TMS9650 Data Manual

Multiprocessor Interface (MPIF)

System Interface Controllers

TMS9650 Multiprocessor Interface (MPIF) Data Manual

IMPORTANT NOTICE

Texas Instruments (TI) reserves the right to make changes in the devices or the device specifications identified in this publication without notice. TI advises its customers to obtain the latest version of device specifications to verify, before placing orders, that the information being relied upon by the customer is current.

TI warrants performance of its semiconductor products, including SNJ and SMJ devices, to current specifications in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems such testing necessary to support this warranty. Unless mandated by government requirements, specific testing of all parameters of each device is not necessarily performed.

In the absence of written agreement to the contrary, TI assumes no liability for TI applications assistance, customer's product design, or infringement of patents or copyrights of third parties by or arising from use of semiconductor devices described herein. Nor does TI warrant or represent that any license, either express or implied, is granted under any patent right, copyright, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor device might be or are used.

Copyright © 1984, Texas Instruments Incorporated

TABLE OF CONTENTS

1.1 General Description 1 1.2 Key Features 1 2. FUNCTIONAL DESCRIPTION 1 2.1 Architecture 1 2.2 Register Description 3 2.2.1 Data Registers 3 2.2.2 Address Pointer Registers 3 2.2.3 Message Registers 4 2.2.4 Control Registers 4 2.2.5 Status Registers 4 2.2.6 Status Registers 5 2.3 Host Interfaces 6 2.4 READY and CLKIN 7 2.5 Status Registers 5 2.3 Host Interfaces 6 2.4 READY and CLKIN 7 2.5 Lockout Capability 9 2.6 Address Pointer Equal Interrupts and Lockout 9 2.7 Mode Pins 11 2.7.1 Reset 11 2.7.2 Standalone Mode 11 2.7.3 Master and Slave Modes 11 2.7.4 Resthute on figuration	1.	INTRO	DUCTION
1.2 Key Features 1 2. FUNCTIONAL DESCRIPTION 1 2.1 Architecture 1 2.2 Register Description 3 2.2.1 Data Registers 3 2.2.2 Address Pointer Registers 3 2.2.3 Message Registers 4 2.2.4 Control Registers 4 2.2.5 Status Registers 4 2.2.4 Control Registers 5 2.3 Host Interfaces 6 2.4 READY and CLKIN 7 2.5 Lockout Capability 9 2.6 Address Pointer Equal Interrupts and Lockout 9 2.7 Mode Pins 11 2.7.1 Reset 11 2.7.2 Statualone Mode 11 2.7.3 Master and Slave Modes 11 2.7.3 Master and Slave Modes 11 2.7.3 Modular-Bus Configuration 13 3. APPLICATIONS 14 3.1 Interfacing an 8-Bit to a 16-Bit Microprocessor System 15 <		1.1	General Description
2. FUNCTIONAL DESCRIPTION 1 2.1 Architecture 1 2.2 Register Description 3 2.2.1 Data Registers 3 2.2.2 Address Pointer Registers 3 2.2.3 Message Registers 4 2.2.4 Control Registers 4 2.2.5 Status Registers 4 2.2.4 Control Registers 5 2.3 Host Interfaces 5 2.3 Host Interfaces 6 2.4 READY and CLKIN 7 2.5 Lockout Capability 9 2.6 Address Pointer Equal Interrupts and Lockout 9 2.7 Mode Pins 11 2.7.2 Standone Mode 11 2.7.3 Master and Slave Modes 11 2.7.4 Statone Mode 11 2.7.5 Statone Mode 11 2.7.3 Master and Slave Modes 11 2.8 Pin Description 13 3. APPLICATIONS 14 3.1 Partitioning of System		1.2	Key Features
2.1 Architecture 1 2.2 Register Description 3 2.2.1 Data Registers 3 2.2.2 Address Pointer Registers 3 2.2.3 Message Registers 4 2.2.4 Control Registers 4 2.2.5 Status Registers 5 2.3 Host Interfaces 6 2.4 READY and CLKIN 7 2.5 Lockout Capability 9 2.6 Address Pointer Equal Interrupts and Lockout 9 2.7 Mode Pins 11 2.7.2 Standalone Mode 11 2.7.3 Master and Slave Modes 11 2.7.4 Rest 11 2.7.5 Standalone Mode 11 2.7.6 Master and Slave Modes 11 2.7.7 Master and Slave Modes 11 2.7.8 Modular-Bus Configuration 13 3.1 Pertitioning of System Functions 14 3.1 Partitioning of System Functions 14 3.1 Partitioning an 8-Bit to a 16-Bit Microprocessor System	2.	FUNCT	IONAL DESCRIPTION
2.2 Register Description 3 2.2.1 Data Registers 3 2.2.2 Address Pointer Registers 3 2.2.3 Message Registers 4 2.2.4 Control Registers 4 2.2.5 Status Registers 5 2.3 Host Interfaces 6 2.4 READY and CLKIN 7 2.5 Lockout Capability 9 2.6 Address Pointer Equal Interrupts and Lockout 9 2.7 Mode Pris 11 2.7.1 Rest 11 2.7.2 Standalone Mode 11 2.7.3 Master and Slave Modes 11 2.7.4 Rescription 13 3. APPLICATIONS 14 3.1 Partitioning of System Functions 14 3.1 Partitation and Synchronization 14 3.2 Modular-Bus Configuration 16 4.4 ELECTRICAL SPECIFICATIONS 16 4.1 Absolute Maximum Ratings 16 4.2 Recommended Operating Conditions 17		2.1	Architecture
2.2.1 Data Registers 3 2.2.2 Address Pointer Registers 3 2.2.3 Message Registers 4 2.2.4 Control Registers 4 2.2.5 Status Registers 4 2.2.6 Status Registers 5 2.3 Host Interfaces 6 2.4 READY and CLKIN 7 2.5 Lockout Capability 9 2.6 Address Pointer Equal Interrupts and Lockout 9 2.7 Mode Pins 11 2.7.1 Reset 11 2.7.2 Standalone Mode 11 2.7.3 Master and Slave Modes 11 2.7.4 Reset 11 2.7.5 Modular-Bus Configuration 13 3. APPLICATIONS 14 3.1 Partitioning of System Functions 14 3.2 Modular-Bus Configuration 14 3.3 Interfacing an 8-Bit to a 16-Bit Microprocessor System 15 3.4 Arbitration and Synchronization 16 4.1 Absolute Maximum Ratings 1		2.2	Register Description
2.2.2 Address Pointer Registers 3 2.2.3 Message Registers 4 2.2.4 Control Registers 4 2.2.5 Status Registers 4 2.2.3 Host Interfaces 5 2.3 Host Interfaces 5 2.3 Host Interfaces 6 2.4 READY and CLKIN 7 2.5 Lockout Capability 9 2.6 Address Pointer Equal Interrupts and Lockout 9 2.7 Mode Pins 11 2.7.1 Reset 11 2.7.2 Standalone Mode 11 2.7.3 Master and Slave Modes 11 2.7.4 Modular-Bus Configuration 14 3.1 Pertitioning of System Functions 14 3.2 Modular-Bus Configuration 14 3.3 Interfacing an 8-Bit to a 16-Bit Microprocessor System 15 3.4 Arbitration and Sync			2.2.1 Data Begisters
2.2.3 Message Registers 4 2.2.4 Control Registers 4 2.2.5 Status Registers 5 2.3 Host Interfaces 6 2.4 READY and CLKIN 7 2.5 Lockout Capability 9 2.6 Address Pointer Equal Interrupts and Lockout 9 2.7 Mode Pins 11 2.7.1 Reset 11 2.7.2 Standalone Mode 11 2.7.3 Master and Slave Modes 11 2.7.4 Reset 11 2.7.5 Modular-Bus Configuration 13 3. APPLICATIONS 14 3.1 Partitioning of System Functions 14 3.2 Modular-Bus Configuration 14 3.3 Interfacing an 8-Bit to a 16-Bit Microprocessor System 15 3.4 Arbitration and Synchronization 16 4.1 Absolute Maximum Ratings 16 4.2 Recommended Operating Conditions 16 4.3 Electrical Characteristics 17 4.4 Timing Requiremen			2.2.2 Address Pointer Registers
2.2.4 Control Registers 4 2.2.5 Status Registers 5 2.3 Host Interfaces 6 2.4 READY and CLKIN 7 2.5 Lockout Capability 9 2.6 Address Pointer Equal Interrupts and Lockout 9 2.7 Mode Pins 11 2.7.1 Reset 11 2.7.2 Standalone Mode 11 2.7.3 Master and Slave Modes 11 2.7.4 Reset 11 2.7.5 Standalone Mode 11 2.7.6 Master and Slave Modes 11 2.7.7 Modular-Bus Configuration 13 3. APPLICATIONS 14 3.1 Partitioning of System Functions 14 3.2 Modular-Bus Configuration 14 3.3 Interfacing an 8-Bit to a 16-Bit Microprocessor System 15 3.4 Arbitration and Synchronization 16 4.4 ELECTRICAL SPECIFICATIONS 16 4.1 Absolute Maximum Ratings 16 4.2 Recommended Operating Condi			2.2.3 Messace Registers
2.2.5 Status Registers 5 2.3 Host Interfaces 6 2.4 READY and CLKIN 7 2.5 Lockout Capability 9 2.6 Address Pointer Equal Interrupts and Lockout 9 2.7 Mode Pins 11 2.7.1 Reset 11 2.7.2 Standalone Mode 11 2.7.3 Master and Slave Modes 11 2.7.3 Master and Slave Modes 11 2.8 Pin Description 13 3. APPLICATIONS 14 3.1 Partitioning of System Functions 14 3.2 Modular-Bus Configuration 14 3.4 Arbitration and Synchronization 16 4.4 Arbitration and Synchronization 16 4.5 Recommended Operating Conditions 16 4.3 Electrical Characteristics 17 4.4 Timing Requirements and Characteristics 17 5.4 MECHANICAL DATA 22 5.1 TMS9650 – 40-Pin Plastic Package 22			2.2.4 Control Begisters
2.3 Host Interfaces 6 2.4 READY and CLKIN 7 2.5 Lockout Capability 9 2.6 Address Pointer Equal Interrupts and Lockout 9 2.7 Mode Pins 11 2.7.1 Reset 11 2.7.2 Standalone Mode 11 2.7.3 Master and Slave Modes 11 2.8 Pin Description 13 3. APPLICATIONS 14 3.1 Partitioning of System Functions 14 3.2 Modular-Bus Configuration 14 3.3 Interfacing an 8-Bit to a 16-Bit Microprocessor System 15 3.4 Arbitration and Synchronization 16 4.1 Absolute Maximum Ratings 16 4.2 Recommended Operating Conditions 16 4.3			2.2.5 Status Registers
2.4 READY and CLKIN 7 2.5 Lockout Capability 9 2.6 Address Pointer Equal Interrupts and Lockout 9 2.7 Mode Pins 11 2.7.1 Reset 11 2.7.2 Standalone Mode 11 2.7.3 Master and Slave Modes 11 2.7.3 Master and Slave Modes 11 2.7.3 Master and Slave Modes 11 2.8 Pin Description 13 3. APPLICATIONS 14 3.1 Partitioning of System Functions 14 3.2 Modular-Bus Configuration 14 3.3 Interfacing an 8-Bit to a 16-Bit Microprocessor System 15 3.4 Arbitration and Synchronization 16 4.4 ELECTRICAL SPECIFICATIONS 16 4.1 Absolute Maximum Ratings 16 4.2 Recommended Operating Conditions 17 4.4 Timing Requirements and Characteristics 17 5. MECHANICAL DATA 22 5.1 TMS9650 – 40-Pin Plastic Package 22 <td></td> <td>2.3</td> <td>Host Interfaces</td>		2.3	Host Interfaces
2.5 Lockout Capability 9 2.6 Address Pointer Equal Interrupts and Lockout 9 2.7 Mode Pins 11 2.7.1 Reset 11 2.7.2 Standalone Mode 11 2.7.3 Master and Slave Modes 11 2.7.4 Bescription 13 3. APPLICATIONS 14 3.1 Partitioning of System Functions 14 3.2 Modular-Bus Configuration 14 3.3 Interfacing an 8-Bit to a 16-Bit Microprocessor System 15 3.4 Arbitration and Synchronization 16 4.1 Absolute Maximum Ratings 16 4.2 Recommended Operating Conditions 16 4.3 Electrical Characteristics 17 4.4 Timing Requirements and Characteristics 17 5.1 MECHANICAL DATA 22 5.1 TMS9650 – 40-Pin Plastic Package 22		2.4	READY and CLKIN
2.6 Address Pointer Equal Interrupts and Lockout 9 2.7 Mode Pins 11 2.7.1 Reset 11 2.7.2 Standalone Mode 11 2.7.3 Master and Slave Modes 11 2.7.3 Master and Slave Modes 11 2.8 Pin Description 13 3. APPLICATIONS 14 3.1 Partitioning of System Functions 14 3.2 Modular-Bus Configuration 14 3.3 Interfacing an 8-Bit to a 16-Bit Microprocessor System 15 3.4 Arbitration and Synchronization 16 4.1 Absolute Maximum Ratings 16 4.2 Recommended Operating Conditions 16 4.3 Electrical Characteristics 17 4.4 Timing Requirements and Characteristics 17 5.1 MECHANICAL DATA 22 5.1 TMS9650 – 40-Pin Plastic Package 22		2.5	Lockout Capability
2.7 Mode Pins 11 2.7.1 Reset 11 2.7.2 Standalone Mode 11 2.7.3 Master and Slave Modes 11 2.7.3 Master and Slave Modes 11 2.8 Pin Description 13 3. APPLICATIONS 14 3.1 Partitioning of System Functions 14 3.2 Modular-Bus Configuration 14 3.3 Interfacing an 8-Bit to a 16-Bit Microprocessor System 15 3.4 Arbitration and Synchronization 16 4. ELECTRICAL SPECIFICATIONS 16 4.1 Absolute Maximum Ratings 16 4.2 Recommended Operating Conditions 16 4.3 Electrical Characteristics 17 4.4 Timing Requirements and Characteristics 17 5.1 MECHANICAL DATA 22 5.1 TMS9650 – 40-Pin Plastic Package 22		2.6	Address Pointer Equal Interrupts and Lockout
2.7.1 Reset 11 2.7.2 Standalone Mode 11 2.7.3 Master and Slave Modes 11 2.7.3 Master and Slave Modes 11 2.7.3 Master and Slave Modes 11 2.8 Pin Description 13 3. APPLICATIONS 14 3.1 Partitioning of System Functions 14 3.2 Modular-Bus Configuration 14 3.3 Interfacing an 8-Bit to a 16-Bit Microprocessor System 15 3.4 Arbitration and Synchronization 16 4. ELECTRICAL SPECIFICATIONS 16 4.1 Absolute Maximum Ratings 16 4.2 Recommended Operating Conditions 16 4.3 Electrical Characteristics 17 4.4 Timing Requirements and Characteristics 17 5.1 MECHANICAL DATA 22 5.1 TMS9650 – 40-Pin Plastic Package 22		2.7	Mode Pins
2.7.2 Standalone Mode 11 2.7.3 Master and Slave Modes 11 2.8 Pin Description 13 3. APPLICATIONS 14 3.1 Partitioning of System Functions 14 3.2 Modular-Bus Configuration 14 3.3 Interfacing an 8-Bit to a 16-Bit Microprocessor System 15 3.4 Arbitration and Synchronization 16 4. ELECTRICAL SPECIFICATIONS 16 4.1 Absolute Maximum Ratings 16 4.2 Recommended Operating Conditions 16 4.3 Electrical Characteristics 17 4.4 Timing Requirements and Characteristics 17 5.1 MECHANICAL DATA 22 5.1 TMS9650 – 40-Pin Plastic Package 22			2.7.1 Reset
2.7.3 Master and Slave Modes 11 2.8 Pin Description 13 3. APPLICATIONS 14 3.1 Partitioning of System Functions 14 3.2 Modular-Bus Configuration 14 3.3 Interfacing an 8-Bit to a 16-Bit Microprocessor System 15 3.4 Arbitration and Synchronization 16 4. ELECTRICAL SPECIFICATIONS 16 4.1 Absolute Maximum Ratings 16 4.2 Recommended Operating Conditions 16 4.3 Electrical Characteristics 17 4.4 Timing Requirements and Characteristics 17 5.1 MECHANICAL DATA 22 5.1 TMS9650 – 40-Pin Plastic Package 22			2.7.2 Standalone Mode
2.8 Pin Description 13 3. APPLICATIONS 14 3.1 Partitioning of System Functions 14 3.2 Modular-Bus Configuration 14 3.3 Interfacing an 8-Bit to a 16-Bit Microprocessor System 14 3.3 Interfacing an 8-Bit to a 16-Bit Microprocessor System 15 3.4 Arbitration and Synchronization 16 4. ELECTRICAL SPECIFICATIONS 16 4.1 Absolute Maximum Ratings 16 4.2 Recommended Operating Conditions 16 4.3 Electrical Characteristics 17 4.4 Timing Requirements and Characteristics 17 5. MECHANICAL DATA 22 5.1 TMS9650 – 40-Pin Plastic Package 22			2.7.3 Master and Slave Modes
3. APPLICATIONS 14 3.1 Partitioning of System Functions 14 3.2 Modular-Bus Configuration 14 3.3 Interfacing an 8-Bit to a 16-Bit Microprocessor System 14 3.3 Interfacing an 8-Bit to a 16-Bit Microprocessor System 15 3.4 Arbitration and Synchronization 16 4. ELECTRICAL SPECIFICATIONS 16 4.1 Absolute Maximum Ratings 16 4.2 Recommended Operating Conditions 16 4.3 Electrical Characteristics 17 4.4 Timing Requirements and Characteristics 17 5. MECHANICAL DATA 22 5.1 TMS9650 – 40-Pin Plastic Package 22		2.8	Pin Description
3.1 Partitioning of System Functions 14 3.2 Modular-Bus Configuration 14 3.3 Interfacing an 8-Bit to a 16-Bit Microprocessor System 15 3.4 Arbitration and Synchronization 16 4. ELECTRICAL SPECIFICATIONS 16 4.1 Absolute Maximum Ratings 16 4.2 Recommended Operating Conditions 16 4.3 Electrical Characteristics 17 4.4 Timing Requirements and Characteristics 17 5. MECHANICAL DATA 22 5.1 TMS9650 – 40-Pin Plastic Package 22	3.	APPLIC	CATIONS 14
3.2 Modular-Bus Configuration 14 3.1 Interfacing an 8-Bit to a 16-Bit Microprocessor System 15 3.4 Arbitration and Synchronization 16 4. ELECTRICAL SPECIFICATIONS 16 4.1 Absolute Maximum Ratings 16 4.2 Recommended Operating Conditions 16 4.3 Electrical Characteristics 17 4.4 Timing Requirements and Characteristics 17 5. MECHANICAL DATA 22 5.1 TMS9650 – 40-Pin Plastic Package 22	•••	3.1	Partitioning of System Functions 14
3.3 Interfacing an 8-Bit to a 16-Bit Microprocessor System 15 3.4 Arbitration and Synchronization 16 4. ELECTRICAL SPECIFICATIONS 16 4.1 Absolute Maximum Ratings 16 4.2 Recommended Operating Conditions 16 4.3 Electrical Characteristics 16 4.4 Timing Requirements and Characteristics 17 5. MECHANICAL DATA 22 5.1 TMS9650 - 40-Pin Plastic Package 22		3.2	Modular-Bus Configuration 14
3.4 Arbitration and Synchronization 16 4. ELECTRICAL SPECIFICATIONS 16 4.1 Absolute Maximum Ratings 16 4.2 Recommended Operating Conditions 16 4.3 Electrical Characteristics 16 4.4 Timing Requirements and Characteristics 17 5. MECHANICAL DATA 22 5.1 TMS9650 - 40-Pin Plastic Package 22		3.3	Interfacing an 8-Bit to a 16-Bit Microprocessor System
 4. ELECTRICAL SPECIFICATIONS		3.4	Arbitration and Synchronization
4.1 Absolute Maximum Ratings 16 4.2 Recommended Operating Conditions 16 4.3 Electrical Characteristics 17 4.4 Timing Requirements and Characteristics 17 5. MECHANICAL DATA 22 5.1 TMS9650 – 40-Pin Plastic Package 22	4.	ELECT	RICAL SPECIFICATIONS
4.2 Recommended Operating Conditions 16 4.3 Electrical Characteristics 17 4.4 Timing Requirements and Characteristics 17 5. MECHANICAL DATA 22 5.1 TMS9650 – 40-Pin Plastic Package 22		4.1	Absolute Maximum Ratings
4.3 Electrical Characteristics 17 4.4 Timing Requirements and Characteristics 17 5. MECHANICAL DATA 22 5.1 TMS9650 – 40-Pin Plastic Package 22		4.2	Becommended Operating Conditions
4.4 Timing Requirements and Characteristics 17 5. MECHANICAL DATA 22 5.1 TMS9650 – 40-Pin Plastic Package 22		4.3	Electrical Characteristics
5. MECHANICAL DATA		4.4	Timing Requirements and Characteristics
5.1 TMS9650 – 40-Pin Plastic Package	5.	MECH	ANICAL DATA
	-	5.1	TMS9650 – 40-Pin Plastic Package

LIST OF ILLUSTRATIONS

Figure		Page
1-1	MPIF Block Diagram	2
2-1	MPIF Control Register Bit Assignment	5
2-2	MPIF Status Register Bit Assignment	5
2-3	MPIF Read and Write Operations	6
2-4	Operation of READY and CLKIN	7
2-5	Simultaneous Read Cycles from Both Ports	8
2-6	Typical Read-Modify-Write Operation Using LOCKIN	10
2-7	Multiple MPIF Configuration	12
3-1	Partitioning of System Functions among Three Microprocessors	14
3-2	Function Modules Connected to System Bus	14
3-3	Interfacing an 8-Bit to a 16-Bit Microprocessor System	15
3-4	Arbitration and Synchronization	16
× 4-1	Write Cycle Timing Characteristics	19
4-2	Read Cycle Timing Characteristics	19
4-3	Ready, CLKIN, and LOCKIN Timing Characteristics	20
4-4	Read and Write Cycle Timing during RAM Accesses	20
4-5	Interrupt Timing Characteristics	21
4-6	Test Load Circuit	21

LIST OF TABLES

Table	Page
2-1	1PIF Register Map
2-2	in Assignment and Function

1. INTRODUCTION

1.1 GENERAL DESCRIPTION

The TMS9650 Multiprocessor Interface device (MPIF) provides a bit-parallel, asynchronous communications interface for passing messages and data between two processors or processor systems. It represents a standard peripheral interface consisting of eight programmable registers at each of its two ports and furnishes access to 256 bytes of random-access memory (RAM) used to buffer data transmitted between ports. The MPIF supplies arbitration logic to resolve RAM-access conflicts between the two processor systems. The MPIF can be used to connect virtually any 8-bit or 16-bit microprocessor to any other 8-bit or 16-bit microprocessor having the capability of interfacing to standard memory or peripheral devices.

1.2 KEY FEATURES

- Two fully independent, asynchronous processor interfaces or ports
- Eight programmable 8-bit registers at each port
- Status and control registers
- Interrupt request control at each port
- Pointer registers that can be incremented following a RAM access
- Message registers to pass data between ports independent of RAM arbitration logic
- 256 bytes of RAM addressed indirectly using pointer registers
- Hardware support for utilization of RAM as first-in first-out (FIFO) buffer between ports
- Width of data path expandable in 8-bit increments
- o Internal arbitration of asynchronous RAM-access conflicts
- Optional READY signal for concurrent use of the memory by both ports
- READY synchronized on chip; CLKIN required only if READY is used
- Hardware lockout capability provided to support test-and-set, test-and-clear operations
- Software lockout facility with interrupt for confirmation
- Single 5-V supply
- 40-pin DIP package
- N-channel silicon-gate technology

2. FUNCTIONAL DESCRIPTION

2.1 ARCHITECTURE

The Multiprocessor Interface (MPIF), shown in Figure 1-1 as a block diagram, is built around a 256×8 -bit static random-access memory and includes two complete microprocessor interfaces and two complete data paths. Each data path connects the microprocessor interface to the appropriate on-chip registers under the control of the external interface control signals, register select lines, and the arbitration latch.

Both interfaces have access to the RAM via data registers, which are simple bidirectional buffers between the RAM and the data paths and involve no storage.

Each data register has associated with it an address pointer register that supplies the address to the RAM when the corresponding data register is used. The address registers can be written to and read from both microprocessor interfaces.

Two message registers are provided, one assigned to each port. Each interface can read and write its own message register but only read that of the other interface.

The control register provides for the configuration and control of the MPIF. It includes the enable bits for the various sources of interrupt request on-chip.

FIGURE 1-1 - MPIF BLOCK DIAGRAM

The status register shows the condition of the various interrupt sources.

The RAM can only be used by one host microprocessor, via its data register, at one time. The two outputs of the arbitration latch, ACTA and ACTB, control access to the RAM. These outputs select the RAM data and address buses from either the DATA A and ADDR A registers or the DATA B and ADDR B registers respectively. ACTA becomes true when the data register of port A is addressed, but only if ACTB is not already true and port B has not asserted a lockout. A corresponding definition applies for ACTB. Hence, the two signals are mutually exclusive, which ensures that both interfaces cannot use the RAM at once. The MPIF provides its host microprocessors with continuous access to all the other registers.

If both interfaces try to gain access to the RAM concurrently, the first to address its data register will exclude the other. The RAM is assigned on a first-come, first-serve basis unless a lockout is in effect (see Section 2.5).

Occasionally, both ports may address their data registers at exactly the same time. This can put the arbitration latch into an indeterminate state for some time. Due to the cross-coupled nature of ACTA and ACTB, the indeterminate state will be unstable. Eventually the conflict will resolve itself, the outcome being essentially random. ACTA and ACTB pass through threshold circuits to ensure that the unstable state is interpreted as an inactive state for both bits.

Each interface can request exclusive use of the RAM using the lockout feature. This is asserted by means of a software-accessible bit or with a dedicated input pin. In situations where both ports assert a lockout, the RAM is assigned on a first-come, first-serve basis.

A memory cycle cannot be allowed to proceed if the port concerned does not succeed in getting access to the RAM or there is uncertainty in the arbitration latch. The problem of sharing the RAM between two ports may be approached in three ways:

- 1. Ensure in software that both host ports do not try to use the RAM at the same time. Thus any attempt to gain access to the RAM is guaranteed to be successful. This involves the two systems passing messages between themselves regarding their status and intentions, for which the message registers may be used.
- 2. Use the READY signal provided by the MPIF to put the system into a wait state if it is not successful in gaining access to the RAM or if uncertainty exists in the arbitration latch.
- 3. Use the software-accessible lockout bit to request exclusive use of the RAM. Wait until this is acknowledged before attempting access to the RAM.

It is possible to use method 2 on one port and 3 on the other port.

2.2 REGISTER DESCRIPTION

The MPIF occupies eight locations in the memory map of each host system. It is so arranged that the registers accessible at the same location of each port serve the same function. The ports of the MPIF are therefore completely identical and can be reversed without software or hardware changes. For the purpose of naming the locations in the memory map, the port under consideration is referred to as the local port and the other is referred to as the remote port. The location and function of each register is shown in Table 2-1.

2.2.1 Data Registers

Each port can read and write its own data register at the two memory locations designated as Data and Data/Increment. If a memory operation is performed to the RAM via the data/increment location, the corresponding address pointer register will be incremented on completion of the memory cycle. This will not happen if the Data location is used.

2.2.2 Address Pointer Registers

Each port can read and write its own address pointer register at the location designated as the Local Address Pointer and can read and write the other port's pointer at the Remote Address Pointer location. This enables each port to determine where in the RAM it will operate by setting up its own address pointer register. Alternatively, the management of the RAM can be under the control of only one port, which sets up both address pointers. Each pointer register will cycle through the value FF_{16} (i.e. increments to OO_{16}). The following limitations apply to the use of these locations:

- 1. If either address pointer is read while its value is being changed by a write operation from the other port, an erroneous value may be read.
- A port should not write to its remote address pointer location while there is a possibility that the other port could perform a memory operation to the RAM. This can result in the address pointer being changed during a memory operation and data in the RAM being corrupted.

REGISTER SELECT	REGISTER FUNCTION	REGISTER	READ/WRITE	
LINES S ₀ S ₁ S ₂	IL GIOTEITTONO TION	PORT A	PORT B	nead/white
000	DATA/INCREMENT	DATA A	DATA B	R/W
001	DATA	DATA A	DATA B	R/W
010	MESSAGE IN	MESSAGE B	MESSAGE A	R
011	MESSAGE OUT	MESSAGE A	MESSAGE B	R/W
100	CONTROL	CONTROL A	CONTROL B	R/W
101	LOCAL ADDRESS POINTER	ADDRESS A	ADDRESS B	R/W
110	STATUS	STATUS A	STATUS B	R
111	REMOTE ADDRESS POINTER	ADDRESS B	ADDRESS A	R/W

TABLE 2-1 - MPIF REGISTER MAP

2.2.3 Message Registers

Each port can read and write its own message register at the location designated as Message Out. In addition, it only reads that of the other port at the Message In location. The message registers are implemented as two 8-bit registers, which can be written to at any time from their corresponding interface. During a write operation, the previous value of the register is held in a latch so that if a read operation occurs concurrently with the write, the previous value of the status register will be read. This means that the hosts may poll their remote status registers at any time without fear of reading an invalid code.

Interrupts are provided to support passing messages (see Section 2.2.5).

2.2.4 Control Registers

Control registers can be written to and read by their respective hosts at any time. The bit assignment is shown in Figure 2-1.

- IEN1-IEN5 Interrupt Enable Bits: When set to 1, these allow their respective interrupt status bits to set the INT status bit and pull low the INT line.
- LEA Lockout On Equal Addresses Pointer: If this feature is set from either port, it is active for the entire device. When this feature is enabled and the address pointer registers become equal, the port corresponding to the last address pointer register to be loaded from either port or incremented will be locked out of the RAM. The lockout will persist as long as the above condition remains true.
- SLOC Software Lockout Bit: This provides a software-accessible means of requesting that the remote port be locked out of the RAM.

All bits of the control register are cleared by the reset function of the mode pins, M1 and M2.

LLA	_	Lockout on equal address pointers
IEN1-IEN5	-	Enable bits for MI, MO, LPE, RPE, LAK interrupt bits respectively
SLOC	_	Software lockout bit

FIGURE 2-1 - MPIF CONTROL REGISTER BIT ASSIGNMENT

2.2.5 Status Registers

Each status register is read only and allows its corresponding host to inspect the status of various parameters onchip. All may cause an interrupt if the appropriate interrupt enable bit is set to a 1. The bit assignment is shown in Figure 2-2.

- INT Interrupt Asserted: An interrupt status bit has been set, and the INT line is pulled low.
- MI Message In Interrupt: A byte should be read from the Message In register. It is set when the remote port loads its Message Out register and is cleared when the local port reads its Message In register. It is cleared by the reset function.
- MO Message Out Interrupt: The local message register is available for use. It is cleared when a byte is written to the local Message Out register and set when the remote Message In register is read. It is set by the reset function.
- LPE Local Pointer Equal to Remote Pointer: The address pointer registers are equal, and the local pointer was the last one to be loaded from either port or incremented. It remains true as long as the condition persists.
- RPE Remote Pointer Equal to Local Pointer: The address pointer registers are equal, and the remote address pointer was the last one to be loaded from either port or incremented. It remains true as long as the condition persists.
- LAK Lockout Acknowledge: This is set following the assertion of SLOC by the local port when the lockout of the remote port from the RAM becomes effective. It is cleared when SLOC is cleared.

- INT Interrupt occurred
- MI Message in
- MO Message out
- LPE Local address pointer equal to remote address pointer
- RPE Remote address pointer equal to local address pointer
- LAK Lockout acknowledge

FIGURE 2-2 — MPIF STATUS REGISTER BIT ASSIGNMENT

2.3 HOST INTERFACES

The simplest read and write operations for the MPIF are shown in Figure 2-3. READY and CLKIN are not shown since the memory cycles here apply to all registers except the data register. They will apply to the data register only if READY is not used. As with the register map, the host interfaces are identical, both electrically and functionally.

The desired register is selected by putting the appropriate code (see Table 2-1) on the register select lines (SO-S₂) and by putting chip select (\overline{CS}) low. If a write operation is desired, a negative-going pulse is applied to the write enable pin (\overline{WE}), and valid data is set up on the data lines (D₀-D₇) sooner than the required setup time before the rising edge of the write enable. If a read operation is desired, the output enable (\overline{OE}) signal is set low, which brings the MPIF data lines out of a high impedance state. The data that they display will only be valid after the appropriate access time has elapsed from the register being selected. The required setup times, access times, etc. are given in Section 4.4.

FIGURE 2-3 - MPIF READ AND WRITE OPERATIONS

2.4 READY AND CLKIN

Although the MPIF host interfaces can function without the READY and CLKIN signals, both signals are required if concurrent access to the RAM is desired by both host systems. Under these conditions, the selection of one interface or the other on to the RAM is done by the arbitration latch. The host interface logic is responsible for putting into a wait state the host which is unsuccessful in gaining access.

When a host system addresses the data register of the MPIF (chip select low and the appropriate code on the register select lines), READY is immediately set low regardless of whether or not access is actually gained to the RAM. READY will then stay low, and the interface will remain in a wait state until any uncertainty in the arbitration latch has resolved itself and access has been clearly gained.

Since the majority of systems will not accept an asynchronous READY signal, synchronization is provided on the MPIF. The falling edge of READY is generated by the CPU addressing its data register, so it is already synchronous. The rising edge, however, is not and must be synchronized to the system clock. CLKIN is provided for this purpose alone.

Each output of the arbitration latch is monitored by a threshold detector, which tests for a level in excess of the metastable level. ACTA or ACTB reaching this level indicates any conflict has resolved itself, and the corresponding port has gained access to the RAM. During the CLKIN high period, the output of the threshold detector is sampled as shown in Figure 2-4. When CLKIN is low, the feedback is applied to consolidate the sampled value so that any indeterminate sample will go to a valid 1 or 0 level. If a 1 is detected indicating that the memory cycle can proceed, then READY is set high on the next rising edge of CLKIN.

Figure 2-5 shows the result of two read cycles beginning at the same time. When the data registers are addressed, the ACTA and ACTB bits both begin to rise. As they are both mutually exclusive, a metastable condition is reached. It is significantly later that a result is seen from this conflict when, in this case, port A gains access and port B does not. READY is taken low on both ports as soon as the data registers are addressed. At port A during the first subsequent CLKIN high period (1), ACTA is not seen as having a VALID high level. Therefore, it is the value sampled in the second CLKIN high period (2) that results in READY being set high on the next rising edge of CLKIN. Note that ACTA selects the data and local address pointer registers of port A on to the data and address lines of the RAM. It is not until after ACTA reaches a good 1 level that valid data is seen on the port A data lines. Port A then completes its memory cycle and ceases to address its data register. ACTA, therefore, goes low again, which allows ACTB to rise to a 1 level. This fact is detected in the CLKIN high period of port B (3), and READY goes high on the next rising edge. Up to this point, the data lines of port B have been displaying invalid data. This becomes valid after ACTB reaches a good 1 level that valies be data multil after ACTB.

NOTE: ACTA and ACTB are internal signals.

2.5 LOCKOUT CAPABILITY

Both ports have a lockout feature that can be asserted by either one of two means: (1) by putting a low level on the LOCKIN input of the host interface, or (2) by writing a 1 to the SLOC bit of the control register. If a lockout is asserted by the local port, then the ACT bit of the remote port is held low. Thus if the remote port addresses its data register, it will not get access to the RAM. If CLKIN and READY are used on the remote port, it will enter a wait state until the lockout is removed.

The assertion of a lockout will not guarantee immediate exclusive use of the RAM. A lockout asserted by the local port will only become effective after any memory operation to the RAM by the remote port has been completed. It will also not be effective until any lockout asserted by the remote port has been cleared. Lockouts, therefore, are mutually exclusive in a similar way to ACTA and ACTB, and concurrent lockout requests from both ports are assigned on a first-come, first-serve basis.

Figure 2-6 shows an example of the lockout facility being used to implement an indivisible read-modify-write operation. Port A performs the read and write operations with a lockout asserted between them by means of the LOCKIN input. At the time when port A tries to do a read from the RAM (1), there is already a read cycle in progress on port B. Port A, therefore, enters a wait state until this operation is complete even though the LOCKIN input is asserted. When the read cycle at port B is complete, the memory operation at port A can proceed and, in addition, the lockout of port B becomes effective. Consequently, when the next memory operation is initiated to port B (2), it enters a wait state even though there is no activity on port A. Port A then enters a write cycle (3), during which the LOCKIN is removed. When the write cycle ends and ACTA goes low (4), ACTB can rise in the absence of the lockout and the memory operation can also be completed here. Therefore, the read and write operations at port A cannot be interfered with from port B. LOCKIN would be derived from a multiprocessor interlock-type signal in host system A. The LOCKIN signal has no effect unless \overline{CS} is active low and S0=S,=0 (i.e., RAM access).

In a system where the user does not wish to use the READY and CLKIN signals on a particular port, the SLOC bit can be used to guarantee that access is gained to the RAM. The LAK interrupt status bit will be set in response to SLOC as soon as the lockout becomes effective. Thus LAK will not be set until any current memory cycle to the RAM from the remote port has been completed and any lockout that the remote port may have asserted has been cleared. After this, the local port has exclusive use of the RAM until it clears SLOC.

2.6 ADDRESS POINTER EQUAL INTERRUPTS AND LOCKOUT

If it is desired to move data blocks of greater than 256 bytes between systems, the MPIF can be used to implement a circular buffer to absorb any data transfer rate mismatch between systems. Consider the case of system A (connected to port A) sending a block of data to system B. Both systems implement the MPIF READY signal.

To begin the transfer, the address pointer registers of both ports are set the same. This is done by either host system if the address pointer of port B is set up last. This generates an RPE interrupt to system A and an LPE interrupt to system B, these serving as buffer empty interrupts. Normally, system B should then avoid reading the RAM until the LPE interrupt has gone. However, if the LEA feature is enabled, system B can begin its first read. It will enter a wait state until the first byte is written into the buffer. When system A starts loading data via its data/increment register, the equality of pointers is removed, and the receiving system can sequentially read the data via its data/increment register. If the reading pointer succeeds in catching up with the writing pointer, then system A will again receive an RPE and system B an LPE and a lockout (assuming LEA is set) indicating that the buffer is empty.

If the sending system succeeds in getting 256 bytes ahead of the receiving system, then the address pointers again become equal. This time, system A gets the lockout and an LPE interrupt, and system B gets an RPE interrupt. This corresponds to a buffer full interrupt, and the sending system will be prevented from writing more data until there is room for it.

Another possible method of buffering large data streams is as follows: If the sending interface in the above example fills the buffer and receives an LPE interrupt, then it may subtract a certain number from that in its local address pointer and reload it with the result. It will be interrupted when there is this certain number of bytes left in the buffer and may return the original value to the address pointer and refill the buffer. However, the sending system should return the original value to its local address pointer if it enters a condition where it is unable to respond to an interrupt before the remaining bytes in the buffer read.

An equivalent procedure can be undertaken by the receiving host system. This time, a certain number is added to the pointer register and an RPE interrupt received when there is that number of bytes in the buffer.

NOTE: ACTA and ACTB are internal signals.

FIGURE 2-6 - TYPICAL READ-MODIFY-WRITE OPERATION USING LOCKIN

2.7 MODE PINS

The mode pins, M_1 and M_2 , are used to reset the MPIF and to enable several MPIFs to be used in parallel on memory buses of greater than 8 bits. There are four modes encoded on these pins: reset ($M_1 = M_2 = 0$), standalone ($M_1 = M_2 = 1$), master ($M_1 = 0$, $M_2 = 1$), and slave ($M_1 = 1$, $M_2 = 0$). Schmitt triggers are provided on both inputs to permit the use of a resistor and capacitor arrangement to implement reset.

2.7.1 Reset (M1 = M2 = 0)

The reset function establishes the following conditions on-chip:

- 1. All bits of the control register cleared
- 2. The MI interrupt status bit cleared
- 3. The MO interrupt status bit set
- 4. The data lines (D₀-D₇) of the host interfaces held in a high impedance state
- 5. The READY output of each port held in a high impedance state.

The other three combinations of the mode pins are operating modes.

2.7.2 Standalone Mode (M1 = M2 = 1)

The standalone mode is the operating mode of a single MPIF. To implement reset with this mode of operation, both M_1 and M_2 should be connected to an active-low system $\overrightarrow{\text{RESET}}$ signal.

2.7.3 Master (M1 = 0, M2 = 1) and Slave (M1 = 1, M2 = 0) Modes

The master and slave modes are included to avoid the possibility of problems occurring in multiple MPIF arrangements. During simultaneous attempts at getting access to the RAM by both ports, it is possible for the arbitration latches of different devices in standalone mode to fall in opposite directions with consequent system malfunction. Master and slave modes allow the arbitration latch in only one MPIF to decide which port should have access. This decision is then passed on to the remainder. Figure 2-7 shows an example of a multiple MPIF system.

To implement the reset function on the master device, M_2 should be connected to the system RESET signal, and M_1 should be grounded. In master mode operation, the timing of the READY line of each port is changed to provide an unclocked, active-high indication of when that port has gained access to the RAM. A CLKIN input is, therefore, not required by the master device.

On the slave devices, M_1 is connected to the system RESET line, and M_2 is grounded. In this mode, the LOCKIN signals of each port become enable inputs, which are connected directly to the modified READY outputs of the corresponding port of the master device. The slave has no arbitration and responds to a high level on the READY output of the master by granting access to the appropriate port immediately. At this time, it also begins the procedure of releasing its own READY line which is synchronized in the same way as on the standalone device. Hence, a CLKIN must be supplied to the slave devices. In dual MPIF arrangements, the READY outputs of the slave may be taken directly to the READY input of the host systems. With more than one slave, the READY outputs of each port should be ANDed together to ensure that all MPIFs give access to the port before READY is released.

FIGURE 2-7 - MULTIPLE MPIF CONFIGURATION

2.8 PIN DESCRIPTION

Table 2-2 defines the TMS9650 pin assignments and describes the function of each pin.

SAMBOI	PIN NUMBER		TYPE I/O	DESCRIPTION		
STWBUL	PORT A	PORT B	ITFE I/O	DESCRIPTION		
D ₀ (MSB)	12	29	I/O	DATA BUS: Provides for bidirectional data		
			(transfer between the MPIF port and the host		
				system.		
D1	13	28	1/0		M1 []1 C	
D ₂	14	27	1/0		CLKINA 2	
D3	15	26	1/0			38 LOCKINB
D4	16	25	1/0			37 CSB
D5	17	24	1/0		READYA 🔲 5	36 READYB
D ₆	18	23	1/O		AS ₀ []6	35 BS0
D7 (LSB)	19	22	1/0		AS1 07	34 BS1
					AS2 08	33 BS2
s ₀	6	35	1	REGISTER SELECT LINES: Indicate to the MPIF	OEA 9	32 OEB
				which internal register is accessed by the host	WEA [] 10	
				system.	Vss 🛛 11	³⁰ □ ∨cc
s ₁	7	34	I I		AD0 []12	29 BD0
s ₂	8	33	1		AD1 []13	28 BD1
\overline{cs}	4	37	1	CHIP SELECT: Indicates that the host system re-	AD ₂ []14	27 🖸 BD 2
				quires access to one of the MPIF internal	AD3 []15	26 BD3
				registers.	AD4 🛛 16	25 BD4
					AD ₅ []17	24 BD5
WE	10	31	1	WRITE ENABLE: Indicates that the host is perfor-	AD6 🛛 18	23 BD6
				ming a write operation.	AD7 []19	22 🛛 BD7
OF	9	32	1	OUT ENABLE: Indicates that the bost system is		
01	Ű	02		performing a read operation.		
				performing a roca operation		
READY	5	36	0	READY: Indicates to the host system that the		
				memory operation in progress may be completed.		
CLKIN	2	39	•	CLOCK-IN: Allows READY to be presented syn-		
	_			chronously to the host system.		
LOCKIN	3	38	L L	LOCKOUT IN: Indicates to the MPIF that the op-		
				posite port should be denied access to the RAM.		
INT	20	21	O(o/d)*	INTERRUPT: Indicates to the host system that it		
				should branch to a service routine.		
M1	1			MODE PINS: Reset the MPIF and establish		
				whether it is to work in master, slave, or stan-		
				dalone mode.		
M ₂	40					
Vcc	30			POWER SUPPLY		
Vss	11			GROUND REFERENCE		
. 33		l	l			

TABLE 2-2 - PIN ASSIGNMENT AND FUNCTION

* o/d = open drain output all others are push/pull outputs

3. APPLICATIONS

Examples of TMS9650 applications are discussed in the following paragraphs.

3.1 PARTITIONING OF SYSTEM FUNCTIONS

Using the TMS9650, functions can be partitioned among as many processors as required to achieve a desired level of performance. Figure 3-1 shows a system with three processors and two MPIFs.

The flow of data between sections 1 and 2, and sections 2 and 3 is high enough to warrant linking them together with MPIFs. A third MPIF is not required if little or no data is exchanged between sections 1 and 3.

If the multiprocessor system shown in Figure 3-1 resides on a controller board for an intelligent terminal, section 1 is the communications front-end processor, section 2 the keyboard monitor and high-level user interface, and section 3 the CRT controller and graphics processor.

3.2 MODULAR-BUS CONFIGURATION

The TMS9650 can serve as the slave interface through which an intelligent peripheral controller connects to a system bus controlled by a host processor. In Figure 3-2, the host processor controls the system bus, which is also connected to a main memory and two intelligent function modules.

FIGURE 3-2 - FUNCTION MODULES CONNECTED TO SYSTEM BUS

Each function module contains an MPIF, processor, memory, and I/O capability. These and other similar modules are easily connected to or removed from the bus to configure the system as required. The host presents a master interface capable of actively initiating bus transfers. The other modules, memory and MPIF, present passive or slave interfaces to the bus. These modules can transmit or receive data only under the direct influence of the master. Whereas a master interface tends to be relatively complex to provide these capabilities, the MPIF interfaces to the bus as easily as a memory or any other device with a slave interface.

A direct memory access (DMA) controller could be added to the system bus to help the host processor transfer blocks of data between the main memory and the function modules. Each word transferred via DMA consumes two bus cycles. For example, in moving data from a function module to the main memory, the DMA controller first reads each word from the module, and then it writes the word to memory.

3.3 INTERFACING AN 8-BIT TO A 16-BIT MICROPROCESSOR SYSTEM

In the example shown in Figure 3-3, an interface is constructed of two TMS9650 MPIFs configured in standalone mode. The two READY signals at ports A and B are gated together to form composite READY signals to the 8- and 16-bit systems. Clocks synchronize the READY signals.

The 16-bit system on the right side of Figure 3-3 accesses the two MPIFs in parallel; the upper MPIF inputs or outputs data on lines D0-D7, and the lower MPIF inputs or outputs data on lines D8-D15 of the 16-bit system. On the left side, the 8-bit system accesses each MPIF separately; both MPIFs input or output data on the same eight data lines, D0-D7, of the 8-bit system.

FIGURE 3-3 - INTERFACING AN 8-BIT TO A 16-BIT MICROPROCESSOR SYSTEM

To avoid bus deadlock when asserting LOCKIN, the 8-bit system should attempt to lock out the 16-bit system from either one MPIF or the other, but never both simultaneously. In applications where a configuration is needed in which either system can safely obtain exclusive access to both MPIFs simultaneously, one MPIF must be configured in master mode and the other in slave mode, as described earlier.

3.4 ARBITRATION AND SYNCHRONIZATION

The arbitration and synchronization mechanisms, shown in Figure 3-4, correspond to the standalone mode. In the master and slave modes, the operation of these mechanisms is modified.

FIGURE 3-4 - ARBITRATION AND SYNCHRONIZATION

The MPIF contains all arbitration and synchronization logic needed to maintain the integrity of the interface between two independent and asynchronous processors. As indicated in Figure 3-4, the arbitration latch is responsible for granting RAM access to one port or the other. The arbitration latch receives requests for RAM access from either port and generates two internal signals, ACTA and ACTB. (See Figure 1-1). When active high, ACTA connects DATA A and ADDR A to the RAM by switching the two internal multiplexers (MUX).

Similarly, when ACTB is active, it connects DATA B and ADDR B to the RAM. The arbitration latch has been carefully designed so that ACTA and ACTB will never be active simultaneously.

4. ELECTRICAL SPECIFICATIONS

4.1 ABSOLUTE MAXIMUM RATINGS OVER OPERATING FREE-AIR TEMPERATURE RANGE (UNLESS OTHERWISE NOTED)[†]

Supply voltage, V _{CC} (see Note 1)	7 V
Input voltage	–0.3 V to 20 V $$
Off-state output voltage	– 0.3 V to 7 V
Continuous power dissipation	0.8 W
Operating free-air temperature range	0°C to 70°C
Storage temperature range	- 55 °C to + 150 °C

[†] Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions beyond those indicated in the "Recommended Operating Conditions" section of this specification is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. NOTE 1: Voltage values are with respect to network ground terminal, Vgs.

4.2 RECOMMENDED OPERATING CONDITIONS

		MIN	NOM	MAX	UNIT
Supply voltage, V _{CC}		4.5	5	5.5	V
Supply voltage, V _{SS}			0		V
High-level input voltage (All inputs), V _{IH}		2			V
Low-level input voltage (All inputs), VIL				0.8	V
High-level output current, IOH (All outputs except INT)				100	μA
All except INT				2	
INT output current, IOL INT output only				2.5	
Operating free-air temperature, TA		0		70	°C

4.3 ELECTRICAL CHARACTERISTICS OVER RECOMMENDED FREE-AIR TEMPERATURE RANGE

	PARAMETER	TEST CONDITIONS [†]		MIN	TYP [‡]	MAX	UNIT
Vон	High-level output voltage	V _{CC} = NOM	$V_{CC} = NOM$ $I_{OH} = MAX$ 2				V
VOL	Low-level output voltage	V _{CC} = NOM	I _{OL} = MAX			0.6	V
	Off-state (high-impedance	Vee - MAX	$V_0 = 2.4 V$			± 20	
0	state) output current		$V_0 = 0.6 V$			± 20	μΑ
li li	Input current	$V_{I} = V_{SS}$ to V_{C}	$V_{I} = V_{SS}$ to V_{CC}			±10	μA
lcc	Supply current	V _{CC} = MAX	$V_{CC} = MAX$			145	mA
C.	Input capacitance				15		-5
	(except data bus)				15		pr
CDB	Data bus capacitance	f = 1 MHz, all c	f = 1 MHz, all other pins at 0 V		25		pF
Co	Output capacitance	1			10		
	(except data bus)				10		pP

[†] For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

[‡] All typical values are at $V_{CC} = 5 V$, $T_A = 25 °C$.

4.4 TIMING REQUIREMENTS AND CHARACTERISTICS

	PARAMETER	CONDITION	SEE NOTE	SEE FIGURE	MIN	түр	МАХ	UNIT
	Register select setup	Data register		4-1	205			
t _{su1}		$S_0 = S_1 = 0$			205			ns
		Otherwise		4-1	150]
^t su2	Chin coloct actur	Data register		4.1	105			
	time for write	$S_0 = S_1 = 0$		4-1	195			ns
		Otherwise		4-1	140			1
^t su3	Data setup time for write	Data register		4-1	150			ns
		$S_0 = S_1 = 0$						
		Otherwise		4-1	50			1
	Write enable low pulse width	Data register		4-1	200			
twL2		$S_0 = S_1 = 0$						ns
		Otherwise		4-1	70			
^t h1	Data hold time for write			4-1	0			ns
th2	Chip select hold time for write			4-1	0			ns
^t h3	Register select hold time for write			4-1	0			ns
	Hold time of write enable							
th4	after CLKIN falling edge during	Data register	7	4-4	140			ns
	concurrent RAM accesses							

NOTES: 1. Figure 4-6 shows the load circuit used to measure the timing characteristics of output and I/O pins. A value of C_L = 100 pF is used except where otherwise stated.

2. These times only apply when the port in question gets immediate access to the RAM. Otherwise, the access time is determined by t_{AC4} .

3. Only one of the times th5 or th6 need be satisfied. These specify the maximum length of a RAM read operation after access has been gained.

4. These setup times need to be met if READY is to be set high on the next rising edge of CLKIN. If these setup times are not met, then READY will not be released until one CLKIN cycle later (provided a memory access or lockout is not in effect at the remote port).

 This setup time is required if LOCKIN is to be effective immediately after the termination of the memory access to the RAM. The memory access may be terminated either by CS going high or the address lines changing.

6. This is the delay of the interrupt line from the termination of the memory cycle that causes it The cycle is terminated when CS goes high or when either OE or WE goes high.

7. These parameters describe the access time and required WE hold times when access to the RAM is not immediately achieved and the host system enters one wait state or more. The parameters are measured from the falling edge of CLKIN on which the corresponding ACT bit is first sampled as being high. This sampled value indicates that access to the RAM has started and results in READY are being released on the next rising edge of CLKIN.

4.4 TIMING REQUIREMENTS AND CHARACTERISTICS (Concluded)

	PARAMETER	CONDITION	SEE NOTE	SEE FIGURE	MIN	ТҮР	мах	UNIT
t _{a1}	Access time from register	Data register S ₀ =S ₁ =0	1,2	4-2		150	195	ns
		Otherwise	1	4-2		70	85	
+ a	Access time from chip	Data register	1,2	4-2		140	185	
'a2	select for read	Otherwise	1	4-2		60	75	115
t _{a3}	Access time from output	Data register S ₀ = S ₁ = 0	1,2	4-2		80	100	ns
		Otherwise	1	4-2		30	40	
t _{p1}	Chip select to data bus Hi-Z		1	4-2		45	55	ns
tp2	Output enable to data bus Hi-Z		1	4-2		45	50	ns
t _{a4}	Access time from CLKIN low during concurrent RAM accesses	Data register	1,7	4-4			120	ns
^t h5	Chip select hold time after valid data	Data register	3	4-2			2	μs
^t h6	Output enable hold time after valid data	Data register	3	4-2			2	μs
t _{p3}	Chip select to ready low		1	4-3		35	45	ns
^t p4	Register select to ready low		1	4-3		50	60	ns
t _{p5}	CLKIN high to ready high	Data register	1	4-3		30	40	ns
t _{su4}	Chip select setup time to CLKIN falling		1	4-3	75			ns
^t su5	Register select setup to CLKIN falling		1	4-3	85			ns
tsu6	LOCKIN setup to end of access	Data register	5	4-3	100			ns
^t wL1	CLKIN low pulse width			4-3	60			ns
^t wH1	CLKIN high pulse width			4-3	45			ns
^t p6, ^t p7	End of memory cycle to interrupt	4-5	1,6	4-5			200	ns
tr	CLKIN rise time					5	15	ns
tf	CLKIN fall time					5	15	ns

NOTES: 1. Figure 4-6 shows the load circuit used to measure the timing characteristics of output and I/O pins. A value of C_L = 100 pF is used except where otherwise stated.

2. These times only apply when the port in question gets immediate access to the RAM. Otherwise, the access time is determined by ta4.

3. Only one of the times t_{h5} or t_{h6} need be satisfied. These specify the maximum length of a RAM read operation after access has been gained.

4. These setup times need to be met if READY is to be set high on the next rising edge of CLKIN. If these setup times are not met, then READY will not be released until one CLKIN cycle later (provided a memory access or lockout is not in effect at the remote port).

 This setup time is required if LOCKIN is to be effective immediately after the termination of the memory access to the RAM. The memory access may be terminated either by CS going high or the address lines changing.

 This is the delay of the interrupt line from the termination of the memory cycle that causes it. The cycle is terminated when CS goes high or when either OE or WE goes high.

7. These parameters describe the access time and required WE hold times when access to the RAM is not immediately achieved and the host system enters more than one wait state. The parameters are measured from the falling edge of CLKIN on which the corresponding ACT bit is first sampled as being high. This sampled value indicates that access to the RAM has started and results in READY are being released on the next rising edge of CLKIN.

FIGURE 4-2 - READ CYCLE TIMING CHARACTERISTICS

FIGURE 4-4 - READ AND WRITE CYCLE TIMING DURING RAM ACCESSES

FIGURE 4-5 - INTERRUPT TIMING CHARACTERISTICS

FIGURE 4-6 - TEST LOAD CIRCUIT

5. MECHANICAL DATA

5.1 TMS9650 - 40-PIN PLASTIC PACKAGE

TI Sales Offices TI Distributors

ALABAMA: Huntsville (205) 837-7530 ARIZONA: Phoenix (602) 995 1007

CALIFORNIA: Irvine (714) 660-1200, Sacramento (916) 929-1521, San Diego (619) 278-9601, Santa Ciara (408) 980 9000, Torrance (213) 217-7010, Woodland Hills (213) 704-7759

COLORADO: Aurora (303) 368 8000 CONNECTICUT. Wallingford (203) 269 0074

FLORIDA: Ft. Lauderdale (305) 973 8502, Maitland (305) 660-4600, Tampa (813) 870-6420

GEORGIA: Atlanta (404) 452-4600

ILLINOIS Arlington Heights (312) 640 2925 INDIANA Ft. Wayne (219) 424-5174, Indianapolis (317) 248-8555

IOWA: Cedar Rapids (319) 395 9550

MARYI AND: Baltimore (301) 944-8600 MASSACHUSETTS: Waltham (617) 895 9100 MICHIGAN: Farmington Hills (313) 553-1500 MINNESOTA: Eden Prairie (612) 828 9300

MISSOURI: Kansas City (816) 523-2500, St Louis (314) 569-7600

NEW JERSEY Iselin (201) 750-1050

NEW MEXICO Albuquerque (505) 345-2555

NEW YORK: East Syracuse (315) 463 9291, Endicott (607) 754-3900, Melville (516) 454-6600, Pittsford (716) 385-6770, Poughkeepsie (914) 473-2900

NORTH CAROLINA. Charlotte (704) 527-0930, Raleigh (919) 876-2725

OHIO. Beachwood (216) 464 6100, Dayton (513) 258-3877

OKI AHOMA: Tulsa (918) 250 0633 OREGON. Beaverton (503) 643-6758

PENNSYLVANIA: Ft Washington (215) 643-6450, Coraopolis (412) 771-8550

PUERTO RICO. Hato Rey (809) 753-8700

TEXAS. Austin (512) 250-7655, Houston (713) 778-6592, Richardson (214) 680-5082, San Antonio (512) 496-1779

UTAH Murray (801) 266-8972

VIRGINIA. Fairfax (703) 849-1400

WASHINGTON: Redmond (206) 881-3080 WISCONSIN: Brookfield (414) 785-7140

CANADA: Nepean, Ontario (613) 726-1970, Richmond Hill, Ontario (416) 884-9181, St Laurent, Quebec (514) 334-3635

TI Regional Technology Centers

CALIFORNIA: Irvine (714) 660 8140, Hotline (714) 660-8164, Santa Clara (408) 748-2220, Hotline (408) 980-0305

GEORGIA: Atlanta (404) 452-4682, Hotline (404) 452-4686

ILLINOIS: Arlington Heights (312) 640-2909, Hotline (312) 228-6008

MASSACHUSETTS. Waltham (617) 890-6671, Hotline (617) 890-4271

TEXAS. Richardson (214) 680-5066, Hotline (214) 680-5096

TI AUTHORIZED DISTRIBUTORS IN USA

Arrow Electronics Diplomat Electronics ESCO Electronics General Radio Supply Company Graham Electronics Harrison Equipment Co. International Electronics JACO Electronics Kierulff Electronics LCOMP, Incorporated Marshall Industries Milgray Electronics Rochester Radio Supply Time Electronics R.V. Weatherford Co. Wyle Laboratories

TI AUTHORIZED DISTRIBUTORS IN CANADA **CESCO Electronics, Inc. Future Electronics**

ITT Components L.A. Varah, Ltd.

ALABAMA: Arrow (205) 882 2730, Kierulff (205) 883-6070, Marshall (205) 881-9235

ARIZONA: Arrow (602) 968 4800, Kierulff (602) 243-4101, Marshall (602) 968-6181, Wyle (602) 249 2232

Wyle (602) 249 2232 CALIFORNIA: Los Angeles/Orange County. Arrow (213) 701-7500, (714) 838-5422, 1 Kierulii (213) 7293633(714) 731-7204, (714) 680 (651, RY Waalhentord (714) 634-9600, (213) 493 3451, (714) 623-1281, Wyle (213) 322 8100, (714) 680 (653, Sacramento: Arrow (916) 925-7456, Wyle (916) 638-5282, San Diego: Arrow (619) 555-8400, Kierulii (619) 278-112, Marshall (619) 578-9600, Wyle (619) 565-9171, San Francisco Bay Area. Arrow (408) 745-6600, (415) 487-4600, Kierulii (408) 971-2600, Marshall (409) 732-1100, Wyle (408) 727-2500, Santa Barbara R V Weatherford (605) 965-8551

COLORADO: Arrow (303) 696-1111, Kierulff (303) 790-4444, Wyle (303) 457 9953

CONNECTICUT: Arrow (203) 265-7741, Diplomat (203) 797-9674, Kierulff (203) 265-1115, Marshall (203) 265-3822, Milgray (203) 795-0714

Hardman (200) 2002, Implan, Arroy (200) 706-7790, Diplomat (305) 974-8700, Kierulff (305) 486 4004, Orlando: Arroy (305) 547-51480, Milgray (305) 647-5747, Tampa: Arrow (813) 576-8995, Diplomat (813) 443-4514, Kierulff (813) 576-1966

GEORGIA. Arrow (404) 449-8252, Kierulff (404) 447-5252, Marshall (404) 923-5750

and services for you.

ILLINOIS: Arrow (312) 397-3440, Diplomat (312) 595-1000, Kierulif (312) 640-0200, Marshall (312) 490-0155, Newark (312) 638-4411

INDIANA: Indianapolis. Arrow (317) 243 9353, Graham (317) 634 8202, Ft Wayne Graham (219) 423-3422

IOWA: Arrow (319) 395-7230

KANSAS. Kansas City: Marshall (913) 492 3121, Wichita: LCOMP (316) 265 9507

MARYLAND: Arrow (301) 247-5200, Diplomat (301) 995-1226, Kierullf (301) 636 5800, Milgray (301) 793 3993

MASSACHUSETTS. Arrow (617) 933 8130, Diplomat (617) 935 6611, Kierulff (617) 667 8331, Marshall (617) 272 8200, Time (617) 935 8080

MICHIGAN. Detroit: Arrow (313) 971 8220, Marshall (313) 525-5850, Newark (313) 967 0600, Grand Rapids: Arrow (616) 243 0912

MINNESOTA: Arrow (612) 830-1800, Kierulff (612) 941-7500, Marshall (612) 559 2211

MISSOURI: Kansas City, LCOMP (816) 221 2400, St Louis: Arrow (314) 567 6888, Kierulff (314) 739 0855

NEW HAMPSHIRE. Arrow (603) 668 6968

NEW JERSEY. Arrow (201) 575-5300, (609) 596 8000, Diplomat (201) 785-1830, General Radio (609) 964-5560, Kierullf (201) 575-6750, (609) 235-1444, Marshall (201) 882-0320, (509) 234 9100, Milgray (609) 983-5010

NEW MEXICO: Arrow (505) 243 4566, International Electronics (505) 345 8127

Methational Electronics (30) 43 6127 NEW YORK, Long Island: Arrow (516) 231-1000, Diplomat (516) 454 6400, JACO (516) 273 5500, Marshall (516) 273 053, Milgray (516) 420 9800, Rochester Arrow (716) 275-0300, Marshall (716) 235-7630, Syracuse: Arrow (315) 652-1000, Diplomat (515 652 5000, Marshall (607) 754 1570

NORTH CAROLINA. Arrow (919) 876 3132, (919) 725 8711, Kierulff (919) 872-8410

OHD: Cincinnati Graham (51) 072-1661, Cleveland: Arrow (216) 248-3990. Kreuritf (216) 587-6558, Marshall (216) 248 1788 Columbus: Graham (614) 995 1590. Dayton: Arrow (513) 435 5563, ESCO (513) 226-1133, Kierultf (513) 439 0045, Marshall (513) 236-8088

OKLAHOMA⁻ Arrow (918) 665 7700, Kierulff (918) 252 7537

OREGON: Arrow (503) 684-1690, Wyle (503) 640-6000

PENNSYLVANIA. Arrow (412) 856-7000, (215) 928 1800, General Radio (215) 922-7037

(210) 320 1000, General Hadio (215) 922/037 TEXAS: Austim Arrow (512) 835 1160, Kierulf (512) 835 2090, Marshall (512) 458 5654, Infernational Electronics (214) 233-9323, Kierulf (214) 343-2400, Marshall (214) 233-5200, Wyle (214) 235-9953, El Pasci International Electronics (915) 598-3406, Houston, Arrow (7135) 4700, Harrison Equipment (710) 879 2600, Kierulf (714) 530-7300, Kierulf (715) 530-7300, Kierulf (715) 530-7300, Kierulf (714) 530-7300, Kierulf (715) 530-7300, Kierulf

UTAH. Diplomat (801) 486-4134, Kierulff (801) 973-6913, Wyle (801) 974 9953

VIRGINIA: Arrow (804) 282 0413

WASHINGTON: Arrow (206) 643 4800, Kierulff (206) 575-4420, Wyle (206) 453 8300 WISCONSIN: Arrow (414) 764-6600, Kierulff (414) 784-8160

Kierulff (414) 784-8160 CANADa: Calgary: Future (403) 259 6408, Varah (403) 230 1235, Edmonton, Future (403) 466 0974, Montreal, CSCO (514) 735 5511, Future (514) 694-7710, ITT Components (514) 735-1177, Ottawa: CSCO (513) 226-893, Future (813) 820 8313, ITT Components (613) 226-7406, Varah (613) 725-8884, Quebec City: CSCO (418) 687-4231, Toronto CSECO (416) 661-0220, Calle (416) 087-4231, Toronto CSECO (416) 661-0220, Future (416) 140, Varah (116) 5616 501 (504) 873 3211, ITT Components (604) 270-7805, Winnipeg: Varah (204) 533 6190

B.J

TI Worldwide Sales Offices

ALABAMA: Huntsville. 500 Wynn Drive, Suite 514, Huntsville, AL 35805, (205) 837-7530

ARIZONA: Phoenix: 8102 N 23rd Ave , Suite B. Phoenix, AZ 85021, (602) 995-1007

Phoenix, AZ 85021, (602) 995-1007 CALIFORNIA: Irvine, 7:801 Cartwright Rd, Irvine, CA 92714, (714) 660-1200, Secramento, 1900 Point West Way, Suite 171, Sacramento, CA 95815, (916) 929-1521, San Diego: 4333 View Ridge Ave, Suite B, San Diego, CA 92123, (619) 9278-601, Santa Clara: 5353 Betsy Ross Dr, Santa Clara, CA 95054, (408) 980-9000, Torrance, 13505 Hamilton S1, Bidg, A, Suite 1, Torrance, CA 90502, (213) 217-7010, Woodland Hulls, 21220 Erwin S1, Woodland Hulls, CA 91367, (213) 704-7759

COLORADO: Aurora. 1400 S Potomac Ave , Suite 101, Aurora, CO 80012, (303) 368 8000

CONNECTICUT. Wallingford: 9 Barnes Industrial Park Rd , Barnes Industrial Park, Wallingford, CT 06492, (203) 269-0074

FLORIDA: Ft Lauderdale: 2765 N W 62nd St Ft Lauderdale, FL 33309, (305) 973-8502, Maitland 2601 Maitland Center Parkway, Maitland, FL 32751, (305) 660-4600, Tampa: S010 W Kennedy Blvd, Suite 101, Tampa, FL 33609, (813) 870-6420

GEORGIA: Atlanta: 3300 Northeast Expy , Building 9, Atlanta, GA 30341, (404) 452-4600

ILLINOIS: Arlington Heights: 515 W Algonquin, Arlington Heights, IL 60005, (312) 640-2925

INDIANA: Ft. Wayne 2020 Inwood Dr , Ft Wayne, IN 46815, (219) 424-5174, Indianapolis: 2346 S Lynhurst, Suite J-400, Indianapolis, IN 46241, (317) 248-8555

IOWA. Cedar Rapids. 373 Collins Rd NE, Suite 200, Cedar Rapids, IA 52402, (319) 395-9550

MARYLAND. Baltimore: 1 Rutherford PI, 7133 Rutherford Rd . Baltimore, MD 21207, (301) 944-8600

MASSACHUSETTS: Waltham: 504 Totten Pond Rd , Waltham, MA 02154, (617) 895-9100

MICHIGAN: Farmington Hills: 33737 W 12 Mile Rd , Farmington Hills, MI 48018, (313) 553-1500

MINNESOTA: Eden Prairie: 11000 W 78th St , Eden Prairie, MN 55344 (612) 828-9300

MISSOURI Kansas City: 8080 Ward Pkwy , Kansas City, MO 64114, (816) 523 2500, St Louis: 11861 Westline Industrial Drive, St Louis, MO 63141, (314) 559-7600

NEW JERSEY. Iselin: 485E U.S. Route 1 South, Iselin, NJ 08830 (201) 750-1050

NEW MEXICO. Albuquerque: 2820-D Broadbent Pkwy NE, Albuquerque, NM 87107, (505) 345-2555

NEW YORK: East Syracuse: 6365 Old Collamer Dr. East Syracuse, NY 13057, (315) 463-9231, Endicott: 112 Nanticoke Ave. P. O Eosx 618, Endicott, NY 13760, (607) 754-3300, Melville: 1 Huntington Quadrangle, Suite 3C10, PO Eosx 2936, Melville, NY 11747, (516) 454-6600, Pittsford: 2851 Clover St, Pittsford, NY 14534, (716) 385-6770, Poughkeepsie 385 South Rd, Poughkeepsie, NY 12601, (914) 473-2900

NORTH CAROLINA: Charlotte: 8 Woodlawn Green, Woodlawn Rd, Charlotte, NC 28210, (704) 527-0930, Raleigh. 2809 Highwoods Blvd, Suite 100, Raleigh, NC 27625, (919) 876-2725

OHIO Beachwood 23408 Commerce Park Rd , Beachwood, OH 44122, (216) 464-6100, Dayton Kingsley Bldg , 4124 Linden Ave , Dayton, OH 45432, (513) 258-3877

OKLAHOMA. Tulsa: 7615 East 63rd Place, 3 Memorial Place. Tulsa, OK 74133, (918) 250-0633

OREGON: Beaverton: 6700 SW 105th St , Suite 110 Beaverton OR 97005 (503) 643-6758 PENNSYLVANIA: Ft. Washington: 260 New York Dr., Ft Washington, PA 19034, (215) 643-6450, Coraopolis 420 Rouser Rd. 3 Airport Office Park, Coraopolis, PA 15108, (412) 771-8550

PUERTO RICO. Hato Rey. Mercantil Plaza Bidg , Suite 505, Hato Rey, PR 00919, (809) 753-8700

TeXAS. Justin 12501 Research Bird, P O Box 2909, Austin, TX 78723, (512) 250-7655, Richardson; TX 75080, (214) 680-5082, Houston; 9100 Southwest Frwy, Suite 237, Houston, TX 77036, (713) 778-6592, San Antonic, 1000 Central Parkway South, San Antonic, TX 78232, (512) 496-1779

UTAH. Murray: 5201 South Green SE Suite 200, Murray, UT 84107, (801) 266-8972

VIRGINIA. Fairfax: 3001 Prosperity, Fairfax, VA 22031, (703) 849-1400

WASHINGTON: Redmond[.] 2723 152nd Ave , N E Bldg 6, Redmond, WA 98052, (206) 881-3080

WISCONSIN: Brookfield, 450 N Sunny Slope, Suite 150, Brookfield, WI 53005, (414) 785-7140

CANADA: Nepean. 301 Moodie Drive, Mallorn Center, Nepean, Onlario, Canada, K2H9C4, (613) 726:1970 Richmond Hill. 280 Centre St E, Richmond Hill L4C1B1, Onlario, Canada (416) 884-9181, St Laurent Ville St Laurent Quebec, 9460 Trans Canada H4Wy, St Laurent, Quebec, Canada H4S1R7, (514) 33635

ARGENTINA. Texas Instruments Argentina S A I C F Esmeralda 130, 15th Floor, 1035 Buenos Aires, Argentina, 1 + 394-3008

Autor, Augenima, I - 59-500 AUSTRALIA (& NEW ZEALAND) Texas Instruments Australia Ltd 6-10 Talavera Rd, North Ryde (Sydney), New South Wales, Australia 2113, 2 + 887-1122, 5th Floor, 418 St Kilda Road, Melbourne, Victoria, Australia 3004, 3 + 267-4677, 171 Philip Highway, Elizabeth, South Australia 5112, 8 + 255-2066

AUSTRIA: Texas Instruments Ges m b H Industriestrabe B/16, A-2345 Brunn/Gebirge, 2236-846210

BELGIUM. Texas Instruments N V Belgium S A Mercure Centre, Raketstraat 100, Rue de la Fusee, 1130 Brussels, Belgium, 2/720 80 00

BRAZIL: Texas Instruments Electronicos do Brasil Ltda Rua Paes Leme, 524-7 Andar Pinheiros, 05424 Sao Paulo, Brazil, 0815-6166

DENMARK Texas Instruments A/S, Mairelundvej 46E, DK-2730 Herlev, Denmark, 2 - 91 74 00

FINLAND: Texas Instruments Finland OY Teollisuuskatu 19D 00511 Helsinki 51, Finland, (90) 701-3133

701-3133 FRANCE: Texas Instruments France Headquarters and Prod Plant, BP 05, 06270 Villeneuve-Loubet, (9) 201 01, 201 05, 06270 Villeneuve-Loubet, (9) 201 01, 201 05, 201 01, 20

Creating useful products and services for you GERMANY (Fed Republic of Germany), Texas Instruments Deutschland GmbH Haggertystrasse 1, D 8050 Freisung, 8161 + 40-4591, Kurturestendamm 195196, D-1000 Berlin 15, 30 + 882-7365, III, Hagen 43/Kibbelstrasse, 19, D-4300 Essen, 201-24250, Frankfurter Allee 6-8, D-6236 Eschborm 1, 06196 + 8070, Hamburgerstrasse 11, D-2000 Hamburg 76, 040 + 220-1154, Kirchhorsterstrasse 2, D 3000 Hannover 51, 511 + 648021, Maybachstrabe 11, D 7302 Ostifuldem 2-Nelingen, 711 + 547001, Mixikorng 19, D-2000 Hamburg 60, 40 + 637 + 0061, Postfach 1309, Roonstrasse 16, D-5400 Koblenz, 261 + 3504

HONG KONG (+ PEOPLES REPUBLIC OF CHINA) Texas Instruments Asia Ltd , 8th Floor, World Shipping Ctr , Harbour City, 7 Canton Rd , Kowloon, Hong Kong, 3 + 722-1223

IRELAND. Texas Instruments (Ireland) Limited Brewery Rd , Stillorgan, County Dublin, Eire, 1 831311

TALY: Texas Instruments Semiconduitori Italia Spa Viale Delle Scienze, 1, 02015 Cittaducale (Rieti), Italy, 746 694 I. Via Salara KM 24 (Palazzo Cosma), Eduzona, 38:44, 2003 Cologno Monzese (Milano), 2 2532541, Corso Svizzera, 165, 10100 Torno, Italy, 11 774545, Via J Barozzi 6, 40100 Bologna, Italy, 51 355681

JAPAN, Texas Instruments Asia LId 4F Aoyama Fuji Bldg, 6-12, Kita Aoyama 3-Chome, Minato-ku, Tokyo, Japan 107, 3-498-2111, Osaka Branch, 5F, Nissho Iwai Bldg, 30 Imabashi 3-Chome, Higashi-ku, Osaka, Japan 541, 06-204-1881, Nagoya Branch, 7F Daim Toyota West Bldg, 10-27, Meieki 4-Chome, Nakamura-ku Nagoya, Japan 450, 52-583-6691

KOREA. Texas Instruments Supply Co 3rd Floor, Samon Bidg , Yuksam-Dong, Gangnam ku, 135 Seoul, Korea, 2 + 462-8001

MEXICO. Texas Instruments de Mexico S.A. Mexico City, AV Reforma No. 450 — 10th Floor, Mexico, D.F., 06600, 5+514-3003

MIDDLE EAST. Texas Instruments No 13, 1st Floor Mannai Bldg, Diplomatic Area, PO Box 26335, Manama Bahrain, Arabian Gulf, 973 + 274681

NETHERLANDS. Texas Instruments Holland B V , P O Box 12995, (Bullewijk) 1100 CB Amsterdam, Zuid-Oost, Holland 20 + 5602911

NORWAY. Texas Instruments Norway A/S PB106, Refstad 131, Oslo 1, Norway, (2) 155090

PHILIPPINES: Texas Instruments Asia Ltd 14th Floor, Ba- Lepanto Bidg , 8747 Paseo de Roxas, Makati, Metro Manila, Philippines, 2 + 8188987

PORTUGAL: Texas Instruments Equipamento Electronico (Portugal), Lda Rua Eng Frederico Ulrich, 2650 Moreira Da Maia, 4470 Maia, Portugal, 2:948-1003

SINGAPORE (+ INDIA, INDONESIA, MALAYSIA, THAILAND) Texas Instruments Asia Ltd 12 Lorong Bakar Batu, Unit 01-02, Kolam Ayer Industrial Estate, Republic of Singapore, 747-2255

SPAIN. Texas Instruments Espana, S A C/Jose Lazaro Galdiano No 6, Madrid 16, 1/458 14 58

SWEDEN Texas Instruments International Trade Corporation (Sverigefilialen) Box 39103, 10054 Stockholm, Sweden, 8 - 235480

SWITZERLAND: Texas Instruments, Inc., Reidstrasse 6, CH-8953 Dietikon (Zuerich) Switzerland, 1-740 2220

TAIWAN[•] Texas Instruments Supply Co Room 903, 205 Tun Hwan Rd , 71 Sung Kiang Road, Taipei, Taiwan, Republic of China, 2 + 521-9321

UNITED KINGDOM. Texas Instruments Limited Manton Lane, Bedford, MK41 7PA, England, 0234 67466, St James House, Weilington Road North, Stockport, SK4 2RT, England, 61 + 442-7162 BJ

State of the state

January 1985 Revision B 1602208-9701 Printed in U.S.A.

SPPS001B