
CIRRUS LOGIC, Inc., 1463 Centre Pointe Drive, Milpitas, CA 95035 Telephone 408.945.8300 Telex 171918 FAX 408.263.5682

CIRRUS LOGIC

Technical Briefing:

CL-CD180 Intelligent Octal Channel Asynchronous

Communications Controller

Performance Benchmark

September, 1988

No warrantee is given for the suitability of the program code describccj herein for any purpose other than a
reasonable demonstration of functional performance. CIRRUS LOGIC believes this information is accurate
and reliable. However, it is subject to change without notice. No responsibility is assumed by CIRRUS
LOGIC for its use; nor for infringements of patents or other rights of third parties. This document implies
no license under patents.

©Copyright 1988, CIRRUS LOGIC, Inc.
All rights reserved. Permission is hereby granted for use, reproduction, republication, or abstracting of this
material with attribution, by companies not cng<1gcd in the sale or manufacture of integrated circuits.

517001-001

CL-CD180 Performance Benchmark Page 1

CL-CD180 Intelligent Octal Channel Asynchronous
Communications Controller
Performance Benchmark

Data Communications Product Group
CIRRUS LOGIC, Inc.

The following is a sample program for a full duplex operation in a 10 Mhz 68010-based
system. The CL-CD 180 has a Global Interrupt Vector register that can be initiated with a
device ID# by programming the most significant five bits of the vector; thus up to 32
CD 180s can be directly accommodated. The lower three bits of the vector provides the
exact cause of the interrupt.

In this example, we shall assume a single CD 180 and look at the code required to handle
normal data reception and transmission as well as to perform receive and transmit buffer
management. The transmit and receive routines are identical, using different control
blocks and buff er areas in memory.

The memory organization for receive data is as follows:

RBUFCRB (Buffer Control Block) points to the beginning of a 32 word control block
organized into 8 sub-blocks, each with four 32-bit words for each channel. The same
applies for memory control blocks for the transmit dara buffer. The four words for each
channel are:

•RBUFWAP-

•RBUFWEP

• RBUFRAP-

points to where received data is to be written into the channel's
active buff er

points to the last byte or end of channel's active buffer

points to the beginning of next free receive buffer or the last free
location in a used buffer

• RCV STATUS - holds current status of the receive buffers

Bit 0 - if set indicates that the 1st receive write address

is the address of a new receive buff er

Bit 1 - if set indicates that the 2nd receive buff er

address is the start of a new receive buffer

Bit 2 - if set indicates that the 1st receive buffer is

full, this means that both buffers are full and receive interrupts have
been disabled

Bit 3 - if set indicates that a the 2nd receive buffer is full

Cl-CD180 Performance Benchmark Page 2

In this particular implementation, two buffers are chosen for each channel, an active and a
standby buffer. The buff er sizes are chosen on the latency required, the length of the
messages, the bit rate of the asynchronous communications, the speed at which the host
can process the incoming data and the amount of memory available.

Receive Buffer Control Block

CHANNELS

•
•

CHANNEL3

CHANNEL2
RBUFCRB+ lOh ~

CHl RCV STATUS

CHl RBUFRAP

CHlRBUFWEP

RBUFCRB CH1 RBUFWAP

T
16
bytes

J

The receive buffers are organized as follows. The system will first allocate two free
buffers setting bits 0 and 1 to indicate availability. Receive interrupts can then be enabled
and bit 0 cleared indicating the buff er is in use. When the first buffer is filled the pointers
in the table are swapped, bit 1 is cleared and bit 3 set to indicate that the 2nd buffer is full
and needs to be processed by another routine. When the 2nd buffer has been processed
and a new buffer has been allocated bit 1 is set again. If no new buffer is allocated then
buffer 1 will eventually be filled, bit 2 set and receive interrupts disabled, as no receive
data space is available.

Transmit buffers are organized in a simpler manner than the receive buffer. The control
block contains an address and a count. Initially the address is set to the start of a transmit
buffer and the count is set to the number of bytes that need to be transmitted. When the
transmit interrupt is enabled the transmit routine will send the number of bytes in the
buffer incrementing the address and decrementing the count as it progresses. The
maximum number of bytes transmitted at any interrupt is 8 corresponding to the transmit
FIFO size. When transmission of the buffer is complete the transmit interrupt is disabled.
The count of bytes in the buffer will be zero which indicates to the system that a new
block can be transferred.

CL-CD180 Performance Benchmark Page 3

Transmit Buffer Control Block

CHANN'EL8

•
•

CHANNEL3

CHANNEL2
RBUFCRB+ lOh __.

CHI TX STATUS Ts bytes

TBUFCRB •
CHlTBUFRAP _l_

CL-CD180 Performance Benchmark Page 4

Register Definitions:

GICR - Global Interrupting channel Register - three bit encoded channel number
denoting the interrupting channel's number. These three bits are located in bit positions
2-4. Bits 0-1. 5-7 are user programmable.

RDCR - Receive Data Count Register . This register stores the current number of
consecutive good bytes of data available in the receive FIFO starting with the top of the
FIFO. The host does not have to read the status register when fetching these bytes of
data.

RDR - Receive Data Register. The host accesses this register to read the data of the
interrupting channel's Receive FIFO. The CD180 will automatically switch the FIFO
data into this register for the host to read.

TOR - Transmit Data Register. This has the identical function as that of RDR, except it
is for use with the transmit operation.

CL-CD180 Performance Benchmark

3FFh

lOOh T
GIVR

OOOh
Vector Base Add.

Vector Address

CD180#N

C180#0 ~

Page 5

Starting Address of Interrupt
Service Handler

Receive Good Data
Control Block

Channel 8
•
•

'-

T Channel 4

j_
16 bytes for
each chan.

T
GICR

Channel 3

+ RBUFCB base address -

Channel 2
Channel 1

_l ...
.....-

Receive Data
Write Address
Pointer

Receive
Data
Buffer

Memory Organization for 680XO-based Interrupt System

~

CL-CD180 Performance Benchmark Page 6

Sample 680XO Receive Good Data Interrupt Handling Program

definition of CD180 in memory, located between 100000 and lOOlff
on lower byte of memory

CD180 = OxlOOOOO !address of CL-CD180 in memory

CCR
IER
CORl
COR2
COR3
CCSR
RDCR
SCHRl
SCHR2
SCHR3
SCHR4
MCORl
MCOR2
MCR
RTPR
MSVR
RBPRH
RBPRL
TBPRH
TBPRL

CD180 + Ox03
CD180 + OxOS

CD180 + Ox07
CD180 + Ox09
CD180 + OxOB

GLOBAL
GIVR
GICR
PILRl
PILR2
PILR3
CAR
GFRCR
PPRH
PPRL
RDR
RCSR
TDR
EOIR

CD180 + OxOD
CD180 + OxOF
CD180 + Oxl3
CD180 + OxlS
CD180 + Oxl7
CD180 + Oxl9
CD180 + Ox21
CD180 + Ox23

CD180 + Ox25
CD180 + Ox31

CD180 + OxSl
CD180 + Ox63
CD180 + Ox65
CD180 + Ox73
CD180 + Ox77

CD180 REGISTERS
CD180 + Ox81
CD180 + Ox83

CD180 + OxC3
co1ao + oxes
CD180 + OxC7

CD180 + OxC9
CD180 + OxD7

CD180 + OxEl
CD180 + OxE3
CD180 + OxFl
CD180 + OxFS

CD180 + OxF7
CD180 + OxFF

#receive control blocks 16 bytes per channel
. lcomm rbufcrb, 128 I receive control block area

#transmit control blocks 8 bytes per channel

.lcomm tbufcrb,64 !transmit control block area

.text

buffer size used for receive

buffsize = 256
680XO based interrupt routines for cl-cdl80
save all registers used in the receive interrupt
put the start address of the interrupting channel numbers control
block in aO rbufcrb + (16 * channel number)
rbufcrb + (4 * GICR)

CL-CD180 Performance Benchmark Page 7

Bus R/W
In:itt:JJCtiQD:l CQmments C~cle:i ClQC~:l

recv good data interrupt 68000 6
recv good data interrupt 68010 7
rcvgd: movem.l a0-a2/d0,-(sp) Jsave working registers 10

lea rbufcrb,aO I 3
eor.l dO,dO Jzero for addition 2
move.b GICR,dO I 4
lsl.w #2,dO 116 bytes per block 1
add.l dO,aO Jpoint to correct 1

I channel's control block

aO now points to the beginning of this channel's control block
get current receive buffer pointer in aO
number of good data bytes in dO, address of RDR in a2 (register
relative addressing faster than direct addr)

move.l (a0),al !receive buffer write addr 3
eor.w dO,dO Jzero for addition
move.b RDCR,dO Jnumber bytes in rev fifo
lea RDR,a2 I if 68020 do not do this

loop to move the receive good data bytes into the buffer

rcvlp: move.b (a2), (al)+ Jsave data
dbne dO,rcvlp !continue till moved all

above loop for 68000
#above loop for 68010 first 2 executions
subsequent executions
last execution

restore the pointer for the next interrupt and check if

1
4
3

data

5
5
2
4

36
38
40
12

8
16
10

6

12
4

16
12

22
22
14
18

sufficient bytes remain in the buffer to support another interrupt

move.l
move.l
sub.l
cmp.w
bmi

al, (aO)
(a0) 4,dO
al,dO
#8,dO
swap

terminate interrupt and return

rxend: move.b
movem.l
rte

d0,EOIR
(sp)+,a0-a2/d0

I restore pointer 3
Jreceive buffer end 4
I# empty bytes in buffer 1
I 2
!swap if less 8 free bytes 2

!terminate cl-cdl80s
I
Jintr complete 68000
I 68010

intr 4
10

5
6

current buff er unable to support another interrupt
test if 2nd buffer is available

swap: bclr
beq

n, (a0) 12
nobuf

lis new buff available
I

new buffer is available - flag 2nd buffer full
swap buffers and calculate buffer end point
and terminate interrupt

4
2

12
16

6
8
8

16
40
20
24

16
10

CL-CD180 Performance Benchmark Page 8

bset #3, (aO) 12 12nd buffer full
move.l (aO) 8, (aO) lstart addr of next buff
rnove.l al, (a0) 8 lold buffer end ptr
move.l (a0) ,dO I
add.l buffsize,dO I
rnove.l dO, (a0) 4 lwrite buff end point
rnove.b dO,EOIR !terminate cl-cdl80s
movem.l (sp)+,a0-a2/d0 I
rte lintr complete 68000

I 68010

2nd buffer not available flag 1st buffer as full,
disable further receive interrupts and
terminate this interrupt

nobuf: bset #2, (a0) 12 llst buffer full
bclr #OxlO,IER lclear receive data
move.b dO,EOIR I terminate cl-cdl80s
movem.l (sp)+,a0-a2/d0 I
rte lintr complete 68000

I 68010

intr

intr
intr

4 16
6 24
6 24
3 12
3 16
3 12
4 16

10 40
5 20
6 24

4 16
6 24
4 16

10 40
5 20
6 24

transmit interrupt - one buffer used, plus count of number of bytes in
buffer, when count reaches zero it indicates buffer has been sent

transmit interrupt 68010 7
txint: movem.l a0-a2/d0,-(sp) I save registers 10

lea tbufcrb,aO ltx control block addr 3
eor.l dO,dO I zero for addition 2

rnove.b GICR,dO !interrupting channel no 4
lsl.w #1, dO 18 bytes per block 1
add.l dO,aO I point to correct block 1

I for this channel

aO now points to the correct channels control block
get the transmit pointer and check the number of bytes left

move.l (aO),al I tx buffer read address
move.w (a0) 4,dO !remaining byte count
cmp.w #9 I dO I check . f'

l.. > 8 bytes left
bes lstblk !if 8 or less - last block

more than 8 bytes left in buffer so transmit 8 this time

move.w
bra

#8,dO
trans

!transmit 8 bytes
I

8 or fewer bytes to transmit so this is the last block

3
3
2
2

2
2

txlst: bclr #2,IER !disable transmit interrupt 6

restore the count for next interrupt

trans: sub. w
lea

dO, (a0) 4
TDR,a2

\update transmit count
lfor loop speed

4
3

38
40
12

8

16
8
6

12
12

8
8

8
10

24

16
12

CL-CD180 Performance Benchmark Page 9

* loop till sent dO characters

txlp: move.b (a2),(al)+ !transmit byte 3 12
dbne dO,txlp !until done all 2 10

restore pointer and terminate interrupt

move.l al, (aO) lsave ptr for next intr 3 12
move.b dO,EOIR !terminate intr in CD180 4 16
movem.l (sp)+,a0-a2/d0 !restore registers 10 40
rte land return 68000 5 20

I 68010 6 24

CL-CD180 Performance Benchmark Page 10

Receive Transmit
Total bus cycles for one good character

Total bus cycles for eight good characters

Average bus cycles per character using full FIFO

Total number of clocks for one good character:
- zero wait state
- one wait state

Total number of clocks for eight good characters:
- zero wait state
- one wait state

Average number of clocks per character when using full FIFO:
- zero wait state
- one wait state

77

96

-12

326
403

436
532

-55
-64

Average 68010 time per character (10 Mhz, 1 wait state)= 6.4 microseconds

77

96

-12

328
405

438
534

-55
-64

Thus full duplex operation on all channels operating at 9600 bps (960 characters per
second) would take 16 half duplex channels x 960 characters/channel x 6.4 µsec/character=
-98,304 µsec or about 10 % of real time. The number of full duplex asynchronous channels
capable of being supported by the 68010 at 10 Mhz, if dedicated to interrupt handling only,
would be:

- 9, 600 bps
- 19, 200 bps
- 38, 400 bps

80 channels (10 CD180s)
40 channels (5 CD180s)
20 channels(< 3 CD180s)

CL-CD180 Performance Benchmark Page 11

Sample 68010 Interrupt Service Routine for Signetics SCC2698

The code that follows is taken from the July 15, 1987 edition of Electronic Products
magazine: "CMOS Octal UART design enhances multi-channel datacomm design" by A.
Goldberger, J. Goodhart, R. Carreras.

The code appears to handle the reception and transmission of characters to and from
memory. The actual buffer management code is apparently not part of the service routine.
Please contact Signetics Corp. (Sunnyvale, CA) for any questions. Due to the interrupt
vectoring mechanism defined the code will only run on a 68010 and not 68000, so only
68010 timings are shown

Bus 'Q_/W

In::it i:uct ii:rn::i !:Qmment::i C:ll:Cle· aocks

interrupt itself 38

INT98 MOVEM.L A0-A2/D0-Dl, -(SP) l.<.. 48

MOVE.W 26(SP), DO 3 12

SUB.W VBASE98, DO 3 12

LSL.W #3, DO 1 12

LEA BASE98, AO 3 12

MOVE.B SRA (AO, DO.W), Dl 3 14

BNE.S HAVUART 1/2 6/10

ADD $16, DO 2 8

MOVE.B SRA (AO, Do.W), Dl 3 14

BEQ INT ERR 2 10

HAVUART LEA BUFAD98, Al 3 12

CMP.B #$F, Dl 2 8

BGT.S RC VE RR 1 6

BTST #0, Dl 2 10

BEQ.S DOXMIT 1/2 6/10

RCVE MOVE.L 0 (Al, DO .W), A2 4 18

MOVE.B RHR (AO, DO .W) I (A2) + 3 18

MOVE.L A2, 0 (Al, DO.W) 4 18

SUBQ.W #1, 4 (Al, DO .W) 4 18

BLE.S RC VEND 1 6

MOVEM.L (SP)+, A0-A2/D0-Dl 12 52

RTE 6 24

CL-CD180 Performance Benchmark Page 12

DOXMIT MOVE.L 8 (Al, DO. W), A2 4 18

MOVE.B (A2) +, THR (AO, DO .W) 3 18

MOVE.L A2, 8(Al, DO.W) 4 18

SUBQ.W #1, 12(Al, DO.W) 4 18

BLE.S XMITEND 1 6

MOVEM.L (SP)+, A0-A2/DO-Dl 12 52

RTE 6 24

1st UART/2nd UART Receive Transmit

Total bus cycle 76/83 76/83
Total clock - 0 wait state 356/384 360/388

- 1 wait state 436/471 440/475

Average 68010 time per byte@ 10 Mhz and 1 wait state= 45.5 µsec

Supporting full duplex operation on all channels at 9600 bps (960 characters per second)
would take 16 x 960 x 45.55 = 679,648 µsec or about 68% of real time.

Additional time should be required to manage the receive and transmit buffers used by the
device. Assuming ZERO time for these tasks, the number of full duplex asynchronous
channels capable of being supported by the 68010 @10 Mhz:

- @ 9,600 bps
- @ 19,200 bps
- @ 38,400 bps

11 channels (> I SCC2698)
5 channels (< 1 SCC2698)
2 channels

