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1. Introduction

The Warp synthesis tool is a Verilog compiler used by PSoC Creator for designing with PSoC 
devices. Warp accepts Verilog text input and then synthesizes and optimizes the design for the 
target hardware. Warp then outputs a file for programming the device. Warp operates in the 
background. Most users will not interact with the program directly.

This guide discusses the fundamental elements of Verilog HDL implemented in Warp. The first 
chapter covers the Verilog language constructs supported in Warp. The second chapter covers 
register and tri-state synthesis implemented in Warp. The last chapter includes some Verilog design 
examples. The appendix contains a list of Verilog reserved words.

1.1 Conventions

The following table lists the conventions used throughout this guide:

1.2 References

This guide is one of a set of documents pertaining to PSoC Creator and PSoC3/5. Refer to the 
following other documents as needed:

■ PSoC Creator Help

■ PSoC Creator Component Author Guide

■ PSoC Creator Customization API Reference Guide

■ PSoC Device Technical Reference Manuals (TRMs)

Convention Usage

Courier New
Displays file locations and source code:

C:\ …cd\icc\, user entered text

Italics
Displays file names and reference documentation:

sourcefile.hex 

[bracketed, bold]
Displays keyboard commands in procedures:

[Enter] or [Ctrl] [C]

File > New Project
Represents menu paths:

File > New Project > Clone

Bold
Displays commands, menu paths and selections, and icon names in procedures:

Click the Debugger icon, and then click Next.

Text in gray boxes Displays cautions or functionality unique to PSoC Creator or the PSoC device.
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1.3 Revision History
Document Title: Warp™ Verilog Reference Guide

Document Number: Document # 001-48352

Revision Date By Description of Change

** 12/4/07 CKF New document.

*A 5/5/09 CKF Changes to example designs and product name.

*B 9/22/10 CKF Updates to Introductions and explanations for design examples.

*C 5/24/13 CKF Update to section 2.11.

*D 7/22/14 CKF
Added note that multiple non-blocking assignments are not supported to 
section 2.9.1.

Distribution: None

Posting: None
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2. Verilog Language Constructs

This chapter includes the following sections:

■ Identifiers

■ Constants

■ Data types

■ Operators

■ Operands

■ Modules

■ Primitive gates

■ Continuous assignments

■ Behavioral Modeling

■ Timing controls

■ Structured procedures

■ Compiler directives

2.1 Identifiers

An identifier in Verilog is composed of a sequence of letters, digits, dollar signs($), and underscore 
characters ( _ ). Identifiers are case sensitive. In Warp, the first character in an identifier must be a 
letter. If an identifier starts with an underscore, Warp currently renames such identifiers by adding 
the prefix ’warp’.

An escaped identifier starts with the back-slash character (\) and ends with a white space (space, tab 
or new line). The leading back-slash and the terminating space are not treated as part of the 
identifier. Warp does not support the escaped identifiers.

The following are legal identifiers in Verilog:
clock1
dataA
_reset

The following are not legal identifiers in Verilog:
3reset  // identifier cannot start with a digit
module  // a keyword cannot be used as an identifier

An identifier that starts with a $ is a system task or system function. Warp ignores all system tasks 
and system function identifiers.



8 Warp™ Verilog Reference Guide, Document # 001-48352 Rev. *D

Verilog Language Constructs

2.1.1 Reserved Words

The Verilog language has a set of reserved words, called keywords, that cannot be used as 
identifiers. Refer to Verilog Reserved Words on page 43 for a list of keywords.

2.1.2 Comments

The Verilog language has both line comments and block comments. A line comment begins with two 
consecutive forward slashes (//) and extends to the end of the line. A block comment starts with /* 
and ends with */. Comments can appear anywhere within a Verilog description. Block comments 
cannot be nested.

// this is a line comment

/*
this is a 
block
comment 
*/

2.2 Constants

In Verilog, constant numbers can be specified as integer constants. The integer constants can be 
specified in two forms: a simple decimal number specified as a sequence of digits (0-9); a sized 
constant which is represented as a based number. A sized constant is composed of three tokens: an 
optional size, a single quote followed by a base format character (’d for decimal, ’b for binary, ’o for 
octal and ’h for hexa decimal) and a sequence of digits representing the value.

A decimal base number is composed of a sequence of 0 through 9 digits.

A binary base number is composed of a sequence of x, z, 0 and 1.

An octal base number is composed of a sequence of x, z, and 0 through 7 digits.

A hexadecimal base number is composed of a sequence of x, z, 0 through 9 digits and a through f 
characters.

The base format character (d, b, o, h) is not case sensitive.

The alphabetic digits in the base number (x, z, a through f) are not case sensitive.

An x represents the unknown value and z represents the high-impedance value.

Simple decimal numbers without the size and the base format are treated as signed integers and 
decimal numbers with the base format are treated as unsigned integers. 

A + or - operator preceding the size constant is the sign for the constant number. 

A + or - between the base format and the number is illegal.

The underscore character can be used in the constant to improve the readability of long numbers. 
This character is ignored by Warp.

Default size of an un-sized constant is 32 bits.

The following are legal Verilog constants:
10           // is a decimal number
-1204        // is a signed decimal number
2’b1         // is a sized binary number stored as two bits (01)
’h a7fx      // is an un-sized hexadecimal number
9’o17        // is a sized octal number stored as 000001111
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’b0101_1110  /* is a binary number equal to 01011110. The
                underscore character is ignored. */

The following are illegal Verilog constants:
2’b-1        /* - sign between the base format character b
                and the base number 1 */

String constants are treated as unsigned integer constants represented by a sequence of 8-bit ASCII 
values, with each 8-bit ASCII value representing one character. 

Real constants are not supported.

2.3 Data types

Data types in Verilog belong to one of three classes: net, reg and parameter.

2.3.1 Nets

The net data type is used to represent a physical connection between different hardware blocks. A 
net can be driven by a continuous assignment statement or an output of a gate or module. A net data 
type will not store its value.

A net can be one of the following types:

■ wire

■ tri

■ supply0

■ supply1

A wire/tri net type is used to connect different hardware elements. A tri net type is identical to 
the wire net type both in the syntax and functionality. Two names are provided in order to 
distinguish the purpose of the net in the design and hence to enhance the readability. A wire net 
type is used for nets that are driven by a single gate or a continuous assignment. Nets driven by 
multiple drivers are declared as tri net type.

supply0 and supply1 nets are used to model the power supplies. supply0 represents logic 0 
(ground) and supply1 represents logic1 (power).

The following Verilog net types are not supported by Warp.

■ tri0

■ tri1

■ wand

■ triand

■ wor

■ trior

■ trireg

Examples:
wire a ;       // a is a wire type net
tri t ;        // t is a tri-state type net
supply0 gnd ;  // gnd is connected to logic 0 (ground)
supply1 vcc ;  // vcc is connected to logic 1 (power)

A net can be a scalar or a vector. Scalar nets represent individual signals and vector nets represent 
bus signals. By default, all nets are treated as scalars. Vector nets are declared by specifying the 
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range of bits after the net type. The left-hand value in the range specifies the most-significant-bit and 
the right-hand value in the range specifies the least-significant-bit.

Example:
wire [7:0] dataA ;  /* dataA is an 8 bit vector.
                       bit0 is LSB and bit 7 is MSB */
wire [0:7] dataB ;  /* dataB is an 8 bit vector.
                       bit0 is MSB and bit 7 is LSB */

In Verilog, the strength of a net is defined using a combination of two strengths: drive strength 
(weak1, weak0, highz0, highz1, pull0, pull1, pullup and pulldown) and charge 
strength (small, medium, large). Warp ignores the strengths associated with any net.

2.3.2 Registers

Register data types are used as variables. A register data type stores its value until another 
assignment changes the register. The register data type is declared using the keyword reg. 
Registers can be assigned only in always blocks, functions and tasks.

integer is a register data type used for manipulating quantities that are not regarded as hardware 
registers. In Warp, integers are treated as 32 bit signed quantities and reg datatypes are treated as 
unsigned quantities by default unless specified to be signed quantities.

Examples:
reg a, b ;   // a, b are two register variables
integer i ;  // i is an integer variable

Register variables also can be declared as scalar or vector. Vector registers are declared by 
specifying the range of bits after the reg or integer keyword. The left-hand value in the range 
specifies the most-significant-bit and the right-hand value in the range specifies the least-significant-
bit.

Examples:
reg[7:0] dataA;  /* dataA is an 8 bit vector.
                     bit0 is LSB and bit 7 is MSB */
reg [0:7] dataB; /* dataB is an 8 bit vector.
                     bit0 is MSB and bit 7 is LSB */
integer a;       // a is an integer (always 32 bit quantity)

Register declaration does not imply a flip-flop or a latch. Warp does not support multiple drivers for 
register and integer variables.

The time, real and realtime declarations are not supported in Warp. 

Ranges and arrays for integers are not supported by Warp. 

Arrays of register data types (memories) are also not supported in Warp. 

Example:
// The following declarations are illegal in Warp
time t;
real f;
realtime rt; 
integer [3:0] x; // integer array
reg [7:0] mem [0:63]; 
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2.3.3 Parameters

Unlike nets and registers, parameters are constants. The value of a parameter cannot be modified 
during run time. Parameters are used to write parameterized models. Parameters are declared using 
the parameter keyword as follows:

parameter parameter_assignment {,parameter_assignments}
parameter_assignment ::= parameter_identifier = constant_expression

Examples:
parameter lsb = 0, msb = 3 ;  // lsb and msb are parameters
reg [msb:lsb] x ;             // x is a vector with range 3:0
parameter tPD = 7 ;           /* parameter tPD is used to represent
                                 propagation delay */

Note If the given parameter is not intended to be modified by an upper level module, using the 
‘define compiler directive (see `define on page 32) is recommended.

2.3.3.1 Support for proper parameters

Parameters are treated as arbitrary length bit-strings. The length of a parameter is unconstrained by 
default but can be constrained by the user, for example:

parameter     unconst_param = 12;  /* Unconstrained - size is 
                                   // determined by its usage. */
parameter [3:0] const_param = 12;  // Constrained - uses only 4 bits.

A parameter can become a signed quantity depending on the parameter override. In most cases, 
there is very little difference between signed and unsigned, but it can have an impact in magnitude 
comparison operators (and *, /). However, the overrides only have an impact if the parameter is 
declared plainly. You can specify a parameter to be signed or to be of an integer type, in which case 
it is signed regardless of the override.

Example of a plain parameter: 
parameter P = 23 ;

The true type and size of the parameter is determined by the actual value of the parameter at 
runtime (elaboration time). Warp does not automatically handle the size or the signed/unsigned 
nature of the parameter. If the parameter does not have a size constraint or a type (signed/unsigned/
integer/etc.) designation, Warp will use the defaults. If you want something else, you must be 
specific and assign it a size and type (as shown the following examples).

Examples of a fully-specified parameter:
parameter [3:0] P = 3;         // unsigned 4-bit quantity 
parameter signed P = 3;        /* signed quantity whose size 
                                  is determined later */
parameter signed [3:0] P = 3;  // signed 4-bit quantity 
parameter integer P = 3;       // signed 32-bit quantity 

Since the type/size of these params are defined by their declaration, the expressions that such 
params get involved in will be handled correctly. When an override is done, it is properly type-
converted in all cases. Cypress recommends this kind of declaration for all parameters that are 
expected to be a fixed size/type. 
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Use this kind of a parameter when you are using params for arbitrary strings and use them only in 
unsigned context (for instance in equal/notequal comparisons, addition, subtraction, etc.).

The signed/unsigned nature of the parameter is determined by its initial value (also applies to 
localparams).

2.3.3.2 Support for localparams

You can use this to create local-parameters that cannot be overwritten by defparams. 

Example 
parameter x = 4 ; 
localparam x2 = (x / 2); 

Warp allows parameters to appear on the right-hand-side of another parameter definition 
parameter x = 4 ;
parameter x2 = (x / 2); 

This will work as expected. If you override just ’x’ then x2 will appropriately be calculated using the ’x’ 
new value. If you override both ’x’ and ’x2’, both will be overridden according to spec. and x2 may no 
longer have the relationship intended. This is where localparam’s should be used instead.

2.3.3.3 Module Parameters

The parameters declared inside an instantiated module can be modified during instantiation 
(parameter value assignment) or by using defparam construct. In Warp, the defparam can be only 
used to modify the parameters of immediate instances.

Example:
module dreg(clk, d, q) ;  // define a parameterizable reg.
parameter range = 4 ;
input [range-1:0] d ;
output [range-1:0] q ;
...
endmodule
dreg #(8) inst_1(...) ;   // instantiates 8 bit dreg
dreg #(16) inst_2(...) ;  // instantiates 16 bit reg

Parameter values in a module can also be re-defined by using defparam construct. At any level of 
the design, Warp allows the re-definition of parameters of the modules instantiated at that level only. 
More than one levels of hierarchical path names are not currently supported.

Example:
defparam inst_1.range = 16 ;

In the absence of an explicit declaration of a net or a register, statements for gate and module 
instantiations shall assume an implicit net declaration. These implicitly declared nets shall be treated 
as a scalar of type wire.

Module declaration including parameters and ports

module Nbit_adder 
    #(parameter SIZE = 3, JUNK = SIZE+3) (output co, output [SIZE-1:0] 
sum, input [SIZE-1:0] a, b, input ci); 
... 
endmodule
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This is more concise than traditional module declaration. Note the two unexpected rules that Verilog 
enforces (and consequently, so does Warp). If you use the new style of declaring a module:

■ You cannot redefine or define a port or its type, which is preferred.

■ It will still allow you to define a new parameter which can be overridden using a defparam. Try to 
avoid declaring additional parameters in the body of the module. The body should have 
localparams only. 

2.3.3.4 Support for named parameter passing

The following is better than using defparams:
Nbit_adder #(.SIZE(5)) u1 (.co(co1), .sum(sum), .a(a), .b(b), .ci(ci));

2.4 Operators

The following table lists the Verilog operators that Warp supports.

2.4.1 Arithmetic operators

In Verilog, the + and - operators perform addition and subtraction, respectively. The * operator 
performs multiplication. Division and modulus operators (/, %) are supported when both operands 
are constants, or when the second operand is a power of 2.

Use of the division and modulus operators may result in an error if the operand constant criteria 
described above is not met.

Examples:
reg [3:0] sum, diff, mult, div, mod;
reg [1:0] a, b ;
parameter size1 = 16, size2 = 4;
sum = a + b ;
diff = a - b ;
mult = a * b ;
div = size1/size2;
mod = size1%size2;

Arithmetic operators *, +, -, /, %

Shift operators <<, >>

Relational operators <, >, <=, >=

Equality operators ==, !=

Bit-wise operators ~, &, |, ^, ^~, ~^

Reduction operators &, |, ^, ^~, ~^, ~&, ~|

Logical operators !, &&, ||

Conditional operator ?:

Event or or

Concatenation {}, {{}}
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2.4.2 Shift operators

The shift operators are binary operators. The left shift operator << shifts the bits in the left operand 
by the number of bit positions specified by the right operand. The right shift operator >> shifts the bits 
in the left operand by the number of bit positions specified by the right operand. Both shift operators 
fill the vacated bits with zeros. These shift operators perform logical shift.

Examples:
wire [7:0] a, b ;
parameter shift = 4 ;
assign a = (b << shift);  // a is assigned to b[3],..,b[0],0,0,0,0
assign a = b >> shift;    // a is assigned to 0,0,0,0,b[7],..,b[4]

2.4.3 Relational operators

Relational operators perform comparison between two operands and return 1’b0 if the specified 
relation is false or 1’b1 if the specified relation is true.

When the operands used in a relational expression are not of the same size, the smaller operand will 
be zero filled on the most-significant bit side to extend to the size of the larger operand.

Examples:
reg a, b, c;
a < b;         /* evaluates to 1 if the value of a is less than
                  the value of b, 0 otherwise. */
a <= b;        /* evaluates to 1 if a is less than or equal to b,
                  0 otherwise. */
a >= b;        /* evaluates to 1 if a is greater than or equal to b,
                  0 otherwise. */
a > b;         /* evaluates to 1 if a is greater than b,
                  0 otherwise. */

2.4.4 Equality operators

The equality operators == and != compare each bit of the left operand with corresponding bit of the 
right operand. The equal operator == evaluates to true if the operands have the same value. The not 
equal operator != evaluates to true if the operands have different values. Zero filling is done if the 
operands are of different size.

Case equal operators === and !== are not supported by Warp.

Examples:
if( a == b) 
begin
...     /* this block is executed if a and b have the same value */
end
else // (a != b)
begin
...    /* this block is executed if a and b have different values */
end
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2.4.5 Bit-wise operators

Bit-wise operators perform bit-wise manipulations on the operands. The result of a bit-wise operation 
is obtained by performing the operation on each bit of the left operand with the corresponding bit of 
the right operand. When the operands are of unequal bit length, the shorter operand is zero-filled in 
the most significant bit positions.

Examples:
reg [1:0] a, b, c;
a = 2’b1; b = 2’b3 ;
c = a & b ;            // bit-wise and. c gets a value "01"
c = a | b ;            // bit-wise or. c gets a value "11"
c = ~a ;               // bit-wise negation. c gets a value "10"
c = a ^ b ;            // bit-wise xor. c gets a value "10"
c = a ^~ b ;           // bit-wise xnor. c gets a value "01"

2.4.6 Reduction operators

Reduction operators are unary operators and perform a bit-wise operation on each bit of an operand 
and give a 1-bit result.

Examples:
reg [2:0] a;
reg c;
a = 2’b1;
c = &a;   // c gets a value 0
c = |a;   // c gets a value 1
c = ^a;   // c gets a value 1
c = ^~a;  // c gets a value 0

2.4.7 Logical operators

Logical operators are used to perform a true/false test on an expression. The logical operators return 
a true (1’b1) or false (1’b0).

Logical not (!) is used to test if a variable is a true or false.

Logical and (&&) returns true if both of its operands evaluate to true.

Logical or (||) returns true if one or both of its operands evaluate to true.

Examples:
reg A, B;
reg C, D;
C = A && B;  // C is assigned 1’b1 if both A and B are true
D = A || B;  /* D is assigned 1’b1 if either A or B is true.
                 Otherwise D = 1’b0 */
D = !A;      // D gets a value 0 if A is 1 and D gets 1 if A is 0 
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2.4.8 Conditional operators

Conditional operator "?:" is used to write expressions which get different values based on a 
condition. The usage of the conditional operator is as follows:

conditional_expression ::= expression1 ? expression2 : expression3

If expression1 evaluates to true (1’b1), then expression2 will be used as the result of the 
conditional_expression. If expression1 evaluates to false (1’b0), then expression3 will be used as 
the result of the conditional_expression.

Example:
wire a, b, c, d;
assign d = a ? b : c ;

2.4.9 Concatenation

Concatenation operator provides a means to combine together bits of two or more expressions. 
Concatenation is achieved by enclosing the list of expressions within the concatenation operator {}.

Example:
reg [7:0] a;
reg [3:0] b;
reg x1, x2, x3, x4;
a = {b, x1, x2, x3, x4};

The assignment above produces the same result as the following assignments.
a[7] = b[3];
a[6] = b[2];
a[5] = b[1];
a[4] = b[0];
a[3] = x1;
a[2] = x2;
a[1] = x3;
a[0] = x4;

Un-sized constants are not allowed within the concatenation operator.

Concatenation can be repeated by using a repetition multiplier. In Warp, the repetition multiplier 
needs to be a constant.

Example:
reg [7:0] a ;
reg x1, x2, x3, x4 ;
reg b;
a = {2{x1, x2, x3, x4}} ;

The above assignment is equivalent to a = {x1, x2, x3, x4, x1, x2, x3, x4}.
a = {b{x1, x2}} ; // illegal in Warp, b is not constant
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2.5 Operands

An expression can contain operands of the following types.

■ Constants: Constant operands must conform to the specification in Section 2.2.

■ Reference to a net or register: The name of a net or register, when used as an operand, implies 
all the bits of the net or register. Bit-select and part-select can be used to reference a part of a 
vector net or register variable.

■ Bit-selects: Bit-select extracts one bit of a net or register vector. The bit selected should be within 
the range of the vector.

■ Part-selects: A part-select is used to access contiguous bits in a vector net or register. The part-
select expressions shall be constant-valued.

■ Strings: String operands are converted to bits, as described in Section 2.2.

■ Function call: A function call can be used as an operand.

■ Concatenation: An operand can also be concatenation of the above mentioned operands.

Warp ignores the delay expressions (minimum, typical, maximum).

Examples:
wire a, b;
reg [7:0] c, d;
wire [3:0] x;
a + b;            // scalar operands
a + c[1];         // scalar net and bit select (bit 1 of c) operands
c[3:0] + x;       // part-select (c[3]..c[0]) and vector (x) operands
c - d;            // vector operands
a + "01" + 4’b1;  // scalar net, string and constant operands 
{a, c};           // concatenation of scalar net and vector reg

2.6 Modules

A module in Verilog encapsulates the description of a design. The description of a design can be 
either, or a combination of the following:

■ behavioral descriptions – provide a means to define the behavior of a circuit in abstract high level 
algorithms, or in terms of low level boolean equations.

■ structural descriptions – define the structure of the circuit in terms of components and resemble a 
net-list that describes a schematic equivalent of the design. Structural descriptions contain hierar-
chy in which components are defined at different levels. 

2.6.1 Module Syntax

A Verilog design consists of one or more modules connected with each other by means of ports. 
Ports provide a means of connecting various hardware elements. Each port has an associated name 
and mode (input, output and inout). Module definitions cannot be nested. A module is defined 
using the following syntax:

module <name> (interface_list) ;{ module_item }
endmodule
interface_list ::= port_reference
| {port_reference {, port_reference}}
port_reference ::= port_identifier
| port_identifier [ constant_expression ]
| port_identifier [ msb_constant_expression : lsb_constant_expression ]
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module_item ::= module_item_declaration
| continuous_assignment
| gate_instantiation
| module_instantiation
| always_statement
module_item_declaration ::= parameter_declaration
| input_declaration
| output_declaration
| inout_declaration
| net_declaration
| reg_declaration
| integer_declaration
| task_declaration
| function_declaration

Warp treats the keywords macromodule and module as synonyms.

Example:
// a module definition for a d flip-flop
module my_dff (clk, d, q); 
    input clk, d;
    output q;
    wire clk, d;
    reg q ;
    always @(posedge clk)
        begin
            q = d ;
        end
endmodule

2.6.2 Top Level Module

In Verilog, hierarchical designs are specified by instantiating one or more modules in a top level 
module. A top level module is a module that is not instantiated by any other module.

The syntax of the module instantiation statement is as follows:
<module_name> [parameter_value_assignment]
    <instance_name>
    module_instance {, module_instance} ;
module_instance ::= instance_identifier
    ([list_of_module_connections])
list_of_module_connections ::= ordered_port_connection {, 
    ordered_port_connection }
    | named_port_connection {,named_port_connection }

Example:
/* a 4-bit shift register defined by instantiating 4 d-ffs */
module shift_reg(clk, d, q) ;
    input clk, d;
    output q;
    wire q0, q1, q2 ;
/* module instantiation statements. my_dff is the type of the module 
instantiated. inst_3, ... inst_0 are the instance names */
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    my_dff inst_3 (clk, d, q0) ; 
    my_dff inst_2 (clk, q0, q1) ;
    my_dff inst_1 (clk, q1, q2) ;
    my_dff inst_0 (clk, q2, q) ;
endmodule

One or more instantiations of the same module can also be specified in a single module instantiation 
statement. The four instantiation statements in the above example can be combined into one 
instantiation statement as follows:

my_dff    inst_3(clk, d, q0),
          inst_2(clk, q0, q1),
          inst_1(clk, q1, q2),
          inst_0(clk, q2, q) ;

Note The range specification in module instantiations (array of instances) is not supported in Warp.

2.6.3 Module Connection

A module connection describes the connection between the signals listed in the module instantiation 
statement and the ports in the module definition. This connection can be specified in two ways: 
ordered port association and named port association.

In the case of ordered port association, the signals in the instantiation statement should be in the 
same order as the ports listed in the module definition.

In the case of named port association, the port names of instantiated modules are also included in 
the connection list.

Example:
my_dff inst_3(clk, d, q0) ;                // ordered connection list.
my_dff inst_3(.d(d), .q(q0), .clk(clk)) ;  /* named association: q0 is
                                              connected to the port q of
                                              my_dff module. */

The port expression in the module connection list can be one of the following:

■ A simple identifier

■ A bit-select of a vector declared within the module

■ A part-select of a vector declared within the module

■ A concatenation of any of the above
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2.7 Primitive gates

The Verilog language provides gate level and switch level modeling capability by means of a set of 
primitive gates. Warp supports the following primitive gates:

■ and

■ nand

■ or

■ nor

■ xor

■ xnor

■ buf

■ not

■ bufif0

■ bufif1

■ notif0

■ notif1

The primitive gates and, nand, or, nor, xor, xnor have one output and one or more inputs. 
The first terminal in the terminal list is the output and all other terminals are inputs.

Examples:
and i1 (f, a, b, c) ;     // 3-input (a, b, c) and gate
and i2 (f, a, b, c, d) ;  // 4-input (a, b, c, d) and gate
xor i3 (f, a, b) ;        // 2-input (a, b) xor gate

The primitive gates buf and not have one input and multiple outputs. The last terminal in the 
terminal list is the input and all other terminals are outputs.

Examples:
buf i1 (f1, f2, a) ;      // 2 output (f1, f2) buf gate
not i2 (x, y, a) ;        // 2 output (x, y) not gate

The primitive gates bufif0, bufif1, notif0 and notif1 model three state drivers. These 
gates have three terminals. The first terminal is output, the second terminal is data input and the last 
terminal is control input.

Examples:
bufif0 i1 (o1, i1, c1);  /* tri-state buffer with active
                            low enable (c1) */
bufif1 i2 (o2, i2, c2);  /* tri-state buffer with active
                            high enable (c2) */
notif0 i3 (o3, i3, c3);  /* tri-state buffer with inverted output
                            and active low enable(c3) */
notif1 i4 (o4, i4, c4);  /* tri-state buffer with inverted output
                            and active high enable(c4) */

Warp ignores drive strength and delays specified in gate instantiation statements.
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2.8 Continuous assignments

Values are assigned to nets by means of a continuous assignment statement. Continuous 
assignments can be specified either in the net declaration statement or by using an assign 
construct using the following syntax.

assign net_assignment {, net_assignment}
net_assignment ::= net_lvalue = expression
net_lvalue ::= net_identifier
    | net_identifier [expression]
    | net_identifier [msb_const_expression : lsb_const_expression]
    | net_concatenation

Examples:
wire a ;
reg b, c;
assign a = b;    // continuous assignment using assign construct
wire d = b + c;  // continuous assignment in the net declaration

Continuous assignments drive values onto nets, in a manner similar to the way gates drive nets.

Warp ignores the charge strength, drive strength and delay specified in the continuous assignment 
statements.

The left-hand side of a continuous assignment statement can be one of the following:

■ a scalar or vector net

■ constant bit-select of a vector net

■ constant part-select of a vector net

■ concatenation of any of the above

Examples:
wire [3:0] dataA ;
wire dataB ;
wire [2:0] dataC ;
wire [4:0] dataD, dataE ;
wire [7:0] dataF, dataG ;
assign dataE = dataA - dataB ;
assign dataD[2:0] = dataC ;
assign {dataF, dataG} = ~dataE + dataD;
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2.9 Behavioral Modeling

2.9.1 Procedural assignment

Procedural assignment statement assigns value to register data type variables. Procedural 
assignments are used inside procedural flow blocks (always, initial, function and task). The right-
hand side of a procedural assignment can be any expression that evaluates to a value. The left-hand 
side of a procedural assignment can be one of the following:

■ a scalar or vector reg data type or a scalar integer register data type

■ bit-select of a reg data type

■ part-select of a reg data type

■ concatenation of the above

In the Verilog language, there are two types of procedural assignment statements:

■ Blocking procedural assignment statement – blocks the execution of a statement in a sequential 
block. In other words, the execution of a statement next to a blocking statement is not executed 
until the execution of the blocking assignment is completed. Blocking assignment is specified 
using the "=’ operator.

■ Nonblocking procedural assignment statement – does not block the execution of a statement. 
Nonblocking assignment is specified using the "<=" operator. 

It is illegal in Warp, to assign value to a register variable using both blocking and nonblocking 
assignment.

The syntax of these statements is as follows:
blocking_assignment ::= reg_lvalue = expression
nonblocking_assignment ::= reg_lvalue <= expression
reg_lvalue ::= reg_identifier
    | reg_identifier [expression]
    | reg_identifier [msb_const_expression : lsb_const_expression]
    | reg_concatenation

Examples:
// blocking assignment
reg a, b, c ;
a = b ; 
c = a ; /* ’c’ gets the value ’b’ because the 
           above statement is blocking statement. */

// non-blocking assignment
reg a, b, c;
a <= 0 ;
c <= a; /* ’c’ gets the previous value of ’a’(value of a prior to the 
statement a <= 0.

// illegal procedural assignment in Warp. 
reg a, b, c, d;
a <= b + c ; // non-blocking assignment to ’a’
a = d ; // blocking assignment to ’a’

Note Nonblocking assignment statements within a function/task are not supported by Warp.

Note Warp does not support multiple non-blocking assignment statements. Any such code should 
be restructured to avoid multiple assignments.
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2.9.2 Block statements

Block statements are used to group several statements together so that they act like a single 
statement. The sequential block is defined by including a set of statements between the keywords: 
begin and end. The statements inside a sequential block are executed sequentially. The sequential 
blocks can also have a name (label). A named block can include reg, integer and parameter 
declarations

A sequential block statement has the following syntax:
begin [:block_name {block_item_declaration}] {statement} 
end
block_item_declaration ::= parameter_declaration
    | reg_declaration
    | integer_declaration

Examples:
// a sequential block
begin
    a = b ;
    if( (c + d) > 1)
    begin
        ...
    end
    else
    begin
        ...
    end
end

// a named sequential block
begin : reset_block
    if( reset)
    ..
    else
    ..
end

Warp does not support parallel block.

2.9.3 If…else statements

The if-else statement selects one or more statements to be executed within a sequential block, 
based on the value of a condition. For example:

if(expression) statement_or_null
[else statement_or_null]

A condition is a boolean expression; that is, an expression that resolves to a boolean value. If the 
condition evaluates to true, the sequence of statements in the if block, if present, are executed. If 
the condition evaluates to false, the sequence of statements following the else keyword, if present, 
are executed.

Example:
/* q is assigned a value 0 if reset is logic 1.
   otherwise q is assigned d */
if( reset) // reset == 1
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    q = 0 ;
else
    q = d ;

// multiple if-else statements
if( p_state == 2’b1)
    next_state = 2’11 ;
else if( p_state == 2’b11 ) 
    next_state = 2’00 ;
else
    next_state = p_state ;

2.9.4 Case statements

The case statement is a multi-way decision statement that branches to one or more statements 
based on the value of an expression.

case (expression) case_item {case_item} endcase

Example:
// a multiplexer implemented using a case statement
‘define selA 4’d1
‘define selB 4’d2
‘define selC 4’d3
‘define selD 4’d4
‘define selE 4’d5
reg [3:0] select ;
reg out ;
reg a, b, c, d, f;
case (select)
  ‘selA: out <= a ;
  ‘selB: out <= b ;
  ‘selC: out <= c ;
  ‘selD, ‘selE: out <= d ;
  default: out <= f;
endcase

// a barrel shifter
reg [2:0] s ;
reg [7:0] in, out ;
always @(in or s)
begin
  case (s)
    3’b000: out = in ;
    3’b001: out = {in[6], in[5], in[4], in[3], in[2], in[1], in[0], in[7]};
    3’b010: out = {in[5], in[4], in[3], in[2], in[1], in[0], in[7], in[6]};
    3’b011: out = {in[4], in[3], in[2], in[1], in[0], in[7], in[6], in[5]};
    3’b100: out = {in[3], in[2], in[1], in[0], in[7], in[6], in[5], in[4]};
    3’b101: out = {in[2], in[1], in[0], in[7], in[6], in[5], in[4], in[3]};
    3’b110: out = {in[1], in[0], in[7], in[6], in[5], in[4], in[3], in[2]};
    3’b111: out = {in[0], in[7], in[6], in[5], in[4], in[3], in[2], in[1]};
  endcase
end
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x or z in a case expression or case-item expression results in a warning and the comparison is not 
done for those bits.

The don’t-care conditions are handled in the case statements, using casex and casez statements. 
The syntax of casex and casez statements is the same as the case statement, except for the 
keyword. In the casex statement, both x and z are treated as dont’t-care bits. In casez, z is treated 
as don’t-care bit.

Warp partially supports casex and casez statements. For the casex statement, ?, x, z are allowed 
in a case-item expression but not allowed in a case expression. Similarly, for casez statement, ?, 
z are allowed in a case-item expression but not allowed in a case expression.

Example:
/* instruction decoder of an ALU that performs 3 operations
   (arithmetic, logical and bit-wise). The most-significant 2 bits
   decodes the operator class, and the least significant 2 bits decodes
   the operator within the class */
reg [3:0] instr ;
casez (instr)
4’b00??: arith_operator(..) ;   /* call arithmetic operator
                                   function/task */
4’b01??: logical_operator(..) ; // logical operator
4’b10??: bitwise_operator(..) ; // bit-wise operator
endcase

In the above example, ’z’ in instr[1] and instr[0] bits are treated as don’t care.

To treat both ’z’ and ’x’ as don’t care bits in instr[1] and instr[0] (above example), use casex as 
follows:

reg [3:0] instr ;
casex (instr)
4’b00??: arith_operator(..) ;   /* call arithmetic operator
                                   function/task */
4’b01??: logical_operator(..) ; /* logical operator */
4’b10??: bitwise_operator(..) ; /* bit-wise operator */
endcase

When Warp synthesizes any of the case statements, it synthesizes a memory element for each 
output assigned to it in the case statement (in order to maintain any outputs at their previous values) 
unless one of the following conditions occurs:

■ All outputs within the body of the case statement are previously assigned a default value within 
the always block.

■ The case statement completely specifies the design's behavior following any possible result of 
the conditional test. The best way to ensure complete specification of design behavior is to 
include a default clause within the case statement.

Therefore, to use the fewest possible resources during synthesis, either assign default values to 
outputs in the always block or make sure all case statements include a default clause.
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2.9.5 Looping statements

Loop statements repeatedly execute a statement. The number of times a statement is executed is 
determined by the loop condition. Warp supports two kinds of loop statements: for loop and while 
loop.

for ( init_assignment; condition ; step_assignment) statement
while ( expression ) statement

In for loop statement, the init_assignment is a register assignment that initializes the loop variable. 
The step_assignment is a register assignment that assigns new value to the loop variable. The loop 
is executed until the condition evaluates to false. In Warp, the loop variable should be initialized to a 
constant value and the step assignment should be + or -. The loop condition should be a comparison 
(<, <=, >, >=) to a constant. The following are different for loop statements currently supported in 
Warp.

for( i = <number>;
    i <comparison_operator> <number>;
    i=i <increment/decrement> <number> )
    ....

where <comparison> is one of the comparison operators: <, <=, >, >= and <increment/decrement> 
is + or - operator. <number> is an integer number.

For loops can be nested.

Example:
integer i ;
reg [7:0] a, b;
for ( i = 0 ; i < 8; i = i + 1)
    if( i > 3) b[i] = ~a[i] ;
    else b[i] = a[i] ;

// for loop not supported in Warp
integer i;
reg a;
for( i = a; i <= 8; i = i || a)
    ...

The while loop is supported only inside a function or task. The while loop condition should be a 
comparison to a constant. The following is the while loop template supported in Warp. 

while ( i <comparison> <number>)

where <comparison> is one of the comparison operators: <, <=, >, >= and <number> is an integer 
number, and ’i’ is a local variable that has been previously assigned a constant value.
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Example:
function [7:0] b;
    input [7:0] a;
    reg [2:0] i;
    begin
        i = 0 ;
        while (i <= 7)
        begin
            if(i > 3) b[i] = ~a[i] ;
            else b[i] = a[i] ;
            i = i + 1 ;
        end
    end
endfunction

2.9.6 Generate Statements

Warp  supports the following:

2.9.6.1 generate/endgenerate

This is optional in Verilog 2005 and is required for Verilog 2001. Warp follows the more recent Verilog 
2005 standard.

2.9.6.2 if-generate 

generate
    if (constant_expression)
        module_item_or_null
    [else module_item_or_null]
endgenerate

where constant expression is an expression involving constants, parameters and localparams.

module_item_or null is either a begin/end block, any item that is valid in the module-body (like 
an always clause, a module instance, etc.)...or a simple ’;’ to say that you have nothing for the 
condition. The else part is optional.

Example: 
generate
    if (oper == "AND")                // Assume Oper here is a parameter
        assign result = a & b ;
    else                              // Else it is assumed to be an OR 
        assign result = a | b ; 
endgenerate
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2.9.6.3 case-generate:

Similar to if-generate, except using a case statement 
generate
    case (oper)  // Assume Oper here is a parameter
        "OR":     assign result = in_a | in_b;
        "XOR":    assign result = in_a ^ in_b;
        "AND":    assign result = in_a & in_b;
        default:  assign result = 1’bX;
    endcase 
endgenerate

2.9.6.4 for-generate:

You can have a loop generate where you can create zero or more module items. The following is an 
adder created using the for-generate:

generate
    genvar i;
    for(i=0; i<SIZE; i=i+1)
        begin: addbit
            wire n1,n2,n3;  //internal nets
            xor g1 ( n1, a[i], b[i]);
            xor g2 (sum[i], n1, c[i]);
            and g3 ( n2, a[i], b[i]);
            and g4 ( n3, n1, c[i]);
            or g5 (c[i+1],n2, n3); 
        end
endgenerate

2.10 Timing controls

In Verilog, timing controls provide a means to control the time at which a statement is executed or 
the time at which values are assigned to a net or register data type.

Warp ignores the intra-assignment timing controls, delay based timing controls and wait timing 
controls. Event timing controls are partially supported (only posedge and negedge event timing 
controls are supported when used with an always @ ).

Example:
// timing control supported in Warp
always @(posedge clk or negedge reset ..)
...
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2.11 Structured procedures

2.11.1 Initial

Warp ignores the initial construct.

2.11.2 Always

An always statement contains a block of statements that are executed whenever that always 
statement becomes active. An always statement that is executing is said to be active; otherwise, it 
is said to be suspended. Every always statement in the Verilog design may be active at any time. 
All active always statements are executed concurrently with respect to simulation time.

An always statement can be activated by means of a sensitivity list (a list of signals enclosed in 
parentheses appearing after the always keyword). In Warp, an always statement must have a 
sensitivity list. The sensitivity list is specified using the following syntax:

@(event_expression [or event_expression {or event_expression}])

Timing controls other than posedge and negedge are not allowed in the event_expression. The 
syntax for the event_expression is:

identifier | posedge identifier | negedge identifier

Bit-selects and part-selects are not allowed in the event_expression. The sensitivity list must contain 
an expression consisting of either plain identifiers or posedge/negedge tagged identifiers but 
never a combination of both.

Event expressions with plain identifiers result in combinational logic, unless a latch is inferenced 
using the latch inferencing mechanism (refer to latch synthesis section).

When posedge/negedge identifiers are used in the sensitivity list, sequential logic is synthesized.

Examples:
/* Always block for combinational logic: */
always @(x or y)
begin
...
end

/* Always block which realizes sequential logic using the
   rising edge of a clock: */
always @(posedge clock)
begin
...
end

/* Always block which realizes sequential logic using the
   falling edge of a clock and an asynchronous preload */
always @(negedge clock or posedge load)
begin
...
end

Refer to the Verilog Synthesis on page 33 for a list of synthesis templates supported by Warp.
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2.11.3 Task

Tasks are sequences of declarations and statements that can be invoked repeatedly from different 
parts of a Verilog description. They also provide the ability to break up a large behavioral description 
into smaller ones for easy readability and code maintenance.

A task can return zero or more values. A task declaration has the following syntax.
task <task_name> ;{ task_item_declaration} 
    statement_or_null endtask
task_item_declaration ::= parameter_declaration
    | reg_declaration
    | integer_declaration
    | input_declaration
    | output_declaration
    | inout_declaration

Warp ignores any timing controls present inside a task. The order of variables in the task enable 
statement (calling a task) should be the same as the order in which the I/Os are declared inside a 
task definition.

Only reg variables can receive output values from a task. Wire variables cannot.

Note Datapath operator inferencing is not supported inside tasks. When datapath operators (+, -, *) 
are used inside tasks, atleast one of the operands should be a constant or an input.

Example:
module task_example(a,b,c,d,sum);
    output sum;
    input a,b,c,d;
    reg sum;
    always @(a or b or c or d) 
    begin 
        t_sum(a,b,c,d,sum);
    end
 
    task t_sum;
        input i1,i2,i3,i4;
        output sum ;
        begin
            sum = i1+i2+i3+i4;
        end
    endtask
endmodule

Disabling of named blocks and tasks using the disable construct are not supported by Warp. All 
system tasks are ignored by Warp.
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2.11.4 Function

Similar to tasks, functions are also sequences of declarations and statements that can be invoked 
repeatedly from different parts of a Verilog design. They also provide the ability to break up a large 
behavioral description into smaller ones for readability and maintenance.

function [range_or_type] <function_name>
    function_item_declaration {function_item_declaration}
    statement endfunction
function_item_declaration ::= parameter_declaration
    | reg_declaration
    | integer_declaration
    | input_declaration

Unlike a task, a function only returns one value. The function declaration will implicitly declare 
an internal register which has the same type as the type specified in the function declaration. The 
return value of the function is the value of this implicit register.

A function should have at least one input type argument. It can not have an output or inout 
type argument.

A function declaration can have the following declarations:

input declaration, reg declaration, integer declaration, parameter declaration.

The order in which the inputs are declared should match the order in which the arguments are used 
in the function call. 

Timing controls and nonblocking assignment statements are not allowed inside a function definition.

Datapath operator inferencing is not supported inside functions. When datapath operators (+, -, *) 
are used inside functions, atleast one of the operands should be a constant or an input.

The function inputs can not be assigned to any value, inside the function.

All system task functions are ignored by Warp.

Example:
module func_example(a,b,c,d,sum);
    output[2:0] sum;
    input a,b,c,d;
    reg[2:0] sum;
    always @(a or b or c or d) 
    begin 
        sum = func_sum(a,b,c,d);
    end
 
    function[2:0] func_sum;
        input i1,i2,i3,i4;
        begin
            func_sum = i1+i2+i3+i4;
        end
    endfunction
endmodule
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2.12 Compiler directives

2.12.1 `define 

The directive `define creates a macro for text substitution. Once a text macro name is defined, it 
can be used anywhere in a source description. There are no scope restrictions. Redefinition of a text 
macro is allowed and the latest definition of a particular macro read by the compiler prevails when 
the macro name is encountered in the source text.

Examples:
‘define selA 4’b1
‘define selB 4’b2
‘define selC ‘selA

2.12.2 `undef

The directive `undef is used to undefine a previously defined text macro. An attempt to undefine a 
text macro that was not previously defined using a `define compiler directive results in a warning.

Examples:
‘define selA 4’b1
‘undef selA

2.12.3 `include

The `include compiler directive allows one to include the contents of a source file in another file 
during compilation. The file name in the `include directive can be a full or relative path name. A 
file included in the source using the `include compiler directive may contain other `include 
compiler directives. The `include construct cannot be used recursively.

Example:
‘include "lpm.v" // include lpm.v file

2.12.4 `ifdef, `ifndef, `else, `elseif, `endif

Example:
‘ifdef WARP // warp specific code
....
‘else // not warp specifc code
....
‘endif

When ‘ifdef WARP compiler directive is used, Warp compiles only the code within the 
’ifdef WARP block.

2.12.5 Unsupported compiler directives

All the other compiler directives are ignored and Warp issues a warning when it encounters any of 
the unsupported compiler directives.
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3.1 Tri-state Synthesis

Warp does not synthesize tri-state logic. In order to include tri-state logic in a Verilog module the 
cy_bufoe must be instantiated. The tri-state output of this module, y, must then be connected to an 
inout port on the Verilog module. That port can then be connected directly to a bidirectional pin on 
the device. The feedback signal of the cy_bufoe, yfb, can be used to implement a fully bidirectional 
interface or can be left floating to implement just a tri-state output. 

module ex_tri_state (out1, en, in1); 
    inout out1; 
    input en; 
    input in1; 
    cy_bufoe buf_bidi ( 
        .x(in1),   // (input) Value to send out 
        .oe(en),   // (input) Output Enable 
        .y(out1),  // (inout) Connect to the bidirectional pin 
        .yfb());   // (ouptut) Value on the pin brought back in 
endmodule

3.2 Latch Synthesis

Warp synthesizes a latch whenever a variable inside an always block with asynchronous trigger, has 
to hold its previous value. The following code fragment should synthesize a latch.

// example: latch synthesis with if statement
always @ (signal1 or signal2) 
begin
    if( signal1 ) 
    begin
        out_sig = signal2 ;
    end
end

3.3 Register Synthesis

3.3.1 Edge-Sensitive Flip-Flop Synthesis

Warp uses the following templates to synthesize synchronous flip-flops.

The template for the positive edge sensitive flip-flop is:
always @ (posedge clock_signal)
    synchronous_signal_assignments
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The template for the negative edge sensitive flip flop is:
always @ (negedge clock_signal)
    synchronous_signal_assignments

3.3.2 Asynchronous Flip-Flop Synthesis

Warp uses the following format to synthesize asynchronous flip-flops with reset or preset.
always @ (edge_of clock_signal or
          edge_of preset_signal or
          edge_of reset_signal)

    if (reset_signal)
        reset_signal_assignments
    else if (preset_signal)
        preset_signal_assignments
    else
        synchronous_signal_assignments

Use the posedge construct to specify active high condition and the negedge construct to specify 
active low condition. 

The variables in the sensitivity list can appear in any order. 

Subsequent reset or preset conditions can appear in the else-if statements. The last else block 
represents the synchronous logic.

The polarity of the reset/preset signal condition used in the sensitivity list and the polarity of the 
reset/preset condition in the if/else-if statements should be the same. 

Example:

A posedge reset_signal condition in the sensitivity list is required when the reset condition is one of 
the following forms:

if( reset_signal)
if( reset_signal == constant_one_expression)

A negedge reset_signal condition in the sensitivity list is required when the reset condition is one of 
the following forms:

if( !reset_signal)
if( ~reset_signal)
if( reset_signal == constant_zero_expression)

Warp generates an error if the polarity restriction mentioned above is violated.

Warp allows more than two asynchronous if/else-if statements before the synchronous else 
statement as shown in the following example.

// An example of two different preset signals:

module asynch_rpp(in1, clk, reset, preset, preset2, out1);
input in1, clk, reset, preset, preset2;
output out1;
reg out1;
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always @ (posedge clk or posedge reset or posedge preset or posedge 
preset2)
    if (reset)
        out1 = 1’b0;
    else if (preset)
        out1 = 1’b1;
    else if (preset2)
        out1 = 1’b1;
    else
        out1 = in1;
endmodule

3.4 Case Statement Synthesis

Warp provides the user, a capability to specify a particular case block to be implemented like a 
multiplexer (parallel case) rather than a priority encoder (full case). A parallel case or a full case is 
specified by including the following directives before a case statement. 

■ warp parallel_case

■ warp full_case

These directives can be specified within the Verilog comment section (line comment or block 
comment). The directive must follow the word "warp".

Examples:
case (expression)  // warp parallel_case
    ...
endcase

case (expression)  // warp full_case
    ...
endcase

case (expression)  /* warp parallel_case */
    ...
endcase

case (expression)  /* warp full_case */
    ...
endcase
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4. Design Examples

This chapter provides Verilog design examples. To use a Verilog file in PSoC Creator, it must be 
included as part of a component. For details about how to create a PSoC Creator component, refer 
to the PSoC Creator Component Author Guide.

4.1 Counter

This example describes the behavior of a counter that increments the count by 1 on the rising edge 
of a clock (trigger). It also contains an asynchronous reset signal that resets the counter to zero. 

module counter (trigger, reset, count);

    parameter counter_size = 4;
    input trigger;
    input reset;
    inout [counter_size:0] count; 

    reg [counter_size:0] tmp_count;

    always @(posedge reset or posedge trigger)
    begin
        if (reset == 1’b 1)
            tmp_count <= {(counter_size + 1){1’b 0}};
        else
            tmp_count <= count + 1;
    end

    assign count = tmp_count;

endmodule

4.2 Vending Machine

This example describes a soft-drink dispensing machine. The machine has two bins to dispense 
regular cola and diet cola. Each bin holds three cans of soft drink. (This could be any value, but three 
is an easy number to simulate.)

The circuit dispenses a beverage if the user presses a button for that beverage and at least one can 
is available. A refill signal appears when both bins are empty. Pressing a reset signal tells the circuit 
that the machine has been replenished and the bins are full.

The circuit is implemented as a hierarchical design. The low level component of the design is a binctr 
which controls the operation of one bin. The top level is the description of the entire design. The top 
level circuit instantiates two binctrs and other logic as appropriate to describe the larger soda 
machine design. The low level design is named binctr and the top level design is named refill.
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Note PSoC Creator allows only one Verilog file per component. All modules for a component must 
be included in the same Verilog file. Also, all module names must be unique across the entire 
design.

4.2.1 Low-level Design

The following is example code for a bin controller of the soda machine:
// Behavioral description of module binctr
module binctr (reset, get_drink, clk, give_drink, empty);
    input reset;
    input get_drink;
    input clk;
    inout give_drink;
    inout empty;

    parameter full = 2’b 11;
    reg tmp_give_drink;
    reg tmp_empty;
    reg [1:0] remaining;
 
    always @(posedge clk or posedge reset)
    begin
        if (reset == 1’b 1)
        begin
            remaining <= full;
            tmp_empty <= 1’b 0;
            tmp_give_drink <= 1’b 0;
        end
        else
        begin
            if (remaining == 2’b 00)
            begin
                tmp_empty <= 1’b 1;
                tmp_give_drink <= 1’b 0;
            end
            else if (get_drink == 1’b 1)
            begin
                remaining <= remaining - 1;
                tmp_give_drink <= 1’b 1;
            end
            else if (get_drink == 1’b 0)
            begin
                tmp_give_drink <= 1’b 0;
            end
                else
            begin
                tmp_give_drink <= give_drink;
                remaining <= remaining;
                tmp_empty <= empty;
            end
        end
    end
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    assign give_drink = tmp_give_drink;
    assign empty = tmp_empty;
endmodule
 

A line-by-line explanation of the above design follows.

The module definition names the design and identifies the I/O ports used:
module binctr (reset, get_drink, clk, give_drink, empty);

The next 5 lines assign the direction of the ports identified by the module definition by defining them 
as inputs, outputs or inouts.

input reset;
input get_drink;
input clk;
inout give_drink;
inout empty;

The parameter full is next defined as a constant of binary value 11:
parameter full = 2’b 11;

The remaining 3 lines of the definition create temporary variables as reg’s for keeping track of 
signals used in the always procedural block:

reg tmp_give_drink;
reg tmp_empty;
reg [1:0] remaining;

The always procedural block describes the action of the design in response to the “clk” and “reset” 
signals.  In this instance, it is triggered on the positive edge of either.

The body of the block describes the logic followed when either of these triggering signals is received.  
The temporary variables are used internal to the block to implement the logic needed.

always @(posedge clk or posedge reset)
begin
    if (reset == 1’b 1)
    begin
        remaining <= full;
        tmp_empty <= 1’b 0;
        tmp_give_drink <= 1’b 0;
    end
    else
    begin
        if (remaining == 2’b 00)
        begin
            tmp_empty <= 1’b 1;
            tmp_give_drink <= 1’b 0;
        end
        else if (get_drink == 1’b 1)
        begin
            remaining <= remaining - 1;
            tmp_give_drink <= 1’b 1;
        end
        else if (get_drink == 1’b 0)
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        begin
            tmp_give_drink <= 1’b 0;
        end
        else
    
        begin
            tmp_give_drink <= give_drink;
            remaining <= remaining;
            tmp_empty <= empty;
        end
    end
end

To make the internal signals visible to the outside, the temporary variables are assigned to the ports 
of the module.

assign give_drink = tmp_give_drink;
assign empty = tmp_empty;

Finally, the definition of the module is terminated with:
endmodule

4.2.2 Top-Level Design

The following is example code for the refill module of the soda machine:
// Structural description of the top level module refill
module refill (GIVE_cola,GIVE_diet,REFILL_BINS,RESET,CLK
               GET_diet,GET_cola);
    inout   GIVE_cola; 
    inout   GIVE_diet; 
    output  REFILL_BINS; 
    input   RESET; 
    input   CLK; 
    input   GET_diet; 
    input   GET_cola; 

    binctr bin_1 (.reset(RESET),
                  .get_drink(GET_cola),
                  .clk(CLK),
                  .give_drink(GIVE_cola),
                  .empty(empty_1));
 
    binctr bin_2 (.reset(RESET),
                  .get_drink(GET_diet),
                  .clk(CLK),
                  .give_drink(GIVE_diet),
                  .empty(empty_2));
 
    assign REFILL_BINS = (empty_1 == 1’b 1 & empty_2 == 1’b 1)
                          ? 1’b 1 : 1’b 0;
endmodule
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The Verilog code used to implement the top level Verilog design is entirely structural in nature. The 
defintion of the module with its ports is done with the first 9 lines of the file:

module refill (GIVE_cola,GIVE_diet,REFILL_BINS,RESET,CLK
               GET_diet,GET_cola);
    inout   GIVE_cola;
    inout   GIVE_diet;
    output  REFILL_BINS;
    input   RESET;
    input   CLK;
    input   GET_diet;
    input   GET_cola;

Following  those lines are instantiations of the binctr as bin_1 and bin_2:
 binctr bin_1 (.reset(RESET),
           .get_drink(GET_cola),
           .clk(CLK),
           .give_drink(GIVE_cola),
           .empty(empty_1));
 
 binctr bin_2 (.reset(RESET),
           .get_drink(GET_diet),
           .clk(CLK),
           .give_drink(GIVE_diet),
           .empty(empty_2));

Then, the constant assignment logic of the REFILL_BINS signal depending upon the value of 
empty_1 and empty_2 is done before the module definition is closed:

assign REFILL_BINS = (empty_1 == 1’b 1 & empty_2 == 1’b 1)
                      ? 1’b 1 : 1’b 0;

Finally, the definition of the module is terminated with:
endmodule
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A. Verilog Reserved Words

The following is a list of reserved words that cannot be used as identifiers.

always and assign automatic begin

buf bufif0 bufif1 case casex

casez cell cmos config deassign

default defparam design disable edge

else end endcase endconfig endfunction

endgenerate endmodule endprimitive endspecify endtable

endtask event for force forever

fork function generate genvar highz0

highz1 if ifnone incdir include

initial inout input instance integer

join large liblist library localparam

macromodule medium module nand negedge

nmos nor noshowcancelled not notif0

notif1 or output parameter pmos

posedge primitive pull0 pull1 pulldown

pullup pulsestyle_onevent pulsestyle_ondetect rcmos real

realtime reg release repeat rnmos

rpmos rtran rtranif0 rtranif1 scalared

showcancelled signed small specify specparam

strong0 strong1 supply0 supply1 table

task time tran tranif0 tranif1

tri tri0 tri1 triand trior

trireg unsigned use vectored wait

wand weak0 weak1 while wire

wor xnor xor
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