
*Other brands and names are the property of their respective owners.
Information in this document is provided in connection with Intel products. Intel assumes no liability whatsoever, including infringement of any patent or
copyright, for sale and use of Intel products except as provided in Intel’s Terms and Conditions of Sale for such products. Intel retains the right to make
changes to these specifications at any time, without notice. Microcomputer Products may have minor variations to this specification known as errata.

December 1990COPYRIGHT © INTEL CORPORATION, 1995 Order Number: 240182-004

376TM HIGH PERFORMANCE
32-BIT EMBEDDED PROCESSOR

Y Full 32-Bit Internal Architecture
Ð 8-, 16-, 32-Bit Data Types
Ð 8 General Purpose 32-Bit Registers
Ð Extensive 32-Bit Instruction Set

Y High Performance 16-Bit Data Bus
Ð 16 or 20 MHz CPU Clock
Ð Two-Clock Bus Cycles
Ð 16 Mbytes/Sec Bus Bandwidth

Y 16 Mbyte Physical Memory Size

Y High Speed Numerics Support with the
80387SX

Y Low System Cost with the 82370
Integrated System Peripheral

Y On-Chip Debugging Support Including
Break Point Registers

Y Complete Intel Development Support
Ð C, PL/M, Assembler
Ð ICETM-376, In-Circuit Emulator
Ð iRMK Real Time Kernel
Ð iSDM Debug Monitor
Ð DOS Based Debug

Y Extensive Third-Party Support:
Ð Languages: C, Pascal, FORTRAN,

BASIC and ADA*
Ð Hosts: VMS*, UNIX*, MS-DOS*, and

Others
Ð Real-Time Kernels

Y High Speed CHMOS IV Technology

Y Available in 100 Pin Plastic Quad Flat-
Pack Package and 88-Pin Pin Grid Array

(See Packaging Outlines and Dimensions Ý231369)

INTRODUCTION

The 376 32-bit embedded processor is designed for high performance embedded systems. It provides the
performance benefits of a highly pipelined 32-bit internal architecture with the low system cost associated with
16-bit hardware systems. The 80376 processor is based on the 80386 and offers a high degree of compatibil-
ity with the 80386. All 80386 32-bit programs not dependent on paging can be executed on the 80376 and all
80376 programs can be executed on the 80386. All 32-bit 80386 language translators can be used for
software development. With proper support software, any 80386-based computer can be used to develop and
test 80376 programs. In addition, any 80386-based PC-AT* compatible computer can be used for hardware
prototyping for designs based on the 80376 and its companion product the 82370.

240182–48

80376 Microarchitecture

Intel, iRMK, ICE, 376, 386, Intel386, iSDM, Intel1376 are trademarks of Intel Corp.
*UNIX is a registered trademark of AT&T.
ADA is a registered trademark of the U.S. Government, Ada Joint Program Office.
PC-AT is a registered trademark of IBM Corporation.
VMS is a trademark of Digital Equipment Corporation.
MS-DOS is a trademark of MicroSoft Corporation.

376 EMBEDDED PROCESSOR

1.0 PIN DESCRIPTION

240182–52

Figure 1.1. 80376 100-Pin Quad Flat-Pack Pin Out (Top View)

Table 1.1. 100-Pin Plastic Quad Flat-Pack Pin Assignments

Address Data Control N/C VCC VSS

A1 18 D0 1 ADS 16 20 8 2
A2 51 D1 100 BHE 19 27 9 5
A3 52 D2 99 BLE 17 10 11
A4 53 D3 96 BUSY 34 29 21 12
A5 54 D4 95 CLK2 15 30 32 13
A6 55 D5 94 D/C 24 31 39 14
A7 56 D6 93 ERROR 36 43 42 22
A8 58 D7 92 FLT 28 44 48 35
A9 59 D8 90 HLDA 3 45 57 41
A10 60 D9 89 HOLD 4 46 69 49
A11 61 D10 88 INTR 40 47 71 50
A12 62 D11 87 LOCK 26 84 63
A13 64 D12 86 M/IO 23 91 67
A14 65 D13 83 NA 6 97 68
A15 66 D14 82 NMI 38 77
A16 70 D15 81 PEREQ 37 78
A17 72 READY 7 85
A18 73 RESET 33 98
A19 74 W/R 25
A20 75
A21 76
A22 79
A23 80

2

376 EMBEDDED PROCESSOR

Top View

(Component Side)

240182–49

Bottom View

(Pin Side)

240182–2

Figure 1.2. 80376 88-Pin Grid Array Pin Out

3

376 EMBEDDED PROCESSOR

Table 1.2. 88-Pin Grid Array Pin Assignments

Pin Label Pin Label Pin Label Pin Label

2H CLK2 12D A18 2L M/IO 11A VCC

9B D15 12E A17 5M LOCK 13A VCC

8A D14 13E A16 1J ADS 13C VCC

8B D13 12F A15 1H READY 13L VCC

7A D12 13F A14 2G NA 1N VCC

7B D11 12G A13 1G HOLD 13N VCC

6A D10 13G A12 2F HLDA 11B VSS

6B D9 13H A11 7N PEREQ 2C VSS

5A D8 12H A10 7M BUSY 1D VSS

5B D7 13J A9 8N ERROR 1M VSS

4B D6 12J A8 9M INTR 4N VSS

4A D5 12K A7 8M NMI 9N VSS

3B D4 13K A6 6M RESET 11N VSS

2D D3 12L A5 2B VCC 2A VSS

1E D2 12M A4 12B VCC 12A VSS

2E D1 11M A3 1C VCC 1B VSS

1F D0 10M A2 2M VCC 13B VSS

9A A23 1K A1 3N VCC 13M VSS

10A A22 2J BLE 5N VCC 2N VSS

10B A21 2K BHE 10N VCC 6N VSS

12C A20 4M W/R 1A VCC 12N VSS

13D A19 3M D/C 3A VCC 1L N/C

4

376 EMBEDDED PROCESSOR

The following table lists a brief description of each pin on the 80376. The following definitions are used in
these descriptions:

The named signal is active LOW.

I Input signal.

O Output signal.

I/O Input and Output signal.

Ð No electrical connection.

Symbol Type Name and Function

CLK2 I CLK2 provides the fundamental timing for the 80376. For additional

information see Clock in Section 4.1.

RESET I RESET suspends any operation in progress and places the 80376 in a

known reset state. See Interrupt Signals in Section 4.1 for additional

information.

D15–D0 I/O DATA BUS inputs data during memory, I/O and interrupt acknowledge

read cycles and outputs data during memory and I/O write cycles. See

Data Bus in Section 4.1 for additional information.

A23–A1 O ADDRESS BUS outputs physical memory or port I/O addresses. See

Address Bus in Section 4.1 for additional information.

W/R O WRITE/READ is a bus cycle definition pin that distinguishes write

cycles from read cycles. See Bus Cycle Definition Signals in Section

4.1 for additional information.

D/C O DATA/CONTROL is a bus cycle definition pin that distinguishes data

cycles, either memory or I/O, from control cycles which are: interrupt

acknowledge, halt, and instruction fetching. See Bus Cycle Definition

Signals in Section 4.1 for additional information.

M/IO O MEMORY I/O is a bus cycle definition pin that distinguishes memory

cycles from input/output cycles. See Bus Cycle Definition Signals in

Section 4.1 for additional information.

LOCK O BUS LOCK is a bus cycle definition pin that indicates that other

system bus masters are denied access to the system bus while it is

active. See Bus Cycle Definition Signals in Section 4.1 for additional

information.

ADS O ADDRESS STATUS indicates that a valid bus cycle definition and

address (W/R, D/C, M/IO, BHE, BLE and A23–A1) are being driven at

the 80376 pins. See Bus Control Signals in Section 4.1 for additional

information.

NA I NEXT ADDRESS is used to request address pipelining. See Bus

Control Signals in Section 4.1 for additional information.

READY I BUS READY terminates the bus cycle. See Bus Control Signals in

Section 4.1 for additional information.

BHE, BLE O BYTE ENABLES indicate which data bytes of the data bus take part in

a bus cycle. See Address Bus in Section 4.1 for additional

information.

HOLD I BUS HOLD REQUEST input allows another bus master to request

control of the local bus. See Bus Arbitration Signals in Section 4.1

for additional information.

5

376 EMBEDDED PROCESSOR

Symbol Type Name and Function

HLDA O BUS HOLD ACKNOWLEDGE output indicates that the 80376 has
surrendered control of its local bus to another bus master. See Bus
Arbitration Signals in Section 4.1 for additional information.

INTR I INTERRUPT REQUEST is a maskable input that signals the 80376 to
suspend execution of the current program and execute an interrupt
acknowledge function. See Interrupt Signals in Section 4.1 for
additional information.

NMI I NON-MASKABLE INTERRUPT REQUEST is a non-maskable input
that signals the 80376 to suspend execution of the current program
and execute an interrupt acknowledge function. See Interrupt Signals
in Section 4.1 for additional information.

BUSY I BUSY signals a busy condition from a processor extension. See
Coprocessor Interface Signals in Section 4.1 for additional
information.

ERROR I ERROR signals an error condition from a processor extension. See
Coprocessor Interface Signals in Section 4.1 for additional
information.

PEREQ I PROCESSOR EXTENSION REQUEST indicates that the processor
extension has data to be transferred by the 80376. See Coprocessor
Interface Signals in Section 4.1 for additional information.

FLT I FLOAT, when active, forces all bidirectional and output signals,
including HLDA, to the float condition. FLOAT is not available on the
PGA package. See Float for additional information.

N/C Ð NO CONNECT should always remain unconnected. Connection of a
N/C pin may cause the processor to malfunction or be incompatible
with future steppings of the 80376.

VCC I SYSTEM POWER provides the a5V nominal D.C. supply input.

VSS I SYSTEM GROUND provides 0V connection from which all inputs and
outputs are measured.

2.0 ARCHITECTURE OVERVIEW

The 80376 supports the protection mechanisms
needed by sophisticated multitasking embedded
systems and real-time operating systems. The use
of these protection mechanisms is completely op-
tional. For embedded applications not needing pro-
tection, the 80376 can easily be configured to pro-
vide a 16 Mbyte physical address space.

Instruction pipelining, high bus bandwidth, and a
very high performance ALU ensure short average
instruction execution times and high system
throughput. The 80376 is capable of execution at
sustained rates of 2.5–3.0 million instructions per
second.

The 80376 offers on-chip testability and debugging
features. Four break point registers allow conditional
or unconditional break point traps on code execution
or data accesses for powerful debugging of even
ROM based systems. Other testability features in-
clude self-test and tri-stating of output buffers during
RESET.

The Intel 80376 embedded processor consists of a
central processing unit, a memory management unit
and a bus interface. The central processing unit con-

sists of the execution unit and instruction unit. The
execution unit contains the eight 32-bit general reg-
isters which are used for both address calculation
and data operations and a 64-bit barrel shifter used
to speed shift, rotate, multiply, and divide operations.
The instruction unit decodes the instruction opcodes
and stores them in the decoded instruction queue
for immediate use by the execution unit.

The Memory Management Unit (MMU) consists of a
segmentation and protection unit. Segmentation al-
lows the managing of the logical address space by
providing an extra addressing component, one that
allows easy code and data relocatability, and effi-
cient sharing.

The protection unit provides four levels of protection
for isolating and protecting applications and the op-
erating system from each other. The hardware en-
forced protection allows the design of systems with
a high degree of integrity and simplifies debugging.

Finally, to facilitate high performance system hard-
ware designs, the 80376 bus interface offers ad-
dress pipelining and direct Byte Enable signals for
each byte of the data bus.

6

376 EMBEDDED PROCESSOR

2.1 Register Set

The 80376 has twenty-nine registers as shown in Figure 2.1. These registers are grouped into the following six
categories:

240182–47

240182–5

Figure 2.1. 80376 Base Architecture Registers

7

376 EMBEDDED PROCESSOR

General Registers: The eight 32-bit general pur-
pose registers are used to contain arithmetic and
logical operands. Four of these (EAX, EBX, ECX and
EDX) can be used either in their entirety as 32-bit
registers, as 16-bit registers, or split into pairs of
separate 8-bit registers.

Segment Registers: Six 16-bit special purpose reg-
isters select, at any given time, the segments of
memory that are immediately addressable for code,
stack, and data.

Flags and Instruction Pointer Registers: These
two 32-bit special purpose registers in Figure 2.1
record or control certain aspects of the 80376 proc-
essor state. The EFLAGS register includes status
and control bits that are used to reflect the outcome
of many instructions and modify the semantics of
some instructions. The Instruction Pointer, called
EIP, is 32 bits wide. The Instruction Pointer controls
instruction fetching and the processor automatically
increments it after executing an instruction.

Control Register: The 32-bit control register, CR0,
is used to control Coprocessor Emulation.

System Address Registers: These four special
registers reference the tables or segments support-
ed by the 80376/80386 protection model. These ta-
bles or segments are:

GDTR (Global Descriptor Table Register),
IDTR (Interrupt Descriptor Table Register),
LDTR (Local Descriptor Table Register),
TR (Task State Segment Register).

Debug Registers: The six programmer accessible
debug registers provide on-chip support for debug-
ging. The use of the debug registers is described in
Section 2.11 Debugging Support.

EFLAGS REGISTER

The flag Register is a 32-bit register named
EFLAGS. The defined bits and bit fields within
EFLAGS, shown in Figure 2.2, control certain opera-
tions and indicate the status of the 80376 processor.
The function of the flag bits is given in Table 2.1.

240182–3

240182–4

240182–5

Figure 2.2. Status and Control Register Bit Functions

8

376 EMBEDDED PROCESSOR

Table 2.1. Flag Definitions

Bit Position Name Function

0 CF Carry FlagÐSet on high-order bit carry or borrow; cleared otherwise.

2 PF Parity FlagÐSet if low-order 8 bits of result contain an even number
of 1-bits; cleared otherwise.

4 AF Auxiliary Carry FlagÐSet on carry from or borrow to the low order
four bits of AL; cleared otherwise.

6 ZF Zero FlagÐSet if result is zero; cleared otherwise.

7 SF Sign FlagÐSet equal to high-order bit of result (0 if positive, 1 if
negative).

8 TF Single Step FlagÐOnce set, a single step interrupt occurs after the
next instruction executes. TF is cleared by the single step interrupt.

9 IF Interrupt-Enable FlagÐWhen set, external interrupts signaled on the
INTR pin will cause the CPU to transfer control to an interrupt vector
specified location.

10 DF Direction FlagÐCauses string instructions to auto-increment (default)
the appropriate index registers when cleared. Setting DF causes auto-
decrement.

11 OF Overflow FlagÐSet if the operation resulted in a carry/borrow into
the sign bit (high-order bit) of the result but did not result in a
carry/borrow out of the high-order bit or vice-versa.

12, 13 IOPL I/O Privilege LevelÐIndicates the maximum CPL permitted to
execute I/O instructions without generating an exception 13 fault or
consulting the I/O permission bit map. It also indicates the maximum
CPL value allowing alteration of the IF bit.

14 NT Nested TaskÐIndicates that the execution of the current task is
nested within another task (see Task Switching).

16 RF Resume FlagÐUsed in conjunction with debug register breakpoints. It
is checked at instruction boundaries before breakpoint processing. If
set, any debug fault is ignored on the next instruction. It is reset at the
successful completion of any instruction except IRET, POPF, and
those instructions causing task switches.

CONTROL REGISTER

The 80376 has a 32-bit control register called CR0 that is used to control coprocessor emulation. This register
is shown in Figures, 2.1 and 2.2. The defined CR0 bits are described in Table 2.2. Bits 0, 4 and 31 of CR0 have
fixed values in the 80376. These values cannot be changed. Programs that load CR0 should always load bits
0, 4 and 31 with values previously there to be compatible with the 80386.

Table 2.2. CR0 Definitions

Bit Position Name Function

1 MP Monitor Coprocessor ExtensionÐAllows WAIT instructions to cause
a processor extension not present exception (number 7).

2 EM Emulate Processor ExtensionÐWhen set, this bit causes a
processor extension not present exception (number 7) on ESC
instructions to allow processor extension emulation.

3 TS Task SwitchedÐWhen set, this bit indicates the next instruction using
a processor extension will cause exception 7, allowing software to test
whether the current processor extension context belongs to the
current task (see Task Switching).

9

376 EMBEDDED PROCESSOR

2.2 Instruction Set

The instruction set is divided into nine categories of
operations:

Data Transfer
Arithmetic
Shift/Rotate
String Manipulation
Bit Manipulation
Control Transfer
High Level Language Support
Operating System Support
Processor Control

These 80376 processor instructions are listed in Ta-
ble 8.1 80376 Instruction Set and Clock Count
Summary.

All 80376 processor instructions operate on either 0,
1, 2 or 3 operands; an operand resides in a register,
in the instruction itself, or in memory. Most zero op-
erand instructions (e.g. CLI, STI) take only one byte.
One operand instructions generally are two bytes
long. The average instruction is 3.2 bytes long.
Since the 80376 has a 16-byte prefetch instruction
queue an average of 5 instructions can be pre-
fetched. The use of two operands permits the follow-
ing types of common instructions:

Register to Register
Memory to Register
Immediate to Register
Memory to Memory
Register to Memory
Immediate to Memory

The operands are either 8-, 16- or 32-bit long.

2.3 Memory Organization

Memory on the 80376 is divided into 8-bit quantities
(bytes), 16-bit quantities (words), and 32-bit quanti-
ties (dwords). Words are stored in two consecutive
bytes in memory with the low-order byte at the low-
est address. Dwords are stored in four consecutive
bytes in memory with the low-order byte at the low-
est address. The address of a word or Dword is the
byte address of the low-order byte. For maximum
performance word and dword values should be at
even physical addresses.

In addition to these basic data types the 80376 proc-
essor supports segments. Memory can be divided
up into one or more variable length segments, which
can be shared between programs.

ADDRESS SPACES

The 80376 has three types of address spaces: logi-
cal, linear, and physical. A logical address (also
known as a virtual address) consists of a selector
and an offset. A selector is the contents of a seg-
ment register. An offset is formed by summing all of
the addressing components (BASE, INDEX, and
DISPLACEMENT), discussed in Section 2.4 Ad-
dressing Modes, into an effective address.

Every selector has a logical base address associat-
ed with it that can be up to 32 bits in length. This 32-
bit logical base address is added to either a 32-bit
offset address or a 16-bit offset address (by using
the address length prefix)to form a final 32-bit lin-
ear address. This final linear address is then trun-
cated so that only the lower 24 bits of this address
are used to address the 16 Mbytes physical memory
address space. The logical base address is stored
in one of two operating system tables (i.e. the Local
Descriptor Table or Global Descriptor Table).

Figure 2.3 shows the relationship between the vari-
ous address spaces.

10

376 EMBEDDED PROCESSOR

240182–6

Figure 2.3. Address Translation

SEGMENT REGISTER USAGE

The main data structure used to organize memory is
the segment. On the 80376, segments are variable
sized blocks of linear addresses which have certain
attributes associated with them. There are two main
types of segments, code and data. The simplest use
of segments is to have one code and data segment.
Each segment is 16 Mbytes in size overlapping each
other. This allows code and data to be directly ad-
dressed by the same offset.

In order to provide compact instruction encoding
and increase processor performance, instructions
do not need to explicitly specify which segment reg-

ister is used. The segment register is automatically
chosen according to the rules of Table 2.3 (Segment
Register Selection Rules). In general, data refer-
ences use the selector contained in the DS register,
stack references use the SS register and instruction
fetches use the CS register. The contents of the In-
struction Pointer provide the offset. Special segment
override prefixes allow the explicit use of a given
segment register, and override the implicit rules list-
ed in Table 2.3. The override prefixes also allow the
use of the ES, FS and GS segment registers.

There are no restrictions regarding the overlapping
of the base addresses of any segments. Thus, all 6
segments could have the base address set to zero.
Further details of segmentation are discussed in
Section 3.0 Architecture.

11

376 EMBEDDED PROCESSOR

Table 2.3. Segment Register Selection Rules

Type of Implied (Default) Segment Override

Memory Reference Segment Use Prefixes Possible

Code Fetch CS None

Destination of PUSH, PUSHF, INT,
SS None

CALL, PUSHA Instructions

Source of POP, POPA, POPF, IRET,
SS None

RET Instructions

Destination of STOS,

MOVS, REP STOS,
ES None

REP MOVS Instructions

(DI is Base Register)

Other Data References,

with Effective Address

Using Base Register of:
[EAX] DS CS, SS, ES, FS, GS
[EBX] DS CS, SS, ES, FS, GS
[ECX] DS CS, SS, ES, FS, GS
[EDX] DS CS, SS, ES, FS, GS
[ESI] DS CS, SS, ES, FS, GS
[EDI] DS CS, SS, ES, FS, GS
[EBP] SS CS, SS, ES, FS, GS
[ESP] SS CS, SS, ES, FS, GS

2.4 Addressing Modes

The 80376 provides a total of 8 addressing modes
for instructions to specify operands. The addressing
modes are optimized to allow the efficient execution
of high level languages such as C and FORTRAN,
and they cover the vast majority of data references
needed by high-level languages.

Two of the addressing modes provide for instruc-
tions that operate on register or immediate oper-
ands:

Register Operand Mode: The operand is located in
one of the 8-, 16- or 32-bit general registers.

Immediate Operand Mode: The operand is includ-
ed in the instruction as part of the opcode.

The remaining 6 modes provide a mechanism for
specifying the effective address of an operand. The
linear address consists of two components: the seg-

ment base address and an effective address. The
effective address is calculated by summing any
combination of the following three address elements
(see Figure 2.3):

DISPLACEMENT: an 8-, 16- or 32-bit immediate val-
ue following the instruction.

BASE: The contents of any general purpose regis-
ter. The base registers are generally used by compil-
ers to point to the start of the local variable area.
Note that if theAddress Length Prefix is used, only
BX and BP can be used as a BASE register.

INDEX: The contents of any general purpose regis-
ter except for ESP. The index registers are used to
access the elements of an array, or a string of char-
acters. The index register’s value can be multiplied
by a scale factor, either 1, 2, 4 or 8. The scaled index
is especially useful for accessing arrays or struc-
tures. Note that if the Address Length Prefix is
used, no Scaling is available and only the registers
SI and DI can be used to INDEX.

12

376 EMBEDDED PROCESSOR

Combinations of these 3 components make up the 6
additional addressing modes. There is no perform-
ance penalty for using any of these addressing com-
binations, since the effective address calculation is
pipelined with the execution of other instructions.
The one exception is the simultaneous use of BASE
and INDEX components which requires one addi-
tional clock.

As shown in Figure 2.4, the effective address (EA) of
an operand is calculated according to the following
formula:

EA e BASERegister a (INDEXRegistercscaling) a

DISPLACEMENT

1. Direct Mode: The operand’s offset is contained
as part of the instruction as an 8-, 16- or 32-bit
DISPLACEMENT.

2. Register Indirect Mode: A BASE register con-
tains the address of the operand.

3. Based Mode: A BASE register’s contents is add-
ed to a DISPLACEMENT to form the operand’s
offset.

4. Scaled Index Mode: An INDEX register’s con-
tents is multiplied by a SCALING factor which is
added to a DISPLACEMENT to form the oper-
and’s offset.

5. Based Scaled Index Mode: The contents of an
INDEX register is multiplied by a SCALING factor
and the result is added to the contents of a BASE
register to obtain the operand’s offset.

6. Based Scaled Index Mode with Displacement:
The contents of an INDEX register are multiplied
by a SCALING factor, and the result is added to
the contents of a BASE register and a DISPLACE-
MENT to form the operand’s offset.

240182–7

Figure 2.4. Addressing Mode Calculations

13

376 EMBEDDED PROCESSOR

GENERATING 16-BIT ADDRESSES

The 80376 executes code with a default length for
operands and addresses of 32 bits. The 80376 is
also able to execute operands and addresses of 16
bits. This is specified through the use of override
prefixes. Two prefixes, the Operand Length Prefix
and the Address Length Prefix, override the de-
fault 32-bit length on an individual instruction basis.
These prefixes are automatically added by assem-

blers. The Operand Length and Address Length Pre-
fixes can be applied separately or in combination to
any instruction.

The 80376 normally executes 32-bit code and uses
either 8- or 32-bit displacements, and any register
can be used as based or index registers. When exe-
cuting 16-bit code (by prefix overrides), the displace-
ments are either 8 or 16 bits, and the base and index
register conform to the 16-bit model. Table 2.4 illus-
trates the differences.

Table 2.4. BASE and INDEX Registers for 16- and 32-Bit Addresses

16-Bit Addressing 32-Bit Addressing

BASE REGISTER BX, BP Any 32-Bit GP Register

INDEX REGISTER SI, DI Any 32-Bit GP Register

except ESP

SCALE FACTOR None 1, 2, 4, 8

DISPLACMENT 0, 8, 16 Bits 0, 8, 32 Bits

2.5 Data Types

The 80376 supports all of the data types commonly used in high level languages:

Bit: A single bit quantity.

Bit Field: A group of up to 32 contiguous bits, which spans a maximum of four

bytes.

Bit String: A set of contiguous bits, on the 80376 bit strings can be up to 16 Mbits

long.

Byte: A signed 8-bit quantity.

Unsigned Byte: An unsigned 8-bit quantity.

Integer (Word): A signed 16-bit quantity.

Long Integer (Double Word): A signed 32-bit quantity. All operations assume a 2’s complement

representation.

Unsigned Integer (Word): An unsigned 16-bit quantity.

Unsigned Long Integer

(Double Word): An unsigned 32-bit quantity.

Signed Quad Word: A signed 64-bit quantity.

Unsigned Quad Word: An unsigned 64-bit quantity.

Pointer: A 16- or 32-bit offset only quantity which indirectly references another

memory location.

Long Pointer: A full pointer which consists of a 16-bit segment selector and either a

16- or 32-bit offset.

Char: A byte representation of an ASCII Alphanumeric or control character.

String: A contiguous sequence of bytes, words or dwords. A string may

contain between 1 byte and 16 Mbytes.

BCD: A byte (unpacked) representation of decimal digits 0–9.

Packed BCD: A byte (packed) representation of two decimal digits 0–9 storing one

digit in each nibble.

14

376 EMBEDDED PROCESSOR

When the 80376 is coupled with a numerics Coprocessor such as the 80387SX then the following

common Floating Point types are supported.

Floating Point: A signed 32-, 64- or 80-bit real number representation. Floating point

numbers are supported by the 80387SX numerics coprocessor.

Figure 2.5 illustrates the data types supported by the 80376 processor and the 80387SX coprocessor.

240182–8

Figure 2.5. 80376 Supported Data Types

15

376 EMBEDDED PROCESSOR

2.6 I/O Space

The 80376 has two distinct physical address
spaces: physical memory and I/O. Generally, pe-
ripherals are placed in I/O space although the
80376 also supports memory-mapped peripherals.
The I/O space consists of 64 Kbytes which can be
divided into 64K 8-bit ports, 32K 16-bit ports, or any
combination of ports which add to no more than 64
Kbytes. The M/IO pin acts as an additional address
line, thus allowing the system designer to easily de-
termine which address space the processor is ac-
cessing. Note that the I/O address refers to a physi-
cal address.

The I/O ports are accessed by the IN and OUT in-
structions, with the port address supplied as an im-
mediate 8-bit constant in the instruction or in the DX
register. All 8-bit and 16-bit port addresses are zero
extended on the upper address lines. The I/O in-
structions cause the M/IO pin to be driven LOW. I/O
port addresses 00F8H through 00FFH are reserved
for use by Intel.

2.7 Interrupts and Exceptions

Interrupts and exceptions alter the normal program
flow in order to handle external events, report errors
or exceptional conditons. The difference between in-
terrupts and exceptions is that interrupts are used to
handle asynchronous external events while excep-
tions handle instruction faults. Although a program
can generate a software interrupt via an INT N in-
struction, the processor treats software interrupts as
exceptions.

Hardware interrupts occur as the result of an exter-
nal event and are classified into two types: maskable
or non-maskable. Interrupts are serviced after the
execution of the current instruction. After the inter-
rupt handler is finished servicing the interrupt, exe-
cution proceeds with the instruction immediately af-
ter the interrupted instruction.

Exceptions are classified as faults, traps, or aborts
depending on the way they are reported, and wheth-
er or not restart of the instruction causing the excep-
tion is suported. Faults are exceptions that are de-
tected and serviced before the execution of the
faulting instruction. Traps are exceptions that are
reported immediately after the execution of the in-
struction which caused the problem. Aborts are ex-
ceptions which do not permit the precise location of
the instruction causing the exception to be deter-
mined. Thus, when an interrupt service routine has
been completed, execution proceeds from the in-

struction immediately following the interrupted in-
struction. On the other hand the return address from
an exception/fault routine will always point at the
instruction causing the exception and include any
leading instruction prefixes. Table 2.5 summarizes
the possible interrupts for the 80376 and shows
where the return address points to.

The 80376 has the ability to handle up to 256 differ-
ent interrupts/exceptions. In order to service the in-
terrupts, a table with up to 256 interrupt vectors
must be defined. The interrupt vectors are simply
pointers to the appropriate interrupt service routine.
The interrupt vectors are 8-byte quantities, which are
put in an Interrupt Descriptor Table. Of the 256 pos-
sible interrupts, 32 are reserved for use by Intel and
the remaining 224 are free to be used by the system
designer.

INTERRUPT PROCESSING

When an interrupt occurs the following actions hap-
pen. First, the current program address and the
Flags are saved on the stack to allow resumption of
the interrupted program. Next, an 8-bit vector is sup-
plied to the 80376 which identifies the appropriate
entry in the interrupt table. The table contains either
an Interrupt Gate, a Trap Gate or a Task Gate that
will point to an interrupt procedure or task. The user
supplied interrupt service routine is executed. Final-
ly, when an IRET instruction is executed the old
processor state is restored and program execution
resumes at the appropriate instruction.

The 8-bit interrupt vector is supplied to the 80376 in
several different ways: exceptions supply the inter-
rupt vector internally; software INT instructions con-
tain or imply the vector; maskable hardware inter-
rupts supply the 8-bit vector via the interrupt ac-
knowledge bus sequence. Non-Maskable hardware
interrupts are assigned to interrupt vector 2.

Maskable Interrupt

Maskable interrupts are the most common way to
respond to asynchronous external hardware events.
A hardware interrupt occurs when the INTR is pulled
HIGH and the Interrupt Flag bit (IF) is enabled. The
processor only responds to interrupts between in-
structions (string instructions have an ‘‘interrupt win-
dow’’ between memory moves which allows inter-
rupts during long string moves). When an interrupt
occurs the processor reads an 8-bit vector supplied
by the hardware which identifies the source of the
interrupt (one of 224 user defined interrupts).

16

376 EMBEDDED PROCESSOR

Table 2.5. Interrupt Vector Assignments

Instruction Which
Return Address

Function
Interrupt

Can Cause
Points to

Type
Number

Exception
Faulting

Instruction

Divide Error 0 DIV, IDIV Yes FAULT

Debug Exception 1 Any Instruction Yes TRAP*

NMI Interrupt 2 INT 2 or NMI No NMI

One-Byte Interrupt 3 INT No TRAP

Interrupt on Overflow 4 INTO No TRAP

Array Bounds Check 5 BOUND Yes FAULT

Invalid OP-Code 6 Any Illegal Instruction Yes FAULT

Device Not Available 7 ESC, WAIT Yes FAULT

Double Fault
8

Any Instruction That Can ABORT

Generate an Exception

Coprocessor Segment Overrun 9 ESC No ABORT

Invalid TSS 10 JMP, CALL, IRET, INT Yes FAULT

Segment Not Present 11 Segment Register Instructions Yes FAULT

Stack Fault 12 Stack References Yes FAULT

General Protection Fault 13 Any Memory Reference Yes FAULT

Intel Reserved 14–15 Ð Ð Ð

Coprocessor Error 16 ESC, WAIT Yes FAULT

Intel Reserved 17–32

Two-Byte Interrupt 0–255 INT n No TRAP

*Some debug exceptions may report both traps on the previous instruction, and faults on the next instruction.

Interrupts through Interrupt Gates automatically re-
set IF, disabling INTR requests. Interrupts through
Trap Gates leave the state of the IF bit unchanged.
Interrupts through a Task Gate change the IF bit ac-
cording to the image of the EFLAGs register in the
task’s Task State Segment (TSS). When an IRET
instruction is executed, the original state of the IF bit
is restored.

Non-Maskable Interrupt

Non-maskable interrupts provide a method of servic-
ing very high priority interrupts. When the NMI input
is pulled HIGH it causes an interrupt with an internal-
ly supplied vector value of 2. Unlike a normal hard-
ware interrupt no interrupt acknowledgement se-
quence is performed for an NMI.

While executing the NMI servicing procedure, the
80376 will not service any further NMI request, or
INT requests, until an interrupt return (IRET) instruc-

tion is executed or the processor is reset. If NMI
occurs while currently servicing an NMI, its presence
will be saved for servicing after executing the first
IRET instruction. The disabling of INTR requests de-
pends on the gate in IDT location 2.

Software Interrupts

A third type of interrupt/exception for the 80376 is
the software interrupt. An INT n instruction causes
the processor to execute the interrupt service rou-
tine pointed to by the nth vector in the interrupt table.

A special case of the two byte software interrupt
INT n is the one byte INT 3, or breakpoint interrupt.
By inserting this one byte instruction in a program,
the user can set breakpoints in his program as a
debugging tool.

17

376 EMBEDDED PROCESSOR

A final type of software interrupt, is the single step
interrupt. It is discussed in Single-Step Trap (page
22).

INTERRUPT AND EXCEPTION PRIORITIES

Interrupts are externally-generated events. Maska-
ble Interrupts (on the INTR input) and Non-Maskable
Interrupts (on the NMI input) are recognized at in-
struction boundaries. When NMI and maskable
INTR are both recognized at the same instruction
boundary, the 80376 invokes the NMI service rou-
tine first. If, after the NMI service routine has been
invoked, maskable interrupts are still enabled, then
the 80376 will invoke the appropriate interrupt serv-
ice routine.

As the 80376 executes instructions, it follows a con-
sistent cycle in checking for exceptions, as shown in
Table 2.6. This cycle is repeated as each instruction
is executed, and occurs in parallel with instruction
decoding and execution.

INSTRUCTION RESTART

The 80376 fully supports restarting all instructions
after faults. If an exception is detected in the instruc-
tion to be executed (exception categories 4 through
9 in Table 2.6), the 80376 device invokes the appro-
priate exception service routine. The 80376 is in a
state that permits restart of the instruction.

DOUBLE FAULT

A Double fault (exception 8) results when the proc-
essor attempts to invoke an exception service rou-
tine for the segment exceptions (10, 11, 12 or 13),
but in the process of doing so, detects an exception.

2.8 Reset and Initialization

When the processor is Reset the registers have the
values shown in Table 2.7. The 80376 will then start
executing instructions near the top of physical mem-
ory, at location 0FFFFF0H. A short JMP should be
executed within the segment defined for power-up
(see Table 2.7). The GDT should then be initialized
for a start-up data and code segment followed by a
far JMP that will load the segment descriptor cache
with the new descriptor values. The IDT table, after
reset, is located at physical address 0H, with a limit
of 256 entries.

RESET forces the 80376 to terminate all execution
and local bus activity. No instruction execution or
bus activity will occur as long as Reset is active.
Between 350 and 450 CLK2 periods after Reset be-
comes inactive, the 80376 will start executing in-
structions at the top of physical memory.

Table 2.6. Sequence of Exception Checking

Consider the case of the 80376 having just completed an instruction. It then performs the following checks
before reaching the point where the next instruction is completed:

1. Check for Exception 1 Traps from the instruction just completed (single-step via Trap Flag, or Data
Breakpoints set in the Debug Registers).

2. Check for external NMI and INTR.

3. Check for Exception 1 Faults in the next instruction (Instruction Execution Breakpoint set in the
Debug Registers for the next instruction).

4. Check for Segmentation Faults that prevented fetching the entire next instruction (exceptions 11 or
13).

5. Check for Faults decoding the next instruction (exception 6 if illegal opcode; or exception 13 if
instruction is longer than 15 bytes, or privilege violation (i.e. not at IOPL or at CPL e 0).

6. If WAIT opcode, check if TS e 1 and MP e 1 (exception 7 if both are 1).

7. If ESCape opcode for numeric coprocessor, check if EM e 1 or TS e 1 (exception 7 if either are 1).

8. If WAIT opcode or ESCape opcode for numeric coprocessor, check ERROR input signal (exception
16 if ERROR input is asserted).

9. Check for Segmentation Faults that prevent transferring the entire memory quantity (exceptions 11,
12, 13).

18

376 EMBEDDED PROCESSOR

Table 2.7. Register Values after Reset

Flag Word (EFLAGS) uuuu0002H (Note 1)

Machine Status Word (CR0) uuuuuuu1H (Note 2)

Instruction Pointer (EIP) 0000FFF0H

Code Segment (CS) F000H (Note 3)

Data Segment (DS) 0000H (Note 4)

Stack Segment (SS) 0000H

Extra Segment (ES) 0000H (Note 4)

Extra Segment (FS) 0000H

Extra Segment (GS) 0000H

EAX Register 0000H (Note 5)

EDX Register Component and Stepping ID (Note 6)

All Other Registers Undefined (Note 7)

NOTES:
1. EFLAG Register. The upper 14 bits of the EFLAGS register are undefined, all defined
flag bits are zero.
2. CR0: The defined 4 bits in the CR0 is equal to 1H.
3. The Code Segment Register (CS) will have its Base Address set to 0FFFF0000H and
Limit set to 0FFFFH.
4. The Data and Extra Segment Registers (DS and ES) will have their Base Address set
to 000000000H and Limit set to 0FFFFH.
5. If self-test is selected, the EAX should contain a 0 value. If a value of 0 is not found
the self-test has detected a flaw in the part.
6. EDX register always holds component and stepping identifier.
7. All unidentified bits are Intel Reserved and should not be used.

2.9 Initialization

Because the 80376 processor starts executing in protected mode, certain precautions need be taken during
initialization. Before any far jumps can take place the GDT and/or LDT tables need to be setup and their
respective registers loaded. Before interrupts can be initialized the IDT table must be setup and the IDTR must
be loaded. The example code is shown below:

; **
;
; This is an example of startup code to put either an 80376,
; 80386SX or 80386 into flat mode. All of memory is treated as
; simple linear RAM. There are no interrupt routines. The
; Builder creates the GDT-alias and IDT-alias and places them,
; by default, in GDT[1] and GDT[2]. Other entries in the GDT
; are specified in the Build file. After initialization it jumps
; to a C startup routine. To use this template, change this jmp
; address to that of your code, or make the label of your code
; ‘c startup‘.
;
; This code was assembled and built using version 1.2 of the
; Intel RLL utilities and Intel 386ASM assembler.
;
; *** This code was tested ***
;
; **

19

376 EMBEDDED PROCESSOR

NAME FLAT ; name of the object module

EXTRN c startup:near ; this is the label jmped to after init

pe flag equ 1
data selc equ 20h ; assume code is GDT[3], data GDT[4]

INIT CODE SEGMENT ER PUBLIC USE32 ; Segment base at 0ffffff80h

PUBLIC GDT DESC

gdt desc dq ?

PUBLIC START

start:
cld ; clear direction flag
smsw bx ; check for processor (80376) at reset
test bl,1 ; use SMSW rather than MOV for speed
jnz pestart

realstart ; is an 80386 and in real mode
db 66h ; force the next operand into 32-bit mode.
mov eax,offset gdt desc ; move address of the GDT descriptor into eax
xor ebx,ebx ; clear ebx
mov bh,ah ; load 8 bits of address into bh
move bl,al ; load 8 bits of address into bl
db 67h
db 66h ; use the 32-bit form of LGDT to load
lgdt cs:[ebx] ; the 32-bits of address into the GDTR
smsw ax ; go into protected mode (set PE bit)
or al,pe flag
lmsw ax
jmp next ; flush prefetch queue

pestart:
mov ebx,offset gdt desc
xor eax,eax
mov ax,bx ; lower portion of address only
lgdt cs:[eax]
xor ebx,ebx ; initialize data selectors
mov b1,data selc ; GDT[3]
mov ds,bx
mov ss,bx
mov es,bx
mov fs,bx
mov gs,bx
jmp pejump

next:
xor ebx,ebx ; initialize data selectors
mov b1,data selc ; GDT[3]
mov ds,bx
mov ss,bx
mov es,bx
mov fs,bx
mov gs,bx
db 66h ; for the 80386, need to make a 32-bit jump

pejump:
jmp far ptr c startup ; but the 80376 is already 32-bit.

org 70h ; only if segment base is at 0ffffff80h
jmp short start

INIT CODE ENDS
END

20

376 EMBEDDED PROCESSOR

This code should be linked into your application for boot loadable code. The following build file illustrates how
this is accomplished.

FLAT; Ð build program id

SEGMENT
*segments (dpl40), Ð Give all user segments a DPL of 0.
phantom code (dpl40), Ð These two segments are created by
phantom data (dpl40), Ð the builder when the FLAT control is used.

init code (base40ffffff80h); Ð Put startup code at the reset vector area.

GATE
g13 (entry413, dpl40, trap), Ð trap gate disables interrupts
i32 (entry432, dpl40, interrupt), Ð interrupt gates doesn’t

TABLE
Ð create GDT

GDT (LOCATION 4 GDT DESC, Ð In a buffer starting at GDT DESC,
Ð BLD386 places the GDT base and
Ð GDT limit values. Buffer must be
Ð 6 bytes long. The base and limit
Ð values are places in this buffer
Ð as two bytes of limit plus
Ð four bytes of base in the format
Ð required for use by the LGDT
Ð instruction.

ENTRY 4 (3: phantom code , Ð Explicitly place segment
4: phantom data , Ð entries into the GDT.
5:code32,
6:data,
7:init code)

);
TASK

MAIN TASK
(
DPL 4 0, Ð Task privilege level is 0.
DATA 4 DATA, Ð Points to a segment that

Ð indicates initial DS value.
CODE 4 main, Ð Entry point is main, which

Ð must be a public id.

STACKS 4 (DATA), Ð Segment id points to stack
Ð segment. Sets the initial SS:ESP.

NO INTENABLED, Ð Disable interrupts.
PRESENT Ð Present bit in TSS set to 1.

);

MEMORY
(RANGE 4 (EPROM 4 ROM(0ffff8000h..0ffffffffh),

DRAM 4 RAM(0..0ffffh)),
ALLOCATE 4 (EPROM 4 (MAIN TASK)));

END

asm386 flatsim.a38 debug
asm386 application.a38 debug
bnd386 application.obj,flatsim.obj nolo debug oj (application.bnd)
bld386 application.bnd bf (flatsim.bld) bl flat

Commands to assemble and build a boot-loadable application named ‘‘application.a38’’. The initialization code
is called ‘‘flatsim.a38’’, and build file is called ‘‘application.bld’’.

21

376 EMBEDDED PROCESSOR

2.10 Self-Test

The 80376 has the capability to perform a self-test.
The self-test checks the function of all of the Control
ROM and most of the non-random logic of the part.
Approximately one-half of the 80376 can be tested
during self-test.

Self-Test is initiated on the 80376 when the RESET
pin transitions from HIGH to LOW, and the BUSY pin
is LOW. The self-test takes about 220 clocks, or ap-
proximately 33 ms with a 16 MHz 80376 processor.
At the completion of self-test the processor per-
forms reset and begins normal operation. The part
has successfully passed self-test if the contents of
the EAX register is zero. If the EAX register is not
zero then the self-test has detected a flaw in the
part. If self-test is not selected after reset, EAX may
be non-zero after reset.

2.11 Debugging Support

The 80376 provides several features which simplify
the debugging process. The three categories of on-
chip debugging aids are:

1. The code execution breakpoint opcode (0CCH).

2. The single-step capability provided by the TF bit
in the flag register, and

3. The code and data breakpoint capability provided
by the Debug Registers DR0–3, DR6, and DR7.

BREAKPOINT INSTRUCTION

A single-byte software interrupt (Int 3) breakpoint in-
struction is available for use by software debuggers.
The breakpoint opcode is 0CCh, and generates an
exception 3 trap when executed.

DEBUG REGISTERS

240182–9

240182–10

240182–5

Figure 2.6. Debug Registers

22

376 EMBEDDED PROCESSOR

SINGLE-STEP TRAP

If the single-step flag (TF, bit 8) in the EFLAG regis-
ter is found to be set at the end of an instruction, a
single-step exception occurs. The single-step ex-
ception is auto vectored to exception number 1.

The Debug Registers are an advanced debugging
feature of the 80376. They allow data access break-
points as well as code execution breakpoints. Since
the breakpoints are indicated by on-chip registers,
an instruction execution breakpoint can be placed in
ROM code or in code shared by several tasks, nei-
ther of which can be supported by the INT 3 break-
point opcode.

The 80376 contains six Debug Registers, consisting
of four breakpoint address registers and two break-
point control registers. Initially after reset, break-
points are in the disabled state; therefore, no break-
points will occur unless the debug registers are
programmed. Breakpoints set up in the Debug
Registers are auto-vectored to exception 1.
Figure 2.6 shows the breakpoint status and control
registers.

3.0 ARCHITECTURE

The Intel 80376 Embedded Processor has a physi-
cal address space of 16 Mbytes (224 bytes) and al-
lows the running of virtual memory programs of al-
most unlimited size (16 Kbytes c 16 Mbytes or
256 Gbytes (238 bytes)). In addition the 80376 pro-
vides a sophisticated memory management and a
hardware-assisted protection mechanism.

3.1 Addressing Mechanism

The 80376 uses two components to form the logical
address, a 16-bit selector which determines the lin-
ear base address of a segment, and a 32-bit effec-
tive address. The selector is used to specify an
index into an operating system defined table (see
Figure 3.1). The table contains the 32-bit base ad-
dress of a given segment. The linear address is
formed by adding the base address obtained from
the table to the 32-bit effective address. This value
is truncated to 24 bits to form the physical address,
which is then placed on the address bus.

240182–11

Figure 3.1. Address Calculation

23

376 EMBEDDED PROCESSOR

3.2 Segmentation

Segmentation is one method of memory manage-
ment and provides the basis for protection in the
80376. Segments are used to encapsulate regions
of memory which have common attributes. For ex-
ample, all of the code of a given program could be
contained in a segment, or an operating system ta-
ble may reside in a segment. All information about
each segment, is stored in an 8-byte data structure
called a descriptor. All of the descriptors in a system
are contained in tables recognized by hardware.

TERMINOLOGY

The following terms are used throughout the discus-
sion of descriptors, privilege levels and protection:

PL: Privilege LevelÐOne of the four hierarchical
privilege levels. Level 0 is the most privileged
level and level 3 is the least privileged.

RPL: Requestor Privilege LevelÐThe privilege
level of the original supplier of the selector.
RPL is determined by the least two significant
bits of a selector.

DPL: Descriptor Privilege LevelÐThis is the least
privileged level at which a task may access
that descriptor (and the segment associated
with that descriptor). Descriptor Privilege Lev-
el is determined by bits 6:5 in the Access
Right Byte of a descriptor.

CPL: Current Privilege LevelÐThe privilege level
at which a task is currently executing, which
equals the privilege level of the code seg-
ment being executed. CPL can also be deter-
mined by examining the lowest 2 bits of the
CS register, except for conforming code seg-
ments.

EPL: Effective Privilege LevelÐThe effective
privilege level is the least privileged of the
RPL and the DPL. EPL is the numerical maxi-
mum of RPL and DPL.

Task: One instance of the execution of a program.
Tasks are also referred to as processes.

DESCRIPTOR TABLES

The descriptor tables define all of the segments
which are used in an 80376 system. There are three
types of tables on the 80376 which hold descriptors:
the Global Descriptor Table, Local Descriptor Table,
and the Interrupt Decriptor Table. All of the tables
are variable length memory arrays, they can range in
size between 8 bytes and 64 Kbytes. Each table can
hold up to 8192 8-byte descriptors. The upper 13
bits of a selector are used as an index into the de-
scriptor table. The tables have registers associated
with them which hold the 32-bit linear base address,
and the 16-bit limit of each table.

Each of the tables have a register associated with it:
GDTR, LDTR and IDTR; see Figure 3.2. The LGDT,
LLDT and LIDT instructions load the base and limit
of the Global, Local and Interrupt Descriptor Tables
into the appropriate register. The SGDT, SLDT and
SIDT store these base and limit values. These are
privileged instructions.

240182–12

Figure 3.2. Descriptor Table Registers

Global Descriptor Table

The Global Descriptor Table (GDT) contains de-
scriptors which are possibly available to all of the
tasks in a system. The GDT can contain any type of
segment descriptor except for interrupt and trap de-
scriptors. Every 80376 system contains a GDT. A
simple 80376 system contains only 2 entries in the
GDT; a code and a data descriptor. For maximum
performance, descriptor tables should begin on
even addresses.

The first slot of the Global Descriptor Table corre-
sponds to the null selector and is not used. The null
selector defines a null pointer value.

Local Descriptor Table

LDTs contain descriptors which are associated with
a given task. Generally, operating systems are de-
signed so that each task has a separate LDT. The
LDT may contain only code, data, stack, task gate,
and call gate descriptors. LDTs provide a mecha-
nism for isolating a given task’s code and data seg-
ments from the rest of the operating system, while
the GDT contains descriptors for segments which
are common to all tasks. A segment cannot be ac-
cessed by a task if its segment descriptor does not
exist in either the current LDT or the GDT. This pro-

24

376 EMBEDDED PROCESSOR

vides both isolation and protection for a task’s seg-
ments, while still allowing global data to be shared
among tasks.

Unlike the 6-byte GDT or IDT registers which contain
a base address and limit, the visible portion of the
LDT register contains only a 16-bit selector. This se-
lector refers to a Local Descriptor Table descriptor in
the GDT (see Figure 2.1).

INTERRUPT DESCRIPTOR TABLE

The third table needed for 80376 systems is the In-
terrupt Descriptor Table. The IDT contains the de-
scriptors which point to the location of up to 256
interrupt service routines. The IDT may contain only
task gates, interrupt gates and trap gates. The IDT
should be at least 256 bytes in size in order to hold
the descriptors for the 32 Intel Reserved Interrupts.
Every interrupt used by a system must have an entry
in the IDT. The IDT entries are referenced by INT
instructions, external interrupt vectors, and excep-
tions.

DESCRIPTORS

The object to which the segment selector points to
is called a descriptor. Descriptors are eight-byte
quantities which contain attributes about a given
region of linear address space. These attributes in-
clude the 32-bit logical base address of the seg-

ment, the 20-bit length and granularity of the seg-
ment, the protection level, read, write or execute
privileges, and the type of segment. All of the attri-
bute information about a segment is contained in 12
bits in the segment descriptor. Figure 3.3 shows the
general format of a descriptor. All segments on the
the 80376 have three attribute fields in common: the
Present bit (P), the Descriptor Privilege Level bits
(DPL) and the Segment bit (S). Pe1 if the segment
is loaded in physical memory, if P e 0 then any
attempt to access the segment causes a not present
exception (exception 11). The DPL is a two-bit field
which specifies the protection level, 0–3, associated
with a segment.

The 80376 has two main categories of segments:
system segments, and non-system segments (for
code and data). The segment bit, S, determines if a
given segment is a system segment, a code seg-
ment or a data segment. If the S bit is 1 then the
segment is either a code or data segment, if it is 0
then the segment is a system segment.

Note that although the 80376 is limited to a
16-Mbyte Physical address space (224), its base ad-
dress allows a segment to be placed anywhere in a
4-Gbyte linear address space. When writing code for
the 80376, users should keep code portability to an
80386 processor (or other processors with a larger
physical address space) in mind. A segment base
address can be placed anywhere in this 4-Gbyte lin-
ear address space, but a physical address will be

31 0 BYTE
ADDRESS

SEGMENT BASE 15 . . . 0 SEGMENT LIMIT 15 . . . 0 0

BASE
A

LIMIT BASE a4
31 . . . 24

G 1 0 V
19 . . . 16

P DPL S TYPE A
23 . . . 16

L

BASE Base Address of the segment
LIMIT The length of the segment
P Present Bit 1 e Present 0 e Not Present
DPL Descriptor Privilege Level 0–3
S Segment Descriptor: 0 e System Descriptor, 1 e Code or Data Descriptor
TYPE Type of Segment
A Accessed Bit
G Granularity Bit 1 e Segment length is 4 Kbyte Granular

0 e Segment length is byte granular
0 Bit must be zero (0) for compatibility with future processors
AVL Available field for user or OS

Figure 3.3. Segment Descriptors

31 0

SEGMENT BASE 15 . . . 0 SEGMENT LIMIT 15 . . . 0 0

BASE
A

LIMIT
ACCESS

BASE
31 . . . 24

G 1 0 V
19 . . . 16

RIGHTS
23 . . . 16

a4
L BYTE

G Granularity Bit 1 e Segment length is 4 Kbyte granular
0 e Segment length is byte granular

0 Bit must be zero (0) for compatibility with future processors
AVL Available field for user or OS

Figure 3.4. Code and Data Descriptors

25

376 EMBEDDED PROCESSOR

Table 3.1. Access Rights Byte Definition for Code and Data Descriptors

Bit
Name Function

Position

7 Present (P) P e 1 Segment is mapped into physical memory.

P e 0 No mapping to physical memory exits

6–5 Descriptor Privilege Segment privilege attribute used in privilege tests.

Level (DPL)

4 Segment S e 1 Code or Data (includes stacks) segment descriptor

Descriptor (S) S e 0 System Segment Descriptor or Gate Descriptor

3 Executable (E) E e 0 Descriptor type is data segment: If

2 Expansion ED e 0 Expand up segment, offsets must be s limit. Data

Direction (ED) ED e 1 Expand down segment, offsets must be l limit. Segment

1 Writable (W) (S e 1,W e 0 Data segment may not be written into.

E e 0)*W e 1 Data segment may be written into.

3 Executable (E) IfE e 1 Descriptor type is code segment:

2 Conforming (C) CodeC e 1 Code segment may only be executed when

SegmentCPL t DPL and CPL remains unchanged.

1 Readable (R) (S e 1,R e 0 Code segment may not be read.

E e 1)*R e 1 Code segment may be read.

0 Accessed (A) A e 0 Segment has not been accessed.

A e 1 Segment selector has been loaded into segment register

or used by selector test instructions.

generated that is a truncated version of this linear
address. Truncation will be to the maximum number
of address bits. It is recommended to place EPROM
at the highest physical address and DRAM at the
lowest physical addresses.

Code and Data Descriptors (Se1)

Figure 3.4 shows the general format of a code and
data descriptor and Table 3.1 illustrates how the bits
in the Access Right Byte are interpreted.

Code and data segments have several descriptor
fields in common. The accessed bit, A, is set when-
ever the processor accesses a descriptor. The gran-
ularity bit, G, specifies if a segment length is 1-byte-
granular or 4-Kbyte-granular. Base address bits
31–24, which are normally found in 80386 descrip-
tors, are not made externally available on the 80376.
They do not affect the operation of the 80376. The
A31–A24 field should be set to allow an 80386 to
correctly execute with EPROM at the upper 4096
Mbytes of physical memory.

System Descriptor Formats (S e 0)

System segments describe information about oper-
ating system tables, tasks, and gates. Figure 3.5
shows the general format of system segment de-
scriptors, and the various types of system segments.

80376 system descriptors (which are the same as
80386 descriptor types 2, 5, 9, B, C, E and F) contain
a 32-bit logical base address and a 20-bit segment
limit.

Selector Fields

A selector has three fields: Local or Global Descrip-
tor Table Indicator (TI), Descriptor Entry Index (In-
dex), and Requestor (the selector’s) Privilege Level
(RPL) as shown in Figure 3.6. The TI bit selects ei-
ther the Global Descriptor Table or the Local De-
scriptor Table. The Index selects one of 8K descrip-
tors in the appropriate descriptor table. The RPL bits
allow high speed testing of the selector’s privilege
attributes.

Segment Descriptor Cache

In addition to the selector value, every segment reg-
ister has a segment descriptor cache register asso-
ciated with it. Whenever a segment register’s con-
tents are changed, the 8-byte descriptor associated
with that selector is automatically loaded (cached)
on the chip. Once loaded, all references to that seg-
ment use the cached descriptor information instead
of reaccessing the descriptor. The contents of the
descriptor cache are not visible to the programmer.
Since descriptor caches only change when a seg-
ment register is changed, programs which modify
the descriptor tables must reload the appropriate
segment registers after changing a descriptor’s
value.

26

376 EMBEDDED PROCESSOR

31 16 0

SEGMENT BASE 15 . . . 0 SEGMENT LIMIT 15 . . . 0 0

BASE
G 0 0 0

LIMIT
P DPL 0 TYPE

BASE
a4

31 . . . 24 19 . . . 16 23 . . . 16

Type Defines Type Defines
0 Invalid 8 Invalid
1 Reserved 9 Available 80376/80386 TSS
2 LDT A Undefined (Intel Reserved)
3 Reserved B Busy 80376/80386 TSS
4 Reserved C 80376/80386 Call Gate
5 Task Gate (80376/80386 Task) D Undefined (Intel Reserved)
6 Reserved E 80376/80386 Interrupt Gate
7 Reserved F 80376/80386 Trap Gate

Figure 3.5. System Descriptors

240182–13

Figure 3.6. Example Descriptor Selection

3.3 Protection

The 80376 offers extensive protection features.
These protection features are particularly useful in
sophisticated embedded applications which use
multitasking real-time operating systems. For sim-
pler embedded applications these protection capa-
bilities can be easily bypassed by making all applica-
tions run at privilege level (PL) 0.

RULES OF PRIVILEGE

The 80376 controls access to both data and proce-
dures between levels of a task, according to the fol-
lowing rules.

ÐData stored in a segment with privilege level p
can be accessed only by code executing at a
privilege level at least as privileged as p.

ÐA code segment/procedure with privilege level p
can only be called by a task executing at the
same or a lesser privilege level than p.

PRIVILEGE LEVELS

At any point in time, a task on the 80376 always
executes at one of the four privilege levels. The Cur-
rent Privilege Level (CPL) specifies what the task’s
privilege level is. A task’s CPL may only be changed

27

376 EMBEDDED PROCESSOR

by control transfers through gate descriptors to a
code segment with a different privilege level. Thus,
an application program running at PLe3 may call an
operating system routine at PLe1 (via a gate) which
would cause the task’s CPL to be set to 1 until the
operating system routine was finished.

Selector Privilege (RPL)

The privilege level of a selector is specified by the
RPL field. The selector’s RPL is only used to estab-
lish a less trusted privilege level than the current
privilege level of the task for the use of a segment.
This level is called the task’s effective privilege level
(EPL). The EPL is defined as being the least privi-
leged (numerically larger) level of a task’s CPL and a
selector’s RPL. The RPL is most commonly used to
verify that pointers passed to an operating system
procedure do not access data that is of higher privi-
lege than the procedure that originated the pointer.
Since the originator of a selector can specify any
RPL value, the Adjust RPL (ARPL) instruction is pro-
vided to force the RPL bits to the originator’s CPL.

I/O Privilege

The I/O privilege level (IOPL) lets the operating sys-
tem code executing at CPLe0 define the least privi-
leged level at which I/O instructions can be used. An
exception 13 (General Protection Violation) is gener-
ated if an I/O instruction is attempted when the CPL
of the task is less privileged than the IOPL. The
IOPL is stored in bits 13 and 14 of the EFLAGS reg-
ister. The following instructions cause an exception
13 if the CPL is greater than IOPL: IN, INS, OUT,
OUTS, STI, CLI and LOCK prefix.

Descriptor Access

There are basically two types of segment acces-
sess: those involving code segments such as con-
trol transfers, and those involving data accesses.
Determining the ability of a task to access a seg-
ment involves the type of segment to be accessed,
the instruction used, the type of descriptor used and
CPL, RPL, and DPL as described above.

Any time an instruction loads a data segment regis-
ter (DS, ES, FS, GS) the 80376 makes protection
validation checks. Selectors loaded in the DS, ES,
FS, GS registers must refer only to data segment or
readable code segments.

Finally the privilege validation checks are performed.
The CPL is compared to the EPL and if the EPL is
more privileged than the CPL, an exception 13 (gen-
eral protection fault) is generated.

The rules regarding the stack segment are slightly
different than those involving data segments. In-
structions that load selectors into SS must refer to
data segment descriptors for writeable data seg-
ments. The DPL and RPL must equal the CPL of all
other descriptor types or a privilege level violation
will cause an exception 13. A stack not present fault
causes an exception 12.

PRIVILEGE LEVEL TRANSFERS

Inter-segment control transfers occur when a selec-
tor is loaded in the CS register. For a typical system
most of these transfers are simply the result of a call
or a jump to another routine. There are five types of
control transfers which are summarized in Table 3.2.
Many of these transfers result in a privilege level
transfer. Changing privilege levels is done only by
control transfers, using gates, task switches, and in-
terrupt or trap gates.

Control transfers can only occur if the operation
which loaded the selector references the correct de-
scriptor type. Any violation of these descriptor usage
rules will cause an exception 13.

CALL GATES

Gates provide protected indirect CALLs. One of the
major uses of gates is to provide a secure method of
privilege transfers within a task. Since the operating
system defines all of the gates in a system, it can
ensure that all gates only allow entry into a few trust-
ed procedures.

28

376 EMBEDDED PROCESSOR

Table 3.2. Descriptor Types Used for Control Transfer

Control Transfer Types Operation Types
Descriptor Descriptor

Referenced Table

Intersegment within the same privilege level JMP, CALL, RET, IRET* Code Segment GDT/LDT

Intersegment to the same or higher privilege level CALL Call Gate GDT/LDT

Interrupt within task may change CPL
Interrupt Instruction, Trap or IDT

Exception, External Interrupt

Interrupt Gate

Intersegment to a lower privilege level RET, IRET* Code Segment GDT/LDT

(changes task CPL)

CALL, JMP Task State GDT

Segment

Task Switch CALL, JMP Task Gate GDT/LDT

IRET** Task Gate IDT

Interrupt Instruction,

Exception, External

Interrupt

*NT (Nested Task bit of flag register) e 0
**NT (Nested Task bit of flag register) e 1

29

376 EMBEDDED PROCESSOR

NOTE:
BITÐMAPÐOFFSET
must be s DFFFH

Type e 9: Available 80376
TSS.

Type e B: Busy 80376 TSS.

240182–14

Figure 3.7. 80376 TSS And TSS Registers

30

376 EMBEDDED PROCESSOR

TASK SWITCHING

A very important attribute of any multi-tasking oper-
ating system is its ability to rapidly switch between
tasks or processes. The 80376 directly supports this
operation by providing a task switch instruction in
hardware. The 80376 task switch operation saves
the entire state of the machine (all of the registers,
address space, and a link to the previous task),
loads a new execution state, performs protection
checks, and commences execution in the new task.
Like transfer of control by gates, the task switch op-
eration is invoked by executing an inter-segment
JMP or CALL instruction which refers to a Task
State Segment (TSS), or a task gate descriptor in
the GDT or LDT. An INT n instruction, exception,
trap or external interrupt may also invoke the task
switch operation if there is a task gate descriptor in
the associated IDT descriptor slot. For simple appli-
cations, the TSS and task switching may not be
used. The TSS or task switch will not be used or
occur if no task gates are present in the GDT, LDT
or IDT.

The TSS descriptor points to a segment (see Figure
3.7) containing the entire 80376 execution state. A
task gate descriptor contains a TSS selector. The
limit of an 80376 TSS must be greater than 64H, and
can be as large as 16 Mbytes. In the additional TSS
space, the operating system is free to store addition-
al information as the reason the task is inactive, the
time the task has spent running, and open files be-
longing to the task. For maximum performance, TSS
should start on an even address.

Each Task must have a TSS associated with it. The
current TSS is identified by a special register in the
80376 called the Task State Segment Register (TR).
This register contains a selector referring to the task
state segment descriptor that defines the current
TSS. A hidden base and limit register associated
with the TSS descriptor is loaded whenever TR is
loaded with a new selector. Returning from a task is
accomplished by the IRET instruction. When IRET is
executed, control is returned to the task which was

interrupted. The current executing task’s state is
saved in the TSS and the old task state is restored
from its TSS.

Several bits in the flag register and CR0 register give
information about the state of a task which is useful
to the operating system. The Nested Task bit, NT,
controls the function of the IRET instruction. If NT e

0 the IRET instruction performs the regular return. If
NT e 1, IRET performs a task switch operation
back to the previous task. The NT bit is set or reset
in the following fashion:

When a CALL or INT instruction initiates a task
switch, the new TSS will be marked busy and
the back link field of the new TSS set to the old
TSS selector. The NT bit of the new task is set
by CALL or INT initiated task switches. An inter-
rupt that does not cause a task switch will clear
NT (The NT bit will be restored after execution
of the interrupt handler). NT may also be set or
cleared by POPF or IRET instructions.

The 80376 task state segment is marked busy by
changing the descriptor type field from TYPE 9 to
TYPE 0BH. Use of a selector that references a busy
task state segment causes an exception 13.

The coprocessor’s state is not automatically saved
when a task switch occurs. The Task Switched Bit,
TS, in the CR0 register helps deal with the coproces-
sor’s state in a multi-tasking environment. Whenever
the 80376 switches tasks, it sets the TS bit. The
80376 detects the first use of a processor extension
instruction after a task switch and causes the proc-
essor extension not available exception 7. The ex-
ception handler for exception 7 may then decide
whether to save the state of the coprocessor.

The T bit in the 80376 TSS indicates that the proc-
essor should generate a debug exception when
switching to a task. If T e 1 then upon entry to a
new task a debug exception 1 will be generated.

240182–15

I/O Ports Accessible 2 x 9, 12, 13, 15, 20 x 24, 27, 33, 34, 40, 41, 48, 50, 52, 53, 58 x 60, 62, 63, 96 x 127

Figure 3.8. Sample I/O Permission Bit Map

31

376 EMBEDDED PROCESSOR

PROTECTION AND I/O PERMISSION BIT MAP

The I/O instructions that directly refer to addresses
in the processor’s I/O space are IN, INS, OUT and
OUTS. The 80376 has the ability to selectively trap
references to specific I/O addresses. The structure
that enables selective trapping is the I/O Permis-
sion Bit Map in the TSS segment (see Figures 3.7
and 3.8). The I/O permission map is a bit vector.
The size of the map and its location in the TSS seg-
ment are variable. The processor locates the I/O
permission map by means of the I/O map base field
in the fixed portion of the TSS. The I/O map base
field is 16 bits wide and contains the offset of the
beginning of the I/O permission map.

If an I/O instruction (IN, INS, OUT or OUTS) is en-
countered, the processor first checks whether
CPL s IOPL. If this condition is true, the I/O opera-
tion may proceed. If not true, the processor checks
the I/O permission map.

Each bit in the map corresponds to an I/O port byte
address; for example, the bit for port 41 is found at
I/O map base a5 linearly, (5 c 8 e 40), bit offset
1. The processor tests all the bits that correspond to
the I/O addresses spanned by an I/O operation; for
example, a double word operation tests four bits cor-
responding to four adjacent byte addresses. If any
tested bit is set, the processor signals a general pro-
tection exception. If all the tested bits are zero, the
I/O operations may proceed.

It is not necessary for the I/O permission map to
represent all the I/O addresses. I/O addresses not
spanned by the map are treated as if they had one-
bits in the map. The I/O map base should be at
least one byte less than the TSS limit and the last
byte beyond the I/O mapping information must con-
tain all 1’s.

Because the I/O permission map is in the TSS seg-
ment, different tasks can have different maps. Thus,
the operating system can allocate ports to a task by
changing the I/O permission map in the task’s TSS.

IMPORTANT IMPLEMENTATION NOTE:
Beyond the last byte of I/O mapping information in
the I/O permission bit map must be a byte contain-
ing all 1’s. The byte of all 1’s must be within the
limit of the 80376’s TSS segment (see Figure 3.7).

4.0 FUNCTIONAL DATA

The Intel 80376 embedded processor features a
straightforward functional interface to the external
hardware. The 80376 has separate parallel buses
for data and address. The data bus is 16 bits in
width, and bidirectional. The address bus outputs
24-bit address values using 23 address lines and
two-byte enable signals.

The 80376 has two selectable address bus cycles:
pipelined and non-pipelined. The pipelining option
allows as much time as possible for data access by

240182–16

Figure 4.1. Functional Signal Groups

32

376 EMBEDDED PROCESSOR

starting the pending bus cycle before the present
bus cycle is finished. A non-pipelined bus cycle
gives the highest bus performance by executing ev-
ery bus cycle in two processor clock cycles. For
maximum design flexibility, the address pipelining
option is selectable on a cycle-by-cycle basis.

The processor’s bus cycle is the basic mechanism
for information transfer, either from system to proc-
essor, or from processor to system. 80376 bus cy-
cles perform data transfer in a minimum of only two
clock periods. On a 16-bit data bus, the maximum
80376 transfer bandwidth at 16 MHz is therefore
16 Mbytes/sec. However, any bus cycle will be ex-
tended for more than two clock periods if external
hardware withholds acknowledgement of the cycle.

The 80376 can relinquish control of its local buses
to allow mastership by other devices, such as direct
memory access (DMA) channels. When relin-
quished, HLDA is the only output pin driven by the
80376, providing near-complete isolation of the

processor from its system (all other output pins are
in a float condition).

4.1 Signal Description Overview

Ahead is a brief description of the 80376 input and
output signals arranged by functional groups.

The signal descriptions sometimes refer to A.C. tim-
ing parameters, such as ‘‘t25 Reset Setup Time’’ and
‘‘t26 Reset Hold Time.’’ The values of these parame-
ters can be found in Tables 6.4 and 6.5.

CLOCK (CLK2)

CLK2 provides the fundamental timing for the
80376. It is divided by two internally to generate the
internal processor clock used for instruction execu-
tion. The internal clock is comprised of two

240182–17

Figure 4.2. CLK2 Signal and Internal Processor Clock

33

376 EMBEDDED PROCESSOR

phases, ‘‘phase one’’ and ‘‘phase two’’. Each CLK2
period is a phase of the internal clock. Figure 4.2
illustrates the relationship. If desired, the phase of
the internal processor clock can be synchronized to
a known phase by ensuring the falling edge of the
RESET signal meets the applicable setup and hold
times t25 and t26.

DATA BUS (D15–D0)

These three-state bidirectional signals provide the
general purpose data path between the 80376 and
other devices. The data bus outputs are active HIGH
and will float during bus hold acknowledge. Data bus
reads require that read-data setup and hold times
t21 and t22 be met relative to CLK2 for correct oper-
ation.

ADDRESS BUS (BHE, BLE, A23–A1)

These three-state outputs provide physical memory
addresses or I/O port addresses. A23–A16 are LOW
during I/O transfers except for I/O transfers auto-
matically generated by coprocessor instructions.

During coprocessor I/O transfers, A22–A16 are driv-
en LOW, and A23 is driven HIGH so that this ad-
dress line can be used by external logic to generate
the coprocessor select signal. Thus, the I/O address
driven by the 80376 for coprocessor commands is
8000F8H, and the I/O address driven by the 80376
processor for coprocessor data is 8000FCH or
8000FEH.

The address bus is capable of addressing 16 Mbytes
of physical memory space (000000H through
0FFFFFFH), and 64 Kbytes of I/O address space
(000000H through 00FFFFH) for programmed I/O.
The address bus is active HIGH and will float during
bus hold acknowledge.

The Byte Enable outputs BHE and BLE directly indi-
cate which bytes of the 16-bit data bus are involved
with the current transfer. BHE applies to D15–D8
and BLE applies to D7–D0. If both BHE and BLE are
asserted, then 16 bits of data are being transferred.
See Table 4.1 for a complete decoding of these sig-
nals. The byte enables are active LOW and will float
during bus hold acknowledge.

Table 4.1. Byte Enable Definitions

BHE BLE Function

0 0 Word Transfer

0 1 Byte Transfer on Upper Byte of the Data Bus, D15–D8

1 0 Byte Transfer on Lower Byte of the Data Bus, D7–D0

1 1 Never Occurs

34

376 EMBEDDED PROCESSOR

BUS CYCLE DEFINITION SIGNALS
(W/R, D/C, M/IO, LOCK)

These three-state outputs define the type of bus cy-
cle being performed: W/R distinguishes between
write and read cycles, D/C distinguishes between
data and control cycles, M/IO distinguishes between
memory and I/O cycles, and LOCK distinguishes be-
tween locked and unlocked bus cycles. All of these
signals are active LOW and will float during bus ac-
knowledge.

The primary bus cycle definition signals are W/R,
D/C and M/IO, since these are the signals driven
valid as ADS (Address Status output) becomes ac-
tive. The LOCK signal is driven valid at the same
time the bus cycle begins, which due to address
pipelining, could be after ADS becomes active. Ex-
act bus cycle definitions, as a function of W/R, D/C
and M/IO are given in Table 4.2.

LOCK indicates that other system bus masters are
not to gain control of the system bus while it is ac-
tive. LOCK is activated on the CLK2 edge that be-
gins the first locked bus cycle (i.e., it is not active at
the same time as the other bus cycle definition pins)
and is deactivated when ready is returned to the end
of the last bus cycle which is to be locked. The be-
ginning of a bus cycle is determined when READY is
returned in a previous bus cycle and another is
pending (ADS is active) or the clock in which ADS is
driven active if the bus was idle. This means that it
follows more closely with the write data rules when it
is valid, but may cause the bus to be locked longer
than desired. The LOCK signal may be explicitly acti-
vated by the LOCK prefix on certain instructions.
LOCK is always asserted when executing the XCHG
instruction, during descriptor updates, and during the
interrupt acknowledge sequence.

BUS CONTROL SIGNALS
(ADS, READY, NA)

The following signals allow the processor to indicate
when a bus cycle has begun, and allow other system
hardware to control address pipelining and bus cycle
termination.

Address Status (ADS)

This three-state output indicates that a valid bus cy-
cle definition and address (W/R, D/C, M/IO, BHE,
BLE and A23–A1) are being driven at the 80376
pins. ADS is an active LOW output. Once ADS is
driven active, valid address, byte enables, and defi-
nition signals will not change. In addition, ADS will
remain active until its associated bus cycle begins
(when READY is returned for the previous bus cycle
when running pipelined bus cycles). ADS will float
during bus hold acknowledge. See sections Non-
Pipelined Bus Cycles and Pipelined Bus Cycles
for additional information on how ADS is asserted
for different bus states.

Transfer Acknowledge (READY)

This input indicates the current bus cycle is com-
plete, and the active bytes indicated by BHE and
BLE are accepted or provided. When READY is
sampled active during a read cycle or interrupt ac-
knowledge cycle, the 80376 latches the input data
and terminates the cycle. When READY is sampled
active during a write cycle, the processor terminates
the bus cycle.

Table 4.2. Bus Cycle Definition

M/IO D/C W/R Bus Cycle Type Locked?

0 0 0 INTERRUPT ACKNOWLEDGE Yes

0 0 1 Does Not Occur Ð

0 1 0 I/O DATA READ No

0 1 1 I/O DATA WRITE No

1 0 0 MEMORY CODE READ No

1 0 1 HALT: SHUTDOWN: No

Address e 2 Address e 0

BHE e 1 BHE e 1

BLE e 0 BLE e 0

1 1 0 MEMORY DATA READ Some Cycles

1 1 1 MEMORY DATA WRITE Some Cycles

35

376 EMBEDDED PROCESSOR

READY is ignored on the first bus state of all bus
cycles, and sampled each bus state thereafter until
asserted. READY must eventually be asserted to ac-
knowledge every bus cycle, including Halt Indication
and Shutdown Indication bus cycles. When being
sampled, READY must always meet setup and hold
times t19 and t20 for correct operation.

Next Address Request (NA)

This is used to request pipelining. This input indi-
cates the system is prepared to accept new values
of BHE, BLE, A23–A1, W/R, D/C and M/IO from the
80376 even if the end of the current cycle is not
being acknowledged on READY. If this input is ac-
tive when sampled, the next bus cycle’s address and
status signals are driven onto the bus, provided the
next bus request is already pending internally. NA is
ignored in clock cycles in which ADS or READY is
activated. This signal is active LOW and must satisfy
setup and hold times t15 and t16 for correct opera-
tion. See Pipelined Bus Cycles and Read and
Write Cycles for additional information.

BUS ARBITRATION SIGNALS (HOLD, HLDA)

This section describes the mechanism by which the
processor relinquishes control of its local buses
when requested by another bus master device. See
Entering and Exiting Hold Acknowledge for addi-
tional information.

Bus Hold Request (HOLD)

This input indicates some device other than the
80376 requires bus mastership. When control is
granted, the 80376 floats A23–A1, BHE, BLE,
D15–D0, LOCK, M/IO, D/C, W/R and ADS, and
then activates HLDA, thus entering the bus hold ac-
knowledge state. The local bus will remain granted
to the requesting master until HOLD becomes inac-
tive. When HOLD becomes inactive, the 80376 will
deactivate HLDA and drive the local bus (at the
same time), thus terminating the hold acknowledge
condition.

HOLD must remain asserted as long as any other
device is a local bus master. External pull-up resis-
tors may be required when in the hold acknowledge
state since none of the 80376 floated outputs have
internal pull-up resistors. See Resistor Recommen-
dations for additional information. HOLD is not rec-
ognized while RESET is active but is recognized dur-
ing the time between the high-to-low transistion of
RESET and the first instruction fetch. If RESET is
asserted while HOLD is asserted, RESET has priori-
ty and places the bus into an idle state, rather than
the hold acknowledge (high-impedance) state.

HOLD is a level-sensitive, active HIGH, synchronous
input. HOLD signals must always meet setup and
hold times t23 and t24 for correct operation.

Bus Hold Acknowledge (HLDA)

When active (HIGH), this output indicates the 80376
has relinquished control of its local bus in response
to an asserted HOLD signal, and is in the bus Hold
Acknowledge state.

The Bus Hold Acknowledge state offers near-com-
plete signal isolation. In the Hold Acknowledge
state, HLDA is the only signal being driven by the
80376. The other output signals or bidirectional sig-
nals (D15–D0, BHE, BLE, A23–A1, W/R, D/C, M/IO,
LOCK and ADS) are in a high-impedance state so
the requesting bus master may control them. These
pins remain OFF throughout the time that HLDA re-
mains active (see Table 4.3). Pull-up resistors may
be desired on several signals to avoid spurious ac-
tivity when no bus master is driving them. See Re-
sistor Recommendations for additional informa-
tion.

When the HOLD signal is made inactive, the 80376
will deactivate HLDA and drive the bus. One rising
edge on the NMI input is remembered for processing
after the HOLD input is negated.

Table 4.3. Output Pin State during HOLD

Pin Value Pin Names

1 HLDA

Float LOCK, M/IO, D/C, W/R,

ADS, A23–A1, BHE, BLE,

D15–D0

Hold Latencies

The maximum possible HOLD latency depends on
the software being executed. The actual HOLD la-
tency at any time depends on the current bus activi-
ty, the state of the LOCK signal (internal to the CPU)
activated by the LOCK prefix, and interrupts. The
80376 will not honor a HOLD request until the cur-
rent bus operation is complete.

The 80376 breaks 32-bit data or I/O accesses into 2
internally locked 16-bit bus cycles; the LOCK signal
is not asserted. The 80376 breaks unaligned 16-bit
or 32-bit data or I/O accesses into 2 or 3 internally
locked 16-bit bus cycles. Again the LOCK signal is
not asserted but a HOLD request will not be recog-
nized until the end of the entire transfer.

36

376 EMBEDDED PROCESSOR

Wait states affect HOLD latency. The 80376 will not
honor a HOLD request until the end of the current
bus operation, no matter how many wait states are
required. Systems with DMA where data transfer is
critical must insure that READY returns sufficiently
soon.

COPROCESSOR INTERFACE SIGNALS
(PEREQ, BUSY, ERROR)

In the following sections are descriptions of signals
dedicated to the numeric coprocessor interface. In
addition to the data bus, address bus, and bus cycle
definition signals, these following signals control
communication between the 80376 and the
80387SX processor extension.

Coprocessor Request (PEREQ)

When asserted (HIGH), this input signal indicates a
coprocessor request for a data operand to be trans-
ferred to/from memory by the 80376. In response,
the 80376 transfers information between the co-
processor and memory. Because the 80376 has in-
ternally stored the coprocessor opcode being exe-
cuted, it performs the requested data transfer with
the correct direction and memory address.

PEREQ is a level-sensitive active HIGH asynchro-
nous signal. Setup and hold times, t29 and t30, rela-
tive to the CLK2 signal must be met to guarantee
recognition at a particular clock edge. This signal is
provided with a weak internal pull-down resistor of
around 20 KX to ground so that it will not float active
when left unconnected.

Coprocessor Busy (BUSY)

When asserted (LOW), this input indicates the co-
processor is still executing an instruction, and is not
yet able to accept another. When the 80376 en-
counters any coprocessor instruction which oper-
ates on the numerics stack (e.g. load, pop, or arith-
metic operation), or the WAIT instruction, this input
is first automatically sampled until it is seen to be
inactive. This sampling of the BUSY input prevents
overrunning the execution of a previous coprocessor
instruction.

The F(N)INIT, F(N)CLEX coprocessor instructions
are allowed to execute even if BUSY is active, since
these instructions are used for coprocessor initializa-
tion and exception-clearing.

BUSY is an active LOW, level-sensitive asynchro-
nous signal. Setup and hold times, t29 and t30, rela-
tive to the CLK2 signal must be met to guarantee
recognition at a particular clock edge. This pin is pro-
vided with a weak internal pull-up resistor of around
20 KX to VCC so that it will not float active when left
unconnected.

BUSY serves an additional function. If BUSY is sam-
pled LOW at the falling edge of RESET, the 80376
processor performs an internal self-test (see Bus
Activity During and Following Reset. If BUSY is
sampled HIGH, no self-test is performed.

Coprocessor Error (ERROR)

When asserted (LOW), this input signal indicates
that the previous coprocessor instruction generated
a coprocessor error of a type not masked by the
coprocessor’s control register. This input is automat-
ically sampled by the 80376 when a coprocessor
instruction is encountered, and if active, the 80376
generates exception 16 to access the error-handling
software.

Several coprocessor instructions, generally those
which clear the numeric error flags in the coproces-
sor or save coprocessor state, do execute without
the 80376 generating exception 16 even if
ERROR is active. These instructions are FNINIT,
FNCLEX, FNSTSW, FNSTSWAX, FNSTCW,
FNSTENV and FNSAVE.

ERROR is an active LOW, level-sensitive asynchro-
nous signal. Setup and hold times t29 and t30, rela-
tive to the CLK2 signal must be met to guarantee
recognition at a particular clock edge. This pin is pro-
vided with a weak internal pull-up resistor of around
20 KX to VCC so that it will not float active when left
unconnected.

37

376 EMBEDDED PROCESSOR

INTERRUPT SIGNALS (INTR, NMI, RESET)

The following descriptions cover inputs that can in-
terrupt or suspend execution of the processor’s cur-
rent instruction stream.

Maskable Interrupt Request (INTR)

When asserted, this input indicates a request for in-
terrupt service, which can be masked by the 80376
Flag Register IF bit. When the 80376 responds to
the INTR input, it performs two interrupt acknowl-
edge bus cycles and, at the end of the second,
latches an 8-bit interrupt vector on D7–D0 to identify
the source of the interrupt.

INTR is an active HIGH, level-sensitive asynchro-
nous signal. Setup and hold times, t27 and t28, rela-
tive to the CLK2 signal must be met to guarantee
recognition at a particular clock edge. To assure rec-
ognition of an INTR request, INTR should remain
active until the first interrupt acknowledge bus cycle
begins. INTR is sampled at the beginning of every
instruction. In order to be recognized at a particular
instruction boundary, INTR must be active at least
eight CLK2 clock periods before the beginning of the
execution of the instruction. If recognized, the 80376
will begin execution of the interrupt.

Non-Maskable Interrupt Request (NMI)

This input indicates a request for interrupt service
which cannot be masked by software. The non-
maskable interrupt request is always processed ac-
cording to the pointer or gate in slot 2 of the interrupt
table. Because of the fixed NMI slot assignment, no
interrupt acknowledge cycles are performed when
processing NMI.

NMI is an active HIGH, rising edge-sensitive asyn-
chronous signal. Setup and hold times, t27 and t28,
relative to the CLK2 signal must be met to guarantee
recognition at a particular clock edge. To assure rec-
ognition of NMI, it must be inactive for at least eight
CLK2 periods, and then be active for at least eight
CLK2 periods before the beginning of the execution
of an instruction.

Once NMI processing has begun, no additional
NMI’s are processed until after the next IRET in-
struction, which is typically the end of the NMI serv-
ice routine. If NMI is re-asserted prior to that time,
however, one rising edge on NMI will be remem-
bered for processing after executing the next IRET
instruction.

Interrupt Latency

The time that elapses before an interrupt request is
serviced (interrupt latency) varies according to sev-
eral factors. This delay must be taken into account
by the interrupt source. Any of the following factors
can affect interrupt latency:

1. If interrupts are masked, and INTR request will
not be recognized until interrupts are reenabled.

2. If an NMI is currently being serviced, an incoming
NMI request will not be recognized until the 80376
encounters the IRET instruction.

3. An interrupt request is recognized only on an in-
struction boundary of the 80376 Execution Unit
except for the following cases:

Ð Repeat string instructions can be interrupted
after each iteration.

Ð If the instruction loads the Stack Segment reg-
ister, an interrupt is not processed until after
the following instruction, which should be an
ESP load. This allows the entire stack pointer
to be loaded without interruption.

Ð If an instruction sets the interrupt flag (enabling
interrupts), an interrupt is not processed until
after the next instruction.

The longest latency occurs when the interrupt re-
quest arrives while the 80376 processor is exe-
cuting a long instruction such as multiplication, di-
vision or a task-switch.

4. Saving the Flags register and CS:EIP registers.

5. If interrupt service routine requires a task switch,
time must be allowed for the task switch.

6. If the interrupt service routine saves registers that
are not automatically saved by the 80376.

RESET

This input signal suspends any operation in progress
and places the 80376 in a known reset state. The
80376 is reset by asserting RESET for 15 or more
CLK2 periods (80 or more CLK2 periods before re-
questing self-test). When RESET is active, all other
input pins except FLT are ignored, and all other bus
pins are driven to an idle bus state as shown in Ta-
ble 4.4. If RESET and HOLD are both active at a
point in time, RESET takes priority even if the 80376
was in a Hold Acknowledge state prior to RESET
active.

RESET is an active HIGH, level-sensitive synchro-
nous signal. Setup and hold times, t25 and t26, must
be met in order to assure proper operation of the
80376.

38

376 EMBEDDED PROCESSOR

Table 4.4. Pin State (Bus Idle) during RESET

Pin Name Signal Level during RESET

ADS 1

D15–D0 Float

BHE, BLE 0

A23–A1 1

W/R 0

D/C 1

M/IO 0

LOCK 1

HLDA 0

4.2 Bus Transfer Mechanism

All data transfers occur as a result of one or more
bus cycles. Logical data operands of byte and word
lengths may be transferred without restrictions on
physical address alignment. Any byte boundary may
be used, although two physical bus cycles are per-
formed as required for unaligned operand transfers.

The 80376 processor address signals are designed
to simplify external system hardware. BHE and BLE
provide linear selects for the two bytes of the 16-bit
data bus.

Byte Enable outputs BHE and BLE are asserted
when their associated data bus bytes are involved
with the present bus cycle, as listed in Table 4.5.

Table 4.5. Byte Enables and Associated

Data and Operand Bytes

Byte Enable Associated Data Bus Signals

BHE D15–D8 (Byte 1ÐMost Significant)

BLE D7–D0 (Byte 0ÐLeast Significant)

Each bus cycle is composed of at least two bus
states. Each bus state requires one processor clock
period. Additional bus states added to a single bus
cycle are called wait states. See Bus Functional
Description for additional information.

4.3 Memory and I/O Spaces

Bus cycles may access physical memory space or
I/O space. Peripheral devices in the system may ei-
ther be memory-mapped, or I/O-mapped, or both.
As shown in Figure 4.3, physical memory addresses
range from 000000H to 0FFFFFFH (16 Mbytes) and
I/O addresses from 000000H to 00FFFFH
(64 Kbytes). Note the I/O addresses used by the
automatic I/O cycles for coprocessor communica-
tion are 8000F8H to 8000FFH, beyond the address
range of programmed I/O, to allow easy generation
of a coprocessor chip select signal using the A23
and M/IO signals.

OPERAND ALIGNMENT

With the flexibility of memory addressing on the
80376, it is possible to transfer a logical operand
that spans more than one physical Dword or word of
memory or I/O. Examples are 32-bit Dword or 16-bit
word operands beginning at addresses not evenly
divisible by 2.

Operand alignment and size dictate when multiple
bus cycles are required. Table 4.6 describes the
transfer cycles generated for all combinations of log-
ical operand lengths and alignment.

Table 4.6. Transfer Bus Cycles

for Bytes, Words and Dwords

Byte-Length of Logical Operand

1 2 4

Physical Byte
Address in xx 00 01 10 11 00 01 10 11
Memory
(Low-Order
Bits)

Transfer b w lb, w hb, lw, hb, hw, mw,
Cycles hb l,b hw lb, lw hb,

mw lb

Key: b e byte transfer
w e word transfer
l e low-order portion
m e mid-order portion
x e don’t care
h e high-order portion

39

376 EMBEDDED PROCESSOR

240182–18

NOTE:
Since A23 is HIGH during automatic communication with coprocessor, A23 HIGH and M/IO LOW can be used to easily
generate a coprocessor select signal.

Figure 4.3. Physical Memory and I/O Spaces

4.4 Bus Functional Description

The 80376 has separate, parallel buses for data and
address. The data bus is 16 bits in width, and bidi-
rectional. The address bus provides a 24-bit value
using 23 signals for the 23 upper-order address bits
and 2 Byte Enable signals to directly indicate the
active bytes. These buses are interpreted and con-
trolled by several definition signals.

The definition of each bus cycle is given by three
signals: M/IO, W/R and D/C. At the same time, a
valid address is present on the byte enable signals,
BHE and BLE, and the other address signals
A23–A1. A status signal, ADS, indicates when the
80376 issues a new bus cycle definition and ad-
dress.

Collectively, the address bus, data bus and all asso-
ciated control signals are referred to simply as ‘‘the
bus’’. When active, the bus performs one of the bus
cycles below:

1. Read from memory space

2. Locked read from memory space

3. Write to memory space

4. Locked write to memory space

5. Read from I/O space (or coprocessor)

6. Write to I/O space (or coprocessor)

7. Interrupt acknowledge (always locked)

8. Indicate halt, or indicate shutdown

Table 4.2 shows the encoding of the bus cycle defi-
nition signals for each bus cycle. See Bus Cycle
Definition Signals for additonal information.

When the 80376 bus is not performing one of the
activities listed above, it is either Idle or in the Hold
Acknowledge state, which may be detected by ex-
ternal circuitry. The idle state can be identified by the
80376 giving no further assertions on its address
strobe output (ADS) since the beginning of its most
recent bus cycle, and the most recent bus cycle hav-
ing been terminated. The hold acknowledge state is
identified by the 80376 asserting its hold acknowl-
edge (HLDA) output.

The shortest time unit of bus activity is a bus state. A
bus state is one processor clock period (two CLK2
periods) in duration. A complete data transfer occurs
during a bus cycle, composed of two or more bus
states.

40

376 EMBEDDED PROCESSOR

240182–19

Figure 4.4. Fastest Read Cycles with Non-Pipelined Timing

The fastest 80376 bus cycle requires only two bus
states. For example, three consecutive bus read cy-
cles, each consisting of two bus states, are shown
by Figure 4.4. The bus states in each cycle are
named T1 and T2. Any memory or I/O address may
be accessed by such a two-state bus cycle, if the
external hardware is fast enough.

Every bus cycle continues until it is acknowledged
by the external system hardware, using the 80376
READY input. Acknowledging the bus cycle at the
end of the first T2 results in the shortest bus cycle,
requiring only T1 and T2. If READY is not immedi-
ately asserted however, T2 states are repeated in-
definitely until the READY input is sampled active.

The pipelining option provides a choice of bus cycle
timings. Pipelined or non-pipelined cycles are

selectable on a cycle-by-cycle basis with the Next
Address (NA) input.

When pipelining is selected the address (BHE, BLE
and A23–A1) and definition (W/R, D/C, M/IO and
LOCK) of the next cycle are available before the end
of the current cycle. To signal their availability, the
80376 address status output (ADS) is asserted. Fig-
ure 4.5 illustrates the fastest read cycles with pipe-
lined timing.

Note from Figure 4.5 the fastest bus cycles using
pipelining require only two bus states, named T1P
and T2P. Therefore pipelined cycles allow the same
data bandwidth as non-pipelined cycles, but ad-
dress-to-data access time is increased by one
T-state time compared to that of a non-pipelined cy-
cle.

41

376 EMBEDDED PROCESSOR

240182–20

Figure 4.5. Fastest Read Cycles with Pipelined Timing

READ AND WRITE CYCLES

Data transfers occur as a result of bus cycles, classi-
fied as read or write cycles. During read cycles, data
is transferred from an external device to the proces-
sor. During write cycles, data is transferred from the
processor to an external device.

Two choices of bus cycle timing are dynamically se-
lectable: non-pipelined or pipelined. After an idle bus
state, the processor always uses non-pipelined tim-
ing. However the NA (Next Address) input may be
asserted to select pipelined timing for the next bus
cycle. When pipelining is selected and the 80376
has a bus request pending internally, the address
and definition of the next cycle is made available
even before the current bus cycle is acknowledged
by READY.

Terminating a read or write cycle, like any bus cycle,
requires acknowledging the cycle by asserting the
READY input. Until acknowledged, the processor in-
serts wait states into the bus cycle, to allow adjust-

ment for the speed of any external device. External
hardware, which has decoded the address and bus
cycle type, asserts the READY input at the appropri-
ate time.

At the end of the second bus state within the bus
cycle, READY is sampled. At that time, if external
hardware acknowledges the bus cycle by asserting
READY, the bus cycle terminates as shown in Figure
4.6. If READY is negated as in Figure 4.7, the 80376
executes another bus state (a wait state) and
READY is sampled again at the end of that state.
This continues indefinitely until the cycle is acknowl-
edged by READY asserted.

When the current cycle is acknowledged, the 80376
terminates it. When a read cycle is acknowledged,
the 80376 latches the information present at its data
pins. When a write cycle is acknowledged, the write
data of the 80376 remains valid throughout phase
one of the next bus state, to provide write data hold
time.

42

376 EMBEDDED PROCESSOR

240182–21

Idle states are shown here for diagram variety only. Write cycles are not always followed by an idle state. An active bus
cycle can immediately follow the write cycle.

Figure 4.6. Various Non-Pipelined Bus Cycles (Zero Wait States)

Non-Pipelined Bus Cycles

Any bus cycle may be performed with non-pipelined
timing. For example, Figure 4.6 shows a mixture of
non-pipelined read and write cycles. Figure 4.6
shows that the fastest possible non-pipelined cycles
have two bus states per bus cycle. The states are
named T1 and T2. In phase one of T1, the address
signals and bus cycle definition signals are driven
valid and, to signal their availability, address strobe
(ADS) is simultaneously asserted.

During read or write cycles, the data bus behaves as
follows. If the cycle is a read, the 80376 floats its
data signals to allow driving by the external device
being addressed. The 80376 requires that all data
bus pins be at a valid logic state (HIGH or LOW)
at the end of each read cycle, when READY is
asserted. The system MUST be designed to
meet this requirement. If the cycle is a write, data
signals are driven by the 80376 beginning in phase
two of T1 until phase one of the bus state following
cycle acknowledgement.

43

376 EMBEDDED PROCESSOR

240182–22

Idle states are shown here for diagram variety only. Write cycles are not always followed by an idle state. An active bus
cycle can immediately follow the write cycle.

Figure 4.7. Various Non-Pipelined Bus Cycles (Various Number of Wait States)

Figure 4.7 illustrates non-pipelined bus cycles with
one wait state added to Cycles 2 and 3. READY is
sampled inactive at the end of the first T2 in Cycles
2 and 3. Therefore Cycles 2 and 3 have T2 repeated
again. At the end of the second T2, READY is sam-
pled active.

When address pipelining is not used, the address
and bus cycle definition remain valid during all wait
states. When wait states are added and it is desir-
able to maintain non-pipelined timing, it is necessary
to negate NA during each T2 state except the

last one, as shown in Figure 4.7, Cycles 2 and 3. If
NA is sampled active during a T2 other than the last
one, the next state would be T2I or T2P instead of
another T2.

When address pipelining is not used, the bus states
and transitions are completely illustrated by Figure
4.8. The bus transitions between four possible
states, T1, T2, Ti, and Th. Bus cycles consist of T1
and T2, with T2 being repeated for wait states. Oth-
erwise the bus may be idle, Ti, or in the hold ac-
knowledge state Th.

44

376 EMBEDDED PROCESSOR

240182–23

Bus States:
T1Ðfirst clock of a non-pipelined bus cycle (80376 drives new address and asserts ADS).
T2Ðsubsequent clocks of a bus cycle when NA has not been sampled asserted in the current bus cycle.
TiÐidle state.
ThÐhold acknowledge state (80376 asserts HLDA).

The fastest bus cycle consists of two states: T1 and T2.
Four basic bus states describe bus operation when not using pipelined address.

Figure 4.8. 80376 Bus States (Not Using Pipelined Address)

Bus cycles always begin with T1. T1 always leads to
T2. If a bus cycle is not acknowledged during T2 and
NA is inactive, T2 is repeated. When a cycle is ac-
knowledged during T2, the following state will be T1
of the next bus cycle if a bus request is pending
internally, or Ti if there is no bus request pending, or
Th if the HOLD input is being asserted.

Use of pipelining allows the 80376 to enter three
additional bus states not shown in Figure 4.8. Figure
4.12 is the complete bus state diagram, including
pipelined cycles.

Pipelined Bus Cycles

Pipelining is the option of requesting the address
and the bus cycle definition of the next inter-

nally pending bus cycle before the current bus cycle
is acknowledged with READY asserted. ADS is as-
serted by the 80376 when the next address is is-
sued. The pipelining option is controlled on a cycle-
by-cycle basis with the NA input signal.

Once a bus cycle is in progress and the current ad-
dress has been valid for at least one entire bus
state, the NA input is sampled at the end of every
phase one until the bus cycle is acknowledged. Dur-
ing non-pipelined bus cycles NA is sampled at the
end of phase one in every T2. An example is Cycle 2
in Figure 4.9, during which NA is sampled at the end
of phase one of every T2 (it was asserted once dur-
ing the first T2 and has no further effect during that
bus cycle).

45

376 EMBEDDED PROCESSOR

240182–24

Following any idle bus state (Ti), bus cycles are non-pipelined. Within non-pipelined bus cycles, NA is only sampled
during wait states. Therefore, to begin pipelining during a group of non-pipelined bus cycles requires a non-pipelined
cycle with at least one wait state (Cylcle 2 above).

Figure 4.9. Transitioning to Pipelining during Burst of Bus Cycles

If NA is sampled active, the 80376 is free to drive the
address and bus cycle definition of the next bus cy-
cle, and assert ADS, as soon as it has a bus request
internally pending. It may drive the next address as
early as the next bus state, whether the current bus
cycle is acknowledged at that time or not.

Regarding the details of pipelining, the 80376 has
the following characteristics:

1. The next address and status may appear as early
as the bus state after NA was sampled active (see
Figures 4.9 or 4.10). In that case, state T2P is
entered immediately. However, when there is not
an internal bus request already pending, the next
address and status will not be available immedi-
ately after NA is asserted and T2I is entered in-
stead of T2P (see Figure 4.11 Cycle 3). Provided
the current bus cycle isn’t yet acknow-

ledged by READY asserted, T2P will be entered
as soon as the 80376 does drive the next address
and status. External hardware should therefore
observe the ADS output as confirmation the next
address and status are actually being driven on
the bus.

2. Any address and status which are validated by a
pulse on the 80376 ADS output will remain stable
on the address pins for at least two processor
clock periods. The 80376 cannot produce a new
address and status more frequently than every
two processor clock periods (see Figures 4.9,
4.10 and 4.11).

3. Only the address and bus cycle definition of the
very next bus cycle is available. The pipelining ca-
pability cannot look further than one bus cycle
ahead (see Figure 4.11, Cycle 1).

46

376 EMBEDDED PROCESSOR

240182–25

Following any idle bus state (Ti) the bus cycle is always non-pipelined and NA is only sampled during wait states. To
start, address pipelining after an idle state requires a non-pipelined cycle with at least one wait state (cycle 1 above).
The pipelined cycles (2, 3, 4 above) are shown with various numbers of wait states.

Figure 4.10. Fastest Transition to Pipelined Bus Cycle Following Idle Bus State

The complete bus state transition diagram, including
pipelining is given by Figure 4.12. Note it is a super-
set of the diagram for non-pipelined only, and the
three additional bus states for pipelining are drawn
in bold.

The fastest bus cycle with pipelining consists of just
two bus states, T1P and T2P (recall for non-pipe-
lined it is T1 and T2). T1P is the first bus state of a
pipelined cycle.

Initiating and Maintaining Pipelined Bus Cycles

Using the state diagram Figure 4.12, observe the
transitions from an idle state, Ti, to the beginning of

a pipelined bus cycle T1P. From an idle state, Ti, the
first bus cycle must begin with T1, and is therefore a
non-pipelined bus cycle. The next bus cycle will be
pipelined, however, provided NA is asserted and the
first bus cycle ends in a T2P state (the address and
status for the next bus cycle is driven during T2P).
The fastest path from an idle state to a pipelined bus
cycle is shown in bold below:

Ti, Ti, T1–T2–T2P, T1P–T2P,

idle non-pipelined pipelined
states cycle cycle

47

376 EMBEDDED PROCESSOR

240182–26

Figure 4.11. Details of Address Pipelining during Cycles with Wait States

T1–T2–T2P are the states of the bus cycle that es-
tablishes address pipelining for the next bus cycle,
which begins with T1P. The same is true after a bus
hold state, shown below:

Th, Th, Th, T1–T2–T2P, T1P–T2P,

hold aknowledge non-pipelined pipelined
states cycle cycle

The transition to pipelined address is shown func-
tionally by Figure 4.10, Cycle 1. Note that Cycle 1 is
used to transition into pipelined address timing for
the subsequent Cycles 2, 3 and 4, which are pipe-
lined. The NA input is asserted at the appropriate
time to select address pipelining for Cycles 2, 3 and
4.

Once a bus cycle is in progress and the current ad-
dress and status has been valid for one entire bus
state, the NA input is sampled at the end of every
phase one until the bus cycle is acknowledged.

48

376 EMBEDDED PROCESSOR

240182–27

Bus States:
T1Ðfirst clock of a non-pipelined bus cycle (80376 drives new address, status and asserts ADS).
T2Ðsubsequent clocks of a bus cycle when NA has not been sampled asserted in the current bus cycle.
T2IÐsubsequent clocks of a bus cycle when NA has been sampled asserted in the current bus cycle but there is not yet
an internal bus request pending (80376 will not drive new address, status or assert ADS).
T2PÐsubsequent clocks of a bus cycle when NA has been sampled asserted in the current bus cycle and there is an
internal bus request pending (80376 drives new address, status and asserts ADS).
T1PÐfirst clock of a pipelined bus cycle.
TiÐidle state.
ThÐhold acknowledge state (80376 asserts HLDA).

Asserting NA for pipelined bus cycles gives access to three more bus states: T2I, T2P and T1P.
Using pipelining the fastest bus cycle consists of T1P and T2P.

Figure 4.12. 80376 Processor Complete Bus States (Including Pipelining)

49

376 EMBEDDED PROCESSOR

Sampling begins in T2 during Cycle 1 in Figure 4.10.
Once NA is sampled active during the current cycle,
the 80376 is free to drive a new address and bus
cycle definition on the bus as early as the next bus
state. In Figure 4.10, Cycle 1 for example, the next
address and status is driven during state T2P. Thus
Cycle 1 makes the transition to pipelined timing,
since it begins with T1 but ends with T2P. Because
the address for Cycle 2 is available before Cycle 2
begins, Cycle 2 is called a pipelined bus cycle, and it
begins with T1P. Cycle 2 begins as soon as READY
asserted terminates Cycle 1.

Examples of transition bus cycles are Figure 4.10,
Cycle 1 and Figure 4.9, Cycle 2. Figure 4.10 shows
transition during the very first cycle after an idle bus
state, which is the fastest possible transition into ad-
dress pipelining. Figure 4.9, Cycle 2 shows a tran-
sition cycle occurring during a burst of bus cycles. In
any case, a transition cycle is the same whenever it
occurs: it consists at least of T1, T2 (NA is asserted
at that time), and T2P (provided the 80376 has an
internal bus request already pending, which it almost
always has). T2P states are repeated if wait states
are added to the cycle.

Note that only three states (T1, T2 and T2P) are
required in a bus cycle performing a transition from
non-pipelined into pipelined timing, for example Fig-
ure 4.10, Cycle 1. Figure 4.10, Cycles 2, 3 and 4
show that pipelining can be maintained with two-
state bus cycles consisting only of T1P and T2P.

Once a pipelined bus cycle is in progress, pipelined
timing is maintained for the next cycle by asserting
NA and detecting that the 80376 enters T2P during
the current bus cycle. The current bus cycle must
end in state T2P for pipelining to be maintained in
the next cycle. T2P is identified by the assertion of
ADS. Figures 4.9 and 4.10 however, each show

pipelining ending after Cycle 4 because Cycle 4
ends in T2I. This indicates the 80376 didn’t have an
internal bus request prior to the acknowledgement
of Cycle 4. If a cycle ends with a T2 or T2I, the next
cycle will not be pipelined.

Realistically, pipelining is almost always maintained
as long as NA is sampled asserted. This is so be-
cause in the absence of any other request, a code
prefetch request is always internally pending until
the instruction decoder and code prefetch queue are
completely full. Therefore pipelining is maintained
for long bursts of bus cycles, if the bus is available
(i.e., HOLD inactive) and NA is sampled active in
each of the bus cycles.

INTERRUPT ACKNOWLEDGE (INTA) CYCLES

In repsonse to an interrupt request on the INTR in-
put when interrupts are enabled, the 80376 performs
two interrupt acknowledge cycles. These bus cycles
are similar to read cycles in that bus definition sig-
nals define the type of bus activity taking place, and
each cycle continues until acknowledged by READY
sampled active.

The state of A2 distinguishes the first and second
interrupt acknowledge cycles. The byte address
driven during the first interrupt acknowledge cycle is
4 (A23–A3, A1, BLE LOW, A2 and BHE HIGH). The
byte address driven during the second interrupt ac-
knowledge cycle is 0 (A23–A1, BLE LOW and BHE
HIGH).

The LOCK output is asserted from the beginning of
the first interrupt acknowledge cycle until the end of
the second interrupt acknowledge cycle. Four idle
bus states, Ti, are inserted by the 80376 between
the two interrupt acknowledge cycles for compatibil-
ity with the interrupt specification TRHRL of the
8259A Interrupt Controller and the 82370 Integrated
Peripheral.

50

376 EMBEDDED PROCESSOR

240182–28

Interrupt Vector (0–255) is read on D0–D7 at end of second Interrupt Acknowledge bus cycle.
Because each Interrupt Acknowledge bus cycle is followed by idle bus states, asserting NA has no practical effect.
Choose the approach which is simplest for your system hardware design.

Figure 4.13. Interrupt Acknowledge Cycles

During both interrupt acknowledge cycles, D15–D0
float. No data is read at the end of the first interrupt
acknowledge cycle. At the end of the second inter-
rupt acknowledge cycle, the 80376 will read an ex-
ternal interrupt vector from D7–D0 of the data bus.
The vector indicates the specific interrupt number
(from 0–255) requiring service.

HALT INDICATION CYCLE

The 80376 execution unit halts as a result of execut-
ing a HLT instruction. Signaling its entrance into the
halt state, a halt indication cycle is performed. The
halt indication cycle is identified by the state of the
bus definition signals and a byte address of 2. See
the Bus Cycle Definition Signals section. The halt
indication cycle must be acknowledged by READY
asserted. A halted 80376 resumes execution when
INTR (if interrupts are enabled), NMI or RESET is
asserted.

51

376 EMBEDDED PROCESSOR

240182–29

Figure 4.14. Example Halt Indication Cycle from Non-Pipelined Cycle

SHUTDOWN INDICATION CYCLE

The 80376 shuts down as a result of a protection
fault while attempting to process a double fault. Sig-
naling its entrance into the shutdown state, a shut-
down indication cycle is performed. The shutdown
indication cycle is identified by the state of the bus
definition signals shown in Bus Cycle Definition
Signals and a byte address of 0. The shutdown indi-
cation cycle must be acknowledged by READY as-
serted. A shutdown 80376 resumes execution when
NMI or RESET is asserted.

ENTERING AND EXITING HOLD
ACKNOWLEDGE

The bus hold acknowledge state, Th, is entered in
response to the HOLD input being asserted. In the
bus hold acknowledge state, the 80376 floats all
outputs or bidirectional signals, except for HLDA.
HLDA is asserted as long as the 80376 remains in
the bus hold acknowledge state. In the bus hold ac-
knowledge state, all inputs except HOLD and RE-
SET are ignored.

52

376 EMBEDDED PROCESSOR

240182–30

Figure 4.15. Example Shutdown Indication Cycle from Non-Pipelined Cycle

Th may be entered from a bus idle state as in Figure
4.16 or after the acknowledgement of the current
physical bus cycle if the LOCK signal is not asserted,
as in Figures 4.17 and 4.18.

Th is exited in response to the HOLD input being
negated. The following state will be Ti as in Figure
4.16 if no bus request is pending. The following bus

state will be T1 if a bus request is internally pending,
as in Figures 4.17 and 4.18. Th is exited in response
to RESET being asserted.

If a rising edge occurs on the edge-triggered NMI
input while in Th, the event is remembered as a non-
maskable interrupt 2 and is serviced when Th is exit-
ed unless the 80376 is reset before Th is exited.

53

376 EMBEDDED PROCESSOR

240182–31

NOTE:
For maximum design flexibility the 80376 has no internal pull-up resistors on its outputs. Your design may require an
external pullup on ADS and other 80376 outputs to keep them negated during float periods.

Figure 4.16. Requesting Hold from Idle Bus

RESET DURING HOLD ACKNOWLEDGE

RESET being asserted takes priority over HOLD be-
ing asserted. If RESET is asserted while HOLD re-
mains asserted, the 80376 drives its pins to defined
states during reset, as in Table 4.5, Pin State Dur-
ing Reset, and performs internal reset activity as
usual.

If HOLD remains asserted when RESET is inactive,
the 80376 enters the hold acknowledge state before
performing its first bus cycle, provided HOLD is still
asserted when the 80376 processor would other-
wise perform its first bus cycle. If HOLD remains as-
serted when RESET is inactive, the BUSY input is
still sampled as usual to determine whether a self
test is being requested.

FLOAT

Activating the FLT input floats all 80376 bidirectional
and output signals, including HLDA. Asserting FLT
isolates the 80376 from the surrounding circuitry.

When an 80376 in a PQFP surface-mount package
is used without a socket, it cannot be removed from
the printed circuit board. The FLT input allows the
80376 to be electrically isolated to allow testing of
external circuitry. This technique is known as ONCE
for ‘‘ON-Circuit Emulation’’.

ENTERING AND EXITING FLOAT

FLT is an asynchronous, active-low input. It is recog-
nized on the rising edge of CLK2. When recognized,
it aborts the current bus cycle and floats the outputs
of the 80376 (Figure 4.20). FLT must be held low for
a minimum of 16 CLK2 cycles. Reset should be as-
serted and held asserted until after FLT is deassert-
ed. This will ensure that the 80376 will exit float in a
valid state.

Asserting the FLT input unconditionally aborts the
current bus cycle and forces the 80376 into the
FLOAT mode. Since activating FLT unconditionally
forces the 80376 into FLOAT mode, the 80376 is not

54

376 EMBEDDED PROCESSOR

240182–32

NOTE:
HOLD is a synchronous input and can be asserted at any CLK2 edge, provided setup and hold (t23 and t24) require-
ments are met. This waveform is useful for determining Hold Acknowledge latency.

Figure 4.17. Requesting Hold from Active Bus (NA Inactive)

guaranteed to enter FLOAT in a valid state. After
deactivating FLT, the 80376 is not guaranteed to
exit FLOAT mode in a valid state. This is not a prob-
lem as the FLT pin is meant to be used only during
ONCE. After exiting FLOAT, the 80376 must be re-
set to return it to a valid state. Reset should be as-
serted before FLT is deasserted. This will ensure
that the 80376 will exit float in a valid state.

FLT has an internal pull-up resistor, and if it is not
used it should be unconnected.

BUS ACTIVITY DURING AND FOLLOWING
RESET

RESET is the highest priority input signal, capable of
interrupting any processor activity when it is assert-

ed. A bus cycle in progress can be aborted at any
stage, or idle states or bus hold acknowledge states
discontinued so that the reset state is established.

RESET should remain asserted for at least 15 CLK2
periods to ensure it is recognized throughout the
80376, and at least 80 CLK2 periods if a 80376 self-
test is going to be requested at the falling edge. RE-
SET asserted pulses less than 15 CLK2 periods may
not be recognized. RESET pulses less than 80 CLK2
periods followed by a self-test may cause the self-
test to report a failure when no true failure exists.

Provided the RESET falling edge meets setup and
hold times t25 and t26, the internal processor clock
phase is defined at that time as illustrated by Figure
4.19 and Figure 6.7.

55

376 EMBEDDED PROCESSOR

240182–33

NOTE:
HOLD is a synchronous input and can be asserted at any CLK2 edge, provided setup and hold (t23 and t24) require-
ments are met. This waveform is useful for determining Hold Acknowledge latency.

Figure 4.18. Requesting Hold from Idle Bus (NA Active)

An 80376 self-test may be requested at the time RE-
SET goes inactive by having the BUSY input at a
LOW level as shown in Figure 4.19. The self-test
requires (220 a approximately 60) CLK2 periods to
complete. The self-test duration is not affected by
the test results. Even if the self-test indicates a

problem, the 80376 attempts to proceed with the
reset sequence afterwards.

After the RESET falling edge (and after the self-test
if it was requested) the 80376 performs an internal
initialization sequence for approximately 350 to 450
CLK2 periods.

56

376 EMBEDDED PROCESSOR

240182–34

NOTES:
1. BUSY should be held stable for 8 CLK2 periods before and after the CLK2 period in which RESET falling edge
occurs.
2. If self-test is requested, the 80376 outputs remain in their reset state as shown here.

Figure 4.19. Bus Activity from Reset until First Code Fetch

240182–53

Figure 4.20. Entering and Exiting FLOAT

57

376 EMBEDDED PROCESSOR

4.5 Self-Test Signature

Upon completion of self-test (if self-test was re-
quested by driving BUSY LOW at the falling edge of
RESET) the EAX register will contain a signature of
00000000H indicating the 80376 passed its self-test
of microcode and major PLA contents with no prob-
lems detected. The passing signature in EAX,
00000000H, applies to all 80376 revision levels. Any
non-zero signature indicates the 80376 unit is faulty.

4.6 Component and Revision
Identifiers

To assist 80376 users, the 80376 after reset holds a
component identifier and revision identifier in its DX
register. The upper 8 bits of DX hold 33H as identifi-
cation of the 80376 component. (The lower nibble,
03H, refers to the Intel386TM architecture. The up-
per nibble, 30H, refers to the third member of the
Intel386 family). The lower 8 bits of DX hold an
8-bit unsigned binary number related to the compo-
nent revision level. The revision identifier will, in gen-
eral, chronologically track those component step-
pings which are intended to have certain improve-
ments or distinction from previous steppings. The
80376 revision identifier will track that of the 80386
where possible.

The revision identifier is intended to assist 80376
users to a practical extent. However, the revision
identifier value is not guaranteed to change with ev-
ery stepping revision, or to follow a completely uni-
form numerical sequence, depending on the type or
intention of revision, or manufacturing materials re-
quired to be changed. Intel has sole discretion over
these characteristics of the component.

Table 4.7. Component and

Revision Identifier History

80376 Stepping Name Revision Identifier

A0 05H

B 08H

4.7 Coprocessor Interfacing

The 80376 provides an automatic interface for the
Intel 80387SX numeric floating-point coprocessor.
The 80387SX coprocessor uses an I/O mapped in-
terface driven automatically by the 80376 and as-
sisted by three dedicated signals: BUSY, ERROR
and PEREQ.

As the 80376 begins supporting a coprocessor in-
struction, it tests the BUSY and ERROR signals to
determine if the coprocessor can accept its next in-
struction. Thus, the BUSY and ERROR inputs elimi-
nate the need for any ‘‘preamble’’ bus cycles for
communication between processor and coproces-
sor. The 80387SX can be given its command op-
code immediately. The dedicated signals provide
instruction synchronization, and eliminate the need
of using the 80376 WAIT opcode (9BH) for 80387SX
instruction synchronization (the WAIT opcode was
required when the 8086 or 8088 was used with the
8087 coprocessor).

Custom coprocessors can be included in 80376
based systems by memory-mapped or I/O-mapped
interfaces. Such coprocessor interfaces allow a
completely custom protocol, and are not limited to a
set of coprocessor protocol ‘‘primitives’’. Instead,
memory-mapped or I/O-mapped interfaces may use
all applicable 80376 instructions for high-speed co-
processor communication. The BUSY and ERROR
inputs of the 80376 may also be used for the custom
coprocessor interface, if such hardware assist is de-
sired. These signals can be tested by the 80376
WAIT opcode (9BH). The WAIT instruction will wait
until the BUSY input is inactive (interruptable by an
NMI or enabled INTR input), but generates an ex-
ception 16 fault if the ERROR pin is active when the
BUSY goes (or is) inactive. If the custom coproces-
sor interface is memory-mapped, protection of the
addresses used for the interface can be provided
with the segmentation mechanism of the 80376. If
the custom interface is I/O-mapped, protection of
the interface can be provided with the 80376 IOPL
(I/O Privilege Level) mechanism.

The 80387SX numeric coprocessor interface is I/O
mapped as shown in Table 4.8. Note that the
80387SX coprocessor interface addresses are be-
yond the 0H-0FFFFH range for programmed I/O.
When the 80376 supports the 80387SX coproces-
sor, the 80376 automatically generates bus cycles to
the coprocessor interface addresses.

Table 4.8 Numeric Coprocessor Port Addresses

Address in 80376 80387SX

I/O Space Coprocessor Register

8000F8H Opcode Register

8000FCH Operand Register

8000FEH Operand Register

58

376 EMBEDDED PROCESSOR

SOFTWARE TESTING FOR COPROCESSOR
PRESENCE

When software is used to test coprocessor
(80387SX) presence, it should use only the following
coprocessor opcodes: FNINIT, FNSTCW and
FNSTSW. To use other coprocessor opcodes when
a coprocessor is known to be not present, first set
EM e 1 in the 80376 CR0 register.

5.0 PACKAGE THERMAL
SPECIFICATIONS

The Intel 80376 embedded processor is specified
for operation when case temperature is within the
range of 0§C–115§C for both the ceramic 88-pin
PGA package and the plastic 100-pin PQFP pack-
age. The case temperature may be measured in any
environment, to determine whether the 80376 is
within specified operating range. The case tempera-
ture should be measured at the center of the top
surface.

The ambient temperature is guaranteed as long as
Tc is not violated. The ambient temperature can be
calculated from the ijc and ija from the following
equations:

TJ e Tc a P*ijc

TA e Tj b P*ija

TC e Ta a P*[ija b ijc]

Values for ija and ijc are given in Table 5.1 for the
100-lead fine pitch. ija is given at various airflows.
Table 5.2 shows the maximum Ta allowable (without
exceeding Tc) at various airflows. Note that Ta can
be improved further by attaching ‘‘fins’’ or a ‘‘heat
sink’’ to the package. P is calculated using the maxi-
mum cold Icc of 305 mA and the maximum VCC of
5.5V for both packages.

Table 5.1. 80376 Package Thermal

Characteristics Thermal Resistances

(§C/Watt) ijc and ija

ija Versus Airflow-ft/min (m/sec)

Package ijc 0 200 400 600 800 1000

(0) (1.01) (2.03) (3.04) (4.06) (5.07)

100-Lead 7.5 34.5 29.5 25.5 22.5 21.5 21.0

Fine Pitch

88-Pin 2.5 29.0 22.5 17.0 14.5 12.5 12.0

PGA

Table 5.2. 80376

Maximum Allowable Ambient

Temperature at Various Airflows

TA(§C) vs Airflow-ft/min (m/sec)

Package ijc 0 200 400 600 800 1000
(0) (1.01) (2.03) (3.04) (4.06) (5.07)

100-Lead 7.5 70 78 85 90 92 93
Fine Pitch

88-Pin 2.5 70 81 90 95 98 99
PGA

6.0 ELECTRICAL SPECIFICATIONS

The following sections describe recommended elec-
trical connections for the 80376, and its electrical
specifications.

6.1 Power and Grounding

The 80376 is implemented in CHMOS IV technology
and has modest power requirements. However, its
high clock frequency and 47 output buffers (address,
data, control, and HLDA) can cause power surges
as multiple output buffers drive new signal levels
simultaneously. For clean on-chip power distribution
at high frequency, 14 VCC and 18 VSS pins separate-
ly feed functional units of the 80376.

Power and ground connections must be made to all
external VCC and GND pins of the 80376. On the
circuit board, all VCC pins should be connected on a
VCC plane and all VSS pins should be connected on
a GND plane.

POWER DECOUPLING RECOMMENDATIONS

Liberal decoupling capacitors should be placed near
the 80376. The 80376 driving its 24-bit address bus
and 16-bit data bus at high frequencies can cause
transient power surges, particularly when driving
large capacitive loads. Low inductance capacitors
and interconnects are recommended for best high
frequency electrical performance. Inductance can
be reduced by shortening circuit board traces be-
tween the 80376 and decoupling capacitors as
much as possible.

RESISTOR RECOMMENDATIONS

The ERROR, FLT and BUSY inputs have internal
pull-up resistors of approximately 20 KX and the
PEREQ input has an internal pull-down resistor of
approximately 20 KX built into the 80376 to keep
these signals inactive when the 80387SX is not
present in the system (or temporarily removed from
its socket).

59

376 EMBEDDED PROCESSOR

In typical designs, the external pull-up resistors
shown in Table 6.1 are recommended. However, a
particular design may have reason to adjust the re-
sistor values recommended here, or alter the use of
pull-up resistors in other ways.

Table 6.1. Recommended

Resistor Pull-Ups to VCC

Pin Signal Pull-Up Value Purpose

16 ADS 20 KX g 10% Lightly Pull ADS

Inactive during 80376

Hold Acknowledge

States

26 LOCK 20 KX g 10% Lightly Pull LOCK

Inactive during 80376

Hold Acknowledge

States

OTHER CONNECTION RECOMMENDATIONS

For reliable operation, always connect unused in-
puts to an appropriate signal level. N/C pins should
always remain unconnected. Connection of N/C
pins to VCC or VSS will result in incompatibility
with future steppings of the 80376.

Particularly when not using interrupts or bus hold (as
when first prototyping), prevent any chance of spuri-
ous activity by connecting these associated inputs to
GND:

ÐINTR
ÐNMI
ÐHOLD

If not using address pipelining connect the NA pin to
a pull-up resistor in the range of 20 KX to VCC.

6.2 Absolute Maximum Ratings

Table 6.2. Maximum Ratings

Parameter Maximum Rating

Storage Temperature b65§C to a150§C
Case Temperature b65§C to a120§C
under Bias

Supply Voltage with b0.5V to a6.5V

Respect to VSS

Voltage on Other Pins b0.5V to (VCC a 0.5)V

Table 6.2 gives a stress ratings only, and functional
operation at the maximums is not guaranteed. Func-
tional operating conditions are given in Section 6.3,
D.C. Specifications, and Section 6.4, A.C. Specifi-
cations.

Extended exposure to the Maximum Ratings may af-
fect device reliability. Furthermore, although the
80376 contains protective circuitry to resist damage
from static electric discharge, always take precau-
tions to avoid high static voltages or electric fields.

60

376 EMBEDDED PROCESSOR

6.3 D.C. Specifications

ADVANCE INFORMATION SUBJECT TO CHANGE

Table 6.3: 80376 D.C. Characteristics
Functional Operating Range: VCC e 5V g10%; TCASE e 0§C to 115§C for 88-pin PGA or 100-pin PQFP

Symbol Parameter Min Max Unit

VIL Input LOW Voltage b0.3 a0.8 V(1)

VIH Input HIGH Voltage 2.0 VCC a0.3 V(1)

VILC CLK2 Input LOW Voltage b0.3 a0.8 V(1)

VIHC CLK2 Input HIGH Voltage VCC b 0.8 VCC a 0.3 V(1)

VOL Output LOW Voltage

IOL e 4 mA: A23–A1, D15–D0 0.45 V(1)

IOL e 5 mA: BHE, BLE, W/R, 0.45 V(1)

D/C, M/IO, LOCK,

ADS, HLDA

VOH Output High Voltage

IOH e b1 mA: A23–A1, D15–D0 2.4 V(1)

IOH e b0.2 mA: VCC b 0.5 V(1)

A23–A1, D15–D0

IOH e b0.9 mA: BHE, BLE, W/R, 2.4 V(1)

D/C, M/IO, LOCK,

ADS, HLDA

IOH e b0.18 mA: BHE, BLE, W/R, VCC b 0.5 V(1)

D/C, M/IO, LOCK

ADS, HLDA

ILI Input Leakage Current g15 mA, 0V s VIN s VCC
(1)

(For All Pins except

PEREQ, BUSY, FLT and ERROR)

IIH Input Leakage Current 200 mA, VIH e 2.4V(1, 2)

(PEREQ Pin)

IIL Input Leakage Current b400 mA, VIL e 0.45V(3)

(BUSY and ERROR Pins)

ILO Output Leakage Current g15 mA, 0.45V s VOUT s VCC
(1)

ICC Supply Current

CLK2 e 32 MHz 275 mA, ICC typ e 175 mA(4)

CLK2 e 40 MHz 305 mA, ICC typ e 200 mA(4)

CIN Input Capacitance 10 pF, FC e 1 MHz(5)

COUT Output or I/O Capacitance 12 pF, FC e 1 MHz(5)

CCLK CLK2 Capacitance 20 pF, FC e 1 MHz(5)

NOTES:
1. Tested at the minimum operating frequency of the device.
2. PEREQ input has an internal pull-down resistor.
3. BUSY, FLT and ERROR inputs each have an internal pull-up resistor.
4. ICC max measurement at worse case load, VCC and temperature (0§C).
5. Not 100% tested.

61

376 EMBEDDED PROCESSOR

The A.C. specifications given in Table 6.4 consist of
output delays, input setup requirements and input
hold requirements. All A.C. specifications are rela-
tive to the CLK2 rising edge crossing the 2.0V level.

A.C. specification measurement is defined by Figure
6.1. Inputs must be driven to the voltage levels indi-
cated by Figure 6.1 when A.C. specifications are
measured. 80376 output delays are specified with
minimum and maximum limits measured as shown.
The minimum 80376 delay times are hold times pro-
vided to external circuitry. 80376 input setup and
hold times are specified as minimums, defining the

smallest acceptable sampling window. Within the
sampling window, a synchronous input signal must
be stable for correct 80376 processor operation.

Outputs NA, W/R, D/C, M/IO, LOCK, BHE, BLE,
A23–A1 and HLDA only change at the beginning of
phase one. D15–D0 (write cycles) only change at the
beginning of phase two. The READY, HOLD, BUSY,
ERROR, PEREQ and D15–D0 (read cycles) inputs
are sampled at the beginning of phase one. The NA,
INTR and NMI inputs are sampled at the beginning
of phase two.

240182–35

LEGEND:
AÐMaximum Output Delay Spec.
BÐMinimum Output Delay Spec.
CÐMinimum Input Setup Spec.
DÐMinimum Input Hold Spec.

Figure 6.1. Drive Levels and Measurement Points for A.C. Specifications

62

376 EMBEDDED PROCESSOR

6.4 A.C. Specifications

Table 6.4. 80376 A.C. Characteristics at 16 MHz
Functional Operating Range: VCC e 5V g10%; TCASE e 0§C to 115§C for 88-pin PGA or 100-pin PQFP

Symbol Parameter Min Max Unit Figure Notes

Operating Frequency 4 16 MHz Half CLK2 Freq

t1 CLK2 Period 31 125 ns 6.3

t2a CLK2 HIGH Time 9 ns 6.3 At 2(3)

t2b CLK2 HIGH Time 5 ns 6.3 At (VCC b 0.8)V(3)

t3a CLK2 LOW Time 9 ns 6.3 At 2V(3)

t3b CLK2 LOW Time 7 ns 6.3 At 0.8V(3)

t4 CLK2 Fall Time 8 ns 6.3 (VCCb0.8)V to 0.8V(3)

t5 CLK2 Rise Time 8 ns 6.3 0.8V to (VCCb0.8)(3)

t6 A23–A1 Valid Delay 4 36 ns 6.5 CL e 120 pF(4)

t7 A23–A1 Float Delay 4 40 ns 6.6 (1)

t8 BHE, BLE, LOCK 4 36 ns 6.5 CL e 75 pF(4)

Valid Delay

t9 BHE, BLE, LOCK 4 40 ns 6.6 (1)

Float Delay

t10 W/R, M/IO, D/C, 6 33 ns 6.5 CL e 75 pF(4)

ADS Valid Delay

t11 W/R, M/IO, D/C, 6 35 ns 6.6 (1)

ADS Float Delay

t12 D15–D0 Write Data 4 40 ns 6.5 CL e 120 pF(4)

Valid Delay

t13 D15–D0 Write Data 4 35 ns 6.6 (1)

Float Delay

t14 HLDA Valid Delay 4 33 ns 6.6 CL e 75 pF(4)

t15 NA Setup Time 5 ns 6.4

t16 NA Hold Time 21 ns 6.6

t19 READY Setup Time 19 ns 6.4

t20 READY Hold Time 4 ns 6.4

t21 Setup Time D15–D0 Read Data 9 ns 6.4

t22 Hold Time D15–D0 Read Data 6 ns 6.4

t23 HOLD Setup Time 26 ns 6.4

t24 HOLD Hold Time 5 ns 6.4

t25 RESET Setup Time 13 ns 6.7

t26 RESET Hold Time 4 ns 6.7

63

376 EMBEDDED PROCESSOR

Table 6.4. 80376 A.C. Characteristics at 16 MHz (Continued)
Functional Operating Range: VCC e 5V g10%; TCASE e 0§C to 115§C for 88-pin PGA or 100-pin PQFP

Symbol Parameter Min Max Unit Figure Notes

t27 NMI, INTR Setup Time 16 ns 6.4 (2)

t28 NMI, INTR Hold Time 16 ns 6.4 (2)

t29 PEREQ, ERROR, BUSY, FLT 16 ns 6.4 (2)

Setup Time

t30 PEREQ, ERROR, BUSY, FLT 5 ns 6.4 (2)

Hold Time

NOTES:
1. Float condition occurs when maximum output current becomes less than ILO in magnitude. Float delay is not 100%
tested.
2. These inputs are allowed to be asynchronous to CLK2. The setup and hold specifications are given for testing purposes,
to assure recognition within a specific CLK2 period.
3. These are not tested. They are guaranteed by design characterization.
4. Tested with CL set to 50 pF and derated to support the indicated distributed capacitive load. See Figures 6.8 through 6.10
for capacitive derating curves.
5. The 80376 does not have t17 or t18 timing specifications.

Table 6.5. 80376 A.C. Characteristics at 20 MHz
Functional Operating Range: VCC e 5V g10%; TCASE e 0§C to 115§C for 88-pin PGA or 100-pin PQFP

Symbol Parameter Min Max Unit Figure Notes

Operating Frequency 4 20 MHz Half CLK2 Frequency

t1 CLK2 Period 25 125 ns 6.3

t2a CLK2 HIGH Time 8 ns 6.3 At 2V(3)

t2b CLK2 HIGH Time 5 ns 6.3 At (VCC b 0.8)V(3)

t3a CLK2 LOW Time 8 ns 6.3 At 2V(3)

t3b CLK2 LOW Time 6 ns 6.3 At 0.8V(3)

t4 CLK2 Fall Time 8 ns 6.3 (VCCb0.8V) to 0.8V(3)

t5 CLK2 Rise Time 8 ns 6.3 0.8V to (VCCb0.8)(3)

t6 A23–A1 Valid Delay 4 30 ns 6.5 CL e 120 pF(4)

t7 A23–A1 Float Delay 4 ns 6.6 (1)

t8 BHE, BLE, LOCK 4 30 ns 6.5 CL e 75 pF(4)

Valid Delay

t9 BHE, BLE, LOCK 4 32 ns 6.6 (1)

Float Delay

t10a M/IO, D/C 6 28 ns 6.5 CL e 75 pF(4)

Valid Delay

t10b W/R, ADS 6 26 ns 6.5 CL e 75 pF(4)

Valid Delay

t11 W/R, M/IO, D/C, 6 30 ns 6.6 (1)

ADS Float Delay

t12 D15–D0 Write Data 4 38 ns 6.5 CL e 120 pF

Valid Delay

t13 D15–D0 Write Data 4 27 ns 6.6 (1)

Float Delay

64

376 EMBEDDED PROCESSOR

Table 6.5. 80376 A.C. Characteristics at 20 MHz (Continued)
Functional Operating Range: VCC e 5V g10%; TCASE e 0§C to 115§C for 88-pin PGA or 100-pin PQFP

Symbol Parameter Min Max Unit Figure Notes

t14 HLDA Valid Delay 4 28 ns 6.5 CL e 75 pF(4)

t15 NA Setup Time 5 ns 6.4

t16 NA Hold Time 12 ns 6.4

t19 READY Setup Time 12 ns 6.4

t20 READY Hold Time 4 ns 6.4

t21 D15–D0 Read Data Setup Time 9 ns 6.4

t22 D15–D0 Read Data Hold Time 6 ns 6.4

t23 HOLD Setup Time 17 ns 6.4

t24 HOLD Hold Time 5 ns 6.4

t25 RESET Setup Time 12 ns 6.7

t26 RESET Hold Time 4 ns 6.7

t27 NMI, INTR Setup Time 16 ns 6.4 (2)

t28 NMI, INTR Hold Time 16 ns 6.4 (2)

t29 PEREQ, ERROR, BUSY, FLT 14 ns 6.4 (2)

Setup Time

t30 PEREQ, ERROR, BUSY, FLT 5 ns 6.4 (2)

Hold Time

NOTES:
1. Float condition occurs when maximum output current becomes less than ILO in magnitude. Float delay is not 100%
tested.
2. These inputs are allowed to be asynchronous to CLK2. The setup and hold specifications are given for testing purposes,
to assure recognition within a specific CLK2 period.
3. These are not tested. They are guaranteed by design characterization.
4. Tested with CL set to 50 pF and derated to support the indicated distributed capacitive load. See Figures 6.8 through 6.10
for capacitive derating curves.
5. The 80376 does not have t17 or t18 timing specifications.

A.C. TEST LOADS

240182–36

Figure 6.2. A.C. Test Loads

A.C. TIMING WAVEFORMS

240182–37

Figure 6.3. CLK2 Waveform

65

376 EMBEDDED PROCESSOR

240182–38

Figure 6.4. A.C. Timing WaveformsÐInput Setup and Hold Timing

240182–39

Figure 6.5. A.C. Timing WaveformsÐOutput Valid Delay Timing

66

376 EMBEDDED PROCESSOR

240182–40

Figure 6.6. A.C. Timing WaveformsÐOutput Float Delay and HLDA Valid Delay Timing

240182–41

The second internal processor phase following RESET high-to-low transition (provided t25 and t26 are met) is U2.

Figure 6.7. A.C. Timing WaveformsÐRESET Setup and Hold Timing, and Internal Phase

67

376 EMBEDDED PROCESSOR

240182–42

Figure 6.8. Typical Output Valid Delay versus

Load Capacitance at Maximum Operating

Temperature (CL e 120 pF)

240182–43

Figure 6.9. Typical Output Valid Delay versus

Load Capacitance at Maximum Operating

Temperature (CL e 75 pF)

240182–44

Figure 6.10. Typical Output Rise

Time versus Load Capacitance at

Maximum Operating Temperature

240182–45

Figure 6.11. Typical ICC vs Frequency

68

376 EMBEDDED PROCESSOR

6.5 Designing for the ICETM-376
Emulator

The 376 embedded processor in-circuit emulator
product is the ICE-376 emulator. Use of the emula-
tor requires the target system to provide a socket
that is compatible with the ICE-376 emulator. The
80376 offers two different probes for emulating user
systems: an 88-pin PGA probe and a 100-pin fine
pitch flat-pack probe. The 100-pin fine pitch flat-
pack probe requires a socket, called the 100-pin
PQFP, which is available from 3-M Textool (part
number 2-0100-07243-000). The ICE-376 emulator
probe attaches to the target system via an adapter
which replaces the 80376 component in the target
system. Because of the high operating frequency of
80376 systems and of the ICE-376 emulator, there is
no buffering between the 80376 emulation proces-
sor in the ICE-376 emulator probe and the target
system. A direct result of the non-buffered intercon-
nect is that the ICE-376 emulator shares the ad-
dress and data bus with the user’s system, and the
RESET signal is intercepted by the ICE emulator
hardware. In order for the ICE-376 emulator to be
functional in the user’s system without the Optional
Isolation Board (OIB) the designer must be aware of
the following conditions:

1. The bus controller must only enable data trans-
ceivers onto the data bus during valid read cycles
of the 80376, other local devices or other bus
masters.

2. Before another bus master drives the local proc-
essor address bus, the other master must gain
control of the address bus by asserting HOLD and
receiving the HLDA response.

3. The emulation processor receives the RESET sig-
nal 2 or 4 CLK2 cycles later than an 80376 would,
and responds to RESET later. Correct phase of
the response is guaranteed.

In addition to the above considerations, the ICE-376
emulator processor module has several electrical
and mechanical characteristics that should be taken
into consideration when designing the 80376 sys-
tem.

Capacitive Loading: ICE-376 adds up to 27 pF to
each 80376 signal.

Drive Requirements: ICE-376 adds one FAST TTL
load on the CLK2, control, address, and data lines.
These loads are within the processor module and
are driven by the 80376 emulation processor, which
has standard drive and loading capability listed in
Tables 6.3 and 6.4.

Power Requirements: For noise immunity and
CMOS latch-up protection the ICE-376 emulator
processor module is powered by the user system.
The circuitry on the processor module draws up to
1.4A including the maximum 80376 ICC from the
user 80376 socket.

80376 Location and Orientation: The ICE-376 em-
ulator processor module may require lateral clear-
ance. Figure 6.12 shows the clearance requirements
of the iMP adapter and Figure 6.13 shows the clear-
ance requirements of the 88-pin PGA adapter. The

240182–46

Figure 6.12. Preliminary ICETM-376 Emulator User Cable with PQFP Adapter

69

376 EMBEDDED PROCESSOR

240182–50

Figure 6.13. ICETM-376 Emulator User Cable with 88-Pin PGA Adapter

optional isolation board (OIB), which provides extra
electrical buffering and has the same lateral clear-
ance requirements as Figures 6.12 and 6.13, adds
an additional 0.5 inches to the vertical clearance re-
quirement. This is illustrated in Figure 6.14.

Optional Isolation Board (OIB) and the CLK2
speed reduction: Due to the unbuffered probe de-
sign, the ICE-376 emulator is susceptible to errors

on the user’s bus. The OIB allows the ICE-376 emu-
lator to function in user systems with faults (shorted
signals, etc.). After electrical verification the OIB
may be removed. When the OIB is installed, the user
system must have a maximum CLK2 frequency of 20
MHz.

240182–51

Figure 6.14. ICETM-376 Emulator User Cable with OIB and PQFP Adapter

70

376 EMBEDDED PROCESSOR

7.0 DIFFERENCES BETWEEN THE
80376 AND THE 80386

The following are the major differences between the
80376 and the 80386.

1. The 80376 generates byte selects on BHE and
BLE (like the 8086 and 80286 microprocessors)
to distinguish the upper and lower bytes on its
16-bit data bus. The 80386 uses four-byte selects,
BE0–BE3, to distinguish between the different
bytes on its 32-bit bus.

2. The 80376 has no bus sizing option. The 80386
can select between either a 32-bit bus or a 16-bit
bus by use of the BS16 input. The 80376 has a
16-bit bus size.

3. The NA pin operation in the 80376 is identical to
that of the NA pin on the 80386 with one excep-
tion: the NA pin of the 80386 cannot be activated
on 16-bit bus cycles (where BS16 is LOW in the
80386 case), whereas NA can be activated on
any 80376 bus cycle.

4. The contents of all 80376 registers at reset are
identical to the contents of the 80386 registers at
reset, except the DX register. The DX register
contains a component-stepping identifier at reset,
i.e.

in 80386, after reset DH e 03H indicates 80386

DL e revision number;

in 80376, after reset DH e 33H indicates 80376

DL e revision number.

5. The 80386 uses A31 and M/IO as a select for
numerics coprocessor. The 80376 uses the
A23 and M/IO to select its numerics coproces-
sor.

6. The 80386 prefetch unit fetches code in four-
byte units. The 80376 prefetch unit reads two
bytes as one unit (like the 80286 microproces-
sor). In BS16 mode, the 80386 takes two con-
secutive bus cycles to complete a prefetch re-
quest. If there is a data read or write request
after the prefetch starts, the 80386 will fetch
all four bytes before addressing the new re-
quest.

7. The 80376 has no paging mechanism.

8. The 80376 starts executing code in what corre-
sponds to the 80386 protected mode. The 80386
starts execution in real mode, which is then used
to enter protected mode.

9. The 80386 has a virtual-86 mode that allows the
execution of a real mode 8086 program as a task
in protected mode. The 80376 has no virtual-86
mode.

10. The 80386 maps a 48-bit logical address into a
32-bit physical address by segmentation and
paging. The 80376 maps its 48-bit logical ad-
dress into a 24-bit physical address by segmen-
tation only.

11. The 80376 uses the 80387SX numerics coproc-
essor for floating point operations, while the
80386 uses the 80387 coprocessor.

12. The 80386 can execute from 16-bit code seg-
ments. The 80376 can only execute from 32-bit
code Segments.

13. The 80376 has an input called FLT which three-
states all bidirectional and output pins, including
HLDA, when asserted. It is used with ON Circuit
Emulation (ONCE).

8.0 INSTRUCTION SET

This section describes the 376 embedded processor
instruction set. Table 8.1 lists all instructions along
with instruction encoding diagrams and clock
counts. Further details of the instruction encoding
are then provided in the following sections, which
completely describe the encoding structure and the
definition of all fields occurring within 80376 instruc-
tions.

8.1 80376 Instruction Encoding and
Clock Count Summary

To calculate elapsed time for an instruction, multiply
the instruction clock count, as listed in Table 8.1 be-
low, by the processor clock period (e.g. 50 ns for an
80376 operating at 20 MHz). The actual clock count
of an 80376 program will average 10% more

71

376 EMBEDDED PROCESSOR

than the calculated clock count due to instruction
sequences which execute faster than they can be
fetched from memory.

Instruction Clock Count Assumptions:

1. The instruction has been prefetched, decoded,
and is ready for execution.

2. Bus cycles do not require wait states.

3. There are no local bus HOLD requests delaying
processor acess to the bus.

4. No exceptions are detected during instruction ex-
ecution.

5. If an effective address is calculated, it does not
use two general register components. One regis-
ter, scaling and displacement can be used within
the clock counts showns. However, if the effec-
tive address calculation uses two general register
components, add 1 clock to the clock count
shown.

6. Memory reference instruction accesses byte or
aligned 16-bit operands.

Instruction Clock Count Notation

Ð If two clock counts are given, the smaller refers to
a register operand and the larger refers to a
memory operand.

Ðn e number of times repeated.

Ðm e number of components in the next instruc-
tion executed, where the entire displacement (if
any) counts as one component, the entire im-
mediate data (if any) counts as one component,
and all other bytes of the instruction and pre-
fix(es) each count as one component.

Misaligned or 32-Bit Operand Accesses:

Ð If instructions accesses a misaligned 16-bit oper-
and or 32-bit operand on even address add:

2* clocks for read or write.

4** clocks for read and write.

Ð If instructions accesses a 32-bit operand on odd
address add:

4* clocks for read or write.

8** clocks for read and write.

Wait States:

Wait states add 1 clock per wait state to instruction
execution for each data access.

72

376 EMBEDDED PROCESSOR

Table 8.1. 80376 Instruction Set Clock Count Summary

Clock
Number

Instruction Format
Counts

of Data Notes
Cycles

GENERAL DATA TRANSFER

MOV e Move:

Register to Register/Memory 1 0 0 0 1 0 0 w mod reg r/m 2/2* 0/1* a

Register/Memory to Register 1 0 0 0 1 0 1 w mod reg r/m 2/4* 0/1* a

Immediate to Register/Memory 1 1 0 0 0 1 1 w mod 0 0 0 r/m immediate data 2/2* 0/1* a

Immediate to Register (Short Form) 1 0 1 1 w reg immediate data 2 2

Memory to Accumulator (Short Form) 1 0 1 0 0 0 0 w full displacement 4* 1* a

Accumulator to Memory (Short Form) 1 0 1 0 0 0 1 w full displacement 2* 1* a

Register/Memory to Segment Register 1 0 0 0 1 1 1 0 mod sreg3 r/m 22/23* 0/6* a,b,c

Segment Register to Register/Memory 1 0 0 0 1 1 0 0 mod sreg3 r/m 2/2* 0/1* a

MOVSX e Move with Sign Extension

Register from Register/Memory 0 0 0 0 1 1 1 1 1 0 1 1 1 1 1 w mod reg r/m 3/6* 0/1* a

MOVZX e Move with Zero Extension

Register from Register/Memory 0 0 0 0 1 1 1 1 1 0 1 1 0 1 1 w mod reg r/m 3/6* 0/1* a

PUSH e Push:

Register/Memory 1 1 1 1 1 1 1 1 mod 1 1 0 r/m 7/9* 2/4* a

Register (Short Form) 0 1 0 1 0 reg 4 2 a

Segment Register (ES, CS, SS or DS)
0 0 0 sreg2 1 1 0 4 2 a

Segment Register (FS or GS)
0 0 0 0 1 1 1 1 1 0 sreg3 0 0 0 4 2 a

Immediate 0 1 1 0 1 0 s 0 immediate data 4 2 a

PUSHA e Push All 0 1 1 0 0 0 0 0 34 16 a

POP e Pop

Register/Memory 1 0 0 0 1 1 1 1 mod 0 0 0 r/m 7/9* 2/4* a

Register (Short Form) 0 1 0 1 1 reg 6 2 a

Segment Register (ES, SS or DS)
0 0 0 sreg 2 1 1 1 25 6 a, b, c

Segment Register (FS or GS)
0 0 0 0 1 1 1 1 1 0 sreg 3 0 0 1 25 6 a, b, c

POPA e Pop All 0 1 1 0 0 0 0 1 40 16 a

XCHG e Exchange

Register/Memory with Register 1 0 0 0 0 1 1 w mod reg r/m 3/5** 0/2** a, m

Register with Accumulator (Short Form) 1 0 0 1 0 reg 3 0

IN e Input from:

Fixed Port 1 1 1 0 0 1 0 w port number 6* 1* f,k

26* 1* f,l

Variable Port 1 1 1 0 1 1 0 w 7* 1* f,k

27* 1* f,l

OUT e Output to:

Fixed Port 1 1 1 0 0 1 1 w port number 4* 1* f,k

24* 1* f,l

Variable Port 1 1 1 0 1 1 1 w 5* 1* f,k

26* 1* f,l

LEA e Load EA to Register 1 0 0 0 1 1 0 1 mod reg r/m 2

73

376 EMBEDDED PROCESSOR

Table 8.1. 80376 Instruction Set Clock Count Summary (Continued)

Clock
Number

Instruction Format
Counts

of Data Notes
Cycles

SEGMENT CONTROL

LDS e Load Pointer to DS 1 1 0 0 0 1 0 1 mod reg r/m 26* 6* a, b, c

LES e Load Pointer to ES 1 1 0 0 0 1 0 0 mod reg r/m 26* 6* a, b, c

LFS e Load Pointer to FS 0 0 0 0 1 1 1 1 1 0 1 1 0 1 0 0 mod reg r/m 29* 6* a, b, c

LGS e Load Pointer to GS 0 0 0 0 1 1 1 1 1 0 1 1 0 1 0 1 mod reg r/m 29* 6* a, b, c

LSS e Load Pointer to SS 0 0 0 0 1 1 1 1 1 0 1 1 0 0 1 0 mod reg r/m 26* 6* a, b, c

FLAG CONTROL

CLC e Clear Carry Flag 1 1 1 1 1 0 0 0 2

CLD e Clear Direction Flag 1 1 1 1 1 1 0 0 2

CLI e Clear Interrupt Enable Flag 1 1 1 1 1 0 1 0 8 f

CLTS e Clear Task Switched Flag 0 0 0 0 1 1 1 1 0 0 0 0 0 1 1 0 5 e

CMC e Complement Carry Flag 1 1 1 1 0 1 0 1 2

LAHF e Load AH into Flag 1 0 0 1 1 1 1 1 2

POPF e Pop Flags 1 0 0 1 1 1 0 1 7 a, g

PUSHF e Push Flags 1 0 0 1 1 1 0 0 4 a

SAHF e Store AH into Flags 1 0 0 1 1 1 1 0 3

STC e Set Carry Flag 1 1 1 1 1 0 0 1 2

STD e Set Direction Flag 1 1 1 1 1 1 0 1 2

STI e Set Interrupt Enable Flag 1 1 1 1 1 0 1 1 8 f

ARITHMETIC

ADD e Add

Register to Register 0 0 0 0 0 0 d w mod reg r/m 2

Register to Memory 0 0 0 0 0 0 0 w mod reg r/m 7** 2** a

Memory to Register 0 0 0 0 0 0 1 w mod reg r/m 6* 1* a

Immediate to Register/Memory 1 0 0 0 0 0 s w mod 0 0 0 r/m immediate data 2/7** 0/2** a

Immediate to Accumulator (Short Form) 0 0 0 0 0 1 0 w immediate data 2

ADC e Add with Carry

Register to Register 0 0 0 1 0 0 d w mod reg r/m 2

Register to Memory 0 0 0 1 0 0 0 w mod reg r/m 7** 2** a

Memory to Register 0 0 0 1 0 0 1 w mod reg r/m 6* 1* a

Immediate to Register/Memory 1 0 0 0 0 0 s w mod 0 1 0 r/m immediate data 2/7** 0/2** a

Immediate to Accumulator (Short Form) 0 0 0 1 0 1 0 w immediate data 2

INC e Increment

Register/Memory 1 1 1 1 1 1 1 w mod 0 0 0 r/m 2/6** 0/2** a

Register (Short Form) 0 1 0 0 0 reg 2

SUB e Subtract

Register from Register 0 0 1 0 1 0 d w mod reg r/m 2

74

376 EMBEDDED PROCESSOR

Table 8.1. 80376 Instruction Set Clock Count Summary (Continued)

Clock
Number

Instruction Format
Counts

Of Data Notes
Cycles

ARITHMETIC (Continued)

Register from Memory 0 0 1 0 1 0 0 w mod reg r/m 7** 2** a

Memory from Register 0 0 1 0 1 0 1 w mod reg r/m 6* 1 a

Immediate from Register/Memory 1 0 0 0 0 0 s w mod 1 0 1 r/m immediate data 2/7** 0/1** a

Immediate from Accumulator (Short Form) 0 0 1 0 1 1 0 w immediate data 2

SBB e Subtract with Borrow

Register from Register 0 0 0 1 1 0 d w mod reg r/m 2

Register from Memory 0 0 0 1 1 0 0 w mod reg r/m 7** 2** a

Memory from Register 0 0 0 1 1 0 1 w mod reg r/m 6* 1* a

Immediate from Register/Memory 1 0 0 0 0 0 s w mod 0 1 1 r/m immediate data 2/7** 0/2** a

Immediate from Accumulator (Short Form) 0 0 0 1 1 1 0 w immediate data 2

DEC e Decrement

Register/Memory 1 1 1 1 1 1 1 w reg 0 0 1 r/m 2/6** 0/2** a

Register (Short Form) 0 1 0 0 1 reg 2

CMP e Compare

Register with Register 0 0 1 1 1 0 d w mod reg r/m 2

Memory with Register 0 0 1 1 1 0 0 w mod reg r/m 5* 1* a

Register with Memory 0 0 1 1 1 0 1 w mod reg r/m 6** 2** a

Immediate with Register/Memory 1 0 0 0 0 0 s w mod 1 1 1 r/m immediate data 2/5* 0/1* a

Immediate with Accumulator (Short Form) 0 0 1 1 1 1 0 w immediate data 2

NEG e Change Sign 1 1 1 1 0 1 1 w mod 0 1 1 r/m 2/6* 0/2* a

AAA e ASCII Adjust for Add 0 0 1 1 0 1 1 1 4

AAS e ASCII Adjust for Subtract 0 0 1 1 1 1 1 1 4

DAA e Decimal Adjust for Add 0 0 1 0 0 1 1 1 4

DAS e Decimal Adjust for Subtract 0 0 1 0 1 1 1 1 4

MUL e Multiply (Unsigned)

Accumulator with Register/Memory 1 1 1 1 0 1 1 w mod 1 0 0 r/m

MultiplierÐByte 12–17/15–20 0/1 a,n

ÐWord 12–25/15–28* 0/1* a,n

ÐDoubleword 12–41/17–46* 0/2* a,n

IMUL e Integer Multiply (Signed)

Accumulator with Register/Memory 1 1 1 1 0 1 1 w mod 1 0 1 r/m

MultiplierÐByte 12–17/15–20 0/1 a,n

ÐWord 12–25/15–28* 0/1* a,n

ÐDoubleword 12–41/17–46* 0/2* a,n

Register with Register/Memory 0 0 0 0 1 1 1 1 1 0 1 0 1 1 1 1 mod reg r/m

MultiplierÐByte 12–17/15–20 0/1 a,n

ÐWord 12–25/15–28* 0/1* a,n

ÐDoubleword 12–41/17–46* 0/2* a,n

Register/Memory with Immediate to Register 0 1 1 0 1 0 s 1 mod reg r/m immediate data

ÐWord 13–26/14–27* 0/1* a,n

ÐDoubleword 13–42/16–45* 0/2* a,n

75

376 EMBEDDED PROCESSOR

Table 8.1. 80376 Instruction Set Clock Count Summary (Continued)

Clock
Number

Instruction Format
Counts

Of Data Notes
Cycles

ARITHMETIC (Continued)

DIV e Divide (Unsigned)

Accumulator by Register/Memory 1 1 1 1 0 1 1 w mod 1 1 0 r/m

DivisorÐByte 14/17 0/1 a, o

ÐWord 22/25* 0/1* a, o

ÐDoubleword 38/43* 0/2* a, o

IDIV e Integer Divide (Signed)

Accumulator by Register/Memory 1 1 1 1 0 1 1 w mod 1 1 1 r/m

DivisorÐByte 19/22 0/1 a, o

ÐWord 27/30* 0/1 a, o

ÐDoubleword 43/48* 0/2* a, o

AAD e ASCII Adjust for Divide 1 1 0 1 0 1 0 1 0 0 0 0 1 0 1 0 19

AAM e ASCII Adjust for Multiply 1 1 0 1 0 1 0 0 0 0 0 0 1 0 1 0 17

CBW e Convert Byte to Word 1 0 0 1 1 0 0 0 3

CWD e Convert Word to Double Word 1 0 0 1 1 0 0 1 2

LOGIC

Shift Rotate Instructions

Not Through Carry (ROL, ROR, SAL, SAR, SHL, and SHR)

Register/Memory by 1 1 1 0 1 0 0 0 w mod TTT r/m 3/7** 0/2** a

Register/Memory by CL 1 1 0 1 0 0 1 w mod TTT r/m 3/7** 0/2** a

Register/Memory by Immediate Count 1 1 0 0 0 0 0 w mod TTT r/m immed 8-bit data 3/7** 0/2** a

Through Carry (RCL and RCR)

Register/Memory by 1 1 1 0 1 0 0 0 w mod TTT r/m 9/10** 0/2** a

Register/Memory by CL 1 1 0 1 0 0 1 w mod TTT r/m 9/10** 10/2** a

Register/Memory by Immediate Count 1 1 0 0 0 0 0 w mod TTT r/m immed 8-bit data 9/10** 0/2** a

T T T Instruction

0 0 0 ROL

0 0 1 ROR

0 1 0 RCL

0 1 1 RCR

1 0 0 SHL/SAL

1 0 1 SHR

1 1 1 SAR

SHLD e Shift Left Double

Register/Memory by Immediate 0 0 0 0 1 1 1 1 1 0 1 0 0 1 0 0 mod reg r/m immed 8-bit data 3/7** 0/2**

Register/Memory by CL 0 0 0 0 1 1 1 1 1 0 1 0 0 1 0 1 mod reg r/m 3/7** 0/2**

SHRD e Shift Right Double

Register/Memory by Immediate 0 0 0 0 1 1 1 1 1 0 1 0 1 1 0 0 mod reg r/m immed 8-bit data 3/7** 0/2**

Register/Memory by CL 0 0 0 0 1 1 1 1 1 0 1 0 1 1 0 1 mod reg r/m 3/7** 0/2**

AND e And

Register to Register 0 0 1 0 0 0 d w mod reg r/m 2

76

376 EMBEDDED PROCESSOR

Table 8.1. 80376 Instruction Set Clock Count Summary (Continued)

Clock
Number

Instruction Format
Counts

of Data Notes
Cycles

LOGIC (Continued)

Register to Memory 0 0 1 0 0 0 0 w mod reg r/m 7** 2** a

Memory to Register 0 0 1 0 0 0 1 w mod reg r/m 6* 1* a

Immediate to Register/Memory 1 0 0 0 0 0 0 w mod 1 0 0 r/m immediate data 2/7** 0/2** a

Immediate to Accumulator (Short Form) 0 0 1 0 0 1 0 w immediate data 2

TEST e And Function to Flags, No Result

Register/Memory and Register 1 0 0 0 0 1 0 w mod reg r/m 2/5* 0/1* a

Immediate Data and Register/Memory 1 1 1 1 0 1 1 w mod 0 0 0 r/m immediate data 2/5* 0/1* a

Immediate Data and Accumulator
(Short Form) 1 0 1 0 1 0 0 w immediate data 2

OR e Or

Register to Register 0 0 0 0 1 0 d w mod reg r/m 2

Register to Memory 0 0 0 0 1 0 0 w mod reg r/m 7** 2** a

Memory to Register 0 0 0 0 1 0 1 w mod reg r/m 6* 1* a

Immediate to Register/Memory 1 0 0 0 0 0 0 w mod 0 0 1 r/m immediate data 2/7** 0/2** a

Immediate to Accumulator (Short Form) 0 0 0 0 1 1 0 w immediate data 2

XOR e Exclusive Or

Register to Register 0 0 1 1 0 0 d w mod reg r/m 2

Register to Memory 0 0 1 1 0 0 0 w mod reg r/m 7** 2** a

Memory to Register 0 0 1 1 0 0 1 w mod reg r/m 6* 1* a

Immediate to Register/Memory 1 0 0 0 0 0 0 w mod 1 1 0 r/m immediate data 2/7** 0/2** a

Immediate to Accumulator (Short Form) 0 0 1 1 0 1 0 w immediate data 2

NOT e Invert Register/Memory 1 1 1 1 0 1 1 w mod 0 1 0 r/m 2/6** 0/2** a

STRING MANIPULATION

CMPS e Compare Byte Word 1 0 1 0 0 1 1 w 10* 2* a

INS e Input Byte/Word from DX Port 0 1 1 0 1 1 0 w
29**
9**

1**
1** a,f,k

a,f,l

LODS e Load Byte/Word to AL/AX/EAX 1 0 1 0 1 1 0 w 5* 1* a

MOVS e Move Byte Word 1 0 1 0 0 1 0 w 7** 2** a

OUTS e Output Byte/Word to DX Port 0 1 1 0 1 1 1 w
28**
8**

1**
1** a,f,k

a,f,l

SCAS e Scan Byte Word 1 0 1 0 1 1 1 w 7* 1* a

STOS e Store Byte/Word from

AL/AX/EX 1 0 1 0 1 0 1 w 4* 1* a

XLAT e Translate String 1 1 0 1 0 1 1 1 5* 1* a

REPEATED STRING MANIPULATION

Repeated by Count in CX or ECX

REPE CMPS e Compare String

(Find Non-Match) 1 1 1 1 0 0 1 1 1 0 1 0 0 1 1 w 5 a 9n** 2n** a

77

376 EMBEDDED PROCESSOR

Table 8.1. 80376 Instruction Set Clock Count Summary (Continued)

Clock
Number

Instruction Format
Counts

of Data Notes
Cycles

REPEATED STRING MANIPULATION (Continued)

REPNE CMPS e Compare String

(Find Match) 1 1 1 1 0 0 1 0 1 0 1 0 0 1 1 w 5 a 9n** 2n** a

REP INS e Input String 1 1 1 1 0 0 1 1 0 1 1 0 1 1 0 w
27 a 6n*
7 a 6n*

1n*
1n* a,f,k

a,f,l

REP LODS e Load String 1 1 1 1 0 0 1 1 1 0 1 0 1 1 0 w 5 a 6n* 1n* a

REP MOVS e Move String 1 1 1 1 0 0 1 1 1 0 1 0 0 1 0 w 7 a 4n** 2n** a

REP OUTS e Output String 1 1 1 1 0 0 1 1 0 1 1 0 1 1 1 w
26 a 5n*
6 a 5n* 1n*

1n*
a,f,k

a,f,l

REPE SCAS e Scan String

(Find Non-AL/AX/EAX) 1 1 1 1 0 0 1 1 1 0 1 0 1 1 1 w 5 a 8n* 1n* a

REPNE SCAS e Scan String

(Find AL/AX/EAX) 1 1 1 1 0 0 1 0 1 0 1 0 1 1 1 w 5 a 8n* 1n* a

REP STOS e Store String 1 1 1 1 0 0 1 1 1 0 1 0 1 0 1 w 5 a 5n* 1n* a

BIT MANIPULATION

BSF e Scan Bit Forward 0 0 0 0 1 1 1 1 1 0 1 1 1 1 0 0 mod reg r/m 10 a 3n** 2n** a

BSR e Scan Bit Reverse 0 0 0 0 1 1 1 1 1 0 1 1 1 1 0 1 mod reg r/m 10 a 3n** 2n** a

BT e Test Bit

Register/Memory, Immediate 0 0 0 0 1 1 1 1 1 0 1 1 1 0 1 0 mod 1 0 0 r/m immed 8-bit data 3/6* 0/1* a

Register/Memory, Register 0 0 0 0 1 1 1 1 1 0 1 0 0 0 1 1 mod reg r/m 3/12* 0/1* a

BTC e Test Bit and Complement

Register/Memory, Immediate 0 0 0 0 1 1 1 1 1 0 1 1 1 0 1 0 mod 1 1 1 r/m immed 8-bit data 6/8* 0/2* a

Register/Memory, Register 0 0 0 0 1 1 1 1 1 0 1 1 1 0 1 1 mod reg r/m 6/13* 0/2* a

BTR e Test Bit and Reset

Register/Memory, Immediate 0 0 0 0 1 1 1 1 1 0 1 1 1 0 1 0 mod 1 1 0 r/m immed 8-bit data 6/8* 0/2* a

Register/Memory, Register 0 0 0 0 1 1 1 1 1 0 1 1 0 0 1 1 mod reg r/m 6/13* 0/2* a

BTS e Test Bit and Set

Register/Memory, Immediate 0 0 0 0 1 1 1 1 1 0 1 1 1 0 1 0 mod 1 0 1 r/m immed 8-bit data 6/8* 0/2* a

Register/Memory, Register 0 0 0 0 1 1 1 1 1 0 1 0 1 0 1 1 mod reg r/m 6/13* 0/2* a

CONTROL TRANSFER

CALL e Call

Direct within Segment 1 1 1 0 1 0 0 0 full displacement 9 a m* 2 j

Register/Memory

Indirect within Segment 1 1 1 1 1 1 1 1 mod 0 1 0 r/m 9 a m/12 a m 2/3 a, j

Direct Intersegment 1 0 0 1 1 0 1 0 unsigned full offset, selector 42 a m 9 c, d, j

78

376 EMBEDDED PROCESSOR

Table 8.1. 80376 Instruction Set Clock Count Summary (Continued)

Clock
Number

Instruction Format
Counts

of Data Notes
Cycles

CONTROL TRANSFER (Continued)

(Direct Intersegment)

Via Call Gate to Same Privilege Level 64 a m 13 a,c,d,j

Via Call Gate to Different Privilege Level,

(No Parameters) 98 a m 13 a,c,d,j

Via Call Gate to Different Privilege Level,

(x Parameters) 106 a 8x a m 13 a 4x a,c,d,j

From 386 Task to 386 TSS 392 124 a,c,d,j

Indirect Intersegment 1 1 1 1 1 1 1 1 mod 0 1 1 r/m 46 a m 10 a,c,d,j

Via Call Gate to Same Privilege Level 68 a m 14 a,c,d,j

Via Call Gate to Different Privilege Level,

(No Parameters) 102 a m 14 a,c,d,j

Via Call Gate to Different Privilege Level,

(x Parameters) 110 a 8x a m 14 a 4x a,c,d,j

From 386 Task to 386 TSS 399 130 a,c,d,j

JMP e Unconditional Jump

Short 1 1 1 0 1 0 1 1 8-bit displacement 7 a m j

Direct within Segment 1 1 1 0 1 0 0 1 full displacement 7 a m j

Register/Memory Indirect within Segment 1 1 1 1 1 1 1 1 mod 1 0 0 r/m 9 a m/14 a m 2/4 a,j

Direct Intersegment 1 1 1 0 1 0 1 0 unsigned full offset, selector 37 a m 5 c,d,j

Via Call Gate to Same Privilege Level 53 a m 9 a,c,d,j

From 386 Task to 386 TSS 395 124 a,c,d,j

Indirect Intersegment 1 1 1 1 1 1 1 1 mod 1 0 1 r/m 37 a m 9 a,c,d,j

Via Call Gate to Same Privilege Level 59 a m 13 a,c,d,j

From 386 Task to 386 TSS 401 124 a,c,d,j

79

376 EMBEDDED PROCESSOR

Table 8.1. 80376 Instruction Set Clock Count Summary (Continued)

Clock
Number

Instruction Format
Counts

of Data Notes
Cycles

CONTROL TRANSFER (Continued)

RET e Return from CALL:

Within Segment 1 1 0 0 0 0 1 1 12 a m 2 a,j,p

Within Segment Adding Immediate to SP 1 1 0 0 0 0 1 0 16-bit displ 12 a m 2 a,j,p

Intersegment 1 1 0 0 1 0 1 1 36 a m 4 a,c,d,j,p

Intersegment Adding Immediate to SP 1 1 0 0 1 0 1 0 16-bit displ 36 a m 4 a,c,d,j,p

to Different Privilege Level

Intersegment 80 4 c,d,j,p

Intersegment Adding Immediate to SP 80 4 c,d,j,p

CONDITIONAL JUMPS

NOTE: Times Are Jump ‘‘Taken or Not Taken’’

JO e Jump on Overflow

8-Bit Displacement 0 1 1 1 0 0 0 0 8-bit displ 7 a m or 3 j

Full Displacement 0 0 0 0 1 1 1 1 1 0 0 0 0 0 0 0 full displacement 7 a m or 3 j

JNO e Jump on Not Overflow

8-Bit Displacement 0 1 1 1 0 0 0 1 8-bit displ 7 a m or 3 j

Full Displacement 0 0 0 0 1 1 1 1 1 0 0 0 0 0 0 1 full displacement 7 a m or 3 j

JB/JNAE e Jump on Below/Not Above or Equal

8-Bit Displacement 0 1 1 1 0 0 1 0 8-bit displ 7 a m or 3 j

Full Displacement 0 0 0 0 1 1 1 1 1 0 0 0 0 0 1 0 full displacement 7 a m or 3 j

JNB/JAE e Jump on Not Below/Above or Equal

8-Bit Displacement 0 1 1 1 0 0 1 1 8-bit displ 7 a m or 3 j

Full Displacement 0 0 0 0 1 1 1 1 1 0 0 0 0 0 1 1 full displacement 7 a m or 3 j

JE/JZ e Jump on Equal/Zero

8-Bit Displacement 0 1 1 1 0 1 0 0 8-bit displ 7 a m or 3 j

Full Displacement 0 0 0 0 1 1 1 1 1 0 0 0 0 1 0 0 full displacement 7 a m or 3 j

JNE/JNZ e Jump on Not Equal/Not Zero

8-Bit Displacement 0 1 1 1 0 1 0 1 8-bit displ 7 a m or 3 j

Full Displacement 0 0 0 0 1 1 1 1 1 0 0 0 0 1 0 1 full displacement 7 a m or 3 j

JBE/JNA e Jump on Below or Equal/Not Above

8-Bit Displacement 0 1 1 1 0 1 1 0 8-bit displ 7 a m or 3 j

Full Displacement 0 0 0 0 1 1 1 1 1 0 0 0 0 1 1 0 full displacement 7 a m or 3 j

JNBE/JA e Jump on Not Below or Equal/Above

8-Bit Displacement 0 1 1 1 0 1 1 1 8-bit displ 7 a m or 3 j

Full Displacement 0 0 0 0 1 1 1 1 1 0 0 0 0 1 1 1 full displacement 7 a m or 3 j

JS e Jump on Sign

8-Bit Displacement 0 1 1 1 1 0 0 0 8-bit displ 7 a m or 3 j

Full Displacement 0 0 0 0 1 1 1 1 1 0 0 0 1 0 0 0 full displacement 7 a m or 3 j

80

376 EMBEDDED PROCESSOR

Table 8.1. 80376 Instruction Set Clock Count Summary (Continued)

Clock
Number

Instruction Format
Counts

of Data Notes
Cycles

CONDITIONAL JUMPS (Continued)

JNS e Jump on Not Sign

8-Bit Displacement 0 1 1 1 1 0 0 1 8-bit displ 7 a m or 3 j

Full Displacement 0 0 0 0 1 1 1 1 1 0 0 0 1 0 0 1 full displacement 7 a m or 3 j

JP/JPE e Jump on Parity/Parity Even

8-Bit Displacement 0 1 1 1 1 0 1 0 8-bit displ 7 a m or 3 j

Full Displacement 0 0 0 0 1 1 1 1 1 0 0 0 1 0 1 0 full displacement 7 a m or 3 j

JNP/JPO e Jump on Not Parity/Parity Odd

8-Bit Displacement 0 1 1 1 1 0 1 1 8-bit displ 7 a m or 3 j

Full Displacement 0 0 0 0 1 1 1 1 1 0 0 0 1 0 1 1 full displacement 7 a m or 3 j

JL/JNGE e Jump on Less/Not Greater or Equal

8-Bit Displacement 0 1 1 1 1 1 0 0 8-bit displ 7 a m or 3 j

Full Displacement 0 0 0 0 1 1 1 1 1 0 0 0 1 1 0 0 full displacement 7 a m or 3 j

JNL/JGE e Jump on Not Less/Greater or Equal

8-Bit Displacement 0 1 1 1 1 1 0 1 8-bit displ 7 a m or 3 j

Full Displacement 0 0 0 0 1 1 1 1 1 0 0 0 1 1 0 1 full displacement 7 a m or 3 j

JLE/JNG e Jump on Less or Equal/Not Greater

8-Bit Displacement 0 1 1 1 1 1 1 0 8-bit displ 7 a m or 3 j

Full Displacement 0 0 0 0 1 1 1 1 1 0 0 0 1 1 1 0 full displacement 7 a m or 3 j

JNLE/JG e Jump on Not Less or Equal/Greater

8-Bit Displacement 0 1 1 1 1 1 1 1 8-bit displ 7 a m or 3 j

Full Displacement 0 0 0 0 1 1 1 1 1 0 0 0 1 1 1 1 full displacement 7 a m or 3 j

JECXZ e Jump on ECX Zero 1 1 1 0 0 0 1 1 8-bit displ 9 a m or 5 j

(Address Size Prefix Differentiates JCXZ from JECXZ)

LOOP e Loop ECX Times 1 1 1 0 0 0 1 0 8-bit displ 11 a m j

LOOPZ/LOOPE e Loop with
Zero/Equal 1 1 1 0 0 0 0 1 8-bit displ 11 a m j

LOOPNZ/LOOPNE e Loop While
Not Zero 1 1 1 0 0 0 0 0 8-bit displ 11 a m j

CONDITIONAL BYTE SET

NOTE: Times Are Register/Memory

SETO e Set Byte on Overflow

To Register/Memory 0 0 0 0 1 1 1 1 1 0 0 1 0 0 0 0 mod 0 0 0 r/m 4/5* 0/1* a

SETNO e Set Byte on Not Overflow

To Register/Memory 0 0 0 0 1 1 1 1 1 0 0 1 0 0 0 1 mod 0 0 0 r/m 4/5* 0/1* a

SETB/SETNAE e Set Byte on Below/Not Above or Equal

To Register/Memory 0 0 0 0 1 1 1 1 1 0 0 1 0 0 1 0 mod 0 0 0 r/m 4/5* 0/1* a

81

376 EMBEDDED PROCESSOR

Table 8.1. 80376 Instruction Set Clock Count Summary (Continued)

Clock
Number

Instruction Format
Counts

of Data Notes
Cycles

CONDITIONAL BYTE SET (Continued)

SETNB e Set Byte on Not Below/Above or Equal

To Register/Memory 0 0 0 0 1 1 1 1 1 0 0 1 0 0 1 1 mod 0 0 0 r/m 4/5* 0/1* a

SETE/SETZ e Set Byte on Equal/Zero

To Register/Memory 0 0 0 0 1 1 1 1 1 0 0 1 0 1 0 0 mod 0 0 0 r/m 4/5* 0/1* a

SETNE/SETNZ e Set Byte on Not Equal/Not Zero

To Register/Memory 0 0 0 0 1 1 1 1 1 0 0 1 0 1 0 1 mod 0 0 0 r/m 4/5* 0/1* a

SETBE/SETNA e Set Byte on Below or Equal/Not Above

To Register/Memory 0 0 0 0 1 1 1 1 1 0 0 1 0 1 1 0 mod 0 0 0 r/m 4/5* 0/1* a

SETNBE/SETA e Set Byte on Not Below or Equal/Above

To Register/Memory 0 0 0 0 1 1 1 1 1 0 0 1 0 1 1 1 mod 0 0 0 r/m 4/5* 0/1* a

SETS e Set Byte on Sign

To Register/Memory 0 0 0 0 1 1 1 1 1 0 0 1 1 0 0 0 mod 0 0 0 r/m 4/5* 0/1* a

SETNS e Set Byte on Not Sign

To Register/Memory 0 0 0 0 1 1 1 1 1 0 0 1 1 0 0 1 mod 0 0 0 r/m 4/5* 0/1* a

SETP/SETPE e Set Byte on Parity/Parity Even

To Register/Memory 0 0 0 0 1 1 1 1 1 0 0 1 1 0 1 0 mod 0 0 0 r/m 4/5* 0/1* a

SETNP/SETPO e Set Byte on Not Parity/Parity Odd

To Register/Memory 0 0 0 0 1 1 1 1 1 0 0 1 1 0 1 1 mod 0 0 0 r/m 4/5* 0/1* a

SETL/SETNGE e Set Byte on Less/Not Greater or Equal

To Register/Memory 0 0 0 0 1 1 1 1 1 0 0 1 1 1 0 0 mod 0 0 0 r/m 4/5* 0/1* a

SETNL/SETGE e Set Byte on Not Less/Greater or Equal

To Register/Memory 0 0 0 0 1 1 1 1 0 1 1 1 1 1 0 1 mod 0 0 0 r/m 4/5* 0/1* a

SETLE/SETNG e Set Byte on Less or Equal/Not Greater

To Register/Memory 0 0 0 0 1 1 1 1 1 0 0 1 1 1 1 0 mod 0 0 0 r/m 4/5* 0/1* a

SETNLE/SETG e Set Byte on Not Less or Equal/Greater

To Register/Memory 0 0 0 0 1 1 1 1 1 0 0 1 1 1 1 1 mod 0 0 0 r/m 4/5* 0/1* a

ENTER e Enter Procedure 1 1 0 0 1 0 0 0 16-bit displacement, 8-bit level

L e 0 10 a

L e 1 14 1 a

L l 1 17 a8(n b 1) 4(n b 1) a

LEAVE e Leave Procedure 1 1 0 0 1 0 0 1 6 a

82

376 EMBEDDED PROCESSOR

Table 8.1. 80376 Instruction Set Clock Count Summary (Continued)

Clock
Number

Instruction Format
Counts

of Data Notes
Cycles

INTERRUPT INSTRUCTIONS

INT e Interrupt:

Type Specified 1 1 0 0 1 1 0 1 type

Via Interrupt or Trap Gate

to Same Privilege Level 71 14 c,d,j,p

Via Interrupt or Trap Gate

to Different Privilege Level 111 14 c,d,j,p

From 386 Task to 386 TSS via Task Gate 467 140 c,d,j,p

Type 3 1 1 0 0 1 1 0 0

Via Interrupt or Trap Gate

to Same Privilege Level 71 14 c,d,j,p

Via Interrupt or Trap Gate

to Different Privilege Level 111 14 c,d,j,p

From 386 Task to 386 TSS via Task Gate 308 138 c,d,j,p

INTO e Interrupt 4 if Overflow Flag Set 1 1 0 0 1 1 1 0

If OF e 1: 3

If OF e 0

Via Interrupt or Trap Gate

to Same Privilege Level 71 14 c,d,j,p

Via Interrupt or Trap Gate

to Different Privilege Level 111 14 c,d,j,p

From 386 Task to 386 TSS via Task Gate 413 138 c,d,j,p

83

376 EMBEDDED PROCESSOR

Table 8.1. 80376 Instruction Set Clock Count Summary (Continued)

Clock
Number

Instruction Format
Counts

Of Data Notes
Cycles

INTERRUPT INSTRUCTIONS (Continued)

Bound e Out of Range 0 1 1 0 0 0 1 0 mod reg r/m

Interrupt 5 if Detect Value

if in Range 10 0 a,c,d,j,o,p

if Out of Range:

Via Interrupt or Trap Gate

to Same Privilege Level 71 14 c,d,j,p

Via Interrupt or Trap Gate

to Different Privilege Level 111 14 c,d,j,p

From 386 Task to 386 TSS via Task Gate 398 138 c,d,j,p

INTERRUPT RETURN

IRET e Interrupt Return 1 1 0 0 1 1 1 1

To the Same Privilege Level (within Task) 42 5 a,c,d,j,p

To Different Privilege Level (within Task) 86 5 a,c,d,j,p

From 386 Task to 386 TSS 328 138 c,d,j,p

PROCESSOR CONTROL

HLT e HALT 1 1 1 1 0 1 0 0 5 b

MOV e Move to and from Control/Debug/Test Registers

CR0 from register 0 0 0 0 1 1 1 1 0 0 1 0 0 0 1 0 1 1 eee reg 10 b

Register from CR0 0 0 0 0 1 1 1 1 0 0 1 0 0 0 0 0 1 1 eee reg 6 b

DR0–3 from Register 0 0 0 0 1 1 1 1 0 0 1 0 0 0 1 1 1 1 eee reg 22 b

DR6–7 from Register 0 0 0 0 1 1 1 1 0 0 1 0 0 0 1 1 1 1 eee reg 16 b

Register from DR6–7 0 0 0 0 1 1 1 1 0 0 1 0 0 0 0 1 1 1 eee reg 14 b

Register from DR0–3 0 0 0 0 1 1 1 1 0 0 1 0 0 0 0 1 1 1 eee reg 22 b

NOPe No Operation 1 0 0 1 0 0 0 0 3

WAITeWait until BUSY Pin is Negated 1 0 0 1 1 0 1 1 6

84

376 EMBEDDED PROCESSOR

Table 8.1. 80376 Instruction Set Clock Count Summary (Continued)

Clock
Number

Instruction Format
Counts

of Data Notes
Cycles

PROCESSOR EXTENSION INSTRUCTIONS

Processor Extension Escape 1 1 0 1 1 T T T mod L L L r/m See 80387SX Data Sheet a

TTT and LLL bits are opcode

information for coprocessor.

PREFIX BYTES

Address Size Prefix 0 1 1 0 0 1 1 1 0

LOCK e Bus Lock Prefix 1 1 1 1 0 0 0 0 0 f

Operand Size Prefix 0 1 1 0 0 1 1 0 0

Segment Override Prefix

CS: 0 0 1 0 1 1 1 0 0

DS: 0 0 1 1 1 1 1 0 0

ES: 0 0 1 0 0 1 1 0 0

FS: 0 1 1 0 0 1 0 0 0

GS: 0 1 1 0 0 1 0 1 0

SS: 0 0 1 1 0 1 1 0 0

PROTECTION CONTROL

ARPL e Adjust Requested Privilege Level

From Register/Memory 0 1 1 0 0 0 1 1 mod reg r/m 20/21** 2** a

LAR e Load Access Rights

From Register/Memory 0 0 0 0 1 1 1 1 0 0 0 0 0 0 1 0 mod reg r/m 17/18* 1* a,c,i,p

LGDT e Load Global Descriptor

Table Register 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 1 mod 0 1 0 r/m 13** 3* a,e

LIDT e Load Interrupt Descriptor

Table Register 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 1 mod 0 1 1 r/m 13** 3* a,e

LLDT e Load Local Descriptor

Table Register to
Register/Memory 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 mod 0 1 0 r/m 24/28* 5* a,c,e,p

LMSW eLoad Machine Status Word

From Register/Memory 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 1 mod 1 1 0 r/m 10/13* 1* a,e

LSL e Load Segment Limit

From Register/Memory 0 0 0 0 1 1 1 1 0 0 0 0 0 0 1 1 mod reg r/m

Byte-Granular Limit 24/27* 2* a,c,i,p

Page-Granular Limit 29/32* 2* a,c,i,p

LTR e Load Task Register

From Register/Memory 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 mod 0 0 1 r/m 27/31* 4* a,c,e,p

SGDT e Store Global Descriptor

Table Register 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 1 mod 0 0 0 r/m 11* 3* a

SIDT e Store Interrupt Descriptor

Table Register 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 1 mod 0 0 1 r/m 11* 3* a

SLDT e Store Local Descriptor Table Register

To Register/Memory 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 mod 0 0 0 r/m 2/2* 4* a

85

376 EMBEDDED PROCESSOR

Table 8.1. 80376 Instruction Set Clock Count Summary (Continued)

Clock
Number

Instruction Format
Counts

of Data Notes
Cycles

PROTECTION CONTROL (Continued)

SMSW e Store Machine
Status Word 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 1 mod 1 0 0 r/m 2/2* 1* a, c

STR e Store Task Register

To Register/Memory 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 mod 0 0 1 r/m 2/2* 1* a

VERR e Verify Read Accesss

Register/Memory 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 mod 1 0 0 r/m 10/11** 2** a,c,i,p

VERW e Verify Write Accesss 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 mod 1 0 1 r/m 15/16** 2** a,c,i,p

NOTES:
a. Exception 13 fault (general violation) will occur if the memory operand in CS, DS, ES, FS or GS cannot be used due to
either a segment limit violation or access rights violation. If a stack limit is violated, and exception 12 (stack segment limit
violation or not present) occurs.
b. For segment load operations, the CPL, RPL and DPL must agree with the privilege rules to avoid an exception 13 fault
(general protection violation). The segments’s descriptor must indicate ‘‘present’’ or exception 11 (CS, DS, ES, FS, GS not
present). If the SS register is loaded and a stack segment not present is detected, an exception 12 (stack segment limit
violation or not present occurs).
c. All segment descriptor accesses in the GDT or LDT made by this instruction will automatically assert LOCK to maintain
descriptor integrity in multiprocessor systems.
d. JMP, CALL, INT, RET and IRET instructions referring to another code segment will cause an exception 13 (general
protection violation) if an applicable privilege rule is volated.
e. An exception 13 fault occurs if CPL is greater than 0.
f. An exception 13 fault occurs if CPL is greater than IOPL.
g. The IF bit of the flag register is not updated if CPL is greater than IOPL. The IOPL field of the flag register is updated only
if CPL e 0.
h. Any violation of privelege rules as applied to the selector operand does not cause a protection exception; rather, the zero
flag is cleared.
i. If the coprocessor’s memory operand violates a segment limit or segment access rights, an exception 13 fault (general
protection exception) will occur before the ESC instruction is executed. An exception 12 fault (stack segment limit violation
or no present) will occur if the stack limit is violated by the operand’s starting address.
j. The destination of a JMP, CALL, INT, RET or IRET must be in the defined limit of a code segment or an exception 13 fault
(general protection violation) will occur.
k. If CPL s IOPL
l. If CPL l IOPL
m. LOCK is automatically asserted, regardless of the presence or absence of the LOCK prefix.
n. The 80376 uses an early-out multiply algorithm. The actual number of clocks depends on the position of the most signifi-
cant bit in the operand (multiplier). Clock counts given are minimum to maximum. To calculate actual clocks use the follow-
ing formula:

Actual Clock e if m k l 0 then max ([log2 lml], 3) a 9 clocks:
if m e 0 then 12 clocks (where m is the multiplier)

o. An exception may occur, depending on the value of the operand.
p. LOCK is asserted during descriptor table accesses.

86

376 EMBEDDED PROCESSOR

8.2 INSTRUCTION ENCODING

Overview

All instruction encodings are subsets of the general
instruction format shown in Figure 8.1. Instructions
consist of one or two primary opcode bytes, possibly
an address specifier consisting of the ‘‘mod r/m’’
byte and ‘‘scaled index’’ byte, a displacement if re-
quired, and an immediate data field if required.

Within the primary opcode or opcodes, smaller en-
coding fields may be defined. These fields vary ac-
cording to the class of operation. The fields define
such information as direction of the operation, size
of the displacements, register encoding, or sign ex-
tension.

Almost all instructions referring to an operand in
memory have an addressing mode byte following
the primary opcode byte(s). This byte, the mod r/m
byte, specifies the address mode to be used. Certain

encodings of the mod r/m byte indicate a second
addressing byte, the scale-index-base byte, follows
the mod r/m byte to fully specify the addressing
mode.

Addressing modes can include a displacement im-
mediately following the mod r/m byte, or scaled in-
dex byte. If a displacement is present, the possible
sizes are 8, 16 or 32 bits.

If the instruction specifies an immediate operand,
the immediate operand follows any displacement
bytes. The immediate operand, if specified, is always
the last field of the instruction.

Figure 8.1 illustrates several of the fields that can
appear in an instruction, such as the mod field and
the r/m field, but the Figure does not show all fields.
Several smaller fields also appear in certain instruc-
tions, sometimes within the opcode bytes them-
selves. Table 8.2 is a complete list of all fields ap-
pearing in the 80376 instruction set. Further ahead,
following Table 8.2, are detailed tables for each
field.

T T T T T T T T T T T T T T T T mod T T T r/m ss index base d32 l 16 l 8 l none data32 l 16 l 8 l none

7 0 7 0 7 6 5 3 2 0 7 6 5 3 2 0X ä Y X ä Y X ä YX ä Y X ä Y
opcode ‘‘mod r/m’’ ‘‘s-i-b’’ address immediate

(one or two bytes) byte byte displacement dataX ä Y
(T represents an (4, 2, 1 bytes (4, 2, 1 bytes

opcode bit.) register and address or none) or none)

mode specifier

Figure 8.1. General Instruction Format

Table 8.2. Fields within 80376 Instructions

Field Name Description Number of Bits

w Specifies if Data is Byte or Full Size (Full Size is either 16 or 32 Bits 1

d Specifies Direction of Data Operation 1

s Specifies if an Immediate Data Field Must be Sign-Extended 1

reg General Register Specifier 3

mod r/m Address Mode Specifier (Effective Address can be a General Register) 2 for mod;

3 for r/m

ss Scale Factor for Scaled Index Address Mode 2

index General Register to be used as Index Register 3

base General Register to be used as Base Register 3

sreg2 Segment Register Specifier for CS, SS, DS, ES 2

sreg3 Segment Register Specifier for CS, SS, DS, ES, FS, GS 3

tttn For Conditional Instructions, Specifies a Condition Asserted

or a Condition Negated 4

Note: Table 8.1 shows encoding of individual instructions.

87

376 EMBEDDED PROCESSOR

16-Bit Extensions of the
Instruction Set

Two prefixes, the operand size prefix (66H) and the
effective address size prefix (67H), allow overriding
individually the default selection of operand size and
effective address size. These prefixes may precede
any opcode bytes and affect only the instruction
they precede. If necessary, one or both of the prefix-
es may be placed before the opcode bytes. The
presence of the operand size prefix (66H) and the
effective address prefix will allow 16-bit data opera-
tion and 16-bit effective address calculations.

For instructions with more than one prefix, the order
of prefixes is unimportant.

Unless specified otherwise, instructions with 8-bit
and 16-bit operands do not affect the contents of
the high-order bits of the extended registers.

Encoding of Instruction Fields

Within the instruction are several fields indicating
register selection, addressing mode and so on.

ENCODING OF OPERAND LENGTH (w) FIELD

For any given instruction performing a data opera-
tion, the instruction will execute as a 32-bit opera-
tion. Within the constraints of the operation size, the
w field encodes the operand size as either one byte
or the full operation size, as shown in the table be-
low.

w Field
Operand Size Normal

with 66H Prefix Operand Size

0 8 Bits 8 Bits

1 16 Bits 32 Bits

ENCODING OF THE GENERAL
REGISTER (reg) FIELD

The general register is specified by the reg field,
which may appear in the primary opcode bytes, or as
the reg field of the ‘‘mod r/m’’ byte, or as the r/m
field of the ‘‘mod r/m’’ byte.

Encoding of reg Field When w Field

is not Present in Instruction

Register Selected
Register Selected

reg Field
with 66H Prefix

During 32-Bit

Data Operations

000 AX EAX

001 CX ECX

010 DX EDX

011 BX EBX

100 SP ESP

101 BP EBP

110 SI ESI

111 DI EDI

Encoding of reg Field When w Field

is Present in Instruction

Register Specified by reg Field

with 66H Prefix

reg
Function of w Field

(when w e 0) (when w e 1)

000 AL AX

001 CL CX

010 DL DX

011 BL BX

100 AH SP

101 CH BP

110 DH SI

111 BH DI

Register Specified by reg Field

without 66H Prefix

reg
Function of w Field

(when w e 0) (when w e 1)

000 AL EAX

001 CL ECX

010 DL EDX

011 BL EBX

100 AH ESP

101 CH EBP

110 DH ESI

111 BH EDI

88

376 EMBEDDED PROCESSOR

ENCODING OF THE SEGMENT
REGISTER (sreg) FIELD

The sreg field in certain instructions is a 2-bit field
allowing one of the CS, DS, ES or SS segment regis-
ters to be specified. The sreg field in other instruc-
tions is a 3-bit field, allowing the FS and GS segment
registers to be specified also.

2-Bit sreg2 Field

2-Bit
Segment

sreg2 Field
Register

Selected

00 ES

01 CS

10 SS

11 DS

3-Bit sreg3 Field

3-Bit
Segment

sreg3 Field
Register

Selected

000 ES

001 CS

010 SS

011 DS

100 FS

101 GS

110 do not use

111 do not use

ENCODING OF ADDRESS MODE

Except for special instructions, such as PUSH or
POP, where the addressing mode is pre-determined,
the addressing mode for the current instruction is
specified by addressing bytes following the primary
opcode. The primary addressing byte is the ‘‘mod
r/m’’ byte, and a second byte of addressing informa-
tion, the ‘‘s-i-b’’ (scale-index-base) byte, can be
specified.

The s-i-b byte (scale-index-base byte) is specified
when using 32-bit addressing mode and the ‘‘mod
r/m’’ byte has r/m e 100 and mod e 00, 01 or 10.
When the sib byte is present, the 32-bit addressing
mode is a function of the mod, ss, index, and base
fields.

The primary addressing byte, the ‘‘mod r/m’’ byte,
also contains three bits (shown as TTT in Figure 8.1)
sometimes used as an extension of the primary op-
code. The three bits, however, may also be used as
a register field (reg).

When calculating an effective address, either 16-bit
addressing or 32-bit addressing is used. 16-bit ad-
dressing uses 16-bit address components to calcu-
late the effective address while 32-bit addressing
uses 32-bit address components to calculate the ef-
fective address. When 16-bit addressing is used, the
‘‘mod r/m’’ byte is interpreted as a 16-bit addressing
mode specifier. When 32-bit addressing is used, the
‘‘mod r/m’’ byte is interpreted as a 32-bit addressing
mode specifier.

Tables on the following three pages define all en-
codings of all 16-bit addressing modes and 32-bit
addressing modes.

89

376 EMBEDDED PROCESSOR

Encoding of Normal Address Mode with ‘‘mod r/m’’ byte (no ‘‘s-i-b’’ byte present):

mod r/m Effective Address

00 000 DS:[EAX]
00 001 DS:[ECX]
00 010 DS:[EDX]
00 011 DS:[EBX]
00 100 s-i-b is present

00 101 DS:d32

00 110 DS:[ESI]
00 111 DS:[EDI]

01 000 DS:[EAXad8]
01 001 DS:[ECXad8]
01 010 DS:[EDXad8]
01 011 DS:[EBXad8]
01 100 s-i-b is present

01 101 SS:[EBPad8]
01 110 DS:[ESIad8]
01 111 DS:[EDIad8]

mod r/m Effective Address

10 000 DS:[EAXad32]
10 001 DS:[ECXad32]
10 010 DS:[EDXad32]
10 011 DS:[EBXad32]
10 100 s-i-b is present

10 101 SS:[EBPad32]
10 110 DS:[ESIad32]
10 111 DS:[EDIad32]

11 000 registerÐsee below

11 001 registerÐsee below

11 010 registerÐsee below

11 011 registerÐsee below

11 100 registerÐsee below

11 101 registerÐsee below

11 110 registerÐsee below

11 111 registerÐsee below

Register Specified by reg or r/m

during Normal Data Operations:

mod r/m
function of w field

(when we0) (when we1)

11 000 AL EAX

11 001 CL ECX

11 010 DL EDX

11 011 BL EBX

11 100 AH ESP

11 101 CH EBP

11 110 DH ESI

11 111 BH EDI

Register Specified by reg or r/m

during 16-Bit Data Operations: (66H Prefix)

mod r/m
function of w field

(when we0) (when we1)

11 000 AL AX

11 001 CL CX

11 010 DL DX

11 011 BL BX

11 100 AH SP

11 101 CH BP

11 110 DH SI

11 111 BH DI

90

376 EMBEDDED PROCESSOR

Encoding of 16-bit Address Mode with ‘‘mod r/m’’ Byte Using 67H Prefix

mod r/m Effective Address

00 000 DS:[BXaSI]
00 001 DS:[BXaDI]
00 010 SS:[BPaSI]
00 011 SS:[BPaDI]
00 100 DS:[SI]
00 101 DS:[DI]
00 110 DS:d16

00 111 DS:[BX]

01 000 DS:[BXaSIad8]
01 001 DS:[BXaDIad8]
01 010 SS:[BPaSIad8]
01 011 SS:[BPaDIad8]
01 100 DS:[SIad8]
01 101 DS:[DIad8]
01 110 SS:[BPad8]
01 111 DS:[BXad8]

mod r/m Effective Address

10 000 DS:[BXaSIad16]
10 001 DS:[BXaDIad16]
10 010 SS:[BPaSIad16]
10 011 SS:[BPaDIad16]
10 100 DS:[SIad16]
10 101 DS:[DIad16]
10 110 SS:[BPad16]
10 111 DS:[BXad16]

11 000 registerÐsee below

11 001 registerÐsee below

11 010 registerÐsee below

11 011 registerÐsee below

11 100 registerÐsee below

11 101 registerÐsee below

11 110 registerÐsee below

11 111 registerÐsee below

91

376 EMBEDDED PROCESSOR

Encoding of 32-bit Address Mode (‘‘mod r/m’’ byte and ‘‘s-i-b’’ byte present):

mod base Effective Address

00 000 DS:[EAXa(scaled index)]
00 001 DS:[ECXa(scaled index)]
00 010 DS:[EDXa(scaled index)]
00 011 DS:[EBXa(scaled index)]
00 100 SS:[ESPa(scaled index)]
00 101 DS:[d32a(scaled index)]
00 110 DS:[ESIa(scaled index)]
00 111 DS:[EDIa(scaled index)]

01 000 DS:[EAXa(scaled index)ad8]
01 001 DS:[ECXa(scaled index)ad8]
01 010 DS:[EDXa(scaled index)ad8]
01 011 DS:[EBXa(scaled index)ad8]
01 100 SS:[ESPa(scaled index)ad8]
01 101 SS:[EBPa(scaled index)ad8]
01 110 DS:[ESIa(scaled index)ad8]
01 111 DS:[EDIa(scaled index)ad8]

10 000 DS:[EAXa(scaled index)ad32]
10 001 DS:[ECXa(scaled index)ad32]
10 010 DS:[EDXa(scaled index)ad32]
10 011 DS:[EBXa(scaled index)ad32]
10 100 SS:[ESPa(scaled index)ad32]
10 101 SS:[EBPa(scaled index)ad32]
10 110 DS:[ESIa(scaled index)ad32]
10 111 DS:[EDIa(scaled index)ad32]

NOTE:
Mod field in ‘‘mod r/m’’ byte; ss, index, base fields in
‘‘s-i-b’’ byte.

ss Scale Factor

00 x1

01 x2

10 x4

11 x8

index Index Register

000 EAX

001 ECX

010 EDX

011 EBX

100 no index reg**
101 EBP

110 ESI

111 EDI

**IMPORTANT NOTE:
When index field is 100, indicating ‘‘no index register,’’ then
ss field MUST equal 00. If index is 100 and ss does not
equal 00, the effective address is undefined.

92

376 EMBEDDED PROCESSOR

ENCODING OF OPERATION
DIRECTION (d) FIELD

In many two-operand instructions the d field is pres-
ent to indicate which operand is considered the
source and which is the destination.

d Direction of Operation

0 Register/Memory k- - Register
‘‘reg’’ Field Indicates Source Operand;
‘‘mod r/m’’ or ‘‘mod ss index base’’ Indicates
Destination Operand

1 Register k- - Register/Memory
‘‘reg’’ Field Indicates Destination Operand;
‘‘mod r/m’’ or ‘‘mod ss index base’’ Indicates
Source Operand

ENCODING OF SIGN-EXTEND (s) FIELD

The s field occurs primarily to instructions with im-
mediate data fields. The s field has an effect only if
the size of the immediate data is 8 bits and is being
placed in a 16-bit or 32-bit destination.

s
Effect on Effect on

Immediate Data8 Immediate Data 16l32

0 None None

1 Sign-Extend Data8 to Fill None
16-Bit or 32-Bit Destination

ENCODING OF CONDITIONAL
TEST (tttn) FIELD

For the conditional instructions (conditional jumps
and set on condition), tttn is encoded with n indicat-
ing to use the condition (ne0) or its negation (ne1),
and ttt giving the condition to test.

Mnemonic Condition tttn

O Overflow 0000
NO No Overflow 0001
B/NAE Below/Not Above or Equal 0010
NB/AE Not Below/Above or Equal 0011
E/Z Equal/Zero 0100
NE/NZ Not Equal/Not Zero 0101
BE/NA Below or Equal/Not Above 0110
NBE/A Not Below or Equal/Above 0111
S Sign 1000
NS Not Sign 1001
P/PE Parity/Parity Even 1010
NP/PO Not Parity/Parity Odd 1011
L/NGE Less Than/Not Greater or Equal 1100
NL/GE Not Less Than/Greater or Equal 1101
LE/NG Less Than or Equal/Greater Than 1110
NLE/G Not Less or Equal/Greater Than 1111

ENCODING OF CONTROL OR DEBUG
REGISTER (eee) FIELD

For the loading and storing of the Control and Debug
registers.

When Interpreted as Control Register Field

eee Code Reg Name

000 CR0
010 Reserved
011 Reserved

Do not use any other encoding

When Interpreted as Debug Register Field

eee Code Reg Name

000 DR0
001 DR1
010 DR2
011 DR3
110 DR6
111 DR7

Do not use any other encoding

93

376 EMBEDDED PROCESSOR

9.0 REVISION HISTORY

The sections significantly revised since version -003 are:

Section 1.0 Added FLT pin.

Section 4.4 Added description of FLOAT operation and ONCE Mode. Figure 4.20 is new.

Section 4.6 Added revision identifier information for change to CHMOS IV manufacturing process.

Section 5.0 Both packages now specified for 0§C–115§C case temperature operation. Thermal resist-
ance values changed.

Section 6.3 ICC Max. specifications changed from 400 mA (cold) and 360 mA (hot) to 275 mA (cold, 16
MHz) and 305 mA (cold, 20 MHz).

Section 6.4 HLDA Valid Delay, t14, min. changed from 6 ns to 4 ns. Added 20 MHz A.C. specifications in
Table 6.5. Replaced Capacitive Derating Curves in Figures 6.8–6.10 to reflect new manufac-
turing process. Replaced ICC vs. Frequency data (Figure 6.11) to reflect new specifications.

The sections significantly revised since version -002 are:

Section 1.0 Modified table 1.1. to list pins in alphabetical order.

The sections significantly revised since version -001 are:

Section 2.0 Figure 2.0 was updated to show the 16-bit registers SI, DI, BP and SP.

Section 2.1 Figure 2.2 was updated to show the correct bit polarity for bit 4 in the CR0 register.

Section 2.1 Tables 2.1 and 2.2 were updated to include additional information on the EFLAGs and CR0
registers.

Section 2.3 Figure 2.3 was updated to more accurately reflect the addressing mechanism of the 80376.

Section 2.6 In the subsection Maskable Interrupt a paragraph was added to describe the effect of
interrupt gates on the IF EFLAGs bit.

Section 2.8 Table 2.7 was updated to reflect the correct power up condition of the CR0 register.

Section 2.10 Figure 2.6 was updated to show the correct bit positions of the BT, BS and BD bits in the
DR6 register.

Section 3.0 Figure 3.1 was updated to clearly show the address calculation process.

Section 3.2 The subsection DESCRIPTORS was elaborated upon to clearly define the relationship be-
tween the linear address space and physical address space of the 80376.

Section 3.2 Figures 3.3 and 3.4 were updated to show the AVL bit field.

Section 3.3 The last sentence in the first paragraph of subsection PROTECTION AND I/O PERMIS-
SION BIT MAP was deleted. This was an incorrect statement.

Section 4.1 In the Subsection ADDRESS BUS (BHE, BLE, A23–A1 last sentence in the first paragraph
was updated to reflect the numerics operand addresses as 8000FCH and 8000FEH. Be-
cause the 80376 sometimes does a double word I/O access a second access to 8000FEH
can be seen.

Section 4.1 The Subsection Hold Lantencies was updated to describe how 32-bit and unaligned ac-
cesses are internally locked but do not assert the LOCK signal.

Section 4.2 Table 4.6 was updated to show the correct active data bits during a BLE assertion.

94

376 EMBEDDED PROCESSOR

9.0 REVISION HISTORY (Continued)

Section 4.4 This section was updated to correctly reflect the pipelining of the address and status of the
80376 as opposed to ‘‘Address Pipelining’’ which occurs on processors such as the 80286.

Section 4.6 Table 4.7 was updated to show the correct Revision number, 05H.

Section 4.7 Table 4.8 was updated to show the numerics operand register 8000FEH. This address is
seen when the 80376 does a DWORD operation to the port address 8000FCH.

Section 5.0 In the first paragraph the case temperatures were updated to reflect the 0§C–115§C for the
ceramic package and 0§C–110§C for the plastic package.

Section 6.2 Table 6.2 was updated to reflect the Case Temperature under Bias specification of b65§C–
120§C.

Section 6.4 Figure 6.8 vertical axis was updated to reflect ‘‘Output Valid Delay (ns)’’.

Section 6.4 Figure 6.11 was updated to show typical ICC vs Frequency for the 80376.

Section 8.1 The clock counts and opcodes for various instructions were updated to their correct values.

Section 8.2 The section INSTRUCTION ENCODING was appended to the data sheet.

95

