
APPLICATION
NOTE

Ap·110

January 1981

143358

RELATED INTEL PUBLICATIONS

Introduction to the iRMX 86™ Operating System, 501308

iRMX 86™ Nucleus, Terminal Handler, and Debugger Reference Manual, 501300

iRMX 86™ Installation Guide for ISIS-II Users, 501295

iRMX 86™ Configuration Guide for ISIS-II Users, 501297

8086 Family User's Manual, 205885

iSBC 86/12A ™ Single Board Computer Hardware Reference Manual, 501180

PLIM 86™ Programming Manual, 402300

MCS-86™ Assembly Language Reference Manual, 402105

MCS-86™ Software Development Utilities Operating Instructions for ISIS-II Users, 402125

iSBC 88140™ Hardware Reference Manual

AP-86, Using the iRMX 86 Operating System

Intel Corporation makes no warranty for the use of its products and assumes no responsibility for any
errors which may appear in this document nor does it make a commitment to update the information con
tained herein.

Intel software products are copyrighted by and shall remain the property of Intel Corporation. Use, dupli
cation or disclosure is subject to restrictions stated in Intel's software license, or as defined in ASPR
7-104.9(a)(9). Intel Corporation assumes no responsibility for the use of any circuitry other than circuitry
embodied in an Intel product. No other circuit patent licenses are implied.

No part of this document may be copied or reproduced in any form or by any means without the prior writ
ten consent of Intel Corporation.

The following are trademarks of Intel Corporation and may only be used to identify Intel products:

ICE M icromap iCS
Intellec iSBC CREDIT
Megachassis UPI iRMX
Prompt iSBX jLScope
Insite MULTIMODULE MULTIBUS
Library Manager Intel MCS
RMX

and the combinations of iAPX, ICE, iSSC, MCS, iSBX, RMX or iRMX and a numerical suffix.

Additional copies of this manual or other Intel literature may be obtained from:

Literature Department
Intel Corporation
3065 Bowers Avenue
Santa Clara, CA 95051

AFN·01300A·1

Using the RMX 86™
Operating System

on iAPX 86™
Component Designs

Contents

INTRODUCTION. .. 1

OPERATING SYSTEMS FUNCTIONAL
OVERViEW 2

Multiprogramming. .. 2
Multitasking 2
Growth. .. 2
Scheduling 2
Communication and Synchronization 3
Resource Management 3
Interrupt Management. .. 3
Initialization 4
Debugging. .. 4
Higher Level Functions. .. 4
Extendibility .. 4

iRMX 86 OPERATING SYSTEM
ARCHITECTURE.. 4

Layers. .. 4
Configurability 5
Support Functions. .. 5
Object Orientation 5
Task Scheduling. .. 6
System Hardware Requirements 7

APPLICATION EXAMPLE..... 7

System Design 8
Jobs and Tasks. .. 9
Interfaces and Synchronization 10
Priority. .. 11

APPLICATION IMPLEMENTATION 11

Display Functions 11
Cataloging 12
Application Code .. 12

Supervisor Task 12
Input Task 12
FFT Task 13
Output Task. .. 13
Terminal Handler 13

Nucleus Calls 14
System Configuration 14

SUMMARy 16
APPENDIX A - SUPERVISOR TASK
LISTINGS i8

APPENDIX B - INPUT TASK
LISTINGS 39

APPENDIX C - SYSTEM
CONFIGURATION 56

AP·110

INTRODUCTION

An application system based on a custom hardware
design will typically perform faster and require less
hardware than if it were implemented with "off the
shelf" circuit boards. However, these advantages are
countered by the disadvantages of custom designs, with
one of the largest drawbacks being the custom software
required. This software is often unique to the applica
tion and specific to the hardware design, requiring a
significant and increasing percentage of the develop
ment schedule and expense. The cost is multiplied by the
need for software tools, standards, and maintenance
developed specifically for each application. In addition,
much of the application software cannot be used for
new applications or hardware. All of these disadvan
tages can be significantly reduced by using a modular,
standardized operating system.

The operating system provides a higher level interface to
the system hardware. The hardware characteristics com
mon to most applications, such as memory management
and interrupt handling, are handled by the operating
system rather than the application software. The
operating system provides scheduling and synchroniza
tion for multiple functions, allowing application code to
be written in independent pieces or modules. The
operating system interface can be more standardized
then the interface to the hardware components. This
allows the application software to be more independent
of changing hardware. The application code can be in
itially implemented and debugged on proven hardware.
The software is then easily moved to the final hardware
configuration for testing.

The operating system interfaces allow the use of stan
dard software tools, such as debuggers. Operating sys
tems also provide decreased debugging time and in
creased reliability through error checking and error
handling. Perhaps most important, the expertise gained
can be carried on to new designs based on the operating
system.

Operating systems have generally been described as
large and complex, with rigid system requirements.
Users have found it difficult to tailor a system to their
needs or to use the operating system on more than one
hardware configuration. System software has been ac
cepted in large pieces or as a whole, with few system
configuration choices in either hardware or software.
Those systems small enough to use on component de
signs have lacked extendibility to larger, more complex
designs.

The Intel iRMX 86 Operating System offers users of
component hardware all benefits of operating systems
while imposing few hardware restrictions. Minimum
hardware requirements include 1.8K RAM memory,
enough RAM or EPROM memory to hold the Nucleus
and the application code, and a handful of integrated
circuits. The circuits are an Intel iAPX 86 or iAPX 88
Central Processing Unit, an Intel 8284 Clock Generator,
Intel 8282/83 Latches for bus address lines, an Intel
8253 Programmable Interval Timer, and an Intel 8259A
Programmable Interrupt Controller. Larger system
busses will also require an Intel 8288 Bus Controller and
Intel 8286/87 Transceivers for data lines. This basic
hardware system is shown in Figure 1.

8288 BUS
CONTROLLER

SYSTEM
BUS

8284
CLOCK

GENERATOR

808818086
CPU

8282183
LATCHES

lk1 8286187
TRANSCEIVERS

L....--..--...I

ADDRESS LINES

~I ,-----I DATA_LINES > J

Figure 1. Basic Hardware System for the iRMX 86™ Operating System

1

intel Ap·110

Users with a wide range of applications will find the
iRMX 86 Operating System allows them to implement a
corresponding range of capabilities, from a minimum
iRMX 86 Nucleus to a high level human interface. A
complete iRMX 86 Operating System includes extensive
I/O capabilities, debugger, application loader, boot
strap loader, and integrated user functions. This flexi
bility allows one operating system to be used for many
projects, minimizing software learning curves for new
applications.

This note discusses a relatively small standalone spec
trum analysis system based on a subset of the iRMX 86
Nucleus. The intent of the note is to demonstrate advan
tages of using operating systems in hardware compo
nent designs. An overview of operating system func
tions is given first as background information. Readers
familiar with operating systems may wish to skip this
section. The overview is followed by a summary of the
iRMX 86 Operating System. The summary is brief, as
only the iRMX 86 Nucleus is used in this application. A
detailed discussion may be found in Application Note
AP-86, "Using the iRMX 86 Operating System," and
iRMX 86 System Manuals.

The spectrum analysis system is described after the sum
mary. 1 Ilt: ~y:stt:m ft:4.UHt:Hlt:nl~, Ut:Mgu dllU HllV1t:1Ht:u

tation are detailed. The system software is discussed
next, followed by configuration and hardware imple
mentation. A summary completes the application note
text. Partial code listings of the system software are in
cluded in the appendices.

OPERATING SYSTEMS FUNCTIONAL
OVERVIEW

Operating system software manage initialization,
resources, scheduling, synchronization, and protection
of tasks or functions within the system, as well as pro
viding facilities for maintenance, debugging, and
growth. In general, operating systems support many of
the following:

Multiprogramming

Multiprogramming provides the capability for two or
more programs to share the system hardware, after
being developed and implemented independently.
Within the environment of an operating system, the
programs are called jobs. Jobs include system resources,
such as memory, in addition to the actual program
code. Multiprogramming allows jobs that are required
only during development, such as debuggers, to run in
the target system. When development is completed,
these jobs are removed from the final system without af
fecting the integrity of the remaining jobs.

2

Multitasking

Multitasking allows functions within a job to be han
dled by separate tasks. This is particularly valuable
when a job is responsible for mUltiple asynchronous
events or activities. One task can be assigned to each
event or activity. Tasks are the functional members of
the system, executing within the bounds of a job en
vironment. Program code for a multitasking system is
modular, with well-defined interfaces and communica
tion protocols. The modular boundaries serve several
important purposes. The code for each module can be
generated and tested independent of the other modules.
In addition, the boundaries confine errors, speeding
debugging and simplifying maintenance.

Growth

The modular independence that results from multipro
gramming and multitasking gives users the ability to ef
ficiently create new applications by adding functions to
old software. Applications can be tailored to specific
needs by integrating new modules with previously
written general support code. If care is taken in system
design, functions can be added in the field. Documenta
tion for the older software can be carried on to the new
applications. This growth path will save completely re
writing expensive custom software for each new applica
tion.

Scheduling

Even though a system has multiple jobs and tasks, only
one task is actually running on the central processor at
any single point in time. Scheduling provides a means of
predicting and controlling the selection of the running
task from the tasks that are ready to run. Basic sched
uling methods include preemptive priority, non-pre
emptive priority, time-slice, and round-robin. Batch
systems often use non-preemptive priority scheduling,
in which the highest priority job gets control of the cen
tral processor and runs to completion. Preemptive
scheduling is typically used in real-time or event-driven
systems, where dedicated, quick response is the main
concern. A higher-priority waiting task that becomes
ready to run will preempt the lower-priority running
task. Priority may be either set at task creation (static)
or modified during running of the task (dynamic).

Time-slice and round-robin scheduling are used in
multiuser or multitask systems that share processing
resources and have limits on maximum execution time.
Time-slice scheduling gives each task or job a fixed slice
of dedicated processor time. Round-robin gives each
task or job a turn at using the processor. The time avail
able during the turn depends on system load and task
priority.

Ap·110

Communication and Synchronization

Jobs and tasks in a multiprogramming and multitasking
environment require a structured means of communica
tion. This communication may be necessary to syn
chronize processes or to pass data between processes.
Two means of providing communication are mailboxes
and semaphores. Mailboxes are an exchange place for
system messages. The messages may include data or
provide access to other system objects, including other
mailboxes. Tasks can send objects to a mailbox or wait
for objects from a mailbox. Generally, the task has the
option of waiting for a specified period of time for the
message. The wait time may range from zero for a task
that requires immediate response to infinite time for a
task that must have a message to continue processing.
Multiple mailboxes are used to synchronize multiple
tasks.

A communication flow using mailboxes is shown in Fig
ure 2. In this example, the sending task sends a message
to a mailbox and specifies a return mailbox. The send
ing task then waits at the return mailbox. The receiving
task obtains the message from the sending mailbox and
sends a message to the return mailbox. The first task
obtains the second message from the return mailbox,
synchronizing the two tasks and passing data.

SENDING
TASK

RECEIVING
TASK

Figure 2. Intertask Communications with
Mailboxes

If process synchronization is the only requirement, sem
aphores may be used. Semaphores function like mail
boxes except that no data is passed through the sema-
",h"r"" T "t"""'r1 """1"t"I",,,,h,,r,,,,,, ,..,,,nt!:l;n "nn;t" " uT;th thp
PJ..lV.1.""' • .I..J..l~l,..""u..""" "'''''.1.J..I."PJ..I.V.L''''t.3 """"..a. ... ,-"",.I..I..1. \,A.LL-i..:J,1."' "'.1. _

meaning of the units defined by the sending and receiv
ing tasks. A one unit semaphore may be used as a flag to
synchronize the tasks. Multiple unit semaphores can be
used for resource control. For example, if tasks require
reusable data buffers, a semaphore may be defined as
the allocator of the available data buffers. Each unit in
the semaphore will represent one available buffer.
When a task requires buffers to continue, the task will
wait at the semaphore until enough units (representing

3

buffers) are available. The waiting task will receive the
units, use the buffers, and return the units (still
representing buffers) to the semaphore. Other tasks that
require buffers will also have to wait at the semaphore
until enough buffers are available.

Resource Management

The operating system is the central guardian of system
resources, specifically read/write memory. The memory
is made known to the Nucleus at initialization. The
Nucleus then gives pieces or segments of the memory to
tasks as they request it. This allows the tasks to have no
initial knowledge of the actual location and size of sys
tem memory. Tasks can share memory if they desire,
but the Nucleus allocates memory to each task individ
ually, preventing the tasks from using each others mem
ory. In addition, tasks return memory to the Nucleus
when they are through with it, allowing memory to be
reused.

Other system resources, such as 110 devices, will also be
scheduled by the operating system. The operating sys
tem is responsible both for the efficient use of these
resources and for providing the tasks with a large mea
sure of independence from the actual 110 hardware re
quirements. The system may require many types of 110
devices, such as disk drives, tape drives, and printers.
I/O is more efficiently accomplished if the operating
system provides both asynchronous and synchronous
I/O operations. Synchronous operations are those the
task starts and waits for completion, doing no other
work until the 110 is complete. Asynchronous opera
tions are started by the task, but the actual 110 can take
place while the task is doing other work. The overlapped
operation of asynchronous 110 provides more user con
trol of the 110 operation at the expense of a more com
plicated user interface.

Interrupt Management

Real-time software is tightly coupled to hardware func
tions by interrupts. Interrupts provide rapid notification
that the hardware needs attention. The software must
respond quickly without corrupting the system environ
ment. System integrity is preserved by preempting the
lower priority operating task, saving the task environ
ment, processing the interrupt (induding communicat
ing the results to other tasks if necessary), restoring the
environment of the operating task, and continuing. All
of this must occur in an orderly and efficient manner.
The interrupt management of the operating system is
responsible for directly interacting with the system hard
ware that detects interrupts. The interrupt tasks can be
ignorant of the detailed interrupt hardware, providing
only the system actions to service the event that caused
the interrupt.

111'eI Ap·110

Initialization
Operating systems create and manage jobs and tasks at
initialization as well as run time. Initialization generally
must be done in a specific sequence which will depend
on the environment existing at that time. An abortive in
itialization environment may require an orderly shut
down of the system. The operating system has the
capability for managing these situations, including com
munications, access to system resource information,
and displaying status of the initialization actions.

Debugging

The system debugger is a window into the internal struc
tures of the operating system. Debuggers allow data
structures and memory to be examined, breakpoints to
be set, and the user to be notified of abnormal condi
tions. The debugger may have symbolic debugging, in
which system objects such as addresses, tasks, jobs,
mailboxes, and memory locations can be assigned
names. This gives greater flexibility and accuracy during
debugging. The debugger may not be necessary in the
final system, so the debugger is often a separate system
job. This allows removal of the debugger with no effect
on the remaining jobs.

Debugging will be aided if the operating system verifies
the parameters required by system actions and also re
turns status for the requested action. Parameter verifi
cation is particularly valuable for new program code in
a developing system. Status results other than success
are abnormal or exception conditions. Exception condi
tions may include insufficient memory for the request,
invalid input data, inoperative 110 devices, an invalid
request for an action, or a request for an invalid action.
The operating system may have an exception handler
for these conditions and may allow the debugger to be
used as the exception handler. The development process
will be more efficient if detection of exception condi
tions takes place for all levels of system actions, from
initialization of jobs and tasks to requests for memory
or status.

Higher Level Functions

With the continuing increase in system complexity,
more operating systems are providing higher level func
tions. These functions may include advanced 110 file
management, operator console, spooling operations,
telecommunications support, multiuser support and ac
cess to system resources of increasing size and complex
ity. Only the largest operating systems provide all of
these capabilities, but users of component hardware
must be careful their system will integrate higher level
functions that may be required in future applications.

4

Extendibility

In order to provide general purpose support, operating
systems must be extendible. New applications may re
quire data structures or system actions not available
with the present operating system. The system must be
able to integrate these new structures and actions, sup
porting them in the same manner as existing functions.
Choosing an operating system requires a large commit
ment, both in initial expense and system architecture.
Extendibility provides assurance the operating system
chosen will not provide built-in obsolescence of that
commitment.

iRMX 86™ OPERATING SYSTEM
ARCHITECTURE

Layers

The iRMX 86 Operating System architecture is shown in
Figure 3. It includes the Nucleus, Basic 110 System, Ex
tended 110 System, Applications Loader, and Human
Interface. These major portions of the operating system
are designed as layers. Each layer may be added to
previous layers as application needs grow. Lower layers
may be used without upper layers. All layers may reside
in programmable read only memory. Applications have
al:l:t:ss LO au poruons 01 me system, !fom me l"-jUCleus to
all outer layers.

___ USER APPL ____ ""'O., JJ/ I
Figure 3. Architecture of the iRMX 861M

Operating System

The Nucleus is the heart of the system. It includes sup
port for multiprogramming, multitasking, communica
tions, synchronization, scheduling, resource manage
ment, extendibility, interrupt handling, and error detec
tion. The Nucleus may be considered as an extended
layer of the underlying hardware, giving the hardware
system management functions and making the software
independent of the detailed hardware. The system en
vironment, including resources, priorities, and plac~
ment of program code, is made known to the Nucleus at
system initialization. All requests for memory, com
munication, and creation of basic data structures must

intJ Ap·110

go through the Nucleus. These requests are made by
system calls, which are comparable to subroutine calls
for system actions.

All higher level functions of the iRMX 86 Operating
System are built around a core of the Nucleus. Although
outer layers may require a substantial number of the
system functions included in the Nucleus, the Nucleus
itself is configurable on a call-by-call basis. "Configu
rable" means the Nucleus may be altered so it contains
code only for those functions required by the applica
tion. Certain features, such as parameter validation and
exception handling, are also configurable. Features and
system calls may be included for development and ex
cluded from the final system, giving a Nucleus tailored
for each level of application development.

The Basic I/O System is the first layer above the
Nucleus. The Basic I/O System provides asynchronous
I/O support and format independent manipulation of
data. Multiple file types are supported, including
Stream, Named, and Physical files. Stream files are in
ternal files for transferring large amounts of data be
tween jobs or tasks. Named files include data files of
varying sizes and directories for those files. Named files
are designed for random access disk storage. Physical
files consider the entire device to be one file. Physical
files are primarily used to transfer data to and from
printers, tape drivers, and terminals. Device drivers for
both floppy and hard disks are provided. Like the
Nucleus, the Basic I/O System provides system calls to
invoke I/O actions. These calls and the features of the
Basic I/O System are fully configurable.

The Application Loader provides the ability to load
code and data from mass storage devices into system
RAM memory. The Application Loader resides on the
Basic I/O System, allowing application code to be
loaded from any random access device supported by the
Basic I/O System. Application code can be loaded and
executed as needed rather than residing in dedicated
system memory.

The Extended I/O System supports synchronous I/O,
automatic buffering, and logical names. Synchronous
I/O provides a simplified user interface for I/O actions.
Automatic buffering improves I/O efficiency by over
lapping I/O and application operations wherever possi
ble. Logical name support allows applications to access
files with a user-selected name, aiding I/O device inde
pendence.

The Human Interface uses all lower layers, forming a
high level man=machine interface for user program in=
vocation, command parsing, and file utilities. The
primary purpose of the Human Interface is to support
the addition of interactive commands. The Human In
terface is the basis for pass-through language support
and multiple user systems.

5

Configurability

Configurability means the iRMX 86 Operating System
can be changed to include only the system calls and
features pertinent to the system under development.
Smaller applications start with only the iRMX 86
Nucleus. A subset of Nucleus calls, described later in
this application note, provide the basis for management
of jobs, tasks, memory, interrupts, communication and
synchronization, and support for the Debugger and Ter
minal Handler.

All systems calls may also use parameter validation as a
configuration option. Parameter validation verifies that
system calls reference correct system objects before the
requested action is performed. During debugging and in
hostile environments, validation provides error detec
tion for each system call. This error detection does add
some overhead to the calls. Debugged application jobs
can perform more efficiently without the validation,
while new code can use parameter validation to speed
development.

Once errors are detected, there are two means available
to handle error recovery. The task can either use the
status information to perform error recovery actions or
the recovery actions may be performed by a specialized
error handling program called an exception handler.
Applications may use the Debugger as an exception
handler, or use one implemented by the application.
There are two classes of errors that may cause control to
be given to an exception handler; avoidable errors, such
as programmer errors, and unavoidable errors, such as
insufficient memory. Exception handlers can be selected
to receive control for either or both classes.

Support Functions

The iRMX 86 Operating System includes a Debugger, a
Terminal Handler, a Bootstrap Loader, and a Patch
Facility. The Debugger examines system objects, using
execution and exchange (mailbox and semaphore)
breakpoints, symbolic debugging, and exception han
dling. The Terminal Handler provides a line-editing,
mailbox-driven CRT communications capability. The
Bootstrap Loader is a fully configurable loader for
bootstrap loading on reset or command, from any spe
cific random access device. The Patch Facility gives the
capability of patching iRMX 86 Object Code in the
field.

Object Orientation

The iRMX 86 Operating System is based on a set of sys
tem data structures called objects. These objects include
jobs, tasks, mailboxes, semaphores, segments, and
regions. Users may also define application-specific ob
jects. Object architecture includes the objects, their
parameters, and the functions allowed with the objects.

Ap·110

Object orientation is a formal, hardware-independent
definition of hardware-dependent system structures that
are currently used by most applications. For example,
without object orientation, memory is reserved in ad
vance for system buffers. The application code knows
buffer sizes and locations. If buffer requirements grow,
requiring a new memory layout, much of the applica
tion code will change to accommodate the new buffer
sizes and locations. Using object orientation, the ap
plication requests a segment (buffer) of a particular size
when the buffer is needed. The Nucleus allocates the
memory and returns a segment object to the applica
tion. If the application needs a larger buffer, it returns
the old segment and requests a new one of a larger size.
The application obtains more buffers by making re
quests for more segments. If the hardware changes, the
iRMX 86 Operating System is made aware of the
changes. The application code uses the same system
calls to request and return the segment objects
regardless of the hardware configuration.

Objects are provided for modular environments Gobs),
application code functions (tasks), communication
(mailboxes), synchronization (semaphores), memory
(segments), and mutual exclusion (regions). Objects are
fundamentally a set of standard interfaces between ap-
J-Iu,-al1Ull ,-uut: al1U ll1t: 1.l\.lV.1A 00 Vl-'t:lal1H~ ~YMt:ll1. Uit:

standard interfaces have three primary benefits:

1) First, objects provide structures, such as tasks or seg
ments, that are common to all applications. The
structures form the basis for a standard set of system
calls that make the interface between the application
and the operating system more consistent and easier
to learn. These calls allow applications to create more
objects (segments for buffers, for example), delete
them, change them, and inspect them. Development
engineers can use their knowledge of the objects on
many applications, rather than just the one under
development. The common objects allow a common
system debugger to be used. The debugger will work
for all applications, letting engineers concentrate
their efforts on the application itself rather than
designing and implementing custom debugging tools.

2) Second, the standard characteristics of the object
allow consistent error detection and handling. Re
quests to alter or use objects can be checked for
validity before the Nucleus actually performs the re
quest. Errors can be classed as common to all objects
or specific to certain objects, giving more precise
error information for effective error handling and
faster debugging.

3) Third, the object interface will be preserved on future
releases of the iRMX 86 Operating System. Current
application code can be split into independent
modules. Future applications can use the modules for

6

common functions, preserving the investment in ap
plication software.

Task Scheduling

The Nucleus controls task scheduling by task priority
and task state. Task priority is specified when the task is
created. The priority can be altered dynamically. Tasks
are classified into one of five classes: Running, Ready,
Asleep, Suspended, or Asleep-Suspended. Tasks that
have not been created are considered to be non-existent.
The State Transition Diagram is shown in Figure 4.

Figure 4. State Transition Diagram

Only one task is in the Running state. This task has con
trol of the central processor. The Ready state is occu
pied by those tasks that are ready to run but have lower
priority than the Running task. The Asleep state is occu
pied by tasks waiting for a message, semaphore units,
availability of a requested resource, an interrupt, or for
a requested amount of time to elapse. A task can specify
the amount of time it will allow itself to spend in the
Asleep state, but tasks in the Suspended state must be
"resumed" by other tasks. The Suspended state is use
ful when situations require firm scheduling beyond the
control provided by priority and system resource avail
ability. Examples of these situations are system emer
gencies, controlling tasks in the Ready state for applica
tion-dependent scheduling algorithms, and guarantee
ing a fixed initialization or shut-down sequence. If
another task "suspends" a task already in the Asleep
state, the sleeping task goes to the Asleep-Suspended
state. This task will enter the Suspended state if the
sleep-causing condition is satisfied. The task will go to
the Asleep state from the Asleep-Suspended state if it is
resumed before the sleep-causing condition is removed.
If a task enters the Ready state and has higher priority
than the present Running task, the Ready task is given
control of the CPU. Control is transferred to another
task only when:

1) The Running task makes a request that cannot im
mediately be filled. The Running task is moved to the

intel Ap·110

Asleep state. The highest-priority Ready task be
comes the Running task.

2) An interrupt occurs, causing a higher-priority task to
become Ready. The current Running task goes to the
Ready state, allowing the higher-priority task to
become the Running task.

3) The Running task causes a higher-priority task to
become Ready by releasing the resource for which the
higher-priority task is waiting. The current Running
task goes to the Ready state. The higher-priority task
becomes the Running task.

4) The Running task causes a higher-priority task to
become Ready by sending a message or semaphore
units to the mailbox or semaphore where the higher
priority task is waiting. The Running task is moved
to the Ready state. The higher-priority task becomes
the new Running task.

5) The Running task removes a higher-priority task
from the Suspended state by "resuming" it, placing
the higher-priority task in the Ready state. The cur
rent Running task is moved to the Ready state and
the higher-priority Ready task becomes the new Run
ning task.

6) The Running task creates a higher-priority task. The
new task goes to the Ready state. The current Run
ning task is moved to the Ready state and the higher
priority Ready task becomes the new Running task.

7) The Running task places itself in the Suspended state.
The highest-priority Ready task becomes the new
Running task.

8) The Running task places itself in the Asleep state.
The highest-priority Ready task becomes the new
Running Task.

9) The Running task deletes itself, becoming Non
existent. The highest-priority Ready task will be the
new Running task.

System Hardware Requirements

The iRMX 86 Operating System will run on any system
that meets the following minimum hardware require
ments:

1) An iAPX 86 or iAPX 88 Central Processing Unit.

2) An Intel 8253 Programmable Interval Timer to pro
vide the system clock.

3) An Intel 8259A Programmable Interrupt Controller.

4) Enough hardware to provide a system clock and bus
interfaces. This may be supplied by the Intel 8284
Clock Generator, Intel 8288 Bus Controller, Intel
8282/8283 Latches, and Intel 8286/8287 Transceiv
ers.

7

5) The following RAM:

a. 1024 bytes from 0 to 1024 for software interrupt
pointers (the interrupt vector).

b. 800 bytes for Nucleus data.

c. Enough RAM for the application data, code, and
system objects.

6) Enough EPROM or RAM to hold the required parts
of the iRMX 86 Operating System and the applica
tion code.

The Intel iSBC 86/12A Single Board Computer more
than meets these minimum requirements. A block dia
gram of the board is shown in Figure 5. Note in addition
to the timer and interrupt controller the board contains
an 8251A USART, an 8255 parallel 110 interface, a
MUL TIBUSTM interface, four sockets for up to 16K
bytes of EPROM, and 32K bytes of dual-ported RAM.
Even though a user may be developing a custom board
for his application, it is recommended that initial system
development be accomplished using the iSBC 86/12A
Single Board Computer. This win provide a known
hardware environment to simplify debugging. In addi
tion, the development hardware system can be adapted
to changing application needs by adding Intel MULTI
BUS compatible boards to the iSBC 86/12A Single
Board Computer. After the software is fully debugged,
the application can be moved to the final custom hard
ware design.

APPLICATION EXAMPLE

A spectrum analyzer is the subject of this application.
The analyzer displays the frequency spectrum of an
analog signal on a general purpose CRT terminal. The
user has control over input signal bandwidth, averaging,
and continuous analysis. A fast Fourier transform
(FFT) program is used to obtain frequency data from
samples of analog data. Fourier transforms provide use
ful frequency analysis, but the large processing require
ments of Fourier transforms have restricted their use.
Fast Fourier transforms take advantage of the repetitive
nature of the Fourier calculations, allowing the Fourier
transforms to be completed significantly faster. The
FFT used in this application note is known as "time de
composition with input bit reversal." 1 Sixteen-bit inte
ger samples of the input signal are placed in frames,
with each frame holding 128 complex points. An aver
aged power spectrum is calculated to sum and square
the FFT values, yielding 64 32-bit power spectrum
values. These values are displayed on a standard CRT
terminal.

1. S. O. Stearns, Digital Signal Analysis, Hayden Book Co., Rochelle
Park, NJ, 1975.

Ap·110

r-------l
I I
: 32K x 8 I
I (iSBC 340) I
I I
I I

32K x 8
RAM

DUAL-PORT
BUS

DUAL-PORT
CONTROLLER

,-------,
I I
I 16K x 8 I
I (iSBC 340) I
I I
I I

16K x 8
ROM EPROM
(SOCKETS)

POWER-FAIL
INTERRUPT

8086
CPU

I I , I

RS232C
COMPATABlE

DEVICE

[;::,.[;:,
CONTROL SERIAL

INTERFACE DEVICE

TWO
PROGRAMMABLE

TIMERS

PROGRAMMABLE
COMMUNICATIONS

INTERFACE
(USARn

24 PROGRAMMABLE
PARALLEL 110 LINES

o
I

PROGRAMMABLE PROGRAMMABLE
BAUD RATE PERIPHERAL

GENERATOR INTERFACE

: !

L-______ ~ L-________ ~ ~ L--______ ~ '-______ ---JI ,-I ______ ~
ON-BOARD INTERNAL BUS

MULTIBUS
MULTIMASTER

INTERFACE

/'_~' ~ ___________ __' '-______ -----------'i Li _______________ ~

\,~------M-UL-TI-BU-S-SY-ST-EM-B-US-------------------_________________ --, >

Figure 5. iSBC 86112ATM Single Board Computer Block Diagram

The FFT algorithm may be applied wherever frequency
analysis of an analog signal is required. Medical appli
cations for FFTs include EEG analysis, blood flow
analysis, and analysis of other low-frequency body sig
nals. Industrial uses are production line testing, wear
analysis, frequency signature monitoring, analysis in
noisy or hostile environments, and vibration analysis.
Other applications could cover remote reduction of
analog data, frequency correlation, and process control.
For this application note, the actual use of the FFT is
secondary to its existence as a modular, CPU-intensive
task in a general purpose system.

The overall application system characteristics are the
following:

1) A user-selectable input signal bandwidth of 120 Hz,
600 Hz, 1200 Hz, 6000 Hz, or 12,000 Hz.

2) The option of averaging frames of samples. The
averaging is user selectable, with options of 1 (no
averaging), 2, 4, 8, 16, or 32 frames averaged per
CRT display.

3)The capability, also user selectable, of repeating the
analysis cycle continuously.

8

4) User capability to abort the analysis.

5) Twelve-bit input sample resolution.

6) A minimum of hardware requirements, including no
more than 32K bytes of EPROM memory and 16K
bytes of RAM memory.

7) A standard character screen CRT for output.

8) A multitasking structured design that will use a
subset of the iRMX 86 Nucleus and exhibit modular
application code, formal interfaces, and self
documentation.

System Design

To begin the design, the application is broken up into
functional modules, much the same as a hardware block
diagram. A SUPERVISOR TASK initializes the system,
accepts operator parameters, starts the analysis cycle,
and stops the processing upon cycle completion or
operator request. An INPUT TASK sampies the data
and places it in a buffer. An FFT TASK receives the
buffer and processes the data. An OUTPUT TASK dis
plays the data received from the FFT TASK. This struc
ture is shown in Figure 6.

intel' Ap·110

SUPERVISOR
TASK

FFT
TASK

OUTPUT
TASK

Figure 6. Basic Application Architecture

The general task functions are:

SUPERVISOR TASK: The SUPERVISOR TASK ini
tializes the system by creating the other tasks. The
SUPERVISOR TASK then obtains the analysis param
eters from the operator. Each parameter is verified as it
is received. When all of the parameters are accepted, the
operator is asked if they are satisfactory. If the operator
agrees, the SUPERVISOR TASK sends frame buffers
to the INPUT TASK to initialize the analysis. If not, the
operator is asked to input all of the parameters again.
During the FFT analysis, the SUPERVISOR TASK
waits for an abort request from the operator and for the
frame buffer from the OUTPUT TASK. If the abort re
quest is received, the SUPERVISOR TASK terminates
the analysis in an orderly fashion and asks the operator
for parameters for the next analysis cycle. If the frame
buffer is received from the OUTPUT TASK and con
tinuous analysis has been selected, the SUPERVISOR
TASK sends the frame buffer to the INPUT TASK to
start the next cycle. If the frame buffer is received from
the OUTPUT TASK and continuous analysis has not
been selected, the current analysis is complete and the
SUPERVISOR TASK asks for new parameters.

INPUT TASK: The INPUT TASK receives the frame
buffer from the SUPERVISOR TASK. The input signal
is sampled according to the analysis parameters. The
actual sample rates are calculated as follows:

1) Multiply the highest frequency of interest by two to
obtain the Nyquist sampling rate.

2) Invert this value to obtain time between samples.

3) Scale the value by 60/64. The CRT display is limited
to 64 columns. The scaling maps sample values to
columns 1 to 60 rather than 1 to 64, giving a more
readable x-axis label and display. This method yields
sample times of 3.9 milliseconds, 781 microseconds,
390 microseconds, 78 microseconds, and 39 micro
seconds for frequencies of 120 Hz, 600 Hz, 1200 Hz,
6000 Hz, and 12,000 Hz.

The INPUT TASK samples the data at the required
interval and places the samples in the frame buffer.
When the frame buffer is full, the INPUT TASK up-

9

dates the frame buffer number and sends the frame buf
fer to the FFT TASK. The INPUT TASK sends a status
message to the CRT terminal and waits for the next
frame buffer.

FFT TASK: The FFT TASK receives the frame buffer
from the INPUT TASK. A fast Fourier transform is
performed on the data contained in the buffer, the
power spectrum is calculated, and the data is averaged
with previous data if necessary. If the frame buffer is
the last one to be averaged prior to display of the fre
quency data, the frame buffer is filled with the averaged
data and sent to the OUTPUT TASK. If the buffer is
not the last one to be averaged, the FFT TASK returns
the buffer to the INPUT TASK for another frame of
data or to the SUPERVISOR TASK if the analysis cycle
is nearly complete. The FFT TASK sends status infor
mation to the CRT display and waits for the next frame
buffer from the INPUT TASK.

OUTPUT TASK: The OUTPUT TASK receives the
frame buffer from the FFT TASK. The data is format
ted and displayed. The OUTPUT TASK sends the
frame buffer to the SUPERVISOR TASK and waits for
the next frame buffer from the FFT TASK.

Terminal Handler: The Terminal Handler serves as the
basic 110 device for parameter requests, status data,
and frequency displays. The Terminal Handler accepts
display requests from all tasks and sends operator input
to the SUPERVISOR TASK.

The basic functions of the various tasks in the applica
tion have been defined, but system integration has not
been discussed. Synchronization of the tasks, schedul
ing, resource management, mapping to hardware, inter
rupt handling, and system interfaces have been omitted.
No debugging functions have been defined. It is clear
the system implementation is just started. The iRMX 86
Nucleus will provide all of the system integration
"glue" the application requires, allowing application
programmers to concentrate on the actual functional
code. In order to use this "glue," the application must
be divided into jobs and tasks.

Jobs and Tasks
The iRMX 86 Operating System architecture defines
jobs as separate environments within which tasks oper
ate. These separate environments allow each job to
function with no knowledge of other system jobs. There
are two jobs in this application, the Debugger job and
the Application job.

The jobs contain functional portions or working pro
grams called tasks. The Application job contains the
INIT TASK, SUPERVISOR TASK, INPUT TASK,
FFT TASK, OUTPUT TASK, and INTERRUPT
TASK. The Debugger job contains the Debugger task
and the Terminal Handler task. Tasks provide the ap-

Ap·110

plication goals of modularity, resource constraint boun
daries, and functional independence. The structure of
the development system is shown in Figure 7.

DEBUGGER
JOB

APPLICATION
JOB

Figure 7. Development System Job Structure

The Debugger job is included only for development.
When development is completed, the Debugger job is
removed from the system. A Terminal Handler job con
taining only the Terminal Handler task is substituted in
place of the Debugger job. The application code is not
changed. This structure is shown in Figure 8.

TERMINAL HANDLER
JOB

APPLICATION
JOB

Figure 8. Final System Job Structure

Interfaces and Synchronization

Now that the system is made of jobs and tasks, the
primary need is to synchronize the tasks and provide
communication interfaces. This will be handled by mail
boxes. The messages sent via the mailboxes will be seg
ments, which are pieces of memory allocated by the
Nucleus. The frame buffers sent from task to task are
these segments. The buffer segments contain all the
analysis parameters in addition to the data samples.
Communication with the Terminal Handler task is also
accomplished by mailboxes, but with a different buffer
format. The Terminal Handler format has fields for the
operation requested (read or write), the number of
characters the task wishes to read or write, the number

10

of characters the Terminal Handler did read or write, a
status field for the operation, and the actual data. The
buffer format is shown in Figure 9. Figure 12 contains
the Terminal Handler segment format.

BEGINNING OF
SEGMENT •

SAMPLES PER FRAME

SAMPLE INTERVAL

FRAMES TO AVERAGE

CONTINUOUS FLAG

THIS FRAME NUMBER

NUMBER SAMPLES MISSED

SAMPLE POINTER

RESET FLAG

DATA SAMPLES

DATA SAMPLES

Figure 9. Frame Buffer Format

Mailboxes are used to pass the buffer segment from task
to task. Tasks can send segments to mailboxes, or
receive segments from mailboxes. If there is no segment
at a mailbox, a task can elect to wait for the segment,
WllIl LIlt! wall uurauun rangmg Hom zt!ro to Iort!ver.
This provides the simplest system synchronization -
each task, upon initialization, waits at its input mailbox
for a frame buffer segment. When the task receives the
segment, it processes the data, sends the segment on to
the mailbox for the next task, and returns to its own
mailbox to wait for the next frame buffer. The system is
synchronized and controlled by the availability of frame
buffers and task priority. It should be clear that multi
ple frame buffers segments provide overlapped process
ing, with the segments ultimately "piling up" at the
slowest task in the chain. This loose coupling arrange
ment allows tasks to have radically different execution
times. For example, the INPUT TASK has an input
sampling time that ranges from 0.6 seconds to 6.3 milli
seconds, a range of 100 to 1, and the system requires no
special synchronization or scheduling to accommodate
this range.

The mailbox interfaces, shown in Figure 10, serve
several other important purposes. First, they provide
the standardized interface that is a goal of this applica
tion. The set of mailboxes and the two buffer segments
form all inter-task interfaces. Each task uses only a few
mailboxes, making it easy to add or remove tasks by
adding or removing mailboxes. The system could easily
be expanded to include data reduction tasks, data cor
relation tasks, or to substitute different tasks for any of
the present ones. Dummy tasks were used for real tasks
during development to verify overall system execution
before the actual tasks were available.

intel Ap·110

Figure 10. Application Architecture with
Mailboxes.

The mailboxes also provide a very convenient window
into the application system processing for both debugg
ing and aborting the current cycle. The Debugger can set
breakpoints at mailboxes to allow users to examine the
frame buffers as they progress from task to task. The
Debugger can examine buffer data and control the pro
cessing cycle. Tasks wait at the mailboxes in a queue
that is either priority or first-in-first-out (FIFO) based.
The inter-task mailbox queues are priority based, which
means the higher priority SUPERVISOR TASK can in
tercept segments at the mailboxes ahead of the lower
priority waiting tasks, and abort the analysis by remov
ing all of the buffer segments. This method of aborting
requires no knowledge of the internal processing of the
tasks, making it universally applicable to all the tasks.

A return mailbox may be specified when a segment is
sent to a mailbox. The receiving task may send status in
formation, a different segment, or the original segment
to the return mailbox. The Terminal Handler will return

r

1
1
1

LOG 1
AMPL 1

1
1

the buffer segment sent to it if a return mailbox is
specified. This is used to synchronize the tasks with the
Terminal Handler and to allow multiple tasks to use a
single display task. Each sending task waits at a separate
return mailbox for the Terminal Handler to return its
segment. Each task retains control over its buffer seg
ment and is synchronized with the slower data display
function.

Priority

In addition to the mailboxes, task execution is governed
by priority. In this system, the INPUT TASK has maxi
mum priority to guarantee it can sample the input signal
at the precise intervals required for the FFT. The
SUPERVISOR TASK, responsible for abort functions,
has the next level of priority, with the FFT TASK next,
and the OUTPUT TASK lowest.

APPLICATION IMPLEMENTATION

Display Functions

All application tasks use the iRMX 86 Terminal Han
dler as an output device. The Terminal Handler is
chosen because it provides a standard interface consis
tent with the application goals, it exists both in the De
bugger job and in an independent job, and it is easy to
integrate into the application system. The application
could also use the same interface with a user-written
Terminal Handler. In this application, the Terminal
Handler can have messages from four tasks on the
screen at one time. To allow this to occur in an orderly
fashion, lines on the screens are reserved for each of the
tasks. The screen format is shown in Figure 11. Each
message to the screen sends the cursor to the upper left
corner (the home position), then down to the proper line
to display the data.

OUTPUT
TASK

1 _ "

1 #~ ##### #*
1 # ##i!~########### i ..# .. ######~##########i1# #

* - -- -- -- --+--------- +- ----- -! ~~~! ~!~~!!!~!!!!!~!~::~~:: ~~- -- --+--
o 1000 2000 3000 4000 5000 6000

Current settings are the following: frequency range 0 to 6000 Hz, ~ ~~~~RVISOR
16 frames to average per output display, and continuous runs. J 1""';:'1'\

-;-he INPU~ -:-ASK has processed 16 frames out of 16 frames to average. - INPUT TASK
The FFT TASK has processed 16 frames out of 16 frames to average. - FFT TASK

~

Figure 11. CRT Screen Display Format

11

Ir1'el Ap·110

Cataloging

To aid the debugging process, all system objects, such as
mailboxes, segments, and tasks, are cataloged in the
directory of the SUPERVISOR TASK. The catalog en
tries are user-selected, 12-character names. The Debug
ger can display this directory, giving easy access to ob
jects to aid symbolic debugging. If other tasks know the
proper directory and the 12-character name, the tasks
can look up the objects in the directory and obtain ac
cess to them. This is the method used to find the Ter
minal Handler mailboxes. For objects that are cataloged
only to aid debugging, the system calls that catalog the
objects are removed from the code when debugging is
complete.

Application Code

The code listings for the SUPERVISOR TASK and the
INPUT TASK are included in appendices to this note.
Code listings for other tasks are not included, but they
are available from the Intel Insite software library. The
following discussions reference line numbers in the list
ings included in this note. The references begin with a
first letter for the appendix section (A or B), followed
by the actual line number (A.220, for example).

Code listings for the SUPERVISOR TASK are in Ap
pendix A. The actual SUPERVISOR TASK procedure
begins at line A.550. After initializing internal buffers
and mailboxes (A.551, A.518-A.549), the Supervisor
sends an initial screen, one line at a time, to the Termi
nal Handler (A.553, A.502-A.517). When the screen is
complete, the SUPERVISOR TASK creates the INPUT
TASK, FFT TASK, and OUTPUT TASK (A.554,
A.486-A501). The order of creation is not important
for this application, as each task begins by waiting at its
input mailbox for frame buffer segments. The SUPER
VISOR TASK requests input parameters from the oper
ator (A.556, A.305-A.485). The actual input parameter
loop is found at A.478. The loop consists of asking
questions (A.479, A.480) until all answers are satisfac
tory. The operator is asked to choose the highest fre
quency of interest, number of frames to average, and
single runs or continuous runs (A.331-A.353). If the
operator answers with an invalid input, the question is
repeated (A.365 and A.415). If the operator wishes to
abort the questioning by entering a 99, the questions
start over from the first question (A.409-A.413). When
all three questions have been answered, the operator is
asked to confirm his choice (A.482, A.418-A.467). If
the operator does not verify the answers, the question
number is set to 0 (A.463) and the parameters are re
quested again. If he confirms the answers as correct, the
SUPERVISOR TASK creates up to three frame buffer
segments (A.557, A.279-A.304). The SUPERVISOR

12

TASK places the binary equivalents of the operator
answers in the frame segments (A.284, A.292, A.300,
A.269-A.278), and sends the segments to the input
mailbox for the INPUT TASK (A.287, A.294, A.302).

The SUPERVISOR TASK's background duties are to
check its input mailbox for a segment from the OUT
PUT TASK and to check a return mailbox for an abort
request from the operator (A.558, A.225-A.268). If
segments are received at the SUPERVISOR TASK mail
box, the SUPERVISOR TASK sends the segments on to
the INPUT TASK if the operator has chosen continuous
runs (A.258). Otherwise, the SUPERVISOR TASK de
letes the segments (A.242-A.250). When all the
segments have been deleted, which halts the FFT
analysis, the SUPERVISOR TASK asks for operator in
put again (A.556).

If an operator abort request is received, the SUPER
VISOR TASK, having higher priority than the FFT or
OUTPUT TASKS, waits at their mailboxes to intercept
the frame segments (A.243, A.249, A.207-A.224).
When a segment is received it is deleted (A.219). The
SUPERVISOR TASK also checks the INPUT TASK
mailbox under abort conditions (A.244). This mailbox
is FIFO based to allow the SUPERVISOR TASK to in
tercept the buffer segment ahead of the higher-priority
INPUT TASK (A.523). The SUPERVISOR TASK in
put mailbox is also checked for frame buffer segments
that may have been sent there by the OUTPUT TASK
after the abort was requested (A.246). When all of the
frame buffer segments have been deleted, the SUPER
VISOR TASK asks for operator input (A.556).

INPUT TASK

Listings of the INPUT TASK are in Appendix B. After
initializing the buffer for Terminal Handler communi
cations and the mailboxes for communicating with the
INTERRUPT TASK and the Terminal Handler (B.335,
B.302-B.333), the INPUT TASK waits at its input mail
box for a frame buffer segment (B.338).

When a frame segment is received, the INPUT TASK
updates the frame number counter kept by the INPUT
TASK (B.340, B.289-B.301), and samples the analog in
put (B.341, B.231-B.288). The INPUT TASK selects
one of two input driver routines, either a software poll
ing loop for faster sampling rates (B.277-B.281), or an
INTERRUPT TASK for slower sampling rates
(B.251-B.276). If the sampling is driven by interrupts
and a Nucleus system call is executing at the time of the
interrupt, the time required to respond to that interrupt
can vary from 100 to 350 microseconds, depending on
the Nucleus call in progress. For the sample rates of 391,
78, and 39 microseconds, corresponding to bandwidths
of 1200, 6000, and 12,000 Hz, the system interrupt
latency cannot guarantee the precise sampling interval

Ap·110

required. A a simple software polling loop with a delay
between samples is used for these rates (assembler code
for this loop is included after the INPUT TASK listings
in Appendix B). This loop operates at priority 0, the
highest priority, to guarantee the loop is not interrupted
(B.278, B.280) while the sampling is in progress.

For the longer intervals of 3.9 milliseconds and 781
microseconds, corresponding to bandwidths of 120 and
600 Hz, an Interrupt Handler and and INTERRUPT
TASK are used (B.251-B.276). Under the iRMX 86
Operating System architecture, an Interrupt Handler is
defined as a short procedure with a primary goal of fast
interrupt response and limited Nucleus calls. All hard
ware interrupt levels are masked when an Interrupt
Handler is responding to an interrupt. If the interrupt
servicing requires higher-level system functions, the In
terrupt Handler notifies a waiting INTERRUPT TASK.
Higher-level interrupts are enabled when an INTER
RUPT TASK is executing. INTERRUPT TASKS can
make all system calls.

The INTERRUPT TASK (B.196-B.203) binds the In
terrupt Handler to the hardware interrupt level (B.197)
and waits for a signal from the Interrupt Handler
(B.199). The Interrupt Handler (B.I64-B.195) verifies
the interval accuracy (B.166-B.173), samples the data
(which automatically starts the next sample) (B.175-
B.176), places the data in the frame buffer (B.181-
B.184), and notifies the INTERRUPT TASK when the
frame buffer is full (B.193). If the buffer is not full, the
Interrupt Handler resets the interrupt hardware (B. 194).
The INTERRUPT TASK notifies the INPUT TASK
(B.2oo) and waits for a return message (B.201). The IN
PUT TASK disables interrupt level 3 (B.274) and re
turns the token to the INTERRUPT TASK (B.275). The
INTERRUPT TASK enables the Interrupt Handler
(B.199), but no interrupts will be received from the free
running 8253 Timer because hardware interrupt level 3
has been disabled. Sampling for the next buffer is in
itiated by simply enabling level 3 (B.272). The INPUT
TASK sends a status message to the Terminal Handler
(B.342, B.219-B.230) and sends the filled frame buffer
to the FFT TASK (B.343). The INPUT TASK then
returns to the INPUT TASK input mailbox to wait for
the next frame segment (B.338).

FFT TASK

Listings for the FFT TASK are not included with this
application note. The FFT TASK is similar in overall
format to the INPUT TASK. The FFT TASK waits at
its input mailbox for a frame buffer segment from the
INPUT TASK. When one is received, the FFT TASK
computes the fast Fourier transform of the data. The
auto power spectrum is computed and averaged with
previous data. The FFT TASK sends its status message
to the Terminal Handler for display. If the frame buffer

13

is the final one to be averaged, the FFT TASK sends the
frame buffer to the OUTPUT TASK. If the frame buf
fer is not the final one in this averaging series, the FFT
TASK checks to see if the sampling process is continu
ous. if so, the frame buffer is returned to the INPUT
TASK. If the sampling process is not continuous and
the buffer is within two frames of the final frame buf
fer, the buffer is returned to the SUPERVISOR TASK
to prevent unnecessary buffers from going to the IN
PUT TASK. The FFT TASK then returns to its input
mailbox to wait for the next frame buffer.

OUTPUT TASK

Listings for the OUTPUT TASK are not included in this
application note. The OUTPUT TASK, like the other
tasks, waits at its input mailbox for a buffer. When a
frame buffer is received from the FFT TASK, the OUT
PUT TASK stores the data in an internal buffer and
sends the frame buffer to the SUPERVISOR TASK.

The OUTPUT TASK converts each 32-bit frame buffer
value to one of 16 levels by taking the base 2 logarithm
of the significant 16 bits of sample value. The display
screen is sent to the Terminal Handler one line at a time.
Each line of the display is composed of 7 characters of
label and y-axis data and 64 characters of display data
(reference Figure 11). Each line of the display represents
a power of two (from 16 down to 1). The character to be
displayed at each location is found by comparing the ap
propriate sample value against the current line value. If
the sample value is greater than the line number, a
pound sign is displayed at that location. Otherwise, a
space is displayed. The x-axis and labels are sent after
the data lines to complete the display. The OUTPUT
TASK then waits at its input mailbox for another frame
buffer.

TERMINAL HANDLER

The Terminal Handler interfaces to the application
tasks via the two mailboxes and buffer segment format
shown in Figure 12. If a task wishes to display data, a
segment containing the data is sent to the RQTH
NORM$OUT mailbox, specifying a return mailbox.
The Terminal Handler displays the data, updates the
status fields, and sends the segment to the return
mailbox.

Input proceeds in much the same fashion. A task
requesting data sends a segment to the
RQTHNORM$IN mailbox, again specifying a return
mailbox. \Vhen the operator terminates the input line
with a carriage return, the Terminal Handler puts the
data in the segment, updates the status fields, and sends
the segment to the return mailbox. This serves two
primary purposes: specifying return mailboxes allows
multiple tasks to share the display screen while retaining

Ap·110

OUTPUT

PROVIDED
BY USER

INPUT

PROVIDED
BY USER

o

2

4

6

8

BUFFER SEGMENT

FUNCTION
(READ OR WRITE)

COUNT
(# CHARS. TO READ/WRITE)

EXCEPTION CODE
(STATUS)

ACTUAL
(# CHARS. READIWRITTEN)

DATA
SAMPLES

.

Figure 12. Terminal Handler Interface

synchronization and control over their data buffers; and
a user-written Terminal Handler using the same pro
tocol and mailbox names could easily be integrated into
the application. For this application, the INPUT TASK,
FFT TASK, OUTPUT TASK, and SUPERVISOR
TASK all share the screen for output, but only the
~TTPPRVT~()R TA~K l1~P~ thp Tprmin::ll H::lnnlf"r to oh-

tain operator input.

Nucleus Calls

The iRMX 86 Nucleus provides a comprehensive set of
61 system calls. A complete description of these calls
may be found in the iRMX 86 Nucleus Reference
Manual. For most applications, only a subset of the 61
calls will be required. The iRMX 86 Nucleus is configur
able, which means the final system Nucleus will contain
code only for the system calls required for the applica
tion. In this case, the following system calls were
required:

RQ$CREA TE$MAILBOX, RQ$SEND$MESSAGE,
and RQ$RECEIVE$MESSAGE provide mailbox man
agement.

RQ$CREATE$SEGMENT and RQ$DELETE$SEG
MENT are used to create and delete segments for the
frame buffers, internal buffers, and Terminal Handler.

RQSETINTERRUPT, RQ$EXIT$INTERRUPT,
RQ$SIGNAL$INTERRUPT, RQ$W AIT$INTER
RUPT, RQ$ENABLE, and RQ$DISABLE allow the
INPUT TASK to handle hardware interrupts knowing
only the hardware interrupt level (3).

RQ$CREA TE$JOB, RQ$CREATE$TASK, and
RQSETPRIORITY are used to create the jobs and
tasks, and set the priority of the input polling loop.

RQGETT ASK$TOKENS, RQ$LOOKUP$OBJECT,
RQ$CAT ALOG$OBJECT, RQ$DISABLE$DELE-

14

TION, RQ$ENABLE$DELETION, RQGETTYPE,
RQGETPRIORITY, RQGETSIZE, and RQ$SIG
NAL$EXCEPTION are system calls required by the
Debugger and the Terminal Handler. None of these
calls are necessary in this application if a user-written
Terminal Handler is used and debugging is completed.

System Configuration

System Configuration is the integration step in the
development process. It consists of selecting the por
tions of the iRMX 86 Operating System required in the
application, mapping this code and the application code
to system memory, and creating a Root Job that will in
itialize the system. The overall configuration process is
shown in Figure 13. Configuration requires knowledge
of available memory, operating system and application
code entry points, priorities, exception handlers, and
other system parameters. System Configuration consists
of the following steps:

1) Selecting the portions of the iRMX 86 Operating
System required by the application, including the
layers and the specific system calls in each layer.

2) Linking and locating those portions.

3) Assembling or compiling, linking, and locating the
application code.

4) Creating a configuration file that will tell the Nucleus
the locations of available RAM memory, initial char
acteristics of each system job, and pertinent overall
system parameters. Each job in the system has an en
try in the configuration file. The order of the entries
is the order of initialization of the jobs.

5) Creating the Root Job by assembling, linking, and
locating the configuration file.

Ap·110

LINKED &
LOCATED
iRMX 86
CODE I---------~

I

ASSEMBLED,

) LINKED & DEDICATED

I
LOCATED SYSTEM

APPLICATION MEMORY
CODE

\1 JOB PARAMETERS ~

JOB & NUCLEUS ;:: ~ PARAMETERS ROOT

~
JOB

h/ CODE

I MEMORY AVAILABLE
LOCATIONS SYSTEM

MEMORY

Figure 13. System Configuration Process

During development of an EPROM-based application
such as this one, configuration is accomplished twice:
once for the RAM-based development system and once
for the final EPROM-based system. These configura
tions are detailed in Appendix C, System Configura
tion. In both cases, the Root Job that results from con
figuration initializes the system jobs. For development,
the system job structure is shown in Figure 7. The Root
Job creates the Debugger Task in the Debugger Job,
which in turn creates the Terminal Handler Task. The
Root Job then creates the SUPERVISOR TASK, which
creates the INPUT TASK, FFT TASK, and OUTPUT
TASK. The INPUT TASK creates the INTERRUPT
TASK when necessary.

Software development is completed on the iSBC 86/12A
Single Board Computer discussed earlier in this note.
After application code is debugged and ready to be
placed in EPROM memory, the Debugger Job, which
contains both the Debugger and the Terminal Handler,
is removed and replaced with the Terminal Handler
Job, which contains only the Terminal Handler. This
job structure is shown in Figure 8. The Nucleus system
calls required only by the Debugger are removed from
the iRMX 86 Nucleus. The application code is not
changed. The application code and the iRMX 86
Nucleus is configured for the final system, put in
EPROM memory, and tested on the final hardware sys
tem. The final Nucleus and application code required
30.5K bytes of EPROM, allowing room for future code
changes and some expansion within the 32K system
limit.

The final application hardware is shown in Figure 14.
This system contains an iAPX 86/10 CPU, an 8259A
Programmable Interrupt Controller, and an 8253 Pro-

15

grammable Timer. The three chips form the primary
hardware requirements for the iRMX 86 Operating Sys
tem. The system is assembled from Intel components,
using standard support circuits and system schematics
described in Intel documentation. The analog sampling
circuitry is a 12-bit analog to digital converter (ADC)
and a sample/hold circuit. Both the sample/hold circuit
and the ADC are driven from the on-board local bus.
The ADC has a conversion time of 35 microseconds,
limiting the overall cycle to approximately 39 micro
seconds per sample, or a maximum CRT display band
width of 12,000 hz.

The hardware system shown in Figure 14 contains com
ponents not specifically required for the final'configura
tion. The 8255A Programmable Peripheral Interface
and the MUL TIBUS multimaster interface are not nec
essary for a system limited to just spectrum analysis and
display via the CRT. However, the flexibility advan
tages of the iRMX 86 Operating System are supported
by this hardware. For instance, the frequency spectrum
display is limited by the CRT to a 16-levellogarithmic
approximation. Accuracy could be improved by using
the programmable peripheral interface to drive a plotter
or an analog CRT via a digital to analog converter.
Software drivers for the plotter or CRT could be new
tasks, interfacing to the old tasks through the mail
boxes. Or, the OUTPUT TASK could be simply re
placed with a new OUTPUT TASK for the plotter and
analog CRT. The inclusion of the MUL TIBUS interface
allows this application to be integrated into a larger
system of MUL TIBUS-compatible boards. MUL TI
BUS-compatible memory boards will also aid test and
debug. Users of hardware components can include these
modular Intel interfaces as required by their applica
tion, giving growth and configurability in both hard
ware and software.

Ap·110

PROGRAMMABLE
PERIPHERAL
INTERFACE

(8255A)

TWO
PROGRAMMABLE

TIMERS
(2138253A)

8K BYTES RAM
(4 x 2168)

PROGRAMMABLE
INTERRUPT

CONTROLLER
(8259A)

SERIAL
INTERFACE

(USART)
(8251A)

PROGRAMMABLE
BAUD RATE

GENERATOR
(1/38253A)

ANALOG SIGNAL
IN
I

< MULTIBUS'.SYSTEMBUS:(7 ~ ----------v
Figure 14. Final Hardware System Block Diagram

SUMMARY

This application note discussed general operating sys
tem functions, the Intel iRMX 86 Operating System,
using the iRMX 86 Operating System on hardware com
ponent systems, and an example of an application im
plemented in a component environment. Users of the
iRMX 86 Operating System are able to simplify applica
tion code development through modularity, standard
interfaces, freedom from rigid hardware restrictions,
and advanced debugging techniques. The iRMX 86
Operating System can be applied to larger systems by
adding other iRMX 86 layers, making the software in
vestment beneficial over a wide range of applications.

Operating systems provide many advantages for hard
ware component designs, but all of these benefits can be
utilized only if the operating system and the develop
ment environment are fully supported. Intel's support
for this application begins with an Intel MDS 230 Series
II Microcomputer Development System. The MDS 230
System interfaces with the development hardware
through the iSBC 957 A ™ Monitor. The development
hardware is an Intel iSBC 86/12A Single Board Com
puter, an Intel iSBC 711 ™ Analog Input Board, an Intel
iSBC 032™ 32K RAM Memory Board, an Intel iSBC
064™ 64K RAM Memory Board, and an Intel iSBC
660™ System Chassis. Final application hardware is de
bugged using Intel's ICE-86™ 8086 In-Circuit Emu
lator. Software support is provided by the ISIS-II

16

PL/M 86™ Compiler, MCS-86™ Macro Assembler,
and the MCS-86 Utilities LINK86, LOC86, and OH86.
The Intel UPP-I03™ Universal PROM Programmer is
used to convert the final system to PROM memory.
This broad support allows expedient development of
prototype and final systems based on the iRMX 86
Operating System.

The iRMX 86 Operating Systems and the Intel develop
ment tools are valuable only if they translate directly to
increased productivity and shortened time to market for
new products. This application has 1567 lines of appli
cation code. It was developed, from design to final im
plementation, in approximately 9 man-weeks of effort.
This high level of productivity was achieved with the
added benefits of modularity, standardization, and ease
of application growth.

Intel Corporation is committed to both the continued
integration of higher-level functions into hardware and
to maintaining compatibility of present software with
new hardware. One result of these commitments will be
the Intel iAPX 86 and iAPX 286 Processors, which will
be compatible with the iRMX 86 Operating System.
Another result will be the placement of the iRMX 86
Operating System Nucleus into hardware. This will
allow custom hardware applications to have higher-level
functions, simplified development, and decreased chip
count. Using the iRMX 86 Operating System today will
give hardware component users a headstart on Intel's
technological innovation for tomorrow.

APPENDIX A 18
APPEN DIX B 39
APPEN DIX C 56

APPENDIX A

PL/M-36 COMPILER SUPERVISOR TASK FOR AP NOTE 110, OCTOBER 1980
ISIS-II PL/M-86 V2.0 COMPILATION OF MODULE SUPERVISOR MODULE
OBJECT MODULE PLACED IN :Fl:superv.OBJ
COMPILER INVOKED BY: plm8~ :Fl:superv.p8~

089 1

090 1
091 1
092 1
093 1
094 1
/"Inc

09(,) 1
097 1
098 1
099 1
100 1
101 1
102 1
103 1

104 1
105 1

106 1

107 1
108 1
109 1
110 1

III 1
112 1
113 1
114 1

115 1

Stitle(' SUPERVISOR TASK FOR AP NOTE 110, OCTOBER 1980')
Slarge oebug
SUPERVISOR MODULE:
do;
Sinclude(:fl:nuclus.ext)
= SSAVE NOLIST

declare token literally'woro';

/**/
/* The six mailboxes immediately following will */
/* form all of the inter-task communications */
/* interfaces for the five tasks that run in */
/* this system. */
/**/

declare th in mbx token;
-declare th out mbx token;
-declare to input mbx token public;

declare - fft mbx token public; to
declare to - output mbx token public;
...:1"',.....1.." ... '" - ,...

... h.7 1"'\ 17 "',,,h1i,... • (""11" 'Y"'\ 1""\ "..~.,., r- I"" ..,..

declare return th in mbx taken;
declare return - th - out mbx token;
declare dumrny_mbx token;
declare frame segment one token;

- -declare frame segment two token; - -declare frame segment three token;
- -declare th in segment token token;

declare th - out segment token token; - - -

declare general index hyte;
declare number of fft data segments byte; -

declare insert text pointer pointer; - -
declare abort flag \va rd ;
declare status word;
declare segment deleted tally word;
declare text length - word; -

declare root job token token;
declare input task token token;
declare fft task token token;
declare output task token token;

(leclare parameters structure(
actual samples word,

18

infel'

llr:5
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134

135

136
137

138

139
140

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

1

1
1

1

1
1

declare
declare
declare
declare
declare
declare
declare
neclare
declare
declare
declare
declare
declare
declare
declare
declare
declare
declare
declare

APPENDIX A

actual interval
frequency answer(5)
actual frames to average
frames-to ave~ag~ answer(5)
continuous flag -
continuous-flag_answer(5)

word 1

byte,
word,
byte,
word,
byte) ;

abort
ascii 9
carriage return
forever -
line feed
new fft run
no abort
no response requested
null -
queue_fifo
queue priority
root job
run continuous
siz~_120_bytes
space
supervisor job
th read
th-write
waTt forever

literally 'OFFH';
literally'039H';
literally 'ODH';
literally 'while 1';
literally 'OAH';
literally 'OFFH';
literally'OOH';
literally'OOH';
literally'OOH';
literally'OOH';
literally'OIH';
literally'03H';
literally'OFFFFH';
literally '1?0';
literally'20H'i
literal1y'OOH'i
literally 'OIH';
literally'05H';
literally'OFFFFH';

/* The following declaration sets the characters */
/* to send the cursor home at the beginning of */
/* each message to the display screen. The */
/* seqeunce is tilde, DC2 (Hazeltine)). */

declare cursor_home_chars(2) byte nata (07EH,012H,);

declare frame pointer
declare frame-pointer values

offset word,

pointer;
structure(

base word) at (@frame_pointer);

declare frame based frame pointer
samples per frame-
sample Tnterval
frames-to average
continuous flag
this frame-number
numb~r samples missed
sample-po inter-
reset flag
sampl~(256)

structure(
word,
word,
word,
word,
word,
word,
word,
word,
integer) ;

declare th in segment pointer
declare th-in-segment-pointer values

pointer;
structure(

offset word, -
base word) at (@th_in_segment_pointer);

19

II l'e

141

142
143

144

145

146

147

148

149

150

151

1

1
1

1

1

1

1

1

1

1

1

APPENDIX A

~ec1are th in segment based th in segment_pointer
structure (
function
count
exception code
actual
message(112)

word,
word,
word,
word,
byte) ;

declare th out segment pointer pointer;
declare th-out-segment-pointer values structure(

offset-word, -
base word) at (@th_out_segment_pointer);

declare th out segment based th_out_segment_pointer
structure (
function
count
exception code
actual -
home chars(2)
line-index(24)
message (84)

word,
word,
word,
word,
byte,
byte,
byte) ;

declare frequency question(*) byte data ('Please'
, enter the highest frequency in Hz (120,
, ~OO, 1200, 1)000, OR 1~000):');

declare frequency answers data(*) byte data (05H,
03H,03H,07H,04H,n~H,nH,
, 120 nOO 1200 1,00012000
42H,OFH, 00DH,03H, 087H,01H,
4EH,OOH, 027H,00H, OOH,OOOH);

declare average question(*) byte data ('Please'
, enter-the number of frames to average'

(1, 2, 4, 8, l~, OR 32) :'};

declare average answers data{*) byte data (O~H,

01H,01H~01H,01H~02H,02H,
, 1 2 4 8 16 32',
OlH,OOH, 02H,00H, 04H,00H,
08H,00H, 10H,00H, 20H,00H);

declare continuous question{*) byte data ('Please'
, enter' '1" for one sample run or "C'"
, for continuous running:');

declare continuous answers data(*) byte data (03H,
01H,01H,01H,00H,00H,OOH,
, 1 C c
OOH,OOH, OFFH,OFFH, OFFH,OFFH,
OOH,OOH, OOH,OOH, OOH,OOH);

declare reject message(*) byte data ('I cannot'
, acce~t your answer. PLEASE TRY AGAIN.');

20

152 1

153 1

154 1

155 1

ISo 1

157 1

158 1
159 ?

It;o 1
161 2

162 1
163 2

164 1

It;S 2

APPENDIX A

declare status line one(*) byte data ('Current'
, settings ~re the following: frequency'
, range 0 to Hz,');

declare status line two(*) byte data ('
, frames to-average per output display,'
, and ') ;

declare continuous runs{*) byte data
('continuous runs.');

declare single run(*) byte data
('a single run. ');

declare go ahead question(*) byte data ('If'
'these settings are correct, enter' 'G"
'to begin running.');

declare header line one(*) byte data (' INTEL'
! APNOTE 110--THE iRMX 86 OPERATING SYSTEM'
, AND iAPX 86 COMPONENT DESIGNS.');

/**/
/* The following three procedure declarations */
/* link the tasks outside the SUPERVISOR MODULE */
/* with the supervisor task. */
/**/

INPUT TASK: PROCEDURE EXTERNAL;
END INPUT TASK;

FFT TASK: PROCEDURE EXTERNAL;
-END FFT_TASK;

OUTPUT TASK: PROCEDURE EXTERNAL;
END OUTPUT_TASK;

/***/
/***/
/** The following five procedures are general **/
/** utility procedures called by the primary **/
/** working procedures. **/
/***/
/***/

/**/
/* Blank line just fills the message buffer */
/* with blank characters. */
/**/

BLANK_LINE: PROCEDURE;

declare blank line index word;

21

lme

16(1
1~7

168

169

170

171

172

173

174

175

176
177
178

179

180
181

182

183
184

185
186

187

188

2
3

3

2

2

1

2

2

1

2
2
2

2

2
3

3

2
3

3
3

2

2

APPENDIX A

do blank line index = 0 to 78;
th_out_segment.rnessage (blank line index)

= space;
end;

th out segment.message (79) = carriage_return;

END BLANK_LINE;

/***/
/* DISPLAY LINE sends the message to the */
/* terminal handler output mailbox and */
/* waits for the segment to be returned. */
/***/

DISPLAY_LINE: PROCEDURE;

call rq$sendSmessage (th out mbx,
th-out-segment token,
return-th out mbx, ~status);

th_out_segment_token = rqSreceiveSmessage
(return th out mbx,
wait forever,-@dummy mbx,
0status;) -

END DISPLAY_LINE;

/**/
/* INSERT TEXT fills the output message segment */
/* with the chosen message and pads the rest of */
/* the line with blanks. */
/**/

INSERT_TEXT: PROCEDURE (TEXT_POINTER, HOv.,,_ MANY) ;

declare
declare
declare

declare

text pointer
how many
dummy based
entries(80)
insert text

pointer;
word;

text pointer structure(
byte);
index word;

do insert text index = 0 to (how many - 1);
th out-segment.message (insert text index) =

- dummy.entries (insert-text=index);
end;

do while insert text index < 79;
th out_segment.message (insert text_index)

= space;
insert text index = insert text index + 1;

end;

th out segment.message (79) = carriage return;

END INSERT_TEXT;

22

189

190
191

192
193
194

195

196
197

198

199

200

201
202
203
204
205

20~

1

2
2

2
2
3

3

2
3

3

2

1

2
2
2
2
2

2

APPENDIX A

/**/
/* Move down line puts the required number of */
/* line-feed-characters in the first ~th */
/* through 29th character of the output */
/* message. Each line is displayed on the */
/* screen in its proper location. This allows */
/* multiple tasks to access the screen */
/* without having to blank the line each */
/* time. This technique assumes each message */
/* sends the cursor home each time. */
/**/

declare skip lines
declare move-down line index

if skip lines> 0 then

word;
word;

do move down line index = 0 to (skip lines - 1);
th out segment.line tndex (move_down line_index)

-= lTne feed; -
end;

do move down line index = skip lines to 23;
th out segment~line index (move down line index)

-;- null; - --
end;

/***/
/* SEND REJECT MESSAGE is called by INPUT */
/* PARAMETERS.- It just sends a reject message */
/* to the CRT to inform the user that the */
/* answer the user gave was not valid. */
/***/

SEND_REJECT_MESSAGE: PROCEDURE;

call m 0 v e down 1 i n e (2 1) ;
text length = size(reject_message);
insert text pointer = @reject message;
call insert-text (insert text pointer, text_length);
call display_line; --

END SEND REJECT MESSAGE;
- -

/***/
/***/
/** The following procedures are the primary **/
/** working procedures called by the supervisor **/
/** procedure and its called procedures. **/
/***/
/***/

23

207

208

209
210

211
212
213

214

215
216

217
218
219

220

221
222
223

224

225

1

2

2
?

2
2
2

2

2
3

3
3
4

4

4
4
3

2

1

APPENDIX A

/**/
/* PURGE MAILBOX removes all tokens from */
/* a mailbox. The purpose is to remove segments */
/* waiting for processing by one of the tasks */
/* if the operator has specified an abort */
/* request. If the segment deletion was */
/* successful, PURGE MAILBOX upoates the */
/* segment deleted tally. */
/**/

PURGE_MAILBOX: PROCEDURE (MAILBOX_TO_PURGE) ;

declare for 110 milliseconds
declare rnessage=received

declare contents token
declare purge dummy mbx
declare purge=status

token;

literally 'OBH';
literally'OH';

token;
token;
token;

purge_status = message received;

do while purge status = message received;
contents token = rqSreceiveSrnessage

(mailbox to purge, for 110 milliseconds,
frtnllrnp ffllmmv mh~. fanllr('Jp ~tAt-I1S) ~

if purge status = message received then

end;

do; - -
call rqSdeleteSsegment

(contents token, ~purge_status);
segment deleted tally =

- segment deleted tally + 1;
purge status = message=received;

end;

END PURGE_MAILBOX;

/***/
/* MONITOR MAILBOXES polls the */
/* return th in mailbox and the */
/* to supervlsor mailbox for messages. The */
/* messages will-be abort (from the operator), */
/* and FFT done or OUTPUT done if the runs are */
/* not continuous. If the runs are not */
/* continuous and an FFT done message is */
/* received, MONITOR MAILBOXES will initialize */
/* the OUTPUT task. - */
/***/

MONITOR MAILBOXES: PROCEDURE;

24

inter

22f) 2
227 2
228 2
229 2
230 2

231 2
232 2
233 2

234 2
235 2

236 2

237 2
238 2

239 2

240 3

241 3
242 3

243 4
244 4

245 4
240 4

247 4
248 4

249 4
250 4
251 4

252 3
253 3
254 4

255 4
256 4
257 5

258 5

APPENDIX A

declare cannot wait literally , OOH I;
declare done literally ! OFFH' ;
declare for 400 milliseconds literally , 28H' ;

- -declare message received literally 'OOH I;
declare not done literally I OOH ';

declare moni.tor dummy_ mbx token;
-declare monitor token token; -declare monitor status token;

declare done flag byte;
declare monitor index word;

done flag = not done; - -

segment deleted tally = 0;
call rq$sendSmessage

(th in mbx, th in segment token,
return th in mbx~ @status) ;

- - -

do while done flag = not done;
/* Check for operator input here. */

monitor token = rq$receiveSmessage
(return th in mbx, for 400 milliseconds,
@monitor dummy mbx, 0monitor status);

if monitor status = message received then
do while-segment deleted tally <

number of fft-data segments;
call purge mailbox (to fft mbx);
if segment-deleted tally <-

number of fft data segments then
call purge mailbox (to input mbx);

if segment deleted tally < -
number of fft data segments then
call purge mailbox (to supervisor mbx);

if segment deleted tally < -
number of fft data segments then
call purge maTlbox-(to output mbx);

done flag = done; - -
end; -

if done flag = not done then
do;

monitor token = rqSreceiveSmessage
(to supervisor mbx, for 400 milliseconds,
@monitor dummy rnbx, @monitor status);

if monitor_status ~ message_receTved then
do;

if parameters.continuous flag =
run continuous then -

call rq$send$message

else

(to input_mbx, monitor token,
no response requested,
@monitor_status) i

25

liitel

259
2nO

261

262

264
265
266
267

268

269

270
271

272

273

274
275
276
277

278

279

280

281

282

283
284

5
6

()

6

6
5
4
3

2

1

2
2

2

2

2
2
2
2

2

1

2

2

2

2
2

end;

end;
end;

APPENDIX A

do;
call rqSdelete$segment

(monitor token, ~monitor status)
segment deleted tally

= segment deleted tally + 1;
if segment deleted tally

end;

= number-of fft data segments
then done flag ~ done;

END MONITOR_MAILBOXES;

/**/
/* SET SEGMENT initializes the common parameter */
/* areas of the segment. The pointer to the */
/* proper segment is set up by */
/* INITIALIZE SEGMENTS. */
/**/

SET_SEGMENT: PROCEDURE;

frame.samples per frame = 128;
frame.sample Tnterval

= n.=!r.=!mpt-pr~. rll""t-Ilrll i nt-pru;::ll •

frame.frames to average
-= parameters.actual frames to average;

frame.continuous flag = parameters.contTnuous flag;

frame.this frame number = OOH;
frame.number samples missed = OOH;
frame.sample-pointer- = OOH;
frame.reset_flag = OOH;

END SET_SEGMENT;

/**/
/* INITIALIZE SEGMENTS creates the three FFT */
/* data segments and calls SET SEGMENT for each */
/* segment to initialize the cornmon parameter */
/* areas of the segments. */
/**/

INITIALIZE_SEGMENTS: PROCEDURE;

literally '528';

frame_pointer_values.offset = 0;

frame segment one = rqScreate$segment
- -(size 528 bytes, ~status);

frame pointer values.base = frame segment one;
call set_segment; --

26

285
286
287

288
289
290

291
292
293
294

295

296
297
298

299

300
301
302

303

304

305

30n
307
308
309

310

J 1 1
.).J...J..

2
2
2

2
2
3

3
3
3
3

3

2
2
3

3

3
3
3

3

2

1

2
2
2
2

2

2

APPENDIX A

frame.reset flag = new fft run;
number of ftt data segments = 1; - -
call rqSsend$message

(to input mbx, frame segment one,
no=response requested, @status);

if parameters.actual frames to average> 1 then
do; - -

frame segment two = rq~createSsegment
- (size 528 bytes, @status);

frame pointer values.base = frame segment two;
call set segment; --
number of fft data segments = 2;
call rqSsend$message

(to input mbx, frame segment two,
no=response_requested, @status);

end;

if parameters.actual frames_to_average > 2 then
do;

frame segment three = rq$create$segment
- -(size 528 bytes, @status);

frame pointer values.hase
- = frame segment_three;

call set segment;
number of fft data segments = 3;
call rq$sendSmessage

(to input mbx, frame segment three,
no=responsG_requested, @status);

end;

END INITIALIZE SEGMENTS;

/***/
/* INPUT PARAMETERS contains three procedures: *1
/* set question pointers, get answer, */
/* and-verify answers. The INPUT PARAMETERS */
/* loop consists of calls to these three */
/* procedures and, as usual, exists at the end */
/* of the procedure. */
/***/

INPUT PARAMETERS: PROCEDURE;

declare actual pointer
declare answer-pointer
declare answer-display_pointer
declare question_pointer

pointer;
pointer;
pointer;
pointer;

declare answer actual value based
actual_pointer word;

declare answer_overlay based
answer pointer structure(

number of answers byte,

27

1l1'eII

312 2

313 2
314 2
315 2
31(, 2
317 2
318 2
319 2
3'20 2

321 2
322 2
323 2
324 2
325 2
3211 2
327 2
328 2
329 2

jjU L

331 3

332 4
333 5
334 5
335 5
336 5
337 5

338 5

339 4
340 5
341 5
342 5
343 5

344 5

345 5

340 4
347 5
348 5
349 5
350 5

APPENDIX A

length of answer(o)
values-to-match(30)
really=are(C))

byte,
byte,
wo rd) ;

declare answer display based
- answer display pointer structure(

characters(5) byte);

declare answer byte index
declare answer-index
declare answer-match
declare byte match
declare input byte index
declare output byte index
declare question number
declare stop_byte

declare ascii small g

byte;
byte;
byte;
byte;
byte;
byte;
byte;
byte;

declare ascii-capital G
declare average entry point
declare continuous entry point
declare frequency entry point

literally 'On7H';
literally'047H';
literally '0';
literally '48';
literally '58';
literally'OFFH';
literally 'OOH';
literally '< 255';
literally 'OOH';

declare match - -
declare no match
declare not negative
declare nothing returned

do case question_number;

do;
text length = size (frequency question);
question pointer = @frequency question;
answer pointer = 0frequency answers data;
actual-pointer = @parameters.actual-interval;
answer-display pointer

end;
- - = @parameters.frequency_answer;

do;
text length = size (average question);
question pointer = @average question;
answer pointer = eaverage answers data;
actual-pointer --

-= @parameters.actual frames to average;
answer display pointer - -

-= @parameters.frames_to average_answer;
end;

do;
text length = size (continuous question);
question pointer = @continuous question;
answer pointer = ~continuous answers data;
actual=pointer = @parameters~continuous_flag;

28

351

352
353

354

355

35?l
357
358

359
360
3f)1

3()2

363

364

3()5

367
3f)8

369

5

5
4

3

2

3
3
3

3
3
3

3

3

3

3

3
4

4

APPENDIX A

answer display pointer

end;
end;

- = @parameters.continuous_flag answer;

get_answer: procedure;

/* First display the question to be answered */
/* by the operator. */

call insert text (question_pointer, text length);
call move down line (19);
call display_ITne;

/* Then blank the line below for an answer line. */

call blank line;
call move down line (20);
call display_lIne;

/* Now wait for a response from the operator. */

call rq$send$message
(th in mbx, th in segment token,
return th in rnbx~ @status) ;

th_in_segment token = rq$receIveSmessage
- (return th in mbx, wait forever,

@dummy-mbx, ~status);
th in segment pointer values.base

- - - = th_Tn_segment token;

/* If there is no message returned then send */
/* a reject message. */

if th in segment.actual = nothing returnen
then call send reject_message;

/* Otherwise it is time to check the response */
/* against the possible answers. */

else
do;

/* Set the number of possible answers. */

answer index
= answer_overlay.number_of_answers;

/* Start a loop to check all of the */
/* possible answers. */

29

111'eI

370

371

372

373

374

375

376

378

380
381
382

383
384
385

38t:)
387

4

5

5

5

5

5

6

7

7
7
6

()

6
6

5
5

APPENDIX A

do while (answer match = no match) and
(answer-index> 0);

/* Set the starting point for the */
/* byte by byte compare. */

answer_byte index = (answer_index * 5) - 1;

/* Set the stopping point for */
/* the compare. */

stop_byte = answer byte index
- answer overlaY.length of answer

(answer index - 1); -

/* Start with a "match" so we can */
/* check until "no match" occurs. */

byte_match = match;

/* Set starting point at the right end */
/* of the input data (allows us to */
/* ignore leading blanks and the */
/* ending carriage return). */

input_byte index = th in_segment.actual-2;

/* Scan the bytes until all pertinent */
/* ones are checked or a "no match" */
/* occurs. */

do while (byte match = match) and
(answer byte index> stop byte) ;

if (input byte-index not negative)
then do;- - -
if th in segment.message

(input-byte index) =
answer overlay.values to match

(answer byte index)- -
then byte match = match;

else byte=match = no_match;
end;

else byte_match = no match;

answer byte index
input byte Tndex

end; - -

= answer byte index-I;
= input_byte_Tndex -1;

/* A "match" at this point means ALL */
/* bytes matched. */

if byte match = match then
do; -

/* Set real values via

30

*/

388

389

390
391

392
393

394

395

396

397
398
399
400

401
402

403

405
406
407

1)

7

7

7

7

5
5

4

4
5
5

APPENDIX A

/* answer_actual_value overlay. */

answer actual value
~ answer overlay.really are

(answer index - 1); -
answer_match = match;

/* Insert displayable values for */
/* later display. */

answer byte index = 4;
input_byte Tndex = (answer_index*S)-I;

do while answer byte index not negative;
answer display.characters

-(answer byte index)
= answer overlay~values to match

(input byte index);-
input byte index -

= Input-byte index - Ii
answer byte index

= answer=byte_index - 1;
end;

/* We got a match, so be sure the */
/* reject message line is blanked. */

call move down line (21);
call blank line;
call display_line;

end;

/* If no match, then let's compare the */
/* input with the next possible answer. */

else answer index = answer index - 1;
end;
/* If we got a match, then we can move on */
/* to the next question. */

if answer match = match
then question_number = question_number + 1;

/* Otherwise we have to check for an */
/* abort request of '99'. */

else
do;

input byte index = th in segment.actual-2i
if (th in segment.message(input byte index)

- ~ ascii 9) -
and

= ascii 9) then

31

liitel

408
409
410
411
412
413

414
415
416

417

418

419
420

421
422
423

424

425
426

427
428

429
430

5
h

6
6
6
6

5
5
4

3

2

3
3

3
3
3

4

4
4

3
3

3
3

end;

APPENDIX A

/* Abort requests are valid, so blank */
/* the reject message line and reset */
/* the question number so we start */
/* asking allover. */

do;
question number = 1;
call move down line (21);
call blank line;
call display_line;

end;
else

/* But if nothing matched and the */
/* answer was not an abort request, */
/* then we have to ask the operator */
/* to try again on this question. */

call send reject_message;
end;

end get_answer;

verify_answers: procedure;

/* First put the output line in the buffer. */

text length = size (status line one);
call-insert text (~status line_one, text_length);

/* Then insert the displayable frequency answer. */

input byte index
stop byte
do output byte index

= 0;
= frequency_entry point + 4;

~ frequency entry point to stop byte;
th out segment.message (output byte index) =
parameters.frequency answer (Input-byte index);

input byte index = Input byte index + 1;
end; - - - -

call move down line(19);
call display_lIne;

/* We have sent the first line, now it is time */
/* to get the second line. */

text length = size (status line two);
call-insert text (@status line_two, text_length);

/* We have to insert the displayable "frames */

32

431 3
432 3
433 3

434 4

435 4
436 4

437 3
438 3
439 3

440 3

441 4

442 4
443 4

444 3

445 4

44f) 4
447 4

448 3
449 3

450 3
451 3
452 3
453 3

454 3
455 3
45e) 3

457 3

458 3

APPENDIX A

/* to average" answe r = */

input byte index = OJ
stop byte = average entry point + .1 • . ,
do output byte index -

- -= average entry point to stop_ byte;
th out segment.message (output byte i nd ex) =

parameters.frames to - -average answer
(input byte index); -

input byte - index = input byte index + 1; - - - -end;

/* The continuous answer is different--we have */
/* to decide if we have continuous runs or */
/* single runs, and insert those words in the */
/* display line. */

input byte index = 0;
stop byte = continuous_entry_point + 15;
if parameters.continuous flag = run continuous

then
do output byte index

~ continuous entry point to stop byte;
th out segment.message (output byte index) =

contTnuous runs (input byte Index);
input byte index = input byte index + 1;

end; - - - -
else

do output byte index
~ continuous entry point to stop byte;

th out segment.message (output byte index) ~
single run (input byte index); -

input byte index =-input byte index + 1;
end; - - - -

/* Then send the message and wait for a response */
/* from the operator. */

call move down line(20);
call display_ITne;

text length = size (go ahead question);
call insert text (@go ahead question, text length);
call move down line (21); -
call display_ITne;

call blank line;
call move down line(22);
call display_lIne;

call rq$send$message
(th in mbx, th_in_segment_token,
return th in mbx, ~statusj;

th in segment token - - -
- ~ rq$receive$message

33

111'eI

459

460

461

463

4fJ4
405
466

467

469
470
471
472
473
474
475
476
477

478
479
480

3

3

3

3

3
3
3

3

2

2
2
2
?
2
2
2
2
2

2
3
3

APPENDIX A

(return th in mbx, wait forever,
@dummy-mbx, ~status); -

th in_segment pointer values.base
- ~ th in segment token;

input_byte_index = th_in_segment.actual - 2;

/* Check for a "g" or "G" (we aren't fussy). If */
/* we got it, let's quit asking the selection */
/* questions and go. If not, we have to start */
/* at question 1 again rather than try to find */
/* out which of his or her answers wasn't */
/* acceptable. */

if (th in segment.message (input byte index)
- - = ascii small g) or -

(th in segment.message (input byte index)
- - = ascii capital-G) then;

else question_number =-0; -

call blank line;
call move down line (21);
call display_lIne;

end verify_answers;

/* */
/* As usual, the actual INPUT PARAMETERS control */
I~ lOOp IS at tne end. */
/* */

question_number = 0;

/* All we do is get the next question, ask the */
/* question until it is answered successfully, */
/* ask all of the questions, then check all of */
/* the answers. If the operator doesn't like */
/* the set of answers, we loop through them */
/* again. First we make sure the reject message */
/* line and other pertinent lines start out */
/* blanked. */

call blank line;
call move down line (18);
call display ITne;
call move down line (21);
call display ITne;
call move down line (22);
call display ITne;
call move down line (23);
call display_lIne;

input_loop: do while question number < 3;
call set question pointers;
call get=answer; -

34

481 3

482 2
483 2

485 2

48n 1

487 2
488 2
489 2
490 2
491 2
492 2
493 2
494 2

495 2

496 2

497 2

498 2

499 2

500 2

APPENDIX A

end;

call verify answers;
-if question number = 0 then goto input loop;
- -

END INPUT PARAMETERS; -

/**/
/* INITIALIZE TASKS initializes the INPUT TASK */
/* and the FFT TASK. If the FFT runs are to be */
/* continuous, INITIALIZE TASK also initializes */
/* the OUTPUT TASK. If the runs are not */
/* continuous, the OUTPUT TASK is initialized */
/* by MONITOR MAILBOXES. */
/***/

INITIALIZE_TASKS: PROCEDURE;

declare
declare
declare
declare
declare
declare
declare
declare

hardware interrupt level 3
no data segment -
nucleus-allocated stack
software priority-level ~7
software-priority-level 130
software-priority-level-131
stack size 512 -
task_flags-

literally '038R';
literally 'OOH';
literally'OOH';
literally i()7';
literally '130';
literally '131';
literally '512';
literally 'OOH';

input_task token = rqScreatestask
(software priority level 67, @input_task,
no data segment, nucleus allocaten stack,
stack_sTze 512, task_flags, @status);

call rqScatalogSobject
(supervisor job, input task token,
@(lO,'INPUT TASK'), @status);

fft task token = rqscreatestask
(software priority level 131, @fft task,
no data segment, nucleus allocated stack,
stack_sTze_5l2, task_flags, @status);

call rqscatalogSobject
(supervisor job, fft task token,
@(8,'FFT TASK'), @statusT;

output_task token = rq~createstask
(software priority level 130, ~output task,
no data segment, nucleus allocated stack,
stack_sTze_512, task_flags, ~status);

call rq$catalog$object
(supervisor job, output task token,
@(ll,'OUTPUT TASK'), @status);

35

1l1'eII

501 2

502 1

503 2

504 2
505 2
506 2

507 2
508 2
509 2
510 2
511 2

512 2
513 2
514 3
515 3
51r; 3

517 2

518 1

519 2

520 2

521 2

522 2

523 2

524 2

525 2

APPENDIX A

END INITIALIZE_TASKS;

/**/
/* Initial screen displays the initial two */
/* lines on the screen and sends blank lines */
/* for all the other lines of the first screen. */
/**/

INITIAL_SCREEN: PROCEDURE;

declare initial screen index

call move down line(O);
call blank line;
call display_line;

call move down line(1);

word;

text length = size(header line one);
insert text pointer = @header line one;
call insert-text (insert text-pointer, text length);
call display_line; --

call blank line;
do initial-screen index = 2 to 23;

call move down-line (initial_screen_index);
call display_ITne;

end:

END INITIAL_SCREEN;

/***/
/* INITIALIZE BUFFERS takes care of the */
/* initialization required for general */
/* SUPERVISOR TASK start up. */
/***/

INITIALIZE BUFFERS: PROCEDURE;

return th in mbx = rqScreateSmailbox
(queue fifo, @status);

call rqscatalog$obJect
(supervisor job, return th in mbx,
@(9,'SUP TH IN'), @status);

return th out mbx = rq$createSmailbox
- (queue fifo, @status);

call rqScatalogSobJect
(supervisor job, return th out mbx,
@(10,'SUP TH OUT'), @status);

to_input_mbx = rqScreateSmailbox
(queue fifo, @status);

call rqScatalogSobject
(supervisor job, to input mbx,
~(12,'TO INPUT MBX'), @status);

to fft mbx = rqScreateSmailbox
(queue_priority, @status);

36

527

528

529

530

531

532

533

534

535

536
537

538
539

540

541

542
543

544
545

546
547

548

549

2

2

2

2

2

2

2

2

2

2

2
2

2
2

2

2

2
2

2
2

2
3

3

2

APPENDIX A

call rqScatalog$object
(supervisor job, to fft mbx,
~(lO,'TO FFT MBX')~ @status);

to_output_mbx = rqScreate$mailbox
(queue priority, @status);

call rqScatalogSobject
(supervisor job, to output mbx,
@(lO,'TO OUT MBX')~ @status);

to supervisor mbx = rq$createSmailbox
(queue priority, @status);

call rq$catalog$object
(supervisor job, to supervisor mbx,
@(lO,'TO SUP MBX')~ @status);

root_job_token = rqgettaskStokens
(root job, @status);

th out mbx = rq$lookup$object
(root job token, @(ll,'RQTHNORMOUT'),
wait-forever, @status);

th in mbx ~ rq$lookup$object
(root job token, ~(lO,'RQTHNORMIN'),
wait-forever, @status);

th in segment token = rqScreate$segment
(size 120 bytes, @status);

call rqScatalog$obJect-
(supervisor job, th in segment token,
@(lO,'S THIN SEG')~ @status);

th in segment pointer values.offset = 0;
th-in-segment-pointer-values.base

- - = th in segment token;
th in segment.function - - = th read;
th=in=segment.count -= 82;

th_out_segment_token = rq$create$segment
(size 120 bytes, @status);

call rq$catalog$ob]ect-
(supervisor job, th out segment token,
@(ll,'S THOUT SEG'), @status);

th out segment pointer values.offset = 0;
th-out-segment-pointer-values.base

- - = th-out segment token;
th out segment. function = th-write;
th=out-segment.count -= Ill;

do general index = 0 to 2;
th out segment.home chars (general index)

- ~ cursor home-chars (general-index);
end;

END INITIALIZE_BUFFERS;

/***/
/* At last, the SUPERVISOR TASK! All it does is */

37

II l'at

550

551

552

553
554

555

556
557
558

559

1

2

2

2
/.

2

3
3
3

3

APPENDIX A

/* call other proceoures to initialize the */
/* screen, input the parameters, clean up the */
/* old FFT segments from the mailboxes, set up */
/* new segments, create the tasks, and then wait */
/* for messages from the operator (abort) or */
/* other tasks (FFT or OUTPUT done) . */
/***/

SUPERVISOR TASK: PROCEDURE PUBLIC;

call initialize_buffers;

call rqSendSinit$task;

call initial screen;
call initialTze_tasks;

do forever;

call input parameters;
call initialize segments;
call monitor_maTlboxes;

end;

5hO END SUPERVISOR_TASK;

END SUPERVISOR_MODULE;

MODULE INFORMATION:

2

5~1 1

CODE AREA SIZE
CONSTANT AREA SIZE
VARIABLE AREA SIZE
MAXIMUM STACK SIZE
1197 LINES READ
o PROGRAM ERROR(S)

= l032H
= OOOOH
= 0084H
= 0024H

END OF PL/M-86 COMPILATION

38

414hD
aD

132D
3t1D

infel' APPENDIX B

ISIS-II PL!M-86 V2~0 COMPILATION OF MODULE INPUT TASK MODULE
OBJECT MODULE PLACED IN :Fl:input.OBJ
COMPILER INVOKED BY: plm8~ :Fl:input.p86

89

90
91

92
93
94
95
96
97
98

99
100
101
102
103
104
105
106
107
108
109
110
III
112
113
114
115
lIe::;
117
118
119
120
121
122
123

1

1
1

1
1
1
1
1
1
1

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

$title('INPUT TASK FOR AP NOTE 110, OCTOBER 19RO')
$large debug
INPUT TASK MODULE:
do;
$include(:fl:nucprm.ext)

= $SAVE NOLIST

declare token literally 'word';

/* The following two tokens, the FFT sample */
/* segment format, and the root job directory */
/* form the entire interface for this task with */
/* the rest of the system. */

declare to input mbx
declare to-fft mbx

declare ascii mask
declare carriage return
declare done
declare first loop
declare forever

token external;
token external;

literally'30R';
literally 'ODH';
literally 'OFFH';
literally'OFFH'i

literally 'while 1';
literally '50'; declare frames to process entry

declare hardware Tnterrupt level 3
- - literally '0038H';

declare interrupt task created literally 'OFFH';
declare interrupt-task-not created literally 'OOH';
declare latch the-data- - literally 'O~OH';
declare line feed literally 'OAH';
declare new fft run literally 'OFFH';
declare no response requested literally 'OOH';
declare no-data segment literally 'OOH';
declare not done literally 'OOH';
declare not-first loop literally'OOH';
declare not-valid literally 'OOH';
declare null literally'OOH';
declare processed so far entry literally '33';
declare queue fifo literally 'OOH';
declare root job literally'03H';
declare run continuous literally 'OFFFFH';
declare sam~le LSB literally '0081H';
declare sample-MSB literally '0080H';
declare size 2-bytes literally'?';
declare size-120 bytes literally '120';
declare supervisor job literally 'OOH';
declare th write literally '05';
declare thIS is the interrupt task literally 'OlH';
declare timer one port - literally'OOD2H';
declare timer-mode control port literally 'OOD~H';
declare valid- - - literally 'OFFH';

39

111'eI

124

125
17.6
127
128
129
130
131
132
133
134
135
13(-)
137
138
139

140

141

142

143

144
145
146
147
148
149

150

151

152

153

154

1

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

1

.1

1

1

1
1
1
1
1
1

1

.1

1

1

1

APPENDIX B

declare wait forever literally'OFFFFH';

neclare data segment token
declare dummy mbx -
declare from Interrupt task mbx
declare handler dummy mbx -
declare handler-status
declare interrupt status
declare interrupt-task token
declare interrupt-message token
declare output buffer token
declare return-mbx -
declare root job token
declare sign~l i~terrupt token
declare status- -
declare to interrupt task mbx
declare th-out mbx - -

token;
token;
token;
token;
token;
token;
token;
token;
token;
token;
token;
token;
token;
token;
token;

declare sample_data integer;

declare sample input data structure(
LSB - byte,
MSB byte) at (0sample_data);

declare current timer value word;

declare timer values structure(
LSB - byte,
MSB byte) at (@current_timer_value);

declare done flag
declare firs~ input loop flag
declare frames receIved
declare general index
declare interrupt task flag
declare sample_valid -

declare timer threshold

declare value to convert

byte;
byte;
byte;
byte;
byte;
byte;

word;

word;

declare converted value structure(
first digTt byte,
second_digit byte) ;

/* The following declare is for the home */
/* characters for the Hazeltine terminals. */
/* The sequence is tilde, DC2. */

declare cursor_horne_chars (2) byte data (07EH,nl?H);

declare output_buffer pointer pointer;

40

155

156

157

158

159

11)0

1~1

lfi2
1?)3

,
-L

1

1

1

1

1

1

2
2

APPENDIX B

declare output buffer pointer values structure(
offset - word~
base word) at
(@output_buffer_pointer) ;

declare output buffer based output buffer_pointer
structure(
function
count
exception code
actual -
home chars(2)
line-index(?4)
character(30)

word,
word,
word,
word,
byte,
byte,
byte) ;

declare data_segment_pointer pointer public;

declare data segment pointer values structure(
offset - word,
base word) at
(@data_segment pointer);

/* The following is the FFT data segment formate */

declare data segment based data segment pointer
structure(--
samples per frame word,
sample Tnterval word,
frames-to average word,
continuous flag word,
this frame number word,
number samples missed word,
sample-pointer- word,
reset flag word,
sample(256) integer) ;

declare input status line(30) byte data
(' - The INPUT TASK has processed'

, frames out of frames to'
• average. ,) ;

FAST INPUT HANDLER:
PROCEDURE (FFT SEGMENT POINTER) EXTERNAL;

DECLARE FFT SEGMENT POINTER POINTER;
END FAST_INPUT_HANDLER;

/**/
/* SLOW INPUT HANDLER is an interrupt procedure */
/* that-receives an interrupt when the 8253 */
/* interval timer counts to zero. The 8253 is */
/* free running, so it starts counting from the */
/* top again. The 8253 counter is tested */
/* in a polling fashion to be sure it reads the */
/* sample, which resets the conversion, */
/* at a precise time. This aids in removing */

41

Ir1'el

1114

11S5
loIS

167
168

169
170
171
172
173

174
175
1711

177
178

179
180

181

1

2
2

2
2

2
?

3
3
3

2
3
3

3
3

4
4

4

APPENDIX B

/* jitter from the sample intervals. When all */
/* of the samples have been taken, */
/* SLOW INPUT HANDLER calls signal interrupt, */
/* which lets-the INTERRUPT TASK procedure know */
/* the buffer is full. - */
/**/

SLOW_INPUT_HANDLER: PROCEDURE INTERRUPT 59 PUBLICi

/* First set the sample to not valid (we have */
/* to be past the timer threshold before the */
/* sample becomes valid). */

sample valid = not_valid;
timer loop:

/* Make the timer value stable and read it. */

output (timer mode control port) = latch the data;
timer values.LSB =-input (timer one port); -
timer=values.MSB = input (timer=one=port);

/*
/*

if

If it is not past the threshold, then some */
future sample will be valid. */

current timer value > timer threshold then
no·

sample valid = valid;
goto timer loop;

end;

/* We get to the else only if we are past the */
/* timer threshold. */

else
do;

sample input data. LSB = input(sample LSB) ; - -sample input data.MSB = input(sample MSB) ; - -

/* If the sample is valid, we Must have come */
/* in before the threshold so we know we */
/* sampled as close to the right time as */
/* possible. */

if sample valid = valid then -do;

/* However, we want to ignore the first */
/* sample (which was started a long */
/* time ago) . */

if first input loop flag = first loop then
first input loop flag = not first loop;

-else
do;

42

inter

182 5

183 5

184 5
185 4

185 3
187 4

188 4
189 4
190 3
191 3

192 2

193 2

194 2

195 2

19&3 1

/*
/*
/*

if

end;
else
do;

APPENDIX B

data segment.sample
(data segment.sample pointer)

= sample data; -
data segment.sample pointer

= data_segment:sample_pointer+1;
end;

data segment.number samples missed
~ data segment.number samples missed+l;

data segment.sample pointer = 0; -
end; - -

sample valid = not_valid;
end i -

If we are done, we have to let the */
INPUT TASK know the buffer is full. */
Otherwise, we wait for the next interrupt. */

data segment.sample pointer
>= data segment~samples per frame then

call rqSslgnalSinterrupt -
(hardware interrupt level 3,
@handler=status); -

else
call rqSexit$interrupt

(hardware interrupt level 3,
~hand1er-status) ;

END SLOW INPUT_HANDLER;

/***/
/* INTERRUPT TASK exists hecause if an interrupt */
/* task goes-to sleep, the level of the */
/* interrupt task, interrupt handler, and lower */
/* levels remain disabled. In order to prevent */
/* this from happening in this application, this */
/* task notifies the INPUT TASK that the buffer */
/* is full. INPUT TASK disables Level 3 and */
/* returns the token to INTERRUPT TASK. */
/* INTERRUPT TASK will then call wait interrupt, */
/* enabling lower levels. Since INPUT TASK */
/* disabled Level 3, no Level 3 interrupts will */
/* be serviced until Level 3 is enabled by */
/* INPUT TASK. */
/* */
/* NOTE THAT PLM/8~ REQUIRES THE USE OF THE */
/* BUILT IN INTERRUPTSPTR PROCEDURE TO OBTAIN */
/* THE PROPER INTERRUPT PROCEDURE ENTRY POINT. */
/* */
/***/

INTERRUPT TASK: PROCEDURE PUBLIC;

43

111'eI

197

198

199

200

201

202

203

204

205
206

207
208
209

210
211

2

2

3

3

3

3

2

I

2
2

?
2

3

3
3

APPENDIX B

call rqSset$interrupt
(hardware interrupt level 3,
this is the interrupt task,
INTE~RU~TSP~R(SLOW IN~UT HANDLER),
no_data_segment, ~Tnterrupt_status);

do forever;

call rq$waitSinterrupt
(hardware interrupt level 3,
@interrupt_status);

call rqSsendSmessage
(from interrupt task mbx,
interrupt message token,
to_interrupt_task=mbx, @interrupt_status);

interrupt message token = rq$receive$message
(to interrupt task mbx, wait forever,
@dummy_mbx, @interrupt_statuS);

end;

END INTERRUPT_TASK;

/**/
/ * CON VR R rr n TnT rr ~ ; ~ ;::! ~ m ;::! 1 1 n l'" ,... ,... 0 ~ 11 Y 0 -l= ,... Y + I

/* convertTng a hex number into an ASCII */
/* number, with the advance knowledge that the */
/* hex number will be less than 99 decimal (in */
/* this case, less than 32 oecimal). */
/**/

CONVERT DIGITS: PROCEDURE;

converted value.first digit = ascii mask;
- -converted value.second digit = ascii mask;
- - -

done flag = not done;
do while done flag - done; = not -

value to convert = value to convert - 10;

/* The problem here is we need to check for */
/* a negative value when we have BYTE values */
/* which are, by definition, positive and */
/* mudulo 256. So we adapt by checking for */
/*) 200 decimal, which should mean the */
/* value has "wrapped" around zero. If it */
/* has, we can get our previous value back */
/* by aoding 10. */

if value to convert < 200 then
converted=value.first_digit

44

212
213
214

215
21n
217

218

219

220

221

222

223

724

225

226

227

228

229

230

3
4
4

4
4
3

2

1

2

2

2

2

2

2

2

2

2

2

2

APPENDIX B

= converted_value. first_digit + 1;
else
do;

value to convert = value to convert + 10;
converted value.second dIgit

= converted value.second digit +
value to convert; -

done flag = done;- -
end;

end;

END CONVERT_DIGITS;

/**/
/* SEND STATUS converts the current frame */
/* number into ASCII and stuffs it into the */
/* previously initialized status line. Then */
/* SEND STATUS sends the status line to the */
/* termInal handler and waits for the segment */
/* to be returned. */
/**/

SEND_STATUS: PROCEDURE;

value to convert = data_segment.this frame_number;

call convert_digits;

output buffer.character (processed so far entry)
= converted value. fIrst-digit;

output buffer~character (processed so far-entry+l)
- = converted_value.second_digit;

value to convert = data segment.frames_to_average;

call convert_digits;

output buffer.character (frames to process entry)
= converted value. first digit;

output buffer.character (frames to process entry+l)
- = converted_value.second=digit;

call rqSsendSmessage
(th out mbx, output_buffer_token,
return-mbx, ~status);

output_buffer token ~ rqsreceiveSmessage
(return mbx, wait forever,
@dummy=mbx, ~status);

/***/
/* INPUT DATA selects the fast or slow input */
/* handler, initializes the 8253 timer as */
/* necessary, and calls the appropriate input */

45

1l1'eI

231 1

232 2
233 ~

234 2
235 2

236 2
L. TI 7

238 2

239 ~

240 2
241 2
242 2
243 2
244 2
245 2
24h 2
247 2

248 /.

249 2

250 2

APPENDIX B

/* handler. Please note the values of the */
/* intervals selected for sampling are */
/* scaled by ~0/~4 so the actual frequency */
/* output of the 128 sample FFT algorithm will */
/* match up with the base 10 x axis labels. */
/* Base 10 doesn't map too well to a binary */
/* x-axis that runs from 1 to ~4. */
/***/

INPUT DATA: PROCEDURE; -

declare LSB 120Hz interval literally '058H';
declare MSB - 120Hz - interval literally , 00 2H ' ; - -declare LSB ~OOHz interval literally '078H' ;
declare MSB - 600Hz-interval literally 'OOOH' ;

/* The 8253 timer is running at 143.~ Khz, or */
/* ~.5 microseconds per count. We have to */
/* restart the sampling process precisely, so */
/* we count down after the interrupt to be */
/* sure we are synchronized. In this case, */
/* we have a 300 microsecond window after the */
/* interrupt to get the sample. 300 */
/* microseconds is roughly A2 times h.5 */
/* microseconds. */

declare threshold fo r 1 ?nH7 lit-Ar~"H '1"'I'1'1t:'UI.

-declare threshold for e)OOHz literally , 004 8H ' ;

declare a 390t; microsecond interval
literally 'OF42H' ;

oec;are five places literally , 5 ' ;
declare nucleus allocated stack literally 'OOH' ;
declare shift integer right literally 'SAL' ; - -declare software priority_ level 0 literally 'OO~' ;
declare software - priority_ level 6fi literally '~6' ;

-declare stack size 512 literally , 512' ;
declare task flags - literally '0 OH' ;
declare this - task literally '0 OH' ;
declare timer mode control word literally , 7 4H ' ;

declare enable conversion literally , 00' i

declare input command literally '0080H'i -
/* The first thing we do is start the conver- */
/* sions. We don't care about the first */
/* data since we are going to ignore it. Each */
/* time we read both bytes of the present */
/* converted value, we start the next */
/* conversion. This initialization will */
/* prepare for the real data gathering. */

output (input_command) = enable_conversion;

46

251
252
253

254

255
256

257

258

259

260
261

252

2~3

264
2t)5

266

269

270

271
272

273

2
2
3

3

3
4

4

4

4

3
4

4

4

4
3

3

3
4

4

4

4
3

3

APPENDIX B

if data segmentesample interval> 391 then
do; -

output (timer mode control port)
= timer mode control word;

if data segment.sample interval
~ a 3906 microsecond interval then

do;
timer threshold

= threshold for 120Hz;
output (timer one port)

= LSB 120Hz interval;
output (timer one port)

end;
else

do;

= MSB 120Hz interval;

timer threshold
= threshold for t)OOHz;

output (timer one port)
= LSB hOOHz interval;

output (timer one port)
= MSB hOOHz interval;

end;
first input_loop_flag = first loop;

if interrupt task flag
= interrupt_task_not created then

do;
interrupt task token = rqScreateStask

(software priority level hh,
0interrupt task, no data segment,
nucleus allocated stack,
stack_sTze_51?, task_flags, 0status);

call rqscatalogSobject
(supervisor job, interrupt task token,
@(12,'INTERRUPTTSK'), @status);

interrupt task flag
= interrupt_task_created;

end;
else call rqSenable

(hardware_interrupt_level 3, @status);

/* Now we wait until the slow handler */
/* fills the buffer. */

signal interrupt_token = rqsreceivesmessage
(from interrupt task mbx, wait forever,
@dummy_mbx, @status); -

/* If we get the token, we know the
/* is full, so we disable level 3

47

buffer */
*/

111'eI

274

275

27~

277

278

279
280

281

282
283

284

285
286
287

288

289

290
291

3

3

3

2

3

3
1

3

2
3

3

2
3
3

2

1

2
2

APPENDIX B

call rq$disable
(hardware interrupt_level 3, @status);

/* And return the token so the */
/* INTERRUPT TASK can enable lower */
/* interrupt-levels. */

call rqSsendSmessage

end;
else
do;

(to interrupt task mbx,
signal interrupt token,
no_response_requested, ~status);

/* The fast INPUT handler must sample at
/* precise intervals that do not allow
/* variable interrupt latency. Therefore
/* we raise the priority level to O--the
/* highest--and just sample in a polling
/* fashion until the buffer is filled.

call rqSset$priority

*/
*/
*/
*/
*/
*/

(this task, software priority level 0,
@status) ; -

call FAST TNPfJT HANDr.p.R (rlArA ~p('fmpnt- nn;nrpr'.

call rqSsetSpriority
(this task, software priority level ~~,
~status) ; - -

end;

do general index = a to 127;
data segment.sample (general index)

= shift integer right

end;

(data_segment.sample (general index),
five_places) ;

do general index = 128 to 255;
data segment.sample (general index) = OOOOH;

end; -

END INPUT_DATA;

/**/
/* UPDATE FRAME NUMBER just updates the frame */
/* number-parameter on the data segments. */
/**/

UPDATE_FRAME_NUMBER: PROCEDURE;

data segment.number samples missed = 0;
data=segment.sample=pointer~ = 0;

48

inter

292 2

294 2
295 2
296 3
297 3
298 3

299 2
300 2

301 2

302 1

303 2

304 2

305 2

3011 2

307 2

308 2

309 2

310 2

311 2

312 2

313 2

APPENDIX B

if frames received = data segment. frames to average
then frames_received =-0; -

if data segment.reset flag = new fft run then
do;

frames received = 0;
data segment.reset flag = 0;

end; -

frames received = frames received + 1;
data_segment.this frame number = frames received;

/***/
/* INITIALIZE BUFFERS takes care of the usual */
/* trivia of setting up the pointers, creating */
/* the return mailbox, looking up the terminal */
/* handler, and all that other small garbage. */
1***/

INITIALIZE_BUFFERS: PROCEDURE;

return mbx = rqScreateSmailbox
(queue fifo, (astatus);

call rqScatalogSobject
(supervisor job, return mbx,
@(9,'I RET-MBX'), ~status);

from interrupt task mbx = rq~createSmailbox
(queue fifo, @status);

call rqScatalog$object
{supervisor job, from interrupt task mbx,
@(12,'FM INTSK MBX')~ @status);

to interrupt task mbx = rq$create~mailbox
(queue fifo, @status);

call rqScatalogSobject
(supervisor job, to interrupt task mbx,
@(12,'TO INTSK MBX'), @status);

interrupt_message token = rqScreateSsegment
(size 2-bytes, @status) i

call rqScatalogSobject
(supervisor job, interrupt message token,
0-(10,'INTTSK MSG'), @status) i

interrupt task flag
-= interrupt_task not created;

output_buffer token = rq$create$segment
(size_120_bytes, ~status) i

call rq$catalogSobject
(supervisor job, output buffer token,
@(IO,'I BUFF SEG'), @status) i

49

Illle!

314
315

31e)
317
318
319

320

321
322

323

324
325

32n

327
328

329

330

331

332

333

334

335

336

337

2
2

2
2
2
3

3

2
3

2
3

3

2
3

3

2

2

2

2

1

2

2

2

APPENDIX B

output buffer pointer values.offset = 0;
output-buffer-pointer-values.base

- = output buffer token;
output buffer.functTon = th write;
output-buffer.count = 110;
do general index = 0 to ~;

output buffer.home chars (general index)
- = cursor home chars (general index);

end;

do general index = 0 to 21;
output buffer.line index (general index)

- = line_feed;
end;

do general index = 22 to 23;
output buffer.line index (general in~ex)

- = null;
end;

do general index = 0 to 78;
output buffer.character (general index)

- = input_status line (ge~eral index);
end;

root job token = rqSgetStask~tokens
(rnl"'lr;l"'Ih fMc::r~t-llC::'.

th out mbx = rqSlookup$object
(root job token, 0(11,'RQTHNORMOUT'),
wait-forever, @status);

frames received = 0;

END INITIALIZE BUFFERS;

/**/
/* The actual INPUT TASK begins here. It */
/* initializes the buffers to begin things, */
/* then waits forever for the FFT sample */
1* segment. It then samples the data, fills */
1* the FFT data segment, and sends it to the */
1* FFT TASK. The INPUT TASK then updates its */
1* status line, sends it to the terminal */
1* handler, and returns to the mailbox to */
/* wait forever. */
/**/

INPUT_TASK: PROCEDURE PUBLIC;

call initialize buffers;

data segment_pointer_values.offset = 0;

do forever;

50

338

339

340
341

342

343

344

345

34f)

3

3

3
3

3

3

3

2

,
.1

APPENDIX B

/* Wait forever for an FFT data segment at */
/* the to input_mbx. */

data segment token = rq$receive$message
(to input mbx, wait forever;
@dummy mbx, 0status);

data segment pointer values.base
- ~ data segment_token;

call update frame number;
call input_data; -

call send status;

call rq$send$message

end;

(to_fft_mbx, data segment token,
no_response_requested, @status);

END INPUT TASK;

MODULE INFORMATION:

CODE AREA SIZE 070BH
CONSTANT AREA SIZE OOOOH
VARIABLE AREA SIZE 0036H
MAXIMUM STACK SIZE = 002AH
754 LINES READ
o PROGRAM ERROR(S)

END OF PL/M-8~ COMPILATION

51

1803D
OD

54D
42D

IrlLe! APPENDIX B

MCS-8fi MACRO ASSEMBLER FSTINP
ISIS-II MCS-8n MACRO ASSEMBLER V2.1 ASSEMBLY OF MODULE FSTINP
OBJECT MODULE PLACED IN :F1:FSTINP.OBJ
ASSEMBLER INVOKED BY: asm8n :fl:fstinp.a8~

LOC OBJ LINE

1
2
3

4
5

n

7

8

9

10

11
12

13

14

15

16

17

18

19

20
21
22
23
24
25
2n
27
28
29
30
31
32

SOURCE

.** ,

FAST INPUT HANDLER for APNOTE]10,
OCTOBER 1980

FAST INPUT HANDLER is an assembler routine
that-runs at priority
level 0 and simply drives an analog to
digital convertor and
stuffs the samples into a data segment until
all of the samples
have been taken. FAST INPUT HANDLER has
passed to it the address
of the data segment, in which the offset is
known to be zero.
FAST INPUT HANDLER returns nothing to the
callIng routine.

FAST INPUT HANDLER provides the proper timing
~ ..I

39, 78, and 391 microsecond intervals using
timed loops of
software instructions. In order to provide
an FFT without large
amounts of jitter, the sample intervals must
be uniform in time.
iRMX 8n cannot guarantee this uniformity due
to its real time
design, so this routine takes complete
control of the processor
for the (19 times 128) J.9 milliseconds or
(78 times 128) 9.9
or (391 times 128) 50 milliseconds required
to complete a frame
of 128 samples.

iAPX 8n register useage is the following:

AX - general
CX - loop delay counter

BX - stack index
DX - sample value

BP - stack SP - stack
DI - offset index into FFT 81 - not usen

data segment

DS - base for FFT data
segment

52

ES - not used

0080
0081
00 DE
0002
0002
alOE

33
34
35
36
37

38
39
40
41
42
43
44
45
4f)
47
48
49

50
0000 ???? 51

52
53
54
55
56
57

0000 (20
0000
)

0000

0000 IE
0001 55

58

59
?So
nl
62
&)3

~4

65
e)6

67
f)8

0002 8BEC 69

0004 8E5EOA 70

0007 BF0200 71

OOOA 8B05 72

OOOC BFOEOO 73

0012 740E 75

APPENDIX B

;
$** ,

;
ASSUME DS:FAST INPUT DATA, SS:STACK,

CS:FAST=INPUT=CODE, ES:NOTHING
;
PUBLIC FAST INPUT HANDLER
i
SAMPLE LSB
SAMPLE~MSB
FIRST PASS
SAMPLE INCREMENT
SAMPLE-INTERVAL
SAMPLE-MAX

FAST INPUT DATA

EQU
EQU
EOU
EQU
EQU
EQU

0080H
OOPIH
14
?
2
270

SEGMENT \.o./ORD
PUBLIC 'DATA'

;
LOOP VALUE DW ?

FAST INPUT DATA ENDS

,
STACK SEGMENT STACK 'STACK'

STACK ENDS

i
FAST INPUT CODE

i
FAST INPUT HANDLER
;
PUSH DS
PUSH BP

i SAVE BP IN STACK
MfJV BP, SP

DW ?-O

SEGMENT PARA
PUBLIC 'CODE'

PROC FAR

i SET BP TO STACK POINTER
MOV DS, rBP + 10]

; PUT BASE OF SAMPLE SEGMENT IN DS
MOV DI, SAMPLE INTERVAL

DUP(O)

i DX IS USED TO INDEX INTO THE DATA SEGMENT
MOV AX, DS: rDI]

; SET AX TO SAMPLE INTERVAL PARAMETER
MOV DI, FIRST PASS-

; RESET DI TO-FIRST SAMPLE - 14
cr·1P AX, 39

IF AX = 39, SET LOOP VALUE TO 9--LOOP
JZ SET 39 US

53

111'E)I APPENDIX B

0014 3D4EOO 7n
; TAKES

CMP AX,
ABOUT 1 US PER DECREMENT
78

; IF AX = 78, SET LOOP VALUE TO 22--8ASIC
0017 7412 77 JZ SET 78 US

0019 C70600007EOO
CYCLE-IS-13 US, PLUS (22 X 3) = 79 US
R 78 MOV LOOP VALUE, 12n

001F E81090

i 391 IS ONLY ONE LEFT-13 + (12nX3)
= 391

79 JMP INPUT LOOP ;
0022 C70500000900 R 80 SET 39 US: MOV LOOP VALUE, 9

i-TIMING IS BY SOFTWARE--SET
DELAY COUNT

0028 E80790 81 JMP INPUT LOOP ,
0028 C70600001nOO
0031 880EOOOO

R 82 SET 78 US: MOV LOOP VALUE, 72 ;
R 83 INPUT-LOOP: MOV ex, LOOP VALUE

; USE CX TO KEEP TRACK OF-DELAY
IN AL, SAMPLE LSB 0035 E480

0037 8ADO

0039 E481

0038 8AFO

84

85

86

87
88

; SET AL TO LSB OF INPUT SAMPLE
MOV DL, AL

i PUT THE LSB IN DL (8 BIT XFERS ONLY)
IN AL, SAMPLE MSB

SET AL TO MSB OF INPUT SAMPLE
THIS RESTARTS SAMPLE PROCESS

MOV DH, AL

003D 83FFOE 89
i PUT AL IN DH TO COMPLETE THE VALUE

CMP DI, FIRST PASS

0040 7408 90
0042 83C702 91

; WE WANT TO SKIP THE FIRST SAMPLE
JZ SKI P INPUT
ADD DI, SAMPLE INCREMENT

i INCREMENT DI-BY 2
0045 8915 92 MOV DS: rDI], DX

0047 E80990 93
i PUT SAMPLE DATA IN SEGMENT

JMP DELAY

004A 83C702 94
i AND JUMP TO SOFTWARE DELAY LOOP

SKIP INPUT: ADD DI, SAMPLE INCREMENT

004D 90

004E 90
004F 90
0050 90
0051 90
0052 90

; INCREMENT DI BY 2 -
95 NOP

; AND NOP FIVE TIMES FOR EVEN TI~ING
9(.) NOP
97 NOP
98 NOP
99 NOP

100 DE LA Y: NO P
; THIS NOP ADDS 3 CLOCKS PER DECREMENT

0053 EOFD 101 LOOPNZ DELAY
; DEC CX AND LOOP--l.5 US PER DECREMENT

0055 81FFOEITI 102 CMP DI, SAMPLE MAX
; COMPARE DI TO SEE IF WE ARE DONE

0059 75Dh 103 JNE INPUT LOOP

0058 5D
i IF NOT,-GO BACK FOR ANOTHER SAMPLE

104 POP 8P
; OTHERWISE POP BP, DS, AND RETURN

oose IF 105 POP DS
005D CA0400 IOn RET 4H

107

54

APPENDIX B

108 FAST INPUT HANDLER ENDP
109 ;
110 FAST INPUT CODE ENDS
III
112 END

ASSEMBLY COMPLETE, NO ERRORS FOUND

55

II I tel APPENDIX C

Both the RAM and ROM-based configurations will be
discussed in this appendix. They are essentially identical
processes. In either case, the first step is to define a map
of system memory. Once the map is known, the follow
ing sequence is suggested for locating code in memory:

1) Reserve memory OH to 03FFH for the Nucleus in
terrupt vector.

2) If the system is RAM based and the code is loaded
by the iSBC 957 A Monitor, reserve locations
03FFH to 07FFH for the monitor's use.

3) Configure each of the necessary portions of the
iRMX 86 Operating System and locate them se
quentially in memory.

4) For a RAM-based development system, allow 2K of
RAM for the system Root Job. Placing the Root
Job after the portions of the iRMX 86 Operating
System, which are relatively fixed in size during
development, and before the development code will
give the Root Job a fixed address. This will prevent
having to move the Root Job and reconfigure the
system when the development code grows. For final
EPROM-based systems, the Root Job should be
placed after the development code.

5) Link and locate each of the application code mod
ules sequentially in memory.

6) Define the RAM available to the system.

7) Define memory NOT available to the system. This
includes application code, EPROM, and non
existent memory within the 1 megabyte address
space.

8) Create the configuration file using the address maps
produced by the locate steps and the memory map
defined in steps 6 and 7.

9) Create the Root Job from this configuration file.

10) Load and test the system in RAM.

11) If the system has been fully debugged, load the code
into EPROM and test the final system.

The above steps are necessary for both the RAM devel
opment system and the final EPROM system. Convert
ing this application from RAM to EPROM requires re
configuring the Nucleus to include only those systems
calls required by the application, substituting the Ter
minal Handler Job for the Debugger Job, removing any
remaining system calls to catalog objects for debugging,
and remapping the system to the EPROM address
space. The memory maps for the development and final
application are shown in Figures C-I and C-2.

56

MODULE

.-------------------~(
(RESERVED)

RESET VECTOR
.....

iSBC 957A MONITOR EPROM
./

.-

.....

.....

.-

/'

.....
SYSTEM RAM

/'

EXPANSION
.....

APPLICATION DATA
'"

EXPANSION
.....

APPLICATION CODE
.....

ROOT JOB
'"

DEBUGGER
.....

NUCLEUS
/'

iSBC 957A MONITOR
/'

INTERRUPT VECTOR
~------------------~(

ADDRESS

FFFFFH

FFFFOH

FDOOOH

20000H

OFFFFH

OED50H

OEC10H

OEB07H

OCOBOH

OBACOH

05330H

OOOOH

OOOH

OH

} EPROM

I ~~~TENT
RAM

J

Figure C·1. Development System Memory Map

MODULE ADDRESS

FFFFFH
(RESERVED)

.....
RESET VECTOR

/' FFFFOH
UNUSED EPROM

/' FF5COH
ROOT JOB EPROM

.... FD3DOH
APPLICATION CODE

TERMINAL HANDLER CODE "- FCAOOH

/'
..... F8000H

NUCLEUS CODE
.....

.....

.....

/'

/'

} NON
EXISTENT

..... 04000H
SYSTEM RAM

ROOT JOB DATA
..... OB90H

APPLICATION DATA
..... OB80H

/'

TERMINAL HANDLER DATA
.....

/'

OA58H
RAM

0990H
NUCLEUS STACK

'" 0800H
NUCLEUS DATA

400H
INTERRUPT VECTOR

/' OH

Figure C·2. Final System Memory Map

System configuration is a straightforward but exacting
process. As with any such processes, there are some
hints that can make development easier. In addition to
care in locating the Root Job in memory, users should
fix the initialization job entry point and the data RAM
addresses.

APPENDIX C

The Intel PL/M 86 programming language does not
allow a procedure to be used until after it has been de
clared. This requires the initialization procedure to be
declared after all the other procedures. Since the initial
ization is last, changing the other procedures will change
the location of the initialization procedure. If the system
entry point changes, the system must be reconfigured.
The moving entry point can be circumvented by writing
a separate initialization task. The Root Job will create
only the initialization task which will then initialize the
system jobs. The initialization task entry point is fixed
by linking it ahead of the other application tasks and by
not changing the initialization task during dvelopment.
The actual system entry points will be bound to the ini
tialization task during linking and locating. The linking
and locating steps are a natural consequence of chang-

57

ing the application code, so binding the fixed system en
try point is done automatically during development.
The fixed initializatio~ task entry point is used in the
configuration file, giving the Root Job an unchanging
system entry point.

The remaining moving target during development is the
RAM area for data and stack use. If the data and stack
RAM is located before or after the application code,
with enough extra memory in between for growth dur
ing development, the data and stack locations can stay
constant. Fixing both the application entry point and
the locations of the stack and data segments will allow
development of the application code to proceed without
requiring frequent reconfigurations.

Notes

---_.- •.... -----. __ ._.----.

.. _--_.- .-------------. ----- -. --_.

----_ .. __ .. _---_._.- _._----_._. __ ... _.---_ ..

---_.... .._--_._ _---

._---_._ ...• -----

_ .. _._- ----_ .. __ ._. ------

II I L...L. vvnrVhM IIVI , .:>vO;; DUWt::I~ 1-\vt::H1Ue, \:)cillla ~Iara, ~A • \4VO) {.j4-0 IV":::: XO~O

Printed in U.S.A.lB-359/0181/10KlBA/UC

