
M o t o r o l a ’ s H i g h - P e r f o r m a n c e D S P T e c h n o l o g y

APR4/D
Rev. 3

Fast Fourier Transforms
on Motorola's

Implementation
on

Digital Signal
Processors

MOTOROLA APR4

by
Guy R. L. Sohie and Wei Chen
Digital Signal Processing Division

Preface

The human body has inherently slow perception mecha-
nisms. For instance, when listening to music, or speech; we
do not hear individual pressure variations of the sound as
they occur so quickly in time. Instead, we hear a changing
pitch, or frequency. Similarly, our eyes do not “see” individual
oscillations of electromagnetic fields (light); rather, we see
colors. In fact, we do not directly perceive any fluctuations (or
oscillations) which change faster than approximately 20 times
per second. Any faster changes manifest themselves in terms
of the frequency or rate of change, rather than the change it-
self. Thus, the concept of frequency is as important and
fundamental as the concept of time.

Implementation of Fast
Fourier Transforms on
Motorola's Digital
Signal Processors

Table
of Contents

SECTION 1

Definition and
History
MOTOROLA
1.1 Introduction to the Fourier Integral 1-1
1.2 Use of the Fourier Transform 1-3
SECTION 2

The Discrete
Fourier

Transform
2.1 The Discrete-Time Fourier
Transform (DTFT) 2-1

2.2 Windowing and Windowing Effects 2-4
2.3 Sampling the Frequency Function 2-7
SECTION 3

The Fast
Fourier

Transform
3.1 Motivation 3-1
3.2 Divide and Conquer 3-2
3.3 The Decimation-in-Time and

Decimation-in-Frequency Radix-2
Fast Fourier Transforms 3-3

3.4 The Decimation-in-Frequency
Radix-2 Fast Fourier Transforms 3-9
SECTION 4

Complex FFT
on the

Motorola DSP
Family
4.1 Required Hardware Support for FFT
Calculation 4-1

4.2 Radix-2 DIT and DIF Butterflies 4-4
4.3 Complexity of a Radix-2 DIT FFT 4-6
4.4 Implementation on Motorola's

DSP56001 4-6
4.4.1 DSP56001 Architecture 4-6
4.4.2 DIT Butterfly Kernel on DSP56001 4-9
 iii

iv

Table
of Contents

4.5 Implementation on Motorola's DSP96002 4-13
4.5.1 DSP96002 Architecture 4-13
4.5.2 DIT Butterfly Kernel on

DSP96002 4-15
4.6 Implementation on Motorola’s DSP56156 4-17

4.6.1 DSP56156 Architecture 4-17
4.6.2 DIT Butterfly Kernel on

DSP56156 4-19
4.7 Scaling for Fixed-Point Processors

(DSP56001/2 and DSP56156) 4-19
4.7.1 Scaling at the Input –

Guard Bits 4-20
4.7.2 Scaling During the Passes –

Auto-Scaling and
Block Floating-Point 4-21

4.8 Twiddle Factors and On-Chip ROM 4-23
4.8.1 Twiddle Factors for DIT 4-23
4.8.2 Sine Table on the

DSP56001/2 4-23
4.8.3 Sine and Cosine Tables on the

DSP96002 4-24
4.9 Bit-Reversed Addressing 4-25
4.10 Implementation of a Radix-4 DIT FFT

on DSP96002 4-26
4.10.1 Radix-4 DIT Butterfly Core 4-27
4.10.2 Radix-4 DIF Butterfly Core 4-31

4.11 Inverse FFT 4-32
 MOTOROLA

Table
of Contents

SECTION 5

Optimizing
 Performance

of the FFT
MOTOROLA
5.1 Optimization 5-1
5.1.1 Minimum Memory Requirement —

In-Place Calculation 5-3
5.1.2 Optimization for Faster Execution 5-5

5.2 Example of Optimization 5-9
5.2.1 Fully Optimized Complex FFT

for the DSP56001/2 5-9
5.2.2 Fully Optimized Complex FFT

for the DSP96002 5-12
SECTION 6

Real-Valued
Input FFT
Algorithm
6.1 Real-Valued Input FFT Algorithm 1 6-2
6.1.1 Bergland Algorithm 6-2
6.1.2 Reordering 6-6
6.1.3 Performance Estimation 6-7

6.2 Real-Valued Input FFT Algorithm 2 6-9
6.2.1 Separating Two Real FFT

from One Complex FFT 6-9
6.2.2 Rebuilding the DFT of a Real

Sequence from Two DFTs 6-11
6.2.3 Performance Estimation 6-13

6.3 Real-Valued Input FFT Algorithm 3 6-15
6.4 The Goertzel Algorithm 6-18
6.5 Real-Time Data Acquisition on

Motorola DSPs 6-20
6.5.1 Fast Interrupt on DSP56001 for

Real-Time FFT Data Acquisition 6-21
6.5.2 Real-Time Data Acquisition

on DSP96002 6-23
 v

Table
of Contents

SECTION 7

Two
Dimensional
Fourier and

Cosine
Transforms
vi
7.1 Two Dimensional FFTs on the DSP96002 7-1
7.2 Discrete Cosine Transform on the

DSP96002 7-2
7.2.1 One Dimensional Discrete Cosine

Transform (DCT) 7-2
7.2.2 Two Dimensional DCT 7-5
SECTION 8

Competitive
Analysis of FFT

Performances
8.1 Most Popular Digital Signal Processors 8-1
8.2 Performance of FFTs on Digital

Signal Processors 8-2
8.2.1 FFTs on Floating-Point DSPs 8-3

8.2.1.1 Complex FFT on
Floating-Point DSPs 8-4

8.2.1.2 Real FFT on
Floating-Point DSPs 8-5

8.2.2 FFT on Fixed-Point DSPs 8-6
8.2.2.1 Complex Input FFT 8-6
8.2.2.2 Real Input FFT 8-7
SECTION 9

Conclusion
APPENDIX A

Fully Optimized
Complex FFT
9-1
A.1 Optimized Complex FFT for the
DSP96002 A-1
 MOTOROLA

Table
of Contents

APPENDIX B

Real-Valued
Input FFT
MOTOROLA
B.1 Faster real FFT for the DSP96002 B-1
B.2 Real FFT for DSP56001/2 B-5
 vii

Illustrations

Figure 2-1

Figure 2-2

Figure 3-1

Figure 3-2

Figure 3-3

Figure 3-4

Figure 3-5

Figure 3-6

Figure 3-7

Figure 3-8

Figure 3-9

Figure 3-10

Figure 4-1

Figure 4-2
MOTOROLA
Fourier transform of a rectangular function 2-3

Windowing effects when windowing a single
sine wave 2-6

The FFT principle in layman’s terms 3-2

Decimation-in-Time of an N-Point FFT 3-4

Decimation-in-Time FFT: step two 3-4

Decimation-in-Time FFT: final step
(2-Point DFT) 3-5

An 8-point, radix-2, Decimation-in-Time FFT 3-5

Rearrangement of the “Butterfly”
 building block of the DIT FFT 3-6

Rearrangement of the “Butterfly”
 building block of the DIF FFT 3-6

Rearrangement of the DIT computation of
Figure 3-6 3-7

Decimation-in-Frequency concept 3-8

Complete 8-Point Radix-2 DIF FFT 3-8

Grouping of butterflies in the FFT calculation 4-5

DSP56001 architecture block diagram 4-7
 ix

Illustrations

Figure 4-3

Figure 4-4

Figure 4-5

Figure 4-6

Figure 4-7

Figure 4-8

Figure 4-9

Figure 4-10

Figure 4-11

Figure 4-12

Figure 4-13

Figure 5-1

Figure 6-1
x
A radix-2 DIT butterfly that needs less instruction
cycles than a radix-2 DIF butterfly 4-8

The radix-2, DIT butterfly kernel on the
DSP56001/DSP56002 4-9

A simple, triple-nested DO-loop radix-2 DIT FFT
on DSP56000/DSP56001 4-11

DSP96002 architectural block diagram 4-14

The radix-2, DIT FFT Butterfly Kernel on the
DSP96002 4-16

DSP56156 architectural block diagram 4-18

The butterfly core of the DSP56156 4-19

In-place bit-reversed to normal order conversion 4-26

A flow diagram of two stages in a radix-2 DIT
butterfly 4-27

A flow diagram of a radix-4 DIT butterfly 4-29

Radix-4 DIT butterfly takes 17 instructions
on the DSP96002 4-30

Trivial twiddle factors in a 512-point complex
radix-2 DIT FFT 5-11

Non-redundancy calculation of the Cooly-Tukey
radix-2 DIT FFT with real inputs 6-3
 MOTOROLA

Illustrations

Bergland algorithm has only log2(N)-1 passes and
one more addition and subtraction 6-5

(a) Butterfly of Bergland Algorithm with W = 1
(b) Butterfly of Bergland Algorithm with W

≠

 1 6-6

C language code that generates Bergland
order tables 6-7

Computation of the real-input, DIT FFT 6-17

DSP56001 assembly code that calculates energy
of DFT coefficients by single parameter 6-19

Double buffering input data so that data input can
work with the FFT program concurrently 6-21

Block diagram of the double buffering technique 6-22

The flow diagram of an 8-point discrete cosine
transform 7-4

Optimized Complex FFT for the DSP96002 A-1

Faster real FFT for the DSP96002 B-1

Real FFT for DSP56001/2 B-5
Figure 6-2

Figure 6-3

Figure 6-4

Figure 6-5

Figure 6-6

Figure 6-7

Figure 6-8

Figure 7-1

Figure A-1

Figure B-1

Figure B-2
MOTOROLA xi

Tables

Table 8-1

Table 8-2

Table 8-3

Table 8-4
MOTOROLA
1024-Point Complex FFT on Floating-Point DSPs 8-4

1024-Point Real Input FFT on Floating-Point DSPs 8-5

1024-Point Complex FFT on Fixed-Point DSPs 8-6

1024-Point Real Input FFT on Fixed-Point DSPs 8-7
 xiii

MOTOROLA

“. . . a digital
signal

processor can
efficiently

compute the
Fourier

transform and
perform specific

frequency-
domain tasks. . .”

SECTION 1

Introduction to the
Fourier Integral

APR4SECTION1 Page 1 Friday, December 15, 1995 8:05 AM
1.1 Definition and History
The scientific and engineering communities have at-
tempted to represent changing signals in two
fundamental domains: time and frequency. Temporal
changes are easily shown on oscilloscopes, for in-
stance, where change in time is directly proportional
to distance across a screen. Representation of sig-
nals in terms of frequencies falls under the general
category of “spectrum analysis”, and has generated a
lot of attention recently, due to the increased availabil-
ity of hardware which makes such representations
possible. The first formal approach to spectrum anal-
ysis probably dates back to the work of Fourier, who
showed how to mathematically represent a general
class of time-varying phenomena in terms of sine and
cosine functions of particular frequencies. His work is
best known as the Fourier Integral (inverse Fourier
transform) (see Reference 1):

Eqn. 1-1

where: j = and

χ t() X f()ej2πftdt

+∞

+∞

∫=

1– ej2πft 2πft()cos j 2πft()sin+=
1-1

1-2

APR4SECTION1 Page 2 Friday, December 15, 1995 8:05 AM
When interpreted as an infinite summation, the pre-
vious integral is simply a linear combination of a
number of sine and cosine functions (expressed by
the complex exponential), each one of which is
weighted by the complex amplitude X(f). Converse-
ly, the complex frequency function X(f) can be
derived from the time-varying signal χ(t) by the Fou-
rier Transform:

Eqn. 1-2

The two expressions shown in Eqn. 1-1 and Eqn.
1-2 define a Fourier transform pair χ(t) and X(f).
The Fourier transform X(f) determines the fre-
quency content of the signal in question, while χ(t)
shows the way the signal varies as a function of
time. Note that, in general, χ(t) can be directly
measured (for instance, displayed on an oscillo-
scope). X(f) remains a mathematical expression
which attempts to express our intuitive perception
of frequency.

Unfortunately, it is not always true that the concept
of frequency, as defined by the Fourier transform
in Eqn. 1-2, and the intuitive concept of frequency
as we perceive it, are identical. For instance, mu-
sic consists of tones (frequencies) which vary over
time. Although we can clearly perceive time-vary-
ing frequencies, Eqn. 1-2 does not allow for
Fourier's concept of frequency to have any time-
varying character— X(f) is a function of frequency
only.

X f() χ t()e j2πft– dt

+∞

+∞

∫=
MOTOROLA

APR4SECTION1 Page 3 Friday, December 15, 1995 8:05 AM
1.2 Use of the Fourier
Transform

Because of the basic nature of the frequency con-
cept, practical applications of the Fourier transform
are abundant. As more cost-efficient methods be-
come available to compute the Fourier transform,
the number of practical solutions to frequency-
based problems will grow even larger. In these fre-
quency-based applications, a digital signal
processor can efficiently compute the Fourier trans-
form (as defined in SECTION 1.1 Definition And
History), and perform specific frequency-domain
tasks such as elimination of certain frequency com-
ponents, etc.

Three general types of Fourier transform applica-
tions are:

1. Number-Based Most spectrum analysis
applications require the direct evaluation of
the Fourier transform as in Eqn. 1-2. Since
the Fourier transform is a mathematical
expression, these applications are based
on numerical computations, and can be
termed number-based. Examples range
from spectrum analysis laboratory
instrumentation and professional audio
equipment to velocity estimation in radar.
Note that in number-based applications the
accuracy of the computed numbers is of
vital importance to the performance of the
overall system. For instance, the quality-
conscious audio industry requires 16-bit or
more precision in order to eliminate audible
distortion.
MOTOROLA 1-3

1-4

APR4SECTION1 Page 4 Friday, December 15, 1995 8:05 AM
2. Pattern-Based Many problems involve
the recognition and detection of signals
with a specific frequency content (a
predefined spectral pattern). For
instance, speech consists of segments of
sound with very specific frequency
characteristics. In this type of application,
the conversion to the frequency domain is
often only a single step in the overall task.
It is important that this conversion process
be as fast as practical, to allow for
sufficient time to perform computationally
intensive pattern matching techniques. In
addition to providing fast Fourier
transform computations, the processor in
question needs to be fast at general-
purpose DSP tasks so that it can perform
a variety of frequency-based calculations
for pattern matching.

3. Convolution-Based The third class of
applications of Fourier transforms uses the
transform as a simple mathematical tool to
perform general filtering in a very efficient
manner. This concept is based on the
property that the Fourier transform of the
convolution of two time-signals:

is equal to the product of the individual
transforms:

Eqn. 1-3 (better known as the convolution integral)
represents the output of a linear filter with impulse

y t() χ t τ–()h τ()dτ

+∞

+∞

∫= Eqn. 1-3

Y f() X f()H f()= Eqn. 1-4
MOTOROLA

APR4SECTION1 Page 5 Friday, December 15, 1995 8:05 AM
response h(t) and input signal x(t). Clearly, in the fre-
quency domain, the output of a filter can be obtained
by a simple multiplication, whereas in the time do-
main, a more complicated convolution integral
needs to be solved. The amount of computation in-
volved in evaluating the integral in Eqn. 1-3
becomes particularly large when the impulse re-
sponse h(t) has a long time duration which often
prevents real-time implementation. Clearly, if the
Fourier transform X(f) of the signal can be computed
efficiently, the filtering operation itself can be
achieved by simple multiplications.

The combined number of computations (for comput-
ing the Fourier transform, for filtering in the
frequency domain, and for obtaining the inverse
Fourier Transform) is often less than the total num-
ber of calculations required to compute Eqn. 1-3
directly. This is especially true when the filter in
question performs a simple frequency discrimination
function (lowpass, bandpass, highpass, bandreject,
etc.). In this case, the multiplications in the frequen-
cy domain can be replaced by a simple masking
operation, which removes the stopbands and leaves
the passband(s) unchanged.

Although no direct frequency information is extract-
ed from the signal, the Fourier transform is used as
a mathematical tool for fast-filtering applications.
Note that again, fast Fourier transform and inverse
Fourier transform “engines” are needed in order to
provide the real-time filtering operation.
MOTOROLA 1-5

1-6

APR4SECTION1 Page 6 Friday, December 15, 1995 8:05 AM
In summary, the basic nature of the frequency con-
cept indicates that the number of possible
frequency domain applications is as large as more
conventional time domain applications. In the past,
frequency domain applications were either difficult
to implement or could not be realized in a cost-effi-
cient manner because of the lack of low-cost, high-
performance hardware. This application note dem-
onstrates that the DSP56001/2 and the DSP96002
Families of digital signal processors fulfill the de-
manding requirements imposed by frequency
domain problems. In addition to providing a fast im-
plementation of high-precision Fourier transform
computations, the general-purpose nature of the in-
struction set allows for a complete, single-chip,
low-cost integrated solution to a wide variety of fre-
quency domain problems. ■
MOTOROLA

MOTOROLA

“. . . the results
need to be

available within
a finite time

period, and the
infinite

summation
must somehow
be reduced to a

finite
summation.”

SECTION 2

The Discrete Fourier
Transform
2.1 The Discrete-Time Fourier
Transform (DTFT)

In order to compute the Fourier transform using digi-
tal hardware, Eqn. 1-2 needs to be approximated in a
manner which makes machine computation feasible.
The first step in this process consists of eliminating
the theoretical integral symbol, and replacing it by a
computable sum:

Eqn. 2-1

The above expression uses a sampled signal χ(nT),
where the sampling period T is made as small as pos-
sible to reduce approximation errors. Appropriately,

is called the discrete-time Fourier transform (DT-
FT). As T (the sampling period) becomes infinitely
small, the previous summation approaches the origi-
nal Fourier transform in Eqn. 1-2. To assess the
accuracy of this approximation, note that the resulting
expression for is a periodic function of frequency:

Eqn. 2-2

X f() X̃ f()≈ T χ nT()e j2πfnT–

n ∞–=

+∞

∑=

X̃ f()

X̃ f()

X̃ f() X̃ f 1
T
---+

 =
2-1

2-2

e
j2πfn

–
because:

Eqn. 2-3

In general, the original spectrum X(f) is not periodic,
and the approximation is only justified for a range of
small values of f. In Figure 2-1, the DTFT magnitude
and the Fourier transform magnitude of a simple
rectangular function are shown for several values of
the sample rate . Note the periodic na-
ture of the resulting function, as well as the
approximation errors due to the sampling process.

The Nyquist sampling theorem gives a well accept-
ed criterion for the sampling rate. It states that a
signal needs to be sampled faster than twice its
highest frequency. In other words, if:

X(f) = 0 Eqn. 2-4

for (B is referred to as the bandwidth of the sig-
nal), then the sampling frequency needs to satisfy:

Eqn. 2-5

In practice, signals rarely satisfy Eqn. 2-5, and
some error, called the aliasing error, can be expect-
ed in the evaluation of X(f). The aliasing error is
generated by frequency components at higher fre-
quencies, which manifest themselves at lower
frequencies because of the periodic nature of

(aliasing). The aliasing error can be reduced by
filtering out the higher-frequency components of the
signal using a low-pass anti-aliasing filter and/or by
increasing the sampling rate.

T+j2πnT
T

e j2πfnT– e j2πn– e j2πfnT–= =

fs 1 T⁄=

f B≥

fs 2B≥

X̃ f()
MOTOROLA

ction

1.8E-032.0E-03

8.0 E+00

Ideal

T = 0.1 ms

0.5 ms
1.5
1.4
1.3
1.2
1.1
1.0
0.9
0.8
0.7
0.6
0.5

0.3
0.2
0.1
0.0

0.4

Time Function
x(

t)

t(s)

Figure 2-1 Fourier Transform of a Rectangular Fun

0.0 E+00 2.0E-04 4.0E-04 6.0E-048.0E-041.0E-031.2E-031.4E-031.6E-03

1.5
1.4
1.3
1.2
1.1
1.0
0.9
0.8
0.7
0.6
0.5

0.3
0.2
0.1
0.0

0.4

0.0 E+00 2.0 E+00 4.0 E+00 6.0 E+00

x
f(
)

Fourier Transform Magnitude

f (kHz)
MOTOROLA 2-3

2-4

2.2 Windowing and
Windowing Effects

The discussion of aliasing errors illustrates how
the Fourier transform can be approximated by an
infinite summation. In practice, the results need
to be available within a finite time period, and the
infinite summation must somehow be reduced to
a finite summation. One obvious way to reduce
the infinite summation is by simply truncating the
sum in Eqn. 2-2 to N terms as:

Eqn. 2-6

This truncation is frequently referred to as “window-
ing” because an infinite summation is viewed
through a finite window. The resulting transform is
called the windowed discrete-time Fourier trans-
form (WDTFT). In mathematical terms, windowing
is simply the multiplication of the signal by a window
sequence of finite-length, w(n). In the simple case
above, w(n)=1 for ; otherwise, w(n)=0.
Because of its rectangular shape, the window
shown above is called the rectangular window.

Unless the signal in question is of finite duration,
this truncation will introduce other errors, resulting
in a number of artifacts in the spectrum. To assess
the effect of the windowing operation, a simple sine
wave of the form:

Eqn. 2-7

is sampled with a sampling frequency of 4000 Hz,
and the windowed DTFT is computed with N=20.

X̃w f() T χ nT()e j2πfnT–

n=0

N 1–

∑=

0 n N 1–≤ ≤

χ t() 2π1000t()sin=
MOTOROLA

Figure 2-2 shows the result of windowing a sine
wave by a rectangular window. Windowing causes
the following errors:

1. Leakage Even though the input signal
consists of a single-frequency component
at 1000 Hz, the result clearly shows
components at frequencies other than
1000 Hz. This is called the leakage effect: it
appears as if energy has “leaked” from
1000 Hz to the rest of the spectrum.

2. Smoothing Although the theoretical
transform exhibits an infinitely narrow, and
infinitely large peak at 1000 Hz, the actual
peak has finite magnitude and exhibits
finite width. It appears that the narrow peak
has been “smeared” out in the frequency
domain as a result of the windowing
function in the time domain. This effect is
appropriately termed the smoothing effect.

3. Ripple The overall magnitude plot in
Figure 2-2 shows an oscillatory character
not present in the original Fourier transform:
this is called the ripple effect. The origin of
the ripple effect lies in the discontinuity
(abrupt start and end) introduced in the
signal by the window. Windows with more
gradual transitions generally have lower
sidelobes and less ripple.

In general, a tradeoff exists between these different
effects, and the advantages of an appropriate win-
dowing function can be chosen for a specific
application. For an excellent summary of existing
windowing functions and their properties, see Ref-
erence 2.
MOTOROLA 2-5

2-6

Figure 2-2 Windowi

0

1
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
 0

-0.2
-0.3
-0.4
-0.5

-0.1

-0.6
-0.7
-0.8
-0.9

-1

0

0.0026

0.0024

0.0022

0.002

0.0018

0.0016

0.0014

0.0012

0.001

0.0008

0.0006

0.0004

0.0002

0

x
f(
)

x(
n

T
)

ng Effects When Windowing a Single Sine

10 20 30 40

Time Function

Sample number

Ideal

Actual

1 2 3 4

(Thousands)
f(Hz)

Fourier Transform Magnitude
MOTOROLA

2.3 Sampling the Frequency
Function

The windowed DTFT is now ready for machine
computation, with one exception: the independent
frequency variable f is still a continuous variable,
and needs to be captured in discrete intervals, or
sampled. Since the DTFT is periodic in the frequen-
cy domain with period fs, only values of f from 0 to
fs (the sampling frequency) need to be computed.
Although there are similar arguments concerning
the distance between successive frequency sam-
ples as in the case of time-sampling, it turns out that
when the WDTFT is sampled every fs/N Hz, fast al-
gorithms for computing the transform can be
derived. Note that in this case, the number of sam-
ples in the window (N) and the number of samples
in the frequency domain (N) are equal. The result-
ing transform is called the discrete-time Fourier
series (DTFS):

Eqn. 2-8

The inverse DTFS is given by:

Eqn. 2-9

Keep in mind that the values of the frequency sam-
ples of fk are equal to [fs/N] k.

X̃N k() T χ nT()e
j2π
N

--------nk–

n 0=

N 1–

∑=

χN k() 1
NT
-------- X̃N k()e

j2π
N

--------nk

k 0=

N 1–

∑=
MOTOROLA 2-7

2-8
Note that many textbooks simply define the Dis-
crete Fourier transform (DFT) XN(k):

Eqn. 2-10

with inverse transform:

Eqn. 2-11

Obviously, the DFT and DTFS differ only by a scal-
ing factor of T, making the spectrum independent of
the sampling period. Consequently, explicit T de-
pendence can be dropped from Eqn. 2-11.

Although the sequence xN(n) corresponds to the
original sampled and windowed sequence χ(nT)
for sampling instants 0 through N-1, the complete
sampled sequence χ(nT) for any n cannot neces-
sarily be recovered from it. Indeed, xN(n) appears
to be periodic with period N due to

the periodicity of , whereas the original
sampled signal was not assumed to be periodic.1

1 The error introduced in the time domain by sampling a frequency
function is termed “aliasing in time” which is analogous to the “aliasing in
frequency” caused by sampling a time function. (See SECTION 2.1 The
Discrete-Time Fourier Transform (DTFT)). That is, if a frequency
spectrum is not sampled densely or closely enough, the signal
constructed in the time domain through the inverse “discrete-frequency
Fourier transform” will show some distortion.

XN k() χ nT()e
j2π
N

--------nk–

n 0=

N 1–

∑=

χN n() 1
N
---- XN k()e

j2π
N

--------nk

n 0=

N 1–

∑=

e
j2π
N

--------nk
MOTOROLA

This must be kept in mind in convolution-based
applications, where the forward as well as inverse
transforms are used; the incoming signal stream
needs to be segmented, and the computed signal
segments need to be pieced together to construct
the complete output stream. Most basic text-
books on digital signal processing discuss
techniques for piecing together the output stream
(see Reference 3). ■
MOTOROLA 2-9

MOTOROLA

“Since there
are two

independent
variables (time
and frequency)

in the Fourier
transform,

dividing (or
decimating) the

DFT into smaller
ones can be
done in two

ways.”

SECTION 3

The Fast Fourier
Transform
3.1 Motivation
Upon closer examination of Eqn. 2-10, it becomes
clear that for every frequency point, N-1 complex
summations and N complex multiplications need to
be evaluated. Since there are N frequency points to
be evaluated, this gives a total of N(N-1) complex
sums, and N2 complex multiplications. Counting two
real sums for every complex one, and four real multi-
plications plus two real summations for every
complex multiplication, gives a total of 4N2- 2N real
summations and 4 N2 real multiplications.

The above numbers grow rapidly for increasing N. For
N=1024 (1024-point DFT), 4,194,304 real multiplica-
tions are required. If this is computed on a DSP56001/
DSP56002 with a 27-MHz clock, it takes 0.31 sec-
onds just to execute that many real multiplications.
Since the DFT computation needs to be completed by
the time the next 1024 data points are collected for
real-time performance, the sampling rate is limited to
a maximum of 3.3 kHz. Obviously, faster solutions are
needed.
3-1

3-2

3.2 Divide and Conquer
A faster algorithm for computing the DFT can easily
be derived. The principle behind this is very simple.
As illustrated in Figure 3-1, a square of half the linear
dimension of a larger square has one-fourth the sur-
face area. This is because the surface area is
proportional to the square of the linear dimensions of
the square. Similarly, the number of multiplications
needed to compute the DFT is proportional to the
square of the DFT's length (N). Thus, if we could re-
place the DFT over N points by two DFTs over N/2
points, computations would be reduced in order of
magnitude of 0.5 (=0.25+0.25).

Since there are two independent variables (time
and frequency) in the Fourier transform, dividing (or
decimating) the DFT into smaller ones can be done
in two ways. We can attempt to represent an N-
point transform in terms of DFTs over half the num-
ber (N/2) of time-samples. This approach is

S/4

S

Figure 3-1 The FFT principle in layman’s terms
MOTOROLA

2r 1+() T e
j 2π

N 2⁄()
------------------rk–
appropriately called the decimation-in-time or DIT
approach. Alternatively, the N-point DFT can be
represented in terms of DFTs with N/2 frequency
samples. This approach is called the decimation-in-
frequency or DIF approach.

3.3 The Decimation-in-Time
and Decimation-in-
Frequency Radix-2
Fast Fourier Transforms

It is easily shown that Eqn. 2-10 can be rewritten
when N is even as:

Eqn. 3-1

As illustrated in Figure 3-2, this expression shows
how two N/2-point DFTs can be combined to obtain
one N-point DFT. If N is an integer power of 2, this
process can be repeated, as shown in Figure 3-3 and
Figure 3-4, until a simple, two-point DFT is obtained.
This gives rise to the flow diagram of a DIT fast Fou-
rier transform (FFT) as shown in Figure 3-5, which
represents a complete 8-point FFT computation.

XN k() χ 2rT()e
j 2π

N 2⁄()
------------------rk–

e
j2π
N

--------–

X

r 0=

N 2⁄() 1–

∑+

r 0=

N 2⁄() 1–

∑=
MOTOROLA 3-3

3-4

x(0)

x(2)

x(4)

x(6)

x(1)

x(3)

x(5)

x(7)

Figure 3-2 Decimat

k/N denotes multiplNOTE:
x(0)

x(1)

x(2)

x(3)

x(4)

x(5)

x(6)

x(7)

+
+

+
+

+
+

+
+

+

+

+

+
-

-

-

-

N/2 - point

DFT

N/2 - point

DFT

3/N

4/N

2/N
1/N

5/N

6/N

7/N

ion-in-Time of an N-Point

N/4 - pt
DFT

N/4 - pt
DFT

2/N

4/N

6/N

x(0)

x(4)

x(2)

x(6)

Figure 3-3 Decimation-in-Time FFT: Step Two

ication by the “twiddle factors” throughout this document

e
j2π
N

--------k–
MOTOROLA

e FFT

x(0)

x(1)

x(2)

x(3)

x(4)

x(5)

x(6)

x(7)

3/N

4/N

2/N

1/N

5/N

6/N

7/N
Figure 3-4 Decimation-in-Time FFT: Final Step
(2-Point DFT)

+
+

+
-

x(0)

x(4)

Figure 3-5 An 8-point, radix-2, Decimation-in-Tim

x(0)

x(4)

x(2)

x(6)

x(1)

x(3)

x(5)

x(7)

4/N
2/N

4/N

4/N

4/N

4/N

4/N

2/N

6/N

6/N
MOTOROLA 3-5

3-6
The basic flow diagram of Figure 3-5 can be further
simplified by rearranging the terms in the basic
building block (the butterfly) as in Figure 3-6. Also,
it is seen from Figure 3-5 that input samples no
longer occur in normal, sequential order. When the
indices are represented in their binary equivalent,
however, the input samples appear in “bit-reversed”
order. Figure 3-8 shows how the diagram can be re-
arranged for normally-ordered inputs and bit-
reversed outputs.

Figure 3-6 Rearrangement of the “butterfly”
 building block of the DIT FFT

A

B

A’

B’
e-jθ

–

Figure 3-7 Rearrangement of the “butterfly”
 building block of the DIF FFT

A

B

A’

B’
e-jθ

–

MOTOROLA

x(0)

x(4)

x(2)

x(6)

x(1)

x(5)

x(3)

x(7)

Binary
Index

000

100

010

110

001

101

011

111

+
+

+
+

+

+

+

+

+

+

+
+

-

-

-

-

 of Figure 3-6
Figure 3-9 and Figure 3-10 show how the DFT with
N frequency points can be obtained in terms of
DFTs with a smaller number of frequency samples
(decimation-in-frequency FFT). Note that the basic
building block (butterfly) is different than for the DIT
case (see Figure 3-10).

x(0)

x(1)

x(2)

x(3)

x(4)

x(5)

x(6)

x(7) 3/N

1/N

2/N

2/N

2/N

Binary
Index

000

001

011

100

101

110

111

010

+
+

+
+ +

+
+

+

+
+

+

+

+

+

+

+

+

+
+

+
+
+

+

-

-

-

-

-

-

-

-

Figure 3-8 Rearrangement of the DIT computation
MOTOROLA 3-7

3-8

Figure 3-9 Decimati

x(0)

x(1)

x(2)

x(3)

x(4)

x(5)

x(6)

x(7)

Figure 3-10 Comple

x(0)

x(1)

x(2)

x(3)

x(4)

x(5)

x(6)

x(7)
on-in-Frequency concept

+

+
+

+
+

+

+

+

+

-

-

-

x(0)

x(2)

x(4)

x(6)

x(1)

x(3)

x(5)

x(7)

N/2 - point

DFT

N/2 - point

DFT

+

+
+

-

te 8-point radix-2 DIF FFT

x(0)

x(4)

x(2)

x(6)

x(1)

x(5)

x(3)

x(7)3/N

1/N

2/N

2/N

+
+

+ +

+
+

+

+
+

+

+

+

+

+

+
+

+

+

+

+

+

+

+

+

+

+

+
+

+
+

+

+

-

-

-

-

-

-

-

-

-

-

-

-

+

+

2/N

+

+

+
+
+ DIF Butterflyk/N
-

MOTOROLA

r

3.4 The Decimation-in-
Frequency Radix-2
Fast Fourier Transforms

If Eqn. 2-10 is decomposed from the frequency do-
main, we can show the following equations exist:

Eqn. 3-2

Eqn. 3-3

The decimation in frequency butterfly is shown in
Figure 3-9. ■

XN 2k() x r() x r N 2⁄+()+[]
r 0=

N 2⁄() 1–

∑ e
j2πrk
N 2⁄
----------------–

=

XN 2k 1+() x r() x– r N 2⁄+()[]
r 0=

N 2⁄() 1–

∑ e
j2πrk
N 2⁄
----------------–

e
j2π

N
-------–

=

MOTOROLA 3-9

MOTOROLA

“In general,
doubling the

points in
butterflies of

FFT reduces the
number of

groups in each
pass and the

number of
passes.”

SECTION 4

Complex FFT on the
Motorola DSP Family

APR4SECTION4 Page 1 Friday, December 15, 1995 8:29 AM
4.1 Required Hardware
Support for FFT
Calculation

The basic building block of the DIT FFT routine is the
butterfly computation shown in Figure 3-6. Conse-
quently, the architecture and instruction set of a DSP
device should allow efficient computation of this basic
butterfly. Since the butterfly consists of additions and
multiplications, a hardware adder/subtracter and mul-
tiplier is crucial. The DSP56001/2 and the DSP56156
provide a multiplication and addition instruction, or
MAC, which is beneficial to most DSP applications in-
cluding FFT, with no increase in silicon cost. The
DSP96002 supports FFT calculation capability by
adding subtraction to the MAC function, which pro-
vides the multiplication, addition and subtraction
instruction, FMPY||ADD||SUB.

Since the butterfly calculation requires complex da-
ta, the architecture must easily support complex
arithmetic. The input and output data to the butter-
flies are moved between the processor's arithmetic
unit and memory. Consequently, efficient moves are
needed.
4-1

4-2

APR4SECTION4 Page 2 Friday, December 15, 1995 8:29 AM
DSP56001/2 and DSP96002 hardware feature two
data memory modules; X and Y. The real compo-
nent and imaginary component of a complex
number can be stored in the X and Y memory mod-
ules respectively. Also, the DSP56001/2 and the
DSP96002 can perform dual reads and dual writes
in one instruction cycle. In contrast, the DSP56156
has only one data memory module, X, where both
real and imaginary components of the complex data
are stored. To support complex number fetch, the
DSP56156 provides dual memory read, where in
one instruction, it reads the X memory twice if the
specified address registers are used.

The overall FFT algorithm is an array of many such
butterflies, and the size of the array depends upon the
number of points (N) in the FFT. In order to write gen-
eral FFT routines (for any N of the power of 2), efficient
implementation of the repetitive execution of the basic
butterfly element is important. Although FFTs may be
calculated on general-purpose microprocessors, typi-
cally, a great deal of software overhead is involved. A
hardware solution, using hardware designed to effi-
ciently implement the calculation of FFTs, would be
generally preferred in a real-time system.The
DSP56001/2, DSP96002, and DSP56156 feature a
zero-overhead DO loop instruction. After the loop is
set up (three instruction cycle time), each iteration
takes no additional cost in overhead.

In real-life applications, time as well as frequency data
is used in normal order, even though the diagram of
Figure 3-7 delivers the frequency data in bit-reversed
order. Thus, an efficient method for bit-reversed ad-
dressing is needed while avoiding time-consuming
MOTOROLA

APR4SECTION4 Page 3 Friday, December 15, 1995 8:29 AM
software solutions that modify the addressing order.
The DSP56001/2, DSP96002, and DSP56156 all fea-
ture a bit-reversed addressing mode.

Some FFT algorithms, (for example, radix-4 FFT)
require several registers to hold immediate results.
The number of registers available on the DSPs is
critical for computation intensive applications since
storing and restoring intermediate results to and
from memory will take more processing time than if
the results are available in on-chip registers.

The input data (time samples) of the FFT is usually
obtained from an external source such as an A/D
converter. This data collection must occur in parallel
with the FFT computation to make real-time perfor-
mance possible. Consequently, a DSP device must
provide easy interface with a variety of A/D convert-
ers, and must support low-overhead interrupt
schemes which can load data from an external de-
vice with minimal impact on the FFT computation.
The DSP56001/2, DSP96002, and DSP56156 all
feature a variety of peripherals on chip. More details
about real-time data acquisition are discussed in
SECTION 7.

The key points to implementing efficient FFT calcu-
lation using programmable DSPs are summarized
below.

FFT calculation requires:

1. MAC or, ideally, FMPY||ADD||SUB instruction

2. Dual memory read and write in one instruction
cycle

3. Zero-overhead loop instruction
MOTOROLA 4-3

4-4

APR4SECTION4 Page 4 Friday, December 15, 1995 8:29 AM
4. Bit-reversed addressing mode

5. Sufficient number of registers

6. Fast I/O to provide real time data (in real-time
applications)

4.2 Radix-2 DIT and
DIF Butterflies

Theoretically, radix-2 decimation in time (DIT) butter-
flies and decimation in frequency (DIF) butterflies have
the same computational complexity: three additions,
three subtractions, and four multiplications. Since most
DSPs have only one hardware multiplier, the minimum
cycle time for multiplication for one DIT or DIF butterfly
is four instruction cycles. However, on the DSP56001,
a MAC instruction can implement one multiplication
and one addition in parallel in a single instruction cycle.
Four of the six additions or subtractions in a DIT butter-
fly can be executed in parallel with four multiplications,
and two more additions are required to finish the DIT
butterfly calculation. Due to data dependence, a DIF
butterfly can implement only two additions in parallel
with two multiplications. Thus, one DIF butterfly calcu-
lation requires four multiplications plus four additions
(see Figure 4-3).

The DSP96002 features a special instruction,
FMAY||ADD||SUB, which can implement either a DIT
or a DIF butterfly in four instruction cycles. Although
the DSP56156 has a MAC instruction, the lack of a
dual memory write operation plus constraints on ad-
MOTOROLA

x(0)

x(4)

x(2)

x(6)

x(1)

x(5)

x(3)

x(7)

Binary
Index

000

100

010

110

001

101

011

111

+
+

+
+

+

+

+

+

+

+

+
+

-

-

-

-

ss 3

ulation

APR4SECTION4 Page 5 Friday, December 15, 1995 8:29 AM
dress pointer updates in dual memory read operations,
causes the DIT butterfly and the DIF butterfly to both
take eight instruction cycles.

In short, the Motorola DSP architecture implements
the more efficient DIT butterfly, since it generates
shorter cycle time than the DIF. The following discus-
sions assume a radix-2 DIT, extending to radix-4 DIT
in later sections.

x(0)

x(1)

x(2)

x(3)

x(4)

x(5)

x(6)

x(7) 3/N

1/N

2/N

2/N

2/N

Binary
Index

000

001

011

100

101

110

111

010

+
+

+
+ +

+
+

+

+
+

+

+

+

+

+

+

+

+
+

+
+
+

+

-

-

-

-

-

-

-

-

pass 1 pass 2 pa

Figure 4-1 Grouping of Butterflies in the FFT Calc
MOTOROLA 4-5

4-6

APR4SECTION4 Page 6 Friday, December 15, 1995 8:29 AM
4.3 Complexity of a Radix-2
DIT FFT

The number of instructions required in a radix-2 DIT
FFT is determined by the number of instructions in
the butterfly core and the structural overhead of the
DSP. If only arithmetic operations are counted in
term of the multiplications and additions, a triple-
nested implementation of the FFT (see next sec-
tions) requires the following number of instruction
cycles for :

Eqn. 4-1

where BFLY is number of instructions for calculating
a complex input butterfly. For the DSP56001/2, the
DSP96002 and the DSP56156, BFLY is 6, 4, and 8
respectively. On the DSP96002, for example, a
1024-point complex FFT needs 10 x 512 x 4 =
20,480 instruction cycles.

4.4 Implementation on
Motorola's DSP56001

4.4.1 DSP56001 Architecture

The DSP56001 (see Reference 4) was the first mem-
ber of the Motorola Digital Signal Processor line. It
features 16.5 million instructions per second (MIPS)
with a 33 MHz clock.

N 2
m

=

m N/2 BFLY××
MOTOROLA

7

Data

External

Data Bus

Switch

Bus
Controller

External
Address

Bus
Switch

ory

 24

 24
M

ata ALU

4 x 24 + 56 ➨ 56-Bit Mac

o 56-Bit Accumulators

A
ODB

Port A
Memory

Expansion
Bus

Address

16 Bits
24 Bits

16

24

APR4SECTION4 Page 7 Friday, December 15, 1995 8:29 AM
Figure 4-2 DSP56001 Architecture Block Diagram

Y Mem

256 x
RAM

256 x
RO

X Memory

256 x 24
RAM

256 x 24
ROM

Program

512 x 24
RAM

Address
Arithmetic
Unit (AAU)

On-Chip
Peripherals:
Host, SSI,
SCI, PI/O

Internal Data
Bus Switch

and Bit
Manipulation

Unit

D

2

Tw

Program
Address

Generator

Program
Decode

Controller

Program
Interrupt

Controller

Program Controller

15

9

Port B
or

Host

Port C
& / or
SSI,
SCI

Y Address Bus

X Address Bus

Program Address Bus

RESET

IRQA/MOD
IRQB/M

Clock
Generator

EXTAL
XTAL
MOTOROLA 4-7

4-8

APR4SECTION4 Page 8 Friday, December 15, 1995 8:29 AM
The data paths are 24 bits wide, thereby providing

144 dB of dynamic range. More importantly, interme-

diate results are held by a 56-bit accumulator which

gives more accuracy in noise sensitive applications.

The data ALU, address arithmetic units, and program

controller operate in parallel so that an instruction pre-

fetch, a 24x24-bit multiplication, a 56-bit addition, two

data moves, and two address pointer updates using

one of three types of arithmetic (linear, modulo, or bit-

reversed) can be executed in one instruction. Three

on-chip peripherals (Serial Communication Interface,

Synchronous Serial Interface and Host interface), a

clock generator and seven buses (three address, four

data) make the overall system functionally complete

and powerful. The architecture of DSP56001 is

shown in Figure 4-2.

Figure 4-3 A radix-2 DIT butterfly needing less
instruction cycles than a radix-2 DIF
butterfly

W - W-

A

B

A’

B’ B’

A’A

B

DIT Butterfly DIF Butterfly

A=Ar+jAi W=Wr-jWi B=Br+jBi

Ar’=Ar+Br (ADD)

T1=Ar-Br (SUB)

Ai’=Ai+Bi (ADD)

T2=Ai-Bi (SUB)

T3=T1Wr (MPY)

Br’=T3+T2Wi (MAC)

T4=T2Wr (MPY)

T1=Ar+BrWr (MAC)

Ar’=T1+BiWi (MAC)

Br’=2Ar-Ar’ (SUBL)

T2=Ai-BrWi (MAC)

Ai’=T2+BiWr (MAC)

Bi”=2Ai-Ai” (SUBL)
MOTOROLA

rWi ➧ b,Bi ➧ y1
rWi + BiWr➧ b,Ai ➧ a
b ➧ a,Ar ➧ b
rWr ➧ b,Ar ➧ a
rWr + BiWi ➧ b,Br ➧ x1
 b ➧ a,Ai ➧ b

DSP56001/2

APR4SECTION4 Page 9 Friday, December 15, 1995 8:29 AM
4.4.2 DIT Butterfly Kernel on DSP56001
The parallel architecture and the instruction set of
Motorola's DSP56001/2 lend themselves particular-
ly well to the radix-2 DIT FFT computation.The DIT
butterfly equations are programmed on Motorola's
DSP56001/2 as given below:

A’r = Ar + Br Wr + Bi Wi Eqn. 4-2

A’i = Ai+ Bi Wr- Br Wi

B’r = 2Ar - A’r
B’i = 2Ai - A’i

where: i represents an imaginary component
r represents a real component
‘ symbolizes output items

The basic butterfly “core” is implemented by assem-
bly language in Figure 4-4. Note that the previous
DSP56001/2 equations are written in this particular
form such that the instruction to shift left and sub-
tract accumulators (SUBL) can be used. This SUBL
instruction allows efficient implementation of the
DIT butterfly in a two-accumulator ALU.

;r0 ➧ A
;r1 ➧ B
;r4 ➧ C
;r5 ➧ D

mac x1,y0,b y:(r1)+,y1 ;Ai - B
macr -x0,y1,b a,x:(r5)+ y:(r0),a ;Ai - B
subl b,a x: (r0),b b,y:(r4) ;2Ai -
mac -x1,x0,b x: (r0)+,a a,y:(r5) ;Ar + B
macr -y1,y0,b x: (r1),x1 ;Ar + B
subl b,a b,x:(r4)+ y:(r0),b ;2Ar -

Figure 4-4 The radix-2, DIT butterfly kernel on the
MOTOROLA 4-9

4-10

APR4SECTION4 Page 10 Friday, December 15, 1995 8:29 AM
The kernel shown in Figure 4-4 executes in six in-
struction cycles, or a total of 12 clock cycles. This is
made possible because of the parallel architecture of
the DSP56001/2, which allows up to two data ALU
operations (multiply/accumulate) in parallel with two
data moves to/from memory and two pointer updates
in a single instruction cycle. The dual data spaces X
and Y with the appropriate X and Y buses are ideally
suited for complex arithmetic; the real components
are stored in X memory and the imaginary compo-
nents are stored in Y memory.

The simplest way of combining all of the butterflies
into a complete program is shown in Figure 4-1. The
FFT diagram is first divided into FFT passes. On each
pass, the data is fetched from memory, the butterfly
calculations are done, and the results are moved
back out to memory. It is easily shown that there are
log2N passes. Within each pass, the butterflies clus-
ter in groups. From one pass to the next, the number
of groups doubles, while the number of butterflies per
group is divided by two. Note that the twiddle factors
are the same for all butterflies within each group, and
that the order of the twiddle factors from one group to
the next is bit-reversed. This is easily implemented on
the DSP56001/2 by setting the appropriate modifier
register (m6) equal to zero and the offset register (n6)
equal to N/4 (= coefficient table size/2), such that the
twiddle factors are addressed in bit-reversed manner.

This gives rise to the simple, triple-nested DO loop
program shown in Figure 4-5. The outer DO loop
steps through passes, the middle loop goes through
all of the groups within a pass, and the inner loop cy-
cles through all of the butterflies inside a group. The
MOTOROLA

 FFT
of 2)

APR4SECTION4 Page 11 Friday, December 15, 1995 8:29 AM
DSP56001/2 is particularly well suited for looped program ex-

ecution because it has hardware DO-loop capability. Once a

loop is entered through the DO instruction, this loop is execut-

ed without any time penalty. The resulting program takes 40

words in program memory. This is the most compact imple-

mentation of the radix-2 DIT FFT. A 1024-point complex FFT

using this code executes in 4.72 ms when using a 27-MHz

clock.

Figure 4-5 A Simple, Triple-Nested DO Loop Radix-2 DIT
on DSP56001/2 (sheet 1

;This program originally available on the Motorola DSP bulletin board.

;It is provided under a DISCLAIMER OF WARRANTY available from

;Motorola DSP Operation, 6501 Wm. Cannon Drive W., Austin, Tx., 78735.

;
;Radix 2, In-Place, Decimation-In-Time FFT (smallest code size).
;
;Last Update 30 Sept. 86 Version 1.1
;
fftr2a macro points, data, coef
fftr2a ident 1,1
;
;Radix 2 Decimation in Time In-Place Fast Fourier Transform Routine
; Complex input and output data
; Real data in X memory
; Imaginary data in Y memory
; Normally ordered input data
; Bit reversed output data
; Coefficient lookup table
; -Cosine values in X memory
; -Sine values in Y memory
;
;Macro Call - fftr2a points,data,coef
;
; points number of points (2-32768, power of 2)
; data start of data buffer
; coef start of sine/cosine table
;
;Alters Data ALU Registers
; x1 x0 y1 y0
; a2 a1 a0 a
; b2 b1 b0 b
;
;Alters Address Registers
; r0 n0 m0
; r1 n1 m1
; n2
;
; r4 n4 m4
; r5 n6 m5
; r6 n6 m6
;

MOTOROLA 4-11

4-12

;Alters Program Control
; pc sr
;Uses 6 locations or Sys
;Latest Revision Sept
;r0 points to A
;r1 points to B
;r4 points to C
;r5 points to D
;r6 points to twiddle fa
points/2,n0;initialize

move # 1,
move # po
move #-1,
move m0,m
move m0,m
move m0,m
move #0,m

;
;Perform all FFT passes
;

d0 #(αcvi(αlog
move #data,r0

r0,r4 ;initialize A ou
(r0)+n0,r1[;initialize B
#coef,r6;initialize C in

lua (r1)-,r5
move n0,n1

n0,n4
move n0,n5
d0 n2,_end_grp
move x:(r1),x1y:(

move x:(r5),a
move x:(r6)+n6,x0

do n0,_end_bfy
mac x1,y0,b

macr -x0,y1,b
subl b,a
mac -x1,x0,b
macr -y1,y0,b
subl b,a

_end_bfy
move a,x:(r5)+n5
move x:(r0)+0,x1

_end_grp
move n0,b1
lsr b
lsl a
move a1,n2

 _end_pass
endm

Figure 4-5 A Simple, T
on DSP560

APR4SECTION4 Page 12 Friday, December 15, 1995 8:29 AM
Registers

tem Stack
ember 30, 1986

ctor move
 butterflies per group
n2 ;initialize groups per pass
ints/4,n6 ;initialize C pointer offset
mo ;initialize A and B address modifiers
1 ;for linear addressing
4
5
6 ;initialize C address modifier for

;reverse carry (bit-reversed) addressing

with triple nested DO loop

(points)/(αlog(2)+0.5)_end_pass
;initialize A input pointer move

tput pointer lua
 input pointer move
put pointer

;initialize B output pointer
;initialize pointer offsets move

r6),y0 ;lookup -sine and
;-cosine values

y:(r0),b ;preload data
;update C pointer

y:(r1)+,y1 ;Radix 2 DIT
;butterfly kernel

a,x:(r5)+ y:(r0),a
x:(r0),b b,y:(r4)
x:(r0)+,a a,y:(r5)
tx:(r1),x1
b,x:(r4)+ y:(r0),b

y:(r1)+n1,y1 ;update A and B pointers
y:(r4)+4,y1

n2,a1 ;divide butterflies per group by two
b1,n0 ;multiply groups per pass by two

riple-Nested DO Loop Radix-2 DIT FFT
01/2 (sheet 2 of 2)
MOTOROLA

APR4SECTION4 Page 13 Friday, December 15, 1995 8:29 AM
4.5 Implementation on
Motorola's DSP96002

4.5.1 DSP96002 Architecture
DSP96002 is a 32-bit floating-point digital signal pro-
cessor with 20 million instructions execution per
second using a 40 MHz clock. The data ALU provides
full conformance with the IEEE 754-1985 Standard for
Single Precision Binary Floating-Point Arithmetic. Sin-
gle Extended precision with a 32-bit mantissa and 11-
bit exponent is also implemented. The data ALU, AGU,
and program controller operate in parallel within the
CPU so that an instruction pre-fetch, up to three float-
ing point operations, two data moves, and four address
pointer updates using one of three types of arithmetic
(linear, modulo, and reverse carry) can all be executed
in one instruction cycle.

Also, an on-chip dual channel DMA controller gener-
ates two addresses, using one of the three types of
address update arithmetic so that a memory-to-mem-
ory or memory-to-peripheral transfer can occur in
parallel with the CPU operation during each instruction
cycle. Host interface circuitry on each port provides a
flexible slave interface to external processors and/or
DMA controllers for easy design of a multi-master sys-
tem. Designed primarily for image processing, real-
time data acquisition, sonar signal processing, radar
signal processing, medical image analysis, and video
compression, the DSP96002 has the widest data
bandwidth of any DSP currently on the market. A spe-
cial FMAY||ADD||SUB instruction makes FFT
calculations extremely fast on the DSP96002.
MOTOROLA 4-13

4-14

PORT
A

In
Da

Swi

Man

Clock

External
Data
Bus

Switch

Host
Interface

OnCE

Bus
Control

Timer

ADDRESS
32

4

32
Data

4 Serial
Debug
Port

External
Address

Bus
Switch

Addre
Genera

Unit

Control
19

Figure 4-6 DSP9600
expansion
away the

CLK

APR4SECTION4 Page 14 Friday, December 15, 1995 8:29 AM
ADDRESS
32

PORT
 B

ternal
ta Bus
tch and
Bit

ipulation
Unit Program Control Unit

Data ALU
• IEEE Floating Point
* 32x32 Integr ALU

External
Data
Bus

Switch

Timer

Program
RAM

1024x32

X Data
RAM

512x32

1024x32
Cosine
ROM

Y Data
RAM

512x32

1024x32
Sine
ROM

CACHE
Control

RESET

MODC/IRQC

MODB/IRQB
MODA/IRQA

Host
Interface

Bus
Control

G

P

X

Y

D

P

X

Y

4

Dual Channel
DMA

Controller

External
Address

Bus
Switch

Boot
Strap
ROM
64x32

32
Data

ss
tion

Control
19

Program
Decode

Controller

Program
Interrupt

Controller

Program
Address

Generator

2 Architectural Block Diagram. Two symmetric bus
 ports with two channel DMA controller that blow

speed limit on external memory access and data I/O.
MOTOROLA

APR4SECTION4 Page 15 Friday, December 15, 1995 8:29 AM
4.5.2 DIT Butterfly Kernel on DSP96002
The butterfly equations implemented in the radix-2,
DIT FFT on DSP96002 are the following:

A’r = Ar + Br Wr + Bi Wi

A’i = Ai+ Bi Wr- Br Wi Eqn. 4-3

B’r = Ar - (Br Wr + Bi Wi)

B’i = Ai - (Bi Wr- Br Wi)

where: i represents an imaginary component

r represents a real component

‘ symbolizes output items

The implementation of this basic butterfly in
DSP96002 assembly language code is shown in
Figure 4-7. The kernel in Eqn. 4-3 executes in four
instruction cycles, or eight clock cycles. Since four
real multiplications are needed, and only one real
multiplier is available, this is the most efficient im-
plementation possible. In addition to the features
available on the DSP56001/2, this efficient execu-
tion is obtained by the FADDSUB instruction which
delivers the sum and the difference of two oper-
ands, in parallel with a multiplication and two data
moves. With this feature, a total of three floating-
point operations can be executed in one instruction
cycle, resulting in a peak performance of 60 million
floating-point operations per second (MFLOPS)
with a 40-MHz clock.

The triple-nested DO loop routine, which computes the
radix-2, DIT FFT on the DSP96002 takes only 30 words
in program memory. A 1024-point complex FFT is exe-
cuted in only 2.31 ms, assuming a 27-MHz clock.
MOTOROLA 4-15

4-16

;r0 ➨ A
;r1 ➨ B
;r4 ➨ C
;r5 ➨ D

fmpy d8,d6,d fadd.s

fmpy d8,d7,d3 faddsub.s

fmpy d9,d6,d0 fsub.sd1,

fmpy d9,d7,d1 faddsub.s

Figure 4-7 The Rad

APR4SECTION4 Page 16 Friday, December 15, 1995 8:29 AM
d3,d0 x:(r0),d4.s d2.s,y:(r5)+ ;Br*sin ➨ d2
;Bj*sin + Br*cos ➨ d0
;Ar ➨ d4,Dj ➨ mem.

d4,d0 x:(r1)+,d6.s d5.s,y:(r4)+ ;Bj*sin ➨ d3
;Ar + Br1 ➨ d0
;Ar - Br1➨ d4
;Br ➨d6
;Cj ➨ mem.

d2 d0.s,x:(r4) y:(r0) + d5.s ;Br*cos ➨ d0
;Br*sin - Bj*cos ➨ d2
;Cr ➨ mem.
;Aj ➨ d5

d5,d2 d4.s,x:(r5) y:(r1),d7.s ;Bj*cos ➨ d1
;Aj + Bj1 ➨ d2
;Aj - Bj1 ➨ d5
;Dr ➨mem.
;Bj ➨ d7

ix-2, DIT FFT Butterfly Kernel on the DSP96002
MOTOROLA

APR4SECTION4 Page 17 Friday, December 15, 1995 8:29 AM
4.6 Implementation on
Motorola’s DSP56156

4.6.1 DSP56156 Architecture

The DSP56156 is the most recent addition to the Mo-
torola DSP line. This 16-bit fixed-point number DSP is
designed primarily for speech coding and telecom-
munication. The on-chip sigma-delta codec functions
as a bridge between the analog and digital world. The
on-chip phase-locked-loop (PLL) reduces clock noise
to a minimum. Operating at 60 MHz, the DSP56156
can execute 30 million instructions per second with
two kilowords (2k) on-chip data RAM (which is four
times larger than DSP56001’s) and four address reg-
isters. Since the DSP56156 is designed for the digital
cellular phone, its limited instruction operation codes
must focus on telecommunication capability, and
some of its advanced addressing modes and instruc-
tions that accelerates FFT calculation must be
compromised due to the smaller instruction words.

Although only one memory module can be accessed
in a single instruction cycle, the DSP56156 does sup-
port dual memory reads. However, it does not
support dual memory writes in a single instruction cy-
cle. Four address registers and a single write per
instruction may slow down FFT performance on
DSP56156, but having 2k on-chip data memory may
compensate for a portion of the performance loss, i.e.
dual on-chip memory reads may save time equivalent
to four instruction cycles if the number of data points
is between 256 and 1024 points.
MOTOROLA 4-17

4-18

APR4SECTION4 Page 18 Friday, December 15, 1995 8:29 AM
R
E

S
E

T

EXPANSION
PORT

C
LK

4

M
O

D
B

/IR
Q

B

M
O

D
A

/IR
Q

A

S
er

ia
l

D
eb

ug
P

or
t

8

A
D

D
R

E
S

S

D
AT

A

M
O

D
C

E
X

TA
L

5
5

7

215

G
D

B
P

D
B

X
D

B

PA
B

X
A

B
2

X
A

B
1

S
X

F
C

16

C
O

N
T

R
O

L

In
te

rn
al

D

at
a

B
us

S

w
itc

h
A

nd

B
it

M
an

ip
ul

at
io

n
P

R
O

G
R

A
M

 C
O

N
T

R
O

L
 U

N
IT

P
ro

gr
am

A
dd

re
ss

G
en

er
at

or

P
ro

gr
am

D
ec

od
e

C
on

tr
ol

le
r

P
ro

gr
am

In
te

rr
up

t
C

on
tr

ol
le

r

D
at

a
A

LU
16

x1
6+

40
 ➧

 4
0-

B
IT

 M
A

C
Tw

o
40

-B
IT

A

cc
um

ul
at

or
sE
xt

er
na

l
D

at
a

B
us

S
w

itc
h

P
I/O

 o
r

H
os

t
In

te
rf

ac
e

O
nC

E

T
im

er

S
ig

m
a

D
el

ta
C

od
ec

B
oo

ts
tr

ap
R

O
M

64
x1

6

P
ro

gr
am

R
A

M
2K

x1
6

D
at

a
R

A
M

2K
x1

6

B
us

C
on

tr
ol

A
dd

re
ss

G
en

er
at

io
n

P
I/O

or

S
S

I1

P
I/O

or

S
S

I0

E
xt

er
na

l
A

dd
re

ss
B

us
S

w
itc

h

an
d

P
LL

C
lo

ck

F
ig

u
re

 4
-8

D

S
P

56
15

6
ar

ch
ite

ct
ur

al
 b

lo
ck

 d
ia

gr
am

. O
nl

y
fo

ur
 a

dd
re

ss
 re

gi
st

er
s

ar
e

av
ai

la
bl

e.
 O

n
th

e
si

ng
le

 d
at

a
m

em
or

y
sp

ac
e,

 o
nl

y
a

du
al

-r
ea

d
pe

r
on

e
in

st
ru

ct
io

n
is

 a
llo

w
ed

.

MOTOROLA

v. Bi’,r2 -> Br
r
Ar’
save Ar’, r0 pt to Ai
save Br’, r2 pt to Bi
Ai, x0=next Br
Ai’, x1=next Bi
save Ai’, r0-> next Ar

otice that a single
uction always occu-

APR4SECTION4 Page 19 Friday, December 15, 1995 8:29 AM
4.6.2 DIT Butterfly Kernel on DSP56156

The butterfly equation for the DSP56156 is the same
as the DIT butterfly equation for the DSP56001/2 as
shown in Eqn. 4-2. However, two more instructions
are required in the DSP56156 butterfly than the
DSP56001/2 because of its lack of a dual-write op-
eration and its constraints on the address register
mode. Figure 4-9 shows the DSP56156 assembly
language code of the butterfly core.

4.7 Scaling for Fixed-Point
Processors
(DSP56001/2 and DSP56156)

Whenever mathematical algorithms are implement-
ed in digital hardware, note that results are obtained
with finite precision. The precision is generally limit-
ed by the number of bits used in the number
representation, and depends on how the arithmetic

mpy x0,y0,b a,x:(r2)+ ;b=WrBr,save pre
macr x1,y1,b x:(r0)+n0,a ;b=WrBr+WiBi,a=A
add a,b ;b=Ar+WrBr+WiBi=
subl b,a b,x:(r0)+ ;a=2Ar-Ar’=Br’,
mpy -y1,x0,b a,x:(r2)+ ;b=-WiBr,
macr y0,x1,b x:(r0)+n0,a x:(r3)+,x0 ;b=-WiBr+WrBi,a=
add a,b x:(r3)+,x1 ;b=Ai-WiBr+WrBi=
subl b,a b,x:(r0)+ ;a=2Ai-Ai’=Bi’,

Figure 4-9 The butterfly core of the DSP56156. N
write operation paralleling with an instr
pies a whole data move field.
MOTOROLA 4-19

4-20

APR4SECTION4 Page 20 Friday, December 15, 1995 8:29 AM
limits its results to those bits. The user must use
care to prevent overflows in the FFT outputs of
fixed-point DSPs. Scaling via shifting or dividing
can keep input data or intermediate results within
the correct range, while maintaining maximum pre-
cision on the outputs.

4.7.1 Scaling at the Input – Guard Bits

Since data length grows with each pass, overflow
can occur at any pass if there is no scaling in the in-
put of a fixed point number DSP. The magnitude of
the output by the DIT butterfly defined in Eqn. 4-2 will
grow an average of one bit on the output in each
pass. This is based on the observation that output A’
(a complex output) can be rewritten as A’ = A+ B x W
where A’, A, B, and W are complex numbers. Since
W = e-jθ, it has a unit magnitude.

The complex operation B x W simply rotates B ac-
cording to θ and causes no magnitude growth.
Complex addition is the only chance in a single but-
terfly calculation to make the output magnitude grow
larger than a value of one. One addition can cause
growth of one bit. Therefore, for N = 2m points of the
FFT, m passes are required, i.e., m times a potential
worst case magnitude doubling. However, the twid-
dle factor will reach its maximum magnitude when

. For this case, the maximum magnitude
growth is 2.4 bits on real and imaginary compo-
nents. Fortunately, only two groups of butterflies in
each pass will use the maximum twiddle factors. No
butterflies use the maximum twiddle factors twice

θ π 4⁄=
MOTOROLA

APR4SECTION4 Page 21 Friday, December 15, 1995 8:29 AM
within an entire FFT calculation. This mutually exclu-
sive characteristic is the base upon which block
floating point arithmetic is designed.

To prevent overflows in the FFT calculations, the in-
put data should keep m zeros in the significant part so
that growth bits will not get lost during the overflow.
The m zeros are called “guard bits”. To obtain suffi-
cient guard bits, divide the input data words by N. For
example, if the DSP56001 is implementing a 1024-
point complex FFT, 10 guard bits are inserted into
the most significant bits of the 24-bit data word, re-
sulting in 14 bits of actual information. But on the 16-
bit DSP56156, only 6 bits contain actual information
after 10 guard bits are inserted. This may make the
signal-to-noise ratio unacceptably low. This method
of scaling the input data is simple and effective on a
smaller FFT or on a large data word processor like
the DSP56001. For a larger FFT or a small data
word processor, an alternative method discussed in
the next subsection may result in improved signal-
to-noise ratio with some trade-offs.

4.7.2 Scaling During the Passes –
Auto-Scaling and
Block Floating-Point

Scaling in the input truncates valuable information
contained in data words by shifting input data right
by m-bits. 6.02 x m dB have already been lost before
the start of the FFT calculations. As indicated in the
last subsection, an average of one bit word growth
occurs in each pass. Another way to prevent over-
MOTOROLA 4-21

4-22

APR4SECTION4 Page 22 Friday, December 15, 1995 8:29 AM
flow in the FFT calculation is to scale down the

output of the butterfly by two at each pass, regard-

less of whether or not an overflow occurs. Since the

scaling down at the output is automatically carried

out to the next pass, the amount of scaling down is

known before hand. To obtain the true FFT output,

simply multiply each output by N. This method is

simple and has better signal-to-noise ratio than the

scaling in the input method. But some passes may

not have bit growth or overflows, so excessive scal-

ing may occur, and automatic scaling may cause

some information to be lost.

A more aggressive method treats one pass as one

block of data, and assigns an exponent for each

block. If bit growth occurs, the method scales down

the output by one bit and increases the exponent by

one. At the end of the FFT, the same number of scal-

ing up operations must be carried out. In the

DSP56156/DSP56002, the scaling bit (bit 7 in the

status register) eases implementation of this meth-

od. The scaling bit is referred to as a “sticky” bit

because once set, it retains its status until the next

read of the status register. Five more instructions are

added to the end of each pass to check the scaling

bit in the DSP56002 and DSP56156, and to update

the exponent of the complex FFT. (See program

FFTBF.asm on the Motorola DSP bulletin board; Dr.

BuB.) Among the methods discussed here, the sticky

bit method gives the best signal-to-noise ratio.
MOTOROLA

4⁄) 1–

APR4SECTION4 Page 23 Friday, December 15, 1995 8:29 AM
4.8 Twiddle Factors and
On-Chip ROM

4.8.1 Twiddle Factors for
Decimation-in-Time

Twiddle factors, , are coefficients
used in FFT calculations. For normal order input ra-
dix-2 decimation-in-time FFT, the twiddle factors
are always fetched in bit-reversed order, i.e.

Note that for an N point radix-2 FFT, two input data
words share one twiddle factor, and the bit-re-
versed order of the twiddle factor is based on N/2
points.

4.8.2 Sine Table on the DSP56001/2
When the data-ROM-enable (DE) bit in the OMR
register of the DSP56001/2 is set, the Y memory
from $100 to $1FF contains a 256-point full cycle
sine-wave, and each data entry has 24-bit accura-
cy. As mentioned in the last subsection, for an N
point FFT, N/2 complex coefficient twiddle factors
are required, and these N/2 twiddle factors are a
half cycle of the sine and cosine waveforms. Since
only a 256-point full cycle sine-wave is stored in the
DSP56001/2 data ROM, the maximum FFT length
utilizing only internal twiddle factors is one full cycle

WN
k e j2πk N⁄–=

WN
0

WN
N 2⁄() 1–

, WN
N 4⁄

, ,WN
N 8⁄

WN
3N() 8⁄ … WN

N(
, , ,
MOTOROLA 4-23

4-24

APR4SECTION4 Page 24 Friday, December 15, 1995 8:29 AM
of the sine table, 256 points. However, a FFT larger
than 256 points can still be implemented utilizing the
on-chip sine table by calling this internal ROM dur-
ing the first several passes and the first several
groups in the last pass. Because DIT and normal in-
put order FFT require bit-reversed sine and cosine
tables, the DSP must be in the bit-reversed address-
ing mode when the on-chip sine table is invoked. A
common set up for addressing this table is:

To address the cosine table in the FFT calculation, the
following relation between sine and cosine is utilized:

Eqn. 4-4

Another address pointer, for example, r2 is used to
point to the correct location.

This set-up can be applied for all FFTs up to 256
points with length equaling a power of two, 2N.

4.8.3 Sine and Cosine Tables on the
DSP96002

The on-chip ROM of the DSP96002 features sine
and cosine tables. When the DE bit is set to 1, X
and Y memory from $400 to $7FF contain 512-point
cosine and sine tables respectively. Therefore, the

r6 $100=
n6 $40=
m6 0=

x()cos x π 2⁄+()sin=

m0 0=

n2 $40=

r2 $140=
MOTOROLA

APR4SECTION4 Page 25 Friday, December 15, 1995 8:29 AM
maximum data length of the FFT without utilizing
external twiddle factors is 512 points. The address-
ing set-up is similar to that of the DSP56001:

Only one set of address registers is required on the
DSP96002 to access both sine and cosine values.

4.9 Bit-Reversed
Addressing

All Motorola DSPs feature a bit-reversed or inverse-
carry addressing mode to accelerate FFT calcula-
tions. When bit-reversed addressing is enabled, an
additional temporary data buffer is required to hold
normal order outputs since bit-reversing on the fly is
not an in-place method of FFT calculation. In some
situations, the memory space used is more critical
than the time used. To reduce the requirement for
space in the second buffer, an in-place bit-reversed
method is preferred. However, there is a time pen-
alty for space-saving since the in-place bit-reversal
must be carried out after the FFT is done. Program
BITREVTWD56.asm on the Motorola DSP bulletin
board (Dr. BuB) presents an example of in-place
bit-reverse for DSP56001/2. The algorithm that per-
forms conversion from bit-reversed order to normal
order addressing is presented in Figure 4-10.

m6 0=

n6 $100=
r6 $400=
MOTOROLA 4-25

4-26

Figure 4-10 In-place

normal_order=outpu
bitrev_order=data_
for (i=0;i<N;i++){

normal_orde
bitrev_orde
* suppose
if (normal
data[normal

}

APR4SECTION4 Page 26 Friday, December 15, 1995 8:29 AM
4.10 Implementation of a
Radix-4 DIT FFT
on DSP96002

In general, doubling the points in butterflies of FFT
reduces the number of groups in each pass and the
number of passes. A radix-4 butterfly accepts four
complex inputs, thus, the number of butterflies in a
pass is N/4, and the number of passes is log4(N).
However, the number of instructions required in the
radix-4 butterfly is three times that of the radix-2
butterfly. If the number of the instructions used in a
radix-4 butterfly is four or more times than that of
the radix-2’s on a processor, there is really no ad-
vantage to adapting the radix-4 FFT on such a
processor. Because the outputs or inputs of a radix-
4 FFT might be digit-reversed order which is not be-
ing supported by any DSPs in the market. A
software routine has to be used for converting digit-
reversed order data to the normal one.

 bit-reversed to normal order conversion

t_pointer;
buffer;

r+;
r+=N/2;
 bit reverse address available *\
_order< bitrev_order)
_order]=data[bitrev_order]
MOTOROLA

A’

B’

C’

D’

 DIT butterfly —four
the computation.

APR4SECTION4 Page 27 Friday, December 15, 1995 8:29 AM
4.10.1 Radix-4 DIT Butterfly Core

The butterfly equations for a radix-4 DIT FFT can be
derived directly from two stages of radix-2 DIT but-
terflies, which are plotted in Figure 4-11. There are
four butterflies with four twiddle factors involved in
the calculation. In the first pass, pass x, two butter-
flies are in the same group (the twiddle factors for a
group are identical). In the second pass, pass x+1,
two adjacent butterflies share one twiddle factor but
differ by -j. (See SECTION 5.1 Optimization).

There are four complex multiplications required
which can be reduced to three by combining them
into a radix-4 butterfly. Eqn. 4-5 shows two-stage
radix-2 butterfly calculations.

A

B

C

D

Wc

W

-jW

Pass X+1Pass x

Wc
b

b

Figure 4-11 A flow diagram of two stages in a radix-2
complex multiplications are involved in
MOTOROLA 4-27

4-28

APR4SECTION4 Page 28 Friday, December 15, 1995 8:29 AM
Eqn. 4-5

Let WbWc = Wd, which gives us Eqn. 4-6. A new
flow diagram for radix-4 DIT FFT results as shown
in Figure 4-12. Three twiddle factors are needed.
Wa and Wb originally come from the radix-2 DIT
FFT; Wc is new for the radix-4 FFT. Note that the ra-
dix-4 DIT butterfly accesses 1/3 more twiddle
factors than the radix-2 does.

Eqn. 4-6

Since each butterfly takes four complex inputs and
generates four complex outputs, the number of
groups in a pass is reduced to N/4. Also, the num-
ber of passes is reduced to log4(N). Theoretically,
the lower boundary for radix-4 DIT FFT is:

Twelve multiplications, fourteen additions, and eight
subtractions are required for a radix-4 DIT butterfly,
as Eqn. 4-7 illustrates.

A ′ A CWc BWb DWcWb
+()+ +=

B ′ A CWc BWb DWcWb
+()–+=

C ′ A C– Wc j BWb D– WcWb()–=

D ′ A C– Wc j BWb D– WcWb()+=

A ′ A CWc BWb DWd
+()+ +=

B ′ A CWc BWb DWd
+()–+=

C ′ A C– Wc j BWb D– Wd()–=

D ′ A C– Wc j BWb D– Wd()+=

TRIV N 4⁄× l(og4 N() 1) N 4 BFLY×⁄×–+
MOTOROLA

A’

B’

C’

D’

ly. 12 multiplications
quired.

APR4SECTION4 Page 29 Friday, December 15, 1995 8:29 AM
Eqn. 4-7

A

B

C

D

At

Bt

Ct

Dt

Wb

W

W

c

d

Figure 4-12 A flow diagram of a Radix-4 DIT butterf
and 22 additions or subtractions are re

Bti BrWi
b DrWi

d BiWr
b DWr

d
+ + +=

Ctr Ar CrWr
c– CiWi

c+=

Cti Ar CiWr
c– CrWi

c–=

Dtr BrWr
b DrWr

d– BiWi
b– DiWi

d+=

Dti BrWi
b DrWi

d– BiWr
b D– iWr

d+=

Ar ′ Atr Btr+=

Ai ′ Ati Bti+=

Br ′ Atr B– tr=

Bi ′ Ati Bti–=

Cr ′ Ctr Dti+=

Ci ′ Cti Dtr–=

Dr ′ Ctr D– ti=

Di ′ Cti Dtr+=

Btr BrWr
b DrWr

d BiWi
b– DiWi

d–+=

Ati Ai CrWi
c CiWr

c+ +=

Atr Ar CrWr
c C– iWi

c+=
MOTOROLA 4-29

4-30

;r0->A,r4->B, r1->C
;r1->A’, r3->B’, r5
;n0=n4=4,n4=2;
;n2=n3=n5=n7=N/8.

do #N/4,_end_

fmpy.s d6,d9,d5
fmpy d7,d8,d3
fmpy d6,d8,d1
fmpy.s d7,d9,d5

fmpy.s d6,d9,d1
fmpy d7,d8,d2
fmpy d6,d8,d0
fmpy d7,d9,d2
fmpy d6,d9,d0
fmpy d7,d8,d3
fmpy d7,d9,d1
fmpy d6,d8,d3

_end_r4

Figure 4-13 Radix-4
DSP96

APR4SECTION4 Page 30 Friday, December 15, 1995 8:29 AM
, r6->D;
->C’, r7’->D’;

move x:(r4)+n4,d3.s y:,d5.s
move x:(r4)+n4,d1.s y:,d2.s
faddsub.s d1,d3 x:(r0),d7.s
faddsub.s d5,d2 x:(r1),d0.s d1.s,y:(r7)
faddsub.s d7,d0 d3.s,d4.s y:(r1)+n1,d1.s
faddsub.s d7,d5 x:(r4),d6.s y:(r0)+n0,d3.s
faddsub.s d0,d4 d7.s,x:(r3) y:(r4)+n4,d7.s

r4
faddsub.s d3,d1 x:(r6)+,d9.sy:,d8.s
 d5.s,x:(r7)
faddsub.s d1,d2 d4.s,x:(r5) d3.s,d4.s
fadd.s d5,d3 d0.s,x:(r2)+n2 d1.s,y:

x:(r6)+,d9.s y:,d8.s
fsub.s d1,d5 x:(r4)+n4,d6.s y:,d7.s

y:(r7),d0.s
faddsub.s d4,d0 d2.s,y:(r5)+n5
fadd.s d2,d1 x:(r1),d6.s d0.s,y:(r7)+n7
faddsub.s d1,d3 x:(r6)+,d9.s y:,d8.s
fsub.s d0,d2 y:(r1)+n1,d7.s
faddsub.s d5,d2 d3.s,d4.s d4.s,y:(r3)+n3
fadd.s d3,d0 x:(r0),d7.s d1.s,y:(r7)
faddsub.s d7,d0
faddsub.s d7,d5
faddsub.s d0,d4 d7.s,x:(r3) y:(r4),d7.s
fsub.s d3,d1 x:(r4)+n4,d6.sy:(r0)+n0,d3.s

faddsub.s d3,d1 d5.s,x:(r7)
faddsub.s d1,d2 y:(r7),d6.s
move d0.s,x:(r2) d1.s,y:
faddsub.s d3,d6 d4.s,x:(r5) d2.s,y:
move d6.s,y:(r7)
move d3.s,y:(r3)

 DIT Butterfly takes 17 instructions on the
002
MOTOROLA

APR4SECTION4 Page 31 Friday, December 15, 1995 8:29 AM
For example, if there are 1024-point complex in-
puts, 8 x 256 + 4 x 256 x 14 =16,384 instructions
may be required to improve performance by 11% if
compared with 1024-point radix-2 DIT FFT. Here
assume, TRIV = 8 and BFLY = 14 since eight
ADD||SUB and six ADD instructions are theoretical-
ly required for such a butterfly calculation. One
important fact is that BFLY, (the number of instruc-
tion cycles for butterfly calculation) in a radix-4 DIT
FFT must be less than 16, otherwise, there is no ad-
vantage for using radix-4 over radix-2. Due to an
insufficient number of operations code, FMPY//
ADD//SUB instruction only works with destination
registers D0 to D3 on the DSP96002.

4.10.2 Radix-4 DIF Butterfly Core
Using the same derivation, a radix-4 DIF butterfly
can be obtained. Although the number of multiplica-
tions and additions is the same as the radix-4 DIT
butterfly, the sequence of data appears differently.
Eqn. 4-9 shows an expanded form of the radix-4 DIF
butterfly. Eighteen instructions are used to code the
radix-4 DIF butterfly.
MOTOROLA 4-31

4-32

Ci ′ ([=

Dr ′ ([=

Bi ′ ([=

Br ′ ([=

Ci ′ ([=

Cr ′ ([=

Ai ′ A=

Ar ′ A=

APR4SECTION4 Page 32 Friday, December 15, 1995 8:29 AM
Eqn. 4-8

4.11 Inverse FFT
The Inverse Fast Fourier Transform (IFFT) is de-
fined in Eqn. 4-9

Eqn. 4-9

The differences between inverse FFTs and forward
FFTs are in the scaling factor, N, and the conjugat-
ed twiddle factors. A common method of
implementing the IFFT is to change the sign of the
sine table values and use the FFT subroutine to get
the IFFT. Alternatively, one can swap real and
imaginary parts, use swapped inputs to the regular

Ai Br+) Di Cr+()–] Wr
d

Ar Bi–() Di Ci–()+[] Wi
d

–

Ar Bi–) Di Cr–()+] Wr
d

Ai Bi+() Dr Ci+()–[] Wi
d

+

Ai Br–) Dr Ci–()+] Wr
b

Ar Bi+() Di Cr+()–[]– Wi
b

Ar Bi+) Di Cr+()–] Wr
b

Ai Br–() Dr Ci–()+[] Wi
b

+

Ai Bi–) Di Ci–()–] Wr
c

Ar Br–() Dr Cr–()–[]– Wi
c

Ar Br–) Dr Cr–()–] Wr
c

Ai Bi–() Di Ci–()–[] Wi
c

+

i Bi Di Ci+()+ +

r Br Dr Cr+()+ +

x n() 1
N
--- X

k 0=

N 1–

∑ k()ej2πkn N⁄=
MOTOROLA

i)

)

APR4SECTION4 Page 33 Friday, December 15, 1995 8:29 AM
FFT program, and then divide every real and imag-
inary output by N. Eqn. 4-10 and Eqn. 4-11 show
the equality. Eqn. 4-10 shows the inverse FFT.

Eqn. 4-10

When swapping real and imaginary parts at the in-
put and using forward FFT twiddle factors, we have
the relation shown in Eqn. 4-11.

Eqn. 4-11

Eqn. 4-11 shows that the real part of the IFFT is in
the space used for imaginary memory in the for-
ward FFT and the imaginary part of the IFFT is in
the real part of the forward FFT. ■

Ar jAi+() Wr jWi+() ArWr AiWi–() j AiWr ArW+(+=

Ai jAr+() Wr j– Wi() j ArWr AiWi–() AiWr ArWi+(+=
MOTOROLA 4-33

MOTOROLA

“Optimization
saves . . . 2067

instruction
cycles which
equals about

10% cycle time
of the optimized

code.”

SECTION 5

Optimizing
Performance of
the FFT

5.1 Optimization
Judging the performance of any program requires
the consideration of both its time and space complex-
ity. There is always a trade off between these two
aspects. Time complexity indicates how fast an algo-
rithm can be implemented on a specified
microprocessor, while space complexity tells how
much memory may be required. Optimization can ei-
ther reduce memory requirement or minimize run-
time of an algorithm. Since memory costs are contin-
ually decreasing, time optimization becomes more
and more important.

One way to evaluate the time complexity of an algo-
rithm is to compare its theoretical complexity, ideal
implementation complexity, and practical complexity.
Theoretical complexity refers to the number of addi-
tions and multiplications required by the given
algorithm, independent of the microprocessor’s archi-
tectures. This type of evaluating is only good for high-
level comparison among algorithms and does not re-
flect the real performance of the algorithm on a given
microprocessor. Not surprisingly, an algorithm that re-
tains a lower theoretical complexity has a higher ideal
5-1

5-2
implementation complexity. Ideal implementation
complexity considers only the implementation of the
core algorithm by the given microprocessor’s in-
struction capabilities, such as available instruction
type, addressing mode, parallel data move, etc.
Ideal implementation complexity indicates the non-
overhead performance of a given algorithm on a mi-
croprocessor, and always provides an optimistic
estimation of an algorithm’s performance. Practical
complexity denotes the ideal implementation com-
plexity plus the structure overhead of the
microprocessor. (Structure overhead includes all
required instructions not associated with the core
algorithm.) Moving pointers, setting up DO loops,
jumps to subroutines, and conditional jumps are
typical structure overhead in microprocessors.

By distinguishing the different complexities, one
can easily determine which microprocessor is com-
petent for each aspect, and which instruction or
address mode is critical to the specific algorithms.
Also, chip designers may derive clues from the
complexity analysis for determining which instruc-
tion or address mode should be added to the next
revision. For example, the DSP96002 supports
FMPY||ADD||SUB — an instruction with two parallel
moves. The theoretical complexity of a radix-2 but-
terfly is four real multiplications and six additions or
subtractions. Thus, the ideal implementation com-
plexity of a radix-2 FFT on the DSP96002 is four
instruction cycles. If each butterfly needs an aver-
age of 0.25 instructions to set up a pointer or DO
loop, etc., the practical complexity of radix-2 is 4.25
instructions. The ratio of ideal implementation com-
MOTOROLA

4
.25
----- 0.94=
plexity to practical complexity reflects the efficiency
of a microprocessor to perform a specific function.
For example, the efficiency of the DSP96002 per-
forming a radix-2 complex FFT could be:

Eqn. 5-1

In other words, the structure overhead for this par-
ticular example is about 6%. For FFTs implemented
on programmable DSPs, the structure overhead
should be between 3% and 15%. If a DSP has
structure overhead higher than 15%, it can not be
called a DSP. If one claims a structure overhead
lower than 3%, it is probably an application specific
integrated circuit (ASIC).

5.1.1 Minimum Memory Requirement —
In-Place Calculation

Although each radix-2 butterfly has two complex in-
put data and two complex output data, calculation
of the butterfly can be done by using only one mem-
ory set called in-place calculation. Memory
requirements may be minimized by:

• Reordering data into bit-reversed order.
This can be done in-place since data is
interchanged by pairs, as seen in Figure 4-9.
Thus, only 2N real data locations are
required.

efficiency
ideal implementation complexity

practical complexity
--=

 4

=

MOTOROLA 5-3

5-4

WN
0

•

Reducing the size of the twiddle factor
table

from N real locations to N/2 real
locations for normal order input DIT FFT
(see reference 8). Notice that in normal
order input DIT FFT the order that accesses
the twiddle factor table is bit-reversal, i.e.

N/2 complex numbers can be combined in
pairs of two, which differ by a factor

. In other words, the second
twiddle factor in the pair can be obtained by
multiplying -j with the first twiddle factor. In
fact, this optimization can be implemented
with a minor modification to the previous
butterfly core. All odd indexed groups will use
negated, real and imaginary exchanged
twiddle factors from the previous even
indexed groups. Therefore, the number of
groups in a pass is reduced to half of the
previous one and the access time of twiddle
factors is also reduced to half of the previous
one.

•

Using a triple-nested DO-loop FFT

 to
minimize the program memory space (as
seen in Figure 4-5). Items 1 and 2 above
save data memory space for the FFT
calculation only.

WN

N 2
⁄()

 1
–

,

WN

N 4
⁄

,

,WN

N 8
⁄

WN

3N
()

 8
⁄

…

WN

N 4
⁄()

 1
–

, , ,

WN
N 4⁄

j–=
MOTOROLA

5.1.2 Optimization for Faster
Execution

Although the previously discussed program exe-
cutes very efficiently, some applications may impose
less stringent requirements on program memory
size, but demand even faster execution. Faster exe-
cution can be obtained by further optimizing the
previous algorithm. The following pages present sev-
eral steps to achieve this optimization.

1.

Since the first and second passes have trivial
twiddle factors:

it is common to combine the first and second
passes as one radix-4 pass by calculating N/4
butterflies in the following equations.

Eqn. 5-2

Notice that there are eight additions and eight
subtractions in . A DSP that has a multiplication
and accumulation instruction with one or two
parallel moves (type A DSP) may take at least
sixteen instructions to do . A DSP that has a
FMPY||ADD||SUB instruction with two parallel

WN
0

1 and WN
N 4 ⁄ , j –= =

Di ′ Ai Ci– Br Dr–()+=
Ai ′ Ai Ci Bi Di+ + +=
Ci ′ Ai Ci– Br Dr–()–=
Bi ′ Ai Ci Bi Di+()–+=
Dr ′ Ar Cr– Bi Di–()–=
Cr ′ Ar Cr– Bi Di–()+=
Br ′ Ar Cr Br Dr+()–+=
Ar ′ Ar Cr Br Dr+ + +=
MOTOROLA 5-5

5-6

TR(

data moves (type B DSP) can do in eight
instructions. After combining the first two trivial
passes as a radix-4 pass, the number of
instructions required in the radix-2 DIT complex
FFT becomes:

where: TRIV is the number of instructions
necessary to perform a trivial butterfly

Theoretically, for the DSP56001/2, the
DSP96002, and the DSP56156, TRIV may be
16, 8, and 16 instruction cycles, respectively.
Therefore, a 1024-point complex FFT on the
DSP96002 can be done in (8 x 256) + (8 x 512
x 4) = 18,432 instruction cycles. This is a lower
boundary of the radix-2 complex FFT. In fact,
TRIV is 17, 8, and 22 on the DSP56001, the
DSP96002, and the DSP56156, respectively.
Cycle time of the FFT can be reduced further by
exploring the simple relations among the
remaining passes.

2.

Trivial twiddle factors exist in the remaining
passes as well. Special butterflies can take
advantage of those simple relations. There are
two types of trivial twiddle factors:

Type I

Type II

Type I trivial factors don’t involve multiplications
as already shown in Eqn. 5-2. To utilize these
simple relations in the remaining passes,
different butterflies must be inserted in one

IV N 4⁄×) m 2–() N 2⁄ BFLY××[]+

WN
0

1 WN
N 4⁄, j–= =

WN
N 8⁄

WN
3N() 8⁄

– 0.707 j0.707–= =
MOTOROLA

pass. This change results in longer program
code and some structure overhead, such as
updating address registers, different DO loops,
and modulo addressing.

Type II trivial factors are not really trivial for
either type A or type B DSPs. Type II trivial
factors reduce the theoretical complexity of a
radix-2 butterfly to two real multiplications and
six real additions or subtractions. With only one
adder on type A DSPs, six instructions are
required as before. The ideal implementation
complexity could be 3 for type B DSPs, but
unfortunately each radix-2 butterfly deals with
four real inputs and four real outputs. Type B
DSPs have only two parallel data moves, and
each radix-2 butterfly still takes at least four
instruction cycles for type II trivial factors. The
type II trivial factor issue is addressed here
because this is probably the last chance for
further optimizing radix-2 FFTs.

Each group in the last pass consisted of a
single butterfly. A triple nested DO loop is thus
no longer required in this pass: it can be split
and handled by a single DO loop.

3. Another alternative is to combine the last two
passes into one radix-4 pass. Since each
butterfly in the last pass requires a different
twiddle factor, one instruction to fetch a twiddle
factor must be appended in the butterfly core.
The same fetch occurred in the second to last
pass in every two butterflies. Combining four
radix-2 butterflies into one radix-4 butterfly may
save four multiplications but a special twiddle
MOTOROLA 5-7

5-8

factor table has to be created for the radix-4
butterfly.

4. For longer FFTs (>256 points), internal memory
in the DSP56001/DSP56002 is not sufficient to
contain the complete data set. Consequently,
the butterflies execute more slowly when the
processor needs to fetch a data value in
external X and in external Y memory in the
same instruction cycle. This causes the
instruction cycle to be “stretched”, resulting in
slower execution time. Through intelligent
memory usage, however, this effect can be
minimized. In a further optimized routine (see
Appendix A), the first two passes are
combined into a single pass. Next, separate
256-point FFTs are computed, whereby the
data is moved into internal memory, and the
results are not moved to external memory until
the final pass. This process avoids the
stretching of the instruction cycle on the middle
passes, and makes optimal use of the available
internal memory.

With these optimizations, a significantly faster rou-
tine is obtained. For instance, a 1024-point
optimized complex FFT routine is available for
DSP96002 which executes in 0.94 ms at 40MHz
clock (see Fully Optimized Complex FFT in Appen-
dix A). A fully optimized complex FFT routine for
DSP56001/2 is also listed in Appendix A
(CFFT56.ASM). 0.704ms is needed to calculate a
512-point complex FFT at 40 MHz clock, which is
8.7% faster than an optimized complex FFT. For
more benchmarks see SECTION 8. Note, however,
that “straight-line” code always results in longer
programs.
MOTOROLA

5.2 Example of Optimization

5.2.1 Fully Optimized Complex FFT
for the DSP56001/2

Program CFFT56.ASM in Appendix A is a good ex-
ample of optimizing complex FFTs on the
DSP56001/2 for fast execution time. Figure 5-1
shows passes, groups and butterflies for a 512-point
complex FFT. There is a total of 9 passes. The num-
ber of groups in each pass doubles from pass to
pass, while the number of butterflies in each group
halves from pass to pass. Each pass has the same
number of butterflies,.i.e. N/2=256 butterflies.

CFFT56.ASM takes advantage of the trivial twiddle
factors in all the passes. Note that pass 0 and 1 can
be done by simple radix-4 butterflies. A radix-4 but-
terfly has been coded by 17 instructions, which is
the best case on the DSP56001/2. The parallel data
move in this radix-4 butterfly has been deliberately
arranged to avoid a dual data move involving exter-
nal memory, although the first and next to last
instruction may result in cycle stretch in some cas-
es. Since half of the 512 data are in external
memory, one instruction cycle is stretched, and 18
instruction cycles are used for a 512-point complex
FFT. This equals 4.5 instruction cycles per radix-2
butterfly. The same radix-4 butterflies are also ap-
plied to passes 2, 3, 4, and 5. Note that in Figure 5-1,
the groups highlighted by cross lines are trivial butter-
flies too, and are not covered by the simple radix-4
butterflies. These data points are calculated by 5-in-
struction radix-2 butterflies. As shown in Figure 5-1,
MOTOROLA 5-9

5-10
each pass has 256 radix-2 butterflies and the first
seven passes have 860 trivial butterflies. 772 of
these radix-2 butterflies require 4.5 instruction cycles
(simple radix-4 butterflies) while 88 of them require 5
instruction cycles. Therefore, the total cycle time for
trivial butterflies is 772 x 4.5 + 88 x 5 = 3,914 which
means a savings of 860 x 6 - 3914 = 1,246 cycles
when compared to a non-optimization case. For
program simplicity, the above calculation does not
utilize the trivial butterflies in passes 7 and 8.

CFFT56.ASM uses N/2 real twiddle factors. This
scheme reduces the data memory requirement and
also reduces the structure overhead on group DO
loops, because the group number in each pass
changes to half of the previous scheme.

CFFT56.ASM fully utilizes internal memory to avoid
cycle stretch when the DSP56001/2 accesses two
data. A 512-point complex FFT is divided into two
256-point parts. The first 256-point part remains in
internal memory until the last pass. The second
256-point data loads into internal memory after the
first pass and stays there until the last pass.

The last two passes are implemented by two sepa-
rate single loops to avoid the penalty of DO loop
set-up. Each group has four radix-2 butterflies in the
next-to-last pass, and two in the last pass. If group
DO loop is still used, then each butterfly may take
6.75 and 7.5 cycles in the next-to-last pass and the
last pass, respectively. The cycles saved from the
separated DO loops are 256 x 6.75 + 256 x 7.5 -
512 x 6 = 576.
MOTOROLA

omplex radix-2 DIT
ups can be calculat-
and D are radix-4

8

Figure 5-1 Trivial twiddle factors in a 12-point c
FFT. The butterflies in highlighted gro
ed without multiplications. A, B, C,
butterfly pointers.

W=(1,0)

W = (0,-j)

Pass 0 1 2 3 4 5 6 7

A

B

C

D

W = (0,-j)

calculated by R4 butterfly

calculated by R2 butterfly
MOTOROLA 5-11

5-12

5.2.2 Fully Optimized Complex FFT
for the DSP96002

APPENDIX A presents a fully optimized program
for 1024-point complex input FFT for the
DSP96002. Like the fully optimized program for the
DSP56001/2, this program takes advantage of triv-
ial twiddle factors in all of the passes as follows:

• Naturally, the first and second passes are
combined into a radix-4 pass with each
radix-4 butterfly requiring 8 instruction
cycles. This is equal to 2 instruction cycles
per radix-2 butterfly.

• All trivial butterflies in the middle passes
are calculated by a separate routine.

• Each pass is written in a separate section
to reduce the DO loop overhead. To reduce
the program length, the special radix-4 and
normal radix-2 butterflies are programmed
in subroutines. Only two-nested DO loops
are used for each pass.

• The last two passes are also combined into
a radix-4 pass. After the combination, the
number of instruction cycles per radix-2
butterfly is decreased from 5 to 4.25
instruction cycles. Because radix-4
butterflies are used in the last two passes,
an extra set of 256 complex twiddle factors
must be present in the external memory.
These twiddle factors are generated off-line
by MATHLAB software.
MOTOROLA

The fully optimized 1024-point complex FFT uses
18891 instruction cycles; while the optimized 1024-
point complex FFT program (seen on the Motorola
DSP bulletin board; Dr. BuB) uses 20958 instruction
cycles. Optimization saves 20,958-18,891=2,067 in-
struction cycles which equals about 10% cycle time
of the optimized code. Also note that the fully opti-
mized code only works with fixed data length. ■
MOTOROLA 5-13

MOTOROLA

X k() =

X∗ k–() x(
r 0=

N 1–

∑=

X∗ N k–() x∗
r 0=

N 1–

∑=

SECTION 6

Real-Valued Input
FFT Algorithm

“Data
acquisition on

the DSP96002 is
truly parallel

with CPU
instruction
execution.”

APR4SECTION6 Page 1 Friday, December 15, 1995 8:15 AM
A real-valued input FFT is a special case of the com-
plex FFT where all imaginary components in the input
are zero. Under this condition, input sequence is real,
and the time sequence has a symmetric Fourier trans-
form in the frequency domain. Only half of the
frequency sequence needs to be computed for real-
valued input FFTs or real FFTs. Recall the definition
of the DFT:

Eqn. 6-1

If x(r) is real,

Eqn. 6-2

and

Eqn. 6-3

x r()e
j 2πrk() N⁄–

 k

r 0

=

N 1

–

 ∑ 0 1 … N 1 – , , =

r)e
j 2πrk() N⁄

x r()e
j 2πrk() N⁄–

r 0=

N 1–

∑ X k()= =

r()e∗ j–() 2πr N k–()() N⁄
x r()e

j 2πrk() N⁄–

r 0=

N 1–

∑ X k()= =
6-1

6-2

APR4SECTION6 Page 2 Friday, December 15, 1995 8:15 AM
6.1 Real-Valued Input FFT
Algorithm 1

6.1.1 Bergland Algorithm
This algorithm was developed by Glenn D. Bergland
in 1968 (see reference 15). To derive this algorithm,
we assume that readers are familiar with the Cooly-
Tukey radix-2 DIT complex FFT shown in Figure 3-8.

Bergland’s algorithm is based on the observation of
the symmetry of the FFT to the real input,

. Calculating the second
half of the FFT is not necessary. By checking for re-
dundancy in the Cooly-Tukey radix-2 decimation in
time complex FFT when input is a real sequence,
one may discover that when the twiddle factors
equal , only a negation and a re-la-
beling need be performed. This so called re-
labeling simply exchanges real and imaginary data
indexed by address registers. All odd index outputs
in Figure 3-8 are the second half of the transform,
which can be obtained from the symmetry. Ber-
gland’s algorithm uses those memory locations for
storing imaginary values. A direct map from the
Cooly-Tukey algorithm to Bergland’s algorithm is di-
agrammatically shown in Figure 6-1. Note that all
inputs are real and all intermediate results are
stored in N and only N locations. The calculation
can be done in-place, however, the indices of each
butterfly outputs are not in bit-reversed order as in
the Cooly-Tukey algorithm. The following discus-
sion refers to this order as the Bergland order.

XN k)(XN∗ N(k)–=

W N 4⁄() j–=
MOTOROLA

ly-Tukey radix-2 DIT

A4(0)

A4(1)

A4(2)

iA4(2)

A4(4)

iA4(4)

A4(6)

iA4(6)

iA4(14)

A4(12)

A4(14)

iA4(8)

A4(8)

iA4(12)

A4(10)

iA4(10)

+

-

X(0)

X(8)

Xr(4)

Xi(4)

Xr(2)

Xi(2)

Xr(6)

Xi(6)

Xi(7)

Xr(3)

Xr(7)

Xi(1)

Xr(1)

Xi(3)

Xr(5)

Xi(5)

APR4SECTION6 Page 3 Friday, December 15, 1995 8:15 AM
Figure 6-1 Non-redundancy calculation of the Coo
FFT with real inputs

A0(0)

A0(1)

A0(2)

A0(3)

A0(4)

A0(5)

A0(6)

A0(7)

A0(11)

A0(12)

A0(10)

A0(9)

A0(8)

A0(13)

A0(14)

A0(15)

A1(0)

A1(1)

A1(2)

A1(3)

A1(4)

A1(5)

A1(6)

A1(7)

A1(11)

A1(12)

A1(10)

A1(9)

A1(8)

A1(13)

A1(14)

A1(15)

A2(0)

A2(1)

A2(2)

A2(3)

A2(4)

A2(5)

A2(6)

A2(7)

A2(11)

iA2(8)

A2(10)

A2(9)

A2(8)

iA2(9)

iA2(10)

iA2(11)

no
 o

pe
ra

tio
n

ne
ce

ss
ar

y

A3(0)

A3(1)

A3(2)

A3(3)

A3(4)

A3(5)

iA3(4)

iA3(5)

iA3(9)

A3(12)

iA3(8)

A3(9)

A3(8)

A3(13)

iA3(12)

iA3(13)

no
 o

pe
ra

tio
n

ne
ce

ss
ar

y

no
 o

p

MOTOROLA 6-3

6-4

APR4SECTION6 Page 4 Friday, December 15, 1995 8:15 AM
The twiddle factors appear to be in the Bergland or-
der also, as shown Figure 6-1, if more than 16 points
of real FFT are carried out. The next section explains
how to convert a normal order of twiddle factors to
the Bergland order and how to convert the Bergland
ordered outputs to normal order. The only operation
performed for multiplying by -j is a re-labeling of half
of the current outputs as imaginary inputs for the next
stage. Thus, in Figure 4-2 all butterflies, except one
with W0, have the crossed inputs to the butterfly,
even though the butterfly in each group is identical.
An additional benefit of ‘no operation’ is the reduc-
tion of the number of passes, log2(N)-1, except for
one addition and one subtraction. The final algo-
rithm is shown in Figure 6-2.

The Bergland butterfly differs from the Cooly-Tukey
butterfly simply in that the Bergland requires two more
conjugate operations, which are done by re-labeling
(see Figure 6-3). Essentially, the number of arithmetic
operations required by both algorithms is the same.
Although re-labeling can be implemented in parallel
with other arithmetic operations without consuming
instruction cycle time, it does require a data move.
This extra traffic may have an impact on the imple-
mentation later on. Figure 6-3 depicts the Bergland
butterfly. Butterfly (a) is a simplified version of (b)
since no complex multiplication is carried out when
w=1. Note that the inputs in (b) have been re-labeled
to reflect a multiplying -j operation. To calculate the
butterfly (a) two additions and two subtractions are
needed along with four real multiplications, three real
additions, and three real subtractions.
MOTOROLA

1 passes and one

)

)

)

)

)

)

+

-

X(0)

X(8)

Xr(4)

Xi(4)

Xr(2)

Xi(2)

Xr(6)

Xi(6)

Xi(7)

Xr(3)

Xr(7)

Xi(1)

Xr(1)

Xi(3)

Xr(5)

Xi(5)

APR4SECTION6 Page 5 Friday, December 15, 1995 8:15 AM
Figure 6-2 Bergland algorithm has only log2(N)-
more addition and subtraction

A0(0)

A0(1)

A0(2)

A0(3)

A0(4)

A0(5)

A0(6)

A0(7)

A0(11)

A0(12)

A0(10)

A0(9)

A0(8)

A0(13)

A0(14)

A0(15)

A1(0)

A1(1)

A1(2)

A1(3)

A1(4)

A1(5)

A1(6)

A1(7)

A1(11)

A1(12)

A1(10)

A1(9)

A1(8)

A1(13)

A1(14)

A1(15)

A2(0)

A2(1)

A2(2)

A2(3)

A2(4)

A2(5)

A2(6)

A2(7)

A2(11)

A2(12)

A2(10)

A2(9)

A2(8)

A2(13)

A2(14)

A2(15)

A3(0)

A3(1)

A3(2)

A3(3)

A3(4)

A3(5)

A3(6)

A3(7)

A3(11

A3(12

A3(10

A3(9)

A3(8)

A3(13

A3(14

A3(15

BB

BB

BB

BB

BB

BB

BB
MOTOROLA 6-5

6-6

Figure 6-3 (a) Butt
(b) Butt

X=A+jB

Y=C+jD

(a)

-

APR4SECTION6 Page 6 Friday, December 15, 1995 8:15 AM
6.1.2 Reordering
The output order of the Bergland algorithm is slight-
ly different than the bit-reversed order, and the
twiddle factor required in the calculation is also in
Bergland order. To get this special order, one may
use the following algorithm for doubling the length
of each number sequence:

1. Multiply the second entry of the sequence by
two, and make this product the second entry of
the new sequence

2. Subtract each nonzero entry of the sequence
from twice the product formed in step 1 (these
differences form the rest of the even entries of
the new sequence)

3. Take the odd entries of the new sequence as
the numbers of the original sequence

X=A+jC

Y=B+jD
W

X’=A+BWr+DWi
+j(C+DWr-BWi)

Y’=A-(BWr+DWi)
-j[C+(DWr-BWi)]

*
* -

* denotes conjugate

erfly of Bergland Algorithm with W = 1
erfly of Bergland Algorithm with W ≠ 1

X’=A+C+j(D+B)

Y’=A-C+j(D-B)

(b)

-

MOTOROLA

start */

by half */
e doubles*/

nd order tables

APR4SECTION6 Page 7 Friday, December 15, 1995 8:15 AM
The algorithm in Figure 6-3 can be translated to the
following C language code:

Also note that the size of the twiddle factors re-
quired in Bergland FFT is N/4, while the size of the
output data is N/2. Two tables must be generated
before the FFT computation.

6.1.3 Performance Estimation
For N=2m, it has been shown that the pass or
stage number in Bergland algorithm is log2(N)-
1=m-1. In each pass there is one (and only one)
type (a) butterfly group. The Bergland algorithm

void
bildberg(bergtabl,buf_size)
short *bergtabl,buf_size;

{
 register int i,j,k;
 i = buf_size / 4;
 k = 4;

 bergtabl[0] = 0; /* seed values for
 bergtabl[i] = 2;
 bergtabl[2*i] = 1;
 bergtabl[3*i] = 3;

while(i>1)
 {
 i = i/2; /* increments drop
 k = k*2; /* new sequence siz

 bergtabl[i] = k / 2;
 for (j=i+i; j<buf_size; j = j+i+i)
 bergtabl[j+i] = k - bergtabl[j];
}
}

Figure 6-4 C language code that generates Bergla
MOTOROLA 6-7

6-8

4 ×

APR4SECTION6 Page 8 Friday, December 15, 1995 8:15 AM
takes four points in and four points out. The number
of butterflies in each pass is N/4. Each butterfly
uses four multiplications, three additions, and three
subtractions, except that the type (a) butterfly uses
only two additions or two subtractions. For N=2m,
Bergland algorithm may need

Eqn. 6-4

instruction cycles to perform a N-point real FFT,
where BB is the number of instructions for the Ber-
gland butterfly. Theoretically, for the DSP96002
and the DSP56001, BB should be 4 and 6, respec-
tively. If the normal order output is desired, then
converting Bergland order data to the normal order
data must be included in the performance estima-
tion. At least two more instructions have to be
added to the last pass for accessing the Bergland
order table. The performance of the Bergland algo-
rithm including unscrambling could be:

Eqn. 6-5

Eventually, the real performance of an FFT is de-
termined by the architecture of the DSP on which
the FFT runs. As described in SECTION 4.4, the
actual performance of the FFT is determined by
the number of data paths, the number of registers,
the instruction type, the cycle time of DO loop, and
the memory organization. In other words, a good

N 4⁄ 4 BB 2
i 1–

1–()+[] N 2
i 1+()⁄

i 2=

m 1–

∑+

N 4 BB 2
i 1–

1–()+[] N 2
i 1+⁄()

i 2=

m 1–

∑ N 2⁄() 1–+ +
MOTOROLA

APR4SECTION6 Page 9 Friday, December 15, 1995 8:15 AM
or relatively low complexity algorithm may not gen-
erate good performance if the microprocessor’s
architecture does not provide hardware support for
that algorithm. Due to the memory structure and
instruction type, the number of instructions for a
Bergland butterfly, (BB), actually are 5 and 7 on
the DSP96002 and the DSP56001,respectively.
(See program RFFT96B.ASM and RFFT56B.ASM
in APPENDIX A.) Due to this compromise in the
implementation, the next algorithm may be prefer-
able because of the number of instructions.

6.2 Real-Valued Input FFT
Algorithm 2

The second algorithm treats an N real-valued input
array as an N/2 complex array, without extra zeros.
Then, an N/2 complex FFT is performed. The trick
is to separate the transformation of the complex se-
quence into two complex sequences, then to obtain
the transformation of the real-valued input array.

6.2.1 Separating Two Real FFT from
One Complex FFT

If a real-valued input array is z(n), its transform Z(k)
has an even real part and an odd imaginary part. If
z(n) is packed in such a way that all even index data
is in x(n) and all odd index data is in y(n), then,
MOTOROLA 6-9

6-10

Z N k–() =

DFT x n([

{=

DFT y n([

{=

APR4SECTION6 Page 10 Friday, December 15, 1995 8:15 AM

Eqn. 6-6

Eqn. 6-6 shows that the DFT of a complex time se-
quence z(n) can be represented by the DFTs of two
real time sequences x(n) and y(n), because the
DFT is a linear transform.

Also the second half of z(n) can be represented by
the DFT of x(n) and y(n)

Eqn. 6-7

The goal of the derivation is to find out how to con-
struct the DFT of two real time sequences from the
DFT of a complex sequence. By combining Eqn. 6-6
and Eqn. 6-7, it shows:

Eqn. 6-8

where: k = 0,1,...,N/2

Z k() DFT z n()[] DFT x n() jy n()+[]==

DFT x n()[] jDFT y n()[]+()=

Xr k) jXi k)(+(j Yr k() jYi k)(+[]+()=

Xr k) Yi k)(–([] j Xi k) Yr k)(+([]+()=

Xr k) Yi k)(+([] j– Xi k) Yr– k)(([]

)] Xr k) jXi k)(+(=

Zr k() Zr N k–)(+[] j Zi k) Zi N k–)(–([]+ } 2⁄

)] Yr k) jYi k)(+(=

Zi N k–() Zi k)(+[] j Zr N k–) Zr k)(–([]+ } 2⁄
MOTOROLA

APR4SECTION6 Page 11 Friday, December 15, 1995 8:15 AM
According to Eqn. 6-8, two DFTs of two real time se-
quences can be rebuilt from one complex DFT. This
split operation, which separates two DFTs from
one, paves the way for the calculation of N real in-
put DFTs done by an N/2 complex DFT.

6.2.2 Rebuilding the DFT of a Real
Sequence from Two DFTs

From the previous discussion, DFTs of two real se-
quences can be constructed from one complex
DFT. In this section, we investigate how to rebuild
the DFT of a real sequence from two DFTS. To un-
derstand this point, recall Eqn. 3-1. It can be
rewritten as:

Eqn. 6-9

where:

Note that X(k) is the DFT of the even index se-
quence and Y(k) is the DFT of the odd index
sequence. X(k) and Y(k) in Eqn. 6-9 can be deter-
mined from Eqn. 6-8. Furthermore, F(k), the DFT of

F k() X k() WN
k

Y k() k + 0 1 … N 1 – , , = =

X k() x 2r()W N 2⁄
rk

r 0=

N 2⁄ 1–

∑=

Y k() x 2r 1+()W N 2⁄
rk

r 0=

N 2⁄ 1–

∑=

MOTOROLA 6-11

6-12

F k() Z k() Z+[----------------------=

APR4SECTION6 Page 12 Friday, December 15, 1995 8:15 AM

a real sequence with

N

 points, can be found accord-
ing to Eqn. 6-9. Combining Eqn. 6-8 and Eqn. 6-9,
we obtain the final equation Eqn. 6-10.

Eqn. 6-10

where: k = 0,1,...(N/2)-1,
N = Number of real inputs

Notice that:

• Only 0 to N/2-1 points are saved by the
algorithm.

• The values F(0) and F(N/2) are real and
independent, to obtain entire spectrum, F(N/2)
in the imaginary part of F(0).

• The twiddle factors in the DFT and split complex
multiplication have different resolutions. In the
DFT, the period of W is N/2; in the split complex
multiplication, the period of W is N, though the
same number of points (N/2) are needed in both
cases. This means the algorithm may use more
memory space for twiddle factors.

Eqn. 6-10 can be decomposed further to a real mul-
tiplication format that can be implemented on
DSPs.

∗ N 2⁄ k–()]
2

------------------------------- j
Z k() Z∗– N 2⁄ k–()[]

2
--WN

rk–
MOTOROLA

APR4SECTION6 Page 13 Friday, December 15, 1995 8:15 AM
where:

and

6.2.3 Performance Estimation
In the following paragraph, we will discuss the com-
putational complexity of Eqn. 6-10 and the
implementation constraints on the architecture of
Motorola’s DSP. For detailed implementation,
please refer to the programs RFFT96.ASM and
RFFT56.ASM in APPENDIX A.

H1r Ar Br+() 2⁄=

H1i Ai Bi–() 2⁄=

H2r Ai Bi+() 2⁄=

H2i Br Ar–() 2⁄=

Ar
′

H1r WrH2r WiH2i–()+=

Br
′

H1r WrH2r Wi– H2i()–=

Ai
′

H1i WiH2r Wr– H2i()+=

Bi
′

H1i()– WiH2r Wr– H2i()+=

Eqn. 6-11

W r 2πk() N⁄()cos=

W i 2πk() N⁄()sin–=

Ar realZ k()=
Br realZ N k–()=
Ai imagZ k()=
Bi imagZ N k–()=

k=0,...(N/4-1)

k=0,...(N/4-1)

k=0,...(N/4-1)

k=0,...(N/4-1)
MOTOROLA 6-13

6-14

APR4SECTION6 Page 14 Friday, December 15, 1995 8:15 AM
Eight multiplications, five additions, and five sub-
tractions are needed to implement Eqn. 6-10. The
minimum requirement for this calculation is eight in-
structions if one multiplier and the MPY||ADD||SUB
is available on the given DSP. Note that there are
four special multiplications, and the multiplicands
are 1/2 in the calculations of H1r, H1i,H2r, and H2i.

On the DSP56001, the divide-by-2 operation can be
automatically implemented by a “scaling down”
mode when data moves from the ALU accumulator
(A or B) to the X or Y data bus occur. The cost of
implementing the division operation, of course, is
that one instruction has to be used to turn on the
scaling down bit in the Status Register. Apparently,
only four multiplications are needed on the
DSP56001. But one may find that when the scaling
down mode is on, all output data from the accumu-
lator (A or B) to X or Y memory is also divided by 2.
Thus, the scaling down mode has to be turned off
before data is output to the X or Y memory.

The scaling bit control instructions on the
DSP56001 do not allow parallel data moves or any
other operations. If the DSP is in the scaling mode,
a total of twelve instructions are needed: four MAC
instructions, two toggling scaling bit instructions,
and six more ADD or SUB instructions. In practice,
see program RFFT56.ASM in APPENDIX A, where
the scaling mode is never turned on because scal-
ing must be done if block floating point is not used.
Therefore, the output of the program RFFT56.ASM
MOTOROLA

APR4SECTION6 Page 15 Friday, December 15, 1995 8:15 AM
is twice as large as true values. Ten instruction cy-
cles is the minimum requirement. In practice, one
instruction in the loop for data saving is included.

On the DSP96002, since the FMPY||ADD||SUB in-
struction is available, eight instructions are enough
to perform a computation such as Eqn. 6-10. In AP-
PENDIX A more details about implementation such
as memory map, program length, twiddle factors,
and data size are presented.

The overall performance of the algorithm is deter-
mined by the time required to calculate an N/2
complex FFT plus the time for separating
manipulations.

Eqn. 6-12

where: S = 11 for the DSP56001
S = 8 for the DSP96002

6.3 Real-Valued Input FFT
Algorithm 3

In most practical situations, the data to be ana-
lyzed by the FFT is real and is usually obtained
from a single analog-to-digital (A/D) converter.This
knowledge can be exploited in several ways to in-
crease the speed of the FFT calculation even

CFFT N 2⁄() S N 4⁄×+
MOTOROLA 6-15

6-16

APR4SECTION6 Page 16 Friday, December 15, 1995 8:15 AM
further:

1. Since the input data is real, there is no need to
multiply, add, or subtract the imaginary parts.

2. Use can be made of symmetries within the FFT:

Eqn. 6-13

When x(nT) is real, * denotes complex conjugate.

Clearly, not all of the frequency points need to be cal-
culated, as many of them can be obtained by taking
a simple complex conjugate of other, previously
computed points. Taking a complex conjugate can
be easily achieved by moving the same values to dif-
ferent memory locations, after taking the negative of
the value which goes to Y memory (imaginary part).
Figure 6-5 shows the procedure for a 16-point, real
FFT in greater detail. A real-input FFT routine is
available for the DSP56001/2, which executes in
1.01 ms using a 40-MHz clock. This also includes the
amount of time necessary to bring in 1024 sampled
data points from an external A/D converter. Because
of the fast interrupt capability of the DSP56001/2,
data sampling creates very little overhead. As a re-
sult, the maximum sampling rate at which a 1024-
point real FFT can be executed equals:

Comparing this with the sampling rate of 3.3 kHz
mentioned in SECTION 3.1 Motivation, a more
than 300-fold improvement is obtained by carefully
optimizing the Fourier transform algorithm!

XN k)(XN∗ N(k)–=

Fsmax
1024

1.01 10
3–×

------------------------------ 1.014 MHz()= =
MOTOROLA

T

x FFT

T

puted Value

 Computed

plex Conjugate

APR4SECTION6 Page 17 Friday, December 15, 1995 8:15 AM
Figure 6-5 Computation of the Real-Input, DIT FF

x(0)

x(1)

x(2)

x(3)

x(4)

x(5)

x(6)

x(7)

x(8)

x(9)

x(10)

x(11)

x(12)

x(13)

x(14)

x(15)

2-pt. comple

4-pt. complex FF

Com

Not

Com

real-input

four-point

butterfly
MOTOROLA 6-17

6-18

APR4SECTION6 Page 18 Friday, December 15, 1995 8:15 AM
6.4 The Goertzel Algorithm
Previous FFT algorithms compute all or half of the
frequency points in the range equaling half of the
sampling rate. For some applications, such as sin-
gle frequency detection, only one or several
frequency points are of interest. Using FFT to find
these frequencies is no longer cost effective in the
sense of computational complexity.

The Goertzel algorithm (see reference 3) can be im-
plemented by a second order IIR filter for each DFT
coefficient. The transfer function for the IIR filter is:

Eqn. 6-14

where:

N = the length of input sequence, which
depends on the resolution of two

consecutive frequencies to be
detected

k = the index of DFT coefficient

Also note that only three real coefficients are re-
quired in the IIR filter. Naturally, the IIR filter
recursively works on input samples and output re-
sults, so no input data buffer is needed; and only
two memory locations are used for storing internal
states of the IIR filter. Figure 6-6 shows an imple-
mentation of the Goertzel algorithm by a second
order IIR filter. In contrast, an IIR filter calculates

Hk Z()
1 WN

k
Z

1–
–

1 2 2πk N⁄()cos Z
1–

– Z
2–

+
---=

W N
k

e
2πkj– N⁄

=

MOTOROLA

tes energy of DFT

ient

),a=x[i]/2
COEF,y1=I(n-1)
CEOF - I(n-2),b=I(n-1)

,x0=I(n)

)I(n-1)
ude of DFT

APR4SECTION6 Page 19 Friday, December 15, 1995 8:15 AM
every output corresponding to every input. In the
Goertzel algorithm, only one DFT coefficient X(k) is
needed, and X(k) = yk(N). In other words, the com-
plex multiplication is carried out only once in an
entire DFT calculation. In frequency detection, only
the power of magnitude of the DFT coefficient is
needed. This observation may simplify the compu-
tation even more.

From Figure 6-6, the last output of the IIR filter is:

Eqn. 6-15

Figure 6-6 DSP56001 assembly code that calcula
coefficients by single parameter

;Goertzel algorithm to calculate energy of DFT coeffic
;
;
;
data equ $100
COEF equ $123456
LOOP equ 256

 org p:$40
 move #data,r0 ;r0 -> input data
 clr a #0,b ;I(n-1)=0,I(n-2)=0
 move #COEF,y0 ;y0=cos(2pik/N)
 do #LOOP,_END_GOERT
 neg b y:(r0)+,a a,x1 ;x1=I(n-1),b=-I(n-2
 macr y0,x1,a x1,y1 ;a=x[i]/2 + I(n-1)*
 addl b,a x1,b ;a=x[i] + 2*I(n-1)*
_END_GOERT
 mpy -y0,x1,a a,x0 ;a=-con(2pik/N)I(n)
 mpy x1,y1,b ;b=I(n-1)^2
 mac x0,x0,b a,y0 ;b=I(n)^2+I(n-1)^2
 mpy x1,y0,a ;a= -con(2pik/N)I(n
 addl b,a ;a= power of magnit

yk N() I N() WN
k

I N 1–()–=
MOTOROLA 6-19

6-20

yk

APR4SECTION6 Page 20 Friday, December 15, 1995 8:15 AM
The power of magnitude of the DFT coefficient is
easy to show:

Eqn. 6-16

Hence, only one real coefficient is required to com-
pute the energy of the signal. Figure 6-6 shows the
DSP56001 assembly language code used to detect
the energy of a frequency specified by the Goertzel
algorithm. The recursive part of the IIR filter is effec-
tively implemented by three instructions. The total
instruction cycles for a N-point input sequence is
3N+8. Only one coefficient cos(2pk/N) is stored in
the on-chip memory and two more memory loca-
tions are used to store internal states I(N) and I(N-1).

6.5 Real-Time Data
Acquisition on
Motorola DSPs

A very important feature of a DSP is its capability to
carry data in and out in a deterministic amount of
time without interfering with the CPU core opera-
tions. “Real-time FFT” refers to the sampled data
from an A/D converter or other devices that is
stored in a buffer. Once this buffer is full, the DSP
starts the FFT program execution. In the mean
time, the DSP grabs the sampled data and puts it
into another buffer. Whichever finishes first, (the

N() 2
I
2

N() 2 2πk N⁄()I N()I N 1–()cos I
2

N 1–()+–=
MOTOROLA

APR4SECTION6 Page 21 Friday, December 15, 1995 8:15 AM
FFT program execution or data acquisition), has to
wait for the other one to finish its task. Thus, two
data buffers, plus synchronization between the pro-
gram execution and data acquisition is required to
implement the real-time FFT. This is also called
double buffering. The following sections present the
I/O peripherals on the DSP56001/2 and the
DSP96002, and show examples of how to set up
these peripherals for real-time data acquisition.

6.5.1 Fast Interrupt on DSP56001 for
Real-Time FFT Data Acquisition

Figure 6-7 shows a scheme for double buffering.
Two memory spaces are exclusively assigned to an
FFT program. The FFT program will not start until
one of two buffers is full. The loaded buffer will not
be loaded with data again unless the FFT has fin-
ished its execution on the buffer.

Y = imaginary dataP = program X = real data

Figure 6-7 Double buffering input data so that
data input can work with the FFT
program concurrently

Buffer 1

Buffer 2

Fast interrupt

FFT program
MOTOROLA 6-21

6-22

Figure 6-8 Block di
fast inter
gram. T
interrupt
the timer
buffer po

SSI

or

HI

APR4SECTION6 Page 22 Friday, December 15, 1995 8:15 AM
The double buffering is implemented by the fast in-
terrupt on the DSP56001/2 (see reference 1). The
data received by peripherals such as the SSI or
Host Interface (HI) on the DSP56001/2 will be
moved into the internal memory by the fast inter-
rupt. The fast interrupt needs only two instruction
cycles to move one received data word from a pe-
ripheral to a specified memory location without
changing the program flow in the CPU.

agram of the double buffering technique. SSI/HI
rupt has higher priority than the MAIN or FFT pro-
he pointer of buffer is checked by SCI timer
 which has highest interrupt priority. The interval of
 interrupt is set according to data length so that the
inter can be updated accordingly.

CPU

X-mem

Y-mem

Fast
 Interrupt

SCI
Timer

FFT
MOTOROLA

APR4SECTION6 Page 23 Friday, December 15, 1995 8:15 AM
The data generation rate is actually much slower than
the FFT speed. For example, to generate a set of
1024-point data at 44.1 kHz sampling rate could take
1/44100 x 1024 = 23.2(ms) while a 1024-point real
FFT only takes about 1ms at 40 MHz clock on the
DSP56001/2. For this reason, the SSI or HI interrupt
as shown in Figure 6-8 has been assigned higher pri-
ority than the FFT program so that every piece of data
received can be sent to internal memory via fast inter-
rupt on the DSP56001/2. The buffer pointer keeps
growing by SSI/HI data moves and is being checked
by the SCI timer interrupt. Once the buffer is full, the
FFT program starts and proceeds to move the buffer
pointer to the next buffer so that SSI/HI fast interrupt
works with the CPU concurrently.

6.5.2 Real-Time Data Acquisition
on DSP96002

The same double buffering technique used on the
DSP56001 for real-time data acquisition is also ap-
plicable on the DSP96002. Data acquisition on the
DSP96002 is truly parallel with CPU instruction ex-
ecution. Recall the DSP96002 architectural block
diagram in Figure 4-4. The double buffering tech-
nique guarantees that the two DMA channels
directly connected to the internal memory support
parallel data access without stretching an instruc-
tion cycle if the CPU core and the DMA controller
access different internal memory locations. ■
MOTOROLA 6-23

MOTOROLA

F i k,(

SECTION 7

Two Dimensional
Fourier and
Cosine Transforms

“To implement
Eqn. 7-1, a two

dimensional
time sequence is

decomposed
according to its
row or column.”

APR4SECTION7 Page 1 Friday, December 15, 1995 8:11 AM
Two dimensional Fourier transforms are widely used
in image processing, image analysis, and video com-
pression. Because the fast discrete cosine transform
features high energy compaction and low implement-
ing complexity, it is becoming more and more
important in image and video compression.

7.1 Two Dimensional FFTs
on the DSP96002

Two dimensional FFTs are simply an extension of one
dimensional FFTs, and is shown by:

Eqn. 7-1

where: i = 0,1,...N-1

k= 0,1,...N-1

) x

n 0=

N 1–

∑
m 0=

N 1–

∑ m n,()e j 2πmi()–() N⁄ e j 2πnk()–() N⁄=
7-1

7-2

F i k,() =

APR4SECTION7 Page 2 Friday, December 15, 1995 8:11 AM
To implement Eqn. 7-1, a two dimensional time se-
quence is decomposed according to its row or
column. Eqn. 7-1 can be rewritten in Eqn. 7-2.

Eqn. 7-2

The one dimensional FFT code discussed in SEC-
TION 4 can be used in this extension. The code
included on the Motorola DSP bulletin board
(2DFFT.asm) implements the two-dimensional DIT
FFT by calling subroutine CFFT96.asm N times, if
an N by N 2D FFT is to be performed. Also, the
code demonstrates the implementation of a double
buffer by the DMA controllers on the DSP96002 as
discussed in SECTION 5.

7.2 Discrete Cosine
Transform on the
DSP96002

7.2.1 One Dimensional Discrete
Cosine Transform (DCT)

The one dimensional cosine transform of a discrete
time sequence x(n), n = 0,1,...,N-1 is defined as:

x m n,()e j 2πmi()–() N⁄

n 0=

N 1–

∑

m 0=

N 1–

∑ e j 2πnk()–() N⁄
MOTOROLA

0 1 … N 1–, , ,

1 … N 1–, , ,

APR4SECTION7 Page 3 Friday, December 15, 1995 8:11 AM
Eqn. 7-3

where:

and the inverse transform is:

Eqn. 7-4

A fast discrete cosine transform (FDCT) proposed
by Chen and Smith [see reference 1] is adapted in
this application note, and it’s flow diagram is plot-
ted in Figure 7-1. Many optimized implementations
on the FDCT have been published. The code giv-
en on the Motorola DSP bulletin board is not fully
optimized; it simply demonstrates the simplicity of
the DSP96002 assembly code.

F k() 2c k()
N

------------ x

n 0=

N 1–

∑ n() 2n 1kπ+()
2N

------------------------ k ;cos = =

c k() 1

2
------ k , 0 = =

1

= k , 1 2 … N 1 – , , , =

0

= elsewhere ,

x n() c k()F

n 0=

N 1–

∑ k() 2n 1kπ+()
2N

------------------------ n ;cos 0 = =
MOTOROLA 7-3

7-4

Figure 7-1 The flow
Note tha

x0

x1

x2

x3

x4

x5

x6

x7

APR4SECTION7 Page 4 Friday, December 15, 1995 8:11 AM

For N=2

m

, m > 2, this algorithm requires:
(3N/2) (log

2

N-1)+2 real additions and
Nlog

2

N - (3N/2)+4 real multiplications.

 diagram of an 8-point discrete cosine transform.
t the output order of the transform is scrambled.

F0

F4

F2

F6

F1

F7

F5

F3

MOTOROLA

1)kπ)
2N

1+) jπ
2N

APR4SECTION7 Page 5 Friday, December 15, 1995 8:11 AM
7.2.2 Two Dimensional DCT
A one dimensional DCT can be easily extended to
a two dimensional DCT as shown in .

Eqn. 7-5

Therefore, to calculate an N by N 2D DCT, repeat
the N-point 1D DCT N times. An 8x8 2D DCT as-
sembly code for the DSP96002 (DCT.asm) is
presented on the Motorola DSP bulletin board . ■

F j k,() 4c j()c k()
N2

--------------------- x

n 0=

N 1–

∑
m 0=

N 1–

∑ m n,()cos
2n +(-----------=

xcos 2m(----------
MOTOROLA 7-5

MOTOROLA

SECTION 8

Competitive Analysis
of FFT Performances

“The total
Icycles of the

DSP56156 can
be reduced to

about 44000
Icycles and the
twiddle factors

can be cut to N/2
with further

optimization.”

APR4SECTION8 Page 1 Friday, December 15, 1995 8:10 AM
8.1 Most Popular Digital
Signal Processors

Currently a variety of DSPs are available from a
dozen of semiconductor vendors. This section ad-
dresses floating-point DSPs first, because the FFT is
one of their most important benchmarks. The archi-
tecture of floating-point DSPs is optimized for FFTs.

Fixed-point DSPs are also discussed because they
have a higher performance-to-cost ratio than the
floating-point DSPs, and are used more frequently in
DSP applications such as digital audio, speech pro-
cessing, telecommunication, automobile control, and
home electronics. Since cost is a very sensitive issue
in fixed-point DSPs, some useful features such as
address mode, instruction type, number of input op-
erands in each operation, and I/O capability can be
offset with a reduction in silicon area to keep the cost
as low as possible.

In general, the FFT performance on fixed-point DSPs
is less than floating-point DSPs if the comparison is
conducted on DSPs from the same vendor. But it is
not surprising that a fixed-point DSP from one manu-
8-1

8-2

APR4SECTION8 Page 2 Friday, December 15, 1995 8:10 AM
facturer may offer a higher performance than a
floating-point DSP from a different manufacturer.
After comparing existing DSPs, one may decide
which is an optimal architecture for FFTs regarding
speed and cost, where cost refers to required mem-
ory speed, memory size, and silicon area for special
hardware that aides FFT calculation. It is impracti-
cal to base the decision on selling prices because
they can be strongly influenced by sales strategies
of different DSP vendors.

The following sections compare DSPs from Motoro-
la, Texas Instruments, AT&T, and Analog Devices.
There are other DSPs from new players that may
have their merits, but they are not included in the fol-
lowing discussion due to their short time on the
market.

8.2 Performance of FFTs on
Digital Signal Processors

Digital signal processors can be divided into two cat-
egories; floating-point DSPs and fixed-point DSPs.
As is well known, the fixed-point DSPs suffer satura-
tion problems in calculations. To solve this problem,
the programmer must scale down input data either at
the front or in the middle of the calculation, which re-
sults in a shrunken signal-to-noise ratio or dynamic
range. The floating-point DSPs use an extra data
section to hold exponent information, consequently,
the dynamic range is so large that the chance of
MOTOROLA

APR4SECTION8 Page 3 Friday, December 15, 1995 8:10 AM
overflow is non-existent in most circumstances. Of
course, one has to pay for this convenience by re-
quiring wider data memory, a larger silicon area,
and more power consumption.

8.2.1 FFTs on Floating-Point DSPs
Steps to implement various floating-point DSPs
may differ depending on their conformance with the
IEEE 754-1985 standard. In general, an IEEE float-
ing-point DSP requires more computational steps
to generate a normalized result than a proprietary
implementation does. Although, the IEEE imple-
mentation may result in a bigger die design in
achieving the same clock rate, it does, however,
provide a standard interface to other microproces-
sors. In contrast, when proprietary formatted DSPs
interface to other general purpose microproces-
sors, they require extra time to convert to the IEEE
format. Motorola and Analog Devices are commit-
ted to the IEEE floating-point format. TI and AT&T
use their own proprietary format.

Table 8-1 offers a fair comparison of complex
FFTs on the different floating-point DSPs. Note
that there are no constraints on the FFT algorithm.
The FFT can be a Decimation in Time (DIT) or
Decimation in Frequency (DIF), and can also be a
radix two or radix four butterfly, as long as the al-
gorithm can generate the best performance on a
specified processor.
MOTOROLA 8-3

8-4

Table 8-1 10

DSPs 96002

Icycle (ns) 50

Algorithm DIT

Radix 2

P Mem-
ory (word)

219

Data
Memory
(word)

4N

SIN/COS.
table

3N/2

Instruction
length (bit)

32

SRAM for
Zero Wait
State (ns)

20

APR4SECTION8 Page 4 Friday, December 15, 1995 8:10 AM
8.2.1.1 Complex FFT on Floating-Point DSPs

1. R.Meyer and K. Schwartz “FFT implementation on
DSP-Chips-Theory and Practice” ICASSP, 1990.

2. Analog Devices, ADSP-21020 User’s Manual.
3. Texas Instruments, TMS320C4x User’s Guide.

NOTE: Icycle in Table 8-1 refers to instruction cycle.
Minimum Icycle denotes the reciprocosity of the
highest clock frequency available on the DSPs.

24-Point Complex FFT on Floating-Point DSPs

1 AD210202 TIC403 TIC301 AT&T32C1

50 50 60 80

DIT DIT DIT DIT

4 2 2 2

192 215 231 158

4N 4N 4N 2N

3N/2 N/2 N/2 N/2

48 32 32 32

35 25 35 20
MOTOROLA

t DSPs

T32C4

80

300

106

APR4SECTION8 Page 5 Friday, December 15, 1995 8:10 AM
Table 8-1 shows that the Motorola DSP96002 per-
forms the fastest 1024-point complex FFT. The
Analog Devices’ ADSP21020 performs almost as well
as the DSP96002. The main factor that makes these
two DSPs so fast in calculating the FFT is the special
instruction “MPY||ADD||SUB”. Supported by this in-
struction, the DSP96002 needs only four instruction
cycles to perform one radix 2 butterfly, and the
DSP21020 needs only fourteen instruction cycles to
do one radix 4 butterfly. However, the DSP96002 has
2x512 data words on the chip and it features two on-
chip DMA controllers. The on-chip memory and DMA
controllers are extremely important features in imple-
menting real-time data acquisition and control. The
lack of peripherals and memory on the DSP21020
forces it into the position of competing with RISC
chips. Although the DSP21020 requires lower cost
SRAM for zero wait states interface, the program
memory has to be 48-bits wide which negates the sys-
tem cost benefits of using slow memory.

8.2.1.2 Real FFT on Floating-Point DSPs

Table 8-2 1024-Point Real Input FFT on Floating-Poin

DSPs 960021 TIC402 TIC303 AT&

Icycle (ns) 50 50 60

Total Icycles 11600 20396 31317 26

Total Time
(ms)

0.58 1.01984 1.879 2.

1. See RFFT96T.asm on the Motorola
DSP Bulletin Board (Dr. BuB).

2. Texas Instruments, TMSC4x User’s
Guide

3. Texas Ins
cessing A
Family.

4. AT&T DSP
MOTOROLA
truments, Digital Signal Pro-
pplications with the TMS320

32C User’s Manual.
8-5

8-6

Table 8-3 1

DSPs 560

Icycle (ns) 60

Algorithm D

Radix

P Memory
(word)

2

Data Mem-
ory (word)

4

SIN/COS
table

N

Instruction
length (bit)

Total Icycles 29

Total Time
(ms)

1.7
1.4

1. See CFFT56.asm on t
2. R.Meyer and K. Schwa

tice” ICASSP, 1990.
3. Texas Instruments TM
4. See CFFT156.asm on

APR4SECTION8 Page 6 Friday, December 15, 1995 8:10 AM
MOTOROLA

8.2.2 FFT on Fixed-Point DSPs
As mentioned previously, scaling must be per-
formed on the fixed-point DSPs to prevent overflow
in the intermediate stage of calculation. The follow-
ing benchmarks, either complex or real FFT,
assume that each input data has been divided by
the number of the FFT.

8.2.2.1 Complex Input FFT

024-Point Complex FFT on Fixed-Point DSPs

01/21 AD2100A2 TIC253 TIC503 561564

/50 80 80 35 33

IT DIT DIT DIT DIT

2 4 2 2 2

34 222 158

N 4N 2N 2N 4N

/2 3N/2 5N/4 5N/4 N

24 24 16 16 16

949 34625 113487 82761 46373

9694/
9745

2.77 9.079 2.8967 1.53031

he Motorola DSP Bulletin Board (Dr. BuB).
rtz “FFT Implementation on DSP Chips — Theory and Prac-

S320 DSP Family Benchmarks.
 the Motorola DSP Bulletin Board (Dr. BuB).

APR4SECTION8 Page 7 Friday, December 15, 1995 8:10 AM
As shown in Table 8-3, the Motorola DSP56001/2
has a minimum icycle time and uses only N/2 loca-
tions for both real and imaginary twiddle factors.
The total Icycles of the DSP56156 can be reduced
to about 44000 Icycles and the twiddle factors can
be cut to N/2 with further optimization.

8.2.2.2 Real Input FFT

1. See RFFT56T.asm on the Motorola DSP Bulletin
Board (Dr. BuB).

2. Texas Instruments TMS320 DSP Family Bench-
marks.

■

Table 8-4 1024-Point Real Input FFT on
Fixed-Point DSPs

DSPs 560021 TIC252 TIC502

Icycle (ns) 50 80 35

Total
 Icycles

17443 56286 48055

Total
Time (ms)

0.87215 4.50288 1.6819
MOTOROLA 8-7

MOTOROLA

SECTION 9

Conclusion

“Motorola's
family of digital

signal
processors,

combined with
Motorola's data

conversion
parts, provide a
complete, cost-

efficient solution
to frequency

domain
problems . . .”
Frequency domain applications are becoming more
important as inexpensive hardware solutions become
more readily available. Motorola's Family of
DSP56001/2 and DSP96002 digital signal processors
provide particularly effective solutions to frequency do-
main problems. A highly parallel architecture,
combined with an instruction set well suited for imple-
mentation of fast Fourier transforms, allow real-time
computation of high-resolution FFTs up to very high
sampling rates. Fast interrupts of the DSP56001/2 and
the parallel DMA over a separate bus in the DSP96002
provide for data I/O with hardly any penalty in speed.
Furthermore, the dual external buses on the
DSP96002 allow fast calculation of FFTs of virtually
unlimited size, with no performance penalty on external
data access.

The large, 24-bit data representation of DSP56001/2,
together with infinite-precision internal arithmetic and
convergent rounding, lead to numerically superior re-
sults over 16-bit DSPs with truncation arithmetic.
Special hardware provided in the DSP56001/2 allows
no-overhead automatic scaling and block floating-point
implementations of FFTs of virtually unlimited size,
with result precision rivaling that of true floating point,
for a fixed-point price.
9-1

9-2

For high-end applications, the DSP96002 provides
full IEEE standard floating-point arithmetic for negli-
gible roundoff errors. In addition to providing
standard IEEE exception handling capabilities, the
results obtained in the DSP96002 are portable
across many applications that use the standard,
such as high-level language simulations, data buses,
etc. Motorola's family of digital signal processors,
combined with Motorola's data conversion parts (see
Reference 12), provide a complete, cost-efficient so-
lution to frequency domain problems; from low-end
small-size FFT applications, to high-end instrumen-
tation and computer workstations for scientific
computing. ■

Acknowledgments
The authors wish to thank Professor Raimund Meyer
and K.Schwarz in University Erlangen in F.R Germa-
ny who provided the optimized 1024-point complex
FFT program for the DSP96002; Vitus Ho in Dell
Computer, Austin, Texas, who provided two dimen-
sional FFT and DCT code for the DSP96002. Also a
lot of thanks to Roman Robles in Motorola DSP Ap-
plications group for valuable comments and the C
language code of Bergland’s algorithm.
MOTOROLA

M

APPENDIX A

Fully Optimized
Complex FFT

A.1 Optimized Complex FFT for the
DSP96002

;***
; *
; RMAXS.ASM : START PROGRAM FOR THE FFT MACRO RMAX.ASM. *
; THIS FILE SHOWS HOW TO CONFIGURE MOTOROLAS DSP96002 *
; TO USE THE FAST COMPLEX FFT. *
; TWIDDLE FACTORS IN R4TAB1.ASM *
; *
; WRITTEN BY : KARL SCHWARZ, RAIMUND MEYER 10.11.89 *
; *
; LEHRSTUHL FUER NACHRICHTENTECHNIK *
; UNIVERSITAET ERLANGEN-NUERNBERG *
; *
;***

include ‘r4tab1’
include‘rmax’

points equ 1024 ; FFT-length, only 1024 possible
passes equ 10 ; ld(points)
data equ $800 ; input data, normal order
odata equ $C00 ; output data, normal order
tab4 equ $1000 ; start of radix-4 twiddle factors

; 766 complex values)

r4 tab1 tab4

 org p:$100

 move #$008A0000,x:$FFFFFFFD ; zero wait states in BCRB
 move #$008A0000,x:$FFFFFFFE ; zero wait states in BCRA
 move #$0000FFFF,x:$FFFFFFFC ; X port A, Y and P port B in PSR
 ;Upper three moves won’t count for the benchmark,
 ;only for initializing the simulator or the DSP.

;They show how to configure the device.
OTOROLA A-1

Figure A-1 Optimized Complex FFT for the DSP96002 (sheet 1 of 20)

A

; A T T E N T I O N P L E A S E !!!!!!!

; STEP THROUGH THE FIRST THREE LINES, THEN LOAD THE SIMULATOR NEW
; WITH RMAXS AND INPUT VECTORS, THEN GET A NEW RUN

rmaxpoints,passes,data,odata,tab4

nop
nop
nop

 end
;***
; *
; COMPLEX, RADIX-2,4 DIT FFT : RMAX.ASM *
; -- *
; *
; MACRO FOR A FAST LOOPED-CODE MIXED-RADIX DIT FFT COMPUTATION *
; IN DSP96002 *
; *
; WRITTEN BY: KARL SCHWARZ, RAIMUND MEYER 10.11.89 *
; *
; LEHRSTUHL FUER NACHRICHTENTECHNIK *
; UNIVERSITAET ERLANGEN-NUERNBERG *
; *
; REVISION : THIS PROGRAM IS SPEEDED UP FROM RMIX1.ASM *
; *
; PLEASE LOOK IN THE START FILE RMAXS.ASM HOW TO CONFIGURE THE DEVICE *
; *
; FOR THIS PROGRAM THE FFTLENGTH IS 1024 POINTS *
; SPECIAL FEATURES : RADIX-4 BUTTERFLY IN FIRST AND LAST TWO STAGES *
; SIMPLE RADIX-4 BUTTERFLY IN 1. TO 6. STAGE IF NO TWIDDLES ARE USED *
; TABLE IN USE : ONLY R4TAB1.ASM FOR RADIX-2 AND LAST RADIX-4 BUTTERFLY *
; LOOK IN R4TAB1.M HOW TO BUILT A TABLE *
; *
;***
; *
; EXAMPLE FOR THE 1024 POINT COMPLEX FFT (WITH BITREVERSAL) : *
; *
; MEMORY SIZE : PROGRAM : 219 WORDS *
; DATA : 4096 WORDS *
; TWIDDLE FACTORS : 1532 WORDS *
; *
; CYCLES PER BUTTERFLY : *
; 1. AND 2. STAGE: 2 *
; 3. AND 4. STAGE: 3.5 *
; 5. AND 6. STAGE: 3.875 *
; 7. STAGE : 4 *
; 8. STAGE : 4.25 *
; 9. AND 10.STAGE : 4.25 *
; AVERAGE CYCLES/BUTTERFLY: 3.55 *
; TOTAL BUTTERFLYCYCLES : 18176 *
; INITIALIZATION OVERHEAD: 715 = 3.8 % OF TOTAL TIME *
; TOTAL NUMBER OF INSTRUCTION CYCLES : 18891 *
; TOTAL TIME FOR A 1024 POINT FFT: 1.399 msAT 27 MHz *
-2 MOTOROLA

Figure A-1 Optimized Complex FFT for the DSP96002 (sheet 2 of 20)

M

;***
; *
; USED RADIX-2 BUTTERFLY *
; + *
; AR + j AI -----------------------O-------------O--------- AR’ + j AI’ *
; \ / + *
; \ / *
; \ / *
; / \ *
; / \ *
; / \ + *
; BR + j BI ---- (COS - j SIN) --O-------------O--------- BR’ + j BI’ *
; - *
; *
; TR = BR * COS + BI * SIN *
; TI = BR * SIN - BI * COS *
; AR’= AR + TR *
; AI’= AI - TI *
; BR’= AR - TR *
; BI’= AI + TI *
; *
;***
; *
; USED RADIX-4 BUTTERFLY *
; *
; AR + j AI ----------O-----------O----------O-----O--- AR’ + j AI’ *
; \ / \ / *
; \ / / \ *
; BR + j BI ---(W1)---O-----X-----O----------O-----O--- BR’ + j BI’ *
; \ / \ / - *
; / \ / \ *
; CR + j CI ---(W2)---O-----X-----O----------O-----O--- CR’ + j CI’ *
; / \ - \ / *
; / \ / \ *
; DR + j DI ---(W3)---O-----------O---(-j)---O-----O--- DR’ + j DI’ *
; - - *
; *
; MIXING OF RADIX-2 AND RADIX-4 BUTTERFLIES IS POSSIBLE WITHOUT TROUBLE ! *
; *
;***

; ---> about 10 % faster than ICASSP 89 Paper 40.D9.7 by Kloker and Lindsley

rmaxmacropoints,passes,data,odata,tab4

;points : FFT-length (power of 2)
;passes : log2(points)
;data : start address of input vector
;odata : start address of output vector due to bitreversal
;tab4 : start address of radix-4 twiddle factors from file r4tab.asm

pam5 equ passes-5
pg2 equ points/2
pg4 equ points/4
pg8 equ points/8
OTOROLA A-3

Figure A-1 Optimized Complex FFT for the DSP96002(sheet 3 of 20)

A-

pg 16 equ points/16
pg 32 equ points/32
pg 64 equ points/64
pg 128 equ points/128
pg 4m1 equ points/4-1
pg 16m1 equ points/16-1
pg 64m1 equ points/64-1

;**
; ------------ FIRST 2 STAGES AS RADIX-4 BUTTERFLY ------------------------ *
;**

 move #-1,m0
 move m0,m1
 move m0,m2
 move m0,m3
 move m0,m4
 move m0,m5
 move m0,m6
 move m0,m7
 move #data,r0
 move #(data+pg4),r1
 move #(data+2*pg4),r2
 move #(data+3*pg4),r3
 move #2,n0
 move n0,n6
 move n0,n5
 move n0,n7

move #pg4m1,n1
jsr _sr4

;**
; ------------ PARTS OF 3. AND 4. STAGE AS SPECIAL RADIX-4 BUTTERFLY ------ *
;**

move #data,r0
 move #(data+pg16),r1
 move #(data+2*pg16),r2
 move #(data+3*pg16),r3

move #pg 16m1,n1
jsr _sr4

;**
; ------------ PARTS OF 5. AND 6. STAGE AS SPECIAL RADIX-4 BUTTERFLY ------ *
;**

 move #data,r0
 move #(data+pg64),r1
 move #(data+2*pg64),r2
 move #(data+3*pg64),r3

move #pg 64m1,n1
jsr _sr4
4 MOTOROLA

Figure A-1 Optimized Complex FFT for the DSP96002(sheet 4 of 20)

M

;**
; ------------ REST OF 3. STAGE AS RADIX-2 BUTTERFLY ---------------------- *
;**

 move #3,n6 ; step for twiddle addressing in r4tab

move #(tab4+3),r6 ; address of sin cos table
move #(data+pg4),r0 ; input vector
move #(data+pg4+pg8),r1
move #3,n7 ; still 3 r2 groups to calculate
move #(pg 8-3),r7 ; pg8 r2 butterflies in a group
move #(pg 8+1),n0 ; step to next group

jsr _nr2

;**
; ------------ REST OF 4. STAGE AS RADIX-2 BUTTERFLY ---------------------- *
;**

 move #(tab4+6),r6 ; address of sin cos table
move #(data+pg4),r0 ; input vector
move #(data+pg4+pg16),r1
move #6,n7 ; still 6 r2 groups to calculate
move #(pg16-3),r7 ; pg16 r2 butterflies in a group
move #(pg16+1),n0 ; step to next group

jsr _nr2

;**
; ------------ REST OF 5. STAGE AS RADIX-2 BUTTERFLY ---------------------- *
;**

 move #(tab4+3),r6 ; address of sin cos table
move #(data+pg16),r0 ; input vector
move #(data+pg16+pg32),r1
move #15,n7 ; still 15 r2 groups to calculate
move #(pg32-3),r7 ; pg32 r2 butterflies in a group
move #(pg32+1),n0 ; step to next group

jsr _nr2

;**
; ------------ REST OF 6. STAGE AS RADIX-2 BUTTERFLY ---------------------- *
;**

 move #(tab4+6),r6 ; address of sin cos table
 move #(data+pg16),r0 ; input vector

move #(data+pg16+pg64),r1
move #30,n7 ; still 30 r2 groups to calculate
move #(pg64-3),r7 ; pg64 r2 butterflies in a group
move #(pg64+1),n0 ; step to next group

jsr _nr2

;**
; ------------ 7. STAGE AS RADIX-2 BUTTERFLY ------------------------------ *
;**

 move #(tab4),r6 ; address of sin cos table
 move #(data),r0 ; input vector
OTOROLA A-5

Figure A-1 Optimized Complex FFT for the DSP96002(sheet 5 of 20)

A

move #(data+pg128),r1
move #64,n7 ; still 64 r2 groups to calculate
move #(pg128-3),r7 ; pg128 r2 butterflies in a group
move #(pg128+1),n0 ; step to next group

jsr _nr2

;**
; ------------ 8. STAGE AS RADIX-2 BUTTERFLY ------------------------------ *
;**

move #5,n0
 move #(data+4),r1
 move #tab4,r6
 move #data,r0
 move r1,r5
 mover 0,r4
 move n0,n1
 move n0,n4
 move n0,n5

 move x:(r6),d9.s y:,d8.s
 move x:(r1)+,d0.s y:,d1.s
 move x:(r0),d4.s y:(r6),d2.s
 move y:(r1),d7.s

faddsub.s d4,d0 x:(r1)+,d6.s y:(r6)+n6,d3.s

do #pg8,_end3 ; loop of groups

fmpy d9,d6,d0 fsub.s d1,d2 d0.s,x:(r4) y:(r0)+,d5.s
fmpy d9,d7,d1 faddsub.sd5,d2 d4.s,x:(r5) y:(r1),d7.s

 fmpy d8,d6,d2 fadd.s d3,d0 x:(r0),d4.s d2.s,y:(r5)+
fmpy d8,d7,d3 faddsub.sd4,d0 x:(r1)+,d6.s d5.s,y:(r4)+

 fmpy d9,d6,d0 fsub.s d1,d2 d0.s,x:(r4) y:(r0)+,d5.s
 fmpy d9,d7,d1 faddsub.sd5,d2 d4.s,x:(r5) y:(r1),d7.s

fmpy d8,d6,d2 fadd.s d3,d0 x:(r0),d4.s d2.s,y:(r5)+

 fmpy d8,d7,d3 faddsub.sd4,d0 x:(r1)+n1,d6.s d5.s,y:(r4)+
 fmpy d9,d6,d0 fsub.s d1,d2 d0.s,x:(r4) y:(r0)+,d5.s
 fmpy d9,d7,d1 faddsub.sd5,d2 d4.s,x:(r5) y:(r1),d7.s

fmpy d8,d6,d2 fadd.s d3,d0 x:(r0),d4.s d2.s,y:(r5)+
 move x:(r6)+n6,d9.s y:,d8.s

fmpy d8,d7,d3 faddsub.sd4,d0 x:(r1)+,d6.s d5.s,y:(r4)+
fmpy d9,d6,d0 fsub.s d1,d2 d0.s,x:(r4) y:(r0)+n0,d5.s
fmpy d9,d7,d1 faddsub.sd5,d2 d4.s,x:(r5) y:(r1),d7.s

 fmpy d8,d6,d2 fadd.s d3,d0 x:(r0),d4.s d2.s,y:(r5)+n5

fmpy d8,d7,d3 faddsub.s d4,d0 x:(r1)+,d6.s d5.s,y:(r4)+n4
_end3

;**
; ------------ LAST TWO STAGES AS RADIX-4 BUTTERFLY ----------------------- *
;**

move #$0,m2
move m2,m3
-6 MOTOROLA

Figure A-1 Optimized Complex FFT for the DSP96002 (sheet 6 of 20)

M

movem 2,m5
movem 2,m7
move #data,r0
move #(data+1),r4
move #(data+2),r1
move #(tab4+1),r6
move #2,n4
move #4,n0
move n0,n1
move #odata,r5
move #(odata+pg2),r2
move #(odata+pg4),r7
move #(odata+pg4*3),r3
move #pg8,n5
move n5,n2
move n5,n7
move n5,n3

move x:(r4)+n4,d3.s y:,d5.s ;d3=Br,d5=Bi
move x:(r4)+n4,d1.s y:,d2.s ;d1=Dr,d2=Di
faddsub.s d1,d3 x:(r0),d7.s ;d3=Br+Dr,d1=Br-Dr,d7=Ar
faddsub.s d5,d2 x:(r1),d0.sd1.s, y:(r7) ;d5=Bi+di,d2=Bi-Di,d0=Cr,

;temp store Br-Dr
faddsub.s d7,d0 d3.s,d4.s y:(r1)+n1,d1.s ;d0=Ar+Cr,d7=Ar-

;Cr,d4=Br+Dr,d1=Ci
faddsub.s d7,d5 x:(r4),d6.s y:(r0)+n0,d3.s ;d7=Ar-Cr-(bi+Di)
faddsub.s d0,d4 d7.s,x:(r3) y:(r4)+n4,d7.s

do #pg4m1,_er4
faddsub.s d3,d1 x:(r6)+,d9.sy:,d8.s
fmpy.s d6,d9,d5 d5.s,x:(r7)
fmpy d7,d8,d3 faddsub.s d1,d2d4.s, x:(r5)d3.s,d4.s
fmpy d6,d8,d1 fadd.s d5,d3d0.s, x:(r2)+n2d1.s,y:
fmpy.s d7,d9,d5 x:(r6)+,d9.s y:,d8.s
fsub.s d1,d5 x:(r4)+n4,d6.sy:,d7.s
fmpy.s d6,d9,d1 y:(r7),d0.s
fmpy d7,d8,d2 faddsub.s d4,d0 d2.s,y:(r5)+n5
fmpy d6,d8,d0 fadd.s d2,d1 x:(r1),d6.sd0.s,y:(r7)+n7
fmpy d7,d9,d2 faddsub.s d1,d3 x:(r6)+,d9.sy:,d8.s
fmpy d6,d9,d0 fsub.s d0,d2 y:(r1)+n1,d7.s
fmpy d7,d8,d3 faddsub.s d5,d2 d3.s,d4.d4.s,y:(r3)+n3
fmpy d7,d9,d1 fadd.s d3,d0 x:(r0),d7.sd1.s,y:(r7)
fmpy d6,d8,d3 faddsub.s d7,d0
faddsub.s d7,d5
faddsub.s d0,d4d7.s, x:(r3) y:(r4),d7.s
fsub.s d3,d1 x:(r4)+n4,d6.sy:(r0)+n0,d3.s

_er4
faddsub.s d3,d1d5.s, x:(r7)
faddsub.s d1,d2 y:(r7),d6.s
move d0.s, x:(r2)d1.s, y:
faddsub.s d3,d6d4.s, x:(r5)d2.s, y:
move d6.s, y:(r7)
move d3.s, y:(r3)
OTOROLA A-7

Figure A-1 Optimized Complex FFT for the DSP96002 (sheet 7 of 20)

A

;_ponrjmp_ponr ; REMOVE THIS COMMAND AND APPEND YOUR OWN JOB
 nop

nop
 jmp *

;***
*
; ------------ END OF FFT --- *
;***
*

; SUBROUTINES FOLLOWING

;***
*
; ------------ SPECIAL RADIX-4 BUTTERFLY WITH SIMPLE TWIDDLES ------------- *
;***
*

_sr4
 move r0,r4
 move r1,r5
 move r3,r7

move r2,r6

move y:(r5)+,d1.s
 move x:(r0)+,d0.s y:(r7)+,d3.s

faddsub.s d1,d3 x:(r2),d2.s
 faddsub.s d0,d2 y:(r4),d5.s

faddsub.s d0,d1 x:(r1),d4.s y:(r6)+,d7.s
 faddsub.s d5,d7 d1.s,x:(r2)+
 faddsub.s d7,d3 x:(r3),d6.s y:(r5)-,d1.s
 faddsub.s d6,d4 d0.s,x:(r3)+ d3.s,y:(r4)+
 faddsub.s d2,d4 x:(r0)-,d0.s d7.s,y:(r5)+n5
 faddsub.s d5,d6 d2.s,x:(r1)+ y:(r7)-,d3.s

do n1,_st2
 faddsub.s d1,d3 x:(r2),d2.s d5.s,y:(r7)+n7

faddsub.s d0,d2 d4.s,x:(r0)+n0 y:(r4),d5.s
 faddsub.s d0,d1 x:(r1),d4.s y:(r6)-,d7.s
 faddsub.s d5,d7 d1.s,x:(r2)+ d6.s,y:(r6)+n6
 faddsub.s d7,d3 x:(r3),d6.s y:(r5)-,d1.s
 faddsub.s d6,d4 d0.s,x:(r3)+ d3.s,y:(r4)+
 faddsub.s d2,d4 x:(r0)-,d0.s d7.s,y:(r5)+n5

faddsub.s d5,d6 d2.s,x:(r1)+ y:(r7)-,d3.s
_st2
 move d4.s,x:(r0) d5.s,y:(r7)

move d6.s,y:-(r6)
rts

;***
-8 MOTOROLA

Figure A-1 Optimized Complex FFT for the DSP96002 (sheet 8 of 20)

MO

Fi

; ------------ NORMAL RADIX-2 BUTTERFLY ----------------------------------- *
;**
**

_nr2
move r0,r4
move r1,r5

 move n0,n1
move n0,n4
move n0,n5

 move x:(r6)+n6,d9.s y:,d8.s
move y:(r1),d7.s

fmpy.s d8,d7,d3 x:(r1)+,d6.s
fmpy.s d9,d6,d0
fmpy.s d9,d7,d1 y:(r1),d7.s
fmpy d8,d6,d2 fadd.s d3,d0 x:(r0),d4.s

fmpy d8,d7,d3 faddsub.s d4,d0 x:(r1)+,d6.s

do n7,_endgrp ; loop of groups
do r7,_bfly ; butterflyloop

fmpy d9,d6,d0 fsub.s d1,d2 d0.s,x:(r4) y:(r0)+,d5.s
 fmpy d9,d7,d1 faddsub.s d5,d2 d4.s,x:(r5) y:(r1),d7.s

fmpy d8,d6,d2 fadd.s d3,d0 x:(r0),d4.s d2.s,y:(r5)+
fmpy d8,d7,d3 faddsub.s d4,d0 x:(r1)+,d6.s d5.s,y:(r4)+

_bfly
fmpy d9,d6,d0 fsub.s d1,d2 d0.s,x:(r4) y:(r0)+,d5.s
fmpy d9,d7,d1 faddsub.s d5,d2 d4.s,x:(r5) y:(r1),d7.s
fmpy d8,d6,d2 fadd.s d3,d0 x:(r0),d4.s d2.s,y:(r5)+

 fmpy d8,d7,d3 faddsub.s d4,d0 x:(r1)+n1,d6.s d5.s,y:(r4)+
fmpy d9,d6,d0 fsub.s d1,d2 d0.s,x:(r4) y:(r0)+,d5.s

 fmpy d9,d7,d1 faddsub.s d5,d2 d4.s,x:(r5) y:(r1),d7.s
 fmpy d8,d6,d2 fadd.s d3,d0 x:(r0),d4.s d2.s,y:(r5)+

move x:(r6)+n6,d9.s y:,d8.s

fmpy d8,d7,d3 faddsub.s d4,d0 x:(r1)+,d6.s d5.s,y:(r4)+
fmpy d9,d6,d0 fsub.s d1,d2 d0.s,x:(r4) y:(r0)+n0,d5.s
fmpy d9,d7,d1 faddsub.s d5,d2 d4.s,x:(r5) y:(r1),d7.s
fmpy d8,d6,d2 fadd.s d3,d0 x:(r0),d4.s d2.s,y:(r5)+n5
fmpy d8,d7,d3 faddsub.s d4,d0 x:(r1)+,d6.s d5.s,y:(r4)+n4

_endgrp
rts

endm
% MATLAB-File to generate the radix-4 twiddle factor table for the
% fast FFT-program RMIX1.ASM .
% By increasing the variable fftlength you can make tables for higher
% FFT-lengths than 1024.
%
% Karl Schwarz, Raimund Meyer 17.10.1989
% Lehrstuhl fuer Nachrichtentechnik
% Universitaet Erlangen-Nuernberg
TOROLA A-9

gure A-1 Optimized Complex FFT for the DSP96002 (sheet 9 of 20)

A

fftlength=1024 ;
fg4=fftlength/4 ;
fg4m1=fg4-1 ;
x=0:fg4m1 ;
a=bitrev(x) ;
a=a(2:fg4) ;
i=1 ;
c(i)=1 ;
s(i)=0 ;
i=i+1 ;
kon=2*pi/fftlength ;
for k=1:fg4m1

 c(i)=cos(kon*a(k)) ;
 s(i)=sin(kon*a(k)) ;

i=i+1 ;
 c(i)=cos(kon*a(k)*3) ;
 s(i)=sin(kon*a(k)*3) ;
 i=i+1 ;
 c(i)=cos(kon*a(k)*2) ;
 s(i)=sin(kon*a(k)*2) ;
 i=i+1 ;
end

c=c’ ;% real part of twiddle factor (cos)
s=s‘ ;% imaginary part of twiddle factor (sin)

end

Optimized Complex FFT for the DSP56001/2
 page 132,60
 opt nomd,mex,loc,nocex,mu

 include ‘sincosc’
 include ‘bitrevtwd56’
 include ‘gen56’
 include ‘cfft56’

; Latest revision - 14-Oct.-92

reset equ 0
start equ $40
POINTS equ 512
IDATA equ $0
COEF equ $800
ODATA equ $1000

 sincosc POINTS,COEF
 gen56 POINTS,IDATA

 opt mex
 org p:reset
 jmp start

 org p:start
 movep #0,X:$FFFE ;0 wait states
 bitrevtwd56 POINTS,COEF
 CFFT56 IDATA,COEF,POINTS,ODATA
-10 MOTOROLA

Figure A-1 Optimized Complex FFT for the DSP96002(sheet 10 of 20)

MO

F

 nop
 nop
 jmp *
 end
;
; Sine-Cosine Table Generator for rfft56.asm and cfft56.asm
;
; Last Update 10/28/92
;
sincosc macro points,coef
sincosc ident 1,2
;
; sincosc - macro to generate sine and cosine coefficient
; lookup tables for Decimation in Time complex FFT
; twiddle factors. Only points/4 coefficients
; are generted. For real FFT another points/4
; coefficients with higher freq. are created.
;
; points - number of points (2 - 32768, power of 2)
; coef - base address of sine/cosine table
; positive cosine value in X memory
; positive sine value in Y memory
;
; 8/12/92

pi equ 3.141592654
;freq equ 2.0*pi/@cvf(points*2)

; org x:coef-points/2
;count set 0
; dup points/2
; dc @cos(@cvf(count)*freq)
;count set count+1
; endm
;
; org y:coef-points/2
;count set 0
; dup points/2
; dc -@sin(@cvf(count)*freq)
;count set count+1
; endm

freq1 equ 2.0*pi/@cvf(points)

; int i,j=1,k,tmp=0;
; k=1<<(length-1);
; for(i=0;i<length;i++){
; if (integer&j) tmp=tmp|k;
; j=j<<1;
; k=k>>1;
 org x:coef
count set 0
 dup points/4
 dc @cos(@cvf(count)*freq1)
count set count+1
 endm
TOROLA A-11

igure A-1 Optimized Complex FFT for the DSP96002 (sheet 11 of 20)

A

 org y:coef
count set 0
 dup points/4
 dc @sin(@cvf(count)*freq1)
count set count+1
 endm

 endm ;end of sincosr macro

bitrevtwd56 macro POINTS,COEF
bitrevtwd56 ident 1,2
;
; bitrevtwd - macro to sort sine and cosine coefficient
; lookup tables in bit reverse order for 56156
;
; POINTS - number of points (2 - 32768, power of 2)
; COEF - base address of sine/cosine table
; negative cosine (Wr) and negative sine (Wi) in X memory
;
; Wei Chen
; July-28, 1992
;

 move #COEF,r1 ;twiddle factor start address
move #0,m0 ;bit reverse address
move #POINTS/8,n0 ;sincosr use N/4 points data,

;offset for bit rev. is N/8
 move #POINTS/4-1,n2
 move r1,r0 ;r1 ptr to normal order data
 move (r1)+ ;no swap on 1st data
 move (r0)+n0 ;r0 ptr to bitrev
 do n2,_end_bit ;does N/4-1 points swap
 move r1,x0
 move r0,b
 cmp x0,b
 jgt _swap
 move (r1)+ ;no swap but update points
 move (r0)+n0
 jmp _nothing
_swap
 move r1,r5
 move r0,r4
 move x:(r1),x0 y:(r5),y0
 move x:(r0),a y:(r4),b
 move x0,x:(r0)+n0 y0,y:(r4)
 move a,x:(r1)+ b,y:(r5)
_nothing
 nop
_end_bit
 endm ;end of bitrevtwd macro
-12 MOTOROLA

Figure A-1 Optimized Complex FFT for the DSP96002 (sheet 12 of 20)

MO

F

; Input signal for FFT rfft56.asm and cfft56.asm
;
; Last Update 10/28/92
;
gen56 macro POINTS,IDATA
;
; gen56 - macro to generate input signal for FFT test on 56001
; 2000 Hz sinewave with scaling factor POINTS in X and Y memory
;
; POINTS - number of points (2 - 32768, power of 2)
; IDATA - base address of signal
;
srate set 44100 ;Hz
ffreq set 2000 ;Hz
ppi equ 3.141592654
freq2 equ 2.0*ppi*ffreq/@cvf(srate)

 org x:IDATA
count set 0
 dup POINTS
 dc @sin(@cvf(count)*freq2)/POINTS
count set count+1
 endm

 org y:IDATA
count set 0
 dup POINTS
 dc @sin(@cvf(count)*freq2)/POINTS
count set count+1
 endm

 endm ;end of gen56 macro

;
; 512-Point, 28174 clock cycles Non-In-Place FFT.
;
; Sept. 11 92 Version 1.0
;
CFFT56 macro IDATA,COEF,POINTS,ODATA
CFFT56 ident 1,0
;
; 512 Point Complex Fast Fourier Transform Routine
; using the Radix 2, Decimation in Time, Cooley-Tukey FFT algorithm.
;
; This routine performs a 512 point complex FFT by taking advantages of
; 1). internal memory access by starting first half data at location 0,
; avoid cycle stretching;
; 2). using N/4 complex twiddle factors based on the fact that two
; consectivetwiddle factors in DIT FFT has a difference -j
; 3). trivial twiddle factors (1,0) and (0,-1) are utilized.
;
TOROLA A-13

igure A-1 Optimized Complex FFT for the DSP96002(sheet 13 of 20)

A

;
; Complex input and output data
; Real data in X memory
; Imaginary data in Y memory
; Normally ordered input data
; Bit reversed output data for 1024 real input FFT
; Coefficient lookup table
; +Cosine values in X memory
; -Sine values in Y memory
;
;
; Address pointers are organized as follows:
;
; r0 = ar,ai input pointer n0 = group offset m0 = modulo (points)
; r1 = br,bi input pointer n1 = group offset m1 = modulo (points)
; r2 = ext. data base address n2 = groups per pass m2 = 256 pt fft counter
; r3 = coef. offset each pass n3 = coefficient base addr. m3 = linear
; r4 = ar’,ai’ output pointer n4 = group offset m4 = modulo (points)
; r5 = br’,bi’ output pointer n5 = group offset m5 = modulo (points)
; r6 = wr,wi input pointer n6 = coef. offset m6 = bit reversed
; r7 = not used (*) n7 = not used (*) m7 = not used (*)
;
; * - r7, n7 and m7 are typically reserved for a user stack pointer.
;
; Alters Data ALU Registers
; x1 x0 y1 y0
; a2 a1 a0 a
; b2 b1 b0 b
;
; Alters Address Registers
; r0 n0 m0
; r1 n1 m1
; r2 n2 m2
; r3 n3 m3
; r4 n4 m4
; r5 n5 m5
; r6 n6 m6
;
; Alters Program Control Registers
; pc sr
;
; Uses 8 locations on System Stack
;
;

;--;
; Initialize pointers to r0->Ar,r1->Cr,r4->Bi,r5->Di, and r3->temp location ;
; r0,r1,r4, and r5 are modular addressing with modulo N/2 ;
;--;

 move #IDATA,r0 ;r0 -> Ar
 move r0,n3
 move #ODATA,r3 ;r3 always has ODATA
 move #COEF+1,n6 ;n6 always has COEF,(0,1) is not used
 move #POINTS/4,n0 ;offset and butterflies per group
-14 MOTOROLA

Figure A-1 Optimized Complex FFT for the DSP96002 (sheet 14 of 20)

M

 move #POINTS/2-1,m0 ;modulo addressing
move r0,r6 ;r6=0 flag reg. for trivial groups

 do #3,_end_trivial ;do three R4 passes
move n0,n1 ;pointer offset

 move n0,n4 ;pointer offset
 move n0,n5 ;
 lea (r0)+n0,r4 ;r4 -> Bi

move m0,m5
 lea (r4)+n4,r1 ;r1 -> Cr
 move m0,m1 ;
 move m0,m4
 lea (r1)+n1,r5 ;r5 -> Di
;---;
; First two passes are combined into a R4 pass without multiplication ;
; because Wr=1,Wi=0 in first R2 pass and Wr=0, Wi=-1 in 2nd R2 pass ;
; ;
; Ar’=Ar+Cr+(Br+Dr) Br’=Ar+Cr-(Br+Dr) Cr’=(Ar-Cr)+(Bi-Di) Dr’=(Ar-Cr)-(Bi-Di) ;
; Ai’=Ai+Ci+(Bi+Di) Bi’=Ai+Ci-(Bi+Di) Ci’=(Ai-Ci)+(Dr-Br) Di’=(Ai-Ci)-(Dr-Br) ;
; ;
; This two passes fully ultilize internal memory by storing input data at location 0;
; For 1024-point complex FFTs, only 256-point in internal, rest of them in ;
; external, 17+2 instructions are needed for one butterfly because first and next to;
; the last instruction in the loop takes two Icycles. Other parallel move seems to;
; take two cycles, but one of the two moves is internal, only one cycle is needed. ;
; 4.75 Icycles per R2 butterfly in the fisrt two passes. ;
; ;
; For 512-point complex FFT, 17+1 instructoins are used because first instruction in
;the loop takes only one Icycle. 4.5 Icycles per R2 butterfly. ;
; ;
; For 256 or less point complex FFT, 17 Icycles are needed. 4.25 Icycles/bfly.
;
;---;

move x:(r0)+n0,a ; a= Ar r0 -> Br
move x:(r1)+n1,b ; b= Cr,r1 -> Dr

do n0,_twopass
add a,b x:(r0)+n0,x1 y:(r5)+n5,y1 ;b=Ar+Cr,x1=Br,y1=Di,r0->Ar,r5->Ci

 subl b,a b,x:(r0) y:(r4),b ;a=Ar-Cr,save Ar+Cr temp in Ar,b=Bi
 add y1,b a,x0 y:(r4)+n4,a ;b=Bi+Di,x0=Ar-Cr,a=Bi again,

;save Ar-Cr in Dr,r4->Ai
sub y1,a b,x:(r3)x0,b ;a=Bi-Di,store Bi+Di temp in x:ODATA,b=Ar-Cr
sub a,b x:(r1),x0 ;b=Ar-Cr-(Bi-Di)=Dr’,x0=Dr,r0 -> Ar
addl b,a b,x:(r1)+n1 x0,b ;a=Ar-Cr+(Bi-Di)=Cr’,save Dr’,b=Dr,r1->Cr
sub x1,b a,x:(r1)+ x0,a ;b=Dr-Br,save Cr’,a=Dr,r1->nCr
add x1,a x:(r0)+n0,b b,y1 ;a=Dr+Br,b=Ar+Cr, y1=Dr-Br,r0->Br

 sub a,b y:(r5),y0;a=Ar+Cr-(Dr+Br)=Br’,y0=Ci
 addl b,a b,x:(r0)+n0 y:(r4),b ;a=Ar+Cr+(Dr+Br)=Ar’,save Br’,r0->Ar,b=Ai
 sub y0,b a,x:(r0)+ y:(r4),a ;b=Ai-Ci,a=Ai again, save Ar’,r0->nAr
 add y0,a x:(r3),b b,y0 ;a=Ai+Ci,y0=Ai-Ci,b=Bi+Di, r5->Ci
 add a,b ;b=Ai+Ci+(Bi+Di)=Ai’
 subl b,a y0,b b,y:(r4)+n4 ;a=Ai+Ci-(Bi+Di)=Bi’,b=Ai-Ci,save Ai’
 add y1,b y0,a a,y:(r4)+ ;b=Ai-Ci+(Dr-Br)=Ci’,a=Ai-Ci,save Bi’,r4->nBi

sub y1,a x:(r1)+n1,b b,y:(r5)+n5;a=Ai-Ci-(Dr-Br)=Di’,b=nCr, save Ci’,
move x:(r0)+n0,a a,y:(r5)+;a=nAr, save Di’,r5->nDi

_twopass
;--;
OTOROLA A-15

Figure A-1 Optimized Complex FFT for the DSP96002 (sheet 15 of 20)

A

; Do rest of trivial group by 5 Icyc butterfly
;--;

move n5,a ;n5 contains ptr to Ar already
asr a n5,r1 ;r1->Ar
move a,n1 ;get offset
move r1,r5 ;r5->Ai

 lea (r1)+n1,r4 ;r4->Bi
move #2,n4 ;for pointer
move r4,r0 ;r0->Br
move x:(r1),a y:(r4)+,b ;a=Ar,b=Bi,r4->nBi

 do n1,_no_more ;w=(0,-1), R2 butterfly
 add a,b x:(r0),x0 y:(r4)-,y0 ;b=Ar+Bi=Ar’,x0=Br,y0=nBi

subl b,a b,x:(r1)+ y:(r5),b ;a=Ar-Bi=Br’,save Ar’,b=Ai
 add x0,b a,x:(r0)+ y:(r5),a ;b=Ai+Br=Bi’,save Br’,a=Ai again

subl b,a y0,b b,y:(r4)+n4 ;a=Ai-Br=Ai’,save Bi’,b=nBi
move x:(r1),a a,y:(r5)+ ;a=nAr,save Ai’

_no_more
 move n0,a

asr a n3,r0 ;r0->IDATA
 asr a a,r2
 move a,n0 ;(points in a group)/4 after a radix
4 pass

move x:(r2)-,b ;dec r2
move r2,m0

_end_trivial
move r0,r4 ;output pointer
move n1,r1 ;r1->Br

 move r1,r5 ;r5->Bi
move x:(r0),a ;a=Ar

 move x:(r1),b ;b=Br
do n1,_extra ;w=(1,0)
add a,b y:(r5),y0 ;b=Ar+Br=Ar’, y0=Bi
subl b,a b,x:(r0)+ y:(r4),b ;a=Ar-Br=Br’,save Ar’,b=Ai

 add y0,b a,x:(r1)+ y:(r4),a ;b=Ai+Bi=Ai’,save Br’,a=Ai
 sub y0,a x:(r1),b b,y:(r4)+ ;a=Ai-Bi=Bi’,save Ai’,b=nBr
 move x:(r0),a a,y:(r5)+ ;a=nAr,save Bi’
_extra

;--;
; Remaining passes are broken down to POINTS/256 sets, ;
; each set has 256-point R2 FFT ;
; and runs on internal data and externalcoefficients. ;
;In each pass, first two groups takes advantages of trivial twiddle factors and;
;no multiplication is carried out. Remaining groups use complex twiddle factors.;
;
; ;
; Radix 2, Decimation In Time Cooley-Tukey FFT algorithm ;
; __________ ;
; | | Ar’= Ar + Wr*Br - Wi*Bi ;
; Ar,Ai ----> | Radix-2 |----> Ai’= Ai + Wi*Br + Wr*Bi ;
; Br,Bi ----> | Butterfly|----> Br’= Ar - Wr*Br + Wi*Bi = 2*Ar - Ar’ ;
; |__________| Bi’= Ai - Wi*Br - Wr*Bi = 2*Ai - Ai’ ;
; ^ ;
; | ;
; W= Wr-jWi ;
; ;
-16 MOTOROLA

Figure A-1 Optimized Complex FFT for the DSP96002 (sheet 16 of 20)

M

F

; r0->A,r1->B,r4->A’,r5->B’,r6->TF,n0=offset for B pointer,
; n2=numberof bflies in a group ;
; n3=number of groups in a pass, m3=number of pass. r2=n3 or n3+1 ;
;--;

move m2,m0 ;linear address
move m2,m1
move m2,m4
move m2,m5
move #POINTS/4,r0 ;start location of a pass

 move #4,m3 ;4 passes in first 256-point
move #POINTS/16,n0 ;offset to point to Br and Bi

 move n0,n1
 move n0,n4
 move n0,n5

move n6,r6 ;r6->COEF
move n0,n2 ;number of bflies in the first pass=R2 bfies/4

 lea (r0)+n0,r1 ;r1->Br
move r0,r4 ;r4->Ai
lea (r1)-,r5 ;r5->Bi-1 for pointer reason
jsr _body

;--;
; The second 256-point FFT has no any trivial twiddle factors, ;
; three nested loops do it ;
;--;
 move #256,r0 ;start location of first pass in 2nd 256
 move #5,m3 ;5 passes in second 256-point

move #POINTS/8,n0 ;offset to point to Br and Bi
move #COEF+1,r6 ;twiddle factor pointer
move n0,n1
move n0,n4

 move #IDATA,r4 ;r4->A’ =IDATA
move n0,n5

 lea (r4)+n4,r5 ;r5->B’
 lea (r0)+n0,r1 ;r1->B
 move x:(r5)-,a ;r5->B’-1 for pointer reason

jsr _body
jmp _end_FFT

;--;
; All subroutines
;--;
_body
 move #1,n3 ;number of groups in a pass

move n3,r2 ;copy of n3
 jset #0,m3,_set_grp;first 256-point has number of group 1,3,7,15,..
 move #2,r2
_set_grp
 do m3,_inner_loop
 jsr _inner_pass
 move n0,a
 asr a #IDATA,r0;r0=IDATA
 move a,n0 ;n0=offset of B
 move r2,a

asl a n0,n1
 move a,r2 ;r2=r2*2
OTOROLA A-17

igure A-1 Optimized Complex FFT for the DSP96002 (sheet 17 of 20)

A

 asr b r2,n3 ;n3=number of groups in second 256
 jset #0,m3,_inner_set ;set up start address,for 2nd 256-point r0 is already ok

lea (r2)-,n3 ;n3=number of groups in first 256
 move n4,a
 asl a n6,r6 ;for 1st 256, TF always starts at first location

move a,r0 ;r0=start location of first 256-point
_inner_set

move n0,n4
move n0,n5
move n0,r4

 lea (r0)+n0,r1 ;r1->B
move r0,r4 ;r4->A’

 lea (r1)-,r5 ;r5->B’
_inner_loop

;---;
; End inner loop
;---;

move #IDATA,r0
move #32,n2 ;n2=number of groups in the next to last

;pass for 1st 256
jset #0,m3,_no_set ;set up start address of TF,for 2nd

;256-point r6 is already ok
 move #COEF,n6 ;now n6 -> COEF
 move n6,r6 ;r6=COEF
 lea (r0)+n0,r1 ;r1->Br
 move r0,r4 ;r4->Ai
_no_set
 move #-1,r5 ;r5->Bi
 move #3,n0
 move n0,n1
 move n0,n4
 move n0,n5
 jsr _next_last ;do the pass next to last
;---;
; End _next_last pass
;--
;

move #IDATA,r0 ;r0->IDATA
move r3,r4 ;r4->A’,output ptr -> external memory

 jclr #0,m3,_add_offset ;set up output address for 2nd 256-point
 move #256,n3

move r6,n6 ;start address of TF for 2nd 256
lea (r3)+n3,r4

_add_offset
lea (r0)+,r1 ;r1->B
lea (r4)-,r5 ;r5->B’

 move #64,n2 ;number of blies in the last pass
 move #2,n0

move n0,n1
move n0,n4
move n0,n5
move n6,r6 ;r6=COEF
jsr _last
rts
-18 MOTOROLA

Figure A-1 Optimized Complex FFT for the DSP96002 (sheet 18 of 20)

M

_inner_pass
 do n3,_end_grp ;do groups in a pass
 move x:(r5),a ;for pointer reason,a=something
 move x:(r6),x0 y:(r0),b ;x0=Wr,b=Ai

move x:(r1),x1 y:(r6)+,y0 ;x1=Br,y0=Wi
do n0,_end_bfy1 ;Radix 2 DIT butterfly kernel

;with y0=Wi,x0=Wr
mac -x1,y0,b y:(r1)+,y1 ;b=Ai-BrWi,y1=Bi, r1->nBi
macr x0,y1,b a,x:(r5)+ y:(r0),a ;b=Ai-BrWi+BiWr=Ai’,

;save prev.Br’,a=Ai
subl b,a x:(r0),b b,y:(r4) ;a=2Ai-Ai’=Bi’,b=Ar,save Ai’
mac x1,x0,b x:(r0)+,a a,y:(r5) ;b=Ar+BrWr,a=Ar,save Bi’,r0->nAi
macr y1,y0,b x:(r1),x1 ;b=Ar+BrWr+BiWi=Ar’,x1=nBr

 subl b,a b,x:(r4)+ y:(r0),b ;a=2Ar-Ar’=Br’,
;save Ar’,b=nAi,r4->nAr

_end_bfy1
move a,x:(r5)+n5 y:(r1)+n1,b ;save preve. Br’ inc r5 and r1
move x:(r4)+n4,a y:(r0)+n0,b ;inc r0,r4
move x:(r1),x1 ;x1=nGBr

 move x:(r5),a y:(r0),b ;for pointer reason,
;a=something,b=nGAr

do n0,_end_bfy2 ;W=-j*W
mac -x1,x0,b y:(r1)+,y1 ;b=Ai-BrWr,y1=Bi,r1->nBi
macr -y0,y1,b a,x:(r5)+y:(r0),a ;b=Ai-BrWr-BiWi=Ai’,

;save prev. Br’,a=Ai
subl b,a x:(r0),b b,y:(r4) ;a=2Ai-Ai’=Bi’,b=Ar,save Ai’
mac -x1,y0,b x:(r0)+,a a,y:(r5) ;b=Ar-BrWi,a=Ar,save Bi’,r0->nAi
macr y1,x0,b x:(r1),x1 ;b=Ar-BrWi+BiWr=Ar’,x1=nBr
subl b,a b,x:(r4)+ y:(r0),b ;a=2Ar-Ar’=Br’,

;save Ar’,b=nAi,r4->nAr
_end_bfy2

move a,x:(r5)+n5 y:(r1)+n1,b ;save preve. Br’ inc r5 and r1
move x:(r4)+n4,a y:(r0)+n0,b ;inc r0,r4

_end_grp
rts

_next_last
move x:(r5),a y:(r0),b ;a=something,b=Ai
move x:(r1),x1 y:(r6),y0 ;x1=Br,y0=Wi
do n2,_n_last ;do the pass next to last,

;internal to internal
mac -x1,y0,b x:(r6)+,x0 y:(r1)+,y ;b=Ai-BrWi,x0=Wr,y1=Bi, r1->nBi
macr x0,y1,b a,x:(r5)+n5 y:(r0),a ;b=Ai-BrWi+BiWr=Ai’,

;save prev. Br’,a=Ai
subl b,a x:(r0),b b,y:(r4) ;a=2Ai-Ai’=Bi’,b=Ar,save Ai’
mac x1,x0,b x:(r0)+,a a,y:(r5) ;b=Ar+BrWr,a=Ar,save Bi’,r0->nAi
macr y1,y0,b x:(r1),x1 ;b=Ar+BrWr+BiWi=Ar’,x1=nBr
subl b,a b,x:(r4)+ y:(r0),b ;a=2Ar-Ar’=Br’,

;save Ar’,b=nAi,r4->nAr

mac -x1,y0,b y:(r1)+n1,y1 ;b=Ai-BrWi,y1=Bi, r1->nGBi
macr x0,y1,b a,x:(r5)+ y:(r0),a ;b=Ai-BrWi+BiWr=Ai’,

;save prev. Br’,a=Ai
subl b,a x:(r0),b b,y:(r4) ;a=2Ai-Ai’=Bi’,b=Ar,save Ai’
mac x1,x0,b x:(r0)+n0,a a,y:(r5) ;b=Ar+BrWr,a=Ar,

;save Bi’,r0->nGAi
OTOROLA A-19

Figure A-1 Optimized Complex FFT for the DSP96002 (sheet 19 of 20)

A

macr y1,y0,b x:(r1),x1 ;b=Ar+BrWr+BiWi=Ar’,x1=nGBr
subl b,a b,x:(r4)+n4 y:(r0),b ;a=2Ar-Ar’=Br’,save Ar’,

;b=nGAi,r4->nGAr

mac -x1,x0,b y:(r1)+,y1 ;b=Ai-BrWr,y1=Bi,r1->nGBi
macr -y0,y1,b a,x:(r5)+n5y:(r0),a ;b=Ai-BrWr-BiWi=Ai’,

;save prev. Br’,a=Ai,r5->nGBi
subl b,a x:(r0),b b,y:(r4) ;a=2Ai-Ai’=Bi’,b=Ar,save Ai’
mac -x1,y0,b x:(r0)+, a,y:(r5) ;b=Ar-BrWi,a=Ar,save Bi’,r0->nGAi
macr y1,x0,b x:(r1),x1 ;b=Ar-BrWi+BiWr=Ar’,x1=nBr
subl b,a b,x:(r4)+ y:(r0),b ;a=2Ar-Ar’=Br’,

;save Ar’,b=nAi,r4->nGAr

mac -x1,x0,b y:(r1)+n1,y1 ;b=Ai-BrWr,y1=Bi,r1->nGBi
macr -y0,y1,b a,x:(r5)+ y:(r0),a ;b=Ai-BrWi-BiWr=Ai’,

;save prev. Br’,a=Ai,r5->Bi
subl b,a x:(r0),b b,y:(r4) ;a=2Ai-Ai’=Bi’,b=Ar,save Ai’
mac -x1,y0,b x:(r0)+n0,a a,y:(r5) ;b=Ar-BrWi,a=Ar,

;save Bi’,r0->nGAi
macr y1,x0,b x:(r1),x1 y:(r6),y0 ;b=Ar-BrWi+BiWr=Ar’,

;x1=nBr,y0=nWi
subl b,a b,x:(r4)+n4 y:(r0),b ;a=2Ar-Ar’=Br’,save Ar’,

;b=nAi,r4->nGAr

_n_last
move a,x:(r5)
rts

_last
move x:(r5),a y:(r0),b ;a=something,b=Ai
move x:(r1),x1y:(r6),y0 ;x1=Br,y0=Wi
do n2,_end_last ;do last pass, internal to external
mac -x1,y0,b x:(r6)+,x0 y:(r1)+n1,y1 ;b=Ai-BrWi,x0=Wr,y1=Bi, r1->nGBi
macr x0,y1,b a,x:(r5)+n5 y:(r0),a ;b=Ai-BrWi+BiWr=Ai’,

;save prev. Br’,a=Ai
subl b,a x:(r0),b b,y:(r4) ;a=2Ai-Ai’=Bi’,b=Ar,save Ai’
mac x1,x0,b x:(r0)+n0,a a,y:(r5) ;b=Ar+BrWr,a=Ar,save Bi’,r0->nGAi
macr y1,y0,b x:(r1),x1 ;b=Ar+BrWr+BiWi=Ar’,x1=nGBr
subl b,a b,x:(r4)+n4 y:(r0),b ;a=2Ar-Ar’=Br’,

;save Ar’,b=nGAi,r4->nGAr

mac -x1,x0,b y:(r1)+n1,y1 ;b=Ai-BrWr,y1=Bi,r1->nGBi
macr -y0,y1,b a,x:(r5)+n5 y:(r0),a ;b=Ai-BrWr-BiWi=Ai’,

;save prev. Br’,a=Ai,r5->Bi
subl b,a x:(r0),b b,y:(r4) ;a=2Ai-Ai’=Bi’,b=Ar,save Ai’
mac -x1,y0,b x:(r0)+n0,a a,y:(r5) ;b=Ar-BrWi,a=Ar,save Bi’,r0->nGAi
macr y1,x0,b x:(r1),x1 y:(r6),y0;b=Ar-BrWi+BiWr=Ar’,

;x1=nBr,y0=nWi
subl b,a b,x:(r4)+n4 y:(r0),b ;a=2Ar-Ar’=Br’,

;save Ar’,b=nAi,r4->nGAr
_end_last
 move a,x:(r5)

rts
_end_FFT

endm
-20 MOTOROLA

Figure A-1 Optimized Complex FFT for the DSP96002 (sheet 20 of 20)

M

APPENDIX B

Real-Valued Input FFT
B.1 Faster real FFT for the DSP96002
page 132,60,1,1
opt mex

;***
;Motorola Austin DSP Operation 20 August 1992
;***
;Test program for DSP96002 rfft96.asm
;**
; 1024 real-valued inputs
; Maximum sample rate: 0.58 ms at 40.0 MHz
; Memory Size: Prog:141 + 32 words ;
; Data:2*1024 words(idata+odata) + 256 words (twiddle factor)
; Number of clock cycles: 23200 (11600 instruction cycles)
; Clock Frequency: 40.0MHz
; Instruction cycle time: 50.ns
;**
;
; Real-Valued Input Radix 2 Cooley-Tukey Decimation in Time FFT
;
;
; normally ordered input data
; normally ordered output data
;

;**
; Equates Section
;**

RESET equ $00000000 ; reset isr
MAIN equ $00000100 ; main routine

points equ 512 ;points=real data number /2
passes equ 9 ;log2(points)=passes
idata equ $0
odata equ $1000
coef equ $800
OTOROLA B-1

Figure B-1 Faster real FFT for the DSP96002 (sheet 1 of 4)

B-

BCRA equ $FFFFFFFE ; port a bus control reg
BCRB equ $FFFFFFFD ; port b bus control reg
PSR equ $FFFFFFFC ; port select reg

include ‘sincosf.asm’ ;using external cos and sin table,
;if use internal ROM, delete this line

 include ‘gen96.asm’
include ‘cfft96.asm’

 include ‘split96.asm’

;***
;***

sincosf points,coef ;twiddle factor for split is a full cycle sin and cos
 gen96 points,idata

org p:MAIN
movep #$0,x:BCRA ; no wait states for portb P,X,Y,I/O
movep #$0,x:BCRB ; ...don’t care about page fault
movep #$00FF00FF,x:PSR ; external X:memory on Port-B

 ; Y:memory on Port-A
bclr #$3,omr ; disable the internal data ROMs

CFFT96 points,passes,idata,coef,odata

 SPLIT96 points,coef,odata
nop
nop
jmp *

END

;
; Sine-Cosine Table Generator for rfft96.asm
;
; Last Update 5 August 92
;
sincosf macro points,coef
sincosf ident 1,2
;
; sincosf- macro to generate sine and cosine coefficient
; lookup tables for Decimation in Time FFT
; twiddle factors.
;
; points - number of points (2 - 32768, power of 2)
; coef - base address of sine/cosine table
; positive cosine value in X memory
; positive sine value in Y memory
;
; 8/12/92

pi equ 3.141592654
freq equ 2.0*pi/@cvf(points*2)

 org x:coef-points/2
2 MOTOROLA

Figure B-1 Faster real FFT for the DSP96002 (sheet 2 of 4)

MO

count set 0
 dup points/2
 dc @cos(@cvf(count)*freq)
count set count+1
 endm

 org y:coef-points/2
count set 0
 dup points/2
 dc -@sin(@cvf(count)*freq)
count set count+1

endm

freq1 equ 2.0*pi/@cvf(points)

 org x:coef
count set 0
 dup points/2
 dc -@cos(@cvf(count)*freq1)
count set count+1
 endm

 org y:coef
count set 0
 dup points/2
 dc -@sin(@cvf(count)*freq1)
count set count+1
 endm

 endm ;end of sincosf macro

;**
;
; Split N/2 Complex FFT(Hn) for N real FFT(Fn)
;
SPLIT96 macro points,coef,odata
SPLIT96 ident 1,2
;
; Fi=0.5(Hi+Hn/2-i*)-0.5j(Hi-Hn/2-i*)W i=0,1,,,N-1
;
; points is real data /2
;

move #points-1,n0 ;number of complex FFT input data
 move #points/2-1,n4 ;loop counter

move #odata,r0 ;r0 ptr to A=Hi
move r0,r4 ;r4 ptr to A’
move #-1,m6 ;linear address
move m6,m5 move m6,m4
move #coef-points/2+1,r6 ;twiddle factor start location
lea (r0)+n0,r1 ;r1 ptr to B= Hn/2-i
move r1,r5 ;r5 ptr to B’
move x:(r0)+,d0.s y:,d1.s ;DC=Ar0+Ai0

 faddsub.s d0,d1 x:(r0)+,d2.s y:,d3.s ;d0=Niquest=Ar0-Ai0,
;d1=DC,d2=Ar,d3=Ai

move d1.s,x:(r4)+ d0.s,y: ;save DC and Niq
TOROLA B-3

Figure B-1 Faster real FFT for the DSP96002 (sheet 3 of 4)

B

move x:(r1)-,d7.s y:,d1.s ;d7=Br,d1=Bi
faddsub.s d7,d2 x:(r6)+,d8.s y:,d9.s ;d7=Br-Ar=-H2i,

;d2=Ar+Br=H1r,d8=Wr,d9=Wi<0
fmpy d9,d7,d0 faddsub.sd3,d1 d2.s,d5.s;d0=Wi*H2i,d3=Ai-Bi=H1i,

;d1=Ai+Bi=H2r,d5=H1r
fmpy.sd8,d1,d1 d1.s,d6.s ;d1=Wr*H2r,d6=H2r
move #0.5,d4.s ;d4=0.5

;--
; H1r=Ar+Br, H1i=Ai-Bi, H2r=Ai+Bi, H2i=Ar-Br
; Ar’=(H1r+Wr*H2r-Wi*H2i)/2
; Br’=(H1r-(Wr*H2r-Wi*H2i))/2
; Ai’=(Wi*H2r-Wr*H2i+H1i)/2
; Bi’=((Wi*H2r-Wr*H2i)-H1i)/2
;
;--

do n4,_end_split ;do points/2-1
fmpy d8,d7,d2 fsub.s d0,d1 x:(r1),d7.s ;d2=-Wr*H2i, d1=Wr*H2r-

;Wi*H2i, d7=nBr
fmpy d9,d6,d0 faddsub.sd5,d1 x:(r6)+,d8.s y:,d9.s

;d0=Wi*H2r, d1=2*Ar’,d5=2*Br’,d8=nWr,d9=nWi
fmpy d4,d5,d2 fadd.s d2,d0 x:(r0),d1.s d1.s,d6.s

;d2=Br’,d0=Wi*H2r-Wr*H2i, d6=2*Ar’,d1=nAr
fmpy d4,d6,d2 faddsub.s d0,d3 d2.s,x:(r5) ;d2=Ar’, d3=2*Ai’,

;d0=2*Bi’,save Br’
fmpy.sd4,d3,d3 d2.s,x:(r4) y:(r1)-,d2.s ;d3=Ai’,save Ar’,d2=nBi
fmpy d4,d0,d0 faddsub.s d7,d1 d3.s,d6.s y:(r0)+,d3.s

;d0=Bi’,d1=nAr+nBr,d7=nBr-nAr=nH2i,d3=nAi
fmpy d9,d7,d0 faddsub.sd3,d2 d1.s,d5.sd0.s,y:(r5)

;d0=nWi*nH2i,d2=nAi+nBi=nH2r,d3=nAi-nBi,save Bi’
fmpy.s d8,d2,d1 d2.s,d6.sd6.s,y:(r4)+ ;d1=nWr*nH2r,d6=nH2r,save Ai’

_end_split
move y:(r4),d0.s ;conjugate of last Ai element
fneg.s d0
move d0.s,y:(r4)

endm ;split
-4 MOTOROLA

Figure B-1 Faster real FFT for the DSP96002 (sheet 4 of 4)

M

B.2 Real FFT for DSP56001/2
;
; This program originally available on the Motorola DSP bulletin board.
; It is provided under a DISCLAMER OF WARRANTY available from
; Motorola DSP Operation, 6501 Wm. Cannon Drive W., Austin, Tx., 78735.
;
; 1024-Point Real Input Non-In-Place FFT. (test program)
; 34886 clock cycles. Sampling period can be 0.87215ms @ 40 Mhz clock rate
; Use 292 program words,4*512 words for data and 2*(128+256) words for twiddle
; factor
;
; Store EVEN index input data to X memory and ODD index input data to Y.
; Assume scaling down at input, i.e. all input data are divided by 1024 before FFT.
; The outputs of this real input FFT are twice larger than true values. If the
; original FFT values are desired, scaling up factor should be 512.
;
; ‘sincosr’ generates twiddle factor for FFT.
; ‘bitrevtwd56’ sorts the twiddle factor in bit-reverse order.
; The generation and reordering of twiddle factors can be done off-line.
; ‘gen56’ generates input test signals, delete it if you provide input.
; ‘CFFT56’ does 512 points FFT.
; ‘SPLIT56’ extractes 512-point complex values for real input FFT.
; Only DC to Niquest frequency are calculated by this program.
; Input data always starts at location IDATA=0, a 512-complex buffer starts at any
; external memory location, ODATA, is required to hold 256-point output data
; groups.
;
; The output of the FFT replace the inputs started at IDATA.
; X:IDATA contains DC*2 and Y:IDATA contains Niquest*2.
;
;
RFFT56T ident 1,0

page 132,60
 opt nomd,nomex,loc,nocex,mu

include ‘sincosr’
 include ‘bitrevtwd56’

include ‘gen56’
include ‘cfft56’
include ‘split56’

;
;
; Latest revision - Nov. 11 92

reset equ 0
start equ $40
POINTS equ 512
IDATA equ $00
ODATA equ $1000
COEF equ $800

sincosr POINTS,COEF
gen56 POINTS,IDATA
OTOROLA B-5

Figure B-2 Real FFT for DSP56001/2 (sheet 1 of 5)

B-

opt mex
org p:reset
jmp start

org p:start
movep #0,x:$fffe ;0 wait states
bitrevtwd56 POINTS,COEF
CFFT56 IDATA,COEF,POINTS,ODATA
SPLIT56 IDATA,COEF,POINTS,ODATA

 end

;
; Sine-Cosine Table Generator for rfft56.asm
;
; Last Update 11/11/92
;
sincosr macro points,coef
sincosr ident 1,2
;
; sincosr- macro to generate sine and cosine coefficient
; lookup tables for Decimation in Time real FFT
; twiddle factors. Only points/4 coefficients
; are generted. For real FFT another points/4
; coefficients with higher freq. are created.
;
; points - number of points (2 - 32768, power of 2)
; coef - base address of sine/cosine table
; positive cosine value in X memory
; positive sine value in Y memory
;
; 8/12/92

pi equ 3.141592654
freq equ 2.0*pi/@cvf(points*2)

org x:coef-points/2
count set 0
 dup points/2

dc @cos(@cvf(count)*freq)
count set count+1
 endm

 org y:coef-points/2
count set 0
 dup points/2
 dc -@sin(@cvf(count)*freq)
count set count+1
 endm

freq1 equ 2.0*pi/@cvf(points)

 org x:coef
count set 0
6 MOTOROLA

Figure B-2 Real FFT for DSP56001/2 (sheet 2 of 5)

M

 dup points/4
 dc @cos(@cvf(count)*freq1)
count set count+1

endm

 org y:coef
count set 0
 dup points/4
 dc @sin(@cvf(count)*freq1)
count set count+1

endm

endm ;end of sincosr macro

bitrevtwd56 macro POINTS,COEF
bitrevtwd56 ident 1,2
;
; bitrevtwd - macro to sort sine and cosine coefficient
; lookup tables in bit reverse order for 56156
;
; POINTS - number of points (2 - 32768, power of 2)
; COEF - base address of sine/cosine table
; negative cosine (Wr) and negative sine (Wi) in X memory
;
; Wei Chen
; July-28, 1992
;
 move #COEF,r1 ;twiddle factor start address
 move #0,m0 ;bit reverse address
 move #POINTS/8,n0 ;sincosr use N/4 points data,

;offset for bit rev. is N/8
move #POINTS/4-1,n2
move r1,r0 ;r1 ptr to normal order data

 move (r1)+ ;no swap on 1st data
 move (r0)+n0 ;r0 ptr to bitrev

do n2,_end_bit ;does N/4-1 points swap
move r1,x0
move r0,b

 cmp x0,b
 jgt _swap
 move (r1)+ ;no swap but update points
 move (r0)+n0
 jmp _nothing
_swap
 move r1,r5
 move r0,r4
 move x:(r1),x0 y:(r5),y0
 move x:(r0),a y:(r4),b

move x0,x:(r0)+n0 y0,y:(r4)
 move a,x:(r1)+ b,y:(r5)
_nothing
 nop
_end_bit
 endm ;end of bitrevtwd macro
OTOROLA B-7

Figure B-2 Real FFT for DSP56001/2 (sheet 3 of 5)

B

;**
;
; Split N/2 Complex FFT(Hn) for N real FFT(Fn)
;
SPLIT56 macro IDATA,COEF,POINTS,ODATA
SPLIT56 ident 1,0
;
;
; Fi=0.5(Hi+Hn/2-i*)-0.5j(Hi-Hn/2-i*)W i=0,1,,,N-1
;
; Bit reverse input, Normal order output
; This macro amplifies coefficients of FFT by 2.
; If absolute values of spectrum are desired, then scaling up factor is 2^(N-1),
; assuming inputs are scaled by 2^N before complex FFT.
; POINTS is the number of real data /2
; COEF is twiddle factor location other than TF used in complex FFT (see sincosr)
;
;

move #POINTS-1,n0 ;number of complex FFT input data -1
move #POINTS/2-1,n2 ;loop counter
move #ODATA,r0 ;r0 ptr to Ar=Hi
move #COEF-POINTS/2+1,r2 ;twiddle factor start location

 move r2,r6 ;r6 -> Wi
 lea (r0)+n0,r5 ;r5 ptr to Br & Bi

move #IDATA,r3 ;r3 pointer for A’
 move r3,r4

move n0,r1 ;r1 ptr for B’, r1=B
 move #POINTS/2,n0

move n0,n5
move m5,m3 ;m3 and m1 linear address
move m5,m1
move #0,m0 ;bit reverse address

 move m0,m5 ;bit reverse address
 move x:(r0),b ;b=Ar0

move x:(r5),x1 y:(r0),a ;a=Ai0,x1=Br
add a,b x:(r1)+,x0 ;b=Ar0+Ai0=DC, for ptr reason inc r1
subl b,a r3,r4 ;r4 ptr to temp location
asl b y:(r1),a ;a=something
asl a b,x:(r3)+ y:(r5),b ;a=Niquist=Ar0-Ai0, save DC,b=Bi

 move a,y:(r0)+n0 ;save Niq in y:ODATA temp,
 move y:(r0),y0 ;y0=Ai

do n2,_end_split
add y0,b y0,a a,y:(r1)- ;b=Ai+Bi=H2r,a=Ai, save prev. Bi’
subl b,a x:(r0),b b,y1 ;a=Ai-Bi=H1i, b=Ar, y1=H2r
sub x1,b x:(r0)+n0,a a,y:(r4) ;b=Ar-Br=H2i,a=Ar again,

;save H1i temp,r0->nA
 subl b,a x:(r2)+,x1 y:(r6)+,y0 ;a=Ar+Br=H1r,x1=Wr,y0=Wi

mac x1,y1,a b,x0 a,y:(r5) ;a=H1r+Wr*H2r,x0=H2i,save H1r temp
macr y0,x0,a y:(r5)-n5,b ;a=H1r+Wr*H2r-Wi*H2i=Ar’, b=H1r
subl a,b a,x:(r3) y:(r4),a ;b=H1r-(Wr*H2r-Wi*H2i)=Br’,

;a=H1i,save Ar’
mac -x1,x0,a b,x:(r1) y:(r5),b ;a=H1i-Wr*H2i,save Br’,b=nBi
-8 MOTOROLA

Figure B-2 Real FFT for DSP56001/2 (sheet 4 of 5)

M

macr y1,y0,a y:(r4),y0 ;a=Wi*H2r-Wr*H2i+H1i=Ai’,y0=H1i
again

sub y0,a x:(r5),x1 a,y:(r3)+ ;a=Wi*H2r-Wr*H2i, x1=nBr,save
Ai’

sub y0,a y:(r0),y0 ;a=Wi*H2r-Wr*H2i-H1i=Bi’,y0=nAi
_end_split

move y0,a a,y:(r1) ;save last Bi’,conjugate last Ai
neg a #ODATA,r5
move #IDATA,r0

 move a,y:(r4)
move y:(r5),a
move a,y:(r0) ;move Niq. back

 endm ;split56
OTOROLA B-9

Figure B-2 Real FFT for DSP56001/2 (sheet 5 of 5)

Motorola reserves the right to make changes without further notice to any products here-
in. Motorola makes no warranty, representation or guarantee regarding the suitability of
its products for any particular purpose, nor does Motorola assume any liability arising out
of the application or use of any product or circuit, and specifically disclaims any and all
liability, including without limitation consequential or incidental damages. “Typical” pa-
rameters can and do vary in different applications. All operating parameters, including
“Typicals” must be validated for each customer application by customer’s technical ex-
perts. Motorola does not convey any license under its patent rights nor the rights of oth-
ers. Motorola products are not designed, intended, or authorized for use as components
in systems intended for surgical implant into the body, or other applications intended to
support or sustain life, or for any other application in which the failure of the Motorola
product could create a situation where personal injury or death may occur. Should Buyer
purchase or use Motorola products for any such unintended or unauthorized application,
Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affili-
ates, and distributors harmless against all claims, costs, damages, and expenses, and
reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury
or death associated with such unintended or unauthorized use, even if such claim alleges
that Motorola was negligent regarding the design or manufacture of the part. Motorola

and

B

 are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/
Affirmative Action Employer.

©

Motorola, Inc. 1993

	Cover
	Preface
	Introduction to the Fourier Integral
	The Discrete Fourier Transform
	The Fast Fourier Transform
	Complex FFT on the Motorola DSP Family
	Optimizing Performance of the FFT
	Real-Valued Input FFT Algorithm
	Two Dimensional Fourier and Cosine Transforms
	Competitive Analysis of FFT Performances
	Conclusion
	Appendix A - Optimized Complex FFT
	Appendix B - Real-Valued Input FFT

