
AP-610

APPLICATION
NOTE

Flash Memory
In-System Code and
Data Update Techniques

BRIAN DIPERT
SENIOR TECHNICAL
MARKETING ENGINEER

February 1995

I
Order Number: 292163-002

Information in this document is provided solely to enable use of Intel products. Intel assumes no liability whatsoever, including
infringement of any patent or copyright, for sale and use of Intel products except as provided in Intel's Terms and Conditions of
Sale for such products.

Intel Corporation makes no warranty for the use of its products and assumes no responsibility for any errors which may appear
in this document nor does it make a commitment to update the information contained herein.

Intel retains the right to make changes to these specifications at any time, without notice.

Contact your local Intel sales office or your distributor to obtain the latest specifications before placing your product order.

MDS is an ordering code only and is not used as a product name or trademark of Intel Corporation.

Intel Corporation and Intel's FASTPATH are not affiliated with Kinetics, a division of Excelan, Inc. or its FASTPATH trademark
or products.

'Other brands and names are the property of their respective owners.

Additional copies of this document or other Intel literature may be obtained from:

Intel Corporation
Literature Sales
P.O. Box 7641
Mt. Prospect, I L 60056-7641

or call 1-800-879-4683

@INTELCORPORATION 1995 CG-041493

1.0 INTRODUCTION

The ability to update flash memory contents with the
system operational distinguishes flash memory from
other nonvolatile technologies such as ROM and
EPROM. This capability is key for using flash memory
in a wide range of applications:

• Code storage/execution (code DRAM and ROM
replacement),

• Data storage (EEPROM, battery RAM emulation,
etc.), and

• File storage (flash-based solid state drive)

System software implementations for in-system code
and data update must comprehend algorithm execution
during flash memory program/erase. Implementations
also vary according to the level of system code/data
access required during update.

This application note discusses these topics and gives
general recommendations that can be tailored to specific
system needs. It focuses on Intel's Boot Block,
FlashFile™ and Embedded Flash RAM memories which
have on-chip program/erase automation and block
erasure. However, many of the concepts can be equally
applied to Intel's bulk erase flash memories.

2.0 GENERAL INFORMATION

Definition of Terms

Design engineers can select from up to three unique
approaches to update stored flash memory information.
Before proceeding, let's define these terms to make it

New Codel ,--__J

Data

System
CPU

AP-610

clear what we will and won't be discussing in this
application note:

1. In-System Write (ISW): As first described earlier,
during an in-system update the system is powered up
and either partially or fully operational. The system
CPU (see Figure 1) executes the flash memory
program/erase algorithms and obtains new code/data
from one of several sources (serial or parallel port,
floppy or hard disk drive, modem, etc.).

2. On-Board Programming (OBP): In this approach,
the flash memory is also installed on the system
board. However, OBP does not use the system CPU
and, in fact, commonly powers down the processor
or holds it in a HALT mode. The flash memory
connects to an off-board "computer" such as a board
tester or prom programmer. This off-board
intelligence provides the necessary commands and
data to erase and reprogram the flash memory. This
technique is covered in other documentation
available from Intel Corporation. See the Additional
Information section of this application note.

3. PROM Programming: This approach was first made
popular back in the days of PROMs and EPROMs.
The flash memory is initially programmed, and is
reprogrammed, by removing it from the system
board and socketing it in dedicated hardware called a
PROM programmer. Intel works closely with a wide
range of PROM programmer vendors to ensure
support for all of its flash memory products. See the
Additional Information section of this application
note for details.

Flash
I\IIemory

Figure 1. The System CPU Controls the In-System-Write Flash Memory Update

I

AP-610

Read-While-Write

The fundamental concept to understand when
considering in-system updates is that of read-while
write. Stated simply, it is currently NOT possible with
any of today's flash memory technology alternatives to
read from the flash memory array while simultaneously
programming or erasing it. There are several basic
reasons for this:

a. During program or erase, the flash memory row
and column decode architecture results in high
voltages present throughout the array. Isolating
these voltages to a specific byte/word or block
would have excessive die size and (therefore)
silicon cost impacts given that inexpensive
system implementation alternatives exist. Keep
reading for details!

b. Intel's Boot Block, FlashFile and Embedded
Flash RAM memories all have on-chip
program/erase automation. After these flash
memories receive program or erase command
sequences, they automatically transition to a
mode where they provide status register
information (versus array or other data). This
transition quickly provides the system with the
information it needs to determine program/erase
status, minimizing system software overhead and
maximizing effective write/erase performance.

Flash memory array reads (to access code or data) CAN
take place at any time that the flash memory automation
is READY (either completed or suspended). Figure 2
gives a simple flash memory update algorithm example.
It shows portions of the code that must be executed off
chip, and shaded areas show "windows" where the flash
memory array can be accessed, if needed, by writing the
Read Array command and then reading from desired
locations. These "windows" will be described in detail
in Section 4.0. Thanks to on-chip automation, the
amount of code executed off-chip to actually
program/erase the flash memory is very small. Overhead
needed to obtain new code/data from the system varies
with the method chosen.

2

Figure 2. Simple Code/Data Block Update
Algorithm Shows Shaded "Window"

Opportunities for Array Reads

I

What Amount of System Functionality Is
Needed During Update?

The answer to the above question is key to
understanding the amount of software architecting
needed to integrate flash memory into your design. Use
the following question as a reference for where to
continue reading:

Q. Can you dedicate the system exclusively to the flash
memory update and ignore all other non-related
interrupts? Said another way, can you take the system
"off-line" during flash memory updates?

AI. If your answer is "yes," the software implementation
is very straightforward. See Sections 3.0 and 5.0.

A2. If your answer is "no," the specific software
implementation varies. One approach uses redundant
system memory to separate the execution and
storage/backup regions. Another technique eliminates
this redundancy but depends on an understanding of
interrupt latency, interrupt frequency and its variability
with time. See Sections 4.0 and 5.0.

Dedicated Blocks for System Boot Code:
Recovery from System Power Loss or Reset
during Flash Memory Update

Several of the approaches described in Sections 3.0 and
4.0 that follow use system RAM to execute the flash
memory update algorithms. This brings up a logical
question; what happens if the system resets or loses
power in the middle of a flash memory update? In this
case, system RAM contents will be invalid, including
the flash memory update code. The byte being
programmed or the block being erased when system
reset/power loss occurs will be left in an indeterminate
state and will need to be reprogrammed/erased.

Flash memory's blocked architecture provides
protection for system boot code and enables the system
to recover fully from incomplete code updates. All boot
block components as well as 16-/32-Mbit FlashFile and
embedded flash RAM memories also allow hardware
"lock" of boot code for additional protection. This boot
code, after minimally initializing system hardware,
should execute a checksum verify of the remainder of
the flash memory. If this checksum "passes," system
boot can continue. If a checksum "fail" is obtained, this
reflects an incomplete program or erase, and the system
should alert the user and execute a repeat update. Figure
3 flowcharts this algorithm.

I

AP-610

c'-__ s_ta,.....rt __ ~)
+

(Continue Normal Boot)

Figure 3. Checksum Validation Confirms Flash
Memory Integrity

Intel's 16-/32-Mbit FlashFile and embedded flash RAM
memories indicate via Status Register feedback whether
an erase in progress has been aborted by power loss or
hardware power-down. The 16-Mbit Flash Product
Family User's Manual covers this topic in detail. See the
Additional Information section of this application note.

3.0 "OFF-LINE" FLASH MEMORY
UPDATES

Reviewing the Q-and-A discussion earlier, you should
be reading this section if you can ensure that the system
will receive no interrupts that will require flash memory
array access during the update process. Examples of this
scenario are numerous:

• Cellular phones that are placed in a special
"maintenance" mode for updates.

• PC BIOS applications where the user runs a
dedicated "update" routine to upgrade the resident
flash memory code.

• Laser printers that can be taken "off-line" prior to the
update process.

• Many other applications

3

AP-610

Again referencing Figure 2, we see that the shaded areas
of the algorithm can be ignored since flash memory
array access is not -needed until after the update is
complete. The resultant algorithm, shown in Figure 4, is
small in size and straightforward in implementation. It
can be stored within one of the flash memory blocks if
desired, and is copied to/executed from an external
memory. Scenarios that follow show two of the many
possible implementation options.

Technique 3.1: Algorithm Execution from RAM

The RAM in this technique can be located in several
different places within the system, such as:

• In a discrete SRAM or DRAM chip

• Integrated within an embedded microprocessor or
microcontroller

• Integrated within a system ASIC

• In a Page Buffer of a separate l6-Mbit FlashFile
memory

An important requirement is that the system be able to
execute code (not just read and write data) out of the
RAM. Ideally, to minimize system overhead and
maximize effective update throughput, the update
algorithm should be present in RAM at all times during
system operation. If this is not possible due to "RAM
crunch," the up-front time required to upload the
algorithm to RAM must be factored into system update
performance calculations.

4

Figure 4. The Block Erase/Program Algorithm
Is Simplified for "Offline" Updates

I

Update Complete

AP-610

Figure 5 shows the overall flowchart used when
executing the update algorithm out of system RAM. As
mentioned earlier, flash memory automation means that
the amount of code executed off-chip to actually
program/erase the flash memory is very small. Overhead
needed to obtain new code/data from the system varies
with the method chosen (diskette, modem, serial or
parallel port, etc.).

Does your system include at least one l6-/32-Mbit
FlashFile memory and other flash memories? If so, you
can potentially use the 256 byte page buffer of the
FlashFile memory as the execution RAM while updating
the other flash memories! Note: it is NOT possible to
completely execute an update algorithm from the page
buffer of a flash memory while simultaneously updating
that same memory.

Technique 3.2: Algorithm Execution from
Nonvolatile Memory

Figure 5. Executing the Update Algorithm
Requires Minimal System RAM

If the system contains multiple flash memories,
implementation is very straightforward. Store a
duplicate copy of the update code in each flash memory,
and execute from one device while updating the other(s}.
Figure 6 gives one example, using two Intel 28FOO IBX
Boot Block flash memories.

This same technique can be applied to any other
nonvolatile memory in the system. Examples include
boot ROM, ROM locations within an ASIC or
nonvolatile memory integrated within an embedded
microprocessor or microcontroller.

~ Update Algorithm
Executed Here ...

... Erases and
Reprograms This

Flash Memory Block

Figure 6. Executing the Flash Memory Update Algorithm from Another Nonvolatile Memory Requires
No Dedicated RAM

I 5

AP-610

System RAM

Uncompressed
Code

(Execution)

System Flash Memory

Boot Kernel

Compressed Code
(Storage)

Figure 7. Redundant System RAM Enables Access to All Code during Flash Memory Update

4.0 "ON-LINE" FLASH MEMORY
UPDATES

Reviewing the Q-and-A discussion earlier, you should
be reading this section if the system must be partially or
fully operational during the flash memory update
process. Said another way, it must be able to detect and
service some or all possible system interrupts. Examples
of this scenario include:

• Cellular base stations that must be able to service
incoming connection requests.

• Data Communications router and hub networks that
cannot be taken off-line.

• Telecommunications PBX switch networks that must
be always-operational.

Technique 4.1: Code Redundancy in System
RAM

This system memory configuration, shown in Figure 7,
is relatively common today in high-performance
systems. The system boots from flash memory, copies

6

code to code DRAM (sometimes decompressing in the
process) and jumps to DRAM for execution. DRAM is
used here primarily because of its high-performance
reads.

In this case, the system has access to all interrupt service
routines during the flash memory update process. After
update is complete, a quick system "reset" will reboot
the system and load DRAM with the new code. The
amount of time that the system cannot service interrupts
is the combination of system reboot and copy-to-DRAM
delays.

Technique 4.2: Code Redundancy in System
Flash Memory

Figure 8 gives an example of this system memory
configuration. Two banks of flash memory components
store "previous" and "latest" versions of system code.
The system executes from one bank while updating the
other bank. Once update successfully completes, an
address or control signal "toggle" swaps the "previous"
and "latest" banks and enables immediate execution of
the latest software version.

I

k
r
I
"

I
\ ~

AP-610

SELECT~ ___ ---l

Primary Flash
Memory Bank

Figure 8. Dual Flash Memory Banks Eliminate RAM Reload Delays

The obvious advantage of this approach include constant
access to all interrupt service routines and a non-existent
reboot delay. Memory redundancy will incur additional
system cost, which must be balanced against advantages
and compared to total system cost (and price) to
determine applicability ofthis approach.

Technique 4.3: Leveraging Flash Memory
Automation: Programming Performance and
Erase Suspend Latency

This approach eliminates both the redundancy of
multiple memories and the reboot delay of the
flash/DRAM solution in Technique 4.1. It is especially
attractive for use with Intel's Embedded Flash RAM
memories, whose read performance approaches or
exceeds that of DRAM. In this case, the need for
redundant code DRAM (for performance reasons) is
eliminated.

Before continuing your reading of this section, please do
the following research:

I

• Analyze the latencies of each of your system
interrupt routines. Which routines take the longest to
execute, and how long do they take?

• Analyze the profile of frequency of interrupts. How
often do interrupts occur, and how does this
frequency vary with time of day, week, month and
year? Can updates be scheduled for times when the
interrupt frequency is low (or ideally, zero)?

The flash memory automation approach "hides"
byte/word programming operations within the time
delay between interrupts. It also "hides" slow block
erase by using erase suspend/resume to read from the
flash memory when required. Referring back to
Figure 2, we see that reads from the flash memory (to
access interrupt service routines) can occur at the
conclusion of programming, at the conclusion of erase
and while erase is suspended. This approach exploits
these access "windows."

As an example, we'll construct the following scenario
(reference Figure 9).

7

AP-61 0

8

Flash Memory Block Architecture as Seen by System System Memory Map

Flash
Memory

Other
Peripherals

SRAM

Figure 9. Leveraging Flash Memory Automation Eliminates System Memory Redundancy, Enables
Full Interrupt Servicing throughout the Update Process

I

AP-610

Interrupt

Interrupt Period (1/Frequency)

Figure 10. Available Time between System Interrupts Enable Flash Memory Programming

Components

Two 28FOl6SV flash memories (5V Vee, 12V Vpp),
each x16, interfacing to a x32 system bus

Small system SRAM

Timings

System interrupt frequency (period) = every 200 ~s.

Longest interrupt service routine latency = 50 ~s.

Flash memory per-location programming time = 6 ~s
(typical)

Flash memory erase suspend latency = I 0 ~s (typical)

Interrupts During Programming

Looking first at programming (Figure 10), we see that
the goal is to execute at least one programming
operation within the period between interrupts. In the
scenario described above, subtracting interrupt service
routine latency from interrupt period gives a ISO ~s
"window" in which programming can occur. At 6 ~s per
double-word, up to 25 locations can be programmed
within each interrupt period.

I

200 ~s (interrupt period) - 50 ~s (ISR latency) - ISO ~s
(programming "window")

ISO ~s (window)/6 ~s (programming time per location)
= 25 locations

Intel's 16-/32-Mbit FlashFile memories contain on-chip
page buffers, each 256 bytes in size, that dramatically
increase effective per-byte programming performance.
For example (averaged over a page), typical
programming performance for the Intel 28FO 16SV is 2.1
~s/byte at 5V Vee and 12V VPP. Using these page
buffers may, in some cases, allow the system to program
even more bytes within each interrupt programming
"window."

Interrupts During Erase

Now for erase. If an interrupt occurs during erase, the
system must be able to suspend erase, read the flash
memory array and service the interrupt, all before the
next interrupt. Looking at Figure II, adding erase
suspend latency to interrupt service routine latency and
subtracting from interrupt period shows that 140 ~s of
flash memory erase automation can execute between
each interrupt. Obviously, block erase time will extend
beyond that specified in the device datasheet since erase
is being repeatedly suspended.

200 ~s (interrupt period) - [10 ~s (erase suspend
latency) + 50 ~s (ISR latency)] = 140 ~s (erase
"window")

9

AP-610

Interrupt Interrupt •
Interrupt Period (1/Frequency)

Figure 11. Available Time between System Interrupts Enables Flash Memory Erase, and Erase
Suspend Allows Array Access for Interrupt Service Routines

Accessing the Existing Version of Code in a Block Being
Updated

All well and good. We've shown how to access code in
other flash memory blocks (for example blocks 2-30)
while erasing or reprogramming another block (for
example, block 1). But what happens if the code you
need to read is the code in the process of being updated?
Where do you put the previous version of this code?

One approach, shown in Figure 9, assumes that at least
one spare block is available in each flash memory (for
example, block 31). Before updating any block, copy
that block's contents to the spare block and redirect
appropriate interrupt vectors to point to that block. After
update is complete, redirect interrupt vectors back to the
original block, erase the spare block and move to the
next block to be updated. This approach will obviously
"cycle" block 31 more than any of the others, but this is
often acceptable if the number of expected code updates
through system lifetime is not excessive.

If spare blocks are not available or expected updates are
numerous, copy block information to RAM before
updating. This approach requires dedicated RAM for
this function but needs much less RAM than a technique
like Technique 4.1, where the entire flash memory array
is shadowed.

Putting It All Together

Referring back to our example scenario in Figure 9, we
conclude with the following summary.

Component block 0 is locked and stores system boot
code and the flash memory update routine. The interrupt
vector table, stored in an unlocked block to enable its
revision, is copied from flash memory to RAM on
system power-up. During flash memory update, interrupt
vector table contents point to the flash memory update
routine, also copied to RAM. When an interrupt occurs,
this routine determines via a bit "flag" if block erase is

10

in progress and if so, suspends erase before jumping to
the necessary interrupt service code. After servicing the
interrupt, the update routine resumes erase or executes
location programming operations, depending on where
in the update the interrupt occurred.

Ideally, to minimize system overhead and maximize
effective update throughput, the update algorithm should
be present in RAM at all times during system operation.
Ifthis is not possible due to "RAM crunch," the up-front
time required to upload the algorithm to RAM must be
factored into system update performance calculations.

Before erasing and reprogramming a flash memory
block, system software copies block contents to the
spare block and appropriately redirects the interrupt
vector table. After block erase/reprogram completes, the
update routine redirects interrupts back to the block,
erases the spare block and moves to the next block to be
updated.

Program/Erase Suspend Performance, Typical/Max vs.
Cycling

Depending on how "tight" the timings are using the
equations of Technique 4.3 with your specifications, and
depending on the expected flash memory update
frequency (cycling) through system lifetime, additional
information may be needed to determine whether this
technique is applicable to your design. In this case,
please contact your local Intel or distribution sales office
for additional information on typical/max program, erase
and erase suspend specifications as a function of cycling
for the Intel flash memory of interest.

What If Interrupt Period Is too Short or Interrupt
Latency Is too Long?

Technique 4.3 assumes that system interrupt timings
allowed sufficient time for erase suspend and byte/word
programming. If at first inspection this does not seem to
be the case for your design, answer the following

I

questions in the process of further analyzing your
system interrupt profile:

• Do interrupts occur fairly regularly as a function of
time, or in bursts of activity followed by periods of
"quiet?" If the latter, your system software can hold
off attempting location programming or resuming
erase until it detects a specified time span of system
"inactivity. "

• Do one or several interrupt service routines have
substantially longer latencies than others? If so,
system software can hold off attempting
programming or initiating/resuming erase when these
specific interrupts occur.

In some cases, it may be difficult to hold off
programming due to a fixed data write transfer rate to
the flash memory subsystem. In these cases, a small
RAM FIFO can potentially be integrated within the
intcrface logic (ASIC, FPGA, etc.). This FIFO acts as a
buffer between system and flash memory and
accommodates programming delays due to interrupt
bursts or long ISR latencies.

As an alternative, the approaches described in
Techniques 4.1 and 4.2 can be reviewed to determine
applicability with your system design criteria.

Programming (Writing) during Erase

Some system designs require both the ability to quickly
read code from flash memory and to quickly write
information to flash memory in response to an interrupt.
Intel's 16-Mbit FlashFile memories offer enhanced on-

Order
Number

AP-61 0

chip automation that, among its features, automatically
suspends block erase to service queued programming
operations to other blocks.

5.0 CONCLUSION

Intel has developed a wide range of documentation and
other collateral to assist you in developing system
software solutions and profiling cycling through system
lifetime. Please contact your local Intel or Distribution
Sales Office for more information on Intel's flash
memory products.

6.0 ADDITIONAL INFORMATION

Documentation

Device datasheets provide in-depth information on
device operating modes and specifications.

The 16-Mbit Flash Product Family User's Manual (order
#297372) gives detailed information on the enhanced
automation of Intel's 16-/32-Mbit F1ashFile and
Embedded Flash RAM memories. Included flowcharts
assist you in developing system software.

The following application notes deal specifically with
software interfacing to Intel flash memories:

Document

292046 AP-316 "Using Flash Memory for In-System Reprogrammable
Nonvolatile Storage"

292059 AP-325 "Guide to First Generation Flash Memory Reprogramming"

292077 AP-341 "Designing an Updateable BIOS Using Flash Memory"

292095 AP-360 "28F008SA Software Drivers"

292099 AP-364 "28F008SA Automation and Algorithms"

292148 AP-604 "Using Intel's Boot Block Flash Memory Parameter Blocks to Replace
EEPROM"

292126 AP-377 "16-Mbit Flash Product Family Software Drivers"

NOTES:
Please call the Intel Literature Center at 1-800-548-4725 to request Intel documentation. International customers should contact
their local Intel or distribution sales office.

Additional information can be requested from Intel's automated FaxBACK* system at 1-800-628-2283 or 916-356-3105
(+44(0)793-496646 in Europe).

I 11

AP-610

FLASH Builder

This Windows-based utility is a hypertext aid to
understanding the automation of Intel's 16-Mbit
FlashFile and Embedded Flash RAM memories.
FLASHBuilder automatically generates code segments
in C or ASM-86 for flash memory program/erase that
you can easily "paste" into your system software. It also
includes a cycling utility and power/perfonnance
benchmark utilities for the 28F016XS and 28F016XD.

FLASHBuilder is available from the Intel Literature
Center via order number #297508. It can also be
downloaded from the Intel BBS at 916-356-3600
(+44(0)793-49-6340 in Europe).

VHDL and Verilog Models

VHDL functional simulation models for the 28FOI6SV,
28F016XD and 28F016XS are available now; please

REVISION HISTORY

Number Description

001 Original Version

contact your local Intel or distribution sales office.
Verilog models for these devices will be available in
early 1995.

PROM Programming Support

Intel works closely with a large number of world-wide
PROM programmer vendors to ensure timely support for
its flash memory products. This programming support
infonnation, updated frequently, is available on
FaxBACK.

On-Board Programming

An application note will be available in early 1995 that
discusses hardware and software recommendations for
OBP using either a board tester or PROM programmer.
Contact your local Intel or distribution sales office for
more details.

002 Removed page buffer references for Embedded Flash RAM memories

12

I

intel®
ALABAMA

Intel Corp.
4024 Medford Drive
Huntsville 35802
Tel: (205) 883-6137
FAX: (205) 883-4826

ARIZONA

tlntel Corp.
410 North 44th Street
Suite 500
Phoenix 85008
Tel: (800) 628-8686
FAX: (602) 244-0446

CALIFORNIA

Intel Corp.
3550 Watt Avenue
Suite 140
Sacramento 95821
Tel: (800) 628-8686
FAX: (916) 488-1473

tlntel Corp.
9655 Granite Ridge Drive
3rd Floor, Suite 4A
San Diego 92123
Tel: (800) 628-8686
FAX: (619) 467-2460

Intel Corp.
1781 Fox Drive
San Jose 95131
Tel: (800) 628-8686
FAX: (408) 441-9540

'tlntel Corp.
1551 N. Tustin Avenue
Suite 800
Santa Ana 92701
Tel: (800) 628-8686
"TWX: 910-595-1114
FAX: (714) 541-9157

tlntel Corp.
15260 Ventura Boulevard
Suite 360
Sherman Oaks 91403
Tel: (800) 628-8686
FAX: (818) 995-6624

Intel Corp.
120 Birmingham
Suoe 110-114
Cardiff, CA 92007
Tel: (619) 942-8938
FAX: (619) 942-2849

Intel Corp.
300 N. Continental Blvd.
Suite 100
EI Segundo 90245
Tel: (800) 628-8686
FAX: (310) 640-7133

COLORADO

·tlntel Corp.
600 S. Cherry St.
Suoe 700
Denver 80222
Tel: (800) 628-8686
"TWX: 910-931-2289
FAX: (303) 322-8670

CONNECTICUT

tlntel Corp.
40 Old Ridgebury Road
Suite 311
Danbury a6Sn
Tel: (800) 628-8686
FAX: (203) 778-2168

FLORIDA

tlntel Corp.
800 Fairway Drive
Suite 160
Deerfield Beach 33441
Tel: (800) 628-8686
FAX: (305) 421-2444

tSales and Service Office
"Field Application Location

NORTH AMERICAN SALES OFFICES
Intel Corp. '"tlntel Corp. ·tlntel Corp.
2250 Lucien Way lincroft Center 5000 Quorum Drive
Suite 100, Room 8 125 Half Mile Road Suite 750
Maitland 32751 Red Bank 07701 Dallas 75240
Tel: (800) 628-8686 Tel: (800) 628-8686 Tel: (800) 628-8686
FAX: (407) 660-1283GEORGIA FAX: (908) 747-0983NEW YORK FAX: (214)233-1325

tlntel Corp. "Inlel Corp. "tlnlel Corp.
20515 SH 249 20 Technology Park 850 Cross Keys Office Park
Suite 401 Suite 150 Fairport 14450

Norcross 30092 Tel: (800) 628-8686 Houston 77070
Tel: (800) 628-8686 "TWX: 510-253-7391 Tel: (800) 628-8686
FAX: (404) 448-0875 FAX: (716) 223-2561 "TWX: 910-881-2490

FAX: (713) 376-2891
IDAHO "tlntel Corp.

UTAH
Intel Corp. 2950 Express Dr. South
9456 Fairview Ave., Suite C Suite 130 tlntel Corp.
Boise 83704 Islandia 11722 428 East 6400 South
Tel: (800) 628-8686 Tel: (800) 628-8686 Suite 135
FAX: (208) 377-1052 "TWX: 510-227-6236 Murray 84107

FAX: (516) 348-7939 Tel: (800) 628-8686
ILLINOIS FAX: (801) 268-1457
"tlntel Corp. OHIO

Intel Corp.
Woodfield Corp. Center 111 "Intel Corp. 2581 E. Cobblestone Way
300 N. Martingale Road 56 Milford Dr., Suite 205 Sandy, UT 84093
Suite 400 Hudson 44236 Tel: (801) 942-8820
Schaumburg 60173 Tel: (800) 628-8686 FAX: (801) 942-8815

FAX: (216) 528-1026
Tell: (800) 628-8686

"tlntel Corp. WASHINGTON
FAX: (708) 605-9762

3401 Park Center Drive tlntel Corp.
INDIANA Suite 220 2800 156th Avenue SE

Dayton 45414 Suite 105
tlntel Corp. Tel: (800) 628-8686 Bellevue 98007
8041 Knue Road "TWX: 810-450-2528 Tel: (800) 628-8686
Indianapolis 46250 FAX: (513) 890-8658 FAX: (206) 746-4495
Tel: (800) 628-8686

OKLAHOMA FAX: (317) 577-4939 WISCONSIN

MARYLAND Intel Corp. Intel Corp.
6801 N. Broadway 400 N. Executive Dr.

'tlntel Corp. Suite 115 Suite 401
131 National BUsiness Parkway Oklahoma City 73162 Brookfield 53005
Suite 200 Tel: (800) 628-8686 Tel: (800) 628-8686
Annapolis Junction 20701 FAX: (405) 840-9819 FAX: (414) 789-2746
Tel: (800) 628-8686

OREGON FAX: (301) 206-3678
CANADA

MASSACHUSETTS tlntel Corp.
15254 NW Greenbrier Pkwy.

BRITISH COLUMBIA 'tlntel Corp. Building B
Westford Corp. Center Beaverton 97006 Intel Semiconductor of
5 Car1isle Road Tel: (800) 628-8686 Canada, Ltd.
2nd Floor "TWX: 910-467-8741 999 Canada Place
Westford 01886 FAX: (503) 645-8181 Suite 404, #11
Tel: (800) 628-8686

PENNSYLVANIA
Vancouver V6C 3E2

"TWX: 710-343-6333 Tel: (800) 628-8686
FAX: (508) 692-7867

*tlntel Corp. FAX: (604) 844-2813

MICHIGAN 925 Harvest Drive
ONTARIO Suite 200

tlntel Corp. Blue Bell 19422 tlnlel Semiconductor of
7071 Orchard Lake Road Tel: (800) 628-8686 Canada, Ltd.
Suite 100 FAX: (215) 641-0785 2650 Queensview Drive
West Bloomfield 48322 Suite 250
Tel: (800) 628-8686 SOUTH CAROLINA Ottawa K2B aH6
FAX: (313) 851-8770

Intel Corp. Tel: (800) 628-8686
Intel Corp. 7403 Parklane Rd., Suite 4 FAX: (613) 820-5936
32255 N. Western Hwy. Columbia 29223 tlntel Semiconductor of
Suite 212, Tri Atria Tel: (800) 628-8686 Canada, Ltd.
Farmington Hills 48334 FAX: (803) 788-7999 190 Anwell Drive
Tel: (800) 628-8686

Intel Corp. Suite 500
FAX: (313) 851-8770

100 Executive Cenler Drive Rexdale M9W 6H8

MINNESOTA Suoe 109, B183 Tel: (800) 628-8686
Greenville 29615 FAX: (416) 675-2438

tlntel Corp. Tel: (800) 628-8686
QUEBEC 3500 W. 80th SI. FAX: (803) 297-3401

Suite 360 tlntel Semiconductor of
Bloomington 55431 TEXAS Canada, Ltd.
Tel: (800) 628-8686

tlntel Corp. 1 Rue Holiday, Tour West
"TWX: 910-576-2867

8911 N. Capital of Texas Hwy. Suite 320
FAX: (612) 831-6497

Suite 4230 Pt. Claire H9R SN3

NEW JERSEY Austin 78759 Tel: (800) 628-8686
Tel: (800) 628-8686 FAX: 514-694-0064

Intel Corp. FAX: (512) 338-9335
2001 Route 46, Suite 310
Parsippany 07054~ 1315
Tel: (800) 628-8686
FAX: (201) 402-4893

UNITED STATES, Intel Corporation
2200 Mission College Blvd., P.O. Box 58119, Santa Clara, CA 95052-8119

Tel: (408) 765-8080

JAPAN, Intel Japan K.K.
5-6 Tokodai, Tsukuba-shi, Ibaraki-ken 300-26

Tel: 0298-47-8511

FRANCE, Intel Corporation S.A.R.L.
1, Rue Edison, BP 303, 78054 Saint-Quentin-en-Yvelines Cedex

Tel: (33) (1) 30 57 70 00

UNITED KINGDOM, Intel Corporation (U.K.) Ltd.
Pipers Way, Swindon, Wiltshire, England SN3 1 RJ

Tel: (44) (0793) 696000

GERMANY, Intel GmbH
Dornacher Strasse 1

8016 Feldkirchen bei Muenchen
Tel: (49) 089/90992-0

HONG KONG, Intel Semiconductor Ltd.
32/F Two Pacific Place, 88 Queensway, Central

Tel: (852) 844-4555

CANADA, Intel Semiconductor of Canada, Ltd.
190 Attwell Drive, Suite 500
Rexdale, Ontario M9W 6H8

Tel: (416) 675-2105

Printed in USAl0395/7.5K/MS TS
Memory Products I

