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Abstract

The Fairchild CLIPPER microprocessor is a new high performance
three chip module consisting of a microprocessor chip and two cache and
memory management (CAMMU) chips, mounted on a small PC board.
CLIPPER implements a new instruction set architecture which has been
designed for high performance, convenient programmability, broad func-
tionality and sufficient architectural “openness” to permit future evolution

and a variety of implementations.

In this paper, we (a) describe the instruction set architecture of
CLIPPER, (b) describe the chip design architecture and the interesting
features of the implementation, and (c) consider in some detail the reasons
for various design decisions and tradeoffs. Performance estimates are pro-
vided. Possible future directions for both performance and instruction set

architecture are outlined. Some comments on the RISC vs. CISC issue are

given.

+CLIPPER is a trademark of Fairchild Semiconductor Corporation
*Fairchild Semiconductor ‘Corporation, 4001 Miranda Avenue, Palo Alto, Ca., 94304.
tComputer Science Division, EECS Dept., University of California, Berkeley, Ca. 94720

#Research by Professor Smith in computer architecture and computer system performance is supported in part by
the National Science Foundation under grant CCR-8202591, and by the Defense Advance Research Projects Agen-
cy (DoD), under Arpa Order No. 4871, Monitored by Naval Electronic Systems Command under Contract No.
N00039-84-C-0089 Some research results obtained under this funding are presented in this paper.



1. Introduction

1.1. Summary of Features

The Fairchild CLIPPER T employs a new high performance computer archi-
tecture implemented initially as a three chip module, consisting of a processor chip
and two cache and memory management unit (CAMMU) chips (see figure 1); the
processor is also available separately. It uses a new instruction set which is
“simplified” and “RISC-like” but not RISC. The machine has a 32-bit architec-
ture, with a 32-bit bus data path, 32-bit registers, 32-bit data paths on chip and a
separate 32-bit virtual address space for the system and for each user address
space. There are nine addressing modes, permitting memory addresses to be com-
puted from most of the useful combinations of the program counter, register con-
tents and/or a displacement of 12, 16 or 32 bits. Instructions are 2, 4, 6 or 8 bytes
long, with their length, address mode, and opcode specified in the first two bytes
for efficient decoding. Data types include bytes, halfwords, words (32 bits), long-
words (8 bytes), and single (4 bytes) and double (8 bytes) precision floating point.
Three user visible register sets are available: 16 user and 16 supervisor general
purpose 32-bit registers, and 8 floating point registers of 64 bits each. There are
also the usual control registers (program counter, program status word, system
status word) and some internal registers used by the processor. Eighteen traps are
implemented and there is provision for 128 system calls. Floating point operations
conform to the IEEE 754 standard [Cody84].

The CLIPPER microprocessor has been designed with virtual memory as the
standard mode of operation. The associated CAMMU chips each contain a 4Kbyte
cache, a translation lookaside buffer (TLB) and a translator. One CAMMU is used
for instruction references and the other for data; the CAMMUSs not only provide
caching but also implement protection, detect page faults, and watch the system
bus in order to ensure multiple cache consistency. A full 32-bit address space is
provided for the operating system and for each user process; the address space is
not partitioned via high order address bits.

The floating point unit is on the CLIPPER processor chip. Instruction execu-
tion is pipelined with up to five instructions in the pipeline. Interlocks and depen-
dency checks are provided in the pipeline hardware, so that no compiler inserted
no-ops are needed for correct operation. A few complicated operations and diag-
nostics are implemented as instruction sequences in a small, on-chip ROM, called
the Macro Instruction ROM (MIROM); all other instructions are hardwired. No

+ CLIPPER is a Trademark of Fairchild Semiconductor Corporation

+The trademark "CLIPPER” was chosen in a reflection of the preference of the principal architect and program manager for
spending his weekends sailing.
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microcode is used. The machine has 168 instructions, of which 101 are directly
hardwired.

The processor chip is implemented in 2 micron CMOS, is 156K square mils
and uses 132,000 transistors. Performance estimates show that the current imple-
mentation is somewhat faster than a VAX 8600, which is itself generally referred
to as a “4-MIPS” machine; CLIPPER is thus a 5 MIPS computer; the peak execu-
tion rate in CLIPPER instructions is 33 MIPS. Additiohal information on
CLIPPER is available in [Fair86, Cho86].

1.2. Motivation and Design Philosophy

The decision to design and build CLIPPER was made in the belief that there
existed and exists the need for a very high performance computer based on a
microprocessor chip. The immediate applications for such a processor are in high
performance workstations and for use in “super-minicomputer” shared machines.
To introduce some historical perspective, the highest performance commercial
mainframe in 1976 was the IBM 370/168, which for the kind of workloads expected
on CLIPPER (C, Fortran, Pascal), had performance comparable to that of
CLIPPER.

It is the belief of the CLIPPER designers that no existing commercial com-
puter architecture in 1982-3 met the requirements of: (a) permitting a high perfor-
mance implementation (b) on a microprocessor chip (c) with the necessary instruc-
tion set and architectural features. Architectures then available on microproces-
sors failed to permit high performance implementations, and most other architec-
tures failed to either be easily implementable on a chip or failed to provide a rea-
sonable range of features. There were also commercial barriers to the use of an
existing architecture. The decision was thus made to design a new instruction set
architecture, using the previous experience of the designers and the latest think-
ing in the computer architecture research community.

Fashions in computer architecture have varied widely over the last few years,
changing from the baroque or rococo in the 1970s to the minimalist 1980’s. It was
widely believed in the 1970’s that hardware would very cheap, software was
difficult and expensive, and that therefore as much functionality as possible should
be moved to the hardware. The result was complex architectures such as the DEC
VAX [DEC81, Levy80]. The problems with such a complex architecture are that it
is very difficult to obtain good performance as a function of the amount of logic
needed, and the machine is hard (time consuming, expensive) to design, build, and
debug [Henn82,84].

The popular thinking in computer architecture shifted in the 1980s toward
very simple architectures, as originally implemented in the Cray designed
machines (CDC 6400, 6600, 7600), studied and implemented in the IBM 801
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[Radi81] and further studied and popularized by the RISC project at Berkeley
[Patt85] and the MIPS project at Stanford [Henn84]. Such machines permit high
performance implementations and rapid design and development but are less than
ideal in terms of programmability; one becomes very dependent on sophisticated
software technology to obtain good performance and guarantee correct operation.
There is a saying attributed to Einstein [Lamp83], to the effect that “everything
should be made as simple as possible, but no simpler.” Our feeling was that the
“pure RISC” type architectures provided insufficient features and functionality for
a commercial product, and that equivalent performance advantages were also
available in a carefully designed architecture of “moderate” complexity. Some
discussion of the RISC/CISC issue appears in [Colw85].

The choice was thus made to design a new instruction set architecture (ISA).
The instructions, the module design, and the functional partitioning were chosen
to permit mainframe level performance, and to permit future compatible main-
frame implementations. The continuing and increasing adoption of the easily
ported UNIX™ [Ritc74) as the standard operating system for academic, software
development and workstation environments made the decision to use a new ISA
commercially feasible.

1.3. Outline and Context

It is possible to describe a “computer” at many levels. The instruction set
architecture (ISA) refers to the computer instruction set as expressed in binary or
in assembly language and its function; the ISA is usually described in the Princi-
ples of Operation manual. We use the term design architecture to refer to the
highest level of description of an implementation, i.e., the block diagram and
parameter level. Below that are gate and circuit level descriptions.

This paper is primarily directed at the instruction set architecture of
CLIPPER, with some of the material concerned with the design architecture and
related issues such as performance, design tradeoffs, design implications and areas
for possible future expansion.

A brief summary of the memory architecture of CLIPPER is provided in the
next section. Registers and modes of operations are discussed in section 3, instruc-
tion formats and addressing modes in section 4, and the instruction set itself in
section 5. Interrupts and traps are considered in section 6. Section 7 presents the
essentials of the design architecture and implementation. Performance is dis-
cussed in section 8 and design tradeoffs and possible extensions are reviewed in
section 9.

*UNIX is a trademark of AT&T Bell Laboratories
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2. Memory Architecture and Data Types

2.1. Memory Architecture

In this section, we provide a brief overview of the memory architecture of the
CLIPPER microprocessor. A much more detailed description, including a discus-
sion of the CAMMU, is provided in [Cho86)], and that paper should be read as the

companion to this one.

In normal operation, CLIPPER uses virtual memory, although unmapped
(real memory) mode is also possible. The supervisor and each user process has its
own 32-bit virtual address space, defined by the PDO (page directory origin) regis-
ter in the CAMMU, which contains the physical memory address of the base of the
first level of the page map for the process. The page map is implemented in two
levels, with the first level referred to as the page directory and the second level
containing the page tables. The page size is 4Kbytes, which is large enough for
efficient I/O [Smit81], keeps the TLB miss ratio down and provides enough
unmapped bits that set selection in the 4Kbyte caches can be effectively over-
lapped with translation [Smit82]. The page size is also small enough to avoid
unreasonable levels of internal fragmentation. No address bits are used to parti-
tion the address space, as is done in the VAX and MIPS machines [Demo86], so
such a partitioning doesn’t constitute an obstacle to increased address space size as
technology evolves.

Two cache and memory management chips (see figure 1) provide most of the
support for the memory architecture; one is used for data and the other for instruc-
tions, each connected to the processor by its own 32-bit bus. Each CAMMU has a
TLB (translation lookaside buffer) and a translator. The TLB is set associative
with 128 entries organized as 64 sets of two elements each. Protection is provided
on a page basis, with each page table entry specifying permission for the process to
read, write and/or execute from the page in supervisor and/or user state; protection
bits are cached in the TLB. Page faults, protection faults, and memory errors are
detected by the CAMMU and a trap code is returned to the processor for supervi-
sor action.

Each CAMMU also contains a 4Kbyte cache memory, organized as 128 sets of
two 16-byte lines. The caching policy (copy back, write through, uncacheable) is
defined on a per page basis and can vary from page to page; caching policy bits
are attached to each page table and TLB entry. The CAMMU is capable of
“watching” the system bus and acting to maintain cache consistency when there
are multiple CPUs on the bus and/or when 1/O operations reference data resident
in the local cache.

The low order eight pages of the supervisor address are permanently mapped
by the CAMMU to provide access to Boot ROM (residing on the system bus), I/O,

Hollingsworth, Sachs, Smith -5- CLIPPER Processor



which is addressed via reads and writes to memory addresses, and low main
memory. Trap and interrupt vectors reside in low memory. The CAMMUs are
controlled by reads and writes to the I/O region of memory.

Originally, CLIPPER was designed to use a consistent, "little endian”
[Kirr83], numbering system for bits, bytes and words, in which the most
significant bit is in the highest numbered bit of the highest numbered byte, has
been defined, and internally, CLIPPER remains little endian. Figure 2 shows the
instruction formats, in which the bit, byte and word numbering may be observed.
The “first parcel” is the first two bytes of the instruction stream; the remaining
bytes of the instruction or the bytes of the following instruction(s) will appear in
the second, third, and fourth parcels. This numbering system is the same as is
used in the DEC VAX and National 32000 [Hunt84]. This contrasts with the Sys-
tem/370 [IBM76] in which the most significant bit is the lowest numbered bit of
the lowest numbered byte; bits, bytes and words are numbered in increasing order
from left to right, with the MSB at the left. The Motorola 68000 also uses a “big
endian” scheme, but numbers bits in the opposite order from bytes and words
[Moto82].

CLIPPER has been enhanced so that in its current version, it can function in
either a little endian or big-endian mode. The appropriate byte order is selectable
at power-up time by tying a pin to either +5v or ground. When operating in big-
endian mode, CLIPPER does the following: (a) reverses the order of half-words in
the instruction buffer, (b) reverses the order in which double word operands are
loaded/stored, (c¢) changes the byte and half word addressing so as to reference the
correct byte or half word within a word. When operating in big-endian mode,
CLIPPER can function effectively in a system with big endian processors and/or
data files created by big-endian machines.

2.2. Data Types

The selection of data types represents a compromise between apparent func-
tionality, which is enhanced by a large number of data types, and implementabil-
ity, which is easiest when the number of types is small. The data types supported
by the CLIPPER architecture include signed and unsigned bytes, half words (2
bytes), words (4 bytes) and long words (8 bytes). There are also single and double
precision (4 and 8 bytes respectively) floating point numbers. This set of data
types is sufficient to implement programming languages such as C, Fortran and
Pascal, with direct hardware support provided for most language operations. (Ini-
tially, as suggested in [Henn82], little support for bytes or half words was
intended, but further examination of programming needs showed that more direct
hardware support was required.)

Hollingsworth, Sachs, Smith -6- CLIPPER Processor



We note that CLIPPER does not (at this time) provide as hardware specified
data types decimal numbers, strings, or precision beyond that of long words or
double precision floating point. Strings can be easily implemented via software; in
addition, CLIPPER provides three string manipulation instructions (move, com-
pare, fil) as MIROM sequences. Extended precision can be obtained via software
when needed.

CLIPPER also imposes alignment restrictions on data items. All data items
must be stored on a boundary which is a multiple of its size [Neff86a). This res-
triction generally causes little difficulty, and considerably simplifies the processor
implementation. For CLIPPER, there is no implementation problem with line
crossers (fetch or store requests spanning a pair of cache lines) or page crossers
(fetch or store requests spanning a page boundary.)

3. Registers and Modes of Operation

3.1. User and Supervisor General Purpose Registers

There are two sets of 16 general purpose registers (GPRs), one referenced by
user mode programs and one by supervisor mode programs. The mode of the pro-
gram is determined by a bit in the SSW. There are two privileged instructions
that allow data transfers between user and supervisor registers.

The use of separate user and supervisor register sets speeds up interrupt and
trap handling. The selection of 16 registers was determined by several factors,
including the number of bits conveniently available for register addressing and the
fact that 16 registers represent a good tradeoff, 16 registers are enough for local
working storage without inducing unreasonable overhead for saving and restoring
them at procedure call time. The C compiler provided by Fairchild [Neff86a] saves
and restores only those registers that have been modified. For comparison, we
note that both the VAX and the IBM 370 have 16 GPRs. Lunde’s results {(Lund74]
suggest that 8-10 registers are almost always sufficient.

3.2. Floating Point Registers

CLIPPER provides a set of eight double precision floating point registers
accessible in both user and supervisor states; floating point instructions refer to
these. This is similar to the IBM 370 design; in that machine there are four FP
registers. Eight registers seem to provide sufficient storage for temporary
operands, whereas four seem insufficient in the absence of memory to register
operations other than load and store. (For non-numerically intensive programs,
Lunde found that three floating point registers were usually sufficient. We expect
a workload that is more numerically intensive than that analyzed by Lunde.)

Hollingsworth, Sachs, Smith -q- CLIPPER Processor



3.3. Processor Status Registers

Three additional program addressable registers are provided, the program
counter (PC), the program status word (PSW) and the system status word (SSW).
The program counter contains the address of the instruction about to be issued,
ie. the instruction in the pipeline that will be released and allowed to modify the
processor state (write into a register or store a result). Not user addressable are
the internal registers containing addresses of instructions following the currently
issued instruction in the pipe.

The program status word (PSW) is primarily used to hold status informa-
tion (condition codes, trap codes) and to set those aspects of the processor state
that the user process is permitted to modify, such as floating point trap enables.
Four bits of condition code are provided (negative, zero, overflow, carry), and five
bits of floating point exception status, as required by IEEE Std. 754, are also avail-
able. Six bits are used to enable/disable floating point traps, and two more to
specify the floating point rounding mode. A trace trap bit is available. Four bits
are used to record program traps (e.g. trace trap, illegal operation), and four more
to record system trap types (memory error, page fault, etc.). The PSW may be
read or written by the user process.

The last status register is the system status word (SSW). The SSW is used,
among other things, to record the interrupt number and level, to enable inter-
rupts, to set the mode (user/supervisor) and to set the protection key. The SSW
may only be written in supervisor state. Its use is further described in [Cho86].

4. Instruction Formats and Addressing Modes

4.1. Addressing Modes

The CLIPPER microprocessor uses primarily a load/store architecture; ie.
most of the references to memory are via load and store instructions. This is con-
trast to both the IBM 370 and DEC VAX which make extensive use of their
register/memory operations (370 RX type instructions) and their memory to
memory (370 SS type) instructions. The elimination of most RX and SS instruc-
tions substantially simplifies the processor implementation by eliminating control
logic and especially by simplifying recovery from traps and interrupts such as page
faults and memory errors. Without the RX and SS type instructions, we expect
that CLIPPER code will be slightly larger in size than that for the IBM 370 and
VAX, but since all operands must always be specified, the increase should be
small. Because we have variable length instructions with a variety of addressing
modes, CLIPPER experiences a much smaller increase in code volume than the
RISC [Patt85] and MIPS [Mous86] processors, both of which use only fixed length
32.bit instructions. For RISC-I [Patt81], a 2/3 increase in number of instructions
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over the VAX was observed, using a very primitive compiler for RISC.

For load and store instructions, CLIPPER provides nine addressing modes,
which appear in figure 2. These nine address modes represent those judged to be
important for convenient programming plus those that come for “free;” i.e. can be
trivially generated given the logic and data paths already available. For a 32-bit
architecture, a register + 32-bit displacement mode (relative with 32-bit displace-
ment) is very useful. The long 32-bit displacement eliminates the aggravating
addressability problem posed by the 12-bit displacement of the IBM 370. The
register + 12-bit displacement mode saves 4 bytes, if only a short displacement is
needed, and the relative (register with no displacement) mode requires two bytes
less. Register + displacement addressing is often used for array and stack refer-

ences, and local variables.

Absolute addressing is provided with 16-bit or 32-bit address constants. Abso-
lute addressing is typically used for references (e.g. calls) to independently com-
piled code segments, and in the 16-bit form, for references to low memory and
within small programs.

It has been observed [Peut77] that a PC-relative address mode would have
been very useful in the IBM 370, and such modes are provided by CLIPPER. The
PC can be used with a 16 or 32 bit displacement or with a register (GPR) displace-
ment. Most of the time, the short displacement should be sufficient; in [Peut77],
99% of the branches were expressible in 16 bits or less as an offset from the PC.
PC relative addressing is used primarily for branches and the PC+GPR mode for
computed gotos and case statements.

Finally, a two register address mode f(relative indexed) is provided, which
facilitates addressing when both the base and index addresses are in registers, as
when an array is passed as a parameter.

It is important to note four aspects of the way the address mode is specified, as
shown in figure 2. First, the address mode is always defined in the first instruc-
tion parcel (first two bytes), so there is no (slow) sequential decoding of the
instruction; subsequent bytes can be immediately routed (as to the adder) without
further examination. This encoding provides much of the supposed advantages of
fixed length instructions such as are used in RISC and MIPS. Second, 4 bits are
used to specify the addressing mode, and only 8 of the 16 possible combinations
are currently assigned; the remainder are available for future extensions. Third,
there is no indirect addressing mode, a mode which is very difficult to implement
efficiently. Finally, we note that some of the address modes result in unused bits
in some fields, which could be used in the future to generate more than 32 bits of
virtual address.

To estimate the frequency of use of the various addressing modes, we note
data from the literature. In [Peut77], it was found that for the workload examined

Hollingsworth, Sachs, Smith -9- CLIPPER Processor



there, addressing calculations for System/370 RX type instructions used no regis-
ter 1.1% of the time, one register 85.6% of the time, and two registers 13.3% of the
time; the RX type instruction forms an effective address as the sum of a 12-bit dis-
placement and the contents of up to two registers. Data in [Emer84] indicates
that for the VAX, 61% of the operand addresses were displacement +register, and
23% were just register. Displacements from a register were most often one byte
long. For the PDP-11 [Neuh80], most of the operand addresses were specified in a
register (with or without increment or decrement), and most of the remainder were
displacement +register. Based on the data cited and further data in [Groc86] and
[Wiec82], we expect the relative {(R)}, relative with 12-bit displacement {(R)+disp}.
and the PC Relative with 16-bit Displacement {(PC) +disp} to account for the bulk
of the address mode use.

4.2. Instruction Formats

Figure 2 shows the available instruction formats. Those instructions using
addresses have been discussed above; here we comment on instructions which do
not contain memory addresses.

Register to register instructions are specified in two bytes. Register - immedi-
ate operations can be specified in 2, 4 or 6 bytes, depending on the size of the
immediate constant. Immediate constants are often small; in [Henn82], is
reported that 69% of the immediate operands can be encoded in 4 or fewer bits and
96% in 8 or fewer bits; the corresponding figures from [Groc86] are 60% and 70%.
The availability of the quick format (which provides a 4-bit unsigned constant)
and the 16-bit immediate format should greatly aid code density.

The control opcode is used when the operation requires a small (8-bit) con-
stant only, as for the calls (system call) instruction. The macro opcodes are those
used to invoke operations implemented via instruction sequences in the on-chip
ROM, such as the string move (movc) instruction.

5. Instruction Set

The CLIPPER instruction set is fairly conventional and reflects the experience
of the designers with respect to two factors: what is needed for convenient and
efficient programmability, and what can be easily implemented in hardware.
Table 1 shows the set of opcodes, grouped in such a way as to minimize the redun-
dant listing of the same opcode for various data types. Most of the entries there
are self explanatory, and in this section we discuss only those operations that are
either interesting or worth explaining.

Hollingsworth, Sachs, Smith -10- CLIPPER Processor
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5.1. Floating Point

The CLIPPER microprocessor is unusual in placing its floating point unit on
the processor chip; the floating point execution unit is also used to compute the
integer multiplication, division and mod operations. Floating point arithmetic
operations are performed as specified in the IEEE 754 standard. As noted earlier,
there is a separate set of 8 floating point registers, and all floating point opera-
tions are register to register. The floating registers may loaded or stored from/to
main memory, or from/to the general purpose registers.

5.2. Branches and Condition Codes

The approach chosen for CLIPPER for controlling program execution is that of
condition codes, which are set by one instruction and read and used by a subse-
quent instruction; this is similar to what is done on the IBM 370. The use of con-
dition codes for branching yields better performance and less complexity than an
instruction which both tests and branches.

There are four standard condition codes: N (negative), Z (zero), V (overflow)
and C (carry), which are set in the PSW after certain operations. There are five
floating point exception signalling codes: FX (floating inexact), FU (floating
underflow), FD (floating divide by zero), FV (floating overfiow) and FI (floating
invalid op). Compare instructions normally set the N and Z flags; since the com-
pare is executed by performing a subtraction, it is also possible that V and C may
be set.

There are two standard branch instructions. Branch on condition tests the
NZVC PSW bits; the list of possibilities is shown in table 1. The branch on float-
ing exception tests either for any exception or for a bad result (floating invalid,
divide by zero, overflow). Branch instructions use the standard addressing modes,
as defined in figure 2, where the R2 field holds the condition code field that
specifies the type of branch.

Implemented directly in the hardwired instruction set are the call and return
(ret) instructions. The call instruction decrements the stack pointer (defined by
the register in the R2 field), pushes the address of the next instruction onto the
stack, and then loads the PC with the target address. Return reverses the process.

5.3. Macro Instx_'uctions

The CLIPPER processor chip includes a small ROM (known as the Macro
Instruction ROM), which holds various useful code sequences. Approximately half
of the MIROM is devoted to diagnostic code, to be used for chip testing and sorting
during manufacturing. The remainder implements complex operations which are
often found as single (usually microcoded) instructions on CISC machines. Imple-
menting these functions as MIROM sequences increases code density and
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readability, instruction fetch penalties (misses, sequential fetch delays) decrease,
and less instruction cache space is used.

A Macro instruction actually represents a branch into the ROM; the instruc-
tion fetch unit starts fetching instructions from the ROM at the address specified
by the macro opcode. In this section, we briefly discuss those instructions imple-
mented in the MIROM; the operation of the MIROM is described in more detail in
section 7.2.

Instructions to save and restore general registers (save registers (savewn),
restore registers (restwnm), save floating registers (savedn) and save user registers
(saveur)) are implemented in the MIROM as a sequence of consecutive store (or
load) operations, starting from a given register number and continuing through
register 14. The floating point register saves and restores are implemented simi-
larly.

Three string (storage to storage) instructions are currently implemented in
the MIROM. These are mouve (copy a string of characters from/to nonoverlapping
fields), initc (initialize a string with the contents of a register - primarily used for
clearing buffers), and cmpc (compare two character strings). These instructions
may be interrupted and restarted.

All of the conversion operations, and negate floating, scale by, and load float-
ing status (see table 1) are implemented in the ROM.

The return from interrupt (reti) instruction restores the processor state after
trap or interrupt processing, and is discussed in more detail in section 6.1. The
wait for interrupt (wait) instruction causes the processor to halt pending the
arrival of an enabled interrupt. The interrupt routine then determines whether to
continue execution.

5.4. Test and Set

The cost and performance advantages of multiple microprocessor computer
systems sharing a common memory are currently quite compelling [Smit85]. The
Test and Set (tsts) instruction is the instruction chosen for CLIPPER for the imple-
mentation of locks to be used in multiprocessor and multiprocess synchronization.
As a single, indivisible operation, it (a) loads the contents of a main memory loca-
tion into a specified GPR, and (b) sets bit 31 of the given main memory word to 1.
Indivisibility is achieved by (a) making the lock word non-cacheable, and (b) hold-
ing the main memory bus for the entire operation (which is a read / modify /
write). A processor may either loop, continually testing the lock until it is
released, may use the wait instruction to sleep, or may task switch. Test and Set
is also used by the IBM 370 and the M68000; the VAX provides seven instructions
for locking and synchronization, some of which are equivalent to test and set.
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5.5. Opcode Assignment

As shown earlier in figure 2, the high order byte of the first parcel of each
instruction contains the instruction opcode. The assignment of bits to opcodes is
shown in figure 3.

The important observation to be made from figure 3 is that of the possible 256
operation codes available from 8 bits, 85 instructions (including sets of instruc-
tions) are defined, and 104 of the bit combinations are used. (Not shown in figure 3
are some opcodes used to implement instructions which may be executed only from
the MIROM.) That leaves over 140 possible opcodes for future expansion. In gen-
eral, we have made a conscious effort to allow the CLIPPER architecture to evolve
with user needs and technology trends, and reserving a significant number of
opcodes is one part of that effort.

6. Interrupts, Traps and Supervisor Calls

The CLIPPER microprocessor provides for 402 exception conditions: 18
hardware traps, 128 programmable supervisor calls and 256 vectored interrupts.
The number of hardware traps can be expanded to 128 at some future time.

A trap is an exception that relates to a condition of a single instruction, e.g.,
page fault, memory error, overflow, etc. Interrupts are events signalled by devices
external to the CLIPPER module.

6.1. Intrap and Return Sequences

The recognition by the hardware of a trap or interrupt causes entry to a
macro instruction sequence, INTRAP, which in noninterruptable mode performs a
context switch to supervisor mode, stores the PC, PSW and SSW on the supervisor
stack, and transfers control to the trap or interrupt handler through the Vector
Table. The Vector Table is a table in low memory containing 2-word entries; each
entry contains the address of the trap or interrupt handler and the new SSW. The
reti (return from interrupt) sequence is a non interruptable sequence which
restores the system to the correct user or supervisor environment. Interrupts and
traps are prioritized, with logic within the processor giving service to the highest
priority event. Traps are permitted during interrupt and trap handling but result
in an unrecoverable fault; page fault traps must be avoided during fault handling.

6.2. Traps

When a trap occurs, all instructions prior to the trapping instruction are com-
pleted (including those in the floating point unit), and all instructions subsequent
to the trapping instruction are flushed from the pipeline.
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It is possible to classify traps into several groups: data memory, floating point
arithmetic, integer arithmetic, instruction memory, illegal operation, diagnostics
and supervisor calls.

Data memory and instruction memory traps include correctable and uncorrect-
able memory errors, page faults, and protection faults. In each case, the exception
is recognized by the CAMMU which maintains in the TLB copies of the protection
bits taken from the page table entries.

The five floating point arithmetic traps are invalid operation. inexact result,
overflow, underflow and divide by zero. There are trap enable flags for each of
these in the PSW, and also exception flags in the PSW which are set when the
corresponding events occur. There is an overall floating point trap enable flag
(also in the PSW) which may be used to disable all floating point traps.

The trace trap causes a trap at the end of the current instruction. An MIROM
sequence is considered to be a single instruction for tracing purposes. Tracing is
disabled on entry to the INTRAP sequence and trace trap handler.

Supervisor calls are implemented as traps triggered by the calls instruction.
There are potentially 128 supervisor call codes; the CLIX™ system (the Fairchild
port of Unix) [Neff86b] uses approximately 60 of them.

6.3. Interrupts

Interrupts are signalled externally to the processor and appear as signals on
the interrupt pins of the system bus. An interrupt is taken only when: (a) no
traps are pending except the trace trap, (b) interrupts are enabled, (c) all instruc-
tions currently in the pipeline have completed, and (d) string instructions have
either completed or have saved sufficient state to be able to restart. (Long string
instructions will periodically test for pending interrupts, and if there are any, will
save their state and permit the interrupt to be processed.) With the exception of
the string instructions, interrupts are not accepted during MIROM sequences.

There are 16 prioritized interrupt levels, with 16 interrupts of equal priority
within each level. Interrupt processing can be interrupted by an event of higher
priority.

7. Design Architecture

As explained earlier, the term “design architecture” refers to the architectural
implementation at a fairly high level. We discuss the design architecture of the
CLIPPER CPU in this section.

*CLIX is a trademark of Fairchild Semiconductor Corporation
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Figure 4 shows the major components of the CLIPPER processor and the
major interconnections in a simplified fashion. Somewhat more detail is shown in
figure 5. As can be seen from those figures, the processor is divided into 6 princi-
pal sections: the Instruction Bus Interface (including an instruction prefetch
buffer), the Macro Instruction Unit, the Instruction Control Unit, the Floating
Point Unit, the Integer Execution Unit, and the Data Bus Interface. We discuss
each of these in this section. Table 2 shows the fraction of the chip area occupied
by various processor sections; the remainder of the area (to the total of 100%) is
occupied by empty space or other minor components.

7.1. Instruction Bus Interface

The instruction bus (described in more detail in [Cho86]) is a bi-directional
46-line bus connecting the CPU chip to the Instruction CAMMU. The interface
contains receivers (RCV) and drivers (DRV), and a 64-bit (8-byte) instruction
buffer. Instructions are prefetched into this buffer, and are then fed into the
instruction control unit as needed. A branch never hits in this buffer, as there is
no mechanism to detect that a branch target address is within the buffer; on a suc-
cessful branch, the instruction buffer is cleared. The Instruction CAMMU con-
tains its own instruction counter, and will feed the next 4 bytes of the instruction
stream into the instruction buffer every time the next instruction line of the
instruction bus is pulsed. While within a cache line, the ICAMMU can deliver 4
bytes every 2 CPU cycles (60ns), and the CPU can at its maximum rate, execute
2-bytes (one parcel, or one 2-byte instruction) every CPU cycle (30ns).

Also associated with the instruction bus interface is a multiplexor (MUX)
which can accept instructions from either the instruction buffer or the Macro
Instruction ROM and feed them to the instruction control unit.

7.2. Macro Instruction Unit

The Macro Instruction ROM (MIROM) is an on-chip ROM (1K entries x 47
bits) which implements complicated instructions as sequences of simpler hardwired
instructions; the opcode for the MIROM implemented instruction is effectively a
branch target address into the ROM. Each entry in the MIROM contains two
instruction parcels plus the next instruction address and a stop bit.

The set of legal opcodes for ROM instructions is a superset of the standard
instruction set, including, for example, the conditional branch within the MIROM
itself; those ROM-only instructions are not shown in table 1 or figure 3.

In addition to the regular registers, there are 16 scratch registers (12 regular
and 4 floating point) accessible only from instructions in the MIROM. The
instructions in the MIROM also have a mechanism to reference the registers
specified by the R1 and R2 fields of the Macro instruction (see figure 2).
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7.3. Integer Execution Unit

The integer execution unit contains the general register file (16 user GPRs, 16
supervisor GPRs and 12 scratch registers), the shifter, and the ALU. The register
file has three ports, permitting two reads and one write during the same machine
cycle.

The shifter implements the shift and rotate instructions and is designed as a
serial double bit shifter. Single and double bit shifts occur in one cycle; larger
shifts require multiple cycles. Data in [Huck83] shows that for his System/370
workload, only 1.9% of all shifts were for more than 3 bits.

The ALU (arithmetic / logic unit) implements integer addition and subtrac-
tion, bitwise logical operations, and register to register transfers. The address
mode additions are also performed by the ALU; each requires only one pass
through the ALU, since no address computation requires more than one add.

7.4. Floating Point Unit

CLIPPER is unusual among current microprocessors in having its floating
point unit on chip. Multiplication uses a Booth algorithm [Cava84] which pro-
duces products iteratively, two bits per clock cycle. Typically, one clock time is
needed for round and one for normalize. Division uses a nonrestoring shift and
subtract algorithm, producing 1 bit per clock. Associated with the FPU is the float-
ing point register file, which contains eight regular and four scratch 64-bit floating
point registers; the latter are accessible only from code running in the Macro
Instruction ROM. The floating point unit is also used to perform integer multiply
and divide.

The floating point unit operates in parallel with respect to the rest of
CLIPPER. Although only one floating point operation can be in execution at any
one time, operations which neither use the FPU nor rely on its output can be
issued steadily while the FPU completes the current operation. The result is that
much of the execution time for floating point operations will overlap that of other
instructions.

Floating point exceptions may be out of sequence with respect to the rest of
the instruction stream. When a floating point trap occurs, the address of the float-
ing point instruction may be recovered from a special register; the PC value
pushed on the system stack can be quite far from the address of the trapping
instruction.

7.5. Data Bus Interface

The data bus interface consists principally of receiver and driver circuits for
the data bus, and a shifter for aligning byte and half word operands. It is
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connected to all of the major functional units of the CPU via the S-bus, (shown in
bold in figure 5) so that it can receive and deliver operands in the most expeditious
manner.

7.6. Instruction Control Unit and CPU Pipeline

The heart of the CLIPPER processor is the instruction control unit (ICU),
which is responsible for decoding instructions and controlling instruction execu-
tion. The ICU is shown in figure 5, and the reader should also note figure 6,
which diagrams the operation of the instruction execution pipeline.

In the ICU are several components. The program counter contains the
address of the instruction about to be issued; to issue an instruction means to
allow it to run to completion (i.e. modify registers or memory), provided no traps
occur. Shown in figure 6 are two boxes, called the "B stage” and “C stage”. Each
consists of a set of decoding logic and registers for holding partially decoded
instructions and the corresponding instruction address. The B stage is responsible
for instruction decoding and resource management; resource management keeps
track of which functional units are busy and allows instructions to advance to the
issue stage only if the necessary units are available. The C stage holds the fully
decoded instruction, and controls the operation of the integer execution unit and
the floating point unit. The J register (figure 5) is used to hold immediate values
(including address offsets and address constants). Also located in the ICU are the
PSW and SSW registers.

There can be one instruction in each of the B and C stages. Shown preceding
the B stage is the instruction buffer (IB) which holds 4 parcels (8 bytes) of instruc-
tions, or up to four instructions.

The last stage of the pipeline consists of parallel integer and floating point
execution units. These two execution units can operate in parallel, with one active
instruction in the FPU and one instruction in each of the three stages of the
integer execution unit (IEU). Those three stages are operand fetch (L stage),
arithmetic (A stage: ALU or shifter) and operand write (O stage - to either regis-
ters or elsewhere). It takes three cycles for an instruction to pass through the IEU
. one to read from the registers into the ALU, one to pass through the ALU or
shifter, and one to write the results. There is a bypass from the output of the
ALU to the input, so that results can be immediately reused in the next instruc-
tion.

7.7. Layout, Area, and Physical Parameters

A photograph of the CLIPPER CPU chip, on which functional areas are indi-
cated, is shown in figure 7. Table 2 shows the fraction of the chip used for various
purposes. The chip is implemented using 2.micron CMOS, with two levels of
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metal interconnect with a 6.5 micron pitch, one polysilicon level with 2.0 micron
gates and a 4.0 micron pitch, a 250 Angstroms thick gate oxide, and 2.0 micron
contacts and vias. Transistor switching speeds range from .5ns to 3.0ns, depend-
ing on gate size and load. The chip dissipates 0.5 ‘vatts. The processor cycle time
is 30ns, which is also the minimum time to execute an instruction. The power
supply is required to provide 0 and +5 volts. The processor chip has 132 pins.
The overall chip size is 185,000 square mils; the package is .9 in. sq. and is sur-
face mounted.

8. Performance

CLIPPER was conceived of and designed as a high performance processor, and
as has been noted throughout this paper, design decisions and tradeoffs have been
made whenever possible in the direction of higher performance. That high perfor-
mance has indeed been achieved is evident from the instruction execution times
shown in table 3. As can be seen, the minimum instruction execution time is one
CPU cycle time, or 30 ns. The peak program execution rate is thus 33 MIPS.

Benchmark timings have been obtained both via an instruction set timing
simulator and from runs on a real machine using early versions of the various
compilers. The simulator shows an average of 5-6 clock cycles per instruction
including memory delays, or about 5-7 MIPS (measured in CLIPPER instructions).

Because the power of various instruction sets varies greatly, simply quoting a
MIPS figure is not very meaningful. For that reason, various standard bench-
marks have been run on a real CLIPPER. The CLIPPER system used had a rela-
tively slow memory (2 wait states), and the compilers used have been available
from less than a vear (C) to less than a month (Fortran), so a high performance
CLIPPER “box”, using mature software, should do considerably better than the
results presented here. The compiler version under current development (but not
yet released) shows 10% to 20% better performance on the existing hardware. All
of the results presented below were run on production hardware (during January,
1987) at Fairchild, by the same people using the same code under the same condi-
tions, and should be comparable and accurate.

Table 4 shows the results of the Dhrystone [Weic84], Whetstone [Curn76],
Linpak [Dong83] and Berkeley [Hans82] benchmarks. It can be seen that
CLIPPER is about 25% faster than the VAX 8600 (VMS 4.1) on the Dhrystone
benchmark and is about nine times the speed of a VAX 11/780. (Versions 1.0 and
1.1 refer to the two versions of the Dhrystone benchmark.) For the Whetstone
benchmark, CLIPPER is about 3 times the speed of the VAX 11/780 (with the
floating point accelerator) and about 7.5 - 9.5 times as fast as the VAX 11/785
(without an FPA) under Ultrix. Table 4 shows that CLIPPER is about 3.15 times
as fast as the VAX 11/780 (VMS 3.7) on single precision Linpack and is about 3.11
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times as fast with double precision. (The VAX Linpack benchmarks were all run
using the standard VMS Fortran library. The “Fortran BLAS” results are with
the Fortran BLAS routines from Los Alamos. The "coded BLAS" shows the results
after further hand tweaking.) The Berkeley benchmarks show CLIPPER from 3.5
to 13 times as fast as the VAX 11/780 under VMS 3.7. Using the VAX 11/780 as
a canonical “1 MIPS” machine, CLIPPER is about a 5-6 MIPS machine. (In actual
fact, the VAX has a CISC instruction set, and thus generally runs at about .5
MIPS [Emer84]. The “canonical 1 MIPS” refers to a System/370 scientific work-
load running on a System/370 instruction set machine.)

8.1. Performance vs. Cycle Time and Cycles/Instruction

For a given instruction set architecture, CPU performance is inversely propor-
tional to the product of cycle_time and cycles/iinstruction. CLIPPER achieves its
high level of performance via a careful tradeoff of these two factors, in contrast to
the “one size fits all” approach that is currently popular in some quarters. The
design philosophy espoused by MIPS [Henn82] and RISC [Patt85] is that all, or
almost all instructions must execute in one cycle; this implementation approach
was previously used by Procrustes [Bull55] in matching guests to beds.

The disadvantage to the single cycle per instruction approach is that not all
instructions are equally complex, and the cycle time must accommodate the long-
est single cycle instruction; conversely, partitioning an instruction into a larger
number of sequential phases provides more possibilities for overlap. For these rea-
sons, the CLIPPER designers chose to implement the instruction set in the
manner of a traditional mainframe, whereby the longer and more complex instruc-
tions are permitted more cycles to complete. The CPU cycle time (30ns) was
chosen as a design goal, on the basis that the technology available at the time of
chip fabrication would permit the basic instructions (e.g. add, logical operations) to
complete in one cycle. Longer instructions were allowed to take as many cycles as
necessary, and the appropriate hardware support was placed on-chip to ensure that
they executed correctly in the presence of traps, interrupts, and data and register
dependencies.

8.2. Performance Improvement

There are two approaches to improving the performance of an implementation
of a given instruction set architecture. The first is technology scaling, by which
faster technology and denser packaging (or a smaller chip) permit the machine to
run faster, without any changes in the design architecture, or even in the circuit
diagram.

It is important to note that (for the most part) performance improvements in
scaling from one technology (e.g. 2-micron CMOS) to another (e.g. 1.25-micron
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CMOS) are independent of the actual absolute value of the cycle time. The cycle
time in a machine is limited by the longest signal path (including gate delays)
within a cycle; halving the longest path permits almost halving the cycle time.
Scaling of chip technology to obtain a higher performance CLIPPER implementa-
tion is underway, even though CLIPPER already has an impressively fast cycle
time.

In considering the performance of CLIPPER, evidence supports comments in
[Mate84), where it is noted that the factor most strictly limiting performance on a
high performance microprocessor is the memory interface. As is discussed in more
detail in [Cho86, Holl87]), CLIPPER is most strictly limited by memory delays,
despite the use of two busses (one each for addresses and data), the fact that those
busses are short, and that each is dedicated to communication between a pair of
chips. In scaling any processor, the limiting factor will continue to be the memory
interface, and that does not scale as well as other aspects of the machine.

The other approach to improved performance is a redesign which decreases
the number of cycles per instruction. In general, this can be accomplished by the
use of more logic. For example, a multiplier or adder can always be made faster
with the addition of more gates; thus the current multiplication time (table 3)
could be reduced. Similar improvements are possible in other multicycle instruc-
tions. For comparison, we note that the Amdahl 470V*/6 required 5-6 cycles per
instruction, and that was roughly halved for the 580 . The DEC VAX 11/780
needed about 10 cycles per instruction [Emer84] and that was reduced to about 6
cycles for the 8600 [Foss85]; the cycle time was only reduced from 200ns to 80ns,
but the total performance was improved by a factor of almost five.

Projects to improve CLIPPER performance by both technology scaling and the
addition of additional: (design architecture) features are underway.

9. Tradeoffs and Extensions
9.1. Instruction Set Choice

9.1.1. Why Not “Pure RISC”?

As noted above, the current research trend in computer architecture is to
design machines with extremely simple instruction sets. Despite some advantages
to such an approach, our feeling is that the instruction set should be made as sim-
ple as possible, but no simpler. Very simple instruction sets impose burdens on
the compiler and the assembly language programmer, and increase code volume
and I-cache traffic and miss ratios. Single cycle instruction execution for (almost

*Personal Knowlege
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all) instructions results in less than optimal instruction overlap. By restricting
ourselves to a load / store architecture, but permitting variable length instructions
with variable length execution time, we believe that we've created a design which
is both functional and allows efficient implementation.

In particular, the CLIPPER microprocessor architecture was designed to
include string instructions (implemented in the on-chip ROM), on-chip floating
point, hardware support for the TLB, hardwired pipeline interlocks, and interrupt
and trap sequences (in the MIROM). We believe that given the current and likely
future state of the art, these represent a good tradeoff.

9.1.2. Why Not "More CISC”, and What We Chose Not To Include

There is a certain intellectual appeal to taking commonly needed software
functions and implementing them in single instructions. Extreme examples are
instructions to manipulate queues and compute polynomials, but we can include
such reasonable operations as the three memory address instruction in this class.
There are several problems with this approach. First, we note that the number of
gates available on a chip in current technology is not sufficient to implement these
instructions entirely in hardware; microcode would have been required. Existing
microcoded machines tend to be slow. Other issues are discussed below.

There are a number of instructions and features that were deliberately omit-
ted from the CLIPPER ISA, and we comment specifically on some of them here.

A natural form of computation is memory to register, register to memory, or
memory to memory, but such instructions are not provided. There are three rea-
sons for this: (a) It is very simple to generate the corresponding code sequences.
Very few extra instruction bytes are needed, since the total number of operand
specifiers is the same. (b) There is usually little savings in execution time, since
the same sequence of operations must occur. (c) There is considerable additional
complexity, because of the problems of memory traps and interrupts, especially
page faults. In particular, if there are multiple memory references per instruction.
then there can be multiple page faults; an extreme case of this problem occurs
with the M68000 which permits an indirect indexed address mode.

Some complicated instructions seen in the IBM 370 and DEC VAX (eg.
translate, translate and test, edit, queue, polynomial, etc.) were omitted due to
their substantial complexity, and the fact that the same functionality can be rea-
sonably implemented in software. In practice, a compiler is seldom able to gen-
erate these instructions even when they are needed. All existing studies show
that a small number of opcodes account for the large majority of all instructions
executed; see e.g. [Peut77, Clar82]. For many of the same reasons, we omitted
complicated branch instructions (such as decrement, test, and branch if less than
zero).
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Protection domains were limited to those possible from the protection bits
assigned to page frames (see [Cho86] for further discussion), since very few operat-
ing systems are prepared to take advantage of ring-structured protection domains
or similarly complex designs. Likewise, a segmented address space was avoided,
due to the inflexibility it imposes on the use of memory, including the impedi-
ments it provides to increases in the address space size, and the fact that the same
functionality is obtained by protection bits on pages. General purpose registers
were selected over dedicated registers (e.g. index, data and address registers) for
programming flexibility and generality.

There is no need for a compatibility mode in CLIPPER, since it is not an
upward compatible extension of an existing architecture. Not having to provide
this feature greatly simplified the design, avoided undesirable architectural
compromises, and permitted increased performance.

Extended precision arithmetic was not considered to be sufficiently useful at
the time CLIPPER was designed to justify the difficulty of implementing it on a
chip so tightly constrained with regard to area. Extended precision can be
obtained currently with instruction sequences. and opcodes are available to imple-
ment extending precision in the hardwired instruction set at some future time.

9.1.3. Possible Additions

One of the limiting factors in the design of a microprocessor is the silicon area
available and the area required for each gate. For that reason, some features origi-
nally considered were deferred until future CLIPPER versions, when technology
advances sufficiently. For example, a delayed branch has the advantage of reduc-
ing the pipeline penalty due to successful branches. The problem with a delayed
branch is that of saving the state, when a trap or interrupt occurs between the
time the branch is selected (the delayed branch instruction) and the time that it
takes effect (one or two instructions later). The existing CLIPPER chip simply
doesn’t have the space on it for the necessary logic to implement this correctly. In
addition to the delayed branch, a delayed load and vector instructions are under
consideration.

9.2. Pipeline Control

CLIPPER is pipelined, and the pipeline is fully hardware controlled, with all
interlocks (including checks for register dependencies) enforced with hardwired
logic. This is in contrast to designs such as RISC [Patt85] and MIPS [Chow86],
where the compiler must reorganize code and insert noops as necessary. We chose
to use hardware control deliberately, as we believe that: (a) it is an unreasonable
burden to require that the compiler understand the pipeline and insert noops as
necessary; (b) it is an unreasonable burden on the assembly language programmer
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and/or code generator to require that he overcome the lack of hardware; (c) the
implications of (a and (b are that without interlocks, code will tend to be “buggy”;
(d) compilers and programs become implementation dependent; instead of just
depending on the instruction set architecture, they depend on the precise features
of the pipeline. Object code is thus not portable between different implementa-
tions of the same instruction set architecture.

9.3. On-Chip Cache or Larger Instruction Buffer

Considerable study was devoted to the question of whether CLIPPER should
have an on-chip cache or a significantly larger instruction buffer than the current
8-bytes. We do not have space here to discuss the reasons for the existing choice
in detail (see [Cho86)]) but we briefly note some of the points. The basic problem is
that given the limited chip area, we were unable to put enough cache or buffer on
the chip to yield a useful performance improvement. In addition, there is the
problem of virtual vs. real addressing, synonyms, cache flushing, and cache con-
sistency [Smit82]. For a future design, a 2- or 3-level cache (on chip, CAMMU
chip, cache board) is a possibility.

9.4. Address Space Size

An issue which has been emphasized throughout this paper is that of address
space extensibility. Almost any shortcoming in a computer architecture can be
overcome except too small an address space; this is the reason that DEC was
finally forced to design the VAX (“virtual address extension”) as a replacement for
the PDP-11. CLIPPER provides a flat, uniform (not partitioned) 32-bit address
space. Because of the availability of additional address modes, it will be possible
to define modes which produce more than 32 bits of virtual address. More than 32
bits of physical addressing can be obtained by changing the format of the page
tables. These changes are straightforward and would require few if any user pro-
grams to undergo conversion. We expect that within 10 or 15 years, both physical
and virtual addresses will need more than 32 bits.

9.5. Better Multiprocessor Cache Consistency

As explained in [Cho86], the CLIPPER CAMMU implements a bus watch
cache consistency protocol; it watches memory transactions on the bus, and main-
tains cache consistency in a system with multiple CPUs and shared writeable
areas of memory. The algorithm implemented requires that shared writeable data
be marked, and thus the CAMMU only need take action when the reference is
marked shared. Because consistency operations involve significant performance
costs, the use of this mode should be minimized. With improved technology, we
expect that it will be possible to implement a much more sophisticated bus
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interface, with a dual ported cache directory, and an optimized consistency algo-
rithm such as is described in [Swea86).

10. Conclusions and Overview

In this paper, we've discussed the instruction set architecture and the imple-
mentation of the Fairchild CLIPPER microprocessor. The machine was designed
from scratch to provide high performance, convenient programmability and the
ability to extend the architecture as technology improves and the art of computer
architecture design advances. Our discussion has included both functional descrip-
tion (concentrating on those functions that are interesting and/or unusual) and a
significant consideration of design tradeoffs and choices. We believe that
CLIPPER not only represents a good set of choices, but that this paper is impor-
tant in discussing and documenting those tradeoffs.
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