MOTOROLA

SEMICONDUCTOR —

APPLICATION NOTE

Using PCbug11 as a Diagnostic Aid for
Expanded Mode M68HC11 Systems

By Steven McAslan;
Motorola Ltd.,
East Kilbride, Scotland

INTRODUCTION

This application note describes some advanced uses
of the PCbug11 software package for the M6SHC11.
The techniques described here allow the user to
optimise the debugging environment {perhaps for
diagnostic purposes), by maving the communications
program into external memory and making full use of
the mode programming of the M68HC11. Firstly, th
communications routine itself is explained, then
system architecture required is examined anq:
the task of customising the talker for the ap]
system is considered. The PCbugi1,
avallable from Motorala and prov

HOW TALK

The PCbug11 envir
software: the

rupt-driven and very compact plece of
he SCI or XIRQ interrupt can be used.

figure 1. An example of the code used to implement
the function is shown in listing 1. This is specifically for
the MCB8HC11E9. However, the code blocks and
label names are normally common to all talkers.

© MOTOROLA LTD., 1992

Order this document

as AN456/D

AN456

There are three main. sections to the code: initialisation;

bles the appropriate interruptand ensures that
rrupt vector for this is pointing to the interrupt

e er in this case the command interpreter.

The command interpreter. has four main functions and
two simple communications handlers. The functions are:

Read Memory (command: $01; label: TREADMEM)
Write Memory (command: $41; label: TWRITMEM)
Read Registers {command: $81; label: INH1)
Write Registers (command: $C1; label: INH2)

The register operations are specific examples of the
memory reads and writes, as the register modifications
only involve an alteration of the active stack frame in
memory.

The functions are selected using the command received.
The register commands involve a set number of bytes
being transferred from the host to the M68HC11 or vice
versa, therefore only a single command byte is required.
The memory commands involve communication from
the host to instruct the M68HC11 how much memory is
to be read/written and the appropriate addresses. For full
details, refer to the flow chart and listing software.

@. MOTOROLA B

YIOHOLOW

a/9svNY

Heyd mol4 ISY'DITYL L ainbiy

C TLKRSTART)

INIT STACK S
INIT.SCI {rx, tx, baud,
interrupt) . :
INIT STOP & | interrupt -

(IDLE LF)OP)

Cam

Get Data from Rx _
Complement and return byte

Inherent
(reg)
cmd?

'

Get byte count and addres

REPEAT
Return data to host

UNTIL all data sent

REPEAT

Write data to memory
UNTIL all data written

Send byte to host
Loop Forever

Read YES

Registers? |

Return SP to Host
Return Stack frame to Host

Write
Registers?

YES

Get stack pointer from host
Get new stack frame from
host

Return breakpoint address to
host. Return stack frame to
host. Force SWIDLE as return
address

"

>< Return ><

Two communications routines are also used here.
These perform reads and writes of the SCI/ACIA
(INSCI, OUTSCH). Every command received by the
talker is echoed back to the host complemented to
confirm communications integrity.

Inaddition, thereis breakpoint handling software. This
is more complex, as it involves at least two interrupts
o provide full functionality. Before the software can
be run, the SWI interrupt vector must be initialised.
This is done by the host computer before a go, call or
trace command. (See [1], section 4.3.)

Thefirstinterrupt occurs when the M6SHC 11 executes
aSWil opcode in its program. This causes a jump to the
breakpoint handling software. The SWI interrupt
handler then transmits a byte to the host to inform it
thatan SWI has been found. The M68HC11 enters an
idle loop while the PC host determines whether the
SWI found is a breakpoint, tracepoint or user SWI.
Having decided on the nature of the SWI, the host
sendsabyte tothe MCU to cause the secondinterrupt.
If a user SWI is found, then the code at the user
interrupt is simply executed. If a break or trace point

is found, then the code suspends at the idle loop until

the user decides either to trace again, continue or stop
the code execution.

USING TALKERS IN EXPANDE

Mostusers of PCbug11 communicat
runningin bootstrap mode. This j
a talker each time communii
internal EEPROM. Howe

using an expanded mo '
useful to place the talke
self-test softwa
alternative

s downloading
begin- or using
mbedded systems
C11 itwould be more
external. memory with any
his approach also allows an
B8HC11 SCl system to be used; a
be useful when the user requires
are running on the SCI.

ker in expanded memory, the basic blocks
ribed in the preceding section must be
emented and the interrupt structure must be able
to accommodate the requirements of the talker. The
basic blocks are easily moved to an area of expanded
memory. However, the interrupt structure does require
10 be examined quite closely.

The PCbug11/talker environment requires that certain
vectors are pointing to certain pieces of code. For
trace and breakpoint it is normal for the SWI vector to

be altered according to the functionin use. Inbootstrap
mode all of the interrupt vectors point to RAM. From
RAM, an appropriate jump to an interrupt service
routine can be carried out. This allows the interrupt
vectors to be easily customised for the PCbugl1
environment. In expanded mode the interrupt vectors
point to the top of memory. From here, the user must
either redirect them to an writable area of mem
have the block at the top of memory itself wi

developing designs.

The BUFFALO monitorfo

the RESET vector
will initiglise the re

one extended JMP instruction = 4 cycles) and
60 bytes of internal or external RAM will be lost
errupt re-direction. (See [2,3] bootstrap ROM
istings. See figure 2 for the memory map arrangement

of this system.)

Another approach is to use the special test mode of
the MB8HC11 MCU. This mode is normally used for
factory test purposes, as it allows access to normally
protected features of the chip. However, it does have
anotable additional feature, whichis that the interrupt
and reset vectors are transposed from their normal
positions in memory at $FFXX to the special mode
area $BFXX. Note that bootstrap mode also has the
same effect. The key difference is that in special test
mode the vectors are taken from external memory,
rather than the internal bootstrap ROM.

Special test maode could be accessed using a switch
or key on the system. The talker interrupt vectors
could be placedat the special mode interrupt locations
or the interrupt locations could point into RAM; cf.
figure 2. In either case, the talker could be placed in
some spare-area of memory (the talkeris normally less
than 200 bytes) and only accessed in the special
mode.

This approach allows the MB8HC11 1o be run in
expanded mode while retaining the full features of
PCbug11. An example of this approach is illustrated in
figure 3.

AN456/D MOTOROLA
3

NOTE: Talker uses SCl or XIRQ
SWi initialised by PCbug

[SCI Vector $00C4
$0000 RAM
$1000 [XIRQ Vector
[SWI Vector
$2000
$3000
$4000
© $5000
$6000 _(EPROM _ ' TALKER
$7000 .
$8000
$9000
$A000
$B000
$C000 Other Vectors Redirected to RAM
$D000 |
$EQ00 VECTORS [RESET Vector = $6000 SFFEF
NOTE: Vectors can be redirected to any RAM
location decided by user (internal or external)

Talker can be positioned anywhere in memory
(internal or external) by user

Figure 2. Expanded Mode Use Version 1

R,

MOTOROLA ’ AN456/D
4

$0000
$1000 - — — — — -
$2000 - — — — —
$3000 - — — — — o

$4000 - — — — —

$5000 - — — — — —

$6000 - — — — — —
(EPIROM - TALKER
$7000 - — — —

$8000 - — — — — —

$9000 - — — — —

$A000 [~ — — — — =

$B8000— — — —

IRESET Vector = $6000

$C000

$D000O— — —

“NORMAL
* VECTORS

Figure 3. Expanded Mode Use Version 2

AN456/D MOTOROLA
5

IMPLEMENTING THE
EXPANDED MODE TALKER

The following discussion assumes that the user is
going to modify an existing talker. If a new talkeris to
be written, care should be taken that the general
principles describedinthe above sections are adhered
to. A general purpose talker for the MB8HC11 in
expanded mode using the SCl is shown in listing 2.

The first decision to make whenimplementinga talker
in an expanded mode is whether the internal SCl oran
external ACIA device is to be used. i the SCl is used,
then normally the SCl interrupt or the XIRQ interrupt

would be used. It is also possible to use the IRQ

interrupt or a timer input capture pin. However, these
offer little advantage over the SCl interrupt itself. If an
external communications device is used, then the
choice is normally the XIRQ interrupt. Again, other
interrupt sources can be used, but the XIRQ interrupt
should ensure that the communications from the host
are responded to. '

The use of the XIRQ pin for the external
communications device does not prevent the use of
the XIRQ for other external resources. If another
resource requires to use this pin, then int
arbitration ‘could be used to select which s
caused the interrupt. It is essential in thi
there is no possibility of the alternate so
an endless loop from which the prograr
recover,

chosen and the
d, the initialisation
implemented. At this
, number of bits and interrupt
Itis usually best to perform this
after RESET but it could be
required, for example, if an error

Once the communications syst
interrupt to be used is
section for the talker
stage any baud, pari

enable bitsare s
function im

f the talkeris not normally changed. However,

gthe INIT register and that the INSCland QUTSCI
routines are changed to handle an external device
if required.

The last change required is to update the talker MAP
file. - '

MOTOROLA
6

gdre that the MBBHC11 registers:are not moved .-

UPDATING THE .MAP FILE

" The .MAP file contains essential address information

for PCbug11. In bootstrap mode the program knows
where certain parameters are by default. However, in
expanded mode the talker could be anywhere in
memory and so the PCbug11 has to be told where
find it. It is important that the .MAP file corresp
correctly to the talker or malfunction of the
can occur.

Listing 3 shows the .MAP for the
talker in listing 2. The requested
determined by assembling the:

ING THE TALKER AS
A DIAGNOSTIC AID

*exact use of the talker in this situation will depend
argely on the system which is being examined.

| However, with the talker installed the user can

interactively examine the system. Self-test routines
could be run, loaded into RAM from the user PC.
EEPROM integrity and presetvalues could be checked
and updated if necessary. If required, the MCU mode
could be changed by writing into the HPRIO register.

‘The upper nibble of this register is-accessible only in

special modes (see [2]).

If the MCU SCI port is available, the device could be
placed in special bootstrap mode and PCbug11 runas
normal. Inthis case, the dataand address bus integrity
of the system could be checked. Here, mode control
of the M68HC11 is again the key feature. By changing
the HPRIOQ register (MDA bit), the external data and
address buses are turned on while the bootstrap ROM
is still presentand readable by the CPU. Now the user

“canperform reads and verifies on the external memory

to see if any problem exists with either bus, while still
having full control on the MCU via PCbug11.

'AN456/D

CONCLUSION : REFERENCES
[1] PCbug11 User Manual, Motorola

By using the techniques described, the user can MB8PCBUG11/D1

include a debugging aid for any expanded mode [2]1 MB8HC11 Reference Manual, Motorola
MB6BHC11 system. If a single chip system is used, MB8HC11RM/AD

then the additional overhead of PCbuglt RAM 3] MC68HC11 Bootstrap Mode, Motorola
requirements is the only drawback. Application Note AN1060/D

AN456/D MOTOROLA
7

. LISTING 1 - TALKE.ASC ASSEMBLY LISTING

M68HC11 Absolute Assembler Version 2.70g:talke.ASC

1 A **********‘********‘*_*‘******* TALKE‘ASC 6/3/90 dkkkkkdhkkhhkhkkdhhhk kb hh vk khhkrx -

2 A * Motorola Copyright 1988,1990 L . -

3 A * MCU resident, Interrupt driven Communication routines for 68HC11

4 A * monitor. Provides low level memory and stack read/write opérations.

5 A *

6 A * This talker DOES NOT use XIRQ

7 A L —

8 A *

9 A * Works with Host user interface program PCBUG1l1.EXE.

10 A * N.B. TALKE.ASC is designed to be downloaded through standard type of

11 A * bootloader, and communicate with host through SCI.

12 a * This bootloader relies on 4 char idle line on SCI to terminate.

13 a * :

14 A * CONSTANTS

15 A 0000 TALKBASE equ $0000

16 A 00C4 BOOTVECT equ $00C4 Start of bootstrap vec table.

17 A O1FF STACK equ $01FF

18 A 1000 REGBASE equ $1000

19 a * .

20 A ooc4 JSCI - equ s00c4

21 A 0OF1 JXIRQ equ SO00F1

22 A OQOF4 JSWI equ $00F4

23 A QOF7 JILLOP equ S00F7

24 A 00FA JCOP aqu $00FA

25 A 008 uss00 equ 5000/35 D with: DEY/BNE loop

26 A 007E JMPEXT egu $7E M onic for jump extended

27 A 004A BRKCODE egu S4a Break ‘point signal code to host.

28 A 004A BRKACK equ $4a 1 Break point acknowledge code

29 A *

30 A * REGISTERS

31 A 002B BAUD egu $2B

32 A 002C SCCR1

33 A 002D SCCR2

34 A 002E SCSR

35 A 002F SCDR

36 A *

37 A 0020 RDRF

38 A 0080 TDRE

39 A *

40 A * PROG

41 A 0000 TALKBASE

42 A 0000 *

43 A 0000 8EOQLFF LDS #STACK

44 A 0003 CE1000 LDX -#REGBASE

45 A 0006 6F2C CLR SCCR1,X

46 A 0008 cc302c LDD #$302C

47 A Q00B A72B STAA BAUD, X Init SCI to 9600 baud, no parity

48 A 000D E72D STAB SCCR2, X and enable SCI tx & rx.

49 A 00OF 8640% LDAA #$40 Enable STOP & I bit, disable XIRQ.

50 A TAP

51 A *
A IDLE IMP IDLE Wait for SCI interrupt from host.
A

* A RESET from host changes above jump destination to start of user code.
*

SCISRV EQU * On detecting interrupt,
B6102E LDAA SCSR+REGBASE assume receiver caused it.
A 0018 8420 ANDA #RDRF

58 A 001A 27F9 BEQ SCISRV otherwise program will hang up
59 A * .
60 A 001C RXSRV EQU * Talker code processes data.
61 A 001C B6102F LDAA SCDR+REGBASE Get command byte, & echo as ack
62 A DO1F 43 coMa Inverted
63 A D020 8D46 : BSR OUTSCI to host.
64 A 0022 2A51 BPL INH1 If bit 7 set, process inh. command
65 A

0024 8D33 " BSR INSCI else read byte count into B

8 .

66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
118

R B A R A A A RS

L A A

A
A
130 A
A
a
A

ANA456/D

0026
0027
0029
002A
¢az2¢C
002D
0Q2F

0031
Q031
0033
0035
0036
0038
0039
003A
003B
003D

003E
003E
0040

0042
0043
0043
0045
0047
004B
004D
004F
0051
0054
0055
0056
0058
0058

0059
0059
005C

8F
8D30
17
8D2D

260D

A600
8D33
17
8D21
16

5A
26F4

81BE
2616

17

8D14
E700
18CE0001
1809
26FC
E600
F7102F
08
4a

26EB

3B

F6102E
CS0A

005E 26A0

0060
0062
0064
0067

0068
0068

Cc420
27F5
F6102F
39

188F

0062 B6102E

Q06D
006F
0071
0074

0080
0081
0083

2AFB
188F
B7102F
39

30
c609
20AC

*
TREADMEM

RXSRV1

TWRITMEM

WAITPOLL

RXSRVEX
NULLSRV
*

INSCI

XGDX
BSR
TBA
BSR
XGDX
CMPA
BNE

EQU
LDAA
BSR.
TBA
BSR
TAB
INX
DECB
BNE
RTI

EQU
CMPA
BNE

TBA
EQU
BSR
STAB
LDY
DEY
BNE
LDAB
STAB
INX
DECA
BNE
EQU
RTI

EQU
LDAB

INSCI
INSCI

#SFE
RXSRV1

*
X
QouTsCI

INSCI

' TREADMEM

*

#$BE
RXSRVEX

*

INSCI

X

#50001
WAITPOLL

X
’
SCDR+REGBASE

TWRITMEM

SCSR+REGBASE
OUTSCI1

SCDR+REGBASE

#$7E
INH2

OUTSCI
QUTSCL

#9
TREADMEM

Save command and byte count.
Read high address byte

into ACCA

then low address byte into ACCB
Cmd in A,count in B,addr in X

If command is memory read, then

REPEAT

read required address

send it to host

save byte count)

and wait for acknowledge
(restore byte count)

Increment address

Decrement byte count

UNTIL all done

return to idle loop or user cod

If command is memory w.

move byte count to
REPEAT

Read
o it“back to host,

rement byte count
NTIL all done
and return

Wait for RDRF=1
If break detected
then restart talker

then read data received from host
and return with data in ACCB

Only register Y modified.
Enter with data to send in ACCA.

MS bit is TDRE flag

Important - Updates CCR!

If command is read registers then

Move stack pointer to X
then to ACCD
send SP to host (high byte first)

then low byte

Restore X (=stack pointer)
then return 9 bytes on stack
- CCR,B,A,XH,XL, YH, YL, PCH, PCL

" MOTOROLA
9

134 0085 INH2 EQU *

135 0085 813E . CMPA #$3E If command is write registers then
136 0087 2612 BNE SWISRV1

137 *

138 0089 8DCE BSR INSCI get SP from host (High byte first})
139 008B 17 TBA

140 008C 8DCB BSR INSCI

141 008E 8F XGDX Move to X reg

142 008F 35 ’ TXS and copy to stack pointer

143 0090 8609 LDAA #3 Then put next 9 bytes on to stack
144 0092 20AF BRA TWRITMEM

145 *

0094 SWISRV EQU * : Breakpoints generated by SWI

0094 864A LDAA #BRKCODE Force host to process breakpoints
0096 8DDO BSR OUTSCI by sending it the break signal
Q098 0E SWIIDLE CLI

150 0099 20FD BRA SWIIDLE then wait for response from host.
151 . * '

152 009B SWISRV1 EQU *

153 009B 814A CMPA #BRKACK If host has acknowledged BP

154 009D 26B9 BNE RXSRVEX

155 0Q9F 30 TSX move SP to SWI stack fra

156 A OOAD €609 LDAB #9 .

187 00A2 3Aa ABX

158 00a3 35 TXS

159 00A4 ECQ7 ' oD - 7,.X Send user code ThH address
160 00A6 8DCO ’ BSR OUTSCI (high byte fi

161 00a8 17 TBA

162 A 00A9 8DBD BSR OUTSCI (low byte

ccoo98 LDD #SWITDLE force idl on return from BP

00AE EDO7 STD 7.X
00BO 20C7 BRA INH1A bu irs eturn all registers to host

00c4 ORG BOOTVECT

00ce 7E FCB JMPEXT
00C5 0015 FDB SCISRV
Q0C7 7E FCB JIMPEXT

able only during bootstrap

SPI (Unused vectors point to RTI)

171 00C8 0058 FDB NULLSRV :
172 Q0Cca 7E FCB JMPEX' Pulse acc. Input Edge
173 A 0OCB 0058 FDB :

00CD 7E FCB
00CE 0058 FDB

Pulse acc. Overflow

.
o
@

S T N N I T R R N T TR T A R
o
o

176 00D0 7E FCB { Timer Overflow
177 00D1 0058 DLLSRV
178 00D3 7E ocs
179 00D4 0058 NULLSRV
JMPEXT : oc4
NULLSRV
JMPEXT oc3
NULLSRV
JMPEXT oc2
NULLSRV
JMPEXT 0oC1
NULLSRV
JMPEXT Ic3
NULLSRV
JMPEXT 1cz2
NULLSRV
JMPEXT ic1
NULLSRV
JIMPEXT Real Time Intr '
NULLSRV
JMPEXT ’ IRQ
NULLSRV
JMPEXT XIRQ
NULLSRV
JMPEXT SWI Changed by Break point
NULLSRV

MOTOROLA . _ AN456/D
10

00F7 7E ’ o - FCB ' JMPEXT ILLOP

202 A

203 A OOF8 0000 FDB TLERSTART

204 A OOFA 7E FCB JMPEXT COP Fail
205 A OOFB 0058 . FDB NULLSRV

206 A OOFD 7E FCB JMPEXT Clock Monitor
207 A OOFE 0058 FDB NULLSRV

208 A ' *

209 A END

SYMBOL TABLE: Total Entries=39

BAUD 002B RXSRV 001cC
BOOTVECT ooc4 RXSRV1 003E
BRKACK 004A RXSRVEX 0058
BRKCODE 004 SCCR1 : 002¢C
IDLE 0012 SCCR2 002D
INHL 0075 : SCDR 002F
INH1A 0079 SCISRV 0015
INH2 0085 SCSR 002E
INSCI 0059 STACK : 01FF
Jcop O0FA SWIIDLE 0098
JILLOP 00F7 ‘SWISRV 0094
JMPEXT ’ 007E - SWISRV1 009B
Jsc1 0oc4 TALKBASE 0000
JSWI 00F4 TDRE 0080
JXIRQ 00F1 TLKRSTAR 0000
NULLSRV 0058 TREADMEM - 0031
oUTsCI 0068 TWRITMEM - 0043
ouTsCIT 006A WAITPOLL 004B
RDRF 0020 uss00 008E
REGBASE 1000 !

Total errors: 0

AN45ED : MOTOROLA
: 11

LISTING 2 - TALKSCI.ASC ASSEMBLY LISTING

M68HC11 Absolute Assembler Version 2.70g:talksci.ASC
1 A khkkrhkkkxrhkk bk kb dhokddr TALKSCI_ASC 14/8/91 kAR T IR TN TRk ek kdkdkd
2 A * Motorola Copyright 1988,1991
3 A * MCU resident, Interrupt driven Communication routines for 68HC11
4 A * monitor. Provides low level memory and stack read/write operations.
5 A *) :
6 A * This talker DOES NOT use XIRQ
7 A e
8 A *
9 A * N.B. TALKSCI.ASC is a general purpose talker. It is intended to be
10 A * placed in the MCU memory map at $6000 but this can be changed by
11 A * the user to any suitable address. The talker is for general debug
12 A * and can be used in any mode as long as the vectors are correctly
13 A * initialised. It is therefore useful for normal modes. The SCI is
14 A * used for communications - use TALKACIA when an external ACIA is
15 a * to be used. TALKSCI assumes that the interrupt vectors are
16 A * pointing to RAM in the same way as the boostrap ROM.
17 A * IMPORTANT : If you change the running address of this pro
18 A * then you MUST also change the TALKSCI.MAP file so that th
19 A * match. .
20 A *)
21 A * When PCBUGLl is executed with option TALKSCI, a 1
22 A " * output to the 68HC11's SCI, prior to establishing
23 A *
24 A * CONSTANTS
25 A 6000 TALKBASE equ $6000
26 A 003F STACK equ $003F ' User mayialter this parameter
27 A 00C4 BOOTVECT equ $00c4 et of bootstrap vector jump table.
28 A 1000 REGBASE equ $1000 e if registers are moved
29 A *
30 A 00C4 JscI equ
31 A 00F1 JXIRQ equ
32 A 00F4 JSWI equ
33 A 00F7 JILLOP equ
34 A OOFA Jcop
35 A - 007E JMPEXT Mnemonic for jump extended
36 A 0042 BRKCODE Break point signal code to host.
37 A 004A BRKACK Break point acknowledge code
38 A *
39 a * REGISTERS Change if required for MCU
40 A 002B ‘ $2B
41 A $2¢C
42 A $2D
43 a 42E
44 A $2F
45 A
46 A $20 SCI Masks, change if reguired
47 A $80
48 A so8
49 A 302
50 A
51 A * PROGRAM
52 A org TALKBASE
53 A *

v
>

* Initialise the 8CI and interrupts
*

TLKRSTART EQU Dynamically set up Boot jump table.
867E LDAA #IMPEXT

A 6002 18CE6078 LDY ¥NULLSRV

A 6006 CEQOCY LDX #BOOTVECT
60 A 6009 SETVECT EQU *
61 A 6009 A700 STAA X
62 A 600B 08 INX
63 A 600C 1AEF00 STY X
64 A 600F 08 INX
65 A 6010 08] INX

~ MOTOROLA ' | ANSED
12

2
67 A 6014 26F3 BNE SETVECT
68 A 6016 CE6035 LDX #SCISRV
69 A 6019 DFCS STX JSCI+1
70 A 601B CE6000 LDX #TLKRSTART
71 A 601E DFF8 STX JILLOP+1
72 A *

73 A 6020 USERSTART EQU *
74 A 6020 S8EO003F LDS #STACK
75 A 6023 CEL000 LDX #REGBASE
76 A 6026 6F2C CLR SCCR1,X
77 A 6028 €C302C LDD $$302¢
78 A 602B A72B STAR BAUD,X
79 A 602D E72D STAB SCCR2,X
80 A 602F 8640 LDAA #8540
81 A 6031 06 TAP
82 a *
83 A
84 2 * initialisation to the start of his own program.
85 A *

86 A 6032 7E6032 IDLE JMP IDLE
87 A *
88 A 6035 SCISRV EQU *
89 A 6035 R6102E LDAA SCSR+REGBASE
90 A 6038 8420 ANDA #RDRF
91 A 603A 27F9 BEQ SCISRV
92 A * .
93 A 603C RXSRV JEQU *
94 A 603C B6102F LDAA SCDR+REGBASE
95 A 603F 43 COMA
96 A 6040 8D46 BSR ouTsCI
97 A 6042 2A51 BPL INH1
98 A 6044 8D33 BSR - INSCI
99 A 6046 8F XGDX
100 A 6047 8D30 BSR INSCI
101 A 6049 17 TBA :
102 A 604A 8D2D BSR INSCI
103 X 604C 8F XGDX
104 A 604D BIFE CMPA
105 A 604F 260D BNE
106 A *
107 A 6051 TREADMEM EQU
108 A 6051 A600
109 A 6053 8D33
110 A 6055 17
111 A 6056 8D21
112 A 6058 16
113 A 6059 08
114 A 6052 SA :
115 A 605B 26F4 TREADMEM
116 A 605D 3B RTI
117. A

A RXSRV1 EQU *

a CMPA #$BE

A

A

A

a

AN456/D

6011 8C0100

TWRITMEM

18CE0001
1809 WAITPOLL
A 26FC
A E600
A 6071 F7102F
131 A 6074 08
A 6075 4A
A 6076 26EB
A 6078 RXSRVEX

CPX #$100

* User may add jump to his own code here or may move the above

BNE RXSRVEX

TBA

EQU *

BSR INSCI
STAB X

LDY #$0001
DEY

BNE WAITPOLL
LDAB" X

STAB SCDR+REGBASE

DECA
BNE TWRITMEM
EQU *

Initialise SCI to 9600, no parity
and enable SCI tx & rx.

Enable STOP, 1 interrupts, disable X

Now hang around for SCI

On detecting interru
assume receiver causi
otherwise pro hang up

"esses rec'd data.
te, & echo as ack

e command and byte count.
ad high address byte
into ACCA

then low address byte into ACCB

Cmd in A,count in B,addr in X
If command is memory read, then

REPEAT

read required address
send it to host

(save byte count)

and wait for acknowledge
(restore byte count)
Increment address
Decrement byte count
UNTIL all done

and return to idle loop or user code.

If command is memory write then

move byte count to ACCA
REPEAT

Read next byte from host into ACCB,

and store at required address.
Set up wait loop
Y may take on suitable value

Read stored byte and
echo it back to host,

Decrement byte count
UNTIL all done
and return

then process inh cmd
sg, read byte count from host into B

MOTOROLA
13

6078 3B NULLSRV RTI

135

136 *

137 * INSCI gets the received byte form the SCI

138 *

139 6079 INSCI EQU *

140 6079 F6102E LDAB SCSR+REGBASE Wait for RDRF=1

141 607C C50A ' BITB # (FE+OR) If break detected then

142 607E 2680) BNE TLKRSTART restart talker.

143 6080 €420 . ANDB #RDRF

144 6082 27F5 BEQ INSCI

145 6084 F6102F LDAB SCDR+REGBASE then read data received from host
146 A 6087 39 RTS and return with data in ACCB
147 * .

148 * OUTSCI is the subroutine which transmits a byte from the SCI
149 * :

150 6088 oUTSCI EQU * Only register Y modified.
151 6088 188F XGDY Enter with data to send in ACCA.
152 608A B6102E oUTSCIA LDAA SCSR+REGBASE

153 608D 2AFB) BPL OUTSCI1 MS bit is TDRE flag

154 608F 188F XGDY

155 6091 B7102F STAA SCDR+REGBASE Important - Updates CCR!
156 6094 39 RTS

157 *

158 * Now decide which inherent command was sent

159 *

160 6095 INH1 EQU *

161 6095 817E CMPA #$7E If command is

162 6097 260C BNE INH2

163 *

* Command was to read MCU registers
*

6099 30 INH1A. TSX Mowe stdgk pointer to X

167 A 609 8F , XGDX to ACCD
168 6098 8DEB BSR oUTSCI P to host (high byte first)
169 609D 17 TBA .
170 609E 8DES BSR OUTSCI en low byte
171 60A0 30 ' TSX " Restore X (=stack pointer)
172 60A1 C609 LDAB . #9 then return 9 bytes on stack
173 60A3 20AC BRA TREADMEM i.e CCR,B,A,XH, XL, YH, YL, PCH, PCL
*
Ulregisters
*
60A5 - INH2
60A5 813E If command is write registers then
60A7 2612
*
60A9 8DCE get SP from host (High byte first)
60AB 17
60AC 8DCRB INSCI get low byte next
60AE 8F Move to X reg
60AF 35 and copy to stack pointer
60BO 8609 #9 Put next 9 bytes from host onto stack
60B2 20AF TWRITMEM

* An SWI interrupt was generated

—
o
- .

R I T T I S T R T Y SR R AR R R R R R R R R R

SWISRV EQU * Breakpoints generated by SWI
LDAA #BRKCODE Force host to process breakpoints
. BSR OUTSCI by sending it the break signal

*

* SWIIDLE is the infinite loop which allows the 'STOPPED' mode of PCbugll

% .

60B8 OE SWIIDLE CLI
A 60B9 20FD BRA - SWIIDLE then wait for response
199 2 * :
200 A 60BB SWISRV1 EQU *
201 A 60BB 8143 CMPA . #BRRACK If host acknowledged then

MOTOROLA - ' ANA56/D
14 ' .

202 A 60BD 26B9 BNE . RXSRVEX])
203 A 60BF 30 TSX move SP to SWI stack frame and
204 A 60CO C609 LDAB #9
205 A 60C2 3A ABX
206 A 60C3 35 TXS o
207 A 60C4 ECO7) LDD 7, X send user code BP return address
208 A 60C6 8DCO . BSR OUTSCI {high byte first)
209 A 60C817 TBA
210 A 60C9 8DRBRD BSR OUTSCI (low byte next)
211.A 60CB CC60BS LDD #SWIIDLE force idle loop on return from BP
212 A 60CE EDO7" STD 7. %
213 A 60D0 20C7 BRA INH1A but first return all MCU registers
214 A *
215 A END
SYMBOL TABLE: Total Entries=42
BAUD 002B REGBASE
BOOTVECT 00c4 RXSRV
BRKACK 004A RXSRV1
BRKCCODE 004a RXSRVEX
FE ' 0002 SCCR1
IDLE 6032 SCCR2
. INHI . 6095 SCDR
 INH1A 6099 SCISRV
INH2 60A5 SCSR
INSCI 6079 SETVECT
Jcop 00FA STACK
JILLOP Q0F7 SWIIDLE
JMPEXT Q07E SWISRV
JSCI 00c4 SWISRV1
JSWI 00F4 TALKBASE
JXIRQ 00F1 TDRE
NULLSRV 6078 TLKRSTAR
OR 0008 TREADMEM
QUTSCI 6088 TWRITMEM
QUTSCI 608A USERSTAR
RDRF 0020 WAITPOLL

Total errors: 0

AN456/D MOTOROLA
15

LISTING 3 - TALKSCL.MAP

Name of constant must not exceed 14 characters.
Value of constant must start in column 15 or higher.

talker_start $6000 Talker code start address.

talker_idle A$6032 Talker code idle loop address.

‘user_start) $6020 User's reset entry into talker code.

~i ' $00F2 Address in talker code of user’'s XIRQ server address.
re $00A0 Address to where user's code is relocated on break point.
Ni $6035 Talker's XIRQ service address.)

s $60B4 ‘Talker's SWI service address for break points.

s $60B8 Talker's SWI idle loop. ’
null_srv $6078) Talker RTI.

xirg_jmp $00F2 : XIRQ vector.

swi_jmp . $00F5 SWI vector.

cme_jmp $O00FE "~ COP clock monitor vector.

Motorpla regerves the right to make changes without further notice to any products herein to improve reliability, function or design. Motarola does not assume
iabilityarising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights nor the rights

1s: Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other
ap ﬁiﬁgations intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal

jury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and
hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable
attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim
alleges that Motorola was negligent regarding the design or manufacture of the part. Motorola and @ are registered trademarks of Motorola, Inc. Motorola,
inc. is an Equal Opportunity/Affirmative Action Employer. o

Literature Distribution Centres:

EUROPE: Motorola Ltd., European Literature Centre, 88 Tanners Drive, Blakelands, Milton Keynes, MK14 5BP, England.

ASIA PACIFIC: Motorola Semiconductors (H.K.) Ltd., Silicon Harbour Center, No. 2, Dai King Street, Tai Po Industrial Estate, Tai Po, N.T., Hong Kong.
JAPAN: Nippon Motorola Ltd., 4-32-1, Nishi-Gotanda, Shinagawa-ku, Tokyo 141, Japan.

USA: Motorola Literature Distribution, P.O. Box 20912, Phoenix, Arizona 85036.

 ___F - MOTOROLA

- Printed in Great Britain by Tavistock Press (Bedford) Ltd, 3500 §/92 PO.2559 ‘ AN456/D

