state is entered, and the trace state is turned off. The

vector number is generated to refer to the bus error vector. Since the processor was not

between instructions when the bus error exception request was made, the context of the
processor is more detailed. To save more of this context, additional information is saved

on the supervisor stack. The program counter and the copy of the status register are of
. course saved. The value saved for the program counter is advanced by some amount, two

to ten bytes beyond the address of the first word of the instruction which made the

reference causing the bus error. If the bus error occurred during the fetch of the next

instruction, the saved program counter has a value in the vicinity of the current
instruction, even if the current instruction is a branch, a jump, or a return instruction.

Besides the usual information, the processor saves its internal copy of the first word of

the instruction being processed and the address which was being accessed by the aborted
bus cycle. Specific information about the access is also saved: whether it was a read or
write, whether the processor was processing an instruction or not, and the classification

displayed on the function code outputs when the bus error occurred. The processor is
processing an instruction if it is in the normal state or processing a group 2 exception;

the processor is not processing an instruction if it is processing a group 0 or a group 1
exception. Figure 4.7 illustrates how this information is organized on the supervisor
stack. If a bus error occurs during the last step of exception processing, while either

reading the exception vector or fetching the instruction, the value of the program

counter is the address of the exception vector. Although this information is not
sufficient in general to effect full recovery from the bus error, it does allow software

diagnosis. Finally, the processor commences instruction processing at the address
contained in the vector. It is the responsibility of the error handler routine to clean up

the stack and determine where to continue execution.

If a bus error occurs during the exception processing for a bus error, address error, or
read, the processor is halted, and all processing ceases. This simplifies the detection of a

catastrophic system failure, since the processor removes itself from the system rather

than destroy all memory contents. Only the RESET pin can restart a halted processor.

VMPU·56

TOSHIBA

LOWER
ADDRESS

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

.. ACCESS ADDRESS
HIGH

LOW

INSTRUCTION REGISTER

STATUS REGISTER

HIGH
PROGRAM COUNTER

LOW

RIW (ReadlWrite): Write = 0, Read = 1

I/N (Instruction/Not): Instruction = 0, Not = 1

I RJW I liN I FUNCTION CODE

TLCS-68000

Figure 4.7 Supervisor Stack Order for Bus or "A"ddress Error Exception

4.4.9.2 BUS ERROR (TMP68010)

Exception processing for a bus error follows a slightly different sequence than the

sequence for group 1 and 2 exceptions. In addition to the four steps executed during

exception processing for all other exceptions, 22 words of additional information are

placed on the stack. This additional information describes the internal state of the

processor at the time of the bus error and is reloaded by the RTE instruction to

continue the instruction that caused the error. Figure 4.8 shows the order of the

stacked information.

VMPU·57

TOSHIBA TLCS-68000

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

SP- STATUS REGISTER

PROGRAM COUNTER (HIGH)

PROGRAM COUNTER (LOW)

1000 I VECTOR OFFSET

SPECIAL STATUS WORD

FAULT ADDRESS (HIGH)

FAULT ADDRESS (LOW)

UNUSED, RESERVED

DATA OUTPUT BUFFER

UNUSED, RESERVED

DATA INPUT BUFFER

UNUSED, RESERVED

INSTRUCTION INPUT BUFFER

INTERNAL INFORMATION, 16 WORDS

Noie: The stack pointer is decremented by 29 words, although only 26 words of information are
actually written to memory. The three additional words are reserved for future use.

Figure 4.8 Exception Stack Order (Bus and Address Error)

The value of the saved program counter does not necessarily point to the

instruction that was executing when the bus error occurred, but may be advanced by

up to five words. This is due to the prefetch mechanism on the TMP68010 that

always fetches a new instruction word as each previously fetched instruction word is

used. However, enough information is placed on the stack for the bus error

exception handler routine to determine why the bus fault occurred. This additional

information includes the address that was being accessed, the function codes for the

access, whether it was a read or a write, and what internal register was included in

the transfer. The fault address can be used by an operating system to determine

what virtual memory location is needed so that the requested data can be brought

into phyical memory. The RTE instruction is then used to reload the processor's

internal state at the time of the fault, the faulted bus cycle will then be re-run and

the suspended instruction completed. If the faulted bus cycle was a read-modify

write, the entire cycle will be re-run whether the fault occurred during the read or

the write operation.

VMPU·58

TOSHIBA TLCS-68000

An alternate method of handling a bus error is to complete the faulted access in

software. In order to use this method, use of the special word, the instruction input
buffer, the data input buffer, and the data output buffer image is required. The

format of the special status word is shown in Figure 4.9. If the bus cycle was a write,
the data at the fault address location should be written to the images of the data
input buffer, instruction input buffer, or both accoding to the DF and IF bits*. In
addition, for read-modify-write cycles, the status register image must be properly set
to reflect the read data if the fault occurred during the read portion of the cycle and
the write operation (i.e., setting the most significant bit of the memory location)
must also be performed. This is because the entire read-modify-write cycle is
assumed to have been completed by software. Once the cycle has been completed by
software, the RR bit in the special status word is set to indicate to the processor that
is should not re-run the cycle when the RTE instruction is executed. If the re-run
flag is set when an RTE instruction executes, the TMP68010 still reads all of the
information from the stack.

* : If the faulted access was a byte operation, the data should be moved from or to
the least-significant byte of the data output or input buffer images unless the
HB bit is set. This condition will only occur if a MOVEP instruction caused the
fault during transfer of bits 8-15 a word or long word or bits 24-31 of a long
word.

15

RR

RR

IF

DF

RM

HB

BY

RW -

FC

*

14 13 12 11 10 9 8 7 3

* IF DF RM HB BY RW *

Re-run flag; 0 = processor re-run (default). 1 = softrware re - run.

Instruction fetch to the Instruction Input Buffer.

Data fetch to the Data Input Buffer.

Read-Modify-Write cycle.

210

FC2-FCO

High byte transfer from the Data Output Buffer or to the Data Input Buffer.

Byte transfer flag; HB selects the high or low byte ofthe transfer register.

If BY is clear, the transfer is word.

Read/Write flag; 0 = write, 1 = read.

The function code used during the faulted access.

These bits are reserved for future use and will be zero when written by the

TMP68010.

Figure 4.9 Special Status Word Format

VMPU-59

TOSHIBA TLCS-68000

4.4.10 Address Error

Address error exceptions occur when the processor attempts to access a word or a
long word operand or an instruction at an odd address. The effect is much like an

internally generated bus error, so that the bus cycle is aborted, and the processor

ceases whatever processing it is currently doing and begins exception processing.

After exception processing commences, the sequence is the same as that for bus error

including the information that is stacked, except that the vector number refers to
the address error vector instead. Likewise, if an address error occurs during the

exception processing for a bus error, address error, or reset, the processor is halted.

On the TMP68010, the address error exception stacks the same information that
is stacked by a bus error exception, therefore it is possible to use the RTE instruction

to continue execution of the suspended instruction. However, if the software re-run

flag is not set, the fault address will be used when the cycle is re-run and another
address error exception will occur. Therefore, the user must be certain that the

proper corrections have been made to the stack image and user registers before

attempting to continue the instruction. With proper software handling, the address
error exception handler could emulate word or long word accesses to odd addresses

ifdesired.

4.5 RETURN FROM EXCEPTION (TMP68010)

In addition to returning from any exception handler routine on the TMP68010,

the RTE instruction is used to resume the excution of a suspended instruction by

restoring all of the temporary register and control information stored during a bus

error and returning to the normal processing state. For the RTE instruction to
execute properly, the stack must contain valid and accessible data. The RTE
instruction checks for data validity in two ways; first, by checking the format/offset

word for a valid stack format code, and second, if the format code indicates the long

stack format, the long stack data is checked for validity as it is loaded into the

processor. In addition, the data is checked for accessibility when the processor starts
reading the long data. Because of these checks, the RTE instruction executes as

follows:

4.5.1 Determine The Stack Format

This step is the same for any stack format and consists of reading the status

register, program counter, and format/offset word. If the format code indicates a

short stack format, execution continues at the new program counter address. If the

format code is not one of the TMP68010 defined stack format codes, exception

processing starts for a format error.

VMPU·60

TOSHIBA TLCS-68000

4.5.2 Determine Data Validity

For a long stack format, the TMP68010 will begin to read the remaining stack
data, checking for validity of the data. The only word checked for validity is the first

of the 16 internal information words (SP + 26) shown in Figure 4.8. This word

contains a processor version number (in bits 10-13) in addition to proprietary

internal information that must match the version number of the TMP68010 that is

attempting to read the data. This validity check is used to insure that in

multiprocessor systems, the data will be properly interpreted by the RTE instruction

if the two processors are of different versions. If the version number is incorrect for

this processor, the RTE instruction will be aborted and exception processing will

begin for a format error exception. Since the stack pointer is not updated until the
RTE instruction has successfully read all of the stack data, a format error occurring

at this point will not stack new data over the previous bus error stack information.

4.5.3 Determine Data Accessibility

If the long stack data is valid, the TMP68010 performs a read from the last word
(SP+56) of the long stack to determine data accessibility. If this read is terminated

normally, the processor assumes that the remaining words on the stack frame are
also accessible. If a bus error is signaled before or during this read, a bus error

exception is taken as usual. After this read, the processor must be able to load the
remaining data without receiving a bus error; therefore, if a bus error occurs on any

of the remaining stack reads, the TMP68010 treats this as a double bus fault and
enters the halted state.

VMPU·61

TOSHIBA TLCS-68000

APPENDIX A CONDITION CODES COMPUTATION

A.I INTRODUCTION

This appendix provides a discussion of how the condition codes were developed, the

meanings of each bit, how they are computed, and how they are represented in the

instruction set details.

Two criteria were used in developing the condition codes:

• Consistency - across instruction, uses, and instances

• Meaningful Results - no change unless it provides useful information

The consistency across instructions means that instructions which are special cases of
more general instructions affect the condition codes in the same way. Consistency

across instances means that if an instruction ever affects a condition code, it will always

affect that condition code. Consistency across uses means that whether the condition
codes were set by a compare, test, or move instruction, the conditional instructions test

the same situation. The tests used for the conditional instructions and the code

computations are given in paragraph A.5.

A.2 CONDITION CODE REGISTER

The condition code register portion of the status register contains five bits:

N - Negative

Z - Zero
V - Overflow

C - Carry

X - Extend

The first four bits are true condition code bits in that they reflect the condition of the

result of a processor operation. The X bit is an operand for multiprecision computations.

The carry bit (C) and the multiprecision operand extend bit (X) are separate in the
TLCS - 68000 Family to simplify the programming model.

A.3 CONDITION CODE REGISTER NOTATION

In the instruction set details given in "APPENDIX B", the description of the effect on

the condition codes is given in the following form:

VMPU·62

TOSHIBA TLCS-68000

x N z v c
Condition Codes:

where:

N (negative)

Z (zero)

V (overflow)

C (carry)

X (extend)

L-__ ~ __ -L __ ~ ____ L-~

Set if the most significant bit of the result is set. Cleared

otherwise.

Set if the result equals zero. Cleared otherwise.

Set if there was an arithmetic overflow. This implies that the

result is not representable in the operand size. Cleared otherwise.

Set if a carry is generated out of the most significant bit of the

operands for an addition. Also, set if a borrow is generated in a

subtraction. Cleared otherwise.

Transparent to data movement. When affected, by arithmetic

operations, it is set the same as the C bit.

The convention for the notation that is used in the condition code register

representation is:

* set according to the result of the operation

not affected by the operation

o cleared

set

U undefined after the operation

AA CONDITION CODE COMPUTATION

Most operations take a source operand and a destination operand, compute, and store

the result in the destination location. Unary operations take a destination operand,

compute, and store the result in the destination location. Table A.I details how each

instruction sets the condition codes.

VMPU-63

TOSHIBA TLCS-68000

Table A.I Condition Code Computations

Operations X N Z V C Special Definition

ABCD * U ? U ? C = Decimal Carry
Z=Z/\Rm/\···/\"RQ

ADD, ADDI, * * * ? ? V = Sm /\ Dm /\ Rm V Sm /\ Dm /\ Rm
ADDQ C = Sm /\ Dm V Rm /\ Dm V Sm /\ Rm
ADDX * * ? ? ? V=Sm /\ Dm /\ RmVS"m/\ Om /\ Rm

C = Sm /\ Dm V Rm /\ Dm V Sm /\ Rm
Z = Z /\ Rm /\ ... /\ RO

AND, ANDI, EOR, EORI, - * * 0 0
MOVE, MOVEQ, OR, ORI,
CLR, NXT, NOT, TAS, TST
CHK - * U U U
SUB, SUBI, * * * ? ? V = Sm /\ Dm /\ Rm V Sm /\ Dm /\ Rm
SUBQ C =Sm /\ Om V Rm /\ DmVSm /\ Rm
SUBX * * ? ? ? V = Sm /\ Dm /\ Rm V Sm /\ Dm !\ Rm

C = Sm /\ Dm V Rm /\ Dm V Sm /\ Rm
Z=Z/\Rm/\"'/\1Ul

CMP, - * * ? ? V=5m /\ Dm /\ Rm vSm /\Dm /\ Rm
CMPI, CMPM C =Sm /\ Dm V Rm /\ DmvSm /\ Rm
DIVS, DIVU - * * ? 0 V = Division Overflow
MULS, MULU - * * 0 0
SBCD, NBCD * U ? U ? C = Decimal Borrow

Z = Z /\ Rm /\ ... /\ RO
NEG * * * ? ? V=Dm/\Rm, C=DmvRm
NEGX * * ? ? ? V=Dm/\Rm, C=DmvRm

Z = Z /\ Rm!\ .•. /\ RO
BTST, BCHG, BSET, BCLR - - ? - - Z=Om
ASL * * * ? ? V = Dm /\ (Dm-1 V .. · V Dm-r)

+ Om /\ (Dm-1 V··· V Dm-r)
C = Dm-r + 1

ASL (r = 0) - + * 0 0
LSL, ROXL * * * 0 ? C = Dm-r + 1
LSR (r = 0) - * * 0 0
ROXL (r = 0) - * * 0 ? C=X
ROL - * * 0 ? C = Dm-r + 1
ROL(r=O) - * * 0 0
ASR, LSR, ROXR * * * 0 ? C = Dr-1
ASR, LSR (r = 0) - * * 0 0
ROXR (r = 0) - * * 0 ? C=X
ROR - * * 0 ? C = Dr-1
ROR (r =0) - * * 0 0

Not Affected Rm Result Operand -most significant bit
U Undefined, result meaningless R Register Tested
? Other - See Special Definition n Bit Number
* General Case Shift Count
X C LB Lower Bound
N Rm UB Upper Bound
Z Rm/\···/\RO !\ Boolean AND
Sm = Source Operand - most significant bit V Boolean OR
Dm = Destination Operand - most significant bit Rm NOTRm

VMPU-64

TOSHIBA TLCS-68000

A.5 CONDITION TESTS

Table A.2 lists the condition names, encodings, and tests for the condition branch and
set instructions.

The test associated with each condition is a logical formula based on the current state

of the condition codes. If this formula evaluates to one, the condition succeeds, or is true.
If the formula evaluates to zero, the condition is unsuccessful, or false. For example, the
T condition always succeeds, while the EQ condition succeeds only if the Z bit is

currently set in the condition codes.

Table A.2 Conditional Tests

Mnemonic

T*

F*

HI

LS

CC (HS)

CS (La)

NE

EO

VC

VS

PL

MI

GE

LT

GT

LE

Bloolean AND
+ = Bloolean OR

Condition

True

False

High

Low orSame

Carry Clear

Carry Set

Not Equal

Equal

Overflow Clear

Overflow Set

Plus

Minus

Greater or Equal

Less Than

Greater Than

Less or Equal

jIJ Bloolean NOT N

* : Not available for the Bcc instruction

VMPU·65

Encoding

0000

0001

0010

0011

0100

0101

0110

0111

1000

1001

1010

1011

1100

1101

1110

1111

Test

1

0

c· Z

C+ Z

C

C

Z

Z

V

V

jIJ

N

N·V + JIJ·V

N·V+N·V

N·V·Z + jIJ·V·Z

Z+N·V+N·V

TOSHIBA TLCS-68000

APPENDIXB INSTRUCTION SET DETAILS

B.l INTRODUCTION

This appendix contains detailed information about each instruction in the
TLCS - 68000 instruction set. They are arranged in alphabetical order with the

mnemonic heading set in large bold type for easy reference.

B.2 ADDRESSING CATEGORIES

Effective addressmodes may be categorized by the ways in which they may be used.
The following classifications will be used in the instruction definitions.

Data If an effective address mode may be used to refer to data operands, it is
considered a data addressing effective address mode.

Memory

Alterable

Control

If an effective address mode may be used to refer to memory operands, it
is considered a memory addressing effective address mode.

If an effective address mode may be used to refer to alterable (writeable)
operands, it is considered an alterable addressing effective address
mode.

If an effective address mode may be used to refer to memory operands
without an associated size, it is considered a control addressing effective
address mode.

Table B.l shows the various categories to which each ofthe effective address modes
belong.

VMPU-66

TOSHIBA TLCS-68000

Table B.l Effective Addressing Mode Categories

Address Modes Mode Register Data Memory Control Alterable
Assembler

Syntax

Data Register Direct 000 reg. no. x - - x Dn

Address Register Direct 001 reg no - - - x An

Address Register Indirect 010 reg. no. x x x x (An)
Address Register Indirect

with Postincrement all reg. no. x x - x (An) +
Address Register Indirect

with Predecrement 100 reg. no. x x - x -(An)
Address Register Indirect

with Displacement 101 reg. no. x x x x d16 (An)

Address Register Indirect 110 reg. no. x x x x d8 (An, Xn)
with Index

Absolute Short 111 000 x x x x Abs.W
Absolute long 111 001 x x x x Abs. L

Program Counter Indirect 111 101 x x x - d16{PC)
with Displacement

Program Counter Indirect 111 all x x x - d8 (PC, Xn)
with Index

Immediate 111 100 x x - - #<data>

These categories may be combined so that additional, more restrictive, classifications
may be defined. For example, the instruction descriptions use such classifications as
alterable memory or data alterable. The former refers to those addressing modes which
are both alterable and memory addresses, and the latter refers to addressing modes
which are both data and alterable.

VMPU-67

TOSHIBA TLCS-68000

B.3 INSTRUCTION DESCRIPTION

The formats of each instruction are given in the following pages. Figure B.l

illustrates what information is given.

Instruction Name --------_. ABCD Add Decimal

Operation Description --------..,.., Operation

(see "B.4 OPERATION DESCRIPTION

SourcelO + DestinaitonlO

DEFINITIONS")

Assembler Syntax for this Instruction --_, Assembler

Syntax:

ABCD Dy, Dx

ABCD - (Ay), - (Ax)

Attributes : Size (Byte)

Text Description of Instruction Operation ~ Description: Add the source operand

Condition Code Effects --------~. Condition Codes:

(see" Appendix A")
X N Z

I * U I *
V C
U I *

N Undefined.

Z Cleared if the result is non-zero.

Unchanged otherwise.

V Undefined.

Instruction Format - Specifies the
bit pattern and fields of the
operation word and any other
words which are part of the
instruction. The effective address
extensions are not explicitly
illustrated. The extensions (if there
are any) would follow the
illustrated portions of the
instructions. For the MOVE
instruction, the source effective
address extension is the first,
followed by the destination
effective address extension.

C set if a carry (decimal) was generated.

Cleared otherwise.

X Sert the same as the carry bit

Instructuion Format:

15 14 13 12 11 10 9 8 7 6 5 4 3

Meanings and allowed values of -------. Instructuion Fields:
the various fields required by the
instruction format.

Figure B.l Instruction Description Format

VMPU-68

2 0
Register

Xx

TOSHIBA TLCS-68000

BA OPERATION DESCRIPTION DEFINITIONS

The following definitions are used for the operation description in the details of the

instruction set.

OPERAND:

An
Dn

Xn
PC
SR
CCR
SSP
USP
SP
X
N
Z
V
C
Immediate Data

d8

dI6

disp

Source

Destination

Vector

ea

address register

data register

any data or address register

program counter

status register

condition codes (lower order byte of status register)

supervisor stack pointer

user stack pointer

active stack pointer (equivalent to A 7)

extend operand (from condition codes)

negative condition code

zero condition code

overflow condition code

carry condition code

immediate data from the instruction
8-bit address displacement

I6-bit address displacement

address displacement (d8 or d16)

source contents

destination contents

location of exception vector

any valid effective address

SUBFIELDS AND QUALIFIERS:
<bit> of <operand>

(< operand>)

< operand> 10

(< address register>)

- (< address register>)

(< address register>) +
#<data>

selects a single bit of the operand

the contents of the referenced location

the operand is binary coded decimal; operations are to be

performed in decimal.

the register indirect operator which indicates that the

operand register points to the memory loca tiaon of the

instructuon operand.

immediate data located with the instruction is the operand.

VMPU-69

TOSHIBA TLCS-68000

OPERATIONS: Operations are grouped into binary, unary, and other.

Binary - These operations are written <operand> <op> <operand> where <op>

is one of the following:

+

*

1\

V

EEl

<

>

shifted by

rotated by

Unary:

the left operand is moved to the right operand

the two operands are exchanged
the operands are added
the right operand is subtracted from the left operand

the operands are multiplied
the first operand is divided by the second operand
the operands are logically ANDed
the operands are logically ORed
the operands are logically exclusively ORed
relational test, true ifleft operand is less than right
operand
relational test, true ifleft operand is greater than right
operand
the left operand is sfifted or rotated by the number of
positions
specified by the right operand

- < operand> the operand is logically complemented
< operand> sign-extended the operand is sign extended, all bits of the upper portion

< operand> tested

Other:

are made equal to high order bit of the lower portion
the operand is compared to 0, the results are used to set the
condition codes

TRAP equivalent to SSP - 2 --+ SSP; Format/Offset Word --+ (SSP); SSP - 4--+SSP;
PC--+(SSP); SSP-2--+SSP; SR--+(SSP); (vector)--+PC

STOP enter the stopped state, waiting for interrupts

If < condition> then < operation> else < operation>. The condition is tested. If true,
the operations after the "then" are performed. If the condition is false and the
optional "else" clause is present, the operations after the "else" are performed. If the
condition is false and the optional "else" clause is absent, the instruction performs no

operation.

; Semicolon is used to separate operations and terminatethe if/then/else operation.

VMPU-70

TOSHIBA

ABCD

Operation

Assembler

Syntax

Attributes

Description

Add Decimal With Extend

SourcelO + DestinationlO + X ----+ Destination

ABCD

ABCD

Dx,Dy
-(Ax), -(Ay)

Size = (Byte)

TLCS-68000

ABCD

Add the source operand to the destination operand along with the extend bit,

and store the result in the destination location. The addition is performed

using binary coded decimal arithmetic. The operands may be addressed in

two different ways:

1. Data register to data register: The operands are contained in the data

registers specified in the instruction.

2. Memory to memory: The operands are addressed with the predecrement

addressing mode using the address registers specified in the instruction.

This operation is a byte operation only.

Condition Codes:

X N Z v c

N Undefined.

Z Cleared if the result is non-zero. Unchanged otherwise.

V Undefined.

C Set if a carry (decimal) was generated. Cleared otherwise.

X Set the same as the carry bit.

Note:

Normally the Z condition code bit is set via programming before the start of

an operation. This allows successful tests for zero results upon completion of

multiple-precision operations.

Instruction Format:

15 14 13 12 11 10 9 8 7 6 5 4 3

VMPU-71

2 0
Register

Xx

TOSHIBA TLCS-68000

ABCD ABCD

Instruction Fields:

Register Xy field - Specifies the destination register:
If RIM = 0, specifies a data register

If RIM = 1, specifies an address register for the predecrement addressing mode

RIM field - Specifies the operand addressing mode:
o - The operation is data register to data register
1 - The operation is memory to memory

Register Xx field - Specifies the source register:
If RIM = 0, specifies a data register
If RIM = 1, specifies an address register for the predecrement addressing mode

VMPU-72

TOSHIBA

ADD

Operation

Assembler
Syntax

Attributes

Add Binary

Source + Destination -+ Destination

ADD <ea>, Dn
ADD Dn, <ea>

Size = (Byte, Word, Long word)

TlCS-68000

ADD

Description Add the source operand to the destination operand using binary addition, and
store the result in the destination location. The size of the operation may be
specified to be byte, word, or long word. The mode of the instruction indicates
which operand is the source and which is the destination as well as the
operand size.

Condition Codes
X N Z V c

I * I * I * I * I *

N Set if the result is negative. Cleared otherwise .
. Z Set if the result is zero. Cleared otherwise.
V Set if an overflow is generated. Cleared otherwise.
C Set if a carry is generated. Cleared otherwise.
X Set the same as the carry bit.

The condition codes are not affected when the destination is an address register.

Instruction Format:

Instruction Fields :

Register field - Specifies any of the eight data registers.

Op-Mode field -

Byte

000
100

Word Long word

001 010
101 110

Operation

«ea>)+(<Dn>)-+<Dn>

«Dn>)+(<ea>)-+<ea>

Effective Address Field - Determines addressing mode:

a. If the location specified in a source operand, the all addressing modes are allowed

as shown:

VMPU-73

TOSHIBA TLCS-68000

ADD ADD

Addr. Mode Mode Register Addr. Mode Mode Register

Dn 000 reg, number :Dn d8 (An, Xn) 110 reg, number :An

An* 001 reg, number :An Abs.W 111 000

(An) 010 reg, number :An Abs.L 111 001

(An) + 011 reg, number :An d16 (PC) 111 010

- (An) 100 reg, number :An d8 (PC, Xn) 111 011

d16(An) 101 reg, number :An #<data> 111 100

* : Word and Long word only.

b. If the location specified is a destination operand, then only alterable memory

addressing modes are allowed as shown:

Addr. Mode Mode Register Addr. Mode Mode Register

Dn - - D8(An, Xn) 110 reg, number :An

An - - Abs.W 111 000

(An) 010 reg, number :An Abs.L 111 001

(An) + 011 reg, number :An d16 (PC) - -
- (An) 100 reg, number :An d8(PC, Xn) - -
d16(An) 101 reg, number :An #<data> - -

Notes: 1. If the destination is a data register, then it cannot be specified by using the
destination < ea > mode, but must use the destination Dn mode instead.

2. ADDA is used when the destination is an address register. ADDI and
ADDQ are used when the source is immediate data. Most assemblers
automatically make this distinction.

VMPU-74

TOSHIBA

ADDA

Operation

Assembler
Syntax

Attributes

Description

TLCS-68000

Add Address ADDA

Source + Destination ~ Destination

ADD A <ea>,An

Size = (Word, Long word)

Add the source operand to the destination address register, and store the

resul t in the address register. The size of the operation may be specified to be

word or long word. The entire destination address register is used regardless
of the operation size.

Condition Codes Not affected

Instruction Format:

Instruction Fields :

Register field - Specifies any of the eight address registers. This is always the
destination.

Op-Mode field - Specifies the size of the operation:

011 - word operation. The source operand is sign-extended to a operand

and the operation is performed on the address register using all 32

bits.
111 - long word operation.

Effective Address field - Specifies the source operand. All addressing modes

are allowed as shown:

Addr. Mode Mode Register Addr. Mode Mode Register

Dn 000 reg, number :Dn d8(An, Xn) 110 reg, number :An

An 001 reg, number :An AbsW 111 000

(An) 010 reg, number :An Abs.L 111 001

(An) + 011 reg, number :An d16 (PC) 111 010

- (An) 100 reg, number :An d8(pe, Xn) 111 011

d16 (An) 101 reg, number :An #<data> 111 100

VMPU-7S

TOSHIBA

ADDI

Operation

Assembler
Syntax

Attributes

TLCS-68000

Add Immediate ADD I

Immediate Data + Destination -+ Destination

ADDI #<data>, <ea>

Size = (Byte, Word, Long word)

Description Add the immediate data to the destination operand, and store the result in
the destination location. The size of the operation may be specified to be byte,
word, or long word. The size of the immediate data matches the operation
size.

Condition Codes

X N Z V c
I * I * I * I * I * I
N Set if the result is negative. Cleared otherwise.
Z Set if the result is zero. Cleared otherwise.
V Set if an overflow is generated. Cleared otherwise.
C Set if a carry is generated. Cleared otherwise.
X Set the same as the carry bit.

Instruction Format:
15 14 13 12 11 10 9 8 7 6 5 4 3 2 0
o 1 0 1 0 1 0 1 0 11 I' 1 0 1 Size 1 Effectivetddress

Mode Register
Word Data I Byte Data

Long Word Data (Includes Previous Word)

Instruction Fields :

Size field - Specifies the size of the operation:
00 - byte operation.
01 - word operation.
10 - long word operation.

Effective Address field - Specifies the destination operand. Only data alterable
addressing modes are allowed as shown:

VMPU-76

TOSHIBA TLCS-68000

Addr. Mode Mode Register Addr. Mode Mode Register

Dn 000 reg, number :Dn dS (An, Xn) 110 reg, number :An

An - - Abs.W 111

(An) 010 reg, number :An Abs.L 111

(An) + 011 reg, number :An d16 (PC) -
- (An) 100 reg, number :An dS (PC, Xn) -
d16 (An) 101 reg, number :An #<data> -

Immediate field - (Data immediately following the instruction):
Ifsize = 00, then the data is the low order byte of the immediate word.
If size = 01, then the data is the entire immediated word.
If size = 10, then the data is the next two immediated words.

VMPU-77

000

001

-
-
-

TOSHIBA

ADDQ

Operation

Assembler

Syntax

Attributes

Description

Add Quick

Immediate Data + Destination ~ Destination

ADDQ #<data>, <ea>

Size = (Byte, Word, Long word)

TLCS-68000

ADDQ

Add the immediate data to the operand at the destination location. The data

range is from 1 to 8. The size of the operation may be specified to be byte,

word, or long word. Word and long word operations are also allowed on the

address registers, in which case the condition codes are not affected. When

adding to address registers, the entire destination address register is used,

regardless of the operation size.

Condition Codes

X N Z V c
I * I * I * * I *
N Set if the result is negative. Cleared otherwise.

Z Set if the result is zero. Cleared otherwise.

V Set if an overflow is generated. Cleared otherwise.

C Set if a carry is generated. Cleared otherwise.

X Set the same as the carry bit.

The condition codes are not affected if the destination is an address register.

Instruction Format:

Instruction Fields :

Data field - Three bits of immediate data, 0, 1-7 representing a range of 8, 1

to 7 respectively.

Size field - Specifies the size of the operation:

00 - byte operation.

01 - word operation.

10 - long word operation.

VMPU-78

TOSHIBA TLCS-68000

ADDQ ADDQ

Effective Address field - Specifies the destination location. Only alterable
addressing modes are allowed as shown:

Addr. Mode Mode Register Addr. Mode Mode Register

Dn 000 reg. number :Dn d8 (An. Xn) 110 reg. number :An

An' 001 reg. number :An Abs.W 111 000

(An) 010 reg. number :An Abs.L 111 001

(An) + 011 reg. number :An d16 (PC) - -
- (An) 100 reg. number :An d8 (PC. Xn) - -
d16 (An) 101 reg. number :An #<data> - -
* : Word and Long word Only.

VMPU·79

TOSHIBA

ADDX

Operation

Assembler
Syntax

Attributes

Description

TLCS-68000

Add Extended

Source + Destination + X ~ Destination

ADDX
ADDX

Dx,Dy
- (Ax), - (Ay)

Size = (Byte, Word, Long word)

ADDX

Add the source operand to the destination operand along with the extend bit
and store the result in the destination location. The operands may be
addressed in two different ways:
1. Data register to data register: the operands are contained in data

registers specified in the instruction.
2. Memory to memory: the operands are addressed with the predecrement

addressing mode using the address registers specified in the instruction.
The size of the operation may be specified to be byte, word, or long word.

Condition Codes
X N Z V c

I * I * I * I * I * I
N Set if the result is negative. Cleared otherwise.
Z Cleared if the result is non-zero. Unchanged otherwise.
V Set if an overflow is generated. Cleared otherwise.
C Set if a carry is generated. Cleared otherwise.
X Set the same as the carry bit.

(NOTE)

Normally the Z condition code bit is set via programming before the start of
an operation. This allows successful tests for zero results upon completion of
multiple-precision operations.

Instruction Format

VMPU-80

TOSHIBA TLCS-68000

ADDX ADDX

Instruction Fields :

Register Xy field - Specifies the destination register:

If RIM = 0, specifies a data register.
If RIM = 1, specifies an address register for the predecrement addressing mode.

Size field - Specifies the size of the operation:
00 - byte operation.
01 - word operation.
10 - long word operation.

RIM field - Specifies the operand addressing mode:
o - The operation is data register to data register.
1 - The operation is memory to memory.

Register Xx field - Specifies the source register:
If RIM = 0, specifies a data register.
If RIM = 1, specifies an address register for the predecrement addressing mode.

VMPU·81

TOSHIBA

AND

Operation

Assembler
Syntax

Attributes

AND Logical

Source /\ Destination --+ Destination

AND <ea>, Dn
AND Dn, <ea>

Size = (Byte, Word, Long word)

TLCS-68000

AND

Description AND the source operand to the destination operand and store the result in
the destination location. The size of the operation may be specified to be byte,

word, or long word. The contents of an address register may not be used as an
operand.

Condition Codes
X N Z V c

I - I * I * I a I a

N Set if the most significant bit of the result is set. Cleared otherwise.
Z Set if the result is zero. Cleared otherwise.
V Always cleared.
C Al ways cleared.
X Not affected.

Instruction Format:

Instruction Fields
Register field - Specifies any of the eight data registers.
Op-Mode field -

Byte

000
100

Word Long word

001 010
101 110

Operation
(< ea >) /\ (< Dn >) --+ < Dn >
«Dn>)/\(<ea» --+ <ea>

Effective Address field - Determines addressing mode:
If the location specified is a source operand then only data addressing modes are
allowed as shown:

VMPU-82

TOSHIBA TLCS-68000

AND AND

Addr. Mode Mode Register Addr. Mode Mode Register

Dn 000 reg, number :Dn d8 (An, Xn) 110 reg, number

An - - AbsW 111 000

(An) 010 reg, number :An Abs.L 111 001

(An) + 011 reg, number :An d16 (PC) 111 010

- (An) 100 reg, number :An d8 (PC, Xn) 111 011

d16 (An) 101 reg, number :An # <data> 111 100

If the location specified is a destination operand then only alterable memory addressing
modes are allowed as shown:

Addr. Mode Mode Register Addr. Mode Mode Register

Dn - - d8 (An, Xn) 110 reg, number

An - - Abs.W 111 000

(An) 010 reg, number :An Abs.L 111 001

(An) + 011 reg, number :An d16 (PC) - -
- (An) 100 reg, number :An d8 (PC, Xn) - -

. d16 (An) 101 reg, number :An # <data> - -

Notes: 1. If the destination is a data register, then it cannot be specified by using the

destination <ea> mode, but must use the destination Dn mode instead.

2. ANDI is used when the source is immediate data. Most assemblers

automatically make this distinction.

VMPU-83

TOSHIBA

ANDI

Operation

Assembler
Syntax

Attributes

TLCS-68000

AND Immediate ANDI

Immediate Data /\ Destination ~ Destination

AND! #<data>, <ea>

Size = (Byte, Word, Long word)

Description AND the immediate data to the destination operand and store the result in
the destination location. The size of the operation may be specified to be byte,

word, or long. The size of the immediate data matches the operation size.

Condition Codes
X N Z V c

\-*1*1 0 10

N Set if the most significant bit of the result is set. Cleared otherwise.
Z Set if the result is zero. Cleared otherwise.
V Always cleared.
C Always cleared.
X Not affected.

Instruction Format:
15 14 13 12 11 10 9 8 7 6 5 4 3 2 0
o 1 0 1 01 0 1 0 1 0 1 1 1 0 Size 1 Effectivel Add ress

Mode Reqister
Word Data Byte Data

Long Word Data (Includes Previous Word)

Instruction Fields :

Size field - Specifies the size of the operation:
00 - byte operation.
01 - word operation.
10 - long word operation.

Effective Address field - Specifies the destination operand. Only data alterable
addressing modes are allowes as shown:

VMPU-84

TOSHIBA TLCS-68000

ANDI ANDI

Addr. Mode Mode Register Addr. Mode Mode Register

Dn 000 reg. number :Dn d8 (An. Xn) 110 reg. number :An

An - - Abs.W 111

(An) 010 reg. number :An Abs.L 111

(An) + 011 reg. number :An d16 (PC) -
- (An) 100 reg. number :An d8 (PC. Xn) -
d16 (An) 101 reg. number :An #<data> -

Immediate field - (Data immediately following the instruction):
If size = 00, then the data is the low order byte of the immediate word.

If size = 01, then the data is the entire immediate word.
If size = 10, then the data is the next two immediate words.

VMPU-85

000

001

-
-
-

TOSHIBA TLCS-68000

AND I to CCR ANDIto CCR

Operation

Assembler
Syntax

Attributes

Description

AND Immediate to Condition Codes

Source 1\ CCR - CCR

AND! #<data>, CCR

Size = (Byte)

AND the immediate operand with the condition codes and store the result in

the low-order byte of the status register.

Condition Codes

X N Z V c
I * I * I * I * I *

N Cleared ifbit 3 of immediate operand is zero. Unchanged otherwise.

Z Cleared ifbit 2 of immediate operand is zero. Unchanged otherwise.
V Cleared ifbit 1 of immediate operand is zero. Unchanged otherwise.

C Cleared ifbit 0 of immediate operand is zero. Unchanged otherwise.

X Cleared ifbit 4 of immediate operand is zero. Unchanged otherwise.

Instruction Format:

VMPU-86

TOSHIBA TLCS-68000

ANDItoSR AND Immediate to the Status Register

(Privileged Instruction)

ANDI to SR

Operation

Assembler

Syntax

Attributes

Description

If supervisor state

then Source /\ SR -+ SR

else TRAP;

ANDI #<data>, SR

Size = (Word)

AND the immediate operand with the contents of the status register and

store the result in the status register. All bits of the status register are

affected.

Condition Codes
X N Z V c

1*1*1*1*1*

N Cleared ifbit 3 of immediate operand is zero. Unchanged otherwise.

Z Cleared if bit 2 of immediate operand is zero. Unchanged otherwise.

V Cleared if bit 1 of immediate operand is zero. Unchanged otherwise.

C Cleared if bit 0 of immediate operand is zero. Unchanged otherwise.

X Cleared if bit 4 of immediate operand is zero. Unchanged otherwise.

Instruction Format:

15 14 13 12 11 10 9 8 7 6 5 4 3 o
10101010101011100 1111 o o

Word Data (16 Bits)

VMPU-87

TOSHIBA

ASL

ASR

Operation

Assemble

Syntax

Attributes

Description

Arithmetic Shift

Destination Shifted by < count> -+ Destination

ASd

ASd

DX,Dy

<data>, Dy

ASd <ea>
where d is direction, L orR

Size = (Byte, Word, Long word)

TLCS-6BOOO

ASL

ASR

Arithmetically shift the bits of the operand in the direction (L or R) specified.

The carry bit receives the last bit shifted out of the operand. The shift count

for the shifting of a register may be specified in two different ways:
1. Immedicate: the shift count is specified in the instruction

(shift range, 1-8).

2. Register: the shift count is contained in a data register specified in the
instruction (shift count is modulo 64).

The size of the operation may be specified to be byte, word, or long. The

content of memory may be shifted one bit only, and the operand size is
restricted to a word.

For ASL, the operand is shifted left; the number of positions shifted is the
shift count. Bits shifted out of the high order bit go to both the carry and the

extend bits; zeroes are shifted into the low order bit. The overflow bit
indicates if any sign changes occur during the shift.

ASL: 0J----~_op_er_an_d ----,1----0

o
For ASR, the operand is shifted right; the number of positions shifted is the

shift count. Bits shifted out of the low order bit go to both the carry and the

extend bits; the sign bit (MSB) is replicated into the high order bit .

ASR: .------·1 MSB 1 Operand

I

VMPU-88

TOSHIBA TLCS-68000

ASL
ASR

ASL
ASR

Condition Codes:
X N z V C

N Set if the most significant bit of the result is set. Cleared otherwise.
Z Set if the result is zero. Cleared otherwise.

V Set ifthe most significant bit is changed at any time during the shift
operation. Cleared otherwise.

C Set according to the last bit shifted out of the operand. Cleared for a shift
count of zero.

X Set according to the last hit shifted out of the operand. Unaffected for a
shift count of zero.

Instruction Format (Register Shifts)

Instruction Fields (Register Shifts) :

CountlRegister field - Specifies shift count or register where count is located:

If i/r = 0, the shift count is specified in this field. The values 0, 1-7 represent a
range of 8, 1 to 7 respectively.

If i/r = 1, the shift count (modulo 64) is contained in the data register specified in
this field.

dr field - Specifies the direction of the shift:
o - shift right.
1 - shift left.

Size field - Specifies the size of the operation:
00 - byte operation.
01 - word operation.
10 - long operation.

VMPU-89

TOSHIBA

ASL
ASR

i/r field-
If i/r = 0, specifies immediate shift count.

If i/r = 1, specifies register shift count.

TLCS-68000

ASL
ASR

Register field - Specifies a data register whose content is to be shifted.

Instruction Format (Memory Shifts):

Instruction -Fields (Memory Shifts):

dr field - Specifies the direction of the shift:
o - shift right
1 - shfit left

Effective Address field - Specifies the operand to be shifted. Only memory alterable
addressing modes are allowed as shown:

Addr. Mode Mode Register Addr. Mode Mode Register

Dn - - d8(An, Xn) 110 . reg, number :An

An - - Abs.W 111 000

(An) 010 reg, number :An Abs.L 111 001

(An) + 011 reg, number :An d16 (PC) - -
- (An) 100 reg, number :An d8(PC, Xn) - -
d16 (An) 101 reg, number :An #<data> - -

VMPU-90

TOSHIBA

Bee

Operation

Assembler
Syntax

Attributes

Description

TLCS-68000

Branch Conditionally Bee

If (condition true) then PC + disp ~ PC;

Bcc <label>

Size = (Byte, Word)

If the specified condition is met, program execution continues at location
(PC) + displacement. The displacement is a twos complement integer which
counts the relative distance in bytes. The value in the PC is the sign
extended instruction location plus two. If the 8-bit displacement in the
instruction word is zero, then the I6-bit displacement (word immediately
following the instruction) is used. "cc" may specify the following conditions:

CC carry clear 0100 C

CS carry set 0101 C

EQ equal 0111 Z

GE greater or equal 1100 NoV+NoV

GT greater than 1110 NoVoZ+NoV·Z

HI high 0010 CoZ

LE less or equal 1111 Z+NoV+N·V

LS low orsame 0011 C+Z

LT less than 1101 NoV + N·V

MI minus 1011 N

NE not equal 0110 Z

PL plus 1010 N

VC overflow clear 1000 V.

VS overflow set 1001 V

o : Boolean AND +: Boolean OR N : Boolean NOT N

Condition Codes N at affected.

Instruction Format:

15 14 13 12 11 10 9 8 7 65432 o
o 11 11 1 0 1 Condition I 8-bit Displacement

16-Bit Displacement if 8-Bit Displacement = $00

VMPU-91

TOSHIBA TLCS-68000

Bee Bee

Instruction Fields :
Condition field - One of fourteen conditions discussed in description.

S-Bit Displacement field - Twos complement integer specifying the relative distance
(in bytes) between the branch instruction and the next instruction to be executed
if the condition is met.

16-Bit Displacement field - Allows a larger displacement than 8 bits. Uesd only if
the 8-bit displacement is equal to $00.

Note: A short branch to the immediately following instruction cannot be generated,
because it would result in a zero offset, which forces a word branch instruction
definition.

VMPU-92

TOSHIBA

BCRG

Operation

Assembler
Syntax

Attributes

Description

TLCS-68000

Test a Bit and Change

-(<bit number> of Destination) -Z;

-(< bit number> of Destination) - < bit number> of Destination

BCRG

BCRG
Dn,<ea>
#<data>, <ea>

Size = (Byte, Long word)

BCRG

A bit in the destination operand is tested and the state of the specified bit is
reflected in the Z condition code. After the test, the state of the specified bit is
changed in the destination. If a data register is the destination, then the bit
numbering is modulo 32 allowing bit manipulation on all bits in a data
register. If a memory location is the destination, a byte is read from that
location, the bit operation is performed using the bit number, modulo 8, and
the byte is written back to the location. In all cases, bit zero refers to the least
significant bit. The bit number for this operation may be specified in two
different ways:
1. Immediate - the bit number is specified in a second word of the

instruction.
2. Register - the bit number is contained in a data register specified in the

instruction.

Condition Codes:
X N Z V c

1-1-1*1-1-1

N Not affected.

Z Set if the bit tested is zero. Cleared otherwise.
V Not affected.
C Not affected.
X Not affected.

VMPU-93

TOSHIBA TLCS-68000

BCRG BCRG

Instruction Fields (Bit Number Dynamic) :

Register field - Specifies the data register whose content is the bit number.
Effective Address field - Specifies the destination location. Only data alterable
addressing modes are allowed as shown:

Addr. Mode Mode Register Addr. Mode Mcide Register

Dn * 000 reg, number :Dn d8 (An, Xn) 110 reg, number :An

An - - Abs.W 111 000

(An) 010 reg, number :An Abs.L 111 001

(An) + 011 reg, number :An d16 (PC) - -
- (An) 100 reg, number :An d8(PC, Xn) - -
d16(An) 101 reg, number :An #<data> - -

* : Long word only; all others are byte only.

Instruction Format (Bit Number Static, Specified as immedicate data) :

15 14 13 12 11 10 9 8 7 6 5 4 3 2 a
a a a a 1 a a a °1 1 J

Effective
t
Add ress

Mode Reqister

a a a a a a a a Bit Number

Instruction Fields (Bit Number Static) :
Effective Address field - Specifies the destination location. Only data alterable
addressing modes are allowed as shown:

Addr. Mode Mode Register Addr. Mode Mode Register

Dn * 000 reg, number :Dn d8(An, Xn) 110 reg, number :An

An - - Abs.W 111 000

(An) 010 reg, number :An Abs.L 111 001

(An) + 011 reg, number :An d16 (PC) - -
- (An) 100 reg, number :An d8 (PC, Xn) - -
d16(An) 101 reg, number :An #<data> - -

* : Long word only; all others are byte only.

Bit Number field -Specifies the bit number.

VMPU-94

TOSHIBA

BCLR

Operation

Assembler
Syntax

Attributes

Description

TLCS-68000

Test a Bit and Clear

-(<bitnumber> of Destination) ~Z;
o ~ <bit number > of De stinati on

BCLR

BCLR
Dn, <ea>
#<data>, <ea>

Size = (Byte, Long word)

BCLR

A bit in the destination operand is tested and the state of the specified bit is
reflected in the Z condition code. After the test, the specified bit is cleared in
the destination. If a data register is the destination, then the bit numbering
is modulo 32 allowing bit manipulation on all bits in a data register. If a

memory location is the destination, a byte is read from that location, the bit
operation performed using the bit number, modulo 8, and the byte written
back to the location. In all cases, bit zero refers to the least significant bit.
The bit number for this operation may be specified in two different ways:
1. Immedicate - the bit number is specified in a second word of the

instruction.
2. Register -the bit number is contained in a data register specified in the

instruction.

Condition Codes:
X N Z V c

I - I - I * I - I

N Not affected.
Z Set if the bit tested is zero. Cleared otherwise.
V Not affected.
C Not affected.
X Not affected.

Instruction Fields (Bit Number Dynamic) :

Register field - Specifies the data register whose content is the bit number.

VMPU-95

TOSHIBA

BCLR

Effective Address field - Specifies the destination location.
Only data alterable addressing modes are allowed as shown:

Addr. Mode Mode Register Addr. Mode Mode

On • 000 reg. number :On d8 (An. Xn) 110

An - - AbsW 111

(An) 010 reg. number :An Abs.L 111

(An) + 011 reg. number :An d16 (PC) -
- (An) 100 reg. number :An d8 (PC. Xn) -
d16 (An) 101 reg. number :An #<data> -

* : Long only; all others are byte only.

Instruction Format (Bit Number Static, specified as immediate data):

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

0 0 0 0 1 0 0 0 1 I 0 I Effectivel Address
Mode Register

0 0 0 0 0 0 0 0 Bit Number

Instruction Fields (Bit Number Static) :
Effective Address field - Specifies the destination location.

Only data alterable addressing modes are allowed as shown:

Addr. Mode Mode Register Addr. Mode Mode

On * 000 reg. number :On d8 (An. Xn) 110

An - - Abs.W 111

(An) 010 reg. number :An Abs.L 111

(An) + 011 reg. number :An d16 (PC) -
- (An) 100 reg. number :An dB (PC. Xn) -
d16 (An) 101 reg. number :An #<data> -

• : Long only; all others are byte only.

Bit Number field -Specifies the bit number.

VMPU-96

TLCS-68000

BCLR

Register

reg. number :An

000

001

-
-
-

Register

reg. number :An

000

001

-
-
-

TOSHIBA

BKPT

Operation

Assembler

Syntax

Attributes

Description

TLCS-68000

Breakpoint

Execute breakpoint acknowledge bus cycle;

Trap as illegal instruction

BKPT #<data>

Unsized

BKPT

This instruction is used to support the program breakpoint function for debug

monitors and real-time hardware emulators, and the operation will be

dependent on the implementation. Execution of this instruction will cause

the TMP68010 to run a breakpoint acknowledge bus cycle (all function codes

driven high) and zeros on all address lines.

Whether the breakpoint acknowledge bus cycle is terminated with

DTACK, BERR, or VPA, the processor always

takes an illegal instruction exception. During exception processing, a debug

monitor can distinguish eight different software breakpoints by decoding the

field in the BKPT instruction.

For the TMP68000 and TMP68008, this instruction causes an illegal

instruction exception but does not run the breakpoint acknowledge bus cycle.

Condition Codes : Not affected.

Instruction Format:

15 14 13 12 11 10 9 8 7 6 5 4 3 210

BKPT#

Instruction Fields

BKPT # = Immediate data (value = 0-7), encodes 8 software breakpoints.

VMPU-97

TOSHIBA

BRA

Operation

Assembler
Syntax

Attributes

Description

TLCS-68000

Branch Always BRA

PC + disp~PC

BRA <label>

Size = (Byte, Word)

Program execution continues at location (PC) + displacement. The
displacement is a twos complement integer, which counts the relative
distance in bytes. The value in the PC is the instruction location plus two. If
the 8-bit displacement in the instruction word is zero, then the 16-bit
displacement (word immediately following the instruction) is used.

Condition Codes Not affected.

Instruction Format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

o 11 11 1 0 1 0 1 0 1 0 1 0 1 8-Bit Displacement

16-Bit Displacement if 8-Bit Displacement = $00

Instruction Fields :
8-Bit Displacement field - Two complement integer specifying the relative distance
(in bytes) between the branch instruction and the next instruction to be executed

16-Bit Displacement field - Allows a larger displacementthan 8 bits. Used only if the
8-bit displacement is equal to $00.

Note: A short branch to the immediately following instruction cannot be generated
because it would result in a zero offset, which forces a word branch instruction
definition.

VMPU-98

TOSHIBA

BSET

operation

Assembler

Syntax

Attributes

Description

TLCS-68000

Test a Bit and Set

-(<bit number> of Destination) ~Z;

1 ~ <bit number> of Destination

BSET

BSET

Dn,<ea>

#<data>, <ea>

Size = (Byte, Long word)

BSET

A bit in the destination operand is tested, and the state of the specified bit is

reflected in the Z condition code. After the test, the specified bit is set in the
destination. If a data register is the destination, then the bit numbering is

modulo 32, allowing bit manipulation on all bits in a data register. If a

memory location is the destination, a byte is read from that location, the bit
operation performed using the bit number, modulo 8, and the byte written

back to the location. Bit zero refers to the least significant bit. The bit

number for this operation may be specified in two different ways:
1. Immediate - the bit number is specified in a second word of the

instruction.

2. Register - the bit number is contained in a data register specified in the
instruction.

Condition Codes:

X N Z V c
I - I I *
N Not affected.

Z Set if the bit tested is zero. Cleared otherwise.

V Not affected.
C Not affected.

X Not affected.

Instruction Format (Bit Number Dynamic, specified in a register) :

Instruction Fields (Bit Number Dynamic) :

Register field - Specifies the data register whose content is the bit number.

Effective Address field - Specifies the destination location. Only data alterable

addressing modes are allowed as shown:

VMPU-99

TOSHIBA TLCS-68000

BSET BSET

Addr. Mode Mode Register Addr. Mode Mode Register

Dn * 000 reg. number :Dn d8 (An. Xn) 110 reg. number :An

An - - Abs.W 111 000

(An) 010 reg. number :An Abs.L 111 001

(An) + 011 reg. number :An d16 (PC) - -
- (An) 100 reg. number :An d8 (PC. Xn) - -
d16(An) 101 reg. number :An #<data> - -

* : Long word only; all others are byte only.

Instruction Format (Bit Number Static, specified as immediate data) :

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

0 0 0 0 1 0 0 0 1 I 1 I Effectivel Add ress
Mode Reqister

0 0 0 0 0 0 0 0 Bit Number

Instruction Fields (Bit Number Static) :
Bit Number field - Specifies the bit number.
Effective Address field - Specifies the destination location. Only data alterable
addressing modes are allowed as shown:

Addr. Mode Mode Register Addr. Mode Mode Register

Dn * 000 reg. number :Dn d8 (An. Xn) 110 reg, number :An

An - - Abs.W 111 00.0

(An) 010 reg. number :An Abs.L 111 001

(An) + 011 reg, number :An d16 (PC) - -
- (An) 100 reg, number :An d8 (PC, Xn) - -
d16(An) 101 reg. number :An #<data> - -

* : Long word only; all others are byte only.

VMPU-100

TOSHIBA TLCS-68000

BSR Branch to subroutine BSR

Operation

Assembler
Syntax

SP - 4 ~ SP; PC ~ (SP);

BSR <label>

PC + disp~PC

Attributes

Description

Size = (Byte, Word)

The long word address of the instruction immediately following the BSR
instruction is pushed onto the system stack. Program execution then
continues at location (PC) + displacement. The displacement in a twos
complement integer which counts the relative distances in the bytes. The
value in the PC is the instruction location plus two. If the 8-bit displacement
in the instruction word is zero, then the I6-bit displacement (word
immediately following the instruction) is used.

Condition Codes Not affected.

Instruction Format:

15 14 13 12 11 10 S 8 7 6 5 4 3 2 0

o 11 11 1 0 1 0 1 0 1 0 11 1 8-Bit Displacement

16-Bit displacement if 8-Bit Displacement = $00

Instruction Fields :
8-Bit Displacement field - Twos complement integer specifying the relative distance
(in bytes) between the branchinstruction and the next instruction to be executed.

I6-Bit Displacement field - Allows a larger displacement than 8 bits. Used only if the
8-bit displacement is equal to $00.

Note: A short subroutine branch to the immediately following instruction cannot be
generated because it would result in a zero offset, which forces a word branch
instruction defmition.

VMPU-101

TOSHIBA

BTST

Operation

Assembler
Syntax

Attributes

Description

TLCS-68000

Test a Bit

-(< bit number> of Destination) -+ Z;

BTST

BTST

Dn, <ea>

#<data>, <ea>

Size = (Byte, Long word)

BTST

A bit in the destination operand is tested, and the state of the specified bit is
reflected in the Z condition code. If a data register is the destination, then the

bit numbering is modulo 32, allowing bit manipulation on all bits in a data
register. If a memory location is the destination, a byte is read from that

location, and the bit operation performed using the bit number, modulo 8,

with zero referring to the least significant bit. The bit number for this
operation may be specified in two different ways:

1. Immediate - the bit number is specified in a second word of the

instruction.
2. Register - the bit number is contained in a data register specified in

theinstruction.

Condition Codes:
X N

I - I
N Not affected.
Z Set ifthe bit tested is zero. Cleared otherwise.

V Not affected.

C Not affected.

X Not affected.

Instruction Format (Bit Number Dynamic, specified in a register) :

Instruction Fields (Bit Number Dynamic) :

Register field - Specifies the data register whose content is the bit number.

Effective Address field - Specifies the destination location. Only data addressing modes
are allowed as shown:

VMPU-102

TOSHIBA TLCS-68000

BTST BTST

Addr. Mode Mode Register Addr. Mode Mode Register

On * 000 reg, number :On d8 (An, Xn) 110 reg, number :An

An - - AbsW 111 000

(An) 010 reg, number :An Abs.L 111 001

(An) + all reg, number :An d16 (PC) 111 010

- (An) 100 reg, number :An d8 (PC, Xn) 111 011

d16 (An) 101 reg, number :An #<data> 111 100

* : Long word only; all others are byte only.

Instruction Format (Bit Number Static, specified as immediate data) :

15 14 13 P 11 10 9 8 7 6 5 4 3 2 a ~

a a a a 1 a 0 a a 101
Effectivel Add ress
Mode Register

a a a a a a a a Bit Number

Instruction Fields (Bit Number Static) :

Bit Number field -Specifies the bit number.

Effective Address field - Specifies the destination location. Only data addressing modes

are allowed as shown:

Addr. Mode Mode Register Addr. Mode Mode Register

On * 000 reg, number :On d8 (An, Xn) 110 reg, number :An

An - - AbsW 111 000

(An) 010 reg, number :An Abs.L 111 001

(An) + all reg, number :An d16 (PC) 111 010 _.
- (An) 100 reg, number :An d8 (PC, Xn) 111 all

d 16 (An) 101 reg, number :An #<data> - -
* : Long word only; all others are byte only.

VMPU-103

TOSHIBA

CHK

Operation

Assembler
Syntax

Attributes

Description

TLCS-68000

Check Register Against Bounds CHK

If Dn < 0 or Dn> Source then TRAP;

CHK <ea>,Dn

Size = (Word)

The content of the low order word in the data register specified in the

instruction is examined and compared to the upper bound. The upper bound

is a twos complement integer. If the register value is less than zero or greater
than the upper bound, then the processor initiates exception processing. The

vector number is generated to reference the CHK instruction exception

vector.

Condition Codes
X N z V C

U U U

N Set if Dn < 0; cleared if Dn > Source. U ndifined otherwise.

Z Undefined.
V Undefined.

C Undefined.
X Not affected.

Instruction Format:

Instruction Fields :
Register field - Specifies the data register whose content is checked.

Effective Address field - Specifies the upper bound operand word.

Only data addressing modes are allowed as shown:

Addr. Mode Mode Register Addr. Mode Mode

Dn 000 reg. number :Dn d8 (An. Xn) 110

An - - Abs.W 111

(An) 010 reg. number :An Abs.L 111

(An) + 011 reg. number :An d16(PC) 111

- (An) 100 reg. number :An d8 (PC. Xn) 111

d16 (An) 101 reg. number :An #<data> 111

VMPU·104

Register

reg. number :An

000

001

010

011

100

TOSHIBA

CLR

Operation

Assembler

Syntax

Attributes

TLCS-68000

Clear an Operand CLR

a --+ Destination

CLR <ea>

Size = (Byte, Word, Long word)

Description The destination is cleared to all zero. The size of the operation may be

specified to be byte, word, or long word.

Condition Codes
X N Z V C

I - I 0 0 0

N Always cleared.

Z Always set.

V Always cleared.

C Always cleared.

X Not affected.

Instruction Format:

Instruction Fields :

Size field - Specifies the size of the operation.

00 - byte operation.

01 - word operation.

10 - long word operation.

Effective Address field - Specifies the destination location. Only data alterable addressing

modes are allowed as shown:

Addr. Mode Mode Register Addr. Mode Mode Register

Dn 000 reg, number :Dn d8 (An, Xn) 110 reg, number :An

An - - AbsW 111 000

(An) 010 reg, number :An Abs.L 111 001

(An) + 011 reg, number :An d16 (PC) - -
- (An) 100 reg, number :An d8 (PC, Xn) - -
d16 (An) 101 reg, number :An #<data> - -

Note: A memory destination is read before it is written to.

VMPU-105

TOSHIBA

CMP

Operation

Assembler
Syntax

Attributes

TLCS-68000

Compare CLP

Destination - Source

CMP <ea>,Dn

Size = (Byte, Word, Long word)

Description Subtract the source operand from the specified data register and set the
condition codes according to the result; the data register is not changed. The

size of the operation may be byte, word, or long word.

Condition Codes
X N Z V c

1-1*1*1*1*
N Set if the result is negative. Cleared otherwise.
Z Set if the result is zero. Cleared otherwise.
V Set if an overflow is generated. Cleared otherwise.
C Set if a borrow is generated. Cleared otherwise.
X Not affected.

Instruction Format:

Instruction Fields :
Register field - Specifies the destination data register.
Op-Mode field -

Byte Word Long word
000 001 010

Operation
Dn- «ea»

Effective Address field -Specifies the source operand. All addressing modes are allowed
as shown:

VMPU-106

TOSHIBA TLCS-68000

CMP CMP

Addr. Mode Mode Register Addr. Mode Mode Register

Dn 000 reg, number :Dn d8 (An, Xn) 110 reg, number :An

An * 001 reg, number :An Abs.w 111 000

(An) 010 reg, number :An Abs.L 111 001

(An) + 011 reg, number :An d16(PC) 111 010

- (An) 100 reg, number :An d8 (PC, Xn) 111 011

d16 (An) 101 reg, number :An #<data> 111 100

* : Word and Long word only.

Note: CMP A is used when the destination is an address register. CMPI is used when

the source is immediate data. CMPM is used for memory to memory compares.

Most assemblers automatically make this distinction.

VMPU-107

TOSHIBA TlCS-68000

CMPA

Operation

Assembler
Syntax

Attributes

Compare Address CMPA

Destination - Source

CMPA <ea>,An

Size = (Word, Long word)

Description Subtract the source operand from the destination address register and set the

condition codes according to the result; the address register is not changed.

The size of the operation may be specified to be word or long word. Word
length source operands are sign extended to 32-bit quantities before the

operation is done.

Condition Codes
X N Z v c

N Set if the result is negative. Cleared otherwise.

Z Set if the result is zero. Cleared otherwise.

V Set if an overflow is generated. Cleared otherwise.
C Set if a borrow is generated. Cleared otherwise.

X Not affected.

Instruction Format:

Instruction Fields :

Register field - Specifies the destination data register.

Op-Mode field - Specifies the size of the operation:
011 - word operation. The source operand is sign-extened to a long operand and

the operation is performed on the address register using all 32 bits.

111 - long operation.
Effective Address field -Specifies the source operand. All addressing modes are

allowed as shown:

VMPU-108

TOSHIBA TLCS-68000

CMPA CMPA

Addr. Mode Mode Register Addr. Mode Mode Register

Dn 000 reg, number :Dn d8 (An, Xn) 110 reg, number :An

An 001 reg, number :An Abs.w 111 000

(An) 010 reg, number :An Abs.L 111 001

(An) + 011 reg, number :An d16 (PC) 111 010

- (An) 100 reg, number :An d8 (PC, Xn) 111 011

d16(An) 101 reg, number :An #<data> 111 100

VMPU-109

TOSHIBA TLCS-68000

CMPI

Operation

Assembler
Syntax

Attributes

Compare Immediate CMPI

Destination - Immediate Data

CMPI #<data>, <ea>

Size = <Byte, Word, Long word)

Description Subtract the immediate data from the destination operand and set the

condition codes according to the result; the destination location is not

changed. The size of the operation may be specified to be byte, word, or long

word. The size of the immediate data matches the operation size.

Condition Codes

X N Z V c
1-1*1*1*1*
N Set if the result is negative. Cleared otherwise.
Z Set if the result is zero. Cleared otherwise.

V Set if an overflow is generated. Cleared otherwise.

C Set if a borrow is generated. Cleared otherwise.
X Not affected.

Instruction Format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

o 1 0 1 0 1 0 11 11 I 0 1 0 1 Size 1

Word Data I
Lonq word Data

Instruction Fields :

Size field - Specifies the size of the operation:
00 - byte operation.

01 - word operation.

10 - long word operation.

Effective Add ress
Mode i Reqister

Byte Data

Effective Address field - Specifies the destination operand. Only data alterable
addressing modes are allowed as shown:

VMPU·110

TOSHIBA TLCS-68000

CMPI CMPI

Addr. Mode Mode Register Addr. Mode Mode Register

Dn 000 reg. number :Dn d8 (An. Xn) 110 reg. number :An

An - - Abs.w 111

(An) 010 reg. number :An Abs.L 111

(An) + 011 reg. number :An d16 (PC) -
- (An) 100 reg. number :An d8 (PC. Xn) -
d16(An) 101 reg. number :An #<data> -

Immediate field - (Data immediately following the instruction) :

If size = 00, then the data is the low order byte of the immediate word.

If size = 01, then the data is the entire immeidate word.

If size = 10, then the data is the next two immediate words.

VMPU-111

000

001

-
-
-

TOSHIBA TLCS-68000

CMPM

Operation

Assembler
Syntax

Attributes

Compare Memory CMPM

Destination - Source

CMPM (Ax) +, (Ay) +

Size = (Byte, Word, Long word)

Description Subtract the source operand form the destination operand, and set the
condition codes according to the results; the desti.nation location is not

changed. The operands are always addressed with the postincrement
addressing mode, using the address registers specified in the instruction.
The size ofthe operation may be specified to be byte, word, or long word.

Condition Codes
X N Z V c

1-1*1*1*1*

N Set if the result is negative. Cleared otherwise.
Z Set if the result is zero. Cleared otherwise.
V Set if an overflow is generated. Cleared otherwise.
C Set if a borrow is generated. Cleared otherwise.
X Not affected.

Instruction Format:
15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

1 1 1 0 1 1 1 Register Ay Size 0 0 Register Ax

Instruction Fields
Register Ay field - (always the destination) Specifies an address register for the
postincrement addressing mode.

Size field - Specifies the size of the operation:
00 - byte operation.
01 - word operation.

10 - long word operation.
Register Ax field - (always the source) Specifies an address register for the
postincrement addressing mode.

VMPU·112

TOSHIBA

DBcc

Operation

Assembler
Syntax

Attributes

Description

CC

CS

EO

F

GE

GT

HI

LE

LS

LT

MI

NE

PL

T

VC

VS

Test Condition, Decrement,

and Branch

TLCS-68000

DBcc

If condition false then (Dn -1 --+ Dn; ifDn =1= -1 then PC + disp --+ PC):

DBcc Dn, <label>

Size = (Word)

This instruction is a looping primitive of three parameters: a condition, a
counter (data register), and a displacement. The instruction first tests the
condition to determine if the termination condition for the loop has been met,
and if so, no operation is performed. If the termination condition is not true,

the low order 16-bits of the counter data register are decremented by one. If
the result is -1, the counter is exhausted and execution continues with the
next instruction. If the result is not equal to -1, execution continues at the
location indicated by the current value of the PC plus the sign-extended 16-
bit displacement. The value in the PC is the current instruction location plus

two.

"cc" may specify the following conditions:

carry clear 0100 C

carry set 0101 C

equal 0111 Z

never true 0001 0
greater or equal 1100 NoV+NoV

greater than 1110 NoVoZ+NoVoZ

high 0010 CoZ

less or equal 1111 Z+NoV+NoV

low orsame 0011 C+Z

less than 1101 NOV+NoV

minus 1011 N

not equal 0110 Z

plus 1010 N

always true 0000 1

overflow clear 1000 V

overflow set 1001 V

o = Boolean AND + Boolean OR N = Boolean NOT N

VMPU·113

TOSHIBA TLCS-68000

DBcc DBcc

Condition Codes Not affected.

Instruction Format:

15 14 13 12 11 10 9 8 7 6 543 2 0

o 11 1 0 11 1 Condition Register

Displacement

Instruction Fields :
Condition field - One of the sixteen conditions discussed in discription.
Register field - Specifies the data register which is the counter.
Displacement field - Specifies the distance of the branch (in bytes).

Notes: 1. The terminating condition is like that definedby the UNTIL loop constructs of
high-level languages. For example: DBMI can be stated as "decrement and
branch until minus".

2. Most assemblers accept DBRA for DBF for use when no condition is required for
termination of a loop.

3. There are two basic ways of entering a loop: at the beginning or by branching to
the trailing DBcc instruction. If a loop structure terminated with DBcc is
entered at the beginning, the control index count must be one less than the
number of loop executions desired. This count is useful for indexed addressing
modes and dynamically specified bit operations. However, when entering a loop
by branching directly to the trailing DBcc instruction, the control index should
equal the loop execution count. In this case, if a zero count occurs, the DBcc
instruction will not branch, causing a complete bypass of the main loop.

VMPU-114

TOSHIBA

Drvs

Operation

Assembler
Syntax

Attributes

Description

TLCS-68000

Signed Divide Drvs

Destination/Source --+ Destination

DIVS <ea>,Dn 32/16--+ 16r :16g

Size = (Word)

Divide the destination operand by the source and store the result in the
destination. The operation is performed using signed arithmetic.

The destination operand is a long word and the source operand is a word. The
result is 32-bits, such that the quotient is in the lower word (least significant

16 bits)of the destination and the remainder is in the upper word (most

significant 16 bits) of the destination. Note that the sign of the remainder is

the same as the sign of the dividend.

Two special conditions may arise during the operation:
1. Division by zero causes a trap.
2. Overflow may be detected and set before completion of the instruction. If

overflow is detected, the condition is flagged but the operands are

unaffected.

Condition Codes:

X N Z V c
1-1*1*1*10
N Set if the quotient is negative. Cleared otherwise. Undefined if overflow

or divide by zero.

Z Set if the quotient is zero. Cleared otherwise. Undefined if overflow or

divide by zero.

V Set if division overflow is detected. Cleared otherwise.
C Always cleared.

X Not affected.

Instruction Format:

VMPU-11S

TOSHIBA TLCS-68000

Drvs Drvs

Instruction Fields :
Register field - Specifies any of the eight data registers. This field always specifies the

destination operand.

Effective Address field - Specifies the source operand. Only data addressing modes are
allowed as shown:

Addr. Mode . Mode Register Addr. Mode Mode Register

Dn 000 reg. number :Dn d8 (An. Xn) 110 reg. number :An

An - - Abs.w 111 000

(An) 010 reg. number :An Abs.L 111 001

(An) + all reg. number :An d16 (PC) 111 010

- (An) 100 reg. number :An d8 (PC. Xn) 111 all

d16 (An) 101 reg. number :An #<data> 111 100

Note: Overflow occurs if the quotient is larger than a 16-bit signed integer.

VMPU·116

TOSHIBA

Drvu

Operation

Assembler
Syntax

Attributes

Description

TLCS-68000

Unsigned Divide Drvu

Destination/Source ~ Destination

DIVU <ea>,Dn 32/16 ~ 16r:16q

Size = (Word)

Divide the destination operand by the source and store the result in the
destination. The operation is performed using unsigned arithmetic.

The destination operand is a long word and the source operand is a word. The
result is 32-bits, such that the quotient is in the lower word (least significant

16-bits) of the destination and the remainder is in the upper word (most
significant 16 bits) of the destination. Note that the sign of the remainder is
the same as the sign of the dividend.
Two special conditions may arise during the operation:
1. Division by zero causes a trap.
2. Overflow may be detected and set before completion of the instruction. If

overflow is detected, the condition is flagged but the operands are

unaffected.

Condition Codes
X N Z V c

1-1*1*1* 0

N Set if the quotient is negative. Cleared otherwise. Undefined if overflow
or divide by zero.

Z Set if the quotient is zero. Cleared otherwise. Undefined if overflow or

divideby zero.
V Set if division overflow is detected. Cleared otherwise.
C Always cleared.
X Not affected.

Instruction Format:

VMPU-117

TOSHIBA TLCS-68000

DIVU DIVU

Instruction Fields :
Register field - Specifies any of the eight data registers. This field always spesifies the

destination operand.

Effective Address field - Specifies the source operand. Only data addressing modes
are allowed as shown:

Addr. Mode Mode Register Addr. Mode Mode Register

On 000 reg, number :On d8 (An, Xn) 110 reg, number :An

An - - Abs.W 111 000

(An) 010 reg, number :An Abs.L 111 001

(An) + 011 reg, number :An d16 (PC) 111 010

- (An) 100 reg, number :An d8 (PC, Xn) 111 all

d16 (An) 101 , reg, number :An #<data> 111 100

Note: , Overflow occurs if the quotient is larger than a 16-bit unsigned integer.

VMPU-118

TOSHIBA

EaR

Operation

Assembler

Syntax

Attributes

Description

TLCS-68000

Exclusive OR Logical EaR

Source \B Destination ~ Destination

EOR Dn, <ea>

Size = (Byte, Word, Long word)

Exclusive OR the source operand to the destination operand and store the

result in the destination location. The size of the operation may be specified

to be byte, word, or long word. This operation is restricted to data registers as
the source operand. The destination operand is specified in the effective

address field.

Condition Codes:
X N Z V C

\-***\0

N Set if the most significant bit of the result is set. Cleared otherwise.

Z Set if the result is zero. Cleared otherwise.

V Always cleared.
C Always cleared.

X Not affected.

Instruction Format (word form) :

Instruction Fields :

Register field - Specifies any of the eight data registers.
Op-Mode field -

Byte

100
Word

101
Long word

110

Operation

<ea> IB <Dx> ~ <ea>

Effective Address field -Specifies the destination operand. Only data alterable

addressing modes are allowed as shown:

VMPU-119

TOSHIBA TLCS-68000

EOR EOR

Addr. Mode Mode Register Addr. Mode Mode Register

Dn 000 reg, number :Dn da (An, Xn) 110 reg, number :An

An - - Abs.w 111 000

(An) 010 reg, number :An Abs.L 111 001

(An) + 011 reg, number :An d16 (PC) 111 010

- (An) 100 reg, number :An da (PC, Xn) 111 011

d16 (An) 101 reg, number :An #<data> 111 100

Note: Memory to data register operations are not allowed. EORI is used when the
source is immediate data. Most assemblers automatically make this
distinction.

VMPU-120

TOSHIBA

EORI

Operation

Assembler
Syntax

Attributes

TLCS-68000

Exclusive OR Immediate EORI

Immediate Data EB Destination --+ Destination

EORI #<data>, <ea>

Size = (Byte, Word, Long word)

Description Exclusive OR the immediate data to the destination operand and store the
result in the destination location. The size of the operation may be specified
to be byte, word, or long word. The immediate data matches the operation
size.

Condition Codes
X N Z V c

I - I * I * 0 0

N Set if the most significant bit of the result is set. Cleared otherwise.
Z Set if the result is zero. Cleared otherwise.
V Always cleared.
C Always cleared.
X Not affected.

Instruction Format:
15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

o 1 0 1 0 1 0 11 1 0 11 1 0 1 Size 1 Effective Address
Mode I Register

Word Data (16 Bits) I Byte Data (8Bits)
Long word Data (32 Bits, including Previous Word)

Instruction Fields :
Size field - Specifies the size of the operation:

00 - byte operation.
01 - word operation.
10 - long word operation.

Effective Address field - Specifies the destination operand. Only data alterable
addressing modes are allowed as shown:

VMPU-121

TOSHIBA TLCS-68000

EORl EORl

Addr. Mode Mode Register Addr. Mode Mode Register

Dn 000 reg, number :Dn d8(An, Xn) 110 reg, number :An

An - - AbsW 111

(An) 010 reg, number :An Abs.L 111

(An) + 011 reg, number :An d16 (PC) -
- (An) 100 reg, number :An d8(PC, Xn) -
d16 (An) 101 reg, number :An #<data> -

Immediate field - (Data immediately following the instruction):
If size = 00, then the data is the low order byte of the immediate word.
Ifsize = 01, then the data is the entire immediate word.
If size = 10, then the data is next two immediate words.

VMPU-122

000

001

-
-
-

TOSHIBA TLCS-68000

EORIto CCR Exclusive OR Immediate

to Condition Code

EORItoCCR

Operation

Assembler
Syntax

Attributes

Description

Source EEl CCR - CCR

EORl #<data>, CCR

Size = (Byte)

Exclusive OR the immediate operand with the condition codes and store the

result in the low-order byte of the status register.

Condition Codes
X N Z V c

I * I * I * I * I * I
N Changed if bit 3 of immediate operand is one. Unchanged otherwise.
Z Changed if bit 2 of immediate operand is one. Unchanged otherwise.
V Changed if bit 1 of immediate operand is one. Unchanged otherwise.
C Changed if bit 0 of immediate operand is one. Unchanged otherwise.
X Changed if bit 4 of immediate operand is one. Unchanged otherwise.

VMPU-123

TOSHIBA TLCS-68000

EORItoSR Exclusive OR Immediate EORIto SR

Operation

Assembler
Syntax

Attributes

Description

to the Status Register (Privileged Instruction)

If supervisor state

then Source EEl SR - SR
else TRAP;

EORI #<data>, SR

Size = (Word)

Exclusive OR the immediate operand with the contents of the status register
and store the result in the status register. All bits of the status register are

affected.

Condition Codes
X N Z V c

1*1*1*1*1*1
N Changed ifbit 3 of immediate operand is one. Unchanged otherwise.
Z Changed if bit 2 ofimmediate operand is one. Unchanged otherwise.
V Changed ifbit 1 of immediate operand is one. Unchanged otherwise.

C Changed if bit 0 of immediate operand is one. Unchanged otherwise.
X Changed if bit 4 of immediate operand is one. Unchanged otherwise.

Instruction Format:

15 o
o o

Word Data (16 Bits)

VMPU-124

TOSHIBA

EXG

Operation

Assembler
Syntax

Attributes

Xx-Xy

EXGDx,Dy
EXGAx,Ay

EXGDx,Ay

Exchange Register

Size = (Long word)

TLCS-68000

EXG

Description Exchange the contents of two registers. This exchange is always a long (32-

bit) operation. Exchange works in three modes:
1. Exchange data registers.
2. Exchange address registers.
3. Exchange a data register and an address register.

Condition Codes Not affected.

Instruction Format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

I 1 I 1 I 0 I 0 I Register Xx Op·Mode Register Xy

Instruction Fields :
Register Xx field - Specifies either a data register or an address register depending on
the mode. If the exchange is between data and addrress registers, this field always
specifies the data register.
Op-Mode field - Specifies whether exchanging:

01000 - data registers.
01001 - address registers.
10001 - data register and address register.

Register Xy field - Specifies either a data register or an address register depending on
the mode. If the exchange is between data and address registers, this field always
specifies the address register.

VMPU-125

TOSHIBA

EXT

Operation

Assembler
Syntax

Attributes

TLCS-68000

Sign Extend EXT

Destination Sign-extended --+ Destination

EXT Dn

Size = (Word, Long word)

Description Extend the sign bit of a data register from a byte to a word, or from a word to
a long word, depending on the size selected. If the operation is word, bit [7] of
the designated data register is copied to bits [15:8] of that data register. If the
operation is long, bit [15] of the designated data register is copied to bits
[31:16] of the data register.

Condition Codes
X N Z V c

1-1*1*1 0 10 1

N Set if the result is negative. Cleared otherwise.
Z Set if the result is zero. Cleared otherwise.
V Always cleared.
C Always cleared.
X Not affected.

Instruction Format:

15 14 13 12 11 10 9 8 7 654 3 2 0

1 0 I 1 I 0 I 0 I I 0 I 0 Op·Mode 0 I 0 0 Register On

Instruction Fields :
Op-Mode field - Specifies the size of the sign-extension operation:

010 - Sign-extend low order byte of data register to word.
011 - Sign-extend low order word of data register to long word.

Register field - Specifies the data register whose content is to be sign-extended.

VMPU-126

TOSHIBA

ILLEGAL

Operation

Assembler
Syntax

Attributes

Description

Condition Codes

Take Illegal Instruction Trap

SSP - 2 --+ SSP;

SSP - 4 --+ SSP;
SSP - 2 --+ SSP;

Vector Offset --+(SSP);
PC--+(SSP);
SR--+(SSP);

Illegal Instruction Vector Address --+ PC

ILLEGAL

Unsized

TLCS-68000

ILLEGAL

This bit pattern causes an illegal instruction exception. All other illegal
instruction bit patterns are reserved for future exception of the

instruction set.
The TMP68010 will first write the exception vector offset and format code
to the system stack followed by the PC and SR to complete a 4-word
exception stack frame.

Not affected.

Instruction Format:
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

o I 0 I

VMPU-127

TOSHIBA
JMP

Operation

Assembler
Syntax

Destination Address ~ PC

JMP <ea>

Attributes Unsized

TlCS-68000

Jump JMP

Description Program execution continues at the effective address specified by the
instruction. The address is specified by the control addressing modes.

Condition Codes Not affected.

Instruction Format:

Instruction Fields :
Effective Address field - Specifies the address of the next instruction. Only control

addressing modes are allowed as shown:

Addr. Mode Mode Register Addr. Mode Mode Register

Dn - - d8(An, Xn) 110 reg, number :An

"An - - Abs.w 111 000

(An) 010 reg, number :An Abs.L 111 001

(An) + - - d16 (PC) 111 010

- (An) - - d8 (PC, Xn) 111 011

d16 (An) 101 reg, number :An #<data> - -

VMPU·128

TOSHIBA

JSR

Operation

Assembler

Syntax

Attributes

Description

Condition Codes

TLCS-68000

Jump to Subroutine JSR

SP -4 --+SP; PC--+(SP);

Destination Address --+ PC

JSR <ea>

Unsized

The long word address of the instruction immediately following the JSR
instruction is pushed onto the system stack. Program execution then
continues at the address specified in the instruction.

Not affected.

Instruction Format:

Instruction Fields :
Effective Address field - Specifies the address of the next instruction. Only control
addressing modes are allowed as shown:

Addr. Mode Mode Register Addr. Mode Mode Register

Dn - - d8 (An, Xn) 110 reg, number :An

An - - Abs.W 111 000

(An) 010 reg, number :An Abs.L 111 001

(An) + - - d16 (PC) 111 010

- (An) - - d8 (PC, Xn) 111 011

d16(An) 101 reg, number :An #<data> - -

VMPU-129

TOSHIBA

LEA

Operation

Assembler
Syntax

Attributes

TLCS-68000

Load Effective Address LEA

<ea>-An

LEA <ea>,An

Size = (Long word)

Description The effective address is loaded into the specified address register. All 32 bits
of the address register are affected by this instruction.

Condition Codes Not affected.

Instruction Format:

Instruction Fields :
Register field - Specifies the address register which is to be loaded with the effective
address.
Effective Address field - Specifies the address to be loaded into the address register.
Only control addressingmodes are allowed as shown:

Addr. Mode Mode Register Addr. Mode Mode Register

On - - d8 (An, Xn) 110 reg, number :An

An - - Abs.w 111 000

(An) 010 reg, number :An Abs.L 111 001

(An) + - - d16 (PC) 111 010

- (An) - - d8 (PC, Xn) 111 011

d16 (An) 101 reg, number :An #<data> - -

VMPU-130

TOSHIBA

LINK

Operation

Assembler
Syntax

Attributes

Description

Condition Codes

SP - 4 --+SR;

SP --+An;

Link and Allocate

An--+(SR);

SP + disp --+ SP

LINK An, # <displacement>

Size = U nsized

TLCS-68000

LINK

The current content of the specified address register is pushed onto the stack.
After the push, the address register is loaded from the updated stack pointer.
Finally, the I6-bit sign-extended displacement operand is added to the stack
pointer. The content of the address register occupies one long word on the

stack. A negative displacement is specified to allocate stack area.

Not affected.

Instruction Format:

Instruction Fields :
Register field - Specifies the address register through which the link is to be

constructed.
Displacement field - Specifies the twos complement integer which is to be added to the
stack pointer.

Note: LINK and UNLK can be used to maintain a linked list of local data and
parameter areas on the stack for nested subroutine calls.

VMPU-131

TOSHIBA

LSL

LSR

Operation

Assembler
Syntax

Attributes

Description

Logical Shift

Destination Shifted by < count> - Destination

LSd
LSd

Dx,Dy

#<data>,Dy
LSd <ea>
where d is direction, L or R

Size = (Byte, Word, Long word)

TLCS-68000

LSL

LSR

Shift the bits of the operand in the direction (L or R) specified. The carry bit
receives the last bit shifted out of the operand. The shift count for the

shifting of a register may be specified in two different ways:
1. Immediate - the shift count is specified in the instruction (shift range

1-8).

2. Registe - the shift count is contained in a data register specified in the
instruction (shift count modulo 64).

The size of the operation may be specified to be byte, word, or long word. The
content of memory may be shifted one bit only, and the operand size is
restricted to a word.

For LSL, the operand is shifted left; the number of positions shifted is the
shift count, Bits shifted out of the high order bit go to both the carry and the
extend bits; zeroes are shifted into the low order bit.

LSL : @] 11<----On_op~era~nd ==Ik-· -----1@]

o
For LSR, the operand is shifted right; the number of positions shifted is the shift
count. Bits shifted out of the low order bit go to both the carry and the extend

bits; zeroes are shifted into the high order bit.

VMPU-132

TOSHIBA TLCS-68000

LSL
LSR

LSR @]--1r-Ooop;;:;eran~d ~----r[-l~

o

LSL
LSR

Condition Codes:
X N Z V c

I * I * I * I 0 I *
N Set if the result is negative. Cleared otherwise.
Z Set if the result is zero. Cleared otherwise.

V Always cleared.
C Set according to the last bit shifted out of the operand. Cleared for a shift

count of zero.
X Set according to the last bit shifted out of the operand. Unaffected for a

shift count of zero.

Instruction Format (Register Shifts) :

Instruction Field (Register Shifts) :
Count/Register field -

Ifi/r = 0, he shift count is specified in this field. The values 0,1-7 represent a range
of8,1 to 7 respectively.

Ifi/r = 1, the shift count (modulo 64) is contained in the data register specified in
this field.

dr field - Specifies the direction of the shift:
o - shift right.
1 - shift left.

Size field - Specifies the size of the operation:
00 - byte operation.
01 - word operation.

10 - long word operation
ilr field -

Ifi/r = 0, Specifies immediate shift count.
If ilr = 1, Specifies register shift count.

Register field - Specifies a data register whose content is to be shifted.

VMPU-133

TOSHIBA

LSL
LSR

Instruction Format (Memory Shifts) :

instruction Fields (Memory Shifts) :
dr field - Specifies the direction of the shift:

o - shift right.
1 - shift left.

TLCS-68000

LSL
LSR

Effective Address field - Specifies the operand to be shifted. Only memory alterable
addressing modes are allowed as shown:

Addr. Mode Mode Register Addr. Mode Mode Register

Dn - - d8 (An, Xn) 110 reg, number :An

An - - AbsW 111 000

(An) 010 reg, number :An Abs.L 111 001

(An) + 011 reg, number :An d16 (PC) - -
- (An) 100 reg, number :An d8 (PC, Xn) - -
d16 (An) 101 reg, number :An #<data> - -

VMPU·134

TOSHIBA

MOVE

Operation

Assembler

Syntax

Attributes

TLCS-68000

Move Data from Source to Destination MOVE

Source -+ Destination

MOVE <ea>, <ea>

Size = (Byte, Word, Long word)

Description Move the content of the source to the destination location. The data is

examined as it is moved, and the condition codes set accordingly. The size of

the operation may be specified to be byte, word, or long word.

Condition Codes

X N Z V C

I - I * I * 0 0

N Set if the result is negative. Cleared otherwise.

Z Set if the result is zero. Cleared otherwise.

V Always cleared.

C Always cleared.

X Not affected.

Instruction Format:

Instruction Fields :

Size field - Specifies the size of the operand to be moved:

01 - byte operation.

11 - word operation.

10 - long word operation.

Destination Effective Address field - Specifies the destination location. Only data

alterable addressing modes are allowed as shown:

Addr. Mode Mode Register Addr. Mode Mode Register

Dn 000 reg, number :Dn d8 (An, Xn) 110 reg, number :An

An - - Abs.W 111 000

(An) 010 reg, number :An Abs.L 111 001

(An) + 011 reg, number :An d16 (PC) - -
- (An) 100 reg, number :An d8 (PC, Xn) - -
d16(An) 101 reg, number :An #<data> - -

VMPU-135

TOSHIBA TLCS-68000

MOVE MOVE

*

Source Effective Address field - Specifies the source operand. All addressing modes are

allowed as shown:

Addr. Mode Mode Register Addr. Mode Mode Register

Dn 000 reg, number :Dn d8{An, Xn) 110 reg, number :An

An* 001 reg, number :An Abs.w 111 000

(An) 010 reg, number :An Abs.L 111 001

(An) + 011 reg, number :An d16 (PC) 111 010

- (An) 100 reg, number :An d8 (PC, Xn) 111 011

d16(An) 101 reg, number :An #<data> 111 100

For byte size operation, address register direct is not allowed.

Notes: 1. MOVEA is used when the destination is an address register. Most assemblers
automatically make this distinction.

2. MOVEQ can also be used for certain operations on data registers.

VMPU-136

TOSHIBA

MOVE from CCR Move from the

Condition Code Register

Operation

Assembler

Syntax

Attributes

CCR~Destination

MOVE CCR, <ea>

Size = (Word)

TLCS-68000

MOVE from CCR

Description The content of the status register is moved to the destination location. The

source operand is a word, but only the low order byte contains the

conditioncodes. The upper byte is all zeroes.

Condition Codes Not affected.

Instruction Format:

Instruction Fields :

Effective Address field - Specifies the destination location. Only data alterable

addressing modes are allowed as shown:

Addr. ~.~ode Mode Register Addr. ModE i rv40de RegistEr

Dn 000 reg, number :Dn d8 (An, Xn) 110 reg, number :An

An - - Abs.W 111 000

(An) 010 reg, number :An Abs.L 111 001

(An) + 011 reg, number :An d 16 (PC) - -
- (An) 100 reg, number :An d8 (PC, Xn) - -
d16 (An) 101 reg, number :An #<data> - -

Notes: MOVE from CCR is a word operation. ANDI, ORI, and EORI to CCR are byte

operations.

VMPU-137

TOSHIBA

MOVE to CCR Move to the Condition Code Register

Operation

Assembler

Syntax

Attributes

Source~CCR

MOVE <ea>, CCR

Size = (Word)

TLCS-68000

MOVE to CCR

Description The content of the source operand is moved to the condition codes. The source

operand is a word, but only the low order byte is used to update the condition

codes. The upper byte is ignored.

Condition Codes

X N Z V c

1*1*1*1*1*
N Set the same as bit 3 of the source operand.
Z Set the same as bit 2 of the source operand.

V Set the same as bit 1 of the source operand.
C Set the same as bit 0 of the source operand.

X Set the same as bit 4 of the source operand.

Instruction Format:

Instruction Fields :

Effective Address field - Specifies the location of the source operand. Only data

addressing modes are allowed as shown:

VMPU-138

TOSHIBA TLCS-68000

MOVEtoCCR MOVE to CCR

Addr. Mode Mode Register Addr. Mode Mode Register

Dn 000 reg, number :Dn dS (An, Xn) 110 reg, number :An

An - - Abs.W 111 000

(An) 010 reg, number :An Abs.L 111 001

(An) + 011 reg, number :An d16 (PC) 111 010

- (An) 100 reg, number :An dS (PC, Xn) 111 011

d16 (An) 101 reg, number :An #<data> 111 100

Notes: MOVE to CCR is a word operation. ANDl, ORl, and EaRl to CCR are byte
operations.

VMPU-139

TOSHIBA

MOVE to SR

Operation

Assembler
Syntax

Attributes

Description

Condition Codes

Move to the Status Register

(Pri vileged Instruction)

If supervisor stsate
then Source-SR
else TRAP;

MOVE <ea>, SR

Size = (Word)

TLCS-68000

MOVE to SR

The content of the source operrand is moved to the status registe. The

sourrce operarnd is a word and all bits of the status register are affected.

Not affected.

Instruction Format:

Instruction Fields :
Effective Address field - Specifies the locaation of the source operand. Only data
addressing modes are allowed as shown:

Addr. Mode Mode Register Addr. Mode Mode Register

Dn 000 reg, number :Dn d8 (An, Xn) 110 reg, number :An

An - - Abs.w 111 000

(An) 010 reg, number :An Abs.L 111 001

(An) + 011 reg, number :An d16 (PC) 111 010

- (An) 100 reg, number :An d8 (PC, Xn) 111 011

d16 (An) 101 reg, number :An #<data> 111 100

VMPU·140

TOSHIBA

MOVEfromSR Move from the Status Register

OPeration

Assembler
Syntax

Attributes

SR~Destination

MOVE SR, <ea>

Size = (Word)

TLCS-68000

MOVE from SR

Description The content of the status register is moved to the destination location. The
operand size is a word.

Condition Codes Not affected.

Instruction Format:

Instruction Fields :
Effective Address field - Specifies the destination location. Only data alterrable
addressing modes are allowed as shown:

Addr. Mode Mode Register Addr. Mode Mode Register

Dn 000 reg, number :Dn d8 (An, Xn) 110 reg, number :An

An - - Abs.w 111 000

(An) 010 reg, number :An Abs.L 111 001

(An) + 011 reg, number :An d16 (PC) - -
- (An) 100 reg, number :An dB (PC, Xn) - -
d16 (An) 101 reg, number :An #<data> - -

Note: A memory destination is read beforre it is wrritten to.

VMPU-141

TOSHIBA

MovefromSR Move from the Status Register

(Pri vileged Instruction)

Operation

Assembler
Syntax

Attributes

If supervisor state
then SR -+ Destina tion

else TRAP;

MOVE SR, <ea>

Size = (Word)

TLCS-68000

Move from SR

Description The content of the status register is moved to the destination location.
The operand size is a word.

Condition Codes Not affected.

Instruction Format:

Instruction Fields :

Effective Address field - Specifies the destination location. Only data alterable
addressing modes are allowed as shown:

Add. Mode Mode Register Add. Mode Mode Register

Dn 000 reg. Number:An d8(An, Xn) 110 reg. Number:An

An - - Abs.W 111 000

(An) 010 reg. Number:An Abs. L 111 001

(An) + 011 reg. Number:An d16 (PC) - -
- (An) 100 reg. Number:An d8 (PC, Xn) - -
d16 (An) 101 reg. Number:An #<data> - -

Note: Use the MOVE from CCR instruction to access only the condition codes.

VMPU-142

TOSHIBA

MoveUSP

Operation

Assembler
Syntax

Attributes

Move User Stack Pointer

(Pri vileged Instruci ton)

If supervisor state
then USP ~ An or An ~ USP

else TRAP;

MOVE

MOVE

USP,An
An, USP

Size = (Long word)

TLCS·68000

Move USP

Description The contents of the user stack pointer are transferred to or from the specified
address register.

Condition Codes Not affected.

Instruction Format:

15 14 13 12 11 10 9 8 7 6 5 4 3

Instruction Fields :

dr field - Specifies the direction of transfer:
o - transfer the address register to the USP.
1 - transfer the USP to the address register.

2 0
Address
Register

Register field - Specifies the address register to or from which the user stack pointer is
to be transferred.

VMPU-143

TOSHIBA

MOVEA

Operation

Assembler
Syntax

Attributes

TLCS-68000

Move Address MOVEA

Source ~ Destination

MOVEA <ea>,An

Size = (Word, Long word)

Description Move the content of the source to the destination address register. The size of
the operation may be specified to be word or long word. Word size source
operands are sign extended to 32-bit quantities before the operation is done.

Condition Codes Not affected.

Instruction Format:

Instruction Fields :

Size field - Specifies the size of the operand to be moved:
11 - Word operation. The source operand is sign-extended to a long operand and

all 32 bits are loaded into the address register.
10 - Long word operation.

Destination Register field - Specifies the destination address register.
Source Effective Address field - Specifies the location of source operand. All addressing
modes are allowed as shown:

Add. Mode Mode Register Add. Mode Mode Register

Dn 000 - d8 (An, Xn) 110 reg. Number:An

An 001 - Abs.W 111 000

(An) 010 reg. Number:An Abs. L 111 001

(An) + 011 reg. Number:An d16 (PC) 111 010

- (An) 100 reg. Number:An d8 (PC, Xn) 111 011

d16 (An) 101 reg. Number:An #<data> 111 100

VMPU-144

TOSHIBA

MOVEC

Operation

Assembler
Syntax

Attributes

Move to/from Control Register

(Pri vileged Instruction)

If supervisor state
then Rc ~ Xn or Xn ~ Rc

else TRAP;

MOVEC Rc,Xn

MOVEC Xn,Rc

Size = (Long word)

TLCS-68000

MOVEC

Description Copy the contents of the specified control register (Rc) to the specified

general register or copy the contents of the specified general register to

the specified control register. This is always a 32-bit transfer even

though the control register may be implemented with fewer bits.
Unimplemented bits are read as zeros.

Condition Codes Not affected.

Instruction Format:

15 14

o

AID Register Control Register

Instruction Fields:

dr field - Specifies the direction of transfer:

a - control register to general register

1 - general register to control register

AID field - Specifies the type of general register:
a - data register

1 - address register

Register field - Specifies the register number.

Control Register field - Specifies the control register.

Hex Control Register

000 Source Function Code (SFC) register.

001 Destination Function Code (DFC) register.

800 User Stack Pointer (USP).

801 Vector Base Register (VBR).

All other codes cause an illegal instruction exception.

VMPU-14S

o
dr

TOSHIBA

MOVEM

Operation

Assembler

Syntax

Attributes

Description

Move Multiple Registers

Registers ~ Destination
Source ~ Registers

MOVEM

MOVEM
register list, < ea >
< ea > , register list

Size = (Word, Long word)

TLCS-68000

MOVEM

Selected registers are transferred to or from consecutive memory locations

starting at the location specified by the effective address. A register is
transferred if the bit corresponding to that register is set in the mask field.
The instruction selects how much of each register is transferred; either the

entire long word can be moved or just the low order word. In the case of a
word transfer to the registers, each word is sign-extended to 32 bits
(including data registers) and the resulting long word loaded into the
associated register. MOVEM allows three forms of address modes: the
control modes, the predecrement mode, or the postincrement mode. If the
effective address is in one of the control modes, the registers are transferred
starting at the specified address and up through higher addresses. The order
of transfer is from data register 0 to data register 7, then from address
register 0 to address register 7.

If the effective address is the predecrement mode, only a register to memory
operation is allowed. The registers are stored starting at the specified
address minus the operand length (2 or 4) and down through lower addresses.
The order of storing is from address register 7 to address register 0, then from
data register 7 to data register O. The decremented address register is
updated to contain the address of the last word stored.

If the effective address is the postincrement mode, only a memory to register
operation is allowed. The registers are loaded starting at the specified
address and up through higher addresses. The order of loading is the same as
for the control mode addressing. The incremented address register is
updated to contain the address of the last word loaded plus the operand
length (2 or 4).

Condition Codes: Not affected.

VMPU-146

TOSHIBA

MOVEM

Instruction Format:

Instruction Fields :

dr field - Specifies the direction of the transfer:
o - register to memory.
1 - memory to register.

Sz field - Specifies the size of the registers being transferred:
o - word transfer.
1 - long word transfer.

TLCS-68000

MOVEM

Effective Address field - Specifies the memory address to or from which the
registers are to be moved. For register to memory transfers, only control
alterable addressing modes or the pre decrement addressing mode are
allowed as shown:

Addr. Mode Mode Register Addr. Mode Mode Register

Dn - - d8(An, Xn) 110 reg. number:An

An - - Abs.W 111 000

(An) 010 reg. number:An Abs.L 111 001

(An) + - - d16 (PC) - -
- (An) 100 reg. number:An d8(PC, Xn) - -
d16 (An) 101 reg. number:An #<data> - -

For memory to register transfers, only control addressing modes or the
postincrement addressing mode are allowed as shown:

Addr. Mode Mode Register Addr. Mode Mode Register

Dn - - d8(An, Xn) 110 reg. number:An

An - - AbsW 111 000

(An) 010 reg. number:An Abs.L 111 001

(An)+ 011 reg. number:An d16 (PC) 111 010

- (An) - - d8(PC, Xn) 111 011

d16 (An) 101 reg. number:An #<data> - -

VMPU-147

TOSHIBA

MOVEM

TLCS-68000

MOVEM

Register List Mask field - Specifies which registers are to be transferred.
The low order bit corresponds to the first register to be transferred; the

high bit corresponds to the last register to be transferred. Thus, both for
control modes and for the postincrement mode addresses, the mask
correspondence is

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
IA71A61A51A41A31A21A1 IAO ID71D61D51D41D31D21D1 IDOl

while for the predecrement mode addresses, the mask correspondence is

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
IDOID1 ID21D31D41D51D61D71AOIA1 IA21A31A41A51A61A71

Note:
An extra read bus cycle occurs for memory operands. This accesses an

operand at one address higher than the last register image required.

VMPU-148

TOSHIBA

MOVEP

Operation

Assembler
Syntax

Attributes

Description

Example

Move Peripheral Data

Source -+ Destination

MOVEP
MOVEP

Dx, d16 (Ay)
d16 (Ay), Dx

Size = (Word, Long word)

TLCS-68000

MOVEP

Data is transferred between a data register and alternate bytes of memory,
starting at the location specified and incrementing by two. The high order
byte of the data register is transferred first and the low order byte is
transferred last. The memory address is specified using the address register
indirect plus 16-bit displacement addressing mode. This instruction is
designed to work with 8-bit peripherals on a 16-bit data bus. If the address is
even, all the transfers are made on the high order half of the data bus; if the
address is odd, all the transfers are made on the low order half of the data
bus. On an 8-bit or 32-bit bus, the instruction still accesses every other byte.

Long transfer to/from an even address.

Byte organization in register

31 24 23 16 15 8 7 o
Hi-Order I Mid-Upper I Mid-Lower Low-Order

Byte organization in memory (low address at top)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Hi-Order

Mid-Upper

Mid-Lower

Low-Order

VMPU-149

TOSHIBA TLCS-68000

MOVEP MOVEP

Example Word transfer to/from an odd address.

Byte organization in register

31 24 23 16 15 8 7 0
I High-Order Low-Order

Byte organization in memory (low address at top)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 o
High-Order

LOW-Order

Condition Codes Not affected.

Instruction Format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

Instruction Fields

o 1 0 1 0 1 0 1 R~q~~:er lOP-Mode 1 0 1 0 11 1

Displacement

Address
Reqister

Data Register field - Specifies the data register to or from which the
data is to be transferred.

Op-Mode field - Specifies the direction and size of the operation:
100 - transfer word from memory to register.
101 - transfer long from memory to register.
110 - transfer word from register to memory.
111 - transfer long from register to memory.

Address Register field - Specifies the address register which is used
in the address register indirect plus displacement addressing mode.

Displacement field - Specifies the displacement which is used in
calculating the operand address.

VMPU-150

TOSHIBA

MOVEQ

Operation

Assembler
Syntax

Attributes

Description

Condition Codes

TLCS-68000

Move Quick MOVEQ

Immediate Data - Destination

MOVEQ #<data>, Dn

Size = (Long word)

Move immediate data to a data register. The data is contained in an 8-bit
field within the operation word. The data is sign-extended to a long word
operand and all 32 bits are transferred to the data register.

X N z V C

N Set if the result is negative. Cleared otherwise.

Z Set if the result is zero. Cleared otherwise.

V Always cleared.

C Always cleared.

X Not affected.

Instruction Format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0
1 0 11 11 11 1 Rebi~ter 1 0 1 Data

Instruction Fields Register field - Specifies the data register to be loaded.

Data field - 8 bits of data which are sign extended to a long word
operand.

VMPU-151

TOSHIBA

MOVES

Operation

Assembler
Syntax

Attributes

Description

Condition Codes

Move Alternate Address Space

(Pri vileged Instruction)

If supervisor state
then Xn -+ Destination [DFCl or Source [SFCl-+ Xn
else TRAP;

MOVES
MOVES

Xn, <ea>
<ea>,Xn

Size = (Byte, Word, Long word)

TlCS-68000

MOVES

Move the byte, word, or long word operand from the specified general
register to a location within the address space specified by the destination
function code (DFC) register. Or, move the byte, word, or long word
operand from a location within the address space specified by the source
function code (SFC) register to the specified general register.
If the destination is a data register, the source operand replaces the
corresponding low-order bits of that data register. If the destination is an
address register, the source operand is sign-extended to 32 bits and then
loaded into that address register.

Not affected.

Instruction Format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 a
0

AID

Instruction Fields

a 1010 1 1 1 0 Size Effective Add ress
Mode J Register

Register dr 0 0 0 a I a a I 0 I a I a I a I a

Size field - Specifies the size of the operation:

00 - byte operation.
01 - word operation.
10 - long word operation.

Effective Address field - Specifies the source or destination location
within the alternate address space. Only alterable memory
addressing modes are allowed as shown:

AID field - Specifies the type of general register:
a - data register.

1 - address register.

VMPU·152

TOSHIBA

MOVES

NOTE

the register number.
recti on of the transfer:

Register field - Specifies
dr field - Specifies the di

0- from <ea> to gen
1 - from general regis

eral register.
ter to <ea>.

MOVES.x An, (An)+

or
MOVES.x An, -(An)

TLCS-68000

MOVES

where An is the same

destination and is an u
memory is undefined.

address register for both source and
ndefined operation. The value stored in

e value stored is the incremented or the On the TMP68010 implementations, th
decremented value of An. This implement ation may not appear on future devices.

Addr. Mode Mode Register Addr. Mode Mode Register

Dn - - d8 (An, Xn) 110 reg. number:An

An - - Ads.W 111 000

(An) 010 reg. number:An Ads.L 111 001

(An)+ 011 reg. number:An d16(PC) - -

-(An) 100 reg. number:An d8 (PC, Xn) - -
d16(An) 101 reg. number:An #<data> - -

VMPU-153

TOSHIBA

MULS

Operation

Assembler

Syntax

Attributes

Description

Condition Codes

TLCS-68000

Signed Multiply MULS

Source *Destination -+ Destination

MULS <ea>,Dn 16 X 16-+32

Size = (Word)

Multiply two signed operands yielding a signed result. The operation is

performed using signed arithmetic.

The multiplier and multiplicand are both word operands and the result is

long word operand. A register operand is taken from the low order word, the

upper word is unused. All 32 bits of the product are saved in the destination

data register.

X N Z V c
I * I * I 0 I 0

N Set if the result is negative. Cleared otherwise.

Z Set if the result is zero. Cleared otherwise.

V Always cleared.

C Always cleared.

X Not affected.

Instruction Format:

VMPU·154

TOSHIBA

MULS

Instruction Fields

Addr. Mode

Dn

An

(An)

(An) +

-(An)

d16(An)

TLCS-68000

MULS

Register field - Specifies one of the data registers. This field always

specifies the destination.

Effective Address field - Specifies the source operand. Only data
addressing modes are allowed as shown:

Mode Register Addr. Mode Mode Register

000 reg. number: Dn d8 (An, Xn) 110 reg. number:An

- - Ads.W 111 000

010 reg. number:An Ads.L 111 001

011 reg. number:An d16 (PC) 111 010

100 reg. number:An d8 (PC, Xn) 111 011

101 reg. number:An #<data> 111 100

VMPU-155

TOSHIBA

MULU

Operation

Assembler
Syntax

Attributes

Description

Condition Codes

TLCS-68000

Unsigned Multiply MULU

Source * Destination --* Destination

MULS <ea>,Dn

Size = (Word)

Multiply two unsigned operands yielding a unsigned result. The operation is
performed using unsigned arithmetic.
The multiplier and multiplicand are both word operands and the result is a
long word operand. A register operand is taken from the low order word, the
upper word is unused. All 32 bits of the product are saved in the destination
data register.

X N Z V c
1-1*1*1010

N Set if the result is negative. Cleared otherwise.

Z Set if the result is zero. Cleared otherwise.

V Always cleared.

C Always cleared.

X Not affected.

Instruction Format:

VMPU-1S6

TOSHIBA

MULU

Instruction Fields

Addr. Mode

Dn

An

(An)

(An) +

- (An)

d16 (An)

TLCS-68000

MULU

Register field - Specifies one of the data registers. This field always

specifies the destination.
Effective Address field - Specifies the source operand. Only data

addressing modes are allowed as shown:

Mode Register Addr. Mode Mode Register

000 reg. number:Dn d8 (An, Xn) 110 reg. number:An

- - Ads.W 111 000

010 reg. number:An Ads.L 111 001

011 reg. number:An d16 (PC) 111 010

100 reg. number:An d8 (PC, Xn) 111 011

101 reg. number:An #<data> 111 100

VMPU-157

TOSHIBA

NBCD

Operation

Assembler

Syntax

Attributes

Description

Condition Codes

Negate Decimal with Extend

o - DestinationlO - X ~ Destination

NBCD <ea>

Size = (Byte)

TLCS-68000

NBCD

The operand addressed as the destination and the extend bit are

subtracted from zero. The operation is performed using decimal

arithmetic. The result is saved in the destination location. This

instruction produces the tens complement of the destination if the extend

bit is clear, the nines complement if the extend bit is set. This is a byte

operation only.

X N Z V c

1* ul*lul*1

N Undefined.

Z Cleared if the result is non-zero. Unchanged otherwise.

V Undefined.

C Set if a borrow (decimal) was generated. Cleared otherwise.

X Set the same as the carry bit.

Note:

Normally the Z condition code bit is set via programming before the start

of an operation. This allows successful tests for zero results upon completion

of multiple precision operations.

Instruction Format :

VMPU-158

TOSHIBA

NBCD

Instruction Fields

Addr. Mode

Dn

An

(An)

(An) +

- (An)

d16 (An)

TLCS-68000

NBCD

Effective Address field - Specifies the destination operand. Only

data alterable addressing modes are allowed as shown:

Mode Register Addr. Mode Mode Register

000 reg. number: Dn d8(An, Xn) 110 reg. number:An

- - AdsW 111 000

010 reg. number:An Ads.L 111 001

011 reg. number:An d16 (PC) - -
100 reg. number:An d8(PC, Xn) - -
101 reg. number:An #<data> - -

VMPU·159

TOSHIBA

NEG

Operation

Assembler
Syntax

Attributes

Description

Condition Codes

TLCS-68000

Negate NEG

o - Destination -+ Destination

NEG <ea>

Size = (Byte, Word, Long word)

The operand addressed as the destination is subtracted from zero. The
result is stored in the destination location. The size of the operation may
be specified to be byte, word, or long word.

X N Z V c

1*1*1*1*1*

N Set if the result is negative. Cleared otherwise.

Z Set if the result is zero. Cleared otherwise.

V Set if an overflow is generated. Cleared otherwise.

C Cleared if the result is zero. Set otherwise.

X Set the same as the carry bit.

Instruction Format:

VMPU·160

TOSHIBA

NEG

Instruction Fields

Addr. Mode

Dn

An

(An)

(An)+

-(An)

d16 (An)

Size field - Specifies the size of the operation.

00 - byte operation

01 - word operation
10 - long word operation

TLCS-68000

NEG

Effective Address field - Specifies the destination operand. Only

data alterable addressing modes are allowed as shown:

Mode Register Addr. Mode Mode Register

000 reg. number: Dn d8 (An, Xn) 110 reg. number:An

- - Ads.w 111 000

010 reg. number:An Ads.L 111 001

011 reg. number:An d16 (PC) - -
100 reg. number:An d8 (PC, Xn) - -
101 reg. number:An #<data> - -

VMPU·161

TOSHIBA

NEGX

Operation

Assembler

Syntax

Attributes

Description

Condition Codes

TLCS-68000

Negate with Extend NEGX

o - Destination - X ~ Destination

NEGX <ea>

Size == (Byte, Word, Long word)

The operand addressed as the destination and the extend bit are

subtracted from zero. The result is stored in the destination location. The

size of the operation may be specified to be byte, word, or long word.

X N Z V c

1*1*1*1*1*

N Set if the result is negative. Cleared otherwise.

Z Cleared if the result is non-zero. Unchanged otherwise.

V Set if overflow is generated. Cleared otherwise.

C Set if a borrow is generated. Cleared otherwise.

X Set the same as the carry bit.

Note:

Normally the Z condition code bit is set via programming before the start
of an operation. This allows successful tests for zero results upon completion

of multiple-precision operations.

Instruction Format:

VMPU-162

TOSHIBA

NEGX

Instruction Fields

Addr. Mode

Dn

An

(An)

(An)+

- (An)

d16(An)

Size field - Specifies the size of the operation:

00 - byte operation.

01 - word operation.
10 - long operation.

TLCS-68000

NEGX

Effective Address field - Specifies the destination operand. Only

data alterable addressing modes are allowed as shown:

Mode Register Addr. Mode Mode Register

000 reg. number:Dn d8 (An, Xn) 110 reg. number:An
- - AdsW 111 000

010 reg. number:An Ads.L 111 001

011 reg. number:An d16 (PC) - -
100 reg. number:An d8 (PC, Xn) - -
101 reg. number:An #<data> - -

VMPU-163

TOSHIBA

NOP

Operation

Assebler
Syntax

Attributes

Description

Condition Codes

TLCS-68000

No Operation NOP

None

NOP

Unsized

No operation occurs. The processor state, other than the program counter,
is unaffected. Execution continues with the instruction following the NOP
instruction. The NOP instruction does not complete execution until all
pending bus cycles are completed. This allows synchronization of the
pipeline to be accomplished, and prevents instruction overlap.

Not affected.

Instruction Format:

VMPU-164

TOSHIBA

NOT

Operation

Assembler
Syntax

Attributes

Description

Condition Codes

TLCS-68000

Logical Complement NOT

- Destination ---'> Destination

NOT <ea>

Size = (Byte, Word, Long word)

The ones complements of the destination operand is taken and the result is
stored in the destination location. The size of the operation may be
specified to be byte, word, or long word.

X N Z V c
1-1*1*1010

N Set if the result is negative. Cleared otherwise.

Z Set if the result i., zero. Cleared otherwise.

V Always cleared.

C Always cleared.

X Not affected.

Instruction Format:

VMPU-165

TOSHIBA

NOT

Instruction Fields

Addr. Mode

Dn

An

(An)

(An) +

-(An)

d16 (An)

Size field - Specifies the size of the operation.
00 - byte operation.

01 - word operation.
10 - long word operation.

TLCS-68000

NOT

Effective Address field - Specifies the destination operand.

Only data alterable addressing modes are allowed as shown:

Mode Register Addr. Mode Mode Register

000 reg. number: Dn d8 (An, Xn) 110 reg. number:An

- - Ads.W 111 000

010 reg. number:An Ads.L 111 001

011 reg. number:An' d16 (PC) - -
100 reg. number:An d8 (PC, Xn) - -
101 reg. number:An #<data> - -

VMPU-166

TOSHIBA

OR

Operation

Assembler
Syntax

Attributes

Description

Condition Codes

Inclusive OR Logical

Source V Destination --+ Destination

OR
OR

<ea>,Dn
Dn,<ea>

Size = (Byte, Word, Long word)

TLCS-68000

OR

Inclusive OR the source operand to the destination operand and store the
result in the destination location. The size of the operation may be
specified to be byte, word, or long word. The contents of an adress register
may not be used as an operand.

X N Z V c
1-1*1*101 0

N Set if the most significant bit of the result is set. Cleared otherwise.

Z Set if the result is zero. Cleared otherwise.

V Always cleared.

C Always cleared.

X Not affected.

Instruction Format:

VMPU-167

TOSHIBA TLCS-68000

OR OR

Instruction Fields Register field - Specifies any of the eight data registers.

Op-Mode field -

Addr. Mode

Dn

An

(An)

(An) +

-(An)

d16 (An)

Addr. Mode

Dn

An

(An)

(An) +

-(An)

d16(An)

Byte Word Long word

000 001

100 101

010

110

Effective Address field -

Operation

(< ea >) V (< Dn >) ~ < Dn >

(< Dn >) V (< ea >) ~ <:: ea >

If the location specified is a source operand then only data addressing
modes are allowed as shown:

Mode Register Addr. Mode Mode Register

000 reg. number: Dn d8 (An, Xn) 110 reg. number:An

- - AdsW 111 000

010 reg. number:An Ads.L 111 001

011 reg. number:An d16 (PC) 111 010

100 reg. number:An d8 (PC, Xn) 111 011

101 reg. number:An #<data> 111 100

If the location specified is a destination operand then only memory

alterable addressing modes are allowed as shown:

Mode Register Addr. Mode Mode Register

- - d8 (An, Xn) 110 reg. number:An

- - Ads.W 111 000

010 reg. number:An Ads.L 111 001

011 reg. number:An d16 (PC) - -
100 reg. number:An d8 (PC, Xn) - -

101 reg. number:An #<data> - -

Notes: 1. If the destination is a data register, then it cannot be specified by using the

destination < ea > mode, but must use the destination Dn mode instead.

2. ORI is used when the source is immediate data. Most assemblers

automatically make this distinction.

VMPU-168

TOSHIBA

ORI

Operation

Assembler
Syntax

Attributes

Description

Condition Codes

TLCS-68000

Inclusive OR Immediate ORI

Immediate Data V Destination ~ Destination

ORI #<data>, <ea>

Size = (Byte, Word, Long word)

Inclusive OR the immediate data to the destination operand and store the
result in the destination location. The size of the operation may be

specified tobe byte, word, or long word. The size of the immediate data
matches the operation size.

X N Z V c
1-1*1*10101

N Set if the most significant bit of the result is set. Cleared otherwise.

Z Set if the result is zero. Cleared otherwise.

V Always cleared.

C Always cleared.

X Not affected.

Instruction Format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

01 0 I 0 I 0 I 0 I 0 I 0 I 0 Size I Effective Address
Mode -I Register

Word Data Byte Data

Long word Data

VMPU-169

TOSHIBA

ORI

Instruction Fields

Addr. Mode

Dn

An

(An)

(An) +

- (An)

d16 (An)

Size field - Specifies the size of the operation.

00 - byte operation.
01 - word operation.
10 - long operation.

TLCS-68000

ORI

Effective Address field - Specifies the destination operand. Only data
alterable addressing modes are allowed as shown:

Mode Register Addr. Mode Mode Register

000 reg. number:Dn da (An, Xn) 110 reg. number:An

- - Ads.W 111 000

010 reg. number:An Ads.L 111 001

011 reg. number:An d16 (PC) - -
100 reg. number:An da (PC, Xn) - -
101 reg. number:An #<data> - -

Immediate field - (Data immediately following the instruction):
Ifsize = 00, then the data is the low order byte of the immediate

word.
Ifsize = 01, then the data is the entire immediate word.
If size = 10, then the data is the next two immediate words.

VMPU-170

TOSHIBA

ORIto CCR

Operation

Assembler
Syntax

Attributes

Description

Condition Codes

TLCS-68000

Inclusive OR Immediate to Condition Codes ORI to CCR

Source V CCR -+ CCR

ORI #<data>, CCR

Size = (Byte)

Inclusive OR the immediate operand with the condition codes and store
the result in the low-order byte of the status register.

X N Z V c
I * I * I * I * I *

N Set if bit 3 of immediate operand is one. Unchanged otherwise.

Z Set if bit 2 of immediate operand is one. Unchanged otherwise.

V . Set if bit 1 of immediate operand is one. Unchanged otherwise.

C Set if bit 0 of immediate operand is one. Unchanged otherwise.

X Set if bit 4 of immediate operand is one. Unchanged otherwise.

Instruction Format:

VMPU-171

TOSHIBA

ORIto SR

Operation

Assembler
Syntax

Attributes

Description

Condition Codes

Inclusive OR Immediate to the Status Register
(Privileged Instruction)

If supervisor state
then Source V SR -+ SR
else TRAP;"

ORI #<data>, SR

Size = (Word)

TlCS-68000

ORI to SR

Inclusive OR the immediate operand with the contents of the status
register and store the result in the status register. All bits of the status
register are affected.

X N Z V c
1*1*1*1*1*

N Set ifbit 3 of immediate operand is one. Unchanged otherwise.

Z Set if bit 2 of immediate operand is one. Unchanged otherwise.

V Set if bit 1 of immediate operand is one. Unchanged otherwise.

C Set ifbit 0 of immediate operand is one. Unchanged otherwise.

X Set if bit 4 of immediate operand is one. Unchanged otherwise.

Instruction Format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

01 0 I 0 I 0 I 0 I 0 I 0 I 0 0 I 1 I 1 0 0
Word Data (16 Bits)

VMPU-172

TOSHIBA

PEA

Operation

Assembler
Syntax

Attributes

Description

Condition Codes

TLCS-68000

Push Effective Address PEA

PEA <ea>

Size = (Long word)

The effective address is computed and pushed onto the stack. A long word
address is pushed onto the stack.

: Not affected.

Instruction Format:

Instruction Fields

Addr. Mode

Dn

An

(An)

(An)+

- (An)

d16 (An)

Effective Address field - Specifies the address to be pushed on to the
stack. Only control addressing modes are allowed as shown:

Mode Reg ister Addr. Mode Mode Register

- - d8 (An, Xn) 110 reg. number:An

- - Ads.W 111 000

010 reg. number:An Ads.L 111 001

- - d16 (PC) 111 010

- - d8 (PC, Xn) 111 011

101 reg. number:An #<data> - -

VMPU-173

TOSHIBA

RESET

Operation

Assembler
Syntax

Attributes

Description

Condition Codes

Reset External Devices
(Pri vileged Instruction)

If supervisor state

then Assert RESET Line
else TRAP;

RESET

Unsized

TLCS-68000

RESET

The reset line is asserted for 124 clocks, causing all external devices to be
reset. The processor state, other than the program counter, is unaffected
and execution continues with the next instruction.

: Not affected.

Instruction Format:

15 14 13 12 11 10 9 8 7 6 543 2 1 o
I 0 I I 0 I 0 I I I o I 0 1 0 o 0 o

VMPU-174

TOSHIBA

ROL
ROR

Operation

Assembler
Syntax

Attributes

Description

ROL

ROR

Rotate (Without Extend)

Destination Rotated by < count> ~ Destination

ROd DX,Dy
ROd #<data>,Dy
ROd <ea>
where d is direction, L or R

Size = (Byte, Word, Long word)

TLCS-68000

ROL
ROR

Rotate the bits of the operand in the direction (L or R) specified. The

extend bit is not included in the rotation. The rotate count for the rotation
of a register may be specified in two different ways:

1. Immediate - the rotate count is specified in the instruction (rotate
range, 1-8).

2. Register - the rotate count is contained in a data register specified in
the instriuction.

The size of the operation may be specified to be byte, word, or long word.

The content of memory may be rotated by one bit only and the operand size
is restricted to a word.
For ROL, the operand is rotated left; the number of positions rotated is the
rotate count. Bits rotated out of the high order bit go to both the carry bit
and back into the low order bit. The extend bit is not modified or used.

~~'--L--L ____ ~o~p~er~a~n~d ____ ~I:=J

For ROR, the operand is rotated right; the number of positions rotated is
the rotate count. Bits shifted out of the low order bit go to both the carry
bit and back into the high order bit. The extend bit is not modified or used.

~------o-p-er-a-nd-----'~~--~'~

VMPU·175

TOSHIBA

ROL
ROR

Condition Codes

X N Z V c
1-1*1*101*1

TLCS-68000

ROL
ROR

N Set if the most significant bit of the result is set. Cleared otherwise.

Z Set if the result is zero. Cleared otherwise.

V Always cleared.

C Set according to the last bit rotated out of the operand. Cleared for a
rotate count of zero.

X : Not affected.

Instruction Format (Register Rotate)

Instruction Fields (Register Rotate) :

RotatelRegister field -
If i/r = 0, the rotate count is specified in this field. The values 0, 1-7
represent a range of 8,1 to 7 respectively.
If i/r = 1, the rotate count (modulo 64) is contained in the data register
specified in this field. '

dr field - Specifies the direction of the rotate:
o - rotate right
1 - rotate left

Size field - Specifies the size of the operation:
00 - byte operation
01 - word operation

10 - long operation
i/r field-

If i/r = 0, Specifies immediate rotate count.
If ilr = 1, Specifies register rotate count.

Register field - Specifies a data register whose content is to be rotated.

VMPU-176

TOSHIBA

ROL
ROR

Instruction Format (Memory Rotate)

Instruction Fields (Memory Rotate) :

dr field - Specifies the direction of the rotate:
o - rotate right
1 - rotate left

Effective Address field - Specifies the operand to be rotated.
Only memory alterable addressing modes are allowed as shown:

Addr. Mode Mode Register Addr. Mode Mode

TLCS-68000

ROL
ROR

Register

Dn - - d8 (An, Xn) 110 reg. number:An

An - - Ads.W 111 000

(An) 010 reg. number:An Ads.L 111 001

(An) + 011 reg. number:An d16(PC} - -
-(An) 100 reg. number:An d8 (PC, Xn) - -

d16 (An) 101 reg. number:An #<data> - -

VMPU-177

TOSHIBA

ROXL
ROXR

Operation

Assembler

Syntax

Attributes

Description

ROXL

Rotate with Extend

Destination Rotated with X by < count> ~ Destination

ROXd
ROXd

ROXd

Dx,Dy

#<data>, Dy

<ea>
where d is direction, L or R

Size = (Byte, Word, Long word)

TLCS-68000

ROXL
ROXR

Rotate the bits of the destination operand in the direction specified. The

extend bit (X) is included in the rotation. The rotate count for the rotation
of a register may be specified in two different ways:

1. Immediate - the rotate count is specified in the instruction (rotate
range, 1-8).

2. Register - the rotate count (modulo 64) is contained in a data register

specified in the instriuction.

The size of the operation may be specified to be byte, word, or long word.
The content of memory may be rotated one bit only and the operand size is

restricted to a word.

For ROXL, the operand is rotated left; the number of positions rotated is
the rotate count. Bits rotated out of the high order bit go to both the carry
and extend bits; the previous value of the extend bit is rotated into the low

order bit.

For ROXR, the operand is rotated right; the number of positions shifted is

the rotate count. Bits rotated out of the low order bit go to both the carry

and extend bits; the previous value of the extend bit is rotated into the
high order bit.

VMPU-178

TOSHIBA

ROXL
ROXR

ROXR

Condition Codes

[.---o-pea-rnd----,

X N Z V c
1*1*1* 01*

TLCS-68000

ROXL
ROXR

N Set if the most significant bit of the result is set. Cleared otherwise.

Z Set if the result is zero. Cleared otherwise.

V Always cleared.

C Set according to the last bit rotated out of the operand. Set to the value

of the extend bit for a rotate count of zero.

X Set according to the last bit rotated out of the operand. Unaffected for a

rotate count of zero.

Instruction Format (Register Rotate)

Instruction Fields (Register Rotate) :

Rotate/Register field -

If i/r = 0, the rotate count is specified in this field. The values 0, 1-7

represent a range of 8,1 to 7 respectively.

If i/r = 1, the rotate count (modulo 64) is contained in the data register

specified in this field.

dr field - Specifies the direction of the rotate:

° - rotate right
1 - rotate left

VMPU-179

TOSHIBA

ROXL
ROXR

Size field - Specifies the size of the operation:

00 - byte operation.

01 - word operation.

10 - long word operation.
ilr field -

If ifr = 0, specifies immediate rotate count.

If ilr = 1, specifies register rotate count.

TLCS-68000

ROXL
ROXR

Register field - Specifies a data register whose content is to be rotated.

Instruction Format (Memory Rotate)

Instruction Fields (Memory Rotate) :

dr field - Specifies the direction of the rotate:
o - rotate right

1 - rotate left
Effective Address field - Specifies the operand to be rotated. Only memory

alterable addressing modes are allowed as shown:

Addr. Mode Mode Register Addr. Mode Mode Register

Dn - - d8 (An, Xn) 110 reg. number:An

An - - Ads.w 111 000

(An) 010 reg. number:An Ads.L 111 001

(An) + 011 reg. number:An d16 (PC) - -

- (An) 100 reg. number:An d8 (PC, Xn) - -

d16(An) 101 reg. number:An #<data> - -

VMPU-180

TOSHIBA

RTD

Operation

Assembler

Syntax

Attributes

Description

TLCS-68000

Return and Deallocate Parameters RTD

(SP) ~pc; SP + 4 + d16 ~SP

RTD # < displacement>

Unsized

The program counter is pulled from the stack. The previous program

counter value is lost. After the program counter is read from the

stack, the displacement value (16 bits) is sign-extended to 32 bits and
added to the stack pointer.

Condition Codes: Not affected.

Instruction Format:

15 14 13 12 11 10 9 8 7 6 543 2 o

Instruction Fields

o 0 I 1 0 o o
Displacement

Displacement field -

Specifies the twos complement integer which is to be sign-extended

and added to the stack pointer.

VMPU-181

TOSHIBA

RTE

Operation

Assembler

Return from Exception

(Privileged Instruction)

If supervisor stat
then «SP) ~ SR; SP + 2 ~ SP; (SP) ~ PC; SP + 4 ~ SP;)

else TRAP;

Syntax RTE

Attributes Unsized

TLCS-68000

RTE

Description The status register and program counter are pulled from the system stack.
The previous status register and program counter are lost. All bits in the
status register aare affected.

Condition Codes Set according to the content of the word on the stack.

Instruction Format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

VMPU-182

TOSHIBA TLCS-68000

RTE Return from Exception (Privileged Instruction) RTE

Operation

Assembler
Syntax

Attributes

Description

Condition Codes

If supervisor stat
then ((SP) -+ SR; S P + 2 -+ SP; (SP) -+ PC; SP + 4 -+ SP;
restore state and deallocate
stack according to (SP))

else TRAP;

RTE

Unsized

The processor state information in the exception stack frame on top of
the stack is loaded into the processor. The stack format field in the
format/offset word is examined to determine how much information
must be restored.

Set according to the content of the word on the stack.

Instruction Format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

/0/1/0/0/1/1/100/1/1/100/1

Format/Offset Word (in stack frame)

15 12 11 10 9 o
/ Format I 0 / 0 / Vector Offset

Instruction Fields Format field - This 4-bit field defines the amount of information to

be restored.
0000 - Short Format, only four words are to be removed from

the top of the stack. The status register and program

counter are loaded from the stack frame.
1000 - TMP68010 Long Format, 29 words are removed from the

top of the stack.
Any others - the processor takes a format error exception.

VMPU-183

TOSHIBA

RTR

Operation

Assembler

Syntax

Attributes

Description

Condition Codes

Return and Restore Condition Codes

(SP) --+ CCR; SP + 2 --+ SP;

(SP) --+ PC; SP + 4 --+ SP

RTR

Unsized

TLCS-68000

RTR

The condition codes and program counter are pulled from the stack. The

previous condition codes and program counter are lost. The supervisor
portion of the status register is unaffected.

Set according to the content of the word on the stack.

Instruction Format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

10110101111 a a 11 all 11

VMPU-184

TOSHIBA

RTS

Operation

Assembler
Syntax

Attributes

Description

Condition Codes

TLCS-68000

Return from Subroutine RTS

(SP) --'> PC; SP + 4 --'> SP

RTS

Unsized

The program counter is pulled from the stack. The previous program
counter is lost.

Not affected.

Instruction Format:

15 14 13 12 11 10 9 8 7 6 543 2 1 0

o I 1

VMPU·185

TOSHiBA

SBCD

Operation

Assembler

Syntax

Attributes

Description

Condition Codes

Subtract Decimal with Extend

DestinationlO - SourcelO - X ~ Destination

SBCD

SBCD

Dx,Dy

-(Ax), -(Ay)

Size = (Byte)

TLCS-68000

SBCD

Subtract the source operand from the distination operand with the extend

bit and store the result in the destination location. The subtraction is

performed using decimal arithmetic. The operands may be addressed in

two different ways:

1. Data register to data register: The operands are contained in the data

registers specified in the instruction.

2. Memory to memory: The operands are addressed with the predecrement

addressing mode using the address registers specified in the

instruction.

This operation is a byte operation on~y.

X N Z V c
1* ul* ul*

N Undefined.

Z Cleared if the result is non-zero. Unchanged otherwise.

V Undefined.

C Set if a borrow (decimal) is generated. Cleared otherwose.

X Set the same as the carry bit.

Note:

Normally the Z condition code bit is set via programming before the start

of an operation. This allows successful tests for zero results upon completion

of multiple-precision operation.

Instruction Format:

VMPU·186

TOSHIBA

SBCD

Instruction Fields

TLCS-68000

Register Dy/Ay field - Specifies the destination register.

If RIM = 0, specifies a data register.

If RIM = 1, specifies an address register for the predecrement

addressing mode.

RIM filed - Specifies the operand addressing mode:

° - The operation is data register to data register
1 - The operation is memory to memory

Register Dx/Ax field - Specifies the source register.

If RIM = 0, specifies a data register.

If RIM = 1, specifies an address rcgister for the pre decrement

addressing mode.

VMPU·1B7

SBCD

TOSHIBA

Sec

Operation

Assembler
Syntax

Attributes

Description

Set According to Condition

If Condition True
then Is --+ Destination
else as --+ Destina tion

Scc <ea>

Size = (Byte)

TLCS-68000

Sec

The specified condition code is tested; if the condition is true, the byte
specified by the effective address is set to TRUE (all ones), otherwise that
byte is set to FALSE (all zeroes). "cc" may specify the following conditions:

CC carry clear 0100 C

CS carry set 0101 C

EO equal 0111 Z

F never true 0001 0

GE greater or equal 1100 N·V+N·V

GT greater than 1110 NV2 + N·V·2

HI high 0010 C'2

LE less or equal 1111 Z+N'V+N'V

LS low or same 0011 C+Z

LT less than 1101 N·V+]\J.V

MI minus 1011 N

NE not equal 0110 2

PI pius 1010 N
T always true 0000 1

VC overflow clear 1000 V

VS overflow set 1001 V

. = Boolean AND + = Boolean OR N = Boolean NOT N

Condition Codes Not affected.

Instruction Format:

11 10 9 8

Condition

VMPU-188

TOSHIBA

See

Instruction Fields

Addr. Mode

Dn

An

(An)

(An) +

-(An)

d16{An)

TLCS-68000

See

Condition field - One of sixteen conditions discussed in description.
Effective Address field - Specifies the location in which the

true/false byte is to be stored. Only data alterable addressing modes
are allowed as shown:

Mode Register Addr. Mode Mode Register

000 reg. number:Dn dB (An, Xn) 110 reg. number:An

- - AdsW 111 000

010 reg. number:An Ads.L 111 001

011 reg. number:An d16 {PC} - -
100 reg. number:An d8 (PC, Xn) - -

101 reg. number:An #<data> - -

Note: 1. An arithmetic one and zero result may be generated by following the Sec
instruction with a NEG instruction.

VMPU-189

TOSHIBA

STOP

Operation

Assembler

Syntax

Attributes

Description

Condition Codes

Load Status Register and Stop

(Pri vileged Instruction)

If supervisor state

then (Immediate Data ~ SR; STOP)

else TRAP ;

STOP #<data>

Unsized

TLCS-68000

STOP

The immediate operand is moved into the entire status register; the

program counter is advanced to point to the next instruction and the

processor stops fetching and executing instructions. Execution of

instructions resumes when a trace, interrupt, or reset exception occurs. A

trace exception will occur if the trace state is on when the STOP

instruction begins execution. If an interrupt request is asserted with a

priority higher than the priority level set by the immediate data, an

interrupt exception occurs, otherwise, the interrupt request has no effect.

If the bit of the immediate data corresponding to the S-bit is off, execution

of the instruction will cause a privilege violation. External reset will

always initiate reset exception processing.

Set according to the immediate operand.

Instruction Format:

Instruction Fields

15 14 13 12 11 10 987 6 5 4 3 2 a
a a a o o

Immidiate Data

Immediate field - Specifies the data to be loaded into the status

register.

VMPU-190

TOSHIBA

SUB

Operation

Assembler

Syntax

Attributes

Description

Condition Codes

Subtract Binary

Destination - Source -+ Destination

SUB

SUB

<ea>,Dn

Dn,<ea>

Size = (Byte, Word, Long word)

TLCS-68000

SUB

Subtract the source operand from the destination operand and store the

result in the destination. The size of the operation may be specified to be
byte, word, or long. The mode of the instruction indicates which operand is

the source and which is the destination as well as the operand size.

X N Z V c
1*1*1*1*1*

N Set if the resuit is negative. Cleared otherwise.

Z Set if the result is zero. Cleared otherwise.

V Set if an overflow is generated. Cleared otherwise.

C Set if a borrow is generated. Cleared otherwise.

X Set the same as the carry bit.

The condition codes are not affected if a subtraction from an address register

is made.

Instruction Format:

Instruction Fields :

Register field - Specifies any of the eight data registers.

Op-Mode field-

Byte

000
100

Word

001
101

Effective Address field

Long word

010
110

Opration

<Dn> - <ea> -+ <Dn>

<ea> - <Dn> -+ <ea>

Determines addressing mode:

If the location specified is a source operand, then all addressing modes are

allowed as shown:

VMPU-191

TOSHIBA TLCS-68000

SUB

*

SUB

Addr. Mode Mode Register Addr. Mode Mode Register

Dn 000 reg. Number: Dn d8 (An, Xn) 110 reg. Number:An

An* 001 reg. Number:An Abs.W 111 000

(An) 010 reg. Number:An Abs. L 111 001

(An) + 011 reg. Number:An d16 (PC) 111 010

- (An) 100 reg. Number:An d8 (PC, Xn) 111 011

d16(An) 101 reg. Number:An #<data> 111 100

For byte size operaiton, address register direct is not allowed.

If the location specified is a destination operand, then only alterable memory

addressing modes are allowed as shown:

Addr. Mode Mode Register Addr. Mode Mode Register

Dn - - d8 (An, Xn) 110 reg. Number:An

An - - Abs.W 111 000

(An) 010 reg. Number:An Abs. L 111 001

(An) + 011 reg. Number:An d16 (PC) - -
-(An) 100 reg. Number:An d8 (PC, Xn) - -
d16 (An) 101 reg. Number:An #<data> - -

Notes: 1. If the destination is a data register, then it cannot be specified by using the destination
< ea > mode, but must use the destination Dn mode instead.

2. SUBA is used when the destination is an address register. SUBr and SUBQ are used
when the source is immediate data. Most assemblers automatically make this
distinction.

VMPU-192

TOSHIBA

SUB A

Operation

Assembler

Syntax

Attributes

Description

TLCS-68000

Subtract Address SUBA

Destination - Source -+ Destination

SUBA <ea>,An

Size = (Word, Long word)

Subtract the source operand from the destination address register and

store the result in the address register. The size of the operation may be

specified to be word or long word. Word size source operands are sign

extended to 32 bit quantities before the operation is done.

Condition Codes

Instruction Format:

Not affected.

Instruction Fields :

Register field - Specifies any of the eight address registers. This is always

the destination.

Op-Mode field - Specifies the size of the operation:

all - Word operation. The source operand is sign-extended to a long word

operand and the operation is performed on the address register using

all 32 bits.

111 - Long word operations.

Effective Address field - Specifies the source operand. All addressing modes

are allowed as shown:

Addr. Mode Mode Register Addr. Mode Mode Register

Dn 000 reg. Number:Dn d8 (An, Xn) 110 reg. Number:An

An 001 reg. Number:An Abs.W 111 000

(An) 010 reg. Number:An Abs. L 111 001

(An) + 011 reg. Number:An d16 (PC) 111 010

- (An) 100 reg. Number:An d8 (PC, Xn) 111 011

d16 (An) 101 reg. Number:An #<data> 111 100

VMPU·193

TOSHIBA

SUBI

Operation

Assembler

Syntax

Attributes

Description

Condition Codes

TLCS-68000

Subtract Immediate SUB I

Destination - Immediate Data ~ Destination

SUBI #<data>, <ea>-

Size = (Byte, Word, Long word)

Subtract the immediate data from destination operand and store the result

in the destination location. The size of the operation may be specified to be

byte, word, or long word. The size of the immediate data matches the

operation size.

X N Z V c
1 * 1 * 1 * 1 * I· *

N Set if the result is negative. Cleared otherwise.

Z Set if the result is zero. Cleared otherwise.

V Set if an overflow is generated. Cleared otherwise.

C Set if a borrow is generated. Cleared otherwise.

X Set the same as the carry bit.

Instruction Format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

010 I 0 I 0 1 0 1 1 I 0 I 0 Size I Effective Address
Mode i Register

Word Data Byte Data

Long Data

Instruction Fields :

Size field - Specifies the size of the operation.

00 - byte operation.

01 - word operation.

10 - long word operation.

Effective Address field - Specifies the destination operand.

Only data alterable addressing modes are allowed as shown:

VMPU-194

TOSHIBA TLCS-68000

SUBI SUBI

Addr. Mode Mode Register Addr. Mode Mode Register

Dn 000 reg. Number: Dn d8 (An, Xn) 110 reg. Number:An

An - - Abs. W 111 000

(An) 010 reg. Number:An Abs. L 111 001

(An) + 011 reg. Number:An d16 (PC) - -
-(An) 100 reg. Number:An d8 (PC, Xn) - -
d16 (An) 101 reg. Number:An #<data> - -

Immediate field - (Data immediately following the instruction)

If size = 00, then the data is the low order byte of the immediate word.

Ifsize = 01, then the data is the entire immediate word.

If size = 10, then the data is the next two immediate words.

VMPU-195

TOSHIBA

SUBQ

Operation

Assembler

Syntax

Attributes

Description

Condition Codes

TLCS-68000

Subtract Quick SUBQ

Destination - Immediate Data -+ Destination

SUBQ #<data>, <ea>

Size = (Byte, Word, Long word)

Subtract the immediate data from the destination operand. The data

range is from 1-8. The size of the operation may be specified to be byte,

word, or long word. Word and long word operations are also allowed on the

address registers and the condition codes are· not affected. When

subtracting from address registers, the entire destination address register

is used, regardless of the operation size.

X N Z V c
I * I * I * I * I *

N Set if the result is negative. Cleared otherwise.

Z Set if the result is zero. Cleared otherwise.

V Set if an overflow is generated. Cleared otherwise.

C Set if a borrow is generated. Cleared otherwise.

X Set the same as the carry bit.

The condition codes are not affected if a subtraction from an address register

is made.

Instruction Format:

Instruction Fields :

Data field - Three bits of immediate data, 0, 1-7 representing a range of 8,

1 to 7 respectively.

Size field - Specifies the size of the operation.

00 - byte operation.

01 -:- word operation.

10 - long word operation.

Effective Address field - Specifies the destination location. Only data

alterable addressing modes are allowed as shown:

VMPU-196

TOSHIBA TLCS-68000

SUBQ SUBQ

Addr. Mode Mode Register Addr. Mode Mode Register

Dn 000 reg. Number:Dn d8(An, Xn) 110 reg. Number:An

An* 001 reg. Number:An Abs.W 111 000

(An) 010 reg. Number:An Abs. L 111 001

(An) + 011 reg. Number:An d16 (PC) - -
- (An) 100 reg. Number:An d8 (PC, Xn) - -
d16 (An) 101 reg. Number:An #<data> - -

Word and long only.

VMPU·197

TOSHIBA

SUBX

Operation

Assembler

Syntax

Attributes

Description

Condition Codes

Subtract with Extend

Destination - Source - X -+ Destination

SUBX
SUBX

Dx,Dy

-(Ax), -(Ay)

Size = (Byte, Word, Long word)

TLCS-68000

SUBX

Subtract the source operand from the destination operand along with the

extend bit and store the result in the destination location. The operands

may be addressed in two different ways:

1. Data register to data register: The operands are contained m data

registers specified in the instruction.

2. Memory to memory. The operands are contained in memory and

addressed with the predecrement addressing mode using the address

registers specified in the instruction.

The size of the operand may be specified to be byte, word, or long word.

X N Z V c
I * I * I * I * I *

N Set if the result is negative. Cleared otherwise.

Z Set if the result is zero. Cleared otherwise.

V Set if an overflow is generated. Cleared otherwise.

C Set if a borrow is generated. Cleared otherwise.

X Set the same as the carry bit.

Note:

Normally the Z condition code bit is set via programming before the start

of an operation. This allows successful tests for zero results upon completion

of multiple-precision operations.

Instruction Format:

15 14 13 12 11 10 9 8 7 6

I I Size

VMPU·198

5 4 3 2 o
Register

Xx

TOSHIBA TLCS-68000

SUBX SUBX

Instruction Fields :

Register Xy field - Specifies the destination register:
If RIM = 0, specifies a data register.
If RIM = 1, specifies an address register for the predecrement addressing

mode.
Size field - Specifies the size of the operation:

00 - byte operation
01 - word operation
10 - long operation

RIM filed - Specifies the· operand addressing mode: ° - The operation is data register to data register
1 - The operation is memory to memory

Register Xx field - Specifies the source register:
If RIM = 0, specifies a data register.
If RIM = 1, specifies an address register for the predecrement addressing

mode.

VMPU-199

TOSHIBA

SWAP

Oeration

Assembler
Syntax

Attributes

Descriotion

Condition Codes

Swap Register Halves

Register [31:16] <-> Register [15:0]

SWAP Dn

Size = (Word)

Exchange the 16-bit halves of a data register.

X N Z V c
I I * I * I 0 I 0

N Set if the most significant bit of the 32-bit resultis set.
Cleared otherwise.

Z Set if the 32-bit result is zero. Cleared otherwise.
V Always cleared.
C Always cleared.
X Not affected.

Instruction Format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

I 0 \1 \ 0 \ 0 \1 \ 0 \ 0 \ 0 \ 0 \ I 0 I 0 I 0 I Register

Instruction Fields :

Register field - Specifies the data register to swap.

VMPU-200·

TLCS-68000

SWAP

TOSHIBA

TAS

Operation

Assembler

Syntax

Attributes

Description

TLCS-68000

Test and Set an Operand TAS

Destination Tested --- Condition Codes; 1--- bit 7 of Destination

TAS <ea>

Size = (Byte)

Test and set the byte operand addressed by the effective address field. The

current value of the operand is tested and Nand Z are set accordingly. The

high order bit of the operand is set. The operation is indivisible (using a

read-modify-write memory cycle) to allow synchronisation of several

processors.

Condition Codes:

X N Z V C

I - I * I * 0 0

N Set if the most significant bit of the operand was set.

Cleared otherwise.

Z Set if the operand was zero. Cleared otherwise.

V Always cleared.

C Always cleared.

X Not affected.

Instruction Format:

Instruction Fields :

Effective Address field - Specifies the location of the tested operand.

Only data alterable addressing modes are allowed as shown:

Addr. Mode Mode Register Addr. Mode Mode Register

Dn 000 reg. Number:Dn dB (An, Xn) 110 reg. Number:An

An - - Abs.W 111 000

(An) 010 reg. Number:An Abs. L 111 001

(An) + 011 reg. Number:An· d16 (PC) - -
-(An) 100 reg. Number:An dB (PC, Xn) - -
d16(An) 101 reg. Number:An #<data> - -

Note: Bus error retry is inhibited on the read portion of the TAS read-modify·write bus cycle to
ensure system integrity. The bus error exception is always taken.

VMPU·201

TOSHIBA

TRAP

Operation

Assembler

Syntax

Attributes

Description

Condition Codes

Trap

SSP - 2 -+ SSP; FormatN ector Offset -+ (SSP);

SSP - 4 -+ SSP; PC -+ (SSP); SSP - 2 -+ SSP;

SR -+ (SSP); Vector Address -+ PC

TRAP #<vector>

Unsized

TLCS-68000

TRAP

The processor initiates exception processing. The vector number is
generated to reference the TRAP instruction exception vector specified by

the low order four bits of the instruction. Sixteen TRAP instruction

vectors (0-15) are available.

Not affected.

Instruction Format:

Instruction Fields

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

I 0 I I 0 I 0 I I I I 0 I 0 I I 0 I 0 I Vector

Vector field - Specifies which trap vector contains the new program

counter to be loaded.

VMPU-202

TOSHIBA

TRAPV

Operation

Assembler

Syntax

Attributes

Description

Condition Codes

TLCS-68000

Trap on Overflow TRAPV

If V then TRAP

TRAPV

Unsized

If the overflow condition is set, the processor initiates exception

processing. The vector number is generated to reference the TRAPV

exception vector. If the overflow condition is clear, no operation is

performed and execution continues with the next instruction in sequence.

N at affected.

Instruction Format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 a

101 10101 I I 10 10 1 I I 10 1 I 1
0 1

VMPU-203

TOSHIBA

TST

Operation

Assembler

Syntax

Attributes

Description

Condition Codes

TLCS-68000

Test an Operand TST

Destination Tested ~ Condition Codes

TST <ea>

Size = (Byte, Word, Long word)

Compare the operand with zero. No results are saved; however, the

condition codes are set according to results of the test. The size of the

operation maybe specified to be byte, word, or long word.

X N Z V C

I I * I * 0 0

N Set if the operand is negative. Cleared otherwise.
Z Set if the operand is zero. Cleared otherwise.

V Always cleared.

C Always cleared.

X Not affected.

Instruction Format:

Instruction Fields :

Size field - Specifies the size of the operation:
00 - byte operation

01 - word operation

10 - long word operation
Effective Address field - Specifies the destination operand. Only data

alterable addressing modes are allowed as shown:

Addr. Mode Mode Register Addr. Mode Mode Register

Dn 000 reg. Number:Dn dB (An, Xn) 110 reg. Number:An

An - - Abs.W 111 000

(An) 010 reg. Number:An Abs. L 111 001

(An) + 011 reg. lIlumber:An d16 (PC) - -
- (An) 100 reg. Number:An dB (PC, Xn) - -
d16(An) 101 reg. Number:An # <data> - -

VMPU-204

TOSHIBA

UNLK

Operation

Assembler
Syntax

Unlink

An -+ SP; (SP) -+ An; SP + 2 -+ SP

UNLK An

Attributes Unsized

TLCS-68000

UNLK

Description The stack pointer is loaded from the specified address register. The
address register is then loaded with the long word pulled from the top of
the stack.

Condition Codes Not affected.

Instruction Format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

Register

Instruction Fields : Register field - Specifies the address register through which the
unlinking is to be done.

VMPU-205

TOSHIBA TlCS-68000

APPENDIXC INSTRUCTION FORMAT SUMMARY

C.1 INSTRODUCTION

This appendix provides a summary of the primary words in each instruction of the

instruction set. The complete instruction definition consists of the primary words

followed by the addressing mode operands such as immediate data fields, displacements,
and index operands. Table C.1 is an operand code (opcode) map which illustrates how

bits 15 - 12 are used to specify the operations.

Table C 1 Operation Code'Map
Bits 15 through 12

0000

0001

0010

0011

0100

0101

0110

0111

1000

1001

1010

10 11

1100

1101

1110

1111

Operation

Bit Manipulation f MOVEP f Immediate

Move Byte

Move Long word

Move Word

Miscellaneous

ADDQ f SUBQ f Sec f DBee

Bee f BSR

MOVEQ

OR f DIV f SBCD

SUBfSUBX

(Unassigned, Reserved)

CMP f EOR

AND f MUll ABCD f EXG

ADDfADDX

Shift f Rotate

(Unassigned, Reserved)

VMPU-206

TOSHIBA TLCS-68000

Table C 2 Effective Addressing Mode Categories ..
Address Modes Mode Register

Data Register Direct 000 reg. no.

Address Register Direct 001 reg. no.

Address Register Indirect 010 reg. no.

Address Register Indirect with Postincrement 011 reg. no.

Address Register Indirect with Predecrement 100 reg. no.

Address Register Indirect with Displacement 101 reg. no.

Address Register Indirect with Index 110 reg. no.

Absolute Short 111 000
Absolute Long 111 001
Program Counter Indirect with Displacement 111 010

Program Counter Indirect with Index 111 011
Immediate 111 100

Table C.3. Conditional Tests
Mnemonic Condition Encoding Test

T" True 0000 1
F" False 0001 0

. HI High 0010 C.Z

LS Low orSame 0011 C+Z

cc (HS) Carry Clear 0100 C

CS (LO) Carry Set 0101 C

NE Not Equal 0110 Z

EQ Equal 0111 Z

VC Overflow Clear 1000 V

VS Overflow Set 1001 V

PL Plus 1010 N

MI Minus 1011 N

GE Greater or Equal 1100 N.V+N.V

LT Less Than 1101 N.V+N.V

GT Greater Than 1110 N.V.Z+N.V.Z

LE Less or Equal 1111 Z+N.V +N.V

• = Boolean AND + = Boolean OR N = Boolean NOT N

* : Not available for the Bee instruction

VMPU-207

TOSHIBA

STANDARD INSTRUCTIONS

ORI

4 3 2

00 = byte
01=word
10 = long word

ORI to CCR

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

I 0 I o I 0 I 0 I 0 I 0 I 0 0 0 0 0

ORI to SR

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

I 0 I 0 I 0 I 0 I 0 I 0 I 0 0 0 1 1 0

Dynamic Bit

MOVEP

100 = transfer word from memory to register
101 = transfer long from memory to register
110 =transferword from register to memory
111 =transfer long from register to memory

VMPU-208

TLCS-68000

0

0

0

0

TOSHIBA TLCS-68000

ANDI

Size field: 00 = byte
01=word
10 = long word

ANDltoCCR

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 1 0 1 0 1 0 1 0 1 0 1 1 1 0 1 0 1 0 1 1 1 1 1 1 1 1 0 1 0 1

ANDI to SR

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 I 0 I 0 1 0 I 0 I 0 1 1 I 0 I 0 1 1 1 1 11 I 1 I 1 1 0 1 0 I

SUBI

4 3 2

00 = byte
01=word
10 = long word

ADDI

4 3 2

Size field: 00 = byte
01=word
10 = long word

VMPU-209

TOSHIBA TLCS-68000

Static Bit

VMPU-210

TOSHIBA

MOVES

Size field: 00 = byte
01 =word
10 = long word

MOVE (Byte)

987

Note register and mode locations

MOVEA (Word)

15

VMPU-211

TLCS-68000

432

432

432

TOSHIBA

MOVE (Word)

9 8 7

Note register and mode locations

NEGX

MOVE from SR

CHK

LEA

00 = byte
01 =word
10 = long word

VMPU-212

TLCS-68000

4 3 2

432

TOSHIBA

CLR

Size field: 00 = byte
01 =word
10 = long word

MOVE from CCR

NEG

Size field: 00 = byte
01 =word
10 = long word

MOVE to CCR

NOT

Size field: 00 = byte
01 =word
10 = long word

TLCS-68000

4 3 2

VMPU-213

TOSHIBA

MOVE to SR

NBCD

SWAP

BKPT

PEA

EXT

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0
Data

Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

I 0 I I 0 I 0 I I 0 I 0 I 0 I 0 I I 0 I 0 I I B KPT #

15 14 13 12 11 10 9 8 7 6

Op-Mode field: 010 = Extend Word
011 = Extend Long word

VMPU-214

543 2 0

Data
Register

TLCS-68000

TOSHIBA

TST

TAS

ILLEGAL

Sz field 0= word transfer
1 = long word transfer

Size field: 00 = byte
01 = word
10 = long word

15 14 13 12 11 10 9 8 7

o

Sz field 0= word transfer
1 = long word transfer

VMPU-21S

TLCS-68000

6 5 4 3 210

o 0

3 2

TOSHIBA TLCS-68000

TRAP

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

I 0 I 1 I 0 I 0 I 1 I 1 I 1 I 0 I 0 I 1 I 0 I 0 I Vector·

LINK

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 11 1 0 1 0 11 11 11 1 0 1 0 11 1 0 11 1 0 I ~~;i~~

UNLK

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

MOVE to USP

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

1 0 \1 \ 0 \ 0 \1 \1 \1 \ 0 \ 0 \1 11 1 0 1 0 \ ~~:i~~!~

MOVE from USP

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

RESET

15 14 13 12 11 10 9 8 7 ii 5 4 3 2 1 0

I 0 11 I 0 I 0 11 11 11 I 0 I 0 11 11 11 I 0 I 0 I 0 1 0 I

VMPU-216

TOSHIBA TLCS-68000

NOP

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
101110101111111010111111101010111

STOP

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
101110101111111010111111101011101

RTE

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
101110101111111010111111101011111

RTD

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
101110101111111010111111101110101

RTS

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
101110101111111010111111101110111

TRAPV

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
101110101111111010111111101111101

VMPU-217

TOSHIBA

RTR

MOVEC

JSR

JMP

ADDQ

TLCS-68000

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

I 0 I 1 I 0 I 0 I I I 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

[0111010111111 I 0 0 0 I dr I
dr field

Data field

Size·field :

0= control register to general register
1 = general register to control register

432
Effective Address
Mode Re ister

Three bits of immediate data, 0, 1-7 representing a range
of 8, 1 to 7 respectively.

00 byte
01 word
10 = long word

VMPU-218

TOSHIBA

Scc

DBcc

11 10 9 8

Condition

Condition field :
0000 = always true
0001 = never true
0010 = high
0011 =Ioworsame
0100 = carry clear
0101 = carry set
0110 = not equal
0111 =equal

15 14 13 12 11 10 9 8

I 0 I I 0 I I Condition

Condition field :
0000 = always true
0001 = never true
0010=high
0011 = low or same
0100 = carry clear
0101 = carry set
0110 = not equal
0111 =equal

1000 = overflow clear
1001 = overflow set
1010 = plus
1011 = minus
1100 = greater or equal
1101 =Iessthan
1110 = greater than
1111 =Iessorequal

7 6 543 2 0

I I I 0 I 0 I I Data
Register

1000 = overflow clear
1001 = overflow set
101O=plus
1011 =minus
1100 = greater or equal
1101 = less than
1110 = greater than
1111 =Iessorequal

VMPU-219

TLCS-68000

TOSHIBA TLCS-68000

SUBQ

Size field.

Bcc

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

I 0 I 1 I 1 I 0 I Condition 8-Bit Displacement

Condition field :
1000 = overflow clear
1001 = overflow set

0010 = high 1010 = plus
0011 = low orsame 1011 =minus
0100 = carry clear 1100 = greater or equal
0101 = carry set 1101 = less than
0110 = not equal 1110 = greater than
0111 =equal 1111 = less or equal

BRA

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

I 0 I I I 0 I 0 I 0 I 0 0 8-Bit Displacement

BSR

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

I 0 I 1 I 1 I 0 I 0 I 0 I 0 8-Bit Displacement

VMPU-220

TOSHIBA

MOVEQ

OR

DIVU

SBCD

TLCS-68000

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

I 0 I I I I R~g~!~er I 0 I Data

Data field Data is sign extended to a long word operand and all 32 bits
are transferred to the data register.

4 3

Op-Mode field:
byte Word Long word Operation
000 001 010 <ea> V
100 101 110 <Dn> V

RIM field 0 = data register to data register
1 = memory to memory

* If RIM = 0, specifies a data register

<Dn>
<ea>

2

~ <Dn>
~ <ea>

If RIM = 1, specifies an address register for the predecrement addressing mode.

VMPU-221

TOSHIBA

DIVS

SUB

SUBA

SUBX

Op-Mode field:
Byte Word
000 001
100 101

Op-Mode field:

Longword
010
110

432

Operation
«Dn >)-«ea>) ~ <Dn >
«ea>)-«Dn » ~ <ea>

432

Word
000

Long word Operation
111 «ea>)-«An>)~<An>

00 = byte
01 =word
10 = long word

RIM field a = data register to data register
1 = memory to memory

* : If RIM = 0, specifies a data register

TLCS-68000

If RIM = 1, specifies an address register for the predecrement addressing mode.

VMPU-222

TOSHIBA

CMP

CMPA

EOR

CMPM

Op-Mode field:
Byte Word
000 001

Op-Mode field:
Word
011

Op-Mode field:
Byte Word
100 101

00 = byte
01 =word

432

Long word Operation
010 «Dn>)-«ea>)

long word Operation
001 «An>)-«ea>)

Long word
110

Operation
«ea»EB«Dn» ~ <ea>

10 = long word

VMPU-223

TLCS-68000

TOSHIBA

AND

MULU

ABeD

Op-Mode field:
Byte Word
000 001

Long word Operation
010 «ea»!\«Dn » ~ <Dn >

100 101 110 «Dn »!\«ea» ~ <ea>

RIM field a = data register to data register
1 = memory to memory

* If RIM = 0, specifies a data register

TLCS-68000

If RIM = 1, specifies an address register forthe predecrement addressing mode.

EXG (Data Registers)

15 14 13 12 11 10 9 8 7· 6 5 4 3

VMPU-224

2 0
Data

Register

TOSHIBA TLCS-68000

EXG (Data Register and Address Register)

MULS

ADD

ADDA

ADDX

15 14 13 12 11 10 9 8 7 6 5 4 3 2 a

OP-Mode field:
Byte Word
000 001
100 101

OP-Mode field:
Word
011

Size field: 00 = byte
01 = word

Long word
010
110

432

Operation
«ea» + «Dn >) -'> <Dn >
«Dn >) + «ea» -'> <ea>

Long word Operation
111 «ea>}+«An>}-,><An>

10 = long word
RIM field: a = data register to data register

1 = memory to memory
* : If RIM = 0, specifies a data register

If RIM = 1, specifies an address register for the predecrement addressing mode.

VMPU-225

TOSHIBA

dr field

Size field

i/r field

Type field

Type field

dr field

TLCS-68000

0, specifies shift count
1, specifies a data register that contains the shift
count

0= right
1 = left
00 = byte
01 = word
10 = long word
0= immediate shift count
1 = register shift count
00 = arithmetic shft
01 = logical shift
10 = rotate with extend
11 = rotate

00 = arithmetic shift
01 = log ical sh ift
10 = rotate with extend
11 = rotate
o =right
1 = left

VMPU-226

432

TOSHIBA TLCS-68000

APPENDIXD TMP68000 INSTRUCTION EXECUTION TIMES

D.1 INTRODUCTION

This Appendix contains listings of the instruction execution times in terms of
external clock (CLK) periods. In this data, it is assumed that both memory read and

write cycle times are four clock periods. A longer memory cycle will cause the
generation of wait states which must be added to the total instruction time.

The number of bus read and write cycles for each instruction is also included with the

timing data. This data is enclosed in parenthesis following the number of clock periods
and is shown as: (r/w) where r is the number of read cycles and w is the number of write

cycles included in the clock period number. Recalling that either a read or write cycle
requires four clock periods, a timing number given as 18(3/1) relates to 12 clock periods
for the three read cycles, plus 4 clock periods for the one write cycle, plus 2 cycles

required for some internal function of the processor.

Note:

The number of periods includes instruction fetch and all applicable operand fetches
and stores.

D.2 OPERAND EFFECTIVE ADDRESS CALCULATION TIMES

Table D.1 lists the number of clock periods required to compute an instruction's
effective address. It includes fetching of any extension words, the address computation,
and fetching of the memory operand. The number of bus read and write cycles is shown
in parenthesis as (r/w). Note there are no write cycles involved in processing the
effective address.

VMPU-227

TOSHIBA TLCS-68000

Table D.l Effective Address Calculation Times

Addressing Mode Byte, Word Long word

Register
Dn Data Register Direct 0 (0/0) o (0/0)
An Address Register Direct 0 (0/0) o (0/0)

Memory
(An) Address Register Indirect 4 (1 /0) 8 (2/0)
(An) + Address Register Indirect with Postincrement 4 (1/0) 8 (2/0)

-(An) Address Register Indirect with Predecrement 6 (1/0) 10 (2/0)
d16(An) Address Register Indirect with Displacement 8 (2/0) 12 (3/0)

d8 (An, Xn)' Address Register Indirect with Index 10 (2/0) 14 (3/0)
Abs.W Absolute Short 8 (2/0) 12 (3/0)

Abs. L Absolute Long 12 (3/0) 16 (4/0)
d 16 (PC) Program Counter with Displacement 8 (2/0) 12 (3/0)

d16 (PC, Xn)' Program Counter with Index .:. 10 (2/0) 14 (3/0)
#<data> Immediate 4 (1/0) 8 (2/0)

The size of the index register (Xn) does not affect execution time.

D.3 MOVE INSTRUCTION EXECUTION TIMES

Table D.2 and D.3 indicate the number of clock periods for the move instruction. This
data includes instruction fetch, operand reads, and operand writes. The number of bus
read and write cycles is shown in parenthesis as (r/w).

VMPU-228

TOSHIBA TLCS-68000

Table D.2 Move Byte and Word Instruction Execution Times

Source
Destination

Dn An (An) (An)+ - (An) d16(An) dS (An, Xn)* Abs.W Abs. L

Dn 4 (1/0) 4 (11 0) 8(1/1) 8 (111) 8(1/1) 12 (211) 14 (2/1) 12 (2/1) 16 (1/3)

An 4(1/0) 4 (110) 8(1/1) 8 (111) 8 (111) 12 (2/1) 14 (2/1) 12 (2/1) 16 (1/3)

(An) 8 (2/0) 8 (21 0) 12 (2/1) 12 (2/1) 12(2/1) 16 (3/1) 18(3/1) 16 (3/1) 20 (4/1)

(An) + 8(2/0) 8(2/0) 12 (2/1) 12 (2/1) 12 (2/1) 16 (3/1) 18(3/1) 16 (3/1) 20(4/1)

- (An) 10 (21 0) 10 (21 0) 14 (2/1) 14(2/1) 14 (2/1) 18 (3/1) 20(3/1) 18 (3/1) 22 (1/4)

d16 (An) 12 (31 0) 12 (3/0) 16 (3/1) 16 (3/1) 16 (3/1) 20 (4/1) 22 (4/1) 20(4/1) 24(5/1)

dS (An, Xn)* 14 (31 0) 14 (3/0) 18 (3/1) 18 (3/1) 18 (3/1) 22 (4/1) 24(4/1) 22 (4/1) 26(5/1)

Abs.W 12 (3/0) 12 (3/0) 16 (31 1) 16 (3/1) 16 (3/1) 20 (4/1) 22(4/1) 20 (4/1) 24 {51 1)

Abs. L 16 (4/0) 16 (410) 20 (4/1) 20 (4/1) 20 (4/1) 24 {51 1) 26 (5/1) 24(5/1) 28 (6/1)

d16 (PC) 12 (3/0) 12 (31 0) 16 (3/1) 16 (3/1) 16 (3/1) 20 (4/1) 22 (4/1) 20 (4i 1) 24 (5/1)

dS (PC, Xn)* 14 (31 0) 14{3iO) 18{3i I) 18(3/1) 18 (31 i) 22{4i1) 24(4/1) 22(4/1) 26 (5 i 1)

#<data> 8 (21 0) 8 (21 0) 12 (2/1) 12 (2/1) 12 (2/1) 16 (3/1) 18(3/1) 16 (3/1) 20(4/1)

* The size of the index register (Xn) does not affect execution time.

Table D.3 Move Long Word Instruction Execution Times

Sou rce
Destination

Dn An (An) (An)+ - (An) d16(An) dS (An, Xn)* Abs. W Abs. L

Dn 4 (II 0) 4 (1/0) 12 (1/2) 12 (1/2) 12 (112) 16 (212) 18 (2/2) 16 (212) 20 (3/2)

An 4(1/0) 4(1/0) 12 (1/2) 12 {I 12) 12 {I 12) 16 (212) 18 (2/2) 16 (2/2) 20 (312)

(An) 12 (31 0) 12 (3/0) 20 (312) 20 (3/2) 20 (3/2) 24 (4/2) 26(4/2) 24 (412) 28 (5/2)

(An) + 12 (31 0) 12 (3/0) 20 (3/2) 20 (3/2) 20 (3/2) 24 (412) 26 (4/2) 24 (4/2) 28 (5/2)

- (An) 14 (3/0) 14(3/0) 22 (3/2) 22 (3/2) 22 (3/2) 26 (4/2) 28 (4/2) 26 (412) 30 (5/2)

d16(An) 16 (4iO) 16 (4/0) 24(4/2) 24 (4/2) 24 (412) 28 (512) 30 {5 1:1} 28 (5/2) 32 (6/2)

dS (An, Xn)* 18 (4/0) 18 (4/0) 26 (41 2) 26 (41 2) 26 (412) 30 (512) 32 (sl2) 30 (s I 2) 34 (612)

Abs.W 16 (4/0) 16 (410) 24 (41 2) 24(4/2) 24 (41 2) 28 (5/2) 30 (sl2) 28 (sl2) 32 (61 2)

Abs. L 20 (5/0) 20 (s/O) 28 (sl2) 28 (5/2) 28 (5 I 2) 32 (61 2) 34 (6/2) 32 (6 I 2) 36 (7 I 2)

d16(PC) 16 (4/0) 16 (4/0) 24(4/2) 24(4/2) 24 (41 2) 28 (51 2) 30 (512) 28 (s I 2) 32 (51 2)

dS (PC, Xn)* 18(4/0) 18 (4/0) 26 (4 I 2) 26 (412) 26{4i2) 30 (5/2) 32 (5 I 2) 30 (5 I 2) 34 (612)

#<data> 12 (3 I 0) 12 (310) 20 (3/2) 20 (3 I 2) 20 (3 I 2) 24(4/2) 26 (412) 24 (4 I 2) 28 (51 2)

The size of the index register (Xn) does not affect execution time.

VMPU-229

TOSHIBA TLCS-68000

DA STANDARD INSTRUCTION EXECUTION TIMES

The number of clock periods shown in Table DA indicates the time required to
perform the operations, store the results, and read the next instruction. The number of
bus read and write cycles is shown in parenthesis as (r/w). The number of clock periods

and the number of read and write cycles must be added respectively to those of the
effective address calculation where indicated.

In Table DA the headings have the following meanings: An = address register
operand, Dn = data register operand, ea = an operand specified by an effective address,
and M = memory effective address operand.

Instruction

ADD/ADDA

AND

CMP/CMPA

DIVS
DIVU

EOR

MULS
MULU

OR

SUB

Note:

+
/\

*
**

Table DA Standard Instruction Execution Times

Size op<ea>, An 1\

Byte, Word 6(1/0) +**

Long word 8(1/0) +
Byte, Word
Long word -
Byte, word 6(110) +
Long word 6(1/0)+

- -
- -

Byte, Word -
Long word -

- -
- -

Byte, Word -
Lonq word -
Byte, Word 8(110) +
Lonq word 6(1/0) +**

add effective address calculation time

word or long word only

op<ea>, Dn

4(1/0) +
6(1/0)+**
4(110) +
6(1/0)+**
4(1/0) +
6(1/0) +

158 (1 10) + *

140(1/0) *
4(1/0) ***

8(1/0)***
70 (1/0) + *

70 (11 0) + *
4(110) +
6(1/0)+**
4(1/0) +
6(1/0) +**

op Dn, <M>

8(1/1)+
12(1/2) +
8(1/1)+

12(1/2)+
-
-
-
-

8(1/1)+
12(1/2) +

-
-

8(1/1)+
12(1/2) +
8(1/1)+

12(1/2)+

indicates maximum basic value added to word effective address time.

The base time of six clock periods is increased to eight if the effective address mode is

register direct or immediate (effective address time should also be added).

Only available effective address mode is data register direct.

DIVS, DIVU - The divide algorithm used by the TMP68000 provides less than 10% difference

between the best and worst case timings.

MULS, MULU - The multiply algorithm requires 38 + 2n clocks where n is defines as:

MULS: n = the number of ones in the < ea >

MULU: n= concatanate the <ea>with a zero as the LSB;n is the resultant number of 10

or 01 patterns in the 17-bit source; Le., worst case happens when the source is

$5555.

VMPU-230

TOSHIBA TLCS-68000

D.5 IMMEDIATE INSTRUCTION EXECUTION TIMES

+
*

The number of clock periods shown in Table D.5 includes the time to fetch immediate
operands, perform the operations, store the results, and read the next operation. The
number of bus read and write cycles is shown in parenthesis as (r/w). The number of

clock periods and number of read and write cycles must be added respectively to those of
the effective address calculation where indicated.

In Table D.5, the headings have the following meanings:

= immediate operand,
Dn = data register operand,
An = address register operand,

M = memory operand.
SR = status register.

Table D.5 Immediate Instruction Execution Times

Instruction Size

ADDI Byte, Word
Long word

ADDQ
Byte, Word
Long word
Byte, Word

ANDI Long word
Byte, Word

CMPI Long word
Byte, Word

EaRl Lonq word
MOVEQ Long word

Byte, Word
ORI

Long word
Byte, Word

SUB I Long word

SUBQ
Byte, Word
Long word

add effective address calculation time

word only

op#, Dn op#, An

8 (2 I 0) -
16 (3 I 0) -

4 (1 10) 8(1/0)*
8 (1 10) 8 (1 10)
8 (2 10) -

16 (3 I 0) -
8 (2 10) -

14 (3 10) -
8 (2 10) -

16 (3 10) -
4 (1 10) -
8 (2 I 0) -

16 (3 10) -
8 (2 10) -

16 (3 I 0) -
4 (1/0) 8(1/0)*
8 (1 10) 8 (1 10)

op#, M

12 (2 I 1) +
20 (312) +
8(1/1)+

12(1/2)+
12 (2 I 1) +
20 (3 11) +

8 (2 I 0) +
12 (3 I 0) +
12(2/1) +
20 (3 12) +

-
12(2/1) +
20 (312) +
12 (2 I 1)
20 (3 I 2) +
8(111)+

12(1/2)+

D.6 SINGLE OPERAND INSTRUCTION EXECUTION TIMES

Table D.6 indicates the number of clock periods for the single operand instructions.

The number of bus read and write cycles is shown in parenthesis as (r/w). The number of
clock periods and the number of read and write cycles must be added respectively to
those of the effective address calculation where indicated.

VMPU-231

TOSHIBA TLCS-68000

Table D.6 Single Operand Instruction Execution Times

Instruction Size Register Memory

CLR Byte, Word 4 (1 10) 8(1/1)+

Long word 6 (1 10) 12(1/2)+

NBCD Byte 6 (1 10) 8(111) +

NEG
Byte, Word 4 (1 10) 8(1/1) +

Long word 6 (1 10) 12(1/2)+

NEGX,
Byte, Word 4 (1 10) 8(1/1)+

Long word 6 (1 10) 12(1/2) +

NOT
Byte, Word 4 (1/0) 8(111) +

Long word 6 (1 10) 12(1/2) +

Scc
Byte, Word 4 (1/0) 8(1/1)+

Long word 6 (1 10) 8(1/1)+

TAS Byte 4 (1 10) 10(1/1) +

Byte, Word 4 (1 10) 4(110) +
TST Long word 4 (1 10) 4(1/0) +

+ add effective address calculation time

D.7 SHIFTIROTATE INSTRUCTION EXECUTION TIMES

Table D.7 indicates the number of clock periods for the shift and rotate instructions.
The number of bus read and write cycles is shown in parenthesis as (r!w). The number of
clock periods and the number of read and write cycles must be added respectively to
those of the effective address calculation where indicated.

Table D.7 ShiftlRotate Instruction Execution Times

Instruction Size Register Memory

ASR, ASL Byte, Word 6+2n(1/0) 8(1/1)+
Long word 8+2n(1/0)

LSR, LSL
Byte, Word 6+2n(1/0) 8(1/1)+
Long word 8+2n (1 10) -

ROR, ROL
Byte, Word 6+2n (1 10) 8(1/1)+

Long word 8+2n (1 10) -

ROXR, ROXL
Byte, Word 6 + 2n (1 10) 8(1/1) +

Lonq word 8+2n(1/0) -

+ add effective address calculation time for word operands

n the shift count

VMPU-232

TOSHIBA

D.S BIT MANIPULATION INSTRUCTION EXECUTION TIMES

+

*

Table D.S indicates the number of clock periods required for the bit manipulation
instructions. The number of bus read and write cycles is shown in parenthesis as (r/w).

The number of clock periods and the number of read and write cycles must be added
respectively to those ofthe effective address calculation where indicated.

Table D.S Bit Manipulation Instruction Execution Times

Instruction Size
Dynamic Static

Register Memory Register Memory

Byte - 8(1/1)+ - 12(2/1)+
BCHG Lonq word 8(1/0)* - 12 (2 10) -

Byte - 8(111)+ - 12 (2/1) +
BCLR Lonq word 10(1/0) - 14(2/0)* -

Byte - 8(111)+ - 12(2/1)+
BSET Long word 8(1/0)* - 12(2/0)* -

Byte - 4(110) + - 8 (21 0)+
BTST Long word 6 (1 10) - 10 (2 1 0) -

add effective address calculation time

indicates maximum value; data addressing mode only

D.9 CONDITIONAL INSTRUCTION EXECUTION TIMES

+

*

Table D.9 indicates the number of clock periods required for the conditional
instructions. The number of bus read and write cycles is indicated in parenthesis as
(r/w). The number of clock periods and the number of read and write cycles must be
added respectively to those of the effective address calculation where indicated.

Table D.9 . Conditional Instruction Execution Times

Instruction Displacement

Bee
Byte

Word
Byte

BRA
Word
Byte

BSR
Word
cc true

DBcc cc false, Count Not Expired
cc false, Count Expired

add effective address calculation time

indicates maximum base value

VMPU-233

Branch Taken

10 (2/0)

10 (2 10)
10 (2 10)

10 (2 10)
18 (2 1 2)

18 (2 1 2)
-

10 (2 1 0)
-

Branch Not Taken

8 (1 10)
12 (2/0)

-
-
-
-

12 (2 10)
-

14 (3/0)

TOSHIBA TLCS-68000

D.lO JMP, JSR, LEA, PEA, AND MOVEM INSTRUCTION EXECUTIONTIMES

Table D.lO indicates the number of clock periods required for the jump, jump-to

subroutine, load effective address, push effective address, and move multiple registers
instructions. The number of bus read and write cycles is shown in parenthesis as (r/w).

Table D.lO JMP, JSR, LEA, PEA, and MOVEM Instruction Execution Times

In-strue· Size (An) (An) + - (An) d16(An) dB (An,Xn)* Abs.W Abs. L d16(PC) dB (Pc, Xn)*
tion

JMP - B (2/0) - - 10 (21 0) 14 (31 0) 10 (2/0) 12 (3/0) 10 (2/0) 14(3/0)

JSR - 16 (2/2) - - 1B(212) 22 (2/2) 1B (2/2) 20 (3/2) 1B (212) 22 (2/2)

LEA - 4 (1/0) - - B (2/0) 12 (21 0) B (2/0) 12 (3/0) B (2/0) 12 (2/0)

PEA - 12 (1/2) - - 16 (2/2) 20 (2/2) 16 (2/2) 20 (3/2) 16 (2/2) 20 (2/2)

Word 12 +4n 12 +4n - 16+4n 1B+4n 16+4n 20+4n 16+4n 1B+4n

MOVEM (3+n/0) (3 + n I 0) (4+ n/O) (4+n/0) (4+n/0) (5+n/0) (4+ n/O) (4+ n/O)

M R Long 12 +Bn 12 + Bn - 16+ Bn 1B+Bn 16+Bn 20+ Bn 16 +Bn 1B+Bn

(3 + 2n I 0) (3+2n/0) (4 + 2n/0) (4 + 2n I 0) (4 + 2n I 0) (5 + 2n I 0) (4 + 2n I 0) (4 + 2n/0)

Word B+4n - B+4n 12 +4n 14+4n 12 +4n 16 +4n - -
MOVEM (2/n) (21 n) (31 n) (31 n) (31 n) (41 n) - -
R M Long B+Bn - B+ Bn 12 +Bn 14+Bn 12 +Bn 16+Bn - -

(2/2n) - (2/2n) (3/2n) (312n) (3/2n) (4/2n) - -

n: the number of registers to move

* . the size of the index register (Xn) does not affect the instruction's execution time

D.ll MULTI-PRECISION INSTRUCTION EXECUTION TIMES

Table D.ll indicates the number of clock periods for the multi-precision instructions.
The number of clock periods includes the time to fetch both operands, perform the
operations, store the results, and read the next instructions. The number of bus read
and write cycles is shown in parenthesis as (r/w).

In Table D.ll, the headings have the following meaning; Dn = data register
operand and M = memory operand.

Table D.ll Multi-Precision Instruction Execution Times

Instruction Size op Dn, Dn opM,M

ADDX
Byte, Word 4 (1 10) 18(3/1)
Long word 8 (1 10) 30 (5/2)

CMPM
Byte, Word 12 (3 1 0)
Long word - 20 (5/0)

SUBX
Byte, Word 4 (1 10) 18(3/1)
Long word 8 (1/0) 30 (5 1 2)

ABCD Byte 6 (1/0) 18(3/1)
SBCD Byte 6 (1/0) 18 (3 1 1)

VMPU-234

TOSHBBA TLCS-68000

D.12 MISCELLANEOUS INSTRUCTION EXECUTION TIMES

Table D.12 and D.13 indicate the number of clock periods for the folowing
miscellaneous instructions. The number of bus read and write cycles is shown in
parenthesis as (r/w). The number of clock periods plus the number of read and write

cycles must be added to those of the effective address calculation where indicated.

Table D.12 Miscellaneous Instruction Execution Times

Instruction Size Register Memory

ANDI to CCR Byte 20 (3 1 0) -
ANDI to SR Word 20 (3 1 0) -
CHK (No Trap) - 10(1/0)+ -
EORI to CCR Byte 20 (3 10) -
EORI to SR Word 20 (3 10) -
ORI to CCR Byte 20 (3 1 0) -
ORI to SR Word 20(3/0) -
MOVE from SR - 6 (1 10) 8(111) +

MOVE to CCR - 12(1/0) 12 (2/0) +

MOVE to SR - 12(1/0) 12 (2 10) +

EXG - 6 (1/0) -
Word 4 (1 10) -

EXT Long word 4 (1 10) -
LINK - 16 (2 1 2) -

MOVE from USP - 4 (1 10) -

MOVE to USP - 4 (1 10) -
NOP - 4 (1 10) -
RESET - 132 (1/0) -
RTE - 20 (5 1 0) -
RTR - 20 (5 1 0) -
RTS - 16(4/0) -
STOP - 4 (0 1 0) -
SWAP - 4 (1 10) -
TRAPV - 4 (1 10) -
UNLK - 12 (3 1 0) -

+ add effective address calculation time

Table D.13 Move Peripheral Instruction Execution Times

Instruction Size Register ~ Memory Memory~Register

Word 16 (2 1 2) 16(4/0)
MOVEP

Long word 24 (2 14) 24 (6 1 0)

VMPU-235

TOSHIBA TLCS-68000

D.13 EXCEPTION PROCESSING EXECUTION TIMES

Table D.14 indicates the number of clock periods for exception processing. The
number of clock periods includes the time for all stacking, the vector fetch, and the fetch
of the first two instruction words of the handler routine. The number of bus read and
write cycles is shown in parenthesis as (riw).

+

**

Table D.14 Exception Processing Execution Times

Exception Periods

Address Error 50 (417)

Bus Error 50 (417)

CHK Instruction 44(5/4) +

Divide by Zero 42 (5/4)

Jlegallnstruction 34(4/3)

Interrupt 44 (5 1 3)*

Privilege Violation 34 (4 1 3)

·RESET** 40 (6 1 0)

Trace 34 (41 3)

TRAP Instruction 38(4/4)

TRAPV Instruction 34(4/3)

add effective address calculation time

The interrupt acknowledge cycle is assumed to take four clock periods.

Indicates the time from when RESET and HALT are first sampled as negated

to when instruction execution satrts.

VMPU-236

TOSHIBA TLCS-68000

APPENDIXE TMP68008 INSTRUCTION EXECUTION TIMES

E.l INTRODUCTION

This Appendix contains listings of the instruction execution times in terms of

external clock (CLK) periods. In this data, it is assumed that both memory read and

write cycle times are four clock periods. A longer memorycycle will cause the

generation of wait states which must be added to the total instruction time.

The number of bus read and write cycles for each instruction is also included with
the timing data. This data is enclosed in parenthesis following the number of clock

periods and is shown as: (r/w) where r is the number of read cycles and w is the

number of write cycles includedin the clock period number. Recalling that either a
read or write cycle requires four clock periods, a timing number given as 18 (311)

relates to 12 clock periods for the three read cycles, plus 4 clock periods for the one

write cycle, plus 2 cycles required for some internal function of the processor.

Note:

The number of periods includes instruction fetch and all applicable operand
fetches and stores.

VMPU-237

TOSHIBA TLCS-68000

E.2 OPERAND EFFECTIVE ADDRESS CALCULATION TIMES

Table E.l lists the number of clock periods required to compute an instruction's
effective address. It includes fetching of any extension words, the address
computation, and fetching of the memory operand. The number of bus read and
write cycles is shown in parenthesis as (r/w). Note there are no write cycles involved

in processing the effective address.

Table E 1 Effective Address Calculation Times

Addressing Mode Byte Word Long word

Register

Dn Data Reg ister Di rect 0 (0 I 0) 0 (0/0) 0 (0 I 0)

An Address Register Direct 0 (0 I 0) 0 (0 I 0) 0 (0 I 0)

Memory

(An) Data Register Indirect 4 (1 10) 8 (2 I 0) 16 (4 I 0)

(An) + Address Register Indirect with Postincrement 4 (1 10) 8 (2 I 0) 16 (4/0)

-(An) Address Register Indirect with Predecrement 6 (1 10) 10 (2 I 0) 18 (4/0)

d16(An) Address Register Indirect with Displacement 12 (3/0) 16 (4/0) 24 (6 I 0)

d8 (An, Xn)* Address Register Indirect with Index 14 (3/0) 18 (4 I 0) 26 (6 I 0)

Abs.W Absolute Short 12 (3 10) 16 (4/0) 24 (6 I 0)

Abs.L Absolute Long 20 (5 I 0) 24 (6 I 0) 32 (8 I 0)

d16 (PC) Program Counter with Displacement 12 (3 10) 16 (4/0) 24 (6 I 0)

d8 (PC, Xn)* Program Counter with Index 14 (3 10) 18 (4/0) 26 (6 I 0)

#<data> Immediate 8 (2/0) 8 (2 I 0) 16 (4/0)

*. The size of the index register (Xn) does not affect execution time.

VMPU-238

TOSHIBA TLCS-68000

E.3 MOVE INSTRUCTION EXECUTION TIMES

Table E.2, E.3 and EA indicate the number of clock periods for the move
instruction. This data includes instruction fetch, operand reads, and operand writes.

The number of bus read and write cycles is shown in parenthesis as (riw).

Table E.2 Move Byte Instruction Execution Times

Source
Destination

On An (An) (An) + -(An) d16(An) dS (An,Xn)* Abs.W Abs.L

On 8 (2/0) 8 (2/0) 12(2/1) 12 (2/1) 12 (2/1) 20 (4/1) 22 (4/1) 20 (4/1) 28 (6/1)

An 8 (2/0) 8 (2/0) 12 (2/1) 12 (2/1) 12(2/1) 20 (4/1) 22 (4/1) 20 (4/1) 28 (6/1)
(An) 12 (3/0) 12 (3/0) 16 (3/1) 16 (3/1) 16(3/1) 24 (5/1) 26 (5/1) 24 (5/1) 32 (7/1)

(An) + 12 (3/0) 12 (3/0) 16 (3/1) 16 (3/1) 16 (3/1) 24(5/1) 26 (5/1) 24 (5/1) 32 (7/1)
-(An) 14 (3/0) 14 (3/0) 18(3/1) 18 (3/1) 18(3/1) 26 (5/1) 28 (5/1) 26 (5/1) 34 (7/1)
d16 (An) 20 (SID) 20 (SID) 24(5/1) 24 (5/1) 24 (5/1) 32(7/1) 34 (7/1) 32 (7/1) 40 (9/1)

d8 (An, Xn)* 22 (SID) 22 (SID) 26 (5/1) 26 (5/1) 26 (5/1) 34 (7/1) 36 (7/1) 34 (7/1) 42 (9/1)

AbsW 20 (SID) 20 (SID) 24 (5/1) 24 (5/1) 24 (5/1) 32 (7/1) 34(7/1) 32 (7/1) 40 (9/1)
Abs.L 28 (710) 28 (710) 32 (7/1) 32(711) 32(7/1) 40 (9/1) 42 (911) 40 (9/1) 48 (11/1)
d16 (PC) 20 (SID) 20 (SID) 24(5/1) 24 (5/1) 24 (5/1) 32(7/1) 34 (7/1) 32 (7/1) 40 (9/1)
d8 (PC, Xn)* 22 (SID) 22 (SID) 26 (5/1) 26 (5/1) 26 (5/1) 34 (7/1) 36 (7/1) 34 (7/1) 42 (9/1)

#<data> 16 (4/0) 16 (4/0) 20 (411) 20 (4/1) 20 (4/1) 28 (6/1) 30 (6/1) 28 (6/1) 36 (8/1)

*. The size of the index register (Xn) does not affect execution time.

'Table E.3 Move Word Instruction Execution Times

Source
Destination

On An (An) (An) + -(An) d16(An) dS (An,Xn)* AbsW Abs.L

On 8 (2/0) 8 (2/0) 16 (2/2) 16 (2/2) 16 (2/2) 24 (4/2) 26 (4/2) 20 (4/2) 32 (6/2)

An 8 (2/0) 8 (2/0) 16 (2/2) 16 (2/2) 16 (2/2) 24 (4/2) 26 (4/2) 20 (4/2) 32 (6/2)
(An) 16 (4/0) 16 (4/0) 24 (4/2) 24 (4/2) 24 (4/2) 32 (6/2) 34 (6/2) 32 (6/2) 40 (8/2)

(An) + 16 (4/0) 16 (4/0) 24 (4/2) 24 (4/2) 24 (4/2) 32 (6/2) 34 (6/2) 32 (6/2) 40 (8/2)
-(An) 18 (4/0) 18 (4/0) 26 (4/2) 26 (4/2) 26 (4/2) 34 (6/2) 32 (6/2) 34 (6/2) 42 (8/2)
d16(An) 24 (6/0) 24 (6/0) 32 (6/2) 32 (6/2) 32 (6/2) 40 (8/2) 44 (8/2) 40 (8/2) 48 (10/2)
d8(An, Xn)* 26 (6/0) 26 (6/0) 34 (6/2) 34 (6/2) 34 (6/2) 42 (8/2) 44 (8/2) 42 (8/2) 50 (10/2)

Abs.W 24 (6/0) 24 (6/0) 32 (6/2) 32 (6/2) 32 (6/2) 40 (8/2) 42 (8/2) 40 (8/2) 48 (10/2)

Abs.L 32 (8/0) 32 (8/0) 40 (8/2) 40 (8/2) 40 (8/2) 48 (10/2) 50 (10/2) 48 (10/2) 56(12/2)

d16(PC) 24 (6/0) 24 (6/0) 32 (6/2) 32 (6/2) 32 (6/2) 40 (8/2) 42 (8/2) 40 (8/2) 48 (10/2)

d8(PC, Xn)* 26 (6/0) 26 (6/0) 34 (6/2) 34 (6/2) 34 (6/2) 42 (8/2) 44 (8/2) 42 (8/2) 50 (10/2)

#<data> 16 (4/0) 16 (4/0) 24 (4/2) 24 (4/2) 24 (4/2) 32 (6/2) 34 (6/2) 32 (6/2) 40 (8/2)

*. The size of the index register (Xn) does not affect execution time.

VMPU-239

TOSHIBA TLCS-68000

Table EA Move Long Word Instruction Execution Times

Source
Destination

Dn An (An) (An) + -(An) d16 (An) KJ8(An,Xn)* AbsW Abs,L

Dn 8 (2/0) 8 (2/0) 24 (2/4) 24 (2/4) 24 (2/4) 32 (4/4) 34 (4/4) 32 (4/4) 40 (6/4)

An 8 (2/0) 8 (2/0) 24 (2/4) 24 (2/4) 24 (2/4) 32 (4/4) 34 (4/4) 32 (4/4) 40 (6/4)

(An) 24 (6/0) 24 (6/0) 40 (6/4) 40 (6/4) 40 (6/4) 48 (8/4) 50 (814) 48 (8/4) 56 (10/4)

(An) + 24 (6/0) 24 (6/0) 40 (6/4) 40 (6/4) 40 (6/4) 48 (8/4) 50 (8/4) 48 (8/4) 56(10/4)

-(An) 26 (6/0) 26 (6/0) 42 (6/4) 42 (6/4) 42 (6/4) 50 (8/4) 52 (8/4) 50 (8/4) 58 (10/4)
d16 (An) 32 (8/0) 32 (8/0) 48 (8/4) 48 (8/4) 48 (8/4) 56 (1014) 58 (10/4) 56 (10/4) 64 (12/4)

d8 (An, Xn)* 34 (8/0) 34 (8/0) 50 (8/4) 50 (8/4) 50 (8/4) 58 (10/4) 60 (10/4) 58 (1014) 66 (12/4)

Abs.W 32 (8/0) 32 (8/0) 48 (8/4) 48 (8/4) 48 (8/4) 56(10/4) 58(10/4) 56 (10/4) 64 (12/4)

Abs.L 40(10/0) 40 (10/0) 56 (10/4) 56 (10/4) 56(10/4) 64 (12/4) 66 (12/4) 64 (12/4) 72(14/4)
d16 (PC) 32 (8/0) 32 (8/0) 48 (814) 48 (8/4) 48 (8/4) 56(10/4) 58(1014) 56(10/4) 64(12/4)
d8(PC, Xn)* 34 (8/0) 34 (8/0) 50 (8/4) 50 (8/4) 50 (8/4) 58 (10/4) 60(10/4) 58 (10/4) 66 (12/4)

#<data> 24 (6/0) 24 (6/0) 40 (6/4) 40 (6/4) 40 (6/4) 48 (8/4) 50 (8/4) 48 (8/4) 56(10/4)

*: The size of the index register (Xn) does not affect execution time.

EA STANDARD INSTRUCTION EXECUTION TIMES

The number of clock periods shown in Table E.5 indicates the time required to
perform the operations, store the results, and read the next instruction. The number
of bus read and write cycles is shown in parenthesis as (r/w). The number of clock
periods and the number of read and write cycles must be added respectively to those
of the effective address calculation where indicated. In Table E.5 the headings have
the following meanings: An = address register operand, Dn = data register
operand, ea = an operand specified by an effective address, and M = memory
effective address operand.

VMPU-240

TOSHIBA

Instruction

ADD/ADDA

AND

CMP/CMPA

DIVS
DIVU

EOR

MULS
MULU

OR

SUB

Notes:

+

*
**

TLCS-68000

Table E.5 Standard Instruction Execution Times

Size op<ea>, An op<ea>, Dn op Dn, <M>

Byte - 8 (2/0) + 12 (2/1) +

Word 12 (210) + 8 (2/0) + 16 (2/2) +

Long word 10(2/0)+** 10 (2/0) +** 24 (2/4) +

Byte - 8 (2/0) + 12 (2/1) +

Word - 8 (2/0) + 16 (2/2) +

Long word - 10 (2/0) + ** 24 (2/4) +

Byte - 8 (2/0) + -
Word 10 (210) + 8 (2/0) + -
Long word 10 (2/0) + 10 (2/0) + -

- 162 (2/0) * -
- 144 (2/0) * -

Byte - 8 (2/0) + *** 12 (2/1) +

Word - 8 (2/0) + *** 16 (2/2) +

Long word - 12 (2/0) + *** 24 (2/4) +
- 74 (2/0) + * -
- 74 (2/0) + * -

Byte - 8 (2/0) + 12 (2/1) +

Word - 8 (2/0) + 16 (2/2) +

Long word - 10 (2/0) + ** 24 (2/4) +

Byte - 8 (2/0) + 12 (211) +

Word 12 (2/0) + 8 (2/0) + 16 (2/2) +

Long word 10 (2/0) + ** 10 (2/0) ** 24 (2/4) +

add effective address calculation time

Indicates maximum base value added to word effective address time.

The base time of 10 clock periods is increased to 12 if the effective address

mode is register direct or immediate

(effective address time should also be added).

Only available effective address mode is data register direct.

DIVS, DIVU - The divide algorithm used by the TMP68008 provides less than

10% difference between the best and worst case timings.

MULS, MULU - The multiply algorithm requires 42 + 2n clocks where n is defined

as:

MULS n =tag the < ea> with a zero as the MSB; n is the resultant number

of 10 or 01 patterns in the 17-bit source, i.e., worst case happens

when the source is $5555.

MULU n=the number of ones in the <ea>

VMPU-241

TOSHIBA TLCS-68000

E.5 IMMEDIATE INSTRUCTION EXECUTION TIMES

The number of clock periods shown in Table E.6 includes the time to fetch
immediate operands, perform the operations, store the results, and read the next

operation. The number of bus read and write cycles is shown in parenthesis as (r/w).
The number of clock periods and the number of read and write cycles must be added
respectively to those of the effective address calculation where indicated. In Table

E.6, the headings have the follwing meanings: # = immediate operand, Dn = data
register operand, An = address register operand, and M = memory operand.

Table E.6 Immediate Instruction Execution Times

Instruction Size op#, Dn op#, An op#, M

Byte 16 (4/0) - 20 (4/1) +
ADDI Word 16 (4/0) - 24 (4/2) +

Long word 28 (6/0) - 40 (6/4) +
Byte 8 (2/0) - 12 (2/1) +

ADDQ Word 8 (2/0) 12 (2/0) 16 (2/2) +
Lon word 12 (2/0) 12 (2/0) 24 (2/4) +
Byte 16 (4/0) - 20 (4/1) +

ANDI Word 16 (4/0) - 24 (4/2) +
Lon word 28 (6/0) - 40 (6/4) +
Byte 16 (4/0) - 16 (4/0) +

CMPI Word 16 (4/0) - 16 (4/0) +
Lon word 26 (6/0) - 24 (6/0) +
Byte 16 (4/0) - 20 (4/1) +

EORI Word 16 (4/0) - 24 (4/2) +
Lon word 28 (6/0) - 40 (6/4) +

MOVEQ Lon word 8 (2/0) - -
Byte 16 (4/0) - 20 (4/1) +

ORI Word 16 (4/0) - 24 (4/2) +
Lon word 28 (6/0) - 40 (6/4) +
Byte 16 (4/0) - 12 (2/1) +

SUBI Word 16 (4/0) - 16 (2/2) +
Lon word 28 (6/0) - 24 (2/4) +
Byte 8 (2/0) - 20 (4/1) +

SUBQ Word 8 (2/0) 12 (2/0) 24 (4/2) +
Lon word 12 (2/0) 12 (2/0) 40 (6/4) +

+ add effective address calculation time

VMPU-242

TOSHIBA TLCS-68000

E.6 SINGLE OPERAND INSTRUCTION EXECUTION TIMES

Table E.7 indicates the number of clock periods for the single operand
instructions. The number of bus read andwrite cycles is shown in parenthesis as

(r/w). The number of clock periods and the number of read and write cycles must be
added respectively to those of the effective address calculation where indicated.

Table E.7 Single Operand Instruction Execution Times

Instruction Size Register Memory

Byte 8 (2/0) 12(2/1)+

CLR Word 8 (2/0) 16 (2/2) +

Long word 10(2/0) 24 (2/4) +

NBCD Byte 10(2/0) 12 (2/1) +

Byte 8 (2/0) 12 (2/1) +

NEG Word 8 (2/0) 16 (2/2) +

Long word 10 (2/0) 24 (2/4) +

Byte 8 (2/0) 12 (2/1) +

NEGX Word 8 (2/0) 16 (2/2) +

Long word 10(2/0) 24 (2/4) +

Byte 8 (2/0) 12 (2/1) +

NOT Word 8 (2/0) 16 (2/2) +

Long word 10 (2/0) 24 (2/4) +

Byte, False 8 (2/0) 12 (211) +
Sec Byte, True 10 (2/0) 12 (2/1) +

TAS Byte 8 (2/0) 14 (2/1) +

Byte 8 (2/0) 8 (2/0) +

TST Word 8 (2/0) 8 (2/0) +

Long word 8 (2/0) 8 (2/0) +

+ add effective address calculation time.

VMPU-243

TOSHIBA TLCS-68000

E.7 SHIFTIROTATE INSTRUCTION EXECUTION TIMES

Table E.8 indicates the number of clock periods for the shift and rotate
instructions. The number of bus read and write cycles is shown in parenthesis as

(r/w). The number of clock periods and the number of read and write cycles must be
added respectively to those of the effective address calculation where indicated.

Table E.8 ShiftlRotate Instruction Execution Times

Instruction Size Register Memory

Byte 10 + 2n (2/0) -
ASR, ASL Word 10 + 2n (2/0) 16 (2/2) +

Long word 12 + 2n (2/0) -
Byte 10 + 2n (2/0) -

LSR, LSL Word 10 + 2n (2/0) 16 (2/2) +

Long word 12+2n(2/0) -
Byte 10 + 2n (2/0) -

ROR, ROL Word 10 + 2n (2/0) 16 (2/2) +

Long word 12 + 2n (2/0) -
Byte 10 + 2n (2/0) -

ROXR, ROXL Word 10 + 2n (2/0) 16 (2/2) +

Long word 12+2n(2/0) -

+: add effective address calculation time for word operands
n: is the shift count .

E.8 BIT MANIPULATION INSTRUCTION EXECUTION TIMES

Table E.g indicates the number of clock periods required for the bit manipulation

instructions. The number of bus read and write cycles is shown in parenthesis as
(r/w). The number of clock periods and the number of read and write cycles must be
added respectively to those of the effective address calculation where indicated.

VMPU-244

TOSHIBA TLCS-68000

Table E.9 Bit Manipulation Instruction Execution Times

Dynamic Static
Instruction Size

Register Memory Register Memory

Byte - 12 (2/1) + - 20 (411) +
BCHG Long word 12 (2/0) * - 20 (4/0)* -

Byte - 12 (2/1) + - 20 (4/1) +
BCLR

Long word 14 (2/0) * 22 (4/0)* - -
Byte - 12 (2/1) + - 20 (4/1) +

BSET
Long word 12 (2/0) * 20 (4/0)* - -
Byte - 8 (2/0) + - 16 (4/0) +

BTST
Long word 10 (2/0) * 18 (4/0)* - -

add effective address calculation time +
* Indicates maximum value; data addressing mode only

E.9 CONDITIONAL INSTRUCTION EXECUTION TIMES

Table E.lO indicates the number of clock periods required for the conditional

instructions. The number of bus read and write cycles is indicated in parenthesis as
(r/w). The number of clock periods and the number of read and write cycles must be
added respectively to those of the effective address calculation where indicated.

Table E.lO Conditional Instruction Execution Times

Instruction Displacement
Trap or Trap or

+
*

Branch Taken Branch Not taken

Byte 18 (4/0) 12 (2/0)
Bcc

Word 18 (4/0) 20 (4/0)

Byte 18 (4/0) -
BRA

Word 18 (4/0) -
Byte 34 (4/4) -

BSR
Word 34 (4/4) -

cc True - 20 (4/0)
DBcc

cc False 18 (4/0) 26 (6/0)

CHK - 68 (8/6) + * 14 (2/0) +

TRAP - 62 (8/6) -
TRAPV - 66 (10/6) 8 (2/0)

add effective address calculation time for word operand
indicates maximum base value

VMPU-24S

TOSHIBA TLCS-68000

E.10 JMP, JSR, LEA, PEA, AND MOVEM INSTRUCTION EXECUTION TIMES

Table E.1l indicates the number of clock periods required for the jump, jump-to

subroutine, load effective address, push effective address, and move multiple

registers instructions. The number of bus read and write cycles is shown in

parenthesis as (r/w).

Table E.1l JMP, JSR, LEA, PEA, and MOVEM Instruction Execution Times

Instruction Size (An) (An)+ • (An) d16(An) d8(An, Xn)'" Abs,W Abs,l d16(PC) d8 (PC, Xn)'

JMP - 16 (4/0) - - 18 (4/0) 22 (4/0) 18 (4/0) 24(6/0) 18 (4/0) 22 (4/0)

JSR - 32 (4/4) - - 34 (4/4) 38 (4/4) 34(4/4) 40 (6/4) 34(4/4) 32 (4/4)

LEA - 8 (2/0) - - 16 (4/0) 20 (4/0) 16 (4/0) 24(6/0) 16 (4/0) 20 (4/0)

PEA - 24 (2/4) - - 32 (4/4) 36 (4/4) 32 (4/4) 40 (6/4) 32 (4/4) 36(4/4)

Word 24+8n 24+ 8n - 32 +8n 34+8n 32 +Bn 40 + Sn 32 +8n 34+8n

MOVEN (6 + 2n/0) (6 + 2n/0) - (8+ 2n/0) (8 + 2n/0) (10+ n/O) (10 + 2n/0) (8 + 2n/0) (8 + 2n/0)

N~R Long word 24 +' 6n 24 + 1Gn - 32 + 16n 34+16n 32 + 16n 40 + 16n 32 + 16n 32 + 16n

(6 + 4n/0) (6+4n/0) - (8 + 4n/0) (8 + 4n/0) (8 + 4n/0) (8+4n/0) (8 +4n/0) (8+4n/0)

Word 16+8n - 16+ 8n 24+8n 26 + 8n 24 +80 32 +8n - -
MOVEN (4/2n) - (4/2n) (6/2n) (6/2n) (6/2n) (8/2n) - -
R~N Long word 16+ 16n - 16+ 16n 24 + 16n 26 +' 6n 24 + 16n 32 + 16n - -

(4/4n) - (4/4n) (6/4n) (8/4n) (6/4n) - -
the number of registers to move

the size of the index register (Xn) does not affect the instruction's execution time

VMPU-246

TOSHIBA TLCS-68000

E.ll MULTI-PRECISION INSTRUCTION EXECUTION TIMES

Table E.12 indicates the number of clock periods for the multi-precision
instructions. The number of clock periods includes the time to fetch both operands,

perform the operations, store the results, and read the next instructions. The.
number of bus read and write cycles is shown in parenthesis as (r/w).

Table E.12 Multi-Precision Instruction Execution Times

Instruction Size OPDn, Dn OPM, M

Byte 8 (2/0) 22 (4/1)

ADDX Word 8 (2/0) 50 (6/2)

Long word 12 (2/0) 58 (10/4)

Byte - 16 (4/0)

CMPM Word - 24 (6/0)

Long word - 40(10/0)

Byte 8 (2/0) 22 (4/1)

SUBX Word 8 (2/0) 50 (6/2)

Long word 12 (2/0) 58 (10/4)

ABCD Byte 10(2/0) 20 (4/1)

SBCD Byte 10(2/0) 20 (411)

VMPU-247

TOSHIBA TLCS-68000

E.12 MISCELLANEOUS INSTRUCTION EXECUTION TIMES

Table E.13 and E.14 indicate the number of clock periods for the folowing
miscellaneous instructions. The number of bus read and write cycles is shown in
parenthesis as: (r/w). The number of clock periods plus the number of read and write
cycles must be added to those of the effective address calculation where indicated.

Table E.13 Miscellaneous Instruction Execution Times

Instruction Register Memory

ANDI to CCR 32 (6/0) -
ANDI to SR 32 (6/0) -
EORI to CCR 32 (6/0) -
EORI to SR 32 (6/0) -
EXG 10(2/0) -
EXT 8 (2/0) -
LINK 32 (4/4) -
MOVE to CCR 18 (4/0) 18 (4/0) +

MOVE to SR 18 (4/0) 18 (4/0) +

MOVE from

SR
10(2/0) 16 (2/2) +

MOVE to USP 8 (2/0) -
MOVE from

USP
8 (2/0) -

NOP 8 (2/0) -
ORI to CCR 32 (6/0) -
ORI to SR 32 (6/0) -
RESET 136 (2/0) -
RTE 40 (10/0) -
RTR 40 (10/0) -
RTS 32 (8/0) -
STOP 4 (0/0) -
SWAP 8 (2/0) -
UNLK 24 (6/0) -

+ add effective address calculation time for word operand

Table E.14 Move Peripheral Instruction Execution Times
Instruction Size Register~Memory Memory~Register

MOVEP
Word 24 (4/2) 24 (6/0)

Long word 32 (4/4) 32 (8/0)

+ add effect! ve address calculatIOn time

VMPU-248

TOSHIBA TLCS-68000

E.13 EXCEPTION PROCESSING EXECUTION TIMES

Table E.15 indicates the number of clock periods for exception processing. The
number of clock periods includes the time for all stacking, the vector fetch, and the

fetch of the first instruction of the handler routine. The number of bus read and
write cycles is shown in parenthesis as: (r/w).

+ :

** .

Table E.15 Exception Processing Execution Times

Exception Periods

Address Error 94 (8/14)

Bus Error 94 (8/14)

CHK Instruction 68 (8/6) +
Divide by Zero 66 (8/6) +
Interrupt 72 (9/6)*

Illegal Instruction 62 (8/6)

Privileged Instruction 62 (8/6)

RESET** 64 (12/0)

Trace 62 (8/6)

TRAP Instruction 62 (8/6)

TRAPV Instruction 66(10/6)

add effective address calculation time

Indicates the time from when RESET and HALT are first sampled as negated to

when instruction execution starts.

VMPU-249

TLCS-68000

i APPENDIXF TMP68010 INSTRUCTION EXECUTION TIMES

I F.1
i
I
I
I

INTRODUCTION

This Appendix contains listings of the instruction execution times in terms of

external clock (CLK) periods. In this data, it is assumed that both memory read and
write cycle times are four clock periods. A longer memory cycle will cause the

generation of wait states which must be added to the total instruction time.
The number of bus read and write cycles for each instruction is also included with

the timing data. This data is enclosed in parenthesis following the number of clock
periods and is shown as: (r/w) where r is the number of read cycles and w is the

number of write cycles included in the clock period number. Recalling that either a
read or write cycle requires four clock periods, a timing number given as 18(311)

relates to 12 clock periods for the three read cycles, puIs 4 clock periods for the one
'!yrite cycle, puIs 2 cycles required for some internal function of the processor.

Note:

The number of periods includes instruction fetch and all applicable operand
fetches and stores.

OPERAND EFFECTIVE ADDRESS CALCULATION TIMES

Table P.1 lists the number of clock periods required to compute an instruction's
effective address. It includes fetching of any extension words if necessary. Several
instructions do not need the operand at the effective address to be fetched and thus
require fewer clock periods to calculate a given effective address than the
instructions that fetch the effective address operand. The number of bus read and
write cycles is shown in parenthesis as (r/w). Note there are no write cycles involved
in processing the effective address.

VMPU-250

TOSHIBA rU::S-G8000

I
Table F.l Effective Address Calculation Times I

-
II

Byte, Word Long word
Addressing Mode

Fetch No Fetch Fetch No Fetch

Register II
Dn Data Register Direct 0(010) - 0(010) - II
An Address Register Direct 0(010) - 0(010) -

1

Memory

(An) Address Register Indirect 4 (1/0) 2 (010) 8 (2/0) 2 (2/0)

(An) + Address Register Indirect with Postincrement 4 (1/0) 4(010) 8 (210) 4 (010)

·An Address Register Indirect with Predecrement 6 (1/0) 4 (010) 10 (2/0) 4 (010)

II
d16(An) Address Register Indirect with Displacement 8 (2/0) 4(010) 12 (310) 4 (1/0)

d8(An, Xn)* Address Register Indirect with Index 10 (2/0) 8 (110) 14(3/0) 8 (110)

Abs.W Absolute Short 8 (2/0) 4 (110) 12 (3/0) 4 (1/0)

il Abs.L Absolute Long 12 (3/0) 8 (2/0) 16 (4/0) !l (2/0)

d16(PC) Program Counter with Displacement 8 (2/0) - 12 (3/0) - I,

r
d8 (PC, Xn)* Program Counter with Index 10 (2/0) - 14 (3/0) -

il #<data> Immediate 4 (1/0) - 8 (2/0) -
i * . The SIze of the I,ndex regIster (Xn) does not affect executIOn tIme.

F.3 MOVE INSTRUCTION EXECUTION TIMES
1
I
1
!

Table F.2, F.3, FA and F.5 indicate the number of clock periods for the move
instruction. This data includes instruction fetch, operand reads, and opeTand i

writes. The number of bus read and write cycles is shown in parenthesis as (l'/w). !

I Table F.2 Move Byte and Word Instruction Execution Times
Destination I

Source
(An) (An) + • (An) d16(An) Dn An d8 (An, Xn)* Abs.W Abs.L I'

Dn 4 (1/0) 4 (110) 8 (1/1) 8 (1/1) 8 (1/1) 12 (2/1) 14 (2/1) 12 (2/1) 16 (3/1) 1
I

An 4 (110) 4 (110) 8 (1/1) 8 (1/1) 8 (1/1) 12 (2/1) 14 (2/1) 12 (2/1) 16 (3/1) !'
(An) 8 (2/0) 8(2/0) 12 (211) 12 (2/1) 12 (2/1) 16 (3/1) 18 (3/1) 16 (3/1) 20 (4/1) I
(An) + 8 (2/0) 8(2/0) 12 (211) 12 (2/1) 12 (2/1) 16 (3/1) 18(3/1) 16 (3/1) 20 (4/1)

iii -(An) 10 (2/0) 10(2/0) 14 (2/1) 14 (2/1) 14 (2/1) 18 (3/1) 20 (3/1) 18 (3/1) 22 (4/1)

d16 (An) 12 (3/0) 12 (3/0) 16 (3/1) 16 (3/1) 16 (3/1) 20 (4/1) 22 (4/1) 20 (4/1) 24 (4/1) III
d8 (An, Xn) * 14 (3/0) 14 (3/0) 18 (3/1) 18(3/1) 18 (3/1) 22 (4/1) 24 (4/1) 22 (4/1) 26 (5/1)

ill AbsW 12 (3/0) 12 (3/0) 16 (3/1) 16 (3/1) 16 (3/1) 20 (4/1) 22 (4/1) 20 (4/1) 24 (5/1)

"I Abs.L 16 (4/0) 16 (4/0) 20 (4/1) 20 (4/1) 20 (4/1) 24 (5/1) 26 (5/1) 24 (5/1) 28 (6/1) i;
I.'

d16(PC) 12 (3/0) 12 (3/0) 16 (3/1) 16 (3/1) 16 (3/1) 20 (4/1) 22 (4/1) 20 (4/1) 24 (5/1) Ii
d8 (PC, Xn) * 14 (3/0) 14 (3/0) 18 (3/1) 18 (3/1) 18 (3/1) 22 (4/1) 24 (4/1) 22 (4/1) 26 (51i)

il #<data> 8 (2/0) 8(2/0) 12 (211) 12 (2/1) 12 (2/1) 16 (3/1) 18 (3/1) 16(3/1) 20 (4/1)

-*. The size of the index register (Xn) does not affect execution time.

VMPU-251

TOSHIBA TLCS-68000

Table F.3 Move Byte and Word Instruction Loop Mode Execution Times
Loop Continued Loop Terminated ,

Valid Count, cc False Valid Count, cc True Expired Count

Destination
Source

(An) (An) + -(An) (An) (An) + -(An) (An) (An) + • (An)

On 10 (011) 10 (011) - 18 (2/1) 18(2/1) - 16 (2/1) 16 (2/1) -
An* 10 (011) 10 (011) - 18 (2/ 1) 18(2/1) - 16 (2/1) 16 (2/ 1) -
(An) 14 (1/1) 14 (1/1) 16 (1/1) 20 (3/1) 20 (3/ 1) 22 (3/ 1) 18 (3/1) 18(3/1) 20 (3 /1)

(An) + 14 (1/1) 14(1/1) 16 (1 / 1) 20 (3/1) 20 (3/1) 22 (3/ 1) 18 (3/1) 18 (3/ 1) 20 (3/1)

• (An) 16 (1/1) 16 (1/1) 18(1/1) 22 (3/1) 22 (3/ 1) 24 (3/1) 20 (3/1) 20 (3/ 1) 22 (3/1)

*.

Table FA Move Long Word Instruction Execution Times
Destination

Source
(An) (An) + • (An) d16(An) Abs.w Abs.L On An d8 (An,Xn)""

On 4 (1/0) 4 (1/0) 12 (112) 12 (1/2) 14 (1/2) 16 (2/2) 18 (2/ 2) 16 (2/2) 20 (3/2)

An 4 (1/0) 4 (1/0) 12 (1 /2) 12 (1/2) 14 (1/2) 16 (2/2) 18 (2/2) 16 (2/2) 20(3/2)

(An) 12 (3/0) 12 (3/0) 20 (3/2) 20(3/2) 20 (3/2) 24(4/2) 26(4/2) 24 (4/ 2) 28 (5/2)

(An) + 12 (3/0) 12 (3/0) 20 (3/2) 20 (3/2) 20 (3/2) 24(4/2) 26 (412) 24 (4/2) 28(5/2)

-(An) 14 (31 0) 14 (31 0) 22 (3/2) 22 (3/2) 22 (3/2) 26 (4/2) 28(4/2) 26(4/2) 30 (5/2)

d16(An) 16 (4/0) 16 (41 0) 24 (4/2) 24 (4/2) 24 (412) 28 (5/2) 30 (5/2) 28 (5/2) 32 (6/2)

d8(An, Xn) * 18 (41 0) 18 (4/0) 26(4/2) 26 (4/2) 26 (4/2) 30 (5/2) 32 (5/2) 30 (512) 34(6/2)

Abs.w 16 (41 0) 16 (4/0) 24 (4/2) 24 (4/2) 24 (4/2) 28 (5/2) 30 (5/2) 28 (5/2) 32 (6/2)

Abs.L 20(5/0) 20 (51 0) 28 (5/2) 28 (512) 28 (5/2) 32(6/2) 34 (6/2) 32 (6/2) 36 (7/2)

d16(PC) 16 (4/0) 16 (41 0) 24 (4/2) 24 (412) 24 (4/2) 28 (5/2) 30 (512) 28 (5/2) 32 (6/2)

d8 (PC, Xn) * 18 (4/0) 18(4/0) 26 (412) 26(4/2) 26(4/2) 30 (5/2) 32 (5/2) 30 (5/2) 34(6/2)

#<data> 12 (3/0) 12 (3/0) 20 (3/2) 20 (3/2) 20 (3/2) 24 (4/2) 26 (4/2) 24 (4/2) 28(5/2)

*: The size ofthe index register (Xn) does not affect execution

Table F.5 Move Long Word Instruction Loop Mode Execution Times
Loop Continued Loop Terminated

Valid Count, cc False Valid Count, cc True Expired Count

Destination
Source

(An) (An) + -(An) (An) (An) + -(An) (An) (An) + -(An)

On 14 (0/2) 14 (0/2) - 20 (2/2) 20 (2/2) - 18(2/2) 18 (2/2) -
An 14 (0/2) 14 (0/2) - 20 (2/2) 20 (2/2) - 18 (2/2) 18 (2/2) -
(An) 22 (2/2) 22 (2/2) 24 (2/2) 28 (4/2) 28(412) 30 (4/2) 24 (412) 24 (4/2) 26(4/2)

(An) + 22 (2/2) 22 (2/2) 24 (2/2) 28 (4/2) 28 (412) 30 (4/2) 24 (4/2) 24 (4/2) 26 (4/2)

-(An) 24 (2/2) 24 (2/2) 26 (2/2) 30 (4/2) 30(4/2) 32 (4/2) 26 (4/2) 26 (4/"2) 28(4/2)

VMPU-252

TOSHIBA TLCS-68000

F.4 STANDARD INSTRUCTION EXECUTION TIMES

The number of clock periods shown in Tables F.6 and F.7 indicate the time
required to perform the operations, store the results, and read the next instruction.
The number of bus read and write cycles is shown in parenthesis as (r/w). The
number of clock periods and the number of read and write cycles must be added

respectively to those of the effective address calculation where indicated.
In Tables F.6 and F.7 the headings have the following meanings: An = address

register operand, Dn = data register operand, ea. = an operand specified by an
effective address, and M = memory effective address operand.

Instruction

ADD/ADDA

AND

CMP/CMPA

DIVS

DIVU

EOR

MULS

MULU

OR

SUB/SUBA

Notes:
+
*
**

Table F 6 Standard Instruction Execution Times
Size op<ea>, An***

Byte, Word 8(1/0)+

Long word 6(1/0) +

Byte, Word -

Long -

Byte, Word 6(110) +

Long word 6(1/0) +

- -

- -

Byte, Word -

Long word -

- -
- -

Byte, Word -

Long word -

Byte, Word 8(110) +

Long word 6(1/0)+

add effective address calculation time
Indicates maximum value

op<ea>, Dn

4(1/0) +

6(1/0) +

4(110) +

6 (1 10) +
4 (1 10) +
6(1/0) +

122 (1 10) +

108 (1 10) +
4 (1/0) **

6 (1/0) **
42 (1 10) +
40(1/0) +

4(1/0) +

6(110) +

4 (1 10) +
6 (1 10) +

only available addressing mode is data register direct
word or long word only

VMPU-253

op Dn, <M>
8 (1 11) +

12(1/2) +
8 (1/1) +

12(1/2) +

-
-
-

-
8 (1 11) +

12(1/2) +
-
-

8 (1/1) +
12(1/2) +

8 (1 11) +
12(1/2) +

TOSHIBA TLCS-68000

Table F.7 Standard Instruction Loop Mode Execution Times
Loop Conti nued Loop Terminated

Valid Count. cc False Valid Count cc True Expi red Cou nt

Instruc- Size op<ea> op<ea> op Dn op<ea> op<ea> op Dn op<ea> op<ea> op Dn
tion An- Dn <ea> An* Dn <ea> An* Dn <ea>

Byte, Word 18(1/0) 18 (1/0) 16 (1/1) 24 (31 0) 22 (3/0) 22 (3/1) 22 (31 0) 20 (3/0) 20 (3/1)
ADD

Long word 22 (21 0) 22 (21 0) 24 (2/2) 28(4/0) 28(4/0) 30(4/2) 26 (4/0) 26 (41 0) 28 (4/2)

AND
Byte, Word - 16 (1/1) 16 (1/1) - 22 (3/0) 22 (3/ 1) - 20 (3/0) 20 (3/ 1)

Long word - 22 (2/0) 24 (2/2) - 28(4/0) 30 (4/2) - 26 (4/ 0) 28 (4/ 2)

CMP
Byte, Word 12 (1 /0) 12 (1 /0) - 18 (3/0) 18(3/0) - 16 (3/0) 16 (4/ 0)

Long word 18(210) 18 (1/0) - 24(4/0) 24(4/0) - 20 (4/1) 20 (4/0)

EOR
Byte, Word - - 16 (11 0) - - 22 (3/1) - - 20 (3/1)

Long word - - 24 (2/2) - - 30(4/2) - - 28 (4/ 2)

Byte, Word - 16 (1/0) 16 (1/0) - 22 (3/0) 22 (3/1) - 20(3/0) 20 (3/1)
OR

Long word - 22 (2/0) 24 (2/2) - 28(4/0) 30(4/2) - 26 (41 0) 28 (4/2)

Byte, Word 18 (11 0) 16 (1/0) 16 (1/1) 24 (31 0) 22 (3/0) 22 (3/1) 22 (3/0) 20 (31 0) 20 (3/1)
SUB

Long word 22 (2/0) 20 (2/0) 24 (2/2) 28(4/0) 26 (41 0) 30 (4/2) 26 (4/1) 24 (41 0) 28 (4/2)

* : Word or long only. <ea> may be (An), (An)+ or -(An) only. Add two clock periods

to the table value if <ea> is -(An).

F.5 IMMEDIATE INSTRUCTION EXECUTION TIMES

The number of clock periods shown in Table F.8 includes the time to fetch
immediate operands, perform the operations, store the results, and read the next
operation. The number of bus read and.write cycles is shown in parenthesis as (r/w).
The number of clock periods and the number of read and write cycles must be added
respectively to those of the effective address calculation where indicated.

In Table F.8, the headings have the follwing meanings: # = immediate operand,

Dn = data register operand, An = address register operand, and M = memory
operand.

VMPU-254

TOSHIBA

Table F.8 Immediate Instruction Execution Times

Instruction Size op #, Dn

ADDI Byte, Word 8 (2 10)

Long word 14 (3 10)

ADDQ Byte, Word 4 (1 10)

Long word 8 (1 10)

AND!
Byte, Word 8 (2 I 0)

Long word 14 (3 I 0)

CMPI
Byte, Word 8 (2/0)

Long word 12 (3/0)

EORI Long word 8 (2/0)

Byte, Word 14 (3 10)

MOVEQ Long word 4 (1 10)

Byte, Word 8 (2 I 0)
ORI Long word 14 (3 I 0)

Byte, Word 8 (2 I 0)
SUBI Long word 14 (3 I 0)

Byte, Word 4 (1 10)
SUBQ

Long word 8 (/0)

+
*

: add effective address calculation time
: word only

op #, An

-
-

4(1/0) *

8 (1 10)

-
-

-
-

-
-

-

-

-
-
-

4(110)*

8 (1 10)

F.6 SINGLE OPERAND INSTRUCTION EXECUTION TIMES

TLCS-68000

op#, M

12(2/1) +

20 (3 I 2) +

8(111)+

12(1/2)+

12(2/1)+

20(3/1)+

8 (2/0) +

12 (3/0) +

12(211)+

20 (3/2) +

-

12 (2 I 1) +

20 (3 I 2) +

12(2/1)+

20 (3 I 2) +

8(1/1)+

12(1/2)+

Tables F.9, F.lD, and F.ll indicate the number of clock periods for the single
operand instructions. The numberof bus read and write cycles is shown in
parenthesis as (r/w). The number of clock periods and the number of read and write
cycles must be added respectively to those of the effective address calculation where
indicated.

Table F.9 Single Operand Instruction Execution Times

Instruction Size Register

NBDC

NEG

NEGX

NOT

Sec

TAS

TST

+
*

Byte 6 (1 10)

Byte, Word 4 (1 10)

Long word 6 (1 10)

Byte, Word 4 (1 10)

Long word 6 (1 10)

Byte, Word 4 (1/0)

Long word 6 (1 10)

Byte, Faise 4 (1 10)

Byte, True 4 (1 10)

Byte 4 (1 10)

Byte, Word 4 (1 10)

Long word 4 (1 10)

add effective address calculation time.
Use non-fetching effective address calculation time.

VMPU-255

Memory

8(1/1) +

8(1/1)+

12(1/2)+

8(111)+

12 (1 12) +

8(1/1)+

12(1/2)+

8(1/1) +*

8(1/1)+*

14(2/1) +*

4(110)+

4(1/0) +

TOSHIBA TLCS-68000

Table F.lO Clear Instruction Execution Times
Inst. Size Dn An (An) (An) + -(An) d16(An) d8 (An, Xn)* Abs.w Abs.L

Byte, Word 4 (1/0) - 8 (1/1) 8(1/1) 10(1/1) 12 (1/1) 16 (2/1) 12 (2/1) 16 (3/1)
CLR

Long word 6 (1/0) - 12 (1/2) 12 (112) 14 (1/2) 16 (2/2) 20 (2/2) 16 (2/2) 20 (3/2)

* ; The size of the index register (Xn) does not affect execution time.

Table F.ll Single Operand Instruction Loop Mode Execution Times

Loop Continued Loop Terminated

Valid Count, cc False Valid Count, cc True Expi red Cou nt

Inst. Size (An) (An) + -(An) (An) (An) + -(An) (An) (An) + -(An)

Byte, Word 10 (011) 10 (011) 12 (011) 18(2/1) 18 (2/1) 20 (2/0) 16 (2/1) 16 (2/1) 18 (2/1)
CLR

Long word 14(0/2) 14 (0/2) 16 (0/2) 22 (2/2) 22 (2/2) 24 (2/2) 20 (212) 20 (2/2) 22 (2/2)

NBCD Byte 18 (1/1) 18(1/1) 20 (1/1) 24 (3/1) 24 (3/1) 26(3/1) 22 (3/1) 22 (3/1) 24 (3/1)

NEG
Byte, Word 16 (1/1) 16 (1/1) 18(2/2) 22 (3/1) 22 (3/1) 24 (3/1) 20 (3/1) 20 (3/1) 22 (3/1)

Long word 24 (2/2) 24 (2/2) 26 (2/2) 30 (4/2) 30 (4/2) 32 (4/2) 28 (412) 28 (4/2) 30 (4/2)

Byte, Word 16 (1/1) 16 (1/1) 18 (2/2) 22 (3/1) 22 (3/1) 24(3/1) 20 (3/1) 20 (3/1) 22 (3/1)
NEGX

Long word 24 (2/2) 24 (2/2) 26 (2/2) 30 (4/2) 30 (4/2) 32 (4/2) 28(4/2) 28 (4/2) 30 (4/2)

NOT
Byte, Word 16 (1/1) 16 (1/1) 18 (2/2) 22 (3/1) 22 (3/1) 24 (3/1) 20 (3/1) 20 (3/1) 22(3/1)

Long word 24 (212) 24 (2/2) 26 (2/2) 30 (4/2) 30 (4/2) 32(4/2) 28(4/2) 28(4/2) 30 (4/2)

TST
Byte, Word 12 (1/0) 12 (1/0) 14 (1/0) 18 (31 0) 18 (3/0) 20 (3/0) 16 (3/1) 16 (3/1) 18 (3/0)

Long word 18 (2/0) 18 (2/0) 20 (21 0) 24 (41 0) 24(4/0) 26 (41 0) 20(4/0) 20(4/0) 22(4/0)

VMPU-256

TOSHIBA TLCS-68000

F.7 SHIFTIROTATE INSTRUCTION EXECUTION TIMES

Tables F.12 and F.13 indicate the number of clock periods for the shift and rotate
instructions. The number of bus read and write cycles is shown in parenthesis as
(r/w). The number of clock periods and the number of read and write cycles must be

added respectively to those of the effective address calculation where indicated.

Table F.12 ShiftlRotate Instruction Execution Times
Instruction Size Register Memory*

Byte, Word 6 + 2n (1 10) 8(1/1)+
FSR, ASL

Long word 8 + 2n (1 10) -
LSR, LSL Byte, Word 6+2n(1/0) 8(1/1)+

Long word 8+2n (1 10) -

ROR, ROL Byte, Word 6+2n (1 10) 8(1/1) +

Long word 8 + 2n (1 10) -

ROXR, ROXL Byte, Word 6+2n(1/0) 8(1/1) +

Lonq word 8+2n(1/0) -
+ : add effective address calculation time
n : the shift or rotate count
* : word only

Table F.13 ShiftlRotate Instruction Loop Mode Execution Times
Loop Continued Loop Terminated

Valid Count, cc False Valid Count, cc True Expi red Cou nt

Instruction Size (An) (An) + -(An) (An) (An) + -(An) (An) (An) + -(An)

ASR, ASL Word 18 (1/1) 18 (1/1) 20 (1/1) 24 (3/1) 24(311) 26 (3/1) 22 (3/1) 22 (3/1) 24(3/1)

LSR, LSL Word 18 (1/1) 18 (1/1) 20(1/1) 24 (3/1) 24 (3/1) 26 (3/1) 22(3/1) 22 (3/1) 24(3/1)

ROR, ROL Word 18 (1/1) 18 (1/1) 20 (111) 24(3/1) 24(3/1) 26 (3/1) 22 (3/1) 22 (3/1) 24(3/1)

ROXR, ROXL Word 18 (1/1) 18 (1/1) 20 (1/1) 24(3/1) 24 (3/1) 26 (3/1) 22(.. /1) 22 (3/1) 24(3/1)
>

F.S BIT MANIPULATION INSTRUCTION EXECUTION TIMES

Table F .14 indicates the number of clock periods required for the bit
manipulation instructions. The number of bus read and write cycles is shown in
parenthesis as (r/w). The number of clock periods and the number of read and write
cycles must be added respectively to those of the effective address calculation where
indicated.

VMPU-257

TOSHIBA TLCS-68000

Table F.14 Bit Manipulation Instruction Execution Times

Instruction Size
Dynamic Static

Register Memory Register Memory

Byte - 8 (111) + - 12 (2/1) +
BCHG

Long word 8 (1/0) * - 12 (2/0) * -

Byte - 10 (111) + - 14(2/1)+
BCLR

Long word 10(1/0)' - 14 (2/0)' -

Byte - 8 (1/1) + - 12 (2/1) +
BSET

8 (1/0) * 12 (2/0)' Long word - -

Byte - 4 (1/0) + - 8 (2/0) +
BTST

Long word 6 (1/0) , 10 (2/0)' - -

+ add effective address calculation time.
, indicates maximum value

F.9 CONDITIONAL INSTRUCTION EXECUTION TIMES

Table F.15 indicates the number of clock periods required for the conditional
instructions. The number of bus read and write cycles is indicated in parenthesis as
(r/w). The number of clock periods and the number of read and write cycles must be
added respectively to those of the effective address calculation where indicated.

Table F.15 Conditional Instruction Execution Times

Instruction Displacement Branch Taken Branch Not Taken

Bcc
Byte 10 (2 /0) 6 (1/0)

Word 10 (2 /0) 10 (2 /0)

Byte 10 (2 /0) -
BRA

Word 10 (2 / 0) -

Byte 18(2/2) -
BSR

Word 18 (2 / 2) -

cc true - 10(2/2)
DBcc

16 (3 / 0) cc false 10 (2/2) .

+ add effective address calculation time.

* indicates maximum value

VMPU-2S8

TOSHIBA TLCS-68000

F.1D JMP, JSR, LEA, PEA, AND MOVEM INSTRUCTION EXECUTION TIMES

Inst.

JMP

JSR

LEA

PEA

Table F.16 indicates the number of clock periods required for the jump, jump-to
subroutine, load effective address, push effective address, and move multiple

registers instructions. The number of bus read and write cycles is shown in
parenthesis as (r/w).

Table F 16 JMP JSR LEA PEA and MOVEM Instruction Execution Times , , , ,
Size An (An) + - (An) d16(An) dB (An,Xn)' Abs.W Abs.L d16(PC) d8 (PC,Xn)'

- 8 (2/0) - - 10 (2/0) 14(310) 10 (210) 12 (310) 10 (2/0) 14 (3/0)

- 16 (2/2) - - 18(2/2) 22 (2/2) 18 (2/2) 20 (312) 18 (2/2) 22 (2/2)

- 4 (1/0) - - 8(2/0) 12 (210) 8 (2/0) 12 (3/0) 8 (2/0) 12 (2/0)

- 12 (1/2) - - 16 (2/2) 20 (2/2) 16 (2/2) 20 (3/2) 16 (2/2) 20 (2/2)

Word 12 +4n 12 +4n - 16+4n 18+ 4n 16+4n 20+4n 16+4n 18+4n
MOVEM

(3 + nlO) (3 + n/O) (4 + n/O) (4 + n/O) (4 + n/O) (5 + n/O) (4+ nlO) (4 + n/O)
M->R

Long 12 +8n 12 +8n - 16+8n 18+ 8n 16+8n 20+8n 16+8n . 16+8n

word (3 + 2n/0) (3 + 2n/0 (4 + 2n/0) (4 + 2n/0) (4 + 2n/0) (5 + n/O) (4 + 2n/0) (4 + 2n/0)

Word 8 +4n - 8+4n 12+4n 14+4n 12 +4n 16+4n - -
MOVEM (2/n) (2/n) (3/n) (3 + n) (3/n) (4/n) - -
R->M

MOVES

M->R

MOVES

R->M

n
*

Long 8+8n - 8+8n 12 +8n 14+8n 12 +8n 16+8n - -
word (2/2n) - (2/2.1) (3/2n) (3/2n) (3/2n) (4/n) - -
Byte, 18 (3/0) 20 (3/0) 20 (3/0) 20 (4/0) 24 (4/0) 20 (4/0) 24 (5/0) - -
Word

Long 22 (4/0) 24(410) 24 (4/0) 24 (5/0) 28 (5/0) 24 (5/0) 28 (6/0) - -
word

Byte, 18 (2/1) 20 (2/1) 20 (2/1) 20 (3/1) 24 (3/1) 20 (311) 24(4/1) - -
Word

Long 22 (2/2) 24 (2/2) 24 (2/2) 24 (3/2) 28(3/21) 24 (3/2) 28 (4/2) - -
word

The number of registers to move.
The size of the index register (ix) does not affect the instruction's execution time.

F.1l MULTI-PRECISION INSTRUCTION EXECUTION TIMES

Table F.17 indicates the number of clock periods for the multi-precision
instructions. The number of clock periods includes the time to fetch both operands,
perform the operations, store the results, and read the next instructions. The
number of read and write cycles is shown in parenthesis as (r/w).

In Table F .17, the headings have the following meanings: Dn = data register

operand and M = memory operand.

VMPU-259

TOSHIBA TLCS-68000

Table F 17 Multi-Precision Instruction Execution Times

Loop Mode

Non-Looped
Continued Terminated

Valid Count, Valid Count, Expired

cc False cc True Count

Instruction Size op Dn, Dn op M, M *
Byte, Word 4 (1 10) 18(3/1) 22(2/1) 28(4/1) 26(4/1)

ADDX
Long word 6 (1 10) 30 (5 I 2) 32.(4 I 2) 38(6/2) 36 (6 I 2)

Byte, Word - 12 (3 I 0) 14 (2 I 0) 20(4/0) 18 (4/0)
CMPM

Long word - 20 (5 I 0) 24 (4 I 0) 30 (6 I 0) 26 (6/0)

Byte, Word 4 (1 10) 18 (3 I 1) 22(2/1) 28(4/1) 26(4/1)
SUBX

Long word 6 (1 10) 30 (5 I 2) 32(4/2) 38 (6 I 2) 36 (6/2)

ASCD Byte 6 (1 10) 18(3/1) 24 (2 I 1) 30(4/1) 28(4/1)

SBCD Byte 6 (1 10) 18(3/1) 24 (2 I 1) 30(4/1) 28(4/1)

* : Source and destination ea is (An) + for CMPM and - (An) for all others.

F.12 MISCELLANEOUS INSTRUCTION EXECUTION TIMES

Table F.18 indicates the number of clock periods for the following miscellaneous
instructions. The number of bus read and write cycles is shown in parenthesis as
(r/w). The number of clock periods plus the number of read and write cycles must be
added to those of the effective address calculation where indicated.

VMPU-260

TOSHIBA

Table F.18 Miscellaneous Instruction Execution Times

Instruction Size Register Memory
Register**
~

Destination

ANDI to CCR - 16 (2/0) - -
ANDI to SR - 16 (2/0) - -

CHK - 8 (liD) + - -

EaRl to CCR - 16 (2/0) - -
EORI to SR - 16 (2/0) - -

EXG - 6 (110) - -

Word 4(1/0) - -
EXT

Long word 4 (liD) - -
LINK - 16 (212) - -

MOVE from CCR - 4 (liD) 8(111) + * -

MOVE to CCR - 12 (2/0) 12 (2/0) + -

MOVE

MOVE

MOVE

MOVE

MOVEC

MOVEP

NOP

ORI to

ORI to

RESET

RTD

RTE

RTR

RTS

STOP

SWAP

TRAPV

UNLK

from SR - 4 (liD) 8(1/1) + * -
to SR - 12 (210) 12(2/0) + -

from USP - 6 (liD) - -
to USP - 6 (liD) - -

CCR

SR

+

**

- - - 10(2/0)

Word - - 16(2/2)

Long word - - 24(2/4)
- 4 (liD) - -
- 16 (2/0) - -

- 16 (2/0) - -
- 130 (liD) - -
- 16 (4/0) - -

Short 24 (4/0) - -
Long word, Retry Read 112(27/10) - -

Long word, Retry Write 112 (26/1) - -

Long word, No Retry 110(26/0) - -

- 20 (510) - -
- 16 (4/0) - -
- 4 (DID) - -
- 4 (liD) - -

- 4(1/0) - -
- 12 (3/0) - -

add effective address calculation time.
use non-feching effective address calculation time.
Source or destination is a memory location for the MOVEP instruction and
a control register for the MOVEC instruction.

VMPU-261

Source**~

Register

-
-
-

-
-
-
-
-
-
-

-
-

-
-
-

12(2/0)

16(4/0)

24(6/0)
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

TOSHIBA TLCS-68000

F.13 EXCEPTION PROCESSING EXECUTION TIMES

Table F.19 indicates the number of clock periods for exception processing. The
number of clock periods includes the time for all stacking, the vector fetch, and the
fetch of the first two instruction words of the handler routine. The number of bus
read and write cycles is shown in parenthesis as (r/w).

+
*
**

Table F.19 Exception Processing Execution Times

Exception

Address Error 126 (4/26)

Breadpoint Instruction* 42 (5/4)

Bus Error 126(4/26)

CHK Instruction* 44 (5 / 4)+

Divide By Zero 42 (5/4) +

Illegal Instruction 38 (5 /4)

Interrupt* 46 (5 /4)

MOVEC, Illegal Control Register** 46(5/4)

Privile,ge Violation 38 (5/4)

Reset*** 40 (6/0)

RTE, Illegal Format 50 (7/4)

RTE, Illegal Revision 70 (12/4)

Trace 38(4/4)

TRAP Instruction 38(4/4)

TRAPV Instruction 38(5/4)

Add effective address calculation time.
The interrupt acknowledge and breakpoint cycles are assumed to take four clock periods.
Indicates maximum value.
Indicates the time from when RESET and HALT are first sampled as negated to when
instruction execution starts.

VMPU-262

TOSHIBA TLCS-68000

APPENDIX G TMP68010 LOOP MODE OPERATION

The TMP68010 has several features that provide efficient execution of program
loops. One of these features is the DBcc looping primitive instruction. The DBcc
instruction operates on three operands, a loop counter, a branch condition, and a
branch displacement. When the DBcc is executed in loop mode, the contents of low

order word of the register specified as the loop counter is decremented by one and
compared to minus one. If equal to minus one, the result of the decrement is placed
back into the count register and the next sequential instruction is executed,

otherwise the condition code register is checked against the specified branch
condition. If the condition is true, the result of the decrement is discarded and the
next sequential instruction is executed. Finally, if the count register is not equal to
minus one and the branch condition is false, the branch displacement is added to the
program counter and instruction execution continues at that new address. Note that
this is slightly different than non-looped execution; however, the results are the
same.

An example of using the DBcc instruction in a simple loop for moving a block of
data is shown in Figure G.1. In this program, the block of data 'LENGTH' words

long at address 'SOURCE' is to be moved to address 'DEST' provided that none of
the words moved are equal to zero. When the effect of instruction prefetch on this
loop is examined it can be seen that the bus activity during the loop execution would
be:

1. Fetch the MOVE.W instruction,

2. Fetch the DBEQ instruction,

3. Read the operand where AO points,

4. Write the operand where Al points,

5. Fetch the DBEQ branch displacement, and

6. Ifloop conditions are met, return to step 1.

LOOP

LEA

LEA

MOVE.W

MOVE.W

DBEQ

SOURCE, AD

DEST, Ai

#LENGTH, DO

(AO)+, (Ai)+

DO, LOOP

Load A Pointer To Source Data

Load A Pointer To Destination

Load The Counter Register

Loop To Move The Block Of Data

Stop If Data Word Is Zero

Figure G.l DBcc Loop Mode Program Example

VMPU-263

TOSHIBA TLCS-68000

During this loop, five bus cycles are executed; however, only two bus cycles

perform the data movement. Since the TMP68010 has a two word prefetch queue in
addition to a one word instruction decode register, it is evident that the three
instruction fetches in this loop could be eliminated by placing the MOVE.W word in
the instruction decode register and holding the DBEQ instruction and its branch
displacement in the prefetch queue. The TMP68010 have the ability to do this by

entering the loop mode of operation. During loop mode operation, all opcode fetches
are suppressed and only operand reads and writes performed until an exit loop
condition is met.

Loop mode operation is transparent to the programmer, with only two conditions
required for the TMP68010 to enter the loop mode. First, a DBcc instruction must be
executed with both branch conditions met and a branch displacement of minus four;
which indicates that the branch is to a one word instruction preceding the DBcc
instruction. Second, when the processor fetches the instruction at the branch
address, it is checked to determine whether it is one of the allowed looping
instructions. If it is, the loop mode is entered. Thus, the single word looped
instruction and the first word of the DBcc instruction will each be fetched twice
when the loop is entered; but no instruction fetches will occur again until the DBcc
loop conditions fail.

In addition to the normal termination conditions for a loop, there are several
conditions that will cause the TMP68010 to exit loop mode operation. These
conditions are interrupts, trace exceptions, reset errors, and bus errors. Interrupts
are honored after each execution of the DBcc instruction, but not after execution of
the looped instruction. If an interrupt exception occurs, loop mode operation is
terminated and can be restarted on return from the interrupt handler. If the T bit is
set, trace exceptions will occur at the end of both the loop instruction and the DBcc
instruction and thus loop mode operation is not available. Reset will abort all
processing, including the loop mode. Bus errors during the loop mode will be treated
the same as in normal processing; however, when the RTE instruction is used to
continue the execution of the looped instruction, the three word loop will not be re
fetched.

The loopable instructions available on the TMP68010 are listed in Table G.1.
These instructions may use the three address register indirect modes to form one
word looping instructions; (An), (An) + , and - (An).

VMPU-264

TOSHIBA TLCS-68000

Table G 1 TMP68010 Loopable Instructions

Opcodes
Applicable

Addressing Modes Opcodes
Applicable

Addressing Modes

MOVE [BWL] (Ay)to(Ax) -(Ay)to(Ax) ABCD [B] -(Ay) to -(Ax)

(Ay)to(Ax)+ -(Ay)to(Ax)+ ADDX[BWL]

(Ay)to-(Ax) -(Ay)to-(Ax) SBCD [B]

(Ay)+to(Ax) Xy to (Ax) SUBX[BWL]

(Ay)+to (Ax)+Xy to (Ax)+ CMPM [BWL] (Ay)+ to (Ax)+

(Ay)+to -(Ax) CLR [BWL] (Ay)

ADD [BWL] (Ay) to Ox NEG [BWL] (Ay)+

AND [BWL] (Ay)+to Ox NEGX[BWL] -(Ay)

CMP [BWL] - (Ay) to Ox NOT [BWL]

OR [BWL] TST[BWL]

SUB [BWL] NBCD [B]

ADDA[WL] (Ay) to Ax ASL[W] (Ay) by #1

CMPA[WL] - (Ay) to Ax ASR[W] (Ay)+ by #1

SUBA [WL] (Ay)+to Ax LSL[W] -(Ay) by #1

ADD [BWL] Ox to (Ay) LSR[W]
AND [BWL] Ox to (Ay)+ ROL[W]
EOR [BWL] Ox to -(Ay) ROR[W]
OR [BWL] ROXL[W]
SUB [BWL] ROXR [W]

Note: [B, W, or L] indicate an operand size of byte, word or long word.

VMPU-265

TOSHIBA USERS MANUAL

Postscript

This manual describes functions and characteristics of each LSI in TLCS-68000

family.

All examples employed herein are used as reference for the purpose of explanation.

Toshiba and Motorola disclaim all responsibilities for problems that may result from
using any of these examples. The information contained herein is subject to change
without prior notice as a result of future technical advancement.

This manual is made by :

Toshiba corporation
Integrated Circuit Div.
High End Microprocessor Engineering Sec.
580-1, Horikawa-cho, Saiwai-ku,
Kawasaki-city, Kanagawa 210
JAPAN
PHONE: Japan (81) 44-548-2190

L-_____ O_V_ER_S_E_A_S _O_FF_ I_CE_S ____ ~I LI ______________ _ SALES SUBSIDIARIES

Sio Paulo:
ToahlM Br .. I~ l r. RepraHnt.coel lid • .
Av. Paulls!a. 807. 21 Andar Cjlo 2106
Cerque!ra Cesar
Cap 01311·Sto Pauk>S P·8raslf
Tel 283-4511, 4714 , 4964 FaJI(1,)2St·4H)4

Athen.:
Toshiba Corporation Athenl OHlc.
Athens Tower Bldg A. 2-4 MesoglOn Ave
Athens 115·27 Greece
Tel 7799828-9, 7791 824 Telex 21·6502 TS8A GR
Cable TOSHIBA ATHENS

fetue" :
Toshiba Corporallon Iran Office
No 79 Bucharesl Ave Jrd Floor, Argentine
SQuar • . Tehran, Iran
P O eo. 15745-343 Tehran, Iran
Tel 624729 relell; 212531 TSBAIA
Cable TOSHIBACO TEHERAN

BeiJing:
Toehlb. Corpor,tlon Bei jing Office
Room 162211624 Be'l,ng Ho!el Dong Chang An JIe
Be ling The People s RepuOl,c 01 Ch,na
Tel 500-7766 (EX 1622 1624 3857) 55-4179 4768
(Clfectl
Tele)! 22807 TQSPK eN Cable TOSHIBA PEto<lNG

Guangzhou;
Toshiba Corporation Guangzhou OHIcl
Room 609 OttlCe Tower CtMa HOlel llu Hua lu
GuaOOzhou, The People's Republic 01 China
Tel 663388 (EX 2609) 677427 (Olreel)
F ... {20J 67·7427 Telex 44585 TSBGZ CN
Cable TOSHIBA GUANG ZHQU

Shlnghel;
TOlhlba Corpotltlon Shanghll OffiCI
Room 2705 - 8 Shanghai Union BUilding Vanan Ad
EasVSlchuan Ad Shanghai The People s Aepubllc 01
China
Tel 200156 200157, 200076 Fu (21) 200075

Wall ington :
TOlhlba Corpotltlon Repr .. antaUvl
In Naw ZI.tand
12\h FlOOr Puus House 79 Boulton Streel
PO Box 3549 Wellington. New Zealand
Tel 721865. 726001 Fax (4) 731 ·394
Telex 3433 TOSHIBA NZ
Cable TOSHIBA WELLINGTON

To.hlbl AmerlCI, Inc.
Eleclronlc Componlnts Business Seclor
Irvlnl Head OffiCI
(MaS IC DIY $emICOl'lClUCIOl' DIY I
9n5 Toledo Way. IMne CA 927 t 8 , USA
Tel (714) 455-2000 Fall (71 4) 85~3963
Eutern Area Office
(MOS Ie DIY , $emlConduclOf 01'0')
25 Mall Road. 51h Fioof.
Burllnglon. MA 01803. 1I S A
Tel (617) 272-4352 Fall (617) 272-3089
South Eutlrn Rlglonll OttiCI
(MOS IC D,y)
4{)25 Pleasantdale Aa SUite 320 Atlanta GA 30340
USA
Tet (404) 49J.424{) Fay /404) 493-4401
Sin JOII OffiCI (EleclrOf'l TUDeS & Dlvlces D,y)
WI.tarn Ar .. OffICI (MOS IC DIY)
2021 The Alameda SUite 220
SanJose CA95126 USA
Tel 408·244-4{)70 Fu 408·248·5370
Southwutarn Rlglonal Off tci
(MeS IC 0 1'0'1
1400 Qua I SI SUITe 100 Newpon Beach CA 92660
USA
Tel (7\.t)752..Q373
Chlclgo OUICI (Electron Tubes & DeYlCes D,y
SemoeonductOl' D,y I
Clnlrl l Area OffiCI (MOS IC 01'0' J
I lOl A lake COOl(FlO Deerlelc:l Il 60015 USA
Tel (J12) 945·1500 F (312) 945·H)44
South Clntral Rlg lonl l OffICI
{MOS IC D'y j
1750 Nonh Collins Blyd SUITe' 11 6
RIChardson, Tellas 75080 USA
Tel (2t4) 480-0470 F ... (214j 235·41\4
Poughkllpll l 51111 Office
(MOS IC 01'0' 1
AFI 1 BOll 6E
Windsor Park FIShkill New Vor~ 12524 USA
Tel (914) 896·6500 Fu (914) 297-2S05
Boci Allon Salll OffiCI
(MOS IC 01'0')
1200 N Feoera! Hlgnway Su'!e 407
Boca Ralon , FL 33432 USA
Tel (305) 394-3004 Fu r305) 394·3006
Oltroll OtllCI
(AutornollY Dlv)
26533 Evergreen Roao
SUIIe 420 SouIMela M 48076 USA
Tel r313, 827·7100 Fall '3'318274444

TOlh lbl (UK) lImltld
Electronic Componen ts Group
RiverSide Way Cambeflet
Surrey GU 15 3YA UK
Tel 0276-694600 Fall 0276691583

T05hib i ElectroniCS Scan d inaVia AB
Guslavslunasyagen 141 41h Floor
5161 15 eromma. Sweoen
Tel 46-87040900 F.u 46-8 80 84~9
Tele~ 14169 TSBSTK S
(Malting Aadress PO Bo. 15031
S 161 15 B.omma Sweden)

TOlhlba Elecironici Europe GmbH
DusI.ldon' He.d Office
Hansaallee 181 4000 Dusseidort 11
F A Germany
Tel (021t) 5296-<l Fu (0211) 5296-400
Telell 8582685
lIelson Offic.I
Stultglrt : Vel'1tlebsburo Baaen·Wumemberg
EltlOger SIr 61
0 ·7250 leonberg F A Germany
Tel (07152) 21061·66 Fa.. {07152j 27658
Telell 7245706
Munchln : Buro Muncl'Ien Arabellastr 33Jv
8000 MUl'IChen 81 . F R Germany
Tel (089) 928091-0 F 089·9280942
Telex 5·212363

TOlhlbe ElectroniCI 1I.lIanl S .R.l
Centro DllezlOnale CoIleool Palazzo Onone
Ingfesse 3 (3- P'ano) 2O()41 Agrate
Br'anza (MIano) Iialy
Tel 039·638891 Fax 039·638892
Te'ell 325423 SIAVBC

TOlhlba Eilct ronici Elpal'll , 5 A
Torres Heron Plaza Col6n No 2 Torre ([
Planta 6-Pte·2
28046 Maotld Spain
Tel (I) 53-25·846 Fax (11 4 '.91.266
Te·e. 44672 TOSHE IE)

TOlhlba El l ct ron lCI Telwln Corp
Tl lpel Hlld Offlce
8F Min Sheng Chen Kou Blag 348·350 M,n Sner'il
East Aoaa TalDeI TaIWan
Tel 02·502·9641 Fu 02·503-7964
Telell 26874 TEnp
Klohllu ng Oll ici
16F.A Chung·Cl'Ieng BUlld·ng
No 2 Chung-Cheng 31d 80027 Kaons ung
Tel 107) 241·0826 Fax (07) 282·7446

TOlhlba Ell c tronlCI Ai le . Ltd
Hong Kong Heed Olliel
SUlle 501 Hong Kong HOlel Canlon Road
Ts,mST'latsu. Ko 1oon Hong Kong
Tel 3~71"41_4 3-721-6'" FI.II 3·739-8969
Telel 38501 TSBEH HX
Siou l BranCh Ottlce
Aoom 1061 Cnamoe. BUll(! ng 45 4 K.A
Namaaemun·Ro CnungKu Seoul KOfea
Tel 217572472 3 Fa..; ,2· 7572475
Singapore Branch Off ice
460 Alexall(]'a Roaa ~ 26-01 PSA Blog
Singaoo'e 05"
Tel 2785252 Fa" 2735368
Tele o AS 23892 TOSHIBA

Toshiba (Auslraha) Ply. Ltd
84 92 Tala~e'a Roaa NOM A~oe N 5 'Iv 2" 3
AuSlraha
~el 21 8B7 3322 Fa~ 28873201 Telf'> AA?7235

MANUFACTURING SUBSIDIARIES AND JOINT VENTURES

Toshiba Amerlce. Inc
Microelect roniCS Cente r
1220 Midas Way Sunnyvale CA 94086 USA
Tel 408-739·0560 FIJI 408746-0571
Tele~ 346378

T",shlb . Westinghou se ElectroniCS Corpora l lon
Westlngnouse CIfCIe' Horsetleaa!o New Yo ...
14545 USA
Tel (6011 796-3500

Industria Mellicana Toshi ba . S A
Calzada de Guaaalupe No 303 Cual<tlan
Edo ae MeXICO MeloCo
Tel 565-OQ.88 Tele_ 01772-560
CaDle Tosnlba MelllCo

Semp Toshiba Amazonas S.A
Aua Ica No 500 01511110 Inaustrlal de Suhama Manaus
CEP 69000. Amazonas Br,UlI
rei (092) 237-2366
Telell 38922197 SEMP BA Cable SEMP AMAZON

Toshiba Semiconductor G m b H
G'ol"an Sieln eg 51. ,(3300
Blaunsch eg F A Gelman.,.
Tel (053113HX)60 Fat 10531 31006139
Telel 952368 TSCD

Toshiba ElectroniCS Maiaysi. Sdn B"d
42057 TeJol. Pangllma GIang 15KM Klang Bani nq
.oaa Kuala langal Selange. MalaySia
Tel 03-35260017 F.u 03-3516139
Tele. TOEl MA 39506
Penang Branc h Olhce
Lot 2 08 2na FlOc)! W,sma Ct'bCoiale P'OduCIS
41 AOOO S.nle lane Pananv 10400 MalaySia
Tel ()4 368523 ()4 368529 Fa~ 04368515

Toshiba Singapore Pte lid
20 Pas" Pan/ang Aoaa 09 18126 PSA Mull,-SIOfey
Complex Singapore 051 1
Tel 2718066 Telell AS 36592 TSPMFG

The mlOl'mallOn In 1MIS gUide has been carelutty checkea and IS behevea 10 rehable l'IOweve'
no responSibiliTy can be assumed 101' inaCcuracies 1Mal may 1'101 nave Deen caugnl
All IniormatlOn In thIS guide IS suDjf!C1 10 cnange wllnoul prIOr notICe Furthermore

Toshiba cannOI assume fesponslbility 101 Ihe use 01 any lICense urlOer Itle palenl f'9htS 01 Tosh.ba o. any IllIta partIE's

TOSHIBA
TOSHIBA CORPORATION

INTERNATIONAL OPERATIONS-ELECTRONIC COMPONENTS

1·1 SHIBAUAA l-CHOME. MINATO·KU TOKYO 105 JAPAN
Tel 457·3495 Fall 451-0576 Telell J22587
TOSHIBA CABLE TOSHIBA TOKYO

MANUAL No.1 441 6
' 88-8 (CK) 03 Pr inted in Japan

